Self-accelerating universe in Galileon cosmology
International Nuclear Information System (INIS)
Silva, Fabio P.; Koyama, Kazuya
2009-01-01
We present a cosmological model with a solution that self-accelerates at late times without signs of ghost instabilities on small scales. The model is a natural extension of the Brans-Dicke (BD) theory including a nonlinear derivative interaction, which appears in a theory with the Galilean shift symmetry. The existence of the self-accelerating universe requires a negative BD parameter but, thanks to the nonlinear term, small fluctuations around the solution are stable on small scales. General relativity is recovered at early times and on small scales by this nonlinear interaction via the Vainshtein mechanism. At late time, gravity is strongly modified and the background cosmology shows a phantomlike behavior and the growth rate of structure formation is enhanced. Thus this model leaves distinct signatures in cosmological observations and it can be distinguished from standard LCDM cosmology.
Accelerating cosmologies from exponential potentials
International Nuclear Information System (INIS)
Neupane, Ishwaree P.
2003-11-01
It is learnt that exponential potentials of the form V ∼ exp(-2cφ/M p ) arising from the hyperbolic or flux compactification of higher-dimensional theories are of interest for getting short periods of accelerated cosmological expansions. Using a similar potential but derived for the combined case of hyperbolic-flux compactification, we study a four-dimensional flat (or open) FRW cosmologies and give analytic (and numerical) solutions with exponential behavior of scale factors. We show that, for the M-theory motivated potentials, the cosmic acceleration of the universe can be eternal if the spatial curvature of the 4d spacetime is negative, while the acceleration is only transient for a spatially flat universe. We also briefly discuss about the mass of massive Kaluza-Klein modes and the dynamical stabilization of the compact hyperbolic extra dimensions. (author)
Particle accelerators test cosmological theory
International Nuclear Information System (INIS)
Schramm, D.N.; Steigman, G.
1988-01-01
Over the past decade two subfields of science, cosmology and elementary-particle physics, have become married in a symbiotic relationship that has produced a number of exciting offspring. These offspring are beginning to yield insights on the creation of spacetime and matter at epochs as early as 10 to the minus 43 to 10 to the minus 35 second after the birth of the universe in the primordial explosion known as the big bang. Important clues to the nature of the big bang itself may even come from a theory currently under development, known as the ultimate theory of everything (T.E.O.). A T.E.O. would describe all the interactions among the fundamental particles in a single bold stroke. Now that cosmology ahs begun to make predictions about elementary-particle physics, it has become conceivable that those cosmological predictions could be checked with carefully controlled accelerator experiments. It has taken more than 10 years for accelerators to reach the point where they can do the appropriate experiments, but the experiments are now in fact in progress. The preliminary results confirm the predictions of cosmology. The cosmological prediction the authors have been concerned with pertains to setting limits on the number of fundamental particles of matter. It appears that there are 12 fundamental particles, as well as their corresponding antiparticles. Six of the fundamental particles are quarks. The other six are leptons. The 12 particles are grouped in three families, each family consisting of four members. Cosmology suggests there must be a finite number of families and, further limits the possible range of to small values: only three or at most four families exist. 7 figs
Conformal symmetries of FRW accelerating cosmologies
International Nuclear Information System (INIS)
Kehagias, A.; Riotto, A.
2014-01-01
We show that any accelerating Friedmann–Robertson–Walker (FRW) cosmology with equation of state w<−1/3 (and therefore not only a de Sitter stage with w=−1) exhibits three-dimensional conformal symmetry on future constant-time hypersurfaces if the bulk theory is invariant under bulk conformal Killing vectors. We also offer an alternative derivation of this result in terms of conformal Killing vectors and show that long wavelength comoving curvature perturbations of the perturbed FRW metric are just conformal Killing motions of the FRW background. We then extend the boundary conformal symmetry to the bulk for accelerating cosmologies. Our findings indicate that one can easily generate perturbations of scalar fields which are not only scale invariant, but also fully conformally invariant on super-Hubble scales. Measuring a scale-invariant power spectrum for the cosmological perturbation does not automatically imply that the universe went through a de Sitter stage
A numerical study of the Regge calculus and smooth lattice methods on a Kasner cosmology
International Nuclear Information System (INIS)
Brewin, Leo
2015-01-01
Two lattice based methods for numerical relativity, the Regge calculus and the smooth lattice relativity, will be compared with respect to accuracy and computational speed in a full 3+1 evolution of initial data representing a standard Kasner cosmology. It will be shown that both methods provide convergent approximations to the exact Kasner cosmology. It will also be shown that the Regge calculus is of the order of 110 times slower than the smooth lattice method. (paper)
Cosmological evolution of vacuum and cosmic acceleration
International Nuclear Information System (INIS)
Kaya, Ali
2010-01-01
It is known that the unregularized expressions for the stress-energy tensor components corresponding to subhorizon and superhorizon vacuum fluctuations of a massless scalar field in a Friedmann-Robertson-Walker background are characterized by the equation of state parameters ω = 1/3 and ω = -1/3, which are not sufficient to produce cosmological acceleration. However, the form of the adiabatically regularized finite stress-energy tensor turns out to be completely different. By using the fact that vacuum subhorizon modes evolve nearly adiabatically and superhorizon modes have ω = -1/3, we approximately determine the regularized stress-energy tensor, whose conservation is utilized to fix the time dependence of the vacuum energy density. We then show that vacuum energy density grows from zero up to H 4 in about one Hubble time, vacuum fluctuations give positive acceleration of the order of H 4 /M 2 p and they can completely alter the cosmic evolution of the universe dominated otherwise by the cosmological constant, radiation or pressureless dust. Although the magnitude of the acceleration is tiny to explain the observed value today, our findings indicate that the cosmological backreaction of vacuum fluctuations must be taken into account in early stages of cosmic evolution.
Cosmological consistency tests of gravity theory and cosmic acceleration
Ishak-Boushaki, Mustapha B.
2017-01-01
Testing general relativity at cosmological scales and probing the cause of cosmic acceleration are among the important objectives targeted by incoming and future astronomical surveys and experiments. I present our recent results on consistency tests that can provide insights about the underlying gravity theory and cosmic acceleration using cosmological data sets. We use statistical measures, the rate of cosmic expansion, the growth rate of large scale structure, and the physical consistency of these probes with one another.
Top ten accelerating cosmological models
International Nuclear Information System (INIS)
Szydlowski, Marek; Kurek, Aleksandra; Krawiec, Adam
2006-01-01
Recent astronomical observations indicate that the Universe is presently almost flat and undergoing a period of accelerated expansion. Basing on Einstein's general relativity all these observations can be explained by the hypothesis of a dark energy component in addition to cold dark matter (CDM). Because the nature of this dark energy is unknown, it was proposed some alternative scenario to explain the current accelerating Universe. The key point of this scenario is to modify the standard FRW equation instead of mysterious dark energy component. The standard approach to constrain model parameters, based on the likelihood method, gives a best-fit model and confidence ranges for those parameters. We always arbitrary choose the set of parameters which define a model which we compare with observational data. Because in the generic case, the introducing of new parameters improves a fit to the data set, there appears the problem of elimination of model parameters which can play an insufficient role. The Bayesian information criteria of model selection (BIC) is dedicated to promotion a set of parameters which should be incorporated to the model. We divide class of all accelerating cosmological models into two groups according to the two types of explanation acceleration of the Universe. Then the Bayesian framework of model selection is used to determine the set of parameters which gives preferred fit to the SNIa data. We find a few of flat cosmological models which can be recommend by the Bayes factor. We show that models with dark energy as a new fluid are favoured over models featuring a modified FRW equation
3D Metallic Lattices for Accelerator Applications
Shapiro, Michael A; Sirigiri, Jagadishwar R; Temkin, Richard J
2005-01-01
We present the results of research on 3D metallic lattices operating at microwave frequencies for application in (1) accelerator structures with higher order mode suppression, (2) Smith-Purcell radiation beam diagnostics, and (3) polaritonic materials for laser acceleration. Electromagnetic waves in a 3D simple cubic lattice formed by metal wires are calculated using HFSS. The bulk modes in the lattice are determined using single cell calculations with different phase advances in all three directions. The Brillouin diagram for the bulk modes is presented and indicates the absence of band gaps in simple lattices except the band below the cutoff. Lattices with thin wires as well as with thick wires have been analyzed. The Brillouin diagram also indicates the presence of low frequency 3D plasmon mode as well as the two degenerate photon modes analogous to those in a 2D lattice. Surface modes for a semi-infinite cubic lattice are modeled as a stack of cells with different phase advances in the two directions alon...
Deflation acceleration of lattice QCD simulations
International Nuclear Information System (INIS)
Luescher, Martin
2007-01-01
Close to the chiral limit, many calculations in numerical lattice QCD can potentially be accelerated using low-mode deflation techniques. In this paper it is shown that the recently introduced domain-decomposed deflation subspaces can be propagated along the field trajectories generated by the Hybrid Monte Carlo (HMC) algorithm with a modest effort. The quark forces that drive the simulation may then be computed using a deflation-accelerated solver for the lattice Dirac equation. As a consequence, the computer time required for the simulations is significantly reduced and an improved scaling behaviour of the simulation algorithm with respect to the quark mass is achieved
Deflation acceleration of lattice QCD simulations
Lüscher, Martin
2007-01-01
Close to the chiral limit, many calculations in numerical lattice QCD can potentially be accelerated using low-mode deflation techniques. In this paper it is shown that the recently introduced domain-decomposed deflation subspaces can be propagated along the field trajectories generated by the Hybrid Monte Carlo (HMC) algorithm with a modest effort. The quark forces that drive the simulation may then be computed using a deflation-accelerated solver for the lattice Dirac equation. As a consequence, the computer time required for the simulations is significantly reduced and an improved scaling behaviour of the simulation algorithm with respect to the quark mass is achieved.
Cosmological acceleration. Dark energy or modified gravity?
International Nuclear Information System (INIS)
Bludman, S.
2006-05-01
We review the evidence for recently accelerating cosmological expansion or ''dark energy'', either a negative pressure constituent in General Relativity (Dark Energy) or modified gravity (Dark Gravity), without any constituent Dark Energy. If constituent Dark Energy does not exist, so that our universe is now dominated by pressure-free matter, Einstein gravity must be modified at low curvature. The vacuum symmetry of any Robertson-Walker universe then characterizes Dark Gravity as low- or high-curvature modifications of Einstein gravity. The dynamics of either kind of ''dark energy'' cannot be derived from the homogeneous expansion history alone, but requires also observing the growth of inhomogeneities. Present and projected observations are all consistent with a small fine tuned cosmological constant, but also allow nearly static Dark Energy or gravity modified at cosmological scales. The growth of cosmological fluctuations will potentially distinguish between static and ''dynamic'' ''dark energy''. But, cosmologically distinguishing the Concordance Model ΛCDM from modified gravity will require a weak lensing shear survey more ambitious than any now projected. Dvali-Gabadadze-Porrati low-curvature modifications of Einstein gravity may also be detected in refined observations in the solar system (Lue and Starkman) or at the intermediate Vainstein scale (Iorio) in isolated galaxy clusters. Dark Energy's epicyclic character, failure to explain the original Cosmic Coincidence (''Why so small now?'') without fine tuning, inaccessibility to laboratory or solar system tests, along with braneworld theories, now motivate future precision solar system, Vainstein-scale and cosmological-scale studies of Dark Gravity. (Orig.)
Cosmological acceleration. Dark energy or modified gravity?
Energy Technology Data Exchange (ETDEWEB)
Bludman, S
2006-05-15
We review the evidence for recently accelerating cosmological expansion or ''dark energy'', either a negative pressure constituent in General Relativity (Dark Energy) or modified gravity (Dark Gravity), without any constituent Dark Energy. If constituent Dark Energy does not exist, so that our universe is now dominated by pressure-free matter, Einstein gravity must be modified at low curvature. The vacuum symmetry of any Robertson-Walker universe then characterizes Dark Gravity as low- or high-curvature modifications of Einstein gravity. The dynamics of either kind of ''dark energy'' cannot be derived from the homogeneous expansion history alone, but requires also observing the growth of inhomogeneities. Present and projected observations are all consistent with a small fine tuned cosmological constant, but also allow nearly static Dark Energy or gravity modified at cosmological scales. The growth of cosmological fluctuations will potentially distinguish between static and ''dynamic'' ''dark energy''. But, cosmologically distinguishing the Concordance Model {lambda}CDM from modified gravity will require a weak lensing shear survey more ambitious than any now projected. Dvali-Gabadadze-Porrati low-curvature modifications of Einstein gravity may also be detected in refined observations in the solar system (Lue and Starkman) or at the intermediate Vainstein scale (Iorio) in isolated galaxy clusters. Dark Energy's epicyclic character, failure to explain the original Cosmic Coincidence (''Why so small now?'') without fine tuning, inaccessibility to laboratory or solar system tests, along with braneworld theories, now motivate future precision solar system, Vainstein-scale and cosmological-scale studies of Dark Gravity. (Orig.)
Learn-as-you-go acceleration of cosmological parameter estimates
International Nuclear Information System (INIS)
Aslanyan, Grigor; Easther, Richard; Price, Layne C.
2015-01-01
Cosmological analyses can be accelerated by approximating slow calculations using a training set, which is either precomputed or generated dynamically. However, this approach is only safe if the approximations are well understood and controlled. This paper surveys issues associated with the use of machine-learning based emulation strategies for accelerating cosmological parameter estimation. We describe a learn-as-you-go algorithm that is implemented in the Cosmo++ code and (1) trains the emulator while simultaneously estimating posterior probabilities; (2) identifies unreliable estimates, computing the exact numerical likelihoods if necessary; and (3) progressively learns and updates the error model as the calculation progresses. We explicitly describe and model the emulation error and show how this can be propagated into the posterior probabilities. We apply these techniques to the Planck likelihood and the calculation of ΛCDM posterior probabilities. The computation is significantly accelerated without a pre-defined training set and uncertainties in the posterior probabilities are subdominant to statistical fluctuations. We have obtained a speedup factor of 6.5 for Metropolis-Hastings and 3.5 for nested sampling. Finally, we discuss the general requirements for a credible error model and show how to update them on-the-fly
Fourier acceleration in lattice gauge theories. I. Landau gauge fixing
International Nuclear Information System (INIS)
Davies, C.T.H.; Batrouni, G.G.; Katz, G.R.; Kronfeld, A.S.; Lepage, G.P.; Wilson, K.G.; Rossi, P.; Svetitsky, B.
1988-01-01
Fourier acceleration is a useful technique which can be applied to many different numerical algorithms in order to alleviate the problem of critical slowing down. Here we describe its application to an optimization problem in the simulation of lattice gauge theories, that of gauge fixing a configuration of link fields to the Landau gauge (partial/sub μ/A/sup μ/ = 0). We find that a steepest-descents method of gauge fixing link fields at β = 5.8 on an 8 4 lattice can be made 5 times faster using Fourier acceleration. This factor will grow as the volume of the lattice is increased. We also discuss other gauges that are useful to lattice-gauge-theory simulations, among them one that is a combination of the axial and Landau gauges. This seems to be the optimal gauge to impose for the Fourier acceleration of two other important algorithms, the inversion of the fermion matrix and the updating of gauge field configurations
Cosmic Rays Accelerated at Cosmological Shock Waves Renyi Ma1 ...
Indian Academy of Sciences (India)
Cosmic Rays Accelerated at Cosmological Shock Waves. Renyi Ma1,2,∗ ... ratio of CR to thermal energy in the ICM and WHIM based on numerical simulations and diffusive shock ... Hence, the nonthermal radiation of CRs may provide us a.
PyCOOL — A Cosmological Object-Oriented Lattice code written in Python
International Nuclear Information System (INIS)
Sainio, J.
2012-01-01
There are a number of different phenomena in the early universe that have to be studied numerically with lattice simulations. This paper presents a graphics processing unit (GPU) accelerated Python program called PyCOOL that solves the evolution of scalar fields in a lattice with very precise symplectic integrators. The program has been written with the intention to hit a sweet spot of speed, accuracy and user friendliness. This has been achieved by using the Python language with the PyCUDA interface to make a program that is easy to adapt to different scalar field models. In this paper we derive the symplectic dynamics that govern the evolution of the system and then present the implementation of the program in Python and PyCUDA. The functionality of the program is tested in a chaotic inflation preheating model, a single field oscillon case and in a supersymmetric curvaton model which leads to Q-ball production. We have also compared the performance of a consumer graphics card to a professional Tesla compute card in these simulations. We find that the program is not only accurate but also very fast. To further increase the usefulness of the program we have equipped it with numerous post-processing functions that provide useful information about the cosmological model. These include various spectra and statistics of the fields. The program can be additionally used to calculate the generated curvature perturbation. The program is publicly available under GNU General Public License at https://github.com/jtksai/PyCOOL. Some additional information can be found from http://www.physics.utu.fi/tiedostot/theory/particlecosmology/pycool/
PyCOOL — A Cosmological Object-Oriented Lattice code written in Python
Energy Technology Data Exchange (ETDEWEB)
Sainio, J., E-mail: jani.sainio@utu.fi [Turku School of Economics, University of Turku, Rehtorinpellonkatu 3, FI-20500 Turku (Finland); Department of Physics and Astronomy, University of Turku, FI-20014 Turku (Finland)
2012-04-01
There are a number of different phenomena in the early universe that have to be studied numerically with lattice simulations. This paper presents a graphics processing unit (GPU) accelerated Python program called PyCOOL that solves the evolution of scalar fields in a lattice with very precise symplectic integrators. The program has been written with the intention to hit a sweet spot of speed, accuracy and user friendliness. This has been achieved by using the Python language with the PyCUDA interface to make a program that is easy to adapt to different scalar field models. In this paper we derive the symplectic dynamics that govern the evolution of the system and then present the implementation of the program in Python and PyCUDA. The functionality of the program is tested in a chaotic inflation preheating model, a single field oscillon case and in a supersymmetric curvaton model which leads to Q-ball production. We have also compared the performance of a consumer graphics card to a professional Tesla compute card in these simulations. We find that the program is not only accurate but also very fast. To further increase the usefulness of the program we have equipped it with numerous post-processing functions that provide useful information about the cosmological model. These include various spectra and statistics of the fields. The program can be additionally used to calculate the generated curvature perturbation. The program is publicly available under GNU General Public License at https://github.com/jtksai/PyCOOL. Some additional information can be found from http://www.physics.utu.fi/tiedostot/theory/particlecosmology/pycool/.
NONLINEAR ACCELERATOR LATTICES WITH ONE AND TWO ANALYTIC INVARIANTS
International Nuclear Information System (INIS)
Danilov, Viatcheslav V.
2010-01-01
Integrable systems appeared in physics long ago at the onset of classical dynamics with examples being Kepler s and other famous problems. Unfortunately, the majority of nonlinear problems turned out to be nonintegrable. In accelerator terms, any 2D nonlinear map produces a chaotic motion and a complex network of stable and unstable resonances with the unit probability. Nevertheless, in the proximity of an integrable system the full volume of such a chaotic network is small. Thus, the integrable nonlinear motion in accelerators has the potential to introduce a large betatron tune spread to suppress instabilities and to mitigate space charge effects with relatively small resonances and particle loss. To create such an accelerator lattice one has to find magnetic and electrtic field combinations leading to a stable integrable motion. This paper presents families of lattices with one invariant where bounded motion can be easily created in large volumes of the phase space. In addition, it presents 3 families of integrable nonlinear accelerator lattices, relizable with longitudinal-coordinate-dependent magnetic or electric fields with the stable nonlinear motion, which can be solved in terms of separable variables.
Is cosmic acceleration proven by local cosmological probes?
Tutusaus, I.; Lamine, B.; Dupays, A.; Blanchard, A.
2017-06-01
Context. The cosmological concordance model (ΛCDM) matches the cosmological observations exceedingly well. This model has become the standard cosmological model with the evidence for an accelerated expansion provided by the type Ia supernovae (SNIa) Hubble diagram. However, the robustness of this evidence has been addressed recently with somewhat diverging conclusions. Aims: The purpose of this paper is to assess the robustness of the conclusion that the Universe is indeed accelerating if we rely only on low-redshift (z ≲ 2) observations, that is to say with SNIa, baryonic acoustic oscillations, measurements of the Hubble parameter at different redshifts, and measurements of the growth of matter perturbations. Methods: We used the standard statistical procedure of minimizing the χ2 function for the different probes to quantify the goodness of fit of a model for both ΛCDM and a simple nonaccelerated low-redshift power law model. In this analysis, we do not assume that supernovae intrinsic luminosity is independent of the redshift, which has been a fundamental assumption in most previous studies that cannot be tested. Results: We have found that, when SNIa intrinsic luminosity is not assumed to be redshift independent, a nonaccelerated low-redshift power law model is able to fit the low-redshift background data as well as, or even slightly better, than ΛCDM. When measurements of the growth of structures are added, a nonaccelerated low-redshift power law model still provides an excellent fit to the data for all the luminosity evolution models considered. Conclusions: Without the standard assumption that supernovae intrinsic luminosity is independent of the redshift, low-redshift probes are consistent with a nonaccelerated universe.
Symplectic maps for accelerator lattices
International Nuclear Information System (INIS)
Warnock, R.L.; Ruth, R.; Gabella, W.
1988-05-01
We describe a method for numerical construction of a symplectic map for particle propagation in a general accelerator lattice. The generating function of the map is obtained by integrating the Hamilton-Jacobi equation as an initial-value problem on a finite time interval. Given the generating function, the map is put in explicit form by means of a Fourier inversion technique. We give an example which suggests that the method has promise. 9 refs., 9 figs
International Nuclear Information System (INIS)
Leibundgut, B.
2005-01-01
Supernovae have developed into a versatile tool for cosmology. Their impact on the cosmological model has been profound and led to the discovery of the accelerated expansion. The current status of the cosmological model as perceived through supernova observations will be presented. Supernovae are currently the only astrophysical objects that can measure the dynamics of the cosmic expansion during the past eight billion years. Ongoing experiments are trying to determine the characteristics of the accelerated expansion and give insight into what might be the physical explanation for the acceleration. (author)
Anisotropic SD2 brane: accelerating cosmology and Kasner-like space-time from compactification
International Nuclear Information System (INIS)
Nayek, Kuntal; Roy, Shibaji
2017-01-01
Starting from an anisotropic (in all directions including the time direction of the brane) non-SUSY D2 brane solution of type IIA string theory we construct an anisotropic space-like D2 brane (or SD2 brane, for short) solution by the standard trick of a double Wick rotation. This solution is characterized by five independent parameters. We show that compactification on six-dimensional hyperbolic space (H_6) of a time-dependent volume of this SD2 brane solution leads to accelerating cosmologies (for some time t ∝ t_0, with t_0 some characteristic time) where both the expansions and the accelerations are different in three spatial directions of the resultant four-dimensional universe. On the other hand at early times (t << t_0) this four-dimensional space, in certain situations, leads to four-dimensional Kasner-like cosmology, with two additional scalars, namely, the dilaton and a volume scalar of H_6. Unlike in the standard four-dimensional Kasner cosmology here all three Kasner exponents could be positive definite, leading to expansions in all three directions. (orig.)
Acceleration-enlarged symmetries in nonrelativistic space-time with a cosmological constant TH1"-->
Lukierski, J.; Stichel, P. C.; Zakrzewski, W. J.
2008-05-01
By considering the nonrelativistic limit of de Sitter geometry one obtains the nonrelativistic space-time with a cosmological constant and Newton Hooke (NH) symmetries. We show that the NH symmetry algebra can be enlarged by the addition of the constant acceleration generators and endowed with central extensions (one in any dimension (D) and three in D=(2+1)). We present a classical Lagrangian and Hamiltonian framework for constructing models quasi-invariant under enlarged NH symmetries that depend on three parameters described by three nonvanishing central charges. The Hamiltonian dynamics then splits into external and internal sectors with new noncommutative structures of external and internal phase spaces. We show that in the limit of vanishing cosmological constant the system reduces to the one, which possesses acceleration-enlarged Galilean symmetries.
LINEAR LATTICE AND TRAJECTORY RECONSTRUCTION AND CORRECTION AT FAST LINEAR ACCELERATOR
Energy Technology Data Exchange (ETDEWEB)
Romanov, A. [Fermilab; Edstrom, D. [Fermilab; Halavanau, A. [Northern Illinois U.
2017-07-16
The low energy part of the FAST linear accelerator based on 1.3 GHz superconducting RF cavities was successfully commissioned [1]. During commissioning, beam based model dependent methods were used to correct linear lattice and trajectory. Lattice correction algorithm is based on analysis of beam shape from profile monitors and trajectory responses to dipole correctors. Trajectory responses to field gradient variations in quadrupoles and phase variations in superconducting RF cavities were used to correct bunch offsets in quadrupoles and accelerating cavities relative to their magnetic axes. Details of used methods and experimental results are presented.
Implications of an absolute simultaneity theory for cosmology and universe acceleration.
Kipreos, Edward T
2014-01-01
An alternate Lorentz transformation, Absolute Lorentz Transformation (ALT), has similar kinematics to special relativity yet maintains absolute simultaneity in the context of a preferred reference frame. In this study, it is shown that ALT is compatible with current experiments to test Lorentz invariance only if the proposed preferred reference frame is locally equivalent to the Earth-centered non-rotating inertial reference frame, with the inference that in an ALT framework, preferred reference frames are associated with centers of gravitational mass. Applying this theoretical framework to cosmological data produces a scenario of universal time contraction in the past. In this scenario, past time contraction would be associated with increased levels of blueshifted light emissions from cosmological objects when viewed from our current perspective. The observation that distant Type Ia supernovae are dimmer than predicted by linear Hubble expansion currently provides the most direct evidence for an accelerating universe. Adjusting for the effects of time contraction on a redshift-distance modulus diagram produces a linear distribution of supernovae over the full redshift spectrum that is consistent with a non-accelerating universe.
Implications of an absolute simultaneity theory for cosmology and universe acceleration.
Directory of Open Access Journals (Sweden)
Edward T Kipreos
Full Text Available An alternate Lorentz transformation, Absolute Lorentz Transformation (ALT, has similar kinematics to special relativity yet maintains absolute simultaneity in the context of a preferred reference frame. In this study, it is shown that ALT is compatible with current experiments to test Lorentz invariance only if the proposed preferred reference frame is locally equivalent to the Earth-centered non-rotating inertial reference frame, with the inference that in an ALT framework, preferred reference frames are associated with centers of gravitational mass. Applying this theoretical framework to cosmological data produces a scenario of universal time contraction in the past. In this scenario, past time contraction would be associated with increased levels of blueshifted light emissions from cosmological objects when viewed from our current perspective. The observation that distant Type Ia supernovae are dimmer than predicted by linear Hubble expansion currently provides the most direct evidence for an accelerating universe. Adjusting for the effects of time contraction on a redshift-distance modulus diagram produces a linear distribution of supernovae over the full redshift spectrum that is consistent with a non-accelerating universe.
Anisotropic SD2 brane: accelerating cosmology and Kasner-like space-time from compactification
Energy Technology Data Exchange (ETDEWEB)
Nayek, Kuntal; Roy, Shibaji [Saha Institute of Nuclear Physics, Calcutta (India); Homi Bhabha National Institute, Mumbai (India)
2017-07-15
Starting from an anisotropic (in all directions including the time direction of the brane) non-SUSY D2 brane solution of type IIA string theory we construct an anisotropic space-like D2 brane (or SD2 brane, for short) solution by the standard trick of a double Wick rotation. This solution is characterized by five independent parameters. We show that compactification on six-dimensional hyperbolic space (H{sub 6}) of a time-dependent volume of this SD2 brane solution leads to accelerating cosmologies (for some time t ∝ t{sub 0}, with t{sub 0} some characteristic time) where both the expansions and the accelerations are different in three spatial directions of the resultant four-dimensional universe. On the other hand at early times (t << t{sub 0}) this four-dimensional space, in certain situations, leads to four-dimensional Kasner-like cosmology, with two additional scalars, namely, the dilaton and a volume scalar of H{sub 6}. Unlike in the standard four-dimensional Kasner cosmology here all three Kasner exponents could be positive definite, leading to expansions in all three directions. (orig.)
Proceedings of the 1st Workshop on Flavor Symmetries and Consequences in Accelerators and Cosmology
Meloni, D; Morisi, S; Pastor, S; Peinado, E; Valle, J W F; FLASY2011
2012-01-01
The main goals of the first "Workshop on FLAvor SYmmetries and consequences in accelerators and cosmology" (FLASY) was to summarize the theoretical status of flavor symmetries, bringing together young researchers in the field to stimulate discussions and new collaborations, with the aim of investigating possible new physics scenarios to be tested at the LHC, as well as in future neutrino, cosmology experiments and dark matter searches.
Inflation and late-time acceleration in braneworld cosmological models with varying brane tension
International Nuclear Information System (INIS)
Wong, K.C.; Cheng, K.S.; Harko, T.
2010-01-01
Braneworld models with variable brane tension λ introduce a new degree of freedom that allows for evolving gravitational and cosmological constants, the latter being a natural candidate for dark energy. We consider a thermodynamic interpretation of the varying brane tension models, by showing that the field equations with variable λ can be interpreted as describing matter creation in a cosmological framework. The particle creation rate is determined by the variation rate of the brane tension, as well as by the brane-bulk energy-matter transfer rate. We investigate the effect of a variable brane tension on the cosmological evolution of the Universe, in the framework of a particular model in which the brane tension is an exponentially dependent function of the scale factor. The resulting cosmology shows the presence of an initial inflationary expansion, followed by a decelerating phase, and by a smooth transition towards a late accelerated de Sitter type expansion. The varying brane tension is also responsible for the generation of the matter in the Universe (reheating period). The physical constraints on the model parameters, resulting from the observational cosmological data, are also investigated. (orig.)
Bloch oscillations and accelerated Bose–Einstein condensates in an optical lattice
Energy Technology Data Exchange (ETDEWEB)
Sacchetti, Andrea, E-mail: andrea.sacchetti@unimore.it
2017-01-30
Highlights: • Discrete nonlinear Schrödinger model for accelerated BECs in optical lattices. • Numerical computation of wavefunction BECs dynamics. • Correlation between nonlinearity and the oscillating period of the BEC's center of mass. • Discussion of the validity of the Bloch Theorem for accelerated BECs in an optical lattice. - Abstract: We discuss the method for the measurement of the gravity acceleration g by means of Bloch oscillations of an accelerated BEC in an optical lattice. This method has a theoretical critical point due to the fact that the period of the Bloch oscillations depends, in principle, on the initial shape of the BEC wavepacket. Here, by making use of the nearest-neighbor model for the numerical analysis of the BEC wavefunction, we show that in real experiments the period of the Bloch oscillations does not really depend on the shape of the initial wavepacket and that the relative uncertainty, due to the fact that the initial shape of the wavepacket may be asymmetrical, is smaller than the one due to experimental errors. Furthermore, we also show that the relation between the oscillation period and the scattering length of the BEC's atoms is linear; this fact suggests us a new experimental procedure for the measurement of the scattering length of atoms.
Steady-State Anderson Accelerated Coupling of Lattice Boltzmann and Navier–Stokes Solvers
Atanasov, Atanas
2016-10-17
We present an Anderson acceleration-based approach to spatially couple three-dimensional Lattice Boltzmann and Navier–Stokes (LBNS) flow simulations. This allows to locally exploit the computational features of both fluid flow solver approaches to the fullest extent and yields enhanced control to match the LB and NS degrees of freedom within the LBNS overlap layer. Designed for parallel Schwarz coupling, the Anderson acceleration allows for the simultaneous execution of both Lattice Boltzmann and Navier–Stokes solver. We detail our coupling methodology, validate it, and study convergence and accuracy of the Anderson accelerated coupling, considering three steady-state scenarios: plane channel flow, flow around a sphere and channel flow across a porous structure. We find that the Anderson accelerated coupling yields a speed-up (in terms of iteration steps) of up to 40% in the considered scenarios, compared to strictly sequential Schwarz coupling.
Dynamical Aperture Control in Accelerator Lattices With Multipole Potentials
Morozov, I
2017-01-01
We develop tools for symbolic representation of a non-linear accelerator model and analytical methods for description of non-linear dynamics. Information relevant to the dynamic aperture (DA) is then obtained from this model and can be used for indirect DA control or as a complement to direct numerical optimization. We apply two analytical methods and use multipole magnets to satisfy derived analytical constraints. The accelerator model is represented as a product of unperturbed and perturbed exponential operators with the exponent of the perturbed operator given as a power series in the perturbation parameter. Normal forms can be applied to this representation and the lattice parameters are used to control the normal form Hamiltonian and normal form transformation. Hamiltonian control is used to compute a control term or controlled operator. Lattice parameters are then fitted to satisfy the imposed control constraints. Theoretical results, as well as illustrative examples, are presented.
Williamson, S. Gill
2010-01-01
Will the cosmological multiverse, when described mathematically, have easily stated properties that are impossible to prove or disprove using mathematical physics? We explore this question by constructing lattice multiverses which exhibit such behavior even though they are much simpler mathematically than any likely cosmological multiverse.
The Turning Point for the Recent Acceleration of the Universe with a Cosmological Constant
Directory of Open Access Journals (Sweden)
Zhang T. X.
2012-04-01
Full Text Available The turning point and acceleration expansion of the universe are investigated according to the standard cosmological theory with a non-zero cosmological constant. Choosing the Hubble constant H 0 , the radius of the present universe R 0 , and the density parameter in matter Ω M , 0 as three independent parameters, we have analytically examined the other properties of the universe such as the density parameter in dark energy, the cosmologi- cal constant, the mass of the universe, the turning point redshift, the age of the present universe, and the time-dependent radius, expansion rate, velocity, and acceleration pa- rameter of the universe. It is shown that the turning point redshift is only dependent of the density parameter in matter, not explicitly on the Hubble constant and the radius of the present universe. The universe turned its expansion from past deceleration to recent acceleration at the moment when its size was about 3 / 5 of the present size if the density parameter in matter is about 0.3 (or the turning point redshift is 0.67. The expansion rate is very large in the early period and decreases with time to approach the Hubble constant at the present time. The expansion velocity exceeds the light speed in the early period. It decreases to the minimum at the turning point and then increases with time. The minimum and present expansion velocities are determined with the independent parameters. The solution of time-dependent radius shows the universe expands all the time. The universe with a larger present radius, smaller Hubble constant, and / or smaller density parameter in matter is elder. The universe with smaller density parameter in matter accelerates recently in a larger rate but less than unity.
Cosmological Reflection of Particle Symmetry
Directory of Open Access Journals (Sweden)
Maxim Khlopov
2016-08-01
Full Text Available The standard model involves particle symmetry and the mechanism of its breaking. Modern cosmology is based on inflationary models with baryosynthesis and dark matter/energy, which involves physics beyond the standard model. Studies of the physical basis of modern cosmology combine direct searches for new physics at accelerators with its indirect non-accelerator probes, in which cosmological consequences of particle models play an important role. The cosmological reflection of particle symmetry and the mechanisms of its breaking are the subject of the present review.
Simple cosmological model with inflation and late times acceleration
Szydłowski, Marek; Stachowski, Aleksander
2018-03-01
In the framework of polynomial Palatini cosmology, we investigate a simple cosmological homogeneous and isotropic model with matter in the Einstein frame. We show that in this model during cosmic evolution, early inflation appears and the accelerating phase of the expansion for the late times. In this frame we obtain the Friedmann equation with matter and dark energy in the form of a scalar field with a potential whose form is determined in a covariant way by the Ricci scalar of the FRW metric. The energy density of matter and dark energy are also parameterized through the Ricci scalar. Early inflation is obtained only for an infinitesimally small fraction of energy density of matter. Between the matter and dark energy, there exists an interaction because the dark energy is decaying. For the characterization of inflation we calculate the slow roll parameters and the constant roll parameter in terms of the Ricci scalar. We have found a characteristic behavior of the time dependence of density of dark energy on the cosmic time following the logistic-like curve which interpolates two almost constant value phases. From the required numbers of N-folds we have found a bound on the model parameter.
Caching and interpolated likelihoods: accelerating cosmological Monte Carlo Markov chains
Energy Technology Data Exchange (ETDEWEB)
Bouland, Adam; Easther, Richard; Rosenfeld, Katherine, E-mail: adam.bouland@aya.yale.edu, E-mail: richard.easther@yale.edu, E-mail: krosenfeld@cfa.harvard.edu [Department of Physics, Yale University, New Haven CT 06520 (United States)
2011-05-01
We describe a novel approach to accelerating Monte Carlo Markov Chains. Our focus is cosmological parameter estimation, but the algorithm is applicable to any problem for which the likelihood surface is a smooth function of the free parameters and computationally expensive to evaluate. We generate a high-order interpolating polynomial for the log-likelihood using the first points gathered by the Markov chains as a training set. This polynomial then accurately computes the majority of the likelihoods needed in the latter parts of the chains. We implement a simple version of this algorithm as a patch (InterpMC) to CosmoMC and show that it accelerates parameter estimatation by a factor of between two and four for well-converged chains. The current code is primarily intended as a ''proof of concept'', and we argue that there is considerable room for further performance gains. Unlike other approaches to accelerating parameter fits, we make no use of precomputed training sets or special choices of variables, and InterpMC is almost entirely transparent to the user.
Caching and interpolated likelihoods: accelerating cosmological Monte Carlo Markov chains
International Nuclear Information System (INIS)
Bouland, Adam; Easther, Richard; Rosenfeld, Katherine
2011-01-01
We describe a novel approach to accelerating Monte Carlo Markov Chains. Our focus is cosmological parameter estimation, but the algorithm is applicable to any problem for which the likelihood surface is a smooth function of the free parameters and computationally expensive to evaluate. We generate a high-order interpolating polynomial for the log-likelihood using the first points gathered by the Markov chains as a training set. This polynomial then accurately computes the majority of the likelihoods needed in the latter parts of the chains. We implement a simple version of this algorithm as a patch (InterpMC) to CosmoMC and show that it accelerates parameter estimatation by a factor of between two and four for well-converged chains. The current code is primarily intended as a ''proof of concept'', and we argue that there is considerable room for further performance gains. Unlike other approaches to accelerating parameter fits, we make no use of precomputed training sets or special choices of variables, and InterpMC is almost entirely transparent to the user
Kacprzak, T.; Herbel, J.; Amara, A.; Réfrégier, A.
2018-02-01
Approximate Bayesian Computation (ABC) is a method to obtain a posterior distribution without a likelihood function, using simulations and a set of distance metrics. For that reason, it has recently been gaining popularity as an analysis tool in cosmology and astrophysics. Its drawback, however, is a slow convergence rate. We propose a novel method, which we call qABC, to accelerate ABC with Quantile Regression. In this method, we create a model of quantiles of distance measure as a function of input parameters. This model is trained on a small number of simulations and estimates which regions of the prior space are likely to be accepted into the posterior. Other regions are then immediately rejected. This procedure is then repeated as more simulations are available. We apply it to the practical problem of estimation of redshift distribution of cosmological samples, using forward modelling developed in previous work. The qABC method converges to nearly same posterior as the basic ABC. It uses, however, only 20% of the number of simulations compared to basic ABC, achieving a fivefold gain in execution time for our problem. For other problems the acceleration rate may vary; it depends on how close the prior is to the final posterior. We discuss possible improvements and extensions to this method.
Smoller, Joel; Temple, Blake; Vogler, Zeke
2017-11-01
We identify the condition for smoothness at the centre of spherically symmetric solutions of Einstein's original equations without the cosmological constant or dark energy. We use this to derive a universal phase portrait which describes general, smooth, spherically symmetric solutions near the centre of symmetry when the pressure p=0. In this phase portrait, the critical k=0 Friedmann space-time appears as a saddle rest point which is unstable to spherical perturbations. This raises the question as to whether the Friedmann space-time is observable by redshift versus luminosity measurements looking outwards from any point. The unstable manifold of the saddle rest point corresponding to Friedmann describes the evolution of local uniformly expanding space-times whose accelerations closely mimic the effects of dark energy. A unique simple wave perturbation from the radiation epoch is shown to trigger the instability, match the accelerations of dark energy up to second order and distinguish the theory from dark energy at third order. In this sense, anomalous accelerations are not only consistent with Einstein's original theory of general relativity, but are a prediction of it without the cosmological constant or dark energy.
Smoller, Joel; Temple, Blake; Vogler, Zeke
2017-11-01
We identify the condition for smoothness at the centre of spherically symmetric solutions of Einstein's original equations without the cosmological constant or dark energy. We use this to derive a universal phase portrait which describes general, smooth, spherically symmetric solutions near the centre of symmetry when the pressure p =0. In this phase portrait, the critical k =0 Friedmann space-time appears as a saddle rest point which is unstable to spherical perturbations. This raises the question as to whether the Friedmann space-time is observable by redshift versus luminosity measurements looking outwards from any point. The unstable manifold of the saddle rest point corresponding to Friedmann describes the evolution of local uniformly expanding space-times whose accelerations closely mimic the effects of dark energy. A unique simple wave perturbation from the radiation epoch is shown to trigger the instability, match the accelerations of dark energy up to second order and distinguish the theory from dark energy at third order. In this sense, anomalous accelerations are not only consistent with Einstein's original theory of general relativity, but are a prediction of it without the cosmological constant or dark energy.
International Nuclear Information System (INIS)
Borsanyi, Sz.; Kampert, K.H.; Fodor, Z.; Forschungszentrum Juelich; Eoetvoes Univ., Budapest
2016-06-01
We present a full result for the equation of state (EoS) in 2+1+1 (up/down, strange and charm quarks are present) flavour lattice QCD. We extend this analysis and give the equation of state in 2+1+1+1 flavour QCD. In order to describe the evolution of the universe from temperatures several hundreds of GeV to the MeV scale we also include the known effects of the electroweak theory and give the effective degree of freedoms. As another application of lattice QCD we calculate the topological susceptibility (χ) up to the few GeV temperature region. These two results, EoS and χ, can be used to predict the dark matter axion's mass in the post-inflation scenario and/or give the relationship between the axion's mass and the universal axionic angle, which acts as a initial condition of our universe.
García-Bellido, J
2015-01-01
In these lectures I review the present status of the so-called Standard Cosmological Model, based on the hot Big Bang Theory and the Inflationary Paradigm. I will make special emphasis on the recent developments in observational cosmology, mainly the acceleration of the universe, the precise measurements of the microwave background anisotropies, and the formation of structure like galaxies and clusters of galaxies from tiny primordial fluctuations generated during inflation.
Doolin, Ciaran; Neupane, Ishwaree P
2013-04-05
A late epoch cosmic acceleration may be naturally entangled with cosmic coincidence--the observation that at the onset of acceleration the vacuum energy density fraction nearly coincides with the matter density fraction. In this Letter we show that this is indeed the case with the cosmology of a Friedmann-Lamaître-Robertson-Walker (FLRW) 3-brane in a five-dimensional anti-de Sitter spacetime. We derive the four-dimensional effective action on a FLRW 3-brane, from which we obtain a mass-reduction formula, namely, M(P)(2) = ρ(b)/|Λ(5)|, where M(P) is the effective (normalized) Planck mass, Λ(5) is the five-dimensional cosmological constant, and ρ(b) is the sum of the 3-brane tension V and the matter density ρ. Although the range of variation in ρ(b) is strongly constrained, the big bang nucleosynthesis bound on the time variation of the effective Newton constant G(N) = (8πM(P)(2))(-1) is satisfied when the ratio V/ρ ≳ O(10(2)) on cosmological scales. The same bound leads to an effective equation of state close to -1 at late epochs in accordance with astrophysical and cosmological observations.
Can superhorizon cosmological perturbations explain the acceleration of the universe?
International Nuclear Information System (INIS)
Hirata, Christopher M.; Seljak, Uros
2005-01-01
We investigate the recent suggestions by Barausse et al. and Kolb et al. that the acceleration of the universe could be explained by large superhorizon fluctuations generated by inflation. We show that no acceleration can be produced by this mechanism. We begin by showing how the application of Raychaudhuri equation to inhomogeneous cosmologies results in several 'no go' theorems for accelerated expansion. Next we derive an exact solution for a specific case of initial perturbations, for which application of the Kolb et al. expressions leads to an acceleration, while the exact solution reveals that no acceleration is present. We show that the discrepancy can be traced to higher-order terms that were dropped in the Kolb et al. analysis. We proceed with the analysis of initial value formulation of general relativity to argue that causality severely limits what observable effects can be derived from superhorizon perturbations. By constructing a Riemann normal coordinate system on initial slice we show that no infrared divergence terms arise in this coordinate system. Thus any divergences found previously can be eliminated by a local rescaling of coordinates and are unobservable. We perform an explicit analysis of the variance of the deceleration parameter for the case of single-field inflation using usual coordinates and show that the infrared-divergent terms found by Barausse et al. and Kolb et al. cancel against several additional terms not considered in their analysis. Finally, we argue that introducing isocurvature perturbations does not alter our conclusion that the accelerating expansion of the universe cannot be explained by superhorizon modes
International Nuclear Information System (INIS)
Gaisser, T.K.; Shafi, Q.; Barr, S.M.; Seckel, D.; Rusjan, E.; Fletcher, R.S.
1991-01-01
This report discusses research of professor at Bartol research institute in the following general areas: particle phenomenology and non-accelerator physics; particle physics and cosmology; theories with higher symmetry; and particle astrophysics and cosmology
Phantom cosmologies and fermions
International Nuclear Information System (INIS)
Chimento, Luis P; Forte, Monica; Devecchi, Fernando P; Kremer, Gilberto M
2008-01-01
Form invariance transformations can be used for constructing phantom cosmologies starting with conventional cosmological models. In this work we reconsider the scalar field case and extend the discussion to fermionic fields, where the 'phantomization' process exhibits a new class of possible accelerated regimes. As an application we analyze the cosmological constant group for a fermionic seed fluid
On the Convergence in Effective Loop Quantum Cosmology
International Nuclear Information System (INIS)
Corichi, Alejandro; Vukasinac, Tatjana; Zapata, Jose Antonio
2010-01-01
In Loop Quantum Cosmology (LQC) there is a discreteness parameter λ, that has been heuristically associated to a fundamental granularity of quantum geometry. It is also possible to consider λ as a regulator in the same spirit as that used in lattice field theory, where it specifies a regular lattice in the real line. A particular quantization of the k = 0 FLRW loop cosmological model yields a completely solvable model, known as solvable loop quantum cosmology(sLQC). In this contribution, we consider effective classical theories motivated by sLQC and study their λ-dependence, with a special interest on the limit λ→0 and the role of the evolution parameter in the convergence of such limit.
Multi-dimensional cosmology and GUP
International Nuclear Information System (INIS)
Zeynali, K.; Motavalli, H.; Darabi, F.
2012-01-01
We consider a multidimensional cosmological model with FRW type metric having 4-dimensional space-time and d-dimensional Ricci-flat internal space sectors with a higher dimensional cosmological constant. We study the classical cosmology in commutative and GUP cases and obtain the corresponding exact solutions for negative and positive cosmological constants. It is shown that for negative cosmological constant, the commutative and GUP cases result in finite size universes with smaller size and longer ages, and larger size and shorter age, respectively. For positive cosmological constant, the commutative and GUP cases result in infinite size universes having late time accelerating behavior in good agreement with current observations. The accelerating phase starts in the GUP case sooner than the commutative case. In both commutative and GUP cases, and for both negative and positive cosmological constants, the internal space is stabilized to the sub-Planck size, at least within the present age of the universe. Then, we study the quantum cosmology by deriving the Wheeler-DeWitt equation, and obtain the exact solutions in the commutative case and the perturbative solutions in GUP case, to first order in the GUP small parameter, for both negative and positive cosmological constants. It is shown that good correspondence exists between the classical and quantum solutions
Multi-dimensional cosmology and GUP
Energy Technology Data Exchange (ETDEWEB)
Zeynali, K.; Motavalli, H. [Department of Theoretical Physics and Astrophysics, University of Tabriz, 51666-16471, Tabriz (Iran, Islamic Republic of); Darabi, F., E-mail: k.zeinali@arums.ac.ir, E-mail: f.darabi@azaruniv.edu, E-mail: motavalli@tabrizu.ac.ir [Department of Physics, Azarbaijan Shahid Madani University, 53714-161, Tabriz (Iran, Islamic Republic of)
2012-12-01
We consider a multidimensional cosmological model with FRW type metric having 4-dimensional space-time and d-dimensional Ricci-flat internal space sectors with a higher dimensional cosmological constant. We study the classical cosmology in commutative and GUP cases and obtain the corresponding exact solutions for negative and positive cosmological constants. It is shown that for negative cosmological constant, the commutative and GUP cases result in finite size universes with smaller size and longer ages, and larger size and shorter age, respectively. For positive cosmological constant, the commutative and GUP cases result in infinite size universes having late time accelerating behavior in good agreement with current observations. The accelerating phase starts in the GUP case sooner than the commutative case. In both commutative and GUP cases, and for both negative and positive cosmological constants, the internal space is stabilized to the sub-Planck size, at least within the present age of the universe. Then, we study the quantum cosmology by deriving the Wheeler-DeWitt equation, and obtain the exact solutions in the commutative case and the perturbative solutions in GUP case, to first order in the GUP small parameter, for both negative and positive cosmological constants. It is shown that good correspondence exists between the classical and quantum solutions.
Steady-State Anderson Accelerated Coupling of Lattice Boltzmann and Navier–Stokes Solvers
Atanasov, Atanas; Uekermann, Benjamin; Pachajoa Mejí a, Carlos; Bungartz, Hans-Joachim; Neumann, Philipp
2016-01-01
to the fullest extent and yields enhanced control to match the LB and NS degrees of freedom within the LBNS overlap layer. Designed for parallel Schwarz coupling, the Anderson acceleration allows for the simultaneous execution of both Lattice Boltzmann and Navier
Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology
Farhat, Hassan; Kondaraju, Sasidhar
2014-01-01
Colloids are ubiquitous in the food, medical, cosmetics, polymers, water purification, and pharmaceutical industries. The thermal, mechanical, and storage properties of colloids are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a convenient and reliable tool for the study of colloids. Accelerated Lattice Boltzmann Model for Colloidal Suspensions introduce the main building-blocks for an improved lattice Boltzmann–based numerical tool designed for the study of colloidal rheology and interface morphology. This book also covers the migrating multi-block used to simulate single component, multi-component, multiphase, and single component multiphase flows and their validation by experimental, numerical, and analytical solutions. Among other topics discussed are the hybrid lattice Boltzmann method (LBM) for surfactant-covered droplets; biological suspensions such as blood; used in conjunction with the suppression of coalescence for investigating the...
Arbitrary scalar-field and quintessence cosmological models
International Nuclear Information System (INIS)
Harko, Tiberiu; Lobo, Francisco S.N.; Mak, M.K.
2014-01-01
The mechanism of the initial inflationary scenario of the Universe and of its late-time acceleration can be described by assuming the existence of some gravitationally coupled scalar fields φ, with the inflaton field generating inflation and the quintessence field being responsible for the late accelerated expansion. Various inflationary and late-time accelerated scenarios are distinguished by the choice of an effective self-interaction potential V(φ), which simulates a temporarily non-vanishing cosmological term. In this work, we present a new formalism for the analysis of scalar fields in flat isotropic and homogeneous cosmological models. The basic evolution equation of the models can be reduced to a first-order non-linear differential equation. Approximate solutions of this equation can be constructed in the limiting cases of the scalar-field kinetic energy and potential energy dominance, respectively, as well as in the intermediate regime. Moreover, we present several new accelerating and decelerating exact cosmological solutions, based on the exact integration of the basic evolution equation for scalar-field cosmologies. More specifically, exact solutions are obtained for exponential, generalized cosine hyperbolic, and power-law potentials, respectively. Cosmological models with power-law scalar field potentials are also analyzed in detail. (orig.)
A null test of the cosmological constant
International Nuclear Information System (INIS)
Chiba, Takeshi; Nakamura, Takashi
2007-01-01
We provide a consistency relation between cosmological observables in general relativity with the cosmological constant. Breaking of this relation at any redshift would imply the breakdown of the hypothesis of the cosmological constant as an explanation of the current acceleration of the universe. (author)
Accelerating Lattice QCD Multigrid on GPUs Using Fine-Grained Parallelization
Energy Technology Data Exchange (ETDEWEB)
Clark, M. A. [NVIDIA Corp., Santa Clara; Joó, Bálint [Jefferson Lab; Strelchenko, Alexei [Fermilab; Cheng, Michael [Boston U., Ctr. Comp. Sci.; Gambhir, Arjun [William-Mary Coll.; Brower, Richard [Boston U.
2016-12-22
The past decade has witnessed a dramatic acceleration of lattice quantum chromodynamics calculations in nuclear and particle physics. This has been due to both significant progress in accelerating the iterative linear solvers using multi-grid algorithms, and due to the throughput improvements brought by GPUs. Deploying hierarchical algorithms optimally on GPUs is non-trivial owing to the lack of parallelism on the coarse grids, and as such, these advances have not proved multiplicative. Using the QUDA library, we demonstrate that by exposing all sources of parallelism that the underlying stencil problem possesses, and through appropriate mapping of this parallelism to the GPU architecture, we can achieve high efficiency even for the coarsest of grids. Results are presented for the Wilson-Clover discretization, where we demonstrate up to 10x speedup over present state-of-the-art GPU-accelerated methods on Titan. Finally, we look to the future, and consider the software implications of our findings.
Cosmological tests of modified gravity.
Koyama, Kazuya
2016-04-01
We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.
Cosmological and astrophysical neutrino mass measurements
DEFF Research Database (Denmark)
Abazajian, K.N.; Calabrese, E.; Cooray, A.
2011-01-01
Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach.......Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach....
Cosmological evolution of p-brane networks
International Nuclear Information System (INIS)
Sousa, L.; Avelino, P. P.
2011-01-01
In this paper we derive, directly from the Nambu-Goto action, the relevant components of the acceleration of cosmological featureless p-branes, extending previous analysis based on the field theory equations in the thin-brane limit. The component of the acceleration parallel to the velocity is at the core of the velocity-dependent one-scale model for the evolution of p-brane networks. We use this model to show that, in a decelerating expanding universe in which the p-branes are relevant cosmologically, interactions cannot lead to frustration, except for fine-tuned nonrelativistic networks with a dimensionless curvature parameter k<<1. We discuss the implications of our findings for the cosmological evolution of p-brane networks.
Cosmology and particle physics
Energy Technology Data Exchange (ETDEWEB)
Steigman, G [California Univ., Santa Barbara (USA). Inst. for Theoretical Physics; Bartol Research Foundation, Newark, Delaware (USA))
1982-01-29
The cosmic connections between physics on the very largest and very smallest scales are reviewed with an emphasis on the symbiotic relation between elementary particle physics and cosmology. After a review of the early Universe as a cosmic accelerator, various cosmological and astrophysical constraints on models of particle physics are outlined. To illustrate this approach to particle physics via cosmology, reference is made to several areas of current research: baryon non-conservation and baryon asymmetry; free quarks, heavy hadrons and other exotic relics; primordial nucleosynthesis and neutrino masses.
Cosmological effects of nonlinear electrodynamics
International Nuclear Information System (INIS)
Novello, M; Goulart, E; Salim, J M; Bergliaffa, S E Perez
2007-01-01
It will be shown that a given realization of nonlinear electrodynamics, used as a source of Einstein's equations, generates a cosmological model with interesting features, namely a phase of current cosmic acceleration, and the absence of an initial singularity, thus pointing to a way of solving two important problems in cosmology
Light propagation through black-hole lattices
Energy Technology Data Exchange (ETDEWEB)
Bentivegna, Eloisa [Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania (Italy); Korzyński, Mikołaj [Center for Theoretical Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Hinder, Ian; Gerlicher, Daniel, E-mail: eloisa.bentivegna@unict.it, E-mail: korzynski@cft.edu.pl, E-mail: ian.hinder@aei.mpg.de, E-mail: daniel.gerlicher@tum.de [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Golm (Germany)
2017-03-01
The apparent properties of distant objects encode information about the way the light they emit propagates to an observer, and therefore about the curvature of the underlying spacetime. Measuring the relationship between the redshift z and the luminosity distance D {sub L} of a standard candle, for example, yields information on the Universe's matter content. In practice, however, in order to decode this information the observer needs to make an assumption about the functional form of the D {sub L}( z ) relation; in other words, a cosmological model needs to be assumed. In this work, we use numerical-relativity simulations, equipped with a new ray-tracing module, to numerically obtain this relation for a few black-hole-lattice cosmologies and compare it to the well-known Friedmann-Lema(ȋtre-Robertson-Walker case, as well as to other relevant cosmologies and to the Empty-Beam Approximation. We find that the latter provides the best estimate of the luminosity distance and formulate a simple argument to account for this agreement. We also find that a Friedmann-Lema(ȋtre-Robertson-Walker model can reproduce this observable exactly, as long as a time-dependent cosmological constant is included in the fit. Finally, the dependence of these results on the lattice mass-to-spacing ratio μ is discussed: we discover that, unlike the expansion rate, the D {sub L}( z ) relation in a black-hole lattice does not tend to that measured in the corresponding continuum spacetime as 0μ → .
Working group report: Cosmology and astroparticle physics
Indian Academy of Sciences (India)
This is the report of the cosmology and astroparticle physics working group ... origin of the accelerating Universe: Dark energy and particle cosmology by Y-Y Keum, .... Neutrino oscillations with two and three mass varying supernova neutrinos ...
Accelerated and decelerated expansion in a causal dissipative cosmology
Cruz, Miguel; Cruz, Norman; Lepe, Samuel
2017-12-01
In this work we explore a new cosmological solution for an universe filled with one dissipative fluid, described by a barotropic equation of state (EoS) p =ω ρ , in the framework of the full Israel-Stewart theory. The form of the bulk viscosity has been assumed of the form ξ =ξ0ρ1 /2. The relaxation time is taken to be a function of the EoS, the bulk viscosity and the speed of bulk viscous perturbations, cb. The solution presents an initial singularity, where the curvature scalar diverges as the scale factor goes to zero. Depending on the values for ω , ξ0, cb accelerated and decelerated cosmic expansion can be obtained. In the case of accelerated expansion, the viscosity drives the effective EoS to be of quintessence type, for the single fluid with positive pressure. Nevertheless, we show that only the solution with decelerated expansion satisfies the thermodynamics conditions d S /d t >0 (growth of the entropy) and d2S /d t2<0 (convexity condition). We show that an exact stiff matter EoS is not allowed in the framework of the full causal thermodynamic approach; and in the case of a EoS very close to the stiff matter regime, we found that dissipative effects becomes negligible so the entropy remains constant. Finally, we show numerically that the solution is stable under small perturbations.
Beyond the Standard Model of Cosmology
International Nuclear Information System (INIS)
Ellis, John; Nanopoulos, D. V.
2004-01-01
Recent cosmological observations of unprecented accuracy, by WMAP in particular, have established a 'Standard Model' of cosmology, just as LEP established the Standard Model of particle physics. Both Standard Models raise open questions whose answers are likely to be linked. The most fundamental problems in both particle physics and cosmology will be resolved only within a framework for Quantum Gravity, for which the only game in town is string theory. We discuss novel ways to model cosmological inflation and late acceleration in a non-critical string approach, and discuss possible astrophysical tests
Final Scientific/Technical Report-Quantum Field Theories for Cosmology
Energy Technology Data Exchange (ETDEWEB)
Nicolis, Alberto [Columbia Univ., New York, NY (United States). Physics Dept.
2018-03-10
The research funded by this award spanned a wide range of subjects in theoretical cosmology and in field theory. In the first part, the PI and his collaborators applied effective field theory techniques to the study of macroscopic media and of cosmological perturbations. Such an approach—now standard in particle physics—is quite unconventional for theoretical cosmology. They addressed several concrete questions where this formalism proved valuable, both within and outside the cosmological context, concerning for instance macroscopic physical phenomena for fluids, superfluids, and solids, and their relationship to the dynamics of cosmological perturbations. A particularly successful outcome of this line of research has been the development of “solid inflation”: a cosmological model for primordial inflation where the expansion of the universe is driven by an exotic solid substance. In the second part, the PI and his collaborators investigated more fundamental questions and ideas, for the present universe as well as for the very early one, using quantum field theory as a guide. The questions addressed include: Is the present cosmic acceleration due to a new, ‘dark’ form of energy, or are we instead observing a breakdown of Einstein’s general relativity at cosmological distances? Is the cosmic acceleration accelerating? Is the Big Bang unavoidable? Related to this, is early inflation the only sensible cure for the shortcomings of the standard Big Bang model, and the only possible source for the observed scale-invariant cosmological perturbations?
International Nuclear Information System (INIS)
Chimento, L P; Forte, M; Devecchi, F P; Kremer, G M; Ribas, M O; Samojeden, L L
2011-01-01
In this work we review if fermionic sources could be responsible for accelerated periods during the evolution of a FRW universe. In a first attempt, besides the fermionic source, a matter constituent would answer for the decelerated periods. The coupled differential equations that emerge from the field equations are integrated numerically. The self-interaction potential of the fermionic field is considered as a function of the scalar and pseudo-scalar invariants. It is shown that the fermionic field could behave like an inflaton field in the early universe, giving place to a transition to a matter dominated (decelerated) period. In a second formulation we turn our attention to analytical results, specifically using the idea of form-invariance transformations. These transformations can be used for obtaining accelerated cosmologies starting with conventional cosmological models. Here we reconsider the scalar field case and extend the discussion to fermionic fields. Finally we investigate the role of a Dirac field in a Brans-Dicke (BD) context. The results show that this source, in combination with the BD scalar, promote a final eternal accelerated era, after a matter dominated period.
Lattice quantum gravity and asymptotic safety
Laiho, J.; Bassler, S.; Coumbe, D.; Du, D.; Neelakanta, J. T.
2017-09-01
We study the nonperturbative formulation of quantum gravity defined via Euclidean dynamical triangulations (EDT) in an attempt to make contact with Weinberg's asymptotic safety scenario. We find that a fine-tuning is necessary in order to recover semiclassical behavior. Such a fine-tuning is generally associated with the breaking of a target symmetry by the lattice regulator; in this case we argue that the target symmetry is the general coordinate invariance of the theory. After introducing and fine-tuning a nontrivial local measure term, we find no barrier to taking a continuum limit, and we find evidence that four-dimensional, semiclassical geometries are recovered at long distance scales in the continuum limit. We also find that the spectral dimension at short distance scales is consistent with 3 /2 , a value that could resolve the tension between asymptotic safety and the holographic entropy scaling of black holes. We argue that the number of relevant couplings in the continuum theory is one, once symmetry breaking by the lattice regulator is accounted for. Such a theory is maximally predictive, with no adjustable parameters. The cosmological constant in Planck units is the only relevant parameter, which serves to set the lattice scale. The cosmological constant in Planck units is of order 1 in the ultraviolet and undergoes renormalization group running to small values in the infrared. If these findings hold up under further scrutiny, the lattice may provide a nonperturbative definition of a renormalizable quantum field theory of general relativity with no adjustable parameters and a cosmological constant that is naturally small in the infrared.
Ryden, Barbara
2017-01-01
This second edition of Introduction to Cosmology is an exciting update of an award-winning textbook. It is aimed primarily at advanced undergraduate students in physics and astronomy, but is also useful as a supplementary text at higher levels. It explains modern cosmological concepts, such as dark energy, in the context of the Big Bang theory. Its clear, lucid writing style, with a wealth of useful everyday analogies, makes it exceptionally engaging. Emphasis is placed on the links between theoretical concepts of cosmology and the observable properties of the universe, building deeper physical insights in the reader. The second edition includes recent observational results, fuller descriptions of special and general relativity, expanded discussions of dark energy, and a new chapter on baryonic matter that makes up stars and galaxies. It is an ideal textbook for the era of precision cosmology in the accelerating universe.
Brane cosmology with curvature corrections
International Nuclear Information System (INIS)
Kofinas, Georgios; Maartens, Roy; Papantonopoulos, Eleftherios
2003-01-01
We study the cosmology of the Randall-Sundrum brane-world where the Einstein-Hilbert action is modified by curvature correction terms: a four-dimensional scalar curvature from induced gravity on the brane, and a five-dimensional Gauss-Bonnet curvature term. The combined effect of these curvature corrections to the action removes the infinite-density big bang singularity, although the curvature can still diverge for some parameter values. A radiation brane undergoes accelerated expansion near the minimal scale factor, for a range of parameters. This acceleration is driven by the geometric effects, without an inflation field or negative pressures. At late times, conventional cosmology is recovered. (author)
A Time-Dependent Λ and G Cosmological Model Consistent with Cosmological Constraints
Directory of Open Access Journals (Sweden)
L. Kantha
2016-01-01
Full Text Available The prevailing constant Λ-G cosmological model agrees with observational evidence including the observed red shift, Big Bang Nucleosynthesis (BBN, and the current rate of acceleration. It assumes that matter contributes 27% to the current density of the universe, with the rest (73% coming from dark energy represented by the Einstein cosmological parameter Λ in the governing Friedmann-Robertson-Walker equations, derived from Einstein’s equations of general relativity. However, the principal problem is the extremely small value of the cosmological parameter (~10−52 m2. Moreover, the dark energy density represented by Λ is presumed to have remained unchanged as the universe expanded by 26 orders of magnitude. Attempts to overcome this deficiency often invoke a variable Λ-G model. Cosmic constraints from action principles require that either both G and Λ remain time-invariant or both vary in time. Here, we propose a variable Λ-G cosmological model consistent with the latest red shift data, the current acceleration rate, and BBN, provided the split between matter and dark energy is 18% and 82%. Λ decreases (Λ~τ-2, where τ is the normalized cosmic time and G increases (G~τn with cosmic time. The model results depend only on the chosen value of Λ at present and in the far future and not directly on G.
Viscous cosmology in new holographic dark energy model and the cosmic acceleration
International Nuclear Information System (INIS)
Singh, C.P.; Srivastava, Milan
2018-01-01
In this work, we study a flat Friedmann-Robertson-Walker universe filled with dark matter and viscous new holographic dark energy. We present four possible solutions of the model depending on the choice of the viscous term. We obtain the evolution of the cosmological quantities such as scale factor, deceleration parameter and transition redshift to observe the effect of viscosity in the evolution. We also emphasis upon the two independent geometrical diagnostics for our model, namely the statefinder and the Om diagnostics. In the first case we study new holographic dark energy model without viscous and obtain power-law expansion of the universe which gives constant deceleration parameter and statefinder parameters. In the limit of the parameter, the model approaches to ΛCDM model. In new holographic dark energy model with viscous, the bulk viscous coefficient is assumed as ζ = ζ 0 + ζ 1 H, where ζ 0 and ζ 1 are constants, and H is the Hubble parameter. In this model, we obtain all possible solutions with viscous term and analyze the expansion history of the universe. We draw the evolution graphs of the scale factor and deceleration parameter. It is observed that the universe transits from deceleration to acceleration for small values of ζ in late time. However, it accelerates very fast from the beginning for large values of ζ. By illustrating the evolutionary trajectories in r - s and r - q planes, we find that our model behaves as an quintessence like for small values of viscous coefficient and a Chaplygin gas like for large values of bulk viscous coefficient at early stage. However, model has close resemblance to that of the ΛCDM cosmology in late time. The Om has positive and negative curvatures for phantom and quintessence models, respectively depending on ζ. Our study shows that the bulk viscosity plays very important role in the expansion history of the universe. (orig.)
Viscous cosmology in new holographic dark energy model and the cosmic acceleration
Singh, C. P.; Srivastava, Milan
2018-03-01
In this work, we study a flat Friedmann-Robertson-Walker universe filled with dark matter and viscous new holographic dark energy. We present four possible solutions of the model depending on the choice of the viscous term. We obtain the evolution of the cosmological quantities such as scale factor, deceleration parameter and transition redshift to observe the effect of viscosity in the evolution. We also emphasis upon the two independent geometrical diagnostics for our model, namely the statefinder and the Om diagnostics. In the first case we study new holographic dark energy model without viscous and obtain power-law expansion of the universe which gives constant deceleration parameter and statefinder parameters. In the limit of the parameter, the model approaches to Λ CDM model. In new holographic dark energy model with viscous, the bulk viscous coefficient is assumed as ζ =ζ 0+ζ 1H, where ζ 0 and ζ 1 are constants, and H is the Hubble parameter. In this model, we obtain all possible solutions with viscous term and analyze the expansion history of the universe. We draw the evolution graphs of the scale factor and deceleration parameter. It is observed that the universe transits from deceleration to acceleration for small values of ζ in late time. However, it accelerates very fast from the beginning for large values of ζ . By illustrating the evolutionary trajectories in r-s and r-q planes, we find that our model behaves as an quintessence like for small values of viscous coefficient and a Chaplygin gas like for large values of bulk viscous coefficient at early stage. However, model has close resemblance to that of the Λ CDM cosmology in late time. The Om has positive and negative curvatures for phantom and quintessence models, respectively depending on ζ . Our study shows that the bulk viscosity plays very important role in the expansion history of the universe.
The Principles of Self Creation Cosmology and its Comparison with General Relativity
Barber, G. A.
2002-01-01
There are, at present, several gravitational and cosmological anomalies; the dark energy problem, the lambda problem, accelerating cosmological expansion, the anomalous Pioneer spacecraft acceleration, a spin-up of the Earth and an apparent variation of G observed from analysis of the evolution of planetary longitudes. These conundrums may be resolved in the theory of Self Creation Cosmology, in which the Principle of Mutual Interaction subsumes both Mach's Principle and the Local Conservatio...
Late time acceleration in a non-commutative model of modified cosmology
Energy Technology Data Exchange (ETDEWEB)
Malekolkalami, B., E-mail: b.malakolkalami@uok.ac.ir [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Atazadeh, K., E-mail: atazadeh@azaruniv.ac.ir [Department of Physics, Azarbaijan Shahid Madani University, 53714-161, Tabriz (Iran, Islamic Republic of); Vakili, B., E-mail: b-vakili@iauc.ac.ir [Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)
2014-12-12
We investigate the effects of non-commutativity between the position–position, position–momentum and momentum–momentum of a phase space corresponding to a modified cosmological model. We show that the existence of such non-commutativity results in a Moyal Poisson algebra between the phase space variables in which the product law between the functions is of the kind of an α-deformed product. We then transform the variables in such a way that the Poisson brackets between the dynamical variables take the form of a usual Poisson bracket but this time with a noncommutative structure. For a power law expression for the function of the Ricci scalar with which the action of the gravity model is modified, the exact solutions in the commutative and noncommutative cases are presented and compared. In terms of these solutions we address the issue of the late time acceleration in cosmic evolution.
Late time acceleration in a non-commutative model of modified cosmology
International Nuclear Information System (INIS)
Malekolkalami, B.; Atazadeh, K.; Vakili, B.
2014-01-01
We investigate the effects of non-commutativity between the position–position, position–momentum and momentum–momentum of a phase space corresponding to a modified cosmological model. We show that the existence of such non-commutativity results in a Moyal Poisson algebra between the phase space variables in which the product law between the functions is of the kind of an α-deformed product. We then transform the variables in such a way that the Poisson brackets between the dynamical variables take the form of a usual Poisson bracket but this time with a noncommutative structure. For a power law expression for the function of the Ricci scalar with which the action of the gravity model is modified, the exact solutions in the commutative and noncommutative cases are presented and compared. In terms of these solutions we address the issue of the late time acceleration in cosmic evolution
Quantum Gravity and Cosmology: an intimate interplay
Sakellariadou, Mairi
2017-08-01
I will briefly discuss three cosmological models built upon three distinct quantum gravity proposals. I will first highlight the cosmological rôle of a vector field in the framework of a string/brane cosmological model. I will then present the resolution of the big bang singularity and the occurrence of an early era of accelerated expansion of a geometric origin, in the framework of group field theory condensate cosmology. I will then summarise results from an extended gravitational model based on non-commutative spectral geometry, a model that offers a purely geometric explanation for the standard model of particle physics.
Chubb, Scott
2007-03-01
From a generalization of conventional band theory, derived from a many-body form of multiple scattering theory, I rigorously showed that the semi-classical theory of cold atom transport in optical lattices could be related to changes in the zero of momentum of the ground state. The new formulation includes finite size effects. When the effects of excitation, associated with the loss of atoms at the boundaries of the lattice are included, in the adiabatic limit, in which the perturbing potential acts sufficiently slowly and weakly, topological changes in phase (which are equivalent to Berry phase effects in the conventional semi-classical theory) take place that introduce discontinuous changes in wave function phase (and flux). In a situation involving an accelerating optical lattice, containing ultra cold atoms in a Bose Einstein Condensate, these changes in wave function phase can be monitored and used to systematically alter the acceleration of the lattice (by altering the chirp frequency of one of one of the counter-propogating lasers), in such a way that a form of edge-effect interferometry can be performed, which, in principle, can be used to make precision measurements of gravity, with unprecedented accuracy. S.R.Chubb, Proc Roy Soc A, submitted (2006).
Was Newtonian cosmology really inconsistent?
Vickers, Peter
This paper follows up a debate as to the consistency of Newtonian cosmology. Whereas Malament [(1995). Is Newtonian cosmology really inconsistent? Philosophy of Science 62, 489-510] has shown that Newtonian cosmology is not inconsistent, to date there has been no analysis of Norton's claim [(1995). The force of Newtonian cosmology: Acceleration is relative. Philosophy of Science 62, 511-522.] that Newtonian cosmology was inconsistent prior to certain advances in the 1930s, and in particular prior to Seeliger's seminal paper of Seeliger [(1895). Über das Newton'sche Gravitationsgesetz. Astronomische Nachrichten 137 (3273), 129-136.] In this paper I agree that there are assumptions, Newtonian and cosmological in character, and relevant to the real history of science, which are inconsistent. But there are some important corrections to make to Norton's account. Here I display for the first time the inconsistencies-four in total-in all their detail. Although this extra detail shows there to be several different inconsistencies, it also goes some way towards explaining why they went unnoticed for 200 years.
The cosmological constant in theories with finite spacetime
International Nuclear Information System (INIS)
Kummer, Janis
2014-08-01
We study the role of the cosmological constant in different theories with finite spacetime. The cosmological constant appears both as an initial condition and as a constant of integration. In the context of the cosmological constant problem a new model will be presented. This modification of general relativity generates a small, non-vanishing cosmological constant, which is radiatively stable. The dynamics of the expansion of the universe in this model will be analyzed. Eventually, we try to solve the emergent problems concerning the generation of accelerated expansion using a quintessence model of dark energy.
Cosmological models in the generalized Einstein action
International Nuclear Information System (INIS)
Arbab, A.I.
2007-12-01
We have studied the evolution of the Universe in the generalized Einstein action of the form R + β R 2 , where R is the scalar curvature and β = const. We have found exact cosmological solutions that predict the present cosmic acceleration. These models predict an inflationary de-Sitter era occurring in the early Universe. The cosmological constant (Λ) is found to decay with the Hubble constant (H) as, Λ ∝ H 4 . In this scenario the cosmological constant varies quadratically with the energy density (ρ), i.e., Λ ∝ ρ 2 . Such a variation is found to describe a two-component cosmic fluid in the Universe. One of the components accelerated the Universe in the early era, and the other in the present era. The scale factor of the Universe varies as a ∼ t n = 1/2 in the radiation era. The cosmological constant vanishes when n = 4/3 and n =1/2. We have found that the inclusion of the term R 2 mimics a cosmic matter that could substitute the ordinary matter. (author)
The New Era of Precision Cosmology: Testing Gravity at Large Scales
Prescod-Weinstein, Chanda
2011-01-01
Cosmic acceleration may be the biggest phenomenological mystery in cosmology today. Various explanations for its cause have been proposed, including the cosmological constant, dark energy and modified gravities. Structure formation provides a strong test of any cosmic acceleration model because a successful dark energy model must not inhibit the development of observed large-scale structures. Traditional approaches to studies of structure formation in the presence of dark energy ore modified gravity implement the Press & Schechter formalism (PGF). However, does the PGF apply in all cosmologies? The search is on for a better understanding of universality in the PGF In this talk, I explore the potential for universality and talk about what dark matter haloes may be able to tell us about cosmology. I will also discuss the implications of this and new cosmological experiments for better understanding our theory of gravity.
Tkachev, Igor
2017-01-01
This lecture course covers cosmology from the particle physicist perspective. Therefore, the emphasis will be on the evidence for the new physics in cosmological and astrophysical data together with minimal theoretical frameworks needed to understand and appreciate the evidence. I review the case for non-baryonic dark matter and describe popular models which incorporate it. In parallel, the story of dark energy will be developed, which includes accelerated expansion of the Universe today, the Universe origin in the Big Bang, and support for the Inflationary theory in CMBR data.
Cosmological models in energy-momentum-squared gravity
Board, Charles V. R.; Barrow, John D.
2017-12-01
We study the cosmological effects of adding terms of higher order in the usual energy-momentum tensor to the matter Lagrangian of general relativity. This is in contrast to most studies of higher-order gravity which focus on generalizing the Einstein-Hilbert curvature contribution to the Lagrangian. The resulting cosmological theories give rise to field equations of similar form to several particular theories with different fundamental bases, including bulk viscous cosmology, loop quantum gravity, k -essence, and brane-world cosmologies. We find a range of exact solutions for isotropic universes, discuss their behaviors with reference to the early- and late-time evolution, accelerated expansion, and the occurrence or avoidance of singularities. We briefly discuss extensions to anisotropic cosmologies and delineate the situations where the higher-order matter terms will dominate over anisotropies on approach to cosmological singularities.
How fabulous is Fab 5 cosmology?
International Nuclear Information System (INIS)
Linder, Eric V.
2013-01-01
Extended gravity origins for cosmic acceleration can solve some fine tuning issues and have useful characteristics, but generally have little to say regarding the cosmological constant problem. Fab 5 gravity can be ghost free and stable, have attractor solutions in the past and future, and possess self tuning that solves the original cosmological constant problem. Here we show however it does not possess all these qualities at the same time. We also demonstrate that the self tuning is so powerful that it not only cancels the cosmological constant but also all other energy density, and we derive the scalings of its approach to a renormalized de Sitter cosmology. While this strong cancellation is bad for the late universe, it greatly eases early universe inflation
How fabulous is Fab 5 cosmology?
Energy Technology Data Exchange (ETDEWEB)
Linder, Eric V., E-mail: evlinder@lbl.gov [Berkeley Center for Cosmological Physics and Berkeley Lab, University of California, Berkeley, CA, 94720 (United States)
2013-12-01
Extended gravity origins for cosmic acceleration can solve some fine tuning issues and have useful characteristics, but generally have little to say regarding the cosmological constant problem. Fab 5 gravity can be ghost free and stable, have attractor solutions in the past and future, and possess self tuning that solves the original cosmological constant problem. Here we show however it does not possess all these qualities at the same time. We also demonstrate that the self tuning is so powerful that it not only cancels the cosmological constant but also all other energy density, and we derive the scalings of its approach to a renormalized de Sitter cosmology. While this strong cancellation is bad for the late universe, it greatly eases early universe inflation.
Lattice design in high-energy particle accelerators
Holzer, B J
2006-01-01
This lecture introduces storage-ring lattice desing. Applying the formalism that has been established in transverse beam optics, the basic principles of the development of a magnet lattice are explained and the characteristics of the resulting magnet structure are discussed. The periodic assembly of a storage ring cell with its boundary conditions concerning stability and scaling of the beam optics parameters is addressed as well as special lattice structures: drifts, mini beta insertions, dispersion suppressors, etc. In addition to the exact calculations indispensable for a rigorous treatment of the matter, scaling rules are shown and simple rules of thumb are included that enable the lattice designer to do the first estimates and get the basic numbers ‘on the back of an envelope’.
Dossett, Jason Nicholas
Since its discovery more than a decade ago, the problem of cosmic acceleration has become one of the largest in cosmology and physics as a whole. An unknown dark energy component of the universe is often invoked to explain this observation. Mathematically, this works because inserting a cosmic fluid with a negative equation of state into Einstein's equations provides an accelerated expansion. There are, however, alternative explanations for the observed cosmic acceleration. Perhaps the most promising of the alternatives is that, on the very largest cosmological scales, general relativity needs to be extended or a new, modified gravity theory must be used. Indeed, many modified gravity models are not only able to replicate the observed accelerated expansion without dark energy, but are also more compatible with a unified theory of physics. Thus it is the goal of this dissertation to develop and study robust tests that will be able to distinguish between these alternative theories of gravity and the need for a dark energy component of the universe. We will study multiple approaches using the growth history of large-scale structure in the universe as a way to accomplish this task. These approaches include studying what is known as the growth index parameter, a parameter that describes the logarithmic growth rate of structure in the universe, which describes the rate of formation of clusters and superclusters of galaxies over the entire age of the universe. We will explore the effectiveness of this parameter to distinguish between general relativity and modifications to gravity physics given realistic expectations of results from future experiments. Next, we will explore the modified growth formalism wherein deviations from the growth expected in general relativity are parameterized via changes to the growth equations, i.e. the perturbed Einstein's equations. We will also explore the impact of spatial curvature on these tests. Finally, we will study how dark energy
Lattice Design in High-energy Particle Accelerators
Holzer, B.J.
2014-01-01
This lecture gives an introduction into the design of high-energy storage ring lattices. Applying the formalism that has been established in transverse be am optics, the basic principles of the development of a magnet lattice are explained and the characteristics of the resulting magnet structure are discussed. The periodic assembly of a storage ring cell with its boundary conditions concerning stability and scaling of the beam optics parameters is addressed as well as special lattice insertions such as drifts, mini beta sections, dispersion suppressors, etc. In addition to the exact calculations that are indispensable for a rigorous treatment of the matter, scaling rules are shown and simple rules of thumb are included that enable the lattice designer to do the first estimates and get the basic numbers ‘ on the back of an envelope.
Constraining holographic cosmology using Planck data
Afshordi, Niayesh; Gould, Elizabeth; Skenderis, Kostas
2017-06-01
Holographic cosmology offers a novel framework for describing the very early Universe in which cosmological predictions are expressed in terms of the observables of a three-dimensional quantum field theory (QFT). This framework includes conventional slow-roll inflation, which is described in terms of a strongly coupled QFT, but it also allows for qualitatively new models for the very early Universe, where the dual QFT may be weakly coupled. The new models describe a universe which is nongeometric at early times. While standard slow-roll inflation leads to a (near-) power-law primordial power spectrum, perturbative super-renormalizable QFTs yield a new holographic spectral shape. Here, we compare the two predictions against cosmological observations. We use CosmoMC to determine the best fit parameters, and MultiNest for Bayesian evidence, comparing the likelihoods. We find that the dual QFT should be nonperturbative at the very low multipoles (l ≲30 ), while for higher multipoles (l ≳30 ) the new holographic model, based on perturbative QFT, fits the data just as well as the standard power-law spectrum assumed in Λ CDM cosmology. This finding opens the door to applications of nonperturbative QFT techniques, such as lattice simulations, to observational cosmology on gigaparsec scales and beyond.
Did Cosmology Trigger the Origin of the Solar System?
Blome, H.-J.; Wilson, T. L.
2011-01-01
It is a matter of curious coincidence that the Solar System formed 4.6 billion years ago around the same epoch that the Friedmann-Lemaitre (FL) universe became -dominated or dark-energy-dominated, where is the cosmological constant. This observation was made in the context of known gravitational anomalies that affect spacecraft orbits during planetary flyby's and the Pioneer anomaly, both possibly having connections with cosmology. In addition, it has been known for some time that the Universe is not only expanding but accelerating as well. Hence one must add the onset of cosmological acceleration in the FL universe as having a possible influence on the origin of the Solar System. These connections will now be examined in greater detail.
Cosmic acceleration driven by mirage inhomogeneities
Energy Technology Data Exchange (ETDEWEB)
Galfard, Christophe [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce road, Cambridge CB3 0WA (United Kingdom); Germani, Cristiano [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce road, Cambridge CB3 0WA (United Kingdom); Kehagias, Alex [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece)
2006-03-21
A cosmological model based on an inhomogeneous D3-brane moving in an AdS{sub 5} x S{sub 5} bulk is introduced. Although there are no special points in the bulk, the brane universe has a centre and is isotropic around it. The model has an accelerating expansion and its effective cosmological constant is inversely proportional to the distance from the centre, giving a possible geometrical origin for the smallness of a present-day cosmological constant. Besides, if our model is considered as an alternative of early-time acceleration, it is shown that the early stage accelerating phase ends in a dust-dominated FRW homogeneous universe. Mirage-driven acceleration thus provides a dark matter component for the brane universe final state. We finally show that the model fulfils the current constraints on inhomogeneities.
Cosmology of hybrid metric-Palatini f(X)-gravity
International Nuclear Information System (INIS)
Capozziello, Salvatore; Harko, Tiberiu; Koivisto, Tomi S.; Lobo, Francisco S.N.; Olmo, Gonzalo J.
2013-01-01
A new class of modified theories of gravity, consisting of the superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed à la Palatini was proposed recently. The dynamically equivalent scalar-tensor representation of the model was also formulated, and it was shown that even if the scalar field is very light, the theory passes the Solar System observational constraints. Therefore the model predicts the existence of a long-range scalar field, modifying the cosmological and galactic dynamics. An explicit model that passes the local tests and leads to cosmic acceleration was also obtained. In the present work, it is shown that the theory can be also formulated in terms of the quantity X≡κ 2 T+R, where T and R are the traces of the stress-energy and Ricci tensors, respectively. The variable X represents the deviation with respect to the field equation trace of general relativity. The cosmological applications of this hybrid metric-Palatini gravitational theory are also explored, and cosmological solutions coming from the scalar-tensor representation of f(X)-gravity are presented. Criteria to obtain cosmic acceleration are discussed and the field equations are analyzed as a dynamical system. Several classes of dynamical cosmological solutions, depending on the functional form of the effective scalar field potential, describing both accelerating and decelerating Universes are explicitly obtained. Furthermore, the cosmological perturbation equations are derived and applied to uncover the nature of the propagating scalar degree of freedom and the signatures these models predict in the large-scale structure
The Age of Precision Cosmology
Chuss, David T.
2012-01-01
In the past two decades, our understanding of the evolution and fate of the universe has increased dramatically. This "Age of Precision Cosmology" has been ushered in by measurements that have both elucidated the details of the Big Bang cosmology and set the direction for future lines of inquiry. Our universe appears to consist of 5% baryonic matter; 23% of the universe's energy content is dark matter which is responsible for the observed structure in the universe; and 72% of the energy density is so-called "dark energy" that is currently accelerating the expansion of the universe. In addition, our universe has been measured to be geometrically flat to 1 %. These observations and related details of the Big Bang paradigm have hinted that the universe underwent an epoch of accelerated expansion known as Uinflation" early in its history. In this talk, I will review the highlights of modern cosmology, focusing on the contributions made by measurements of the cosmic microwave background, the faint afterglow of the Big Bang. I will also describe new instruments designed to measure the polarization of the cosmic microwave background in order to search for evidence of cosmic inflation.
Axion cosmology, lattice QCD and the dilute instanton gas
International Nuclear Information System (INIS)
Borsanyi, S.; Fodor, Z.; Mages, S.W.; Nogradi, D.; Szabo, K.K.
2015-08-01
Axions are one of the most attractive dark matter candidates. The evolution of their number density in the early universe can be determined by calculating the topological susceptibility χ(T) of QCD as a function of the temperature. Lattice QCD provides an ab initio technique to carry out such a calculation. A full result needs two ingredients: physical quark masses and a controlled continuum extrapolation from non-vanishing to zero lattice spacings. We determine χ(T) in the quenched framework (infinitely large quark masses) and extrapolate its values to the continuum limit. The results are compared with the prediction of the dilute instanton gas approximation (DIGA). A nice agreement is found for the temperature dependence, whereas the overall normalization of the DIGA result still differs from the non-perturbative continuum extrapolated lattice results by a factor of order ten. We discuss the consequences of our findings for the prediction of the amount of axion dark matter.
Acceleration parameters for fluid physics with accelerating bodies
CSIR Research Space (South Africa)
Gledhill, Irvy MA
2016-06-01
Full Text Available to an acceleration parameter that appears to be new in fluid physics, but is known in cosmology. A selection of cases for rectilinear acceleration has been chosen to illustrate the point that this parameter alone does not govern regimes of flow about significantly...
Gamma-ray bursts as cosmological probes: ΛCDM vs. conformal gravity
International Nuclear Information System (INIS)
Diaferio, Antonaldo; Ostorero, Luisa; Cardone, Vincenzo
2011-01-01
ΛCDM, for the currently preferred cosmological density Ω 0 and cosmological constant Ω Λ , predicts that the Universe expansion decelerates from early times to redshift z ≈ 0.9 and accelerates at later times. On the contrary, the cosmological model based on conformal gravity predicts that the cosmic expansion has always been accelerating. To distinguish between these two very different cosmologies, we resort to gamma-ray bursts (GRBs), which have been suggested to probe the Universe expansion history at z > 1, where identified type Ia supernovae (SNe) are rare. We use the full Bayesian approach to infer the cosmological parameters and the additional parameters required to describe the GRB data available in the literature. For the first time, we use GRBs as cosmological probes without any prior information from other data. In addition, when we combine the GRB samples with SNe, our approach neatly avoids all the inconsistencies of most numerous previous methods that are plagued by the so-called circularity problem. In fact, when analyzed properly, current data are consistent with distance moduli of GRBs and SNe that can respectively be, in a variant of conformal gravity, ∼ 15 and ∼ 3 magnitudes fainter than in ΛCDM. Our results indicate that the currently available SN and GRB samples are accommodated equally well by both ΛCDM and conformal gravity and do not exclude a continuous accelerated expansion. We conclude that GRBs are currently far from being effective cosmological probes, as they are unable to distinguish between these two very different expansion histories
Earth’s gravity and the cosmological constant: a worked example
International Nuclear Information System (INIS)
Pereira, J A M
2016-01-01
The cosmological constant regained the attention of the scientific community following the recent discovery of the accelerated expansion of the Universe. Consequently, interest in the subject increased amongst the public such that it now often appears in the classroom and popular science publications. The purpose of this article is to use basic concepts of Newtonian mechanics, like dynamics, kinetic energy and potential energy diagrams, in a scenario where the cosmological constant’s action, considered as being an inertial force driven by the accelerated expansion of the Universe, could counteract Earth’s gravity. The effect that the cosmological constant might have near the Earth’s surface is discussed showing how everyday life would change. This is done in such a way that makes it accessible to students in their first year of college. Finally, the modern interpretation of the cosmological constant, associated with the existence of dark energy, is briefly discussed along with upper limit estimations for its value based on the anthropic principle. (paper)
Triplet Focusing for Recirculating Linear Muon Accelerators
Keil, Eberhard
2001-01-01
Focusing by symmetrical triplets is studied for the linear accelerator lattices in recirculating muon accelerators with several passes where the ratio of final to initial muon energy is about four. Triplet and FODO lattices are compared. At similar acceptance, triplet lattices have straight sections for the RF cavities that are about twice as long as in FODO lat-tices. For the same energy gain, the total lengths of the linear accelerators with triplet lattices are about the same as of those with FODO lattices.
Nonlinear evolution of f(R) cosmologies. I. Methodology
International Nuclear Information System (INIS)
Oyaizu, Hiroaki
2008-01-01
We introduce the method and the implementation of a cosmological simulation of a class of metric-variation f(R) models that accelerate the cosmological expansion without a cosmological constant and evade solar-system bounds of small-field deviations to general relativity. Such simulations are shown to reduce to solving a nonlinear Poisson equation for the scalar degree of freedom introduced by the f(R) modifications. We detail the method to efficiently solve the nonlinear Poisson equation by using a Newton-Gauss-Seidel relaxation scheme coupled with the multigrid method to accelerate the convergence. The simulations are shown to satisfy tests comparing the simulated outcome to analytical solutions for simple situations, and the dynamics of the simulations are tested with orbital and Zeldovich collapse tests. Finally, we present several static and dynamical simulations using realistic cosmological parameters to highlight the differences between standard physics and f(R) physics. In general, we find that the f(R) modifications result in stronger gravitational attraction that enhances the dark matter power spectrum by ∼20% for large but observationally allowed f(R) modifications. A more detailed study of the nonlinear f(R) effects on the power spectrum are presented in a companion paper.
The cosmological slingshot scenario: a stringy early times universe
Energy Technology Data Exchange (ETDEWEB)
Germani, Cristiano [D.A.M.T.P., Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Grandi, Nicolas [SISSA, via Beirut 4, 34014 Trieste (Italy); Kehagias, Alex [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece)], E-mail: Germani@sissa.it, E-mail: grandi@fisica.unlp.edu.ar, E-mail: kehagias@central.ntua.gr
2008-07-07
A cosmological model for the early time universe is proposed. In this model, the universe is a wandering brane moving in a warped throat of a Calabi-Yau space. A nonzero angular momentum induces a turning point in the brane trajectory, and leads to a bouncing cosmology as experienced by an observer living on the brane. The universe undergoes a decelerated contraction followed by an accelerating expansion and no big-bang singularity. Although the number of e-folds of accelerated motion is low (less than 2), standard cosmological problems are not present in our model; thanks to the absence of an initial singularity and the violation of energy conditions of mirage matter at high energies. Density perturbations are also calculated in our model and we find a slightly red spectral index with negligible tensorial perturbations in compatibility with WMAP data.
Indian Academy of Sciences (India)
This report is based on a recent work in collaboration with Bagla and Padmanabhan. [1]. In this paper, we construct cosmological models with homogeneous tachyon matter [2] to provide the dark energy component which drives acceleration of the universe (for a recent review of dark energy models, see [3]). We assume that.
The Accelerator Markup Language and the Universal Accelerator Parser
International Nuclear Information System (INIS)
Sagan, D.; Forster, M.; Cornell U., LNS; Bates, D.A.; LBL, Berkeley; Wolski, A.; Liverpool U.; Cockcroft Inst. Accel. Sci. Tech.; Schmidt, F.; CERN; Walker, N.J.; DESY; Larrieu, T.; Roblin, Y.; Jefferson Lab; Pelaia, T.; Oak Ridge; Tenenbaum, P.; Woodley, M.; SLAC; Reiche, S.; UCLA
2006-01-01
A major obstacle to collaboration on accelerator projects has been the sharing of lattice description files between modeling codes. To address this problem, a lattice description format called Accelerator Markup Language (AML) has been created. AML is based upon the standard eXtensible Markup Language (XML) format; this provides the flexibility for AML to be easily extended to satisfy changing requirements. In conjunction with AML, a software library, called the Universal Accelerator Parser (UAP), is being developed to speed the integration of AML into any program. The UAP is structured to make it relatively straightforward (by giving appropriate specifications) to read and write lattice files in any format. This will allow programs that use the UAP code to read a variety of different file formats. Additionally, this will greatly simplify conversion of files from one format to another. Currently, besides AML, the UAP supports the MAD lattice format
Cosmic acceleration in non-flat f( T) cosmology
Capozziello, Salvatore; Luongo, Orlando; Pincak, Richard; Ravanpak, Arvin
2018-05-01
We study f( T) cosmological models inserting a non-vanishing spatial curvature and discuss its consequences on cosmological dynamics. To figure this out, a polynomial f( T) model and a double torsion model are considered. We first analyze those models with cosmic data, employing the recent surveys of Union 2.1, baryonic acoustic oscillation and cosmic microwave background measurements. We then emphasize that the two popular f( T) models enable the crossing of the phantom divide line due to dark torsion. Afterwards, we compute numerical bounds up to 3-σ confidence level, emphasizing the fact that Ω _{k0} turns out to be non-compatible with zero at least at 1σ . Moreover, we underline that, even increasing the accuracy, one cannot remove the degeneracy between our models and the Λ CDM paradigm. So that, we show that our treatments contain the concordance paradigm and we analyze the equation of state behaviors at different redshift domains. We also take into account gamma ray bursts and we describe the evolution of both the f( T) models with high redshift data. We calibrate the gamma ray burst measurements through small redshift surveys of data and we thus compare the main differences between non-flat and flat f( T) cosmology at different redshift ranges. We finally match the corresponding outcomes with small redshift bounds provided by cosmography. To do so, we analyze the deceleration parameters and their variations, proportional to the jerk term. Even though the two models well fit late-time data, we notice that the polynomial f( T) approach provides an effective de-Sitter phase, whereas the second f( T) framework shows analogous results compared with the Λ CDM predictions.
Modified geodetic brane cosmology
International Nuclear Information System (INIS)
Cordero, Rubén; Cruz, Miguel; Molgado, Alberto; Rojas, Efraín
2012-01-01
We explore the cosmological implications provided by the geodetic brane gravity action corrected by an extrinsic curvature brane term, describing a codimension-1 brane embedded in a 5D fixed Minkowski spacetime. In the geodetic brane gravity action, we accommodate the correction term through a linear term in the extrinsic curvature swept out by the brane. We study the resulting geodetic-type equation of motion. Within a Friedmann–Robertson–Walker metric, we obtain a generalized Friedmann equation describing the associated cosmological evolution. We observe that, when the radiation-like energy contribution from the extra dimension is vanishing, this effective model leads to a self-(non-self)-accelerated expansion of the brane-like universe in dependence on the nature of the concomitant parameter β associated with the correction, which resembles an analogous behaviour in the DGP brane cosmology. Several possibilities in the description for the cosmic evolution of this model are embodied and characterized by the involved density parameters related in turn to the cosmological constant, the geometry characterizing the model, the introduced β parameter as well as the dark-like energy and the matter content on the brane. (paper)
The Hubble IR cutoff in holographic ellipsoidal cosmologies
Energy Technology Data Exchange (ETDEWEB)
Cataldo, Mauricio [Universidad del Bio-Bio, Departamento de Fisica, Facultad de Ciencias, Concepcion (Chile); Cruz, Norman [Grupo de Cosmologia y Gravitacion-UBB, Concepcion (Chile)
2018-01-15
It is well known that for spatially flat FRW cosmologies, the holographic dark energy disfavors the Hubble parameter as a candidate for the IR cutoff. For overcoming this problem, we explore the use of this cutoff in holographic ellipsoidal cosmological models, and derive the general ellipsoidal metric induced by a such holographic energy density. Despite the drawbacks that this cutoff presents in homogeneous and isotropic universes, based on this general metric, we developed a suitable ellipsoidal holographic cosmological model, filled with a dark matter and a dark energy components. At late time stages, the cosmic evolution is dominated by a holographic anisotropic dark energy with barotropic equations of state. The cosmologies expand in all directions in accelerated manner. Since the ellipsoidal cosmologies given here are not asymptotically FRW, the deviation from homogeneity and isotropy of the universe on large cosmological scales remains constant during all cosmic evolution. This feature allows the studied holographic ellipsoidal cosmologies to be ruled by an equation of state ω = p/ρ, whose range belongs to quintessence or even phantom matter. (orig.)
SSC lattice database and graphical interface
International Nuclear Information System (INIS)
Trahern, C.G.; Zhou, J.
1991-11-01
When completed the Superconducting Super Collider will be the world's largest accelerator complex. In order to build this system on schedule, the use of database technologies will be essential. In this paper we discuss one of the database efforts underway at the SSC, the lattice database. The SSC lattice database provides a centralized source for the design of each major component of the accelerator complex. This includes the two collider rings, the High Energy Booster, Medium Energy Booster, Low Energy Booster, and the LINAC as well as transfer and test beam lines. These designs have been created using a menagerie of programs such as SYNCH, DIMAD, MAD, TRANSPORT, MAGIC, TRACE3D AND TEAPOT. However, once a design has been completed, it is entered into a uniform database schema in the database system. In this paper we discuss the reasons for creating the lattice database and its implementation via the commercial database system SYBASE. Each lattice in the lattice database is composed of a set of tables whose data structure can describe any of the SSC accelerator lattices. In order to allow the user community access to the databases, a programmatic interface known as dbsf (for database to several formats) has been written. Dbsf creates ascii input files appropriate to the above mentioned accelerator design programs. In addition it has a binary dataset output using the Self Describing Standard data discipline provided with the Integrated Scientific Tool Kit software tools. Finally we discuss the graphical interfaces to the lattice database. The primary interface, known as OZ, is a simulation environment as well as a database browser
Development of the Universe and New Cosmology
Sakharov, Alexander S
2003-01-01
Cosmology is undergoing an explosive period of activity, fueled both by new, accurate astrophysical data and by innovative theoretical developments. Cosmological parameters such as the total density of the Universe and the rate of cosmological expansion are being precisely measured for the first time, and a consistent standard picture of the Universe is beginning to emerge. Recent developments in cosmology give rise the intriguing possibility that all structures in the Universe, from superclusters to planets, had a quantum-mechanical origin in its earliest moments. Furthermore, these ideas are not idle theorizing, but predictive, and subject to meaningful experimental test. We review the concordance model of the development of the Universe, as well as evidence for the observational revolution that this field is going through. This already provides us with important information on particle physics, which is inaccessible to accelerators.
Tunneling dynamics of superfluid Fermi gases in an accelerating optical lattice
International Nuclear Information System (INIS)
Tie Lu; Xue Jukui
2010-01-01
The nonlinear Landau-Zener tunneling and the nonlinear Rabi oscillations of superfluid Fermi gases between Bloch bands in an accelerating optical lattice are discussed. Within the hydrodynamic theory and a two-level model, the tunneling probability of superfluid Fermi gases between Bloch bands is obtained. We find that, as the system crosses from the Bose-Einstein condensation (BEC) side to the BCS side, the tunneling rate is closely related to the particle density: when the density is smaller (larger) than a critical value, the tunneling rate at unitarity is larger (smaller) than that in the BEC limit. This is well explained in terms of an effective interaction and an effective potential. Furthermore, the nonlinear Rabi oscillations of superfluid Fermi gases between the bands are discussed by imposing a periodic modulation on the level bias and the strength of the lattice. Analytical expressions of the critical density for suppressing or enhancing the Rabi oscillations are obtained. It is shown that, as the system crosses from the BEC side to the BCS side, the critical density strongly depends on the modulation parameters (i.e., the modulation amplitude and the modulation frequency). For a fixed density, a high-frequency or low-frequency modulation can suppress or enhance the Rabi oscillations both at unitarity and in the BEC limit. For an intermediate modulation frequency, the Rabi oscillations are chaotic along the entire BEC-BCS crossover, especially, on the BCS side. Interestingly, we find that the modulation of the lattice strength only with an intermediate modulation frequency has significant effect on the Rabi oscillations both in the BEC limit and at unitarity; that is, an intermediate-frequency modulation can enhance the Rabi oscillations, especially on the BCS side.
Temple, Blake; Smoller, Joel
2009-08-25
We derive a system of three coupled equations that implicitly defines a continuous one-parameter family of expanding wave solutions of the Einstein equations, such that the Friedmann universe associated with the pure radiation phase of the Standard Model of Cosmology is embedded as a single point in this family. By approximating solutions near the center to leading order in the Hubble length, the family reduces to an explicit one-parameter family of expanding spacetimes, given in closed form, that represents a perturbation of the Standard Model. By introducing a comoving coordinate system, we calculate the correction to the Hubble constant as well as the exact leading order quadratic correction to the redshift vs. luminosity relation for an observer at the center. The correction to redshift vs. luminosity entails an adjustable free parameter that introduces an anomalous acceleration. We conclude (by continuity) that corrections to the redshift vs. luminosity relation observed after the radiation phase of the Big Bang can be accounted for, at the leading order quadratic level, by adjustment of this free parameter. The next order correction is then a prediction. Since nonlinearities alone could actuate dissipation and decay in the conservation laws associated with the highly nonlinear radiation phase and since noninteracting expanding waves represent possible time-asymptotic wave patterns that could result, we propose to further investigate the possibility that these corrections to the Standard Model might be the source of the anomalous acceleration of the galaxies, an explanation not requiring the cosmological constant or dark energy.
Conformal cosmological model and SNe Ia data
International Nuclear Information System (INIS)
Zakharov, A. F.; Pervushin, V. N.
2012-01-01
Now there is a huge scientific activity in astrophysical studies and cosmological ones in particular. Cosmology transforms from a pure theoretical branch of science into an observational one. All the cosmological models have to pass observational tests. The supernovae type Ia (SNe Ia) test is among the most important ones. If one applies the test to determine parameters of the standard Friedmann-Robertson-Walker cosmological model one can conclude that observations lead to the discovery of the dominance of the Λ term and as a result to an acceleration of the Universe. However, there are big mysteries connected with an origin and an essence of dark matter (DM) and the Λ term or dark energy (DE). Alternative theories of gravitation are treated as a possible solution of DM and DE puzzles. The conformal cosmological approach is one of possible alternatives to the standard ΛCDM model. As it was noted several years ago, in the framework of the conformal cosmological approach an introduction of a rigid matter can explain observational data without Λ term (or dark energy). We confirm the claim with much larger set of observational data.
Cosmological constant, inflation and no-cloning theorem
Energy Technology Data Exchange (ETDEWEB)
Huang Qingguo, E-mail: huangqg@itp.ac.cn [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100190 (China); Lin Fengli, E-mail: linfengli@phy.ntnu.edu.tw [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Department of Physics, National Taiwan Normal University, Taipei, 116, Taiwan (China)
2012-05-30
From the viewpoint of no-cloning theorem we postulate a relation between the current accelerated expansion of our universe and the inflationary expansion in the very early universe. It implies that the fate of our universe should be in a state with accelerated expansion. Quantitatively we find that the no-cloning theorem leads to a lower bound on the cosmological constant which is compatible with observations.
Lombriser, Lucas; Lima, Nelson A.
2017-02-01
With the advent of gravitational-wave astronomy marked by the aLIGO GW150914 and GW151226 observations, a measurement of the cosmological speed of gravity will likely soon be realised. We show that a confirmation of equality to the speed of light as indicated by indirect Galactic observations will have important consequences for a very large class of alternative explanations of the late-time accelerated expansion of our Universe. It will break the dark degeneracy of self-accelerated Horndeski scalar-tensor theories in the large-scale structure that currently limits a rigorous discrimination between acceleration from modified gravity and from a cosmological constant or dark energy. Signatures of a self-acceleration must then manifest in the linear, unscreened cosmological structure. We describe the minimal modification required for self-acceleration with standard gravitational-wave speed and show that its maximum likelihood yields a 3σ poorer fit to cosmological observations compared to a cosmological constant. Hence, equality between the speeds challenges the concept of cosmic acceleration from a genuine scalar-tensor modification of gravity.
Energy Technology Data Exchange (ETDEWEB)
Lombriser, Lucas, E-mail: llo@roe.ac.uk; Lima, Nelson A.
2017-02-10
With the advent of gravitational-wave astronomy marked by the aLIGO GW150914 and GW151226 observations, a measurement of the cosmological speed of gravity will likely soon be realised. We show that a confirmation of equality to the speed of light as indicated by indirect Galactic observations will have important consequences for a very large class of alternative explanations of the late-time accelerated expansion of our Universe. It will break the dark degeneracy of self-accelerated Horndeski scalar–tensor theories in the large-scale structure that currently limits a rigorous discrimination between acceleration from modified gravity and from a cosmological constant or dark energy. Signatures of a self-acceleration must then manifest in the linear, unscreened cosmological structure. We describe the minimal modification required for self-acceleration with standard gravitational-wave speed and show that its maximum likelihood yields a 3σ poorer fit to cosmological observations compared to a cosmological constant. Hence, equality between the speeds challenges the concept of cosmic acceleration from a genuine scalar–tensor modification of gravity.
Directory of Open Access Journals (Sweden)
Lucas Lombriser
2017-02-01
Full Text Available With the advent of gravitational-wave astronomy marked by the aLIGO GW150914 and GW151226 observations, a measurement of the cosmological speed of gravity will likely soon be realised. We show that a confirmation of equality to the speed of light as indicated by indirect Galactic observations will have important consequences for a very large class of alternative explanations of the late-time accelerated expansion of our Universe. It will break the dark degeneracy of self-accelerated Horndeski scalar–tensor theories in the large-scale structure that currently limits a rigorous discrimination between acceleration from modified gravity and from a cosmological constant or dark energy. Signatures of a self-acceleration must then manifest in the linear, unscreened cosmological structure. We describe the minimal modification required for self-acceleration with standard gravitational-wave speed and show that its maximum likelihood yields a 3σ poorer fit to cosmological observations compared to a cosmological constant. Hence, equality between the speeds challenges the concept of cosmic acceleration from a genuine scalar–tensor modification of gravity.
Research in elementary particle physics. Progress report, March 1, 1994--February 28, 1995
International Nuclear Information System (INIS)
Chan, Lai-Him; Haymaker, R.; Imlay, R.; McNeil, R.; Metcalf, W.; Svoboda, R.
1994-01-01
This report discusses the following topics: Low-energy particle dynamics; QCD dynamics on the lattice; lattice QCD Vacuum; phenomenology ampersand cosmology; the ZEUS Experiment at HERA; neutrino physics at LAMPF; non-accelerator physics; and SSC activity
Cosmological special relativity the large scale structure of space, time and velocity
Carmeli, Moshe
2002-01-01
This book presents Einstein's theory of space and time in detail, and describes the large-scale structure of space, time and velocity as a new cosmological special relativity. A cosmological Lorentz-like transformation, which relates events at different cosmic times, is derived and applied. A new law of addition of cosmic times is obtained, and the inflation of the space at the early universe is derived, both from the cosmological transformation. The relationship between cosmic velocity, acceleration and distances is given. In the appendices gravitation is added in the form of a cosmological g
Cosmology of a covariant Galilean field.
De Felice, Antonio; Tsujikawa, Shinji
2010-09-10
We study the cosmology of a covariant scalar field respecting a Galilean symmetry in flat space-time. We show the existence of a tracker solution that finally approaches a de Sitter fixed point responsible for cosmic acceleration today. The viable region of model parameters is clarified by deriving conditions under which ghosts and Laplacian instabilities of scalar and tensor perturbations are absent. The field equation of state exhibits a peculiar phantomlike behavior along the tracker, which allows a possibility to observationally distinguish the Galileon gravity from the cold dark matter model with a cosmological constant.
Smoller, Joel
2012-01-01
We prove that the Einstein equations in Standard Schwarzschild Coordinates close to form a system of three ordinary differential equations for a family of spherically symmetric, self-similar expansion waves, and the critical ($k=0$) Friedmann universe associated with the pure radiation phase of the Standard Model of Cosmology (FRW), is embedded as a single point in this family. Removing a scaling law and imposing regularity at the center, we prove that the family reduces to an implicitly defined one parameter family of distinct spacetimes determined by the value of a new {\\it acceleration parameter} $a$, such that $a=1$ corresponds to FRW. We prove that all self-similar spacetimes in the family are distinct from the non-critical $k\
The Relation between Cosmological Redshift and Scale Factor for Photons
Energy Technology Data Exchange (ETDEWEB)
Tian, Shuxun, E-mail: tshuxun@mail.bnu.edu.cn [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Department of Physics, Wuhan University, Wuhan 430072 (China)
2017-09-10
The cosmological constant problem has become one of the most important ones in modern cosmology. In this paper, we try to construct a model that can avoid the cosmological constant problem and have the potential to explain the apparent late-time accelerating expansion of the universe in both luminosity distance and angular diameter distance measurement channels. In our model, the core is to modify the relation between cosmological redshift and scale factor for photons. We point out three ways to test our hypothesis: the supernova time dilation; the gravitational waves and its electromagnetic counterparts emitted by the binary neutron star systems; and the Sandage–Loeb effect. All of this method is feasible now or in the near future.
The TAO Accelerator Simulation Program
Sagan, David
2005-01-01
A new accelerator design and analysis simulation environment based on the BMAD relativistic charged particle dynamics library is in development at Cornell University. Called TAO (Tool for Accelerator Optimization), it is a machine independent program that implements the essential ingredients needed to solve simulation problems. This includes the ability to: 1. Design lattices subject to constraints, 2. Simulate errors and changes in machine parameters, and 3. Simulate machine commissioning including simulating data measurement and correction. TAO is designed to be easily customizable so that extending it to solve new and different problems is straight forward. The capability to simultaneously model multiple accelerator lattices, both linacs and storage rings, and injection from one lattice to another allows for the design and commissioning of large multi stage accelerators. It can also simultaneously model multiple configurations of a single lattice. Single particle, particle beam and macroparticle tracking i...
Dark Energy and the Cosmological Constant: A Brief Introduction
Harvey, Alex
2009-01-01
The recently observed acceleration of the expansion of the universe is a topic of intense interest. The favoured causes are the "cosmological constant" or "dark energy". The former, which appears in the Einstein equations as the term [lambda]g[subscript [mu]v], provides an extremely simple, well-defined mechanism for the acceleration. However,…
Racetrack lattices for the TRIUMF KAON factory
International Nuclear Information System (INIS)
Servranckx, R.V.; Wienands, U.; Craddock, M.K.; Rees, G.H.
1989-03-01
Separated-function racetrack lattices have been developed for the KAON Factory accelerators that have more flexibility than the old circular lattices. Straight sections with zero dispersion are provided for rf cavities and fast injection and extraction, and with controlled dispersion for H - injection and slow extraction. In addition the new lattices have fewer depolarizing resonances than the old circular lattices
Duality gives rise to Chaplygin cosmologies with a big rip
International Nuclear Information System (INIS)
Chimento, Luis P; Lazkoz, Ruth
2006-01-01
We consider modifications to the Friedmann equation motivated by recent proposals along these lines pursuing an explanation to the observed late time acceleration. Here we show that these approaches can be framed within a theory with modified gravity, and we discuss the construction of the duals of the cosmologies generated within that framework. We then investigate the modifications required to generate extended, generalized and modified Chaplygin cosmologies, and then show that their duals belong to a larger family of cosmologies we call enlarged Chaplygin cosmologies. Finally, by letting the parameters of these models take values not earlier considered in the literature we show that some representatives of that family of cosmologies display sudden future singularities. This fact indicates that the behaviour of these spacetimes is rather different from that of generalized or modified Chaplygin gas cosmologies. This reinforces the idea that modifications of gravity can be responsible for unexpected evolutionary features in the universe
Growth of matter perturbation in quintessence cosmology
Mulki, Fargiza A. M.; Wulandari, Hesti R. T.
2017-01-01
Big bang theory states that universe emerged from singularity with very high temperature and density, then expands homogeneously and isotropically. This theory gives rise standard cosmological principle which declares that universe is homogeneous and isotropic on large scales. However, universe is not perfectly homogeneous and isotropic on small scales. There exist structures starting from clusters, galaxies even to stars and planetary system scales. Cosmological perturbation theory is a fundamental theory that explains the origin of structures. According to this theory, the structures can be regarded as small perturbations in the early universe, which evolves as the universe expands. In addition to the problem of inhomogeneities of the universe, observations of supernovae Ia suggest that our universe is being accelerated. Various models of dark energy have been proposed to explain cosmic acceleration, one of them is cosmological constant. Because of several problems arise from cosmological constant, the alternative models have been proposed, one of these models is quintessence. We reconstruct growth of structure model following quintessence scenario at several epochs of the universe, which is specified by the effective equation of state parameters for each stage. Discussion begins with the dynamics of quintessence, in which exponential potential is analytically derived, which leads to various conditions of the universe. We then focus on scaling and quintessence dominated solutions. Subsequently, we review the basics of cosmological perturbation theory and derive formulas to investigate how matter perturbation evolves with time in subhorizon scales which leads to structure formation, and also analyze the influence of quintessence to the structure formation. From analytical exploration, we obtain the growth rate of matter perturbation and the existence of quintessence as a dark energy that slows down the growth of structure formation of the universe.
Non-decoupling of heavy scalars in cosmology
Hardeman, Sjoerd Reimer
2012-01-01
The theory describing physics at the highest energy scales likely contains extra dimensions, whose internal degrees of freedom result in many massive field and particles. At accelerator experiments these fields and particles generally decouple from the low energy physics. However, in cosmology
Milgrom's revision of Newton's laws - Dynamical and cosmological consequences
Felten, J. E.
1984-01-01
Milgrom's (1983) recent revision of Newtonian dynamics was introduced to eliminate the inference that large quantities of invisible mass exist in galaxies. It is shown by simple examples that a Milgrom acceleration, in the form presented so far, implies other far-reaching changes in dynamics. The momentum of an isolated system is not conserved, and the usual theorem for center-of-mass motion of any system does not hold. Naive applications require extreme caution. The model fails to provide a complete description of particle dynamics and should be thought of as a revision of Kepler's laws rather than Newton's. The Milgrom acceleration also implies fundamental changes in cosmology. A quasi-Newtonian calculation adapted from Newtonian cosmology suggests that a 'Milgrom universe' will recollapse even if the classical closure parameter Omega is much less than unity. The solution, however, fails to satisfy the cosmological principle. Reasons for the breakdown of this calculation are examined. A new theory of gravitation will be needed before the behavior of a Milgrom universe can be predicted.
Directory of Open Access Journals (Sweden)
C. S. Edmonds
2014-05-01
Full Text Available In high chromaticity circular accelerators, rapid decoherence of the betatron motion of a particle beam can make the measurement of lattice and bunch values, such as Courant-Snyder parameters and betatron amplitude, difficult. A method for reconstructing the momentum distribution of a beam from beam position measurements is presented. Further analysis of the same beam position monitor data allows estimates to be made of the Courant-Snyder parameters and the amplitude of coherent betatron oscillation of the beam. The methods are tested through application to data taken on the linear nonscaling fixed field alternating gradient accelerator, EMMA.
Origin of a small cosmological constant in a brane world
International Nuclear Information System (INIS)
Ghoroku, Kazuo; Yahiro, Masanobu
2002-01-01
We address the relation between the parameters of an accelerating brane universe embedded in five-dimensional bulk space. It is pointed out that the tiny cosmological constant of our world can be obtained as quantum corrections around a given brane solution in the bulk theory or in the field theory on the boundary from a holographic viewpoint. Some implications to the cosmology and constraints on the parameters are also given
Quintessential brane cosmology
International Nuclear Information System (INIS)
Kunze, K.E.; Vazquez-Mozo, M.A.
2002-01-01
We study a class of braneworlds where the cosmological evolution arises as the result of the movement of a three-brane in a five-dimensional static dilatonic bulk, with and without reflection symmetry. The resulting four-dimensional Friedmann equation includes a term which, for a certain range of the parameters, effectively works as a quintessence component, producing an acceleration of the universe at late times. Using current observations and bounds derived from big-bang nucleosynthesis, we estimate the parameters that characterize the model
Multi-graviton theory, a latticized dimension and the cosmological constant
International Nuclear Information System (INIS)
Kan, Nahomi; Shiraishi, Kiyoshi
2003-01-01
Beginning with the Pauli-Fierz theory, we construct a model for multi-graviton theory. Couplings between gravitons belonging to nearest-neighbour 'theory spaces' lead to a discrete mass spectrum. Our model coincides with the Kaluza-Klein theory whose fifth dimension is latticized. We evaluate one-loop vacuum energy in models with a circular latticized extra dimension as well as with compact continuous dimensions. We find that the vacuum energy can take a positive value, if the dimension of the continuous spacetime is 6, 10, .... Moreover, since the amount of vacuum energy can be an arbitrary small value depending on the choice of parameters in the model, our models are useful for explaining the small positive dark energy in the present universe
Averaging in spherically symmetric cosmology
International Nuclear Information System (INIS)
Coley, A. A.; Pelavas, N.
2007-01-01
The averaging problem in cosmology is of fundamental importance. When applied to study cosmological evolution, the theory of macroscopic gravity (MG) can be regarded as a long-distance modification of general relativity. In the MG approach to the averaging problem in cosmology, the Einstein field equations on cosmological scales are modified by appropriate gravitational correlation terms. We study the averaging problem within the class of spherically symmetric cosmological models. That is, we shall take the microscopic equations and effect the averaging procedure to determine the precise form of the correlation tensor in this case. In particular, by working in volume-preserving coordinates, we calculate the form of the correlation tensor under some reasonable assumptions on the form for the inhomogeneous gravitational field and matter distribution. We find that the correlation tensor in a Friedmann-Lemaitre-Robertson-Walker (FLRW) background must be of the form of a spatial curvature. Inhomogeneities and spatial averaging, through this spatial curvature correction term, can have a very significant dynamical effect on the dynamics of the Universe and cosmological observations; in particular, we discuss whether spatial averaging might lead to a more conservative explanation of the observed acceleration of the Universe (without the introduction of exotic dark matter fields). We also find that the correlation tensor for a non-FLRW background can be interpreted as the sum of a spatial curvature and an anisotropic fluid. This may lead to interesting effects of averaging on astrophysical scales. We also discuss the results of averaging an inhomogeneous Lemaitre-Tolman-Bondi solution as well as calculations of linear perturbations (that is, the backreaction) in an FLRW background, which support the main conclusions of the analysis
General very special relativity in Finsler cosmology
International Nuclear Information System (INIS)
Kouretsis, A. P.; Stathakopoulos, M.; Stavrinos, P. C.
2009-01-01
General very special relativity (GVSR) is the curved space-time of very special relativity (VSR) proposed by Cohen and Glashow. The geometry of general very special relativity possesses a line element of Finsler geometry introduced by Bogoslovsky. We calculate the Einstein field equations and derive a modified Friedmann-Robertson-Walker cosmology for an osculating Riemannian space. The Friedmann equation of motion leads to an explanation of the cosmological acceleration in terms of an alternative non-Lorentz invariant theory. A first order approach for a primordial-spurionic vector field introduced into the metric gives back an estimation of the energy evolution and inflation.
CERN. Geneva
2017-01-01
Extensions of Einstein’s theory of General Relativity are under investigation as a potential explanation of the accelerating expansion rate of the universe. I’ll present a cosmologist’s overview of attempts to test these ideas in an efficient and unbiased manner. I’ll start by introducing the bestiary of alternative gravity theories that have been put forwards. This proliferation of models motivates us to develop model-independent, agnostic tools for comparing the theory space to cosmological data. I’ll introduce the effective field theory for cosmological perturbations, a framework designed to unify modified gravity theories in terms of a manageable set of parameters. Having outlined the formalism, I’ll talk about the current constraints on this framework, and the improvements expected from the next generation of large galaxy clustering, weak lensing and intensity mapping experiments.
Generalized Second Law of Thermodynamics in Parabolic LTB Inhomogeneous Cosmology
International Nuclear Information System (INIS)
Sheykhi, A.; Moradpour, H.; Sarab, K. Rezazadeh; Wang, B.
2015-01-01
We study thermodynamics of the parabolic Lemaitre–Tolman–Bondi (LTB) cosmology supported by a perfect fluid source. This model is the natural generalization of the flat Friedmann–Robertson–Walker (FRW) universe, and describes an inhomogeneous universe with spherical symmetry. After reviewing some basic equations in the parabolic LTB cosmology, we obtain a relation for the deceleration parameter in this model. We also obtain a condition for which the universe undergoes an accelerating phase at the present time. We use the first law of thermodynamics on the apparent horizon together with the Einstein field equations to get a relation for the apparent horizon entropy in LTB cosmology. We find out that in LTB model of cosmology, the apparent horizon's entropy could be feeded by a term, which incorporates the effects of the inhomogeneity. We consider this result and get a relation for the total entropy evolution, which is used to examine the generalized second law of thermodynamics for an accelerating universe. We also verify the validity of the second law and the generalized second law of thermodynamics for a universe filled with some kinds of matters bounded by the event horizon in the framework of the parabolic LTB model. (paper)
Cosmology in time asymmetric extensions of general relativity
International Nuclear Information System (INIS)
Leon, Genly; Saridakis, Emmanuel N.
2015-01-01
We investigate the cosmological behavior in a universe governed by time asymmetric extensions of general relativity, which is a novel modified gravity based on the addition of new, time-asymmetric, terms on the Hamiltonian framework, in a way that the algebra of constraints and local physics remain unchanged. Nevertheless, at cosmological scales these new terms can have significant effects that can alter the universe evolution, both at early and late times, and the freedom in the choice of the involved modification function makes the scenario able to produce a huge class of cosmological behaviors. For basic ansatzes of modification, we perform a detailed dynamical analysis, extracting the stable late-time solutions. Amongst others, we find that the universe can result in dark-energy dominated, accelerating solutions, even in the absence of an explicit cosmological constant, in which the dark energy can be quintessence-like, phantom-like, or behave as an effective cosmological constant. Moreover, it can result to matter-domination, or to a Big Rip, or experience the sequence from matter to dark energy domination. Additionally, in the case of closed curvature, the universe may experience a cosmological bounce or turnaround, or even cyclic behavior. Finally, these scenarios can easily satisfy the observational and phenomenological requirements. Hence, time asymmetric cosmology can be a good candidate for the description of the universe
A transitionless lattice for the Fermilab Main Injector
International Nuclear Information System (INIS)
Ng, K.Y.; Trbojevic, D.; Lee, S.Y.
1991-05-01
Medium energy (1 to 30 GeV) accelerators are often confronted with transition crossing during acceleration. A lattice without transition is presented, which is a design for the Fermilab Main Injector. The main properties of this lattice are that the γ t is an imaginary number, the maxima of the dispersion function are small, and two long-straight section with zero dispersion. 7 refs., 5 figs
International Nuclear Information System (INIS)
Skillman, Samuel W.; Hallman, Eric J.; Burns, Jack O.; Smith, Britton D.; O'Shea, Brian W.; Turk, Matthew J.
2011-01-01
Cosmological shocks are a critical part of large-scale structure formation, and are responsible for heating the intracluster medium in galaxy clusters. In addition, they are capable of accelerating non-thermal electrons and protons. In this work, we focus on the acceleration of electrons at shock fronts, which is thought to be responsible for radio relics-extended radio features in the vicinity of merging galaxy clusters. By combining high-resolution adaptive mesh refinement/N-body cosmological simulations with an accurate shock-finding algorithm and a model for electron acceleration, we calculate the expected synchrotron emission resulting from cosmological structure formation. We produce synthetic radio maps of a large sample of galaxy clusters and present luminosity functions and scaling relationships. With upcoming long-wavelength radio telescopes, we expect to see an abundance of radio emission associated with merger shocks in the intracluster medium. By producing observationally motivated statistics, we provide predictions that can be compared with observations to further improve our understanding of magnetic fields and electron shock acceleration.
Cosmology in massive gravity with effective composite metric
Energy Technology Data Exchange (ETDEWEB)
Heisenberg, Lavinia [Institute for Theoretical Studies, ETH Zurich Clausiusstrasse 47, 8092 Zurich (Switzerland); Refregier, Alexandre, E-mail: lavinia.heisenberg@eth-its.ethz.ch, E-mail: alexandre.refregier@phys.ethz.ch [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093, Zurich (Switzerland)
2016-09-01
This paper is dedicated to scrutinizing the cosmology in massive gravity. A matter field of the dark sector is coupled to an effective composite metric while a standard matter field couples to the dynamical metric in the usual way. For this purpose, we study the dynamical system of cosmological solutions by using phase analysis, which provides an overview of the class of cosmological solutions in this setup. This also permits us to study the critical points of the cosmological equations together with their stability. We show the presence of stable attractor de Sitter critical points relevant to the late-time cosmic acceleration. Furthermore, we study the tensor, vector and scalar perturbations in the presence of standard matter fields and obtain the conditions for the absence of ghost and gradient instabilities. Hence, massive gravity in the presence of the effective composite metric can accommodate interesting dark energy phenomenology, that can be observationally distinguished from the standard model according to the expansion history and cosmic growth.
Early universe cosmology and tests of fundamental physics
International Nuclear Information System (INIS)
Albrecht, Andreas; Frieman, Joshua A.; Trodden, Mark
2002-01-01
This is the report of the Working Group on Early Universe Cosmology and tests of Fundamental Physics, group P4.8 of the of the Snowmass 2001 conference. Here we summarize the impressive array of advances that have taken place in this field, and identify opportunities for even greater progress in the future. Topics include Dark Energy, Cosmic Acceleration, Inflation, Phase Transitions, Baryogenesis, and String/M-theory Cosmology. The introductory section gives an executive summary with six key open questions on which we can expect to make significant progress
Implications of the Cosmological Constant for Spherically Symmetric Mass Distributions
Zubairi, Omair; Weber, Fridolin
2013-04-01
In recent years, scientists have made the discovery that the expansion rate of the Universe is increasing rather than decreasing. This acceleration leads to an additional term in Albert Einstein's field equations which describe general relativity and is known as the cosmological constant. This work explores the aftermath of a non-vanishing cosmological constant for relativistic spherically symmetric mass distributions, which are susceptible to change against Einstein's field equations. We introduce a stellar structure equation known as the Tolman-Oppenhiemer-Volkoff (TOV) equation modified for a cosmological constant, which is derived from Einstein's modified field equations. We solve this modified TOV equation for these spherically symmetric mass distributions and obtain stellar properties such as mass and radius and investigate changes that may occur depending on the value of the cosmological constant.
Self-accelerated brane Universe with warped extra dimension
Gorbunov, D S
2008-01-01
We propose a cosmological model which exhibits the phenomenon of self-acceleration: the Universe is attracted to the phase of accelerated expansion at late times even in the absence of the cosmological constant. The self-acceleration is inevitable in the sense that it cannot be neutralized by any negative explicit cosmological constant. The model is formulated in the framework of brane-world theories with a warped extra dimension. The key ingredient of the model is the brane-bulk energy transfer which is carried by bulk vector fields with a sigma-model-like boundary condition on the brane. We explicitly find the 5-dimensional metric corresponding to the late-time de Sitter expansion on the brane; this metric describes an AdS_5 black hole with growing mass. The present value of the Hubble parameter implies the scale of new physics of order 1 TeV, where the proposed model has to be replaced by putative UV-completion. The mechanism leading to the self-acceleration has AdS/CFT interpretation as occurring due to s...
On the anomalous acceleration in the solar system
International Nuclear Information System (INIS)
Palle, D.
2005-01-01
We study an impact of the cosmological environment on the cosmological environment on the solar gravitational system by the imbedding formalism of Gautreau. It turns out that the cosmic mean-mass density and the cosmological constant give negligible small contribution to the gravity potentials. On the other hand, the cosmic acceleration beyond the Robertson-Walker geometry can considerably influence the curvature of spacetime in the solar system. The resulting anomalous constant acceleration towards the Sun is order of magnitude smaller than that measured by Pioneer 10 and 11. However, it is larger than the second order terms of potentials, thus well within the sensitivity of new gravity probes such as the LATOR mission (Author)
International Nuclear Information System (INIS)
Desert, F.-Xavier
2004-01-01
After an introduction comprising some definitions, an historical overview, and a discussion of the paradoxical Universe, this course proposes a presentation of fundamental notions and theories, i.e. the restrained relativity and the universal gravitation. The next part addresses the general relativity with the following notions: space-time metrics and principle of generalised covariance, basics of tensor analysis, geodesics, energy-pulse tensor, curvature, Einstein equations, Newtonian limit, Schwarzschild metrics, gravitational waves, gravitational redshift. The next part addresses the standard cosmology with the Friedmann-Robertson-Walker metrics and the Friedmann-Lemaitre equations of the evolution of the Universe. The Universe expansion is then addressed: distances and horizons, Hubble law, determination of the Hubble constant. The next chapter deals with the constituents of the Universe: light matter, baryonic dark matter, black matter, supernovae, Universe acceleration and black energy. Then comes the nuclear evolution of the Universe: thermodynamics of the primordial Universe, the matter-antimatter asymmetry, from quarks to atoms, cosmic abundance, neutron cosmological background, matter-radiation equality, cosmo-chronology or the age of the Universe. The next chapter addresses the cosmological background at 3 K: sky electromagnetic spectrum, measurement of CMB anisotropies, interpretation of anisotropies, growth of perturbations. The last chapter addresses the quantum field theory and inflation: paradoxes of the standard Big Bang, the simple inflation, noticeable consequences
Cosmological abundance of the QCD axion coupled to hidden photons
Kitajima, Naoya; Sekiguchi, Toyokazu; Takahashi, Fuminobu
2018-06-01
We study the cosmological evolution of the QCD axion coupled to hidden photons. For a moderately strong coupling, the motion of the axion field leads to an explosive production of hidden photons by tachyonic instability. We use lattice simulations to evaluate the cosmological abundance of the QCD axion. In doing so, we incorporate the backreaction of the produced hidden photons on the axion dynamics, which becomes significant in the non-linear regime. We find that the axion abundance is suppressed by at most O (102) for the decay constant fa =1016GeV, compared to the case without the coupling. For a sufficiently large coupling, the motion of the QCD axion becomes strongly damped, and as a result, the axion abundance is enhanced. Our results show that the cosmological upper bound on the axion decay constant can be relaxed by a few hundred for a certain range of the coupling to hidden photons.
Particles in astrophysics and cosmology: a dark connection
International Nuclear Information System (INIS)
Fornengo, Nicolao
2010-01-01
The particle physics interpretation of the missing-mass, or dark-matter, problem of cosmological and astrophysical nature is going to be posed under deep scrutiny in the next years. From the particle physics side, accelerators will deeply test theoretical ideas of new physics beyond the Standard Model, where particle candidates of dark matter are predicted. From the astrophysical side, many probes are already providing a great deal of independent information on the foreseen signals which can be produced by the galactic or extra-galactic dark matter. The ultimate hope is in fact the emergence of dark matter signals from the various sources of backgrounds and the rise of a coherent picture of new physics from the accelerator physics, astrophysics and cosmology sides. A very ambitious and far-reaching project, which will bring to a deeper level our understanding of the fundamental laws which rule the Universe.
Singularities in and stability of Ooguri-Vafa-Verlinde cosmologies
International Nuclear Information System (INIS)
McInnes, B.
2005-04-01
Ooguri, Vafa, and Verlinde have recently proposed an approach to string cosmology which is based on the idea that cosmological string moduli should be selected by a Hartle-Hawking wave function. They are led to consider a certain Euclidean space which has two different Lorentzian interpretations, one of which is a model of an accelerating cosmology. We describe in detail how to implement this idea without resorting to a 'complex metric'. We show that the four-dimensional version of the OVV cosmology is null geodesically incomplete but has no curvature singularity; also that it is (barely) stable against the Seiberg-Witten process (nucleation of brane pairs). The introduction of matter satisfying the Null Energy Condition has the paradoxical effect of both stabilizing the spacetime and rendering it genuinely singular. We show however that it is possible to arrange for an effective violation of the NEC in such a way that the singularity is avoided and yet the spacetime remains stable. The possible implications for the early history of these cosmologies are discussed. (author)
Inflationary cosmologies from compactification?
International Nuclear Information System (INIS)
Wohlfarth, Mattias N.R.
2004-01-01
We consider the compactification of (d+n)-dimensional pure gravity and of superstring or M-theory on an n-dimensional internal space to a d-dimensional Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology, with a spatial curvature k=0,±1, in the Einstein conformal frame. The internal space is taken to be a product of Einstein spaces, each of which is allowed to have arbitrary curvature and a time-dependent volume. By investigating the effective d-dimensional scalar potential, which is a sum of exponentials, it is shown that such compactifications, in the k=0,+1 cases, do not lead to large amounts of accelerating expansion of the scale factor of the resulting FLRW universe, and, in particular, do not lead to inflation. The case k=-1 admits solutions with eternal accelerating expansion for which the acceleration, however, tends to zero at late times
The role of energy conditions in f(R) cosmology
Capozziello, S.; Nojiri, S.; Odintsov, S. D.
2018-06-01
Energy conditions can play an important role in defining the cosmological evolution. Specifically acceleration/deceleration of cosmic fluid, as well as the emergence of Big Rip singularities, can be related to the constraints imposed by the energy conditions. Here we discuss this issue for f (R) gravity considering also conformal transformations. Cosmological solutions and equations of state can be classified according to energy conditions. The qualitative change of some energy conditions when transformation from the Jordan frame to the Einstein frame done is also observed.
Elementary particles and cosmology
International Nuclear Information System (INIS)
Audouze, J.; Paty, M.
2000-01-01
The universe is the most efficient laboratory of particle physics and the understanding of cosmological processes implies the knowledge of how elementary particles interact. This article recalls the mutual influences between on the one hand: astrophysics and cosmology and on the other hand: nuclear physics and particle physics. The big-bang theory relies on nuclear physics to explain the successive stages of nucleo-synthesis and the study of solar neutrinos has led to discover new aspects of this particle: it is likely that neutrinos undergo oscillations from one neutrino type to another. In some universe events such as the bursting of a super-nova, particles are released with a kinetic energy that would be impossible to reach on earth with a particle accelerator. These events are become common points of interest between astrophysicists and particle physicists and have promoted a deeper cooperation between astrophysics and elementary particle physics. (A.C.)
International Nuclear Information System (INIS)
Kleinschmidt, Axel; Nicolai, Hermann
2006-01-01
We construct simple exact solutions to the E 10 /K(E 10 ) coset model by exploiting its integrability. Using the known correspondences with the bosonic sectors of maximal supergravity theories, these exact solutions translate into exact cosmological solutions. In this way, we are able to recover some recently discovered solutions of M-theory exhibiting phases of accelerated expansion, or, equivalently, S-brane solutions, and thereby accommodate such solutions within the E 10 /K(E 10 ) model. We also discuss the situation regarding solutions with non-vanishing (constant) curvature of the internal manifold
International Nuclear Information System (INIS)
Novikov, I.D.
1979-01-01
Progress made by this Commission over the period 1976-1978 is reviewed. Topics include the Hubble constant, deceleration parameter, large-scale distribution of matter in the universe, radio astronomy and cosmology, space astronomy and cosmology, formation of galaxies, physics near the cosmological singularity, and unconventional cosmological models. (C.F.)
Cosmological evolution in vector-tensor theories of gravity
International Nuclear Information System (INIS)
Beltran Jimenez, Jose; Maroto, Antonio L.
2009-01-01
We present a detailed study of the cosmological evolution in general vector-tensor theories of gravity without potential terms. We consider the evolution of the vector field throughout the expansion history of the Universe and carry out a classification of models according to the behavior of the vector field in each cosmological epoch. We also analyze the case in which the Universe is dominated by the vector field, performing a complete analysis of the system phase map and identifying those attracting solutions which give rise to accelerated expansion. Moreover, we consider the evolution in a universe filled with a pressureless fluid in addition to the vector field and study the existence of attractors in which we can have a transition from matter domination to vector domination with accelerated expansion so that the vector field may play the role of dark energy. We find that the existence of solutions with late-time accelerated expansion is a generic prediction of vector-tensor theories and that such solutions typically lead to the presence of future singularities. Finally, limits from local gravity tests are used to get constraints on the value of the vector field at small (Solar System) scales.
Observational constraints on undulant cosmologies
Energy Technology Data Exchange (ETDEWEB)
Barenboim, Gabriela; /Valencia U.; Mena Requejo, Olga; Quigg, Chris; /Fermilab
2005-10-01
In an undulant universe, cosmic expansion is characterized by alternating periods of acceleration and deceleration. We examine cosmologies in which the dark-energy equation of state varies periodically with the number of e-foldings of the scale factor of the universe, and use observations to constrain the frequency of oscillation. We find a tension between a forceful response to the cosmic coincidence problem and the standard treatment of structure formation.
Λ CDM is Consistent with SPARC Radial Acceleration Relation
Energy Technology Data Exchange (ETDEWEB)
Keller, B. W.; Wadsley, J. W., E-mail: kellerbw@mcmaster.ca [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada)
2017-01-20
Recent analysis of the Spitzer Photometry and Accurate Rotation Curve (SPARC) galaxy sample found a surprisingly tight relation between the radial acceleration inferred from the rotation curves and the acceleration due to the baryonic components of the disk. It has been suggested that this relation may be evidence for new physics, beyond Λ CDM . In this Letter, we show that 32 galaxies from the MUGS2 match the SPARC acceleration relation. These cosmological simulations of star-forming, rotationally supported disks were simulated with a WMAP3 Λ CDM cosmology, and match the SPARC acceleration relation with less scatter than the observational data. These results show that this acceleration relation is a consequence of dissipative collapse of baryons, rather than being evidence for exotic dark-sector physics or new dynamical laws.
Scalar-tensor cosmology with cosmological constant
International Nuclear Information System (INIS)
Maslanka, K.
1983-01-01
The equations of scalar-tensor theory of gravitation with cosmological constant in the case of homogeneous and isotropic cosmological model can be reduced to dynamical system of three differential equations with unknown functions H=R/R, THETA=phi/phi, S=e/phi. When new variables are introduced the system becomes more symmetrical and cosmological solutions R(t), phi(t), e(t) are found. It is shown that when cosmological constant is introduced large class of solutions which depend also on Dicke-Brans parameter can be obtained. Investigations of these solutions give general limits for cosmological constant and mean density of matter in plane model. (author)
Attractor behaviour in ELKO cosmology
International Nuclear Information System (INIS)
Basak, Abhishek; Bhatt, Jitesh R.; Shankaranarayanan, S.; Varma, K.V. Prasantha
2013-01-01
We study the dynamics of ELKO in the context of accelerated phase of our universe. To avoid the fine tuning problem associated with the initial conditions, it is required that the dynamical equations lead to an early-time attractor. In the earlier works, it was shown that the dynamical equations containing ELKO fields do not lead to early-time stable fixed points. In this work, using redefinition of variables, we show that ELKO cosmology admits early-time stable fixed points. More interestingly, we show that ELKO cosmology admit two sets of attractor points corresponding to slow and fast-roll inflation. The fast-roll inflation attractor point is unique for ELKO as it is independent of the form of the potential. We also discuss the plausible choice of interaction terms in these two sets of attractor points and constraints on the coupling constant
International Nuclear Information System (INIS)
Raychaudhuri, A.K.
1979-01-01
The subject is covered in chapters, entitled; introduction; Newtonian gravitation and cosmology; general relativity and relativistic cosmology; analysis of observational data; relativistic models not obeying the cosmological principle; microwave radiation background; thermal history of the universe and nucleosynthesis; singularity of cosmological models; gravitational constant as a field variable; cosmological models based on Einstein-Cartan theory; cosmological singularity in two recent theories; fate of perturbations of isotropic universes; formation of galaxies; baryon symmetric cosmology; assorted topics (including extragalactic radio sources; Mach principle). (U.K.)
Observable cosmology and cosmological models
International Nuclear Information System (INIS)
Kardashev, N.S.; Lukash, V.N.; Novikov, I.D.
1987-01-01
Modern state of observation cosmology is briefly discussed. Among other things, a problem, related to Hibble constant and slowdown constant determining is considered. Within ''pancake'' theory hot (neutrino) cosmological model explains well the large-scale structure of the Universe, but does not explain the galaxy formation. A cold cosmological model explains well light object formation, but contradicts data on large-scale structure
On the Phenomenology of an Accelerated Large-Scale Universe
Directory of Open Access Journals (Sweden)
Martiros Khurshudyan
2016-10-01
Full Text Available In this review paper, several new results towards the explanation of the accelerated expansion of the large-scale universe is discussed. On the other hand, inflation is the early-time accelerated era and the universe is symmetric in the sense of accelerated expansion. The accelerated expansion of is one of the long standing problems in modern cosmology, and physics in general. There are several well defined approaches to solve this problem. One of them is an assumption concerning the existence of dark energy in recent universe. It is believed that dark energy is responsible for antigravity, while dark matter has gravitational nature and is responsible, in general, for structure formation. A different approach is an appropriate modification of general relativity including, for instance, f ( R and f ( T theories of gravity. On the other hand, attempts to build theories of quantum gravity and assumptions about existence of extra dimensions, possible variability of the gravitational constant and the speed of the light (among others, provide interesting modifications of general relativity applicable to problems of modern cosmology, too. In particular, here two groups of cosmological models are discussed. In the first group the problem of the accelerated expansion of large-scale universe is discussed involving a new idea, named the varying ghost dark energy. On the other hand, the second group contains cosmological models addressed to the same problem involving either new parameterizations of the equation of state parameter of dark energy (like varying polytropic gas, or nonlinear interactions between dark energy and dark matter. Moreover, for cosmological models involving varying ghost dark energy, massless particle creation in appropriate radiation dominated universe (when the background dynamics is due to general relativity is demonstrated as well. Exploring the nature of the accelerated expansion of the large-scale universe involving generalized
Combination and interpretation of observables in Cosmology
Directory of Open Access Journals (Sweden)
Virey Jean-Marc
2010-04-01
Full Text Available The standard cosmological model has deep theoretical foundations but need the introduction of two major unknown components, dark matter and dark energy, to be in agreement with various observations. Dark matter describes a non-relativistic collisionless fluid of (non baryonic matter which amount to 25% of the total density of the universe. Dark energy is a new kind of fluid not of matter type, representing 70% of the total density which should explain the recent acceleration of the expansion of the universe. Alternatively, one can reject this idea of adding one or two new components but argue that the equations used to make the interpretation should be modified consmological scales. Instead of dark matter one can invoke a failure of Newton's laws. Instead of dark energy, two approaches are proposed : general relativity (in term of the Einstein equation should be modified, or the cosmological principle which fixes the metric used for cosmology should be abandonned. One of the main objective of the community is to find the path of the relevant interpretations thanks to the next generation of experiments which should provide large statistics of observationnal data. Unfortunately, cosmological in formations are difficult to pin down directly fromt he measurements, and it is mandatory to combine the various observables to get the cosmological parameters. This is not problematic from the statistical point of view, but assumptions and approximations made for the analysis may bias our interprettion of the data. Consequently, a strong attention should be paied to the statistical methods used to make parameters estimation and for model testing. After a review of the basics of cosmology where the cosmological parameters are introduced, we discuss the various cosmological probes and their associated observables used to extract cosmological informations. We present the results obtained from several statistical analyses combining data of diferent nature but
An introduction to cosmological inflation
International Nuclear Information System (INIS)
Liddle, A.R.
1999-01-01
An introductory account is given of the inflationary cosmology, which postulates a period of accelerated expansion during the Universe's earliest stages. The historical motivation is briefly outlined, and the modelling of the inflationary epoch explained. The most important aspect of inflation is that it provides a possible model for the origin of structure in the Universe, and key results are reviewed, along with a discussion of the current observational situation and outlook. (author)
International Nuclear Information System (INIS)
Kalkreuter, T.; Simma, H.
1995-07-01
The low-lying eigenvalues of a (sparse) hermitian matrix can be computed with controlled numerical errors by a conjugate gradient (CG) method. This CG algorithm is accelerated by alternating it with exact diagonalizations in the subspace spanned by the numerically computed eigenvectors. We study this combined algorithm in case of the Dirac operator with (dynamical) Wilson fermions in four-dimensional SU(2) gauge fields. The algorithm is numerically very stable and can be parallelized in an efficient way. On lattices of sizes 4 4 - 16 4 an acceleration of the pure CG method by a factor of 4 - 8 is found. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Kafka, Gene [Illinois Inst. of Technology, Chicago, IL (United States)
2015-05-01
The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.
Quintom cosmology: Theoretical implications and observations
International Nuclear Information System (INIS)
Cai Yifu; Saridakis, Emmanuel N.; Setare, Mohammad R.; Xia Junqing
2010-01-01
We review the paradigm of quintom cosmology. This scenario is motivated by the observational indications that the equation-of-state of dark energy across the cosmological constant boundary is mildly favored, although the data are still far from being conclusive. As a theoretical setup we introduce a no-go theorem existing in quintom cosmology, and based on it we discuss the conditions for the equation-of-state of dark energy realizing the quintom scenario. The simplest quintom model can be achieved by introducing two scalar fields with one being quintessence and the other phantom. Based on the double-field quintom model we perform a detailed analysis of dark energy perturbations and we discuss their effects on current observations. This type of scenario usually suffers from a manifest problem due to the existence of a ghost degree-of-freedom, and thus we review various alternative realizations of the quintom paradigm. The developments in particle physics and string theory provide potential clues indicating that a quintom scenario may be obtained from scalar systems with higher derivative terms, as well as from non-scalar systems. Additionally, we construct a quintom realization in the framework of braneworld cosmology, where the cosmic acceleration and the phantom divide crossing result from the combined effects of the field evolution on the brane and the competition between four- and five-dimensional gravity. Finally, we study the outsets and fates of a universe in quintom cosmology. In a scenario with null energy condition violation one may obtain a bouncing solution at early times and therefore avoid the Big Bang singularity. Furthermore, if this occurs periodically, we obtain a realization of an oscillating universe. Lastly, we comment on several open issues in quintom cosmology and their connection to future investigations.
Lattices for the TRIUMF KAON factory
International Nuclear Information System (INIS)
Servranckx, R.V.; Craddock, M.K.
1989-09-01
Separated-function racetrack lattices have been developed for the KAON Factory accelerators that have more flexibility than the old circular lattices. The arcs of the large rings have a regular FODO structure with a superimposed six-fold symmetric modulation of the betafunction in order to raise γ t to infinity. Straight sections with zero dispersion are provided for rf cavities and fast injection and extraction, and with controlled dispersion for H - injection and slow extraction. For the small rings, sixfold symmetric circular lattices with high γ t are retained. In the Accumulator lattice, a straight section with double waist and controlled η function allows for H - injection and phase-space painting. The ion-optical properties of the lattices and the results from tracking studies are discussed
International Nuclear Information System (INIS)
Tkachev, Igor
1993-01-01
When the common ground between particle physics, astrophysics and cosmology started to become a developing area, the Institute for Nuclear Research (INR) of the Russian Academy of Sciences had the foresight in 1981 to institute the Baksan Schools on Particles and Cosmology. This now traditional event, held biannually in the Baksan Valley, has gone on to attract international participation. The site is close to the INR Baksan Neutrino Observatory with its underground and surface installations, including the SAGE gallium solar neutrino detector, the Underground Scintillation Telescope, and the 'Carpet' extensive air shower array. Participation is mainly from experimentalists working in non accelerator particle physics and particle astrophysics. The most recent School, held from April 21 to 28, began with an opening address by INR Director V. A. Matveev. J.Frieman reviewed standard big bang cosmology, emphasizing how the recent COBE results and the observations of large scale galaxy clustering fit into a standard cosmology framework. For inflationary cosmology, he showed how different models may be tested through their predictions for large-scale galactic structure and for cosmic microwave background anisotropy. A.Stebbins presented details of the large scale distribution of galaxies which, combined with velocity information and microwave background anisotropy data, provide strong constraints on theories of the origin of primordial inhomogeneities. Inflation requires, and theories of the large scale structure strongly favour the critical value for the cosmic mass density, while, as D.Seckel explained in his lecture on nucleosynthesis and abundances of the light elements, the baryon contribution to this density has to be tens of times smaller. A general review on the observational evidence for dark matter, dark matter particle candidates and the strategy of dark matter searches was given by I. Tkachev, who stressed the gravitational microlensing MACHO
f(R) gravity cosmology in scalar degree of freedom
International Nuclear Information System (INIS)
Goswami, Umananda Dev; Deka, Kabita
2014-01-01
The models of f(R) gravity belong to an important class of modified gravity models where the late time cosmic accelerated expansion is considered as the manifestation of the large scale modification of the force of gravity. f(R) gravity models can be expressed in terms of a scalar degree of freedom by explicit redefinition of model's variable. Here we report about the study of the features of cosmological parameters and hence the cosmological evolution using the scalar degree of freedom of the f(R) = ξR n gravity model in the Friedmann-Lemaître-Robertson-Walker (FLRW) background
International Nuclear Information System (INIS)
Katz, G.R.
1986-01-01
Part I of this thesis is a perturbative QCD calculation to two loops of the meson nonsinglet evolution potential in the Feynman gauge. The evolution potential describes the momentum dependence of the distribution amplitude. This amplitude is needed for the calculation to beyond leading order of exclusive amplitudes and form factors. Techniques are presented that greatly simplify the calculation. The results agree with an independent light-cone gauge calculation and disagree with predictions made using conformal symmetry. In Part II the author presents a Fourier acceleration method that is effective in accelerating the computation of the fermion propagator in lattice QCD. The conventional computation suffers from critical slowing down: the long distance structure converges much slower than the short distance structure. by evaluating the fermion propagator in momentum space using fast Fourier transforms, it is possible to make different length scales converge at a more equal rate. From numerical experiments made on a 8 4 lattice, the author obtained savings of a factor of 3 to 4 by using Fourier acceleration. He also discusses the important of gauge fixing when using Fourier acceleration
Photonic Crystal Laser-Driven Accelerator Structures
International Nuclear Information System (INIS)
Cowan, B
2004-01-01
The authors discuss simulated photonic crystal structure designs for laser-driven particle acceleration. They focus on three-dimensional planar structures based on the so-called ''woodpile'' lattice, demonstrating guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice. They introduce a candidate geometry and discuss the properties of the accelerating mode. They also discuss the linear beam dynamics in the structure present a novelmethod for focusing the beam. In addition they describe ongoing investigations of photonic crystal fiber-based structures
Future evolution in a backreaction model and the analogous scalar field cosmology
Energy Technology Data Exchange (ETDEWEB)
Ali, Amna; Majumdar, A.S., E-mail: amnaalig@gmail.com, E-mail: archan@bose.res.in [S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata 700106 (India)
2017-01-01
We investigate the future evolution of the universe using the Buchert framework for averaged backreaction in the context of a two-domain partition of the universe. We show that this approach allows for the possibility of the global acceleration vanishing at a finite future time, provided that none of the subdomains accelerate individually. The model at large scales is analogously described in terms of a homogeneous scalar field emerging with a potential that is fixed and free from phenomenological parametrization. The dynamics of this scalar field is explored in the analogous FLRW cosmology. We use observational data from Type Ia Supernovae, Baryon Acoustic Oscillations, and Cosmic Microwave Background to constrain the parameters of the model for a viable cosmology, providing the corresponding likelihood contours.
Probing dark energy with braneworld cosmology in the light of recent cosmological data
García-Aspeitia, Miguel A.; Magaña, Juan; Hernández-Almada, A.; Motta, V.
We investigate a brane model based on Randall-Sundrum scenarios with a generic dark energy component. The latter drives the accelerated expansion at late-times of the universe. In this scheme, extra terms are added into Einstein Field equations that are propagated to the Friedmann equations. To constrain the dark energy equation-of-state (EoS) and the brane tension we use observational data with different energy levels (Supernovae Type Ia, H(z), baryon acoustic oscillations, and cosmic microwave background radiation distance, and a joint analysis) in a background cosmology. Beside EoS being consistent with a cosmological constant at the 3σ confidence level for each dataset, the baryon acoustic oscillations probe favors an EoS consistent with a quintessence dark energy. Although we found different lower limit bounds on the brane tension for each dataset, being the most restricted for CMB, there is not enough evidence of modifications in the cosmological evolution of the universe by the existence of an extra dimension within observational uncertainties. Nevertheless, these new bounds are complementary to those obtained by other probes like table-top experiments, Big Bang Nucleosynthesis, and stellar dynamics. Our results show that a further test of the braneworld model with appropriate correction terms or a profound analysis with perturbations, may be needed to improve the constraints provided by the current data.
Cosmology with cosmic shear observations: a review.
Kilbinger, Martin
2015-07-01
Cosmic shear is the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Such images are coherently deformed by the tidal field of matter inhomogeneities along the line of sight. By measuring galaxy shape correlations, we can study the properties and evolution of structure on large scales as well as the geometry of the Universe. Thus, cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. We review here the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then we give an overview of weak-lensing measurements, and present the main observational cosmic-shear results since it was discovered 15 years ago, as well as the implications for cosmology. We then conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations.
Cosmological model with viscosity media (dark fluid) described by an effective equation of state
International Nuclear Information System (INIS)
Ren Jie; Meng Xinhe
2006-01-01
A generally parameterized equation of state (EOS) is investigated in the cosmological evolution with bulk viscosity media modelled as dark fluid, which can be regarded as a unification of dark energy and dark matter. Compared with the case of the perfect fluid, this EOS has possessed four additional parameters, which can be interpreted as the case of the non-perfect fluid with time-dependent viscosity or the model with variable cosmological constant. From this general EOS, a completely integrable dynamical equation to the scale factor is obtained with its solution explicitly given out. (i) In this parameterized model of cosmology, for a special choice of the parameters we can explain the late-time accelerating expansion universe in a new view. The early inflation, the median (relatively late time) deceleration, and the recently cosmic acceleration may be unified in a single equation. (ii) A generalized relation of the Hubble parameter scaling with the redshift is obtained for some cosmology interests. (iii) By using the SNe Ia data to fit the effective viscosity model we show that the case of matter described by p=0 plus with effective viscosity contributions can fit the observational gold data in an acceptable level
Present accelerated expansion of the universe from new Weyl-integrable gravity approach
Energy Technology Data Exchange (ETDEWEB)
Aguila, Ricardo; Madriz Aguilar, Jose Edgar; Moreno, Claudia [Universidad de Guadalajara (UdG), Departamento de Matematicas, Centro Universitario de Ciencias Exactas e ingenierias (CUCEI), Guadalajara, Jalisco (Mexico); Bellini, Mauricio [Universidad Nacional de Mar del Plata (UNMdP), Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), La Plata (Argentina)
2014-11-15
We investigate if a recently introduced formulation of general relativity on a Weyl-integrable geometry contains cosmological solutions exhibiting acceleration in the present cosmic expansion. We derive the general conditions to have acceleration in the expansion of the universe and obtain a particular solution for the Weyl scalar field describing a cosmological model for the present time in concordance with the data combination Planck + WP + BAO + SN. (orig.)
Dynamics of anisotropic power-law f(R) cosmology
International Nuclear Information System (INIS)
Shamir, M. F.
2016-01-01
Modified theories of gravity have attracted much attention of the researchers in the recent years. In particular, the f(R) theory has been investigated extensively due to important f(R) gravity models in cosmological contexts. This paper is devoted to exploring an anisotropic universe in metric f(R) gravity. A locally rotationally symmetric Bianchi type I cosmological model is considered for this purpose. Exact solutions of modified field equations are obtained for a well-known f(R) gravity model. The energy conditions are also discussed for the model under consideration. The viability of the model is investigated via graphical analysis using the present-day values of cosmological parameters. The model satisfies null energy, weak energy, and dominant energy conditions for a particular range of the anisotropy parameter while the strong energy condition is violated, which shows that the anisotropic universe in f(R) gravity supports the crucial issue of accelerated expansion of the universe.
Dynamics of anisotropic power-law f(R) cosmology
Energy Technology Data Exchange (ETDEWEB)
Shamir, M. F., E-mail: farasat.shamir@nu.edu.pk [National University of Computer and Emerging Sciences, Lahore Campus, Department of Sciences and Humanities (Pakistan)
2016-12-15
Modified theories of gravity have attracted much attention of the researchers in the recent years. In particular, the f(R) theory has been investigated extensively due to important f(R) gravity models in cosmological contexts. This paper is devoted to exploring an anisotropic universe in metric f(R) gravity. A locally rotationally symmetric Bianchi type I cosmological model is considered for this purpose. Exact solutions of modified field equations are obtained for a well-known f(R) gravity model. The energy conditions are also discussed for the model under consideration. The viability of the model is investigated via graphical analysis using the present-day values of cosmological parameters. The model satisfies null energy, weak energy, and dominant energy conditions for a particular range of the anisotropy parameter while the strong energy condition is violated, which shows that the anisotropic universe in f(R) gravity supports the crucial issue of accelerated expansion of the universe.
Cosmological stability bound in massive gravity and bigravity
International Nuclear Information System (INIS)
Fasiello, Matteo; Tolley, Andrew J.
2013-01-01
We give a simple derivation of a cosmological bound on the graviton mass for spatially flat FRW solutions in massive gravity with an FRW reference metric and for bigravity theories. This bound comes from the requirement that the kinetic term of the helicity zero mode of the graviton is positive definite. The bound is dependent only on the parameters in the massive gravity potential and the Hubble expansion rate for the two metrics. We derive the decoupling limit of bigravity and FRW massive gravity, and use this to give an independent derivation of the cosmological bound. We recover our previous results that the tension between satisfying the Friedmann equation and the cosmological bound is sufficient to rule out all observationally relevant FRW solutions for massive gravity with an FRW reference metric. In contrast, in bigravity this tension is resolved due to different nature of the Vainshtein mechanism. We find that in bigravity theories there exists an FRW solution with late-time self-acceleration for which the kinetic terms for the helicity-2, helicity-1 and helicity-0 are generically nonzero and positive making this a compelling candidate for a model of cosmic acceleration. We confirm that the generalized bound is saturated for the candidate partially massless (bi)gravity theories but the existence of helicity-1/helicity-0 interactions implies the absence of the conjectured partially massless symmetry for both massive gravity and bigravity
Jones, Bernard J. T.
2017-04-01
Preface; Notation and conventions; Part I. 100 Years of Cosmology: 1. Emerging cosmology; 2. The cosmic expansion; 3. The cosmic microwave background; 4. Recent cosmology; Part II. Newtonian Cosmology: 5. Newtonian cosmology; 6. Dark energy cosmological models; 7. The early universe; 8. The inhomogeneous universe; 9. The inflationary universe; Part III. Relativistic Cosmology: 10. Minkowski space; 11. The energy momentum tensor; 12. General relativity; 13. Space-time geometry and calculus; 14. The Einstein field equations; 15. Solutions of the Einstein equations; 16. The Robertson-Walker solution; 17. Congruences, curvature and Raychaudhuri; 18. Observing and measuring the universe; Part IV. The Physics of Matter and Radiation: 19. Physics of the CMB radiation; 20. Recombination of the primeval plasma; 21. CMB polarisation; 22. CMB anisotropy; Part V. Precision Tools for Precision Cosmology: 23. Likelihood; 24. Frequentist hypothesis testing; 25. Statistical inference: Bayesian; 26. CMB data processing; 27. Parametrising the universe; 28. Precision cosmology; 29. Epilogue; Appendix A. SI, CGS and Planck units; Appendix B. Magnitudes and distances; Appendix C. Representing vectors and tensors; Appendix D. The electromagnetic field; Appendix E. Statistical distributions; Appendix F. Functions on a sphere; Appendix G. Acknowledgements; References; Index.
Value of the Cosmological Constant in Emergent Quantum Gravity
Energy Technology Data Exchange (ETDEWEB)
Hogan, Craig [Fermilab
2018-03-30
It is suggested that the exact value of the cosmological constant could be derived from first principles, based on entanglement of the Standard Model field vacuum with emergent holographic quantum geometry. For the observed value of the cosmological constant, geometrical information is shown to agree closely with the spatial information density of the QCD vacuum, estimated in a free-field approximation. The comparison is motivated by a model of exotic rotational fluctuations in the inertial frame that can be precisely tested in laboratory experiments. Cosmic acceleration in this model is always positive, but fluctuates with characteristic coherence length $\\approx 100$km and bandwidth $\\approx 3000$ Hz.
Dynamical study of DBI-essence in loop quantum cosmology and brane world
International Nuclear Information System (INIS)
Bhadra, Jhumpa; Debnath, Ujjal
2012-01-01
We have studied homogeneous isotropic FRW model having dynamical dark energy DBI-essence with scalar field. Existence of cosmological scaling solutions restricts the Lagrangian of the scalar field φ. Choosing p=Xg(Xe λφ ), where X=-g μν ∂ μ φ∂ ν φ/2 with g any function of Xe λφ and defining some suitable transformations, we have constructed the dynamical system in different models of gravity: (i) Loop Quantum Cosmology (LQC), (ii) DGP brane world and (iii) RS II brane world. We have investigated stability of this dynamical system around the critical point for three gravity models and investigated the scalar-field dominated attractor solution in support of accelerated universe. The roles of the physical parameters have also been shown graphically during the accelerating phase of the universe. (orig.)
International Nuclear Information System (INIS)
Contopoulos, G.; Kotsakis, D.
1987-01-01
An extensive first part on a wealth of observational results relevant to cosmology lays the foundation for the second and central part of the book; the chapters on general relativity, the various cosmological theories, and the early universe. The authors present in a complete and almost non-mathematical way the ideas and theoretical concepts of modern cosmology including the exciting impact of high-energy particle physics, e.g. in the concept of the ''inflationary universe''. The final part addresses the deeper implications of cosmology, the arrow of time, the universality of physical laws, inflation and causality, and the anthropic principle
Particle theory and cosmology. Progress report, April 1, 1985-March 31, 1986
International Nuclear Information System (INIS)
Gaisser, T.K.; Steigman, G.
1985-01-01
A review of work in progress is given for models, using properties of particle interactions to extrapolate to energy realms which exceed accelerator limits. In addition models are discussed for cosmology and astrophysics. 28 refs.,
International Nuclear Information System (INIS)
Anchordoqui, Luis; Nawata, Satoshi; Goldberg, Haim; Nunez, Carlos
2007-01-01
We explore the cosmological content of Salam-Sezgin six-dimensional supergravity, and find a solution to the field equations in qualitative agreement with observation of distant supernovae, primordial nucleosynthesis abundances, and recent measurements of the cosmic microwave background. The carrier of the acceleration in the present de Sitter epoch is a quintessence field slowly rolling down its exponential potential. Intrinsic to this model is a second modulus which is automatically stabilized and acts as a source of cold dark matter, with a mass proportional to an exponential function of the quintessence field (hence realizing varying mass particle models within a string context). However, any attempt to saturate the present cold dark matter component in this manner leads to unacceptable deviations from cosmological data--a numerical study reveals that this source can account for up to about 7% of the total cold dark matter budget. We also show that (1) the model will support a de Sitter energy in agreement with observation at the expense of a miniscule breaking of supersymmetry in the compact space; (2) variations in the fine structure constant are controlled by the stabilized modulus and are negligible; (3) ''fifth'' forces are carried by the stabilized modulus and are short range; (4) the long time behavior of the model in four dimensions is that of a Robertson-Walker universe with a constant expansion rate (w=-1/3). Finally, we present a string theory background by lifting our six-dimensional cosmological solution to ten dimensions
the Universe About Cosmology Planck Satellite Launched Cosmology Videos Professor George Smoot's group conducts research on the early universe (cosmology) using the Cosmic Microwave Background radiation (CMB science goals regarding cosmology. George Smoot named Director of Korean Cosmology Institute The GRB
International Nuclear Information System (INIS)
Wainwright, J.
1990-01-01
The workshop on mathematical cosmology was devoted to four topics of current interest. This report contains a brief discussion of the historical background of each topic and a concise summary of the content of each talk. The topics were; the observational cosmology program, the cosmological perturbation program, isotropic singularities, and the evolution of Bianchi cosmologies. (author)
Phase portraits of general f(T) cosmology
Awad, A.; El Hanafy, W.; Nashed, G. G. L.; Saridakis, Emmanuel N.
2018-02-01
We use dynamical system methods to explore the general behaviour of f(T) cosmology. In contrast to the standard applications of dynamical analysis, we present a way to transform the equations into a one-dimensional autonomous system, taking advantage of the crucial property that the torsion scalar in flat FRW geometry is just a function of the Hubble function, thus the field equations include only up to first derivatives of it, and therefore in a general f(T) cosmological scenario every quantity is expressed only in terms of the Hubble function. The great advantage is that for one-dimensional systems it is easy to construct the phase space portraits, and thus extract information and explore in detail the features and possible behaviours of f(T) cosmology. We utilize the phase space portraits and we show that f(T) cosmology can describe the universe evolution in agreement with observations, namely starting from a Big Bang singularity, evolving into the subsequent thermal history and the matter domination, entering into a late-time accelerated expansion, and resulting to the de Sitter phase in the far future. Nevertheless, f(T) cosmology can present a rich class of more exotic behaviours, such as the cosmological bounce and turnaround, the phantom-divide crossing, the Big Brake and the Big Crunch, and it may exhibit various singularities, including the non-harmful ones of type II and type IV. We study the phase space of three specific viable f(T) models offering a complete picture. Moreover, we present a new model of f(T) gravity that can lead to a universe in agreement with observations, free of perturbative instabilities, and applying the Om(z) diagnostic test we confirm that it is in agreement with the combination of SNIa, BAO and CMB data at 1σ confidence level.
Zhang Yuan Zhong
2002-01-01
This book is one of a series in the areas of high-energy physics, cosmology and gravitation published by the Institute of Physics. It includes courses given at a doctoral school on 'Relativistic Cosmology: Theory and Observation' held in Spring 2000 at the Centre for Scientific Culture 'Alessandro Volta', Italy, sponsored by SIGRAV-Societa Italiana di Relativita e Gravitazione (Italian Society of Relativity and Gravitation) and the University of Insubria. This book collects 15 review reports given by a number of outstanding scientists. They touch upon the main aspects of modern cosmology from observational matters to theoretical models, such as cosmological models, the early universe, dark matter and dark energy, modern observational cosmology, cosmic microwave background, gravitational lensing, and numerical simulations in cosmology. In particular, the introduction to the basics of cosmology includes the basic equations, covariant and tetrad descriptions, Friedmann models, observation and horizons, etc. The ...
International Nuclear Information System (INIS)
Rosen, S.P.
1990-01-01
I review the intrinsic properties of neutrinos as deduced from cosmological, astrophysical, and laboratory experiments. Bounds on magnetic moments and theoretical models which yield large moments but small masses are briefly discussed. The MSW solution to the solar neutrino problem is reviewed in light of the existing data from the 37 Cl and Kamiokande II experiments. The combined data disfavor the adiabatic solution and tend to support either the large angle solution or the nonadiabatic one. In the former case the 71 Ga signal will be suppressed by the same factor as for 37 Cl, and in the latter case the suppression factor could be as large as 10 or more. 41 refs
Yu, H.; Wang, Z.; Zhang, C.; Chen, N.; Zhao, Y.; Sawchuk, A. P.; Dalsing, M. C.; Teague, S. D.; Cheng, Y.
2014-11-01
Existing research of patient-specific computational hemodynamics (PSCH) heavily relies on software for anatomical extraction of blood arteries. Data reconstruction and mesh generation have to be done using existing commercial software due to the gap between medical image processing and CFD, which increases computation burden and introduces inaccuracy during data transformation thus limits the medical applications of PSCH. We use lattice Boltzmann method (LBM) to solve the level-set equation over an Eulerian distance field and implicitly and dynamically segment the artery surfaces from radiological CT/MRI imaging data. The segments seamlessly feed to the LBM based CFD computation of PSCH thus explicit mesh construction and extra data management are avoided. The LBM is ideally suited for GPU (graphic processing unit)-based parallel computing. The parallel acceleration over GPU achieves excellent performance in PSCH computation. An application study will be presented which segments an aortic artery from a chest CT dataset and models PSCH of the segmented artery.
Darling, Jeremy
A new field of study, "real-time cosmology," is now possible. This involves observing a dynamic universe that can be seen to change over human timescales. Most cosmological observations are geometrical, using standard candles or rulers to measure the expansion history and curvature as light propagates through the universe. Real-time cosmological measurements are dynamical, revealing the changing geometry of the universe - thus often providing geometrical distances independent of the canonical cosmological distance ladder - and are typically orthogonal to customary cosmological tests. This field of inquiry is no longer far-fetched, and this proposal demonstrates using extant data that many types of measurement are now within a factor of a few of being detectable, but the theory will very soon lag the observational capabilities. The Gaia mission will provide astrometry and proper motions of roughly 100 microarcseconds per year for half a million quasars by the end of its 5-year mission, but the theory for how to employ these data for cosmological tests has not been established. This project will develop the theory, models, and methods needed to make optimal use of the Gaia extragalactic proper motion measurements and to make significant new cosmological tests, distance measurements, and mass measurements. Gaia data can provide rich cosmological tests that are nearly model-independent. This work will build the theoretical framework enabling Gaia to measure or constrain: (1) The real-time growth and recession of structures, providing mass and distance measurements, (2) Extragalactic parallax for a statistical sample and individual galaxies, thus providing geometric distances, (3) The primordial stochastic long-period gravitational wave background, which deflects quasar light in a quadrupolar proper motion pattern, and (4) Cosmic shear, rotation, bulk motion, and local voids that may manifest as an apparent acceleration attributed to dark energy. One can also test the
Exact solutions for scalar field cosmology in f(R) gravity
Maharaj, S. D.; Goswami, R.; Chervon, S. V.; Nikolaev, A. V.
2017-09-01
We study scalar field FLRW cosmology in the content of f(R) gravity. Our consideration is restricted to the spatially flat Friedmann universe. We derived the general evolution equations of the model, and showed that the scalar field equation is automatically satisfied for any form of the f(R) function. We also derived representations for kinetic and potential energies, as well as for the acceleration in terms of the Hubble parameter and the form of the f(R) function. Next we found the exact cosmological solutions in modified gravity without specifying the f(R) function. With negligible acceleration of the scalar curvature, we found that the de Sitter inflationary solution is always attained. Also we obtained new solutions with special restrictions on the integration constants. These solutions contain oscillating, accelerating, decelerating and even contracting universes. For further investigation, we selected special cases which can be applied with early or late inflation. We also found exact solutions for the general case for the model with negligible acceleration of the scalar curvature in terms of special Airy functions. Using initial conditions which represent the universe at the present epoch, we determined the constants of integration. This allows for the comparison of the scale factor in the new solutions with that for current stage of the universe evolution in the ΛCDM model.
f(T) teleparallel gravity and cosmology.
Cai, Yi-Fu; Capozziello, Salvatore; De Laurentis, Mariafelicia; Saridakis, Emmanuel N
2016-10-01
Over recent decades, the role of torsion in gravity has been extensively investigated along the main direction of bringing gravity closer to its gauge formulation and incorporating spin in a geometric description. Here we review various torsional constructions, from teleparallel, to Einstein-Cartan, and metric-affine gauge theories, resulting in extending torsional gravity in the paradigm of f (T) gravity, where f (T) is an arbitrary function of the torsion scalar. Based on this theory, we further review the corresponding cosmological and astrophysical applications. In particular, we study cosmological solutions arising from f (T) gravity, both at the background and perturbation levels, in different eras along the cosmic expansion. The f (T) gravity construction can provide a theoretical interpretation of the late-time universe acceleration, alternative to a cosmological constant, and it can easily accommodate with the regular thermal expanding history including the radiation and cold dark matter dominated phases. Furthermore, if one traces back to very early times, for a certain class of f (T) models, a sufficiently long period of inflation can be achieved and hence can be investigated by cosmic microwave background observations-or, alternatively, the Big Bang singularity can be avoided at even earlier moments due to the appearance of non-singular bounces. Various observational constraints, especially the bounds coming from the large-scale structure data in the case of f (T) cosmology, as well as the behavior of gravitational waves, are described in detail. Moreover, the spherically symmetric and black hole solutions of the theory are reviewed. Additionally, we discuss various extensions of the f (T) paradigm. Finally, we consider the relation with other modified gravitational theories, such as those based on curvature, like f (R) gravity, trying to illuminate the subject of which formulation, or combination of formulations, might be more suitable
Cosmological constraints on Brans-Dicke theory.
Avilez, A; Skordis, C
2014-07-04
We report strong cosmological constraints on the Brans-Dicke (BD) theory of gravity using cosmic microwave background data from Planck. We consider two types of models. First, the initial condition of the scalar field is fixed to give the same effective gravitational strength Geff today as the one measured on Earth, GN. In this case, the BD parameter ω is constrained to ω>692 at the 99% confidence level, an order of magnitude improvement over previous constraints. In the second type, the initial condition for the scalar is a free parameter leading to a somewhat stronger constraint of ω>890, while Geff is constrained to 0.981theory and are valid for any Horndeski theory, the most general second-order scalar-tensor theory, which approximates the BD theory on cosmological scales. In this sense, our constraints place strong limits on possible modifications of gravity that might explain cosmic acceleration.
Identifying and eliminating the problem with Einstein's cosmological constant
Myers, Zachary
2005-12-01
The cosmological constant, L, was first introduced into Einstein's field equations in the early 20 th century. It was introduced as a quantity of outward-pushing energy in space that would counteract the contracting force of gravity thereby keeping the universe in a balanced and static state. Einstein willingly removed it once the universe was observed to be dynamic rather than static. However, as the decades have gone by, L has maintained its supporters and has continually been reintroduced to solve problems in cosmology. Presently, there is good reason to believe that L or something like it is indeed present in our universe. In the 1960s, in an effort to provide a physical basis for L, particle physicists turned to quantum vacuum energy and have since estimated a value for L to be ~ 10 110 erg/cm 3 , which happens to be significantly greater than its observationally constrained value of ~ 10 10 erg/cm 3 . This discrepancy of 120 orders of magnitude has come to be known as the cosmological constant problem. Any effort to resolve the inconsistency must also account for the various observations we attribute to L, such as cosmic inflation and cosmic acceleration. To date, there are two basic approaches to resolving the cosmological constant problem that we may call the Identity approach and the Eliminativist approach. The Identity approach entails that vacuum energy is responsible for all the relevant observations and the problem is to be solved by some cancellation mechanism within the internal components of the vacuum. The Eliminativist approach explicitly rejects the reality and cosmological efficacy of vacuum energy, seeks alternative explanations for the observations and eliminates the cosmological constant problem by eliminating the cosmological constant. The benefit of having a crisis between these two views at this particular stage in cosmology's history is that they can be tested against each other in an experimental situation. Whatever the outcome of the
Dynamical study of DBI-essence in loop quantum cosmology and brane world
Energy Technology Data Exchange (ETDEWEB)
Bhadra, Jhumpa; Debnath, Ujjal [Bengal Engineering and Science University, Department of Mathematics, Howrah (India)
2012-08-15
We have studied homogeneous isotropic FRW model having dynamical dark energy DBI-essence with scalar field. Existence of cosmological scaling solutions restricts the Lagrangian of the scalar field {phi}. Choosing p=Xg(Xe{sup {lambda}{phi}}), where X=-g {sup {mu}{nu}}{partial_derivative}{sub {mu}}{phi}{partial_derivative}{sub {nu}}{phi}/2 with g any function of Xe{sup {lambda}{phi}} and defining some suitable transformations, we have constructed the dynamical system in different models of gravity: (i) Loop Quantum Cosmology (LQC), (ii) DGP brane world and (iii) RS II brane world. We have investigated stability of this dynamical system around the critical point for three gravity models and investigated the scalar-field dominated attractor solution in support of accelerated universe. The roles of the physical parameters have also been shown graphically during the accelerating phase of the universe. (orig.)
Supernovae, dark energy and the accelerating universe
Perlmutter, Saul
1999-01-01
Based on an analysis of 42 high-redshift supernovae discovered by the supernovae cosmology project, we have found evidence for a positive cosmological constant, Lambda, and hence an accelerating universe. In particular, the data are strongly inconsistent with a Lambda=0 flat cosmology, the simplest inflationary universe model. The size of our supernova sample allows us to perform a variety of statistical tests to check for possible systematic errors and biases. We will discuss results of these and other studies and the ongoing hunt for further loopholes to evade the apparent consequences of the measurements. We will present further work that begins to constrain the alternative physics theories of "dark energy" that have been proposed to explain these results. Finally, we propose a new concept for a definitive supernova measurement of the cosmological parameters.
Barnes, Luke A.; Elahi, Pascal J.; Salcido, Jaime; Bower, Richard G.; Lewis, Geraint F.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop
2018-04-01
Models of the very early universe, including inflationary models, are argued to produce varying universe domains with different values of fundamental constants and cosmic parameters. Using the cosmological hydrodynamical simulation code from the EAGLE collaboration, we investigate the effect of the cosmological constant on the formation of galaxies and stars. We simulate universes with values of the cosmological constant ranging from Λ = 0 to Λ0 × 300, where Λ0 is the value of the cosmological constant in our Universe. Because the global star formation rate in our Universe peaks at t = 3.5 Gyr, before the onset of accelerating expansion, increases in Λ of even an order of magnitude have only a small effect on the star formation history and efficiency of the universe. We use our simulations to predict the observed value of the cosmological constant, given a measure of the multiverse. Whether the cosmological constant is successfully predicted depends crucially on the measure. The impact of the cosmological constant on the formation of structure in the universe does not seem to be a sharp enough function of Λ to explain its observed value alone.
Constraining cosmological parameter with SN Ia
International Nuclear Information System (INIS)
Putri, A N Indra; Wulandari, H R Tri
2016-01-01
A type I supemovae (SN Ia) is an exploding white dwarf, whose mass exceeds Chandrasekar limit (1.44 solar mass). If a white dwarf is in a binary system, it may accrete matter from the companion, resulting in an excess mass that cannot be balanced by the pressure of degenerated electrons in the core. SNe Ia are highly luminous objects, that they are visible from very high distances. After some corrections (stretch (s), colour (c), K-corrections, etc.), the variations in the light curves of SNe Ia can be suppressed to be no more than 10%. Their high luminosity and almost uniform intrinsic brightness at the peak light, i.e. M B ∼ -19, make SNe Ia ideal standard candle. Because of their visibility from large distances, SNe Ia can be employed as a cosmological measuring tool. It was analysis of SNe Ia data that indicated for the first time, that the universe is not only expanding, but also accelerating. This work analyzed a compilation of SNe Ia data to determine several cosmological parameters (H 0 , Ω m , Ω a , and w ). It can be concluded from the analysis, that our universe is a flat, dark energy dominated universe, and that the cosmological constant A is a suitable candidate for dark energy. (paper)
Gauging the cosmic acceleration with recent type Ia supernovae data sets
Velten, Hermano; Gomes, Syrios; Busti, Vinicius C.
2018-04-01
We revisit a model-independent estimator for cosmic acceleration based on type Ia supernovae distance measurements. This approach does not rely on any specific theory for gravity, energy content, nor parametrization for the scale factor or deceleration parameter and is based on falsifying the null hypothesis that the Universe never expanded in an accelerated way. By generating mock catalogs of known cosmologies, we test the robustness of this estimator, establishing its limits of applicability. We detail the pros and cons of such an approach. For example, we find that there are specific counterexamples in which the estimator wrongly provides evidence against acceleration in accelerating cosmologies. The dependence of the estimator on the H0 value is also discussed. Finally, we update the evidence for acceleration using the recent UNION2.1 and Joint Light-Curve Analysis samples. Contrary to recent claims, available data strongly favor an accelerated expansion of the Universe in complete agreement with the standard Λ CDM model.
Brandenberger, Robert H.
2008-01-01
String gas cosmology is a string theory-based approach to early universe cosmology which is based on making use of robust features of string theory such as the existence of new states and new symmetries. A first goal of string gas cosmology is to understand how string theory can effect the earliest moments of cosmology before the effective field theory approach which underlies standard and inflationary cosmology becomes valid. String gas cosmology may also provide an alternative to the curren...
Evolution of the cosmological horizons in a concordance universe
Energy Technology Data Exchange (ETDEWEB)
Margalef-Bentabol, Berta; Cepa, Jordi [Departamento de Astrofísica, Universidad de la Laguna, E-38205 La Laguna, Tenerife (Spain); Margalef-Bentabol, Juan, E-mail: bmb@cca.iac.es, E-mail: juanmargalef@estumail.ucm.es, E-mail: jcn@iac.es [Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Madrid (Spain)
2012-12-01
The particle and event horizons are widely known and studied concepts, but the study of their properties, in particular their evolution, have only been done so far considering a single state equation in a decelerating universe. This paper is the first of two where we study this problem from a general point of view. Specifically, this paper is devoted to the study of the evolution of these cosmological horizons in an accelerated universe with two state equations, cosmological constant and dust. We have obtained simple expressions in terms of their respective recession velocities that generalize the previous results for one state equation only. With the equations of state considered, it is proved that both velocities remain always positive.
Cosmological model from the holographic equipartition law with a modified Renyi entropy
Energy Technology Data Exchange (ETDEWEB)
Komatsu, Nobuyoshi [Kanazawa University, Department of Mechanical Systems Engineering, Kanazawa, Ishikawa (Japan)
2017-04-15
Cosmological equations were recently derived by Padmanabhan from the expansion of cosmic space due to the difference between the degrees of freedom on the surface and in the bulk in a region of space. In this study, a modified Renyi entropy is applied to Padmanabhan's 'holographic equipartition law', by regarding the Bekenstein-Hawking entropy as a nonextensive Tsallis entropy and using a logarithmic formula of the original Renyi entropy. Consequently, the acceleration equation including an extra driving term (such as a time-varying cosmological term) can be derived in a homogeneous, isotropic, and spatially flat universe. When a specific condition is mathematically satisfied, the extra driving term is found to be constant-like as if it is a cosmological constant. Interestingly, the order of the constant-like term is naturally consistent with the order of the cosmological constant measured by observations, because the specific condition constrains the value of the constant-like term. (orig.)
Stellar black holes and the origin of cosmic acceleration
International Nuclear Information System (INIS)
Prescod-Weinstein, Chanda; Afshordi, Niayesh; Balogh, Michael L.
2009-01-01
The discovery of cosmic acceleration has presented a unique challenge for cosmologists. As observational cosmology forges ahead, theorists have struggled to make sense of a standard model that requires extreme fine-tuning. This challenge is known as the cosmological constant problem. The theory of gravitational aether is an alternative to general relativity that does not suffer from this fine-tuning problem, as it decouples the quantum field theory vacuum from geometry, while remaining consistent with other tests of gravity. In this paper, we study static black hole solutions in this theory and show that it manifests a UV-IR coupling: Aether couples the space-time metric close to the black hole horizon, to metric at infinity. We then show that using the trans-Planckian ansatz (as a quantum gravity effect) close to the black hole horizon, leads to an accelerating cosmological solution, far from the horizon. Interestingly, this acceleration matches current observations for stellar-mass black holes. Based on our current understanding of the black hole accretion history in the Universe, we then make a prediction for how the effective dark energy density should evolve with redshift, which can be tested with future dark energy probes.
Energy Technology Data Exchange (ETDEWEB)
Zhang Yuanzhong
2002-06-21
This book is one of a series in the areas of high-energy physics, cosmology and gravitation published by the Institute of Physics. It includes courses given at a doctoral school on 'Relativistic Cosmology: Theory and Observation' held in Spring 2000 at the Centre for Scientific Culture 'Alessandro Volta', Italy, sponsored by SIGRAV-Societa Italiana di Relativita e Gravitazione (Italian Society of Relativity and Gravitation) and the University of Insubria. This book collects 15 review reports given by a number of outstanding scientists. They touch upon the main aspects of modern cosmology from observational matters to theoretical models, such as cosmological models, the early universe, dark matter and dark energy, modern observational cosmology, cosmic microwave background, gravitational lensing, and numerical simulations in cosmology. In particular, the introduction to the basics of cosmology includes the basic equations, covariant and tetrad descriptions, Friedmann models, observation and horizons, etc. The chapters on the early universe involve inflationary theories, particle physics in the early universe, and the creation of matter in the universe. The chapters on dark matter (DM) deal with experimental evidence of DM, neutrino oscillations, DM candidates in supersymmetry models and supergravity, structure formation in the universe, dark-matter search with innovative techniques, and dark energy (cosmological constant), etc. The chapters about structure in the universe consist of the basis for structure formation, quantifying large-scale structure, cosmic background fluctuation, galaxy space distribution, and the clustering of galaxies. In the field of modern observational cosmology, galaxy surveys and cluster surveys are given. The chapter on gravitational lensing describes the lens basics and models, galactic microlensing and galaxy clusters as lenses. The last chapter, 'Numerical simulations in cosmology', deals with spatial and
2014 Accelerators meeting, Grenoble
International Nuclear Information System (INIS)
Lucotte, Arnaud; Lamy, Thierry; De Conto, Jean-Marie; Fontaine, Alain; Revol, Jean-Luc; Nadolski, Laurent S.; Kazamias, Sophie; Vretenar, Maurizio; Ferrando, Philippe; Laune, Bernard; Vedrine, Pierre
2014-10-01
The Accelerators meeting is organised every two years by the Accelerators division of the French Society of Physics (SFP). It brings together about 50 participants during a one-day meeting. The morning sessions are devoted to scientific presentations while the afternoon is dedicated to technical visits of facilities. This document brings together the available presentations (slides): 1 - Presentation of the Laboratory of subatomic physics and cosmology - LPSC-Grenoble (Lucotte, Arnaud; Lamy, Thierry); 2 - Presentation of the Accelerators division of the French Society of Physics (Fontaine, Alain; Revol, Jean-Luc); 3 - Presentation of Grenoble's master diplomas in Accelerator physics (Nadolski, Laurent S.); 4 - Presentation of Paris' master diplomas in big instruments (Kazamias, Sophie); 5 - Particle accelerators and European Union's projects (Vretenar, Maurizio); 6 - French research infrastructures (Ferrando, Philippe); 7 - Coordination of accelerators activity in France (Laune, Bernard; Vedrine, Pierre)
Theory Challenges of the Accelerating Universe
International Nuclear Information System (INIS)
Linder, Eric V.
2007-01-01
The accelerating expansion of the universe presents an exciting, fundamental challenge to the standard models of particle physics and cosmology. I highlight some of the outstanding challenges in both developing theoretical models and interpreting without bias the observational results from precision cosmology experiments in the next decade that will return data to help reveal the nature of the new physics. Examples given focus on distinguishing a new component of energy from a new law of gravity, and the effect of early dark energy on baryon acoustic oscillations
From Planck Data to Planck Era: Observational Tests of Holographic Cosmology.
Afshordi, Niayesh; Corianò, Claudio; Delle Rose, Luigi; Gould, Elizabeth; Skenderis, Kostas
2017-01-27
We test a class of holographic models for the very early Universe against cosmological observations and find that they are competitive to the standard cold dark matter model with a cosmological constant (ΛCDM) of cosmology. These models are based on three-dimensional perturbative superrenormalizable quantum field theory (QFT), and, while they predict a different power spectrum from the standard power law used in ΛCDM, they still provide an excellent fit to the data (within their regime of validity). By comparing the Bayesian evidence for the models, we find that ΛCDM does a better job globally, while the holographic models provide a (marginally) better fit to the data without very low multipoles (i.e., l≲30), where the QFT becomes nonperturbative. Observations can be used to exclude some QFT models, while we also find models satisfying all phenomenological constraints: The data rule out the dual theory being a Yang-Mills theory coupled to fermions only but allow for a Yang-Mills theory coupled to nonminimal scalars with quartic interactions. Lattice simulations of 3D QFTs can provide nonperturbative predictions for large-angle statistics of the cosmic microwave background and potentially explain its apparent anomalies.
Particle physics and inflationary cosmology
Linde, Andrei D
1990-01-01
This is the LaTeX version of my book "Particle Physics and Inflationary Cosmology'' (Harwood, Chur, Switzerland, 1990). I decided to put it to hep-th, to make it easily available. Many things happened during the 15 years since the time when it was written. In particular, we have learned a lot about the high temperature behavior in the electroweak theory and about baryogenesis. A discovery of the acceleration of the universe has changed the way we are thinking about the problem of the vacuum energy: Instead of trying to explain why it is zero, we are trying to understand why it is anomalously small. Recent cosmological observations have shown that the universe is flat, or almost exactly flat, and confirmed many other predictions of inflationary theory. Many new versions of this theory have been developed, including hybrid inflation and inflationary models based on string theory. There was a substantial progress in the theory of reheating of the universe after inflation, and in the theory of eternal inflation. ...
Dimensional cosmological principles
International Nuclear Information System (INIS)
Chi, L.K.
1985-01-01
The dimensional cosmological principles proposed by Wesson require that the density, pressure, and mass of cosmological models be functions of the dimensionless variables which are themselves combinations of the gravitational constant, the speed of light, and the spacetime coordinates. The space coordinate is not the comoving coordinate. In this paper, the dimensional cosmological principle and the dimensional perfect cosmological principle are reformulated by using the comoving coordinate. The dimensional perfect cosmological principle is further modified to allow the possibility that mass creation may occur. Self-similar spacetimes are found to be models obeying the new dimensional cosmological principle
Energy Technology Data Exchange (ETDEWEB)
Antipov, S. A.; Nagaitsev, S.; Valishev, A.
2017-04-01
Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R&D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually lead to a resonant behavior and a reduction of the dynamic aperture. One of the goals of the IOTA research program is to achieve a high betatron tune spread, while retaining a large dynamic aperture using conventional octupole magnets in a special but realistic accelerator configuration. In this report, we present results of computer simulations of an electron beam in the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring's octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam. The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant for the parameters and levels of tolerances set by the design of the ring. The described octupole insert could be beneficial for suppression of space-charge induced instabilities in high intensity machines.
Global structure of Deffayet (Dvali-Gabadadze-Porrati) cosmologies
International Nuclear Information System (INIS)
Lue, Arthur
2003-01-01
We detail the global structure of the five-dimensional bulk for the cosmological evolution of Dvali-Gabadadze-Porrati brane worlds. The picture articulated here provides a framework and intuition for understanding how metric perturbations leave (and possibly reenter) the brane universe. A bulk observer sees the brane world as a relativistically expanding bubble, viewed either from the interior (in the case of the Friedmann-Lemaitre-Robertson-Walker phase) or the exterior (the self-accelerating phase). Shortcuts through the bulk in the first phase can lead to an apparent brane causality violation and provide an opportunity for the evasion of the horizon problem found in conventional four-dimensional cosmologies. Features of the global geometry in the latter phase anticipate a depletion of power for linear metric perturbations on large scales
Lattice Boltzmann accelerated direct simulation Monte Carlo for dilute gas flow simulations.
Di Staso, G; Clercx, H J H; Succi, S; Toschi, F
2016-11-13
Hybrid particle-continuum computational frameworks permit the simulation of gas flows by locally adjusting the resolution to the degree of non-equilibrium displayed by the flow in different regions of space and time. In this work, we present a new scheme that couples the direct simulation Monte Carlo (DSMC) with the lattice Boltzmann (LB) method in the limit of isothermal flows. The former handles strong non-equilibrium effects, as they typically occur in the vicinity of solid boundaries, whereas the latter is in charge of the bulk flow, where non-equilibrium can be dealt with perturbatively, i.e. according to Navier-Stokes hydrodynamics. The proposed concurrent multiscale method is applied to the dilute gas Couette flow, showing major computational gains when compared with the full DSMC scenarios. In addition, it is shown that the coupling with LB in the bulk flow can speed up the DSMC treatment of the Knudsen layer with respect to the full DSMC case. In other words, LB acts as a DSMC accelerator.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).
Source-to-accelerator quadrupole matching section for a compact linear accelerator
Seidl, P. A.; Persaud, A.; Ghiorso, W.; Ji, Q.; Waldron, W. L.; Lal, A.; Vinayakumar, K. B.; Schenkel, T.
2018-05-01
Recently, we presented a new approach for a compact radio-frequency (RF) accelerator structure and demonstrated the functionality of the individual components: acceleration units and focusing elements. In this paper, we combine these units to form a working accelerator structure: a matching section between the ion source extraction grids and the RF-acceleration unit and electrostatic focusing quadrupoles between successive acceleration units. The matching section consists of six electrostatic quadrupoles (ESQs) fabricated using 3D-printing techniques. The matching section enables us to capture more beam current and to match the beam envelope to conditions for stable transport in an acceleration lattice. We present data from an integrated accelerator consisting of the source, matching section, and an ESQ doublet sandwiched between two RF-acceleration units.
Extended Josephson Relation and Abrikosov lattice deformation
International Nuclear Information System (INIS)
Matlock, Peter
2012-01-01
From the point of view of time-dependent Ginzburg Landau (TDGL) theory, a Josephson-like relation is derived for an Abrikosov vortex lattice accelerated and deformed by applied fields. Beginning with a review of the Josephson Relation derived from the two ingredients of a lattice-kinematics assumption in TDGL theory and gauge invariance, we extend the construction to accommodate a time-dependent applied magnetic field, a Floating-Kernel formulation of normal current, and finally lattice deformation due to the electric field and inertial effects of vortex-lattice motion. The resulting Josephson-like relation, which we call an Extended Josephson Relation, applies to a much wider set of experimental conditions than the original Josephson Relation, and is explicitly compatible with the considerations of TDGL theory.
Constrained multi-objective optimization of storage ring lattices
Husain, Riyasat; Ghodke, A. D.
2018-03-01
The storage ring lattice optimization is a class of constrained multi-objective optimization problem, where in addition to low beam emittance, a large dynamic aperture for good injection efficiency and improved beam lifetime are also desirable. The convergence and computation times are of great concern for the optimization algorithms, as various objectives are to be optimized and a number of accelerator parameters to be varied over a large span with several constraints. In this paper, a study of storage ring lattice optimization using differential evolution is presented. The optimization results are compared with two most widely used optimization techniques in accelerators-genetic algorithm and particle swarm optimization. It is found that the differential evolution produces a better Pareto optimal front in reasonable computation time between two conflicting objectives-beam emittance and dispersion function in the straight section. The differential evolution was used, extensively, for the optimization of linear and nonlinear lattices of Indus-2 for exploring various operational modes within the magnet power supply capabilities.
A review on the lattice design of large hadron colliders
International Nuclear Information System (INIS)
Lee, S.Y.
1987-01-01
The conceptual evolution of the accelerator lattice design is discussed. Indicated are aspects of IR design. We emphasize the cancellation of stop-band width in the cluster design. The case of symmetric vs antisymmetric design is also discussed. The SSC lattice is used as an example. 9 refs
Dynamics and phenomenology of higher order gravity cosmological models
Moldenhauer, Jacob Andrew
2010-10-01
I present here some new results about a systematic approach to higher-order gravity (HOG) cosmological models. The HOG models are derived from curvature invariants that are more general than the Einstein-Hilbert action. Some of the models exhibit late-time cosmic acceleration without the need for dark energy and fit some current observations. The open question is that there are an infinite number of invariants that one could select, and many of the published papers have stressed the need to find a systematic approach that will allow one to study methodically the various possibilities. We explore a new connection that we made between theorems from the theory of invariants in general relativity and these cosmological models. In summary, the theorems demonstrate that curvature invariants are not all independent from each other and that for a given Ricci Segre type and Petrov type (symmetry classification) of the space-time, there exists a complete minimal set of independent invariants (a basis) in terms of which all the other invariants can be expressed. As an immediate consequence of the proposed approach, the number of invariants to consider is dramatically reduced from infinity to four invariants in the worst case and to only two invariants in the cases of interest, including all Friedmann-Lemaitre-Robertson-Walker metrics. We derive models that pass stability and physical acceptability conditions. We derive dynamical equations and phase portrait analyses that show the promise of the systematic approach. We consider observational constraints from magnitude-redshift Supernovae Type Ia data, distance to the last scattering surface of the Cosmic Microwave Background radiation, and Baryon Acoustic Oscillations. We put observational constraints on general HOG models. We constrain different forms of the Gauss-Bonnet, f(G), modified gravity models with these observations. We show some of these models pass solar system tests. We seek to find models that pass physical and
Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S; Rideout, David; Meyer, David; Boguñá, Marián
2012-01-01
Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology.
A college course on relativity and cosmology
Cheng, Ta-Pei
2015-01-01
This advanced undergraduate text introduces Einstein's general theory of relativity. The topics covered include geometric formulation of special relativity, the principle of equivalence, Einstein's field equation and its spherical-symmetric solution, as well as cosmology. An emphasis is placed on physical examples and simple applications without the full tensor apparatus. It begins by examining the physics of the equivalence principle and looks at how it inspired Einstein's idea of curved spacetime as the gravitational field. At a more mathematically accessible level, it provides a metric description of a warped space, allowing the reader to study many interesting phenomena such as gravitational time dilation, GPS operation, light deflection, precession of Mercury's perihelion, and black holes. Numerous modern topics in cosmology are discussed from primordial inflation and cosmic microwave background to the dark energy that propels an accelerating universe. Building on Cheng's previous book, 'Relativity, Grav...
Unifying inflation with late-time acceleration by a BIonic system
Energy Technology Data Exchange (ETDEWEB)
Sepehri, Alireza, E-mail: alireza.sepehri@uk.ac.ir [Faculty of Physics, Shahid Bahonar University, P.O. Box 76175, Kerman (Iran, Islamic Republic of); Rahaman, Farook, E-mail: rahaman@iucaa.ernet.in [Department of Mathematics, Jadavpur University, Kolkata 700032, West Bengal (India); Setare, Mohammad Reza, E-mail: rezakord@ipm.ir [Department of Science, Campus of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Pradhan, Anirudh, E-mail: pradhan@iucaa.ernet.in [Department of Mathematics, Institute of Applied Sciences & Humanities, GLA University, Mathura-281 406, U.P. (India); Capozziello, Salvatore, E-mail: capozziello@na.infn.it [Dipartimento di Fisica, Universitá di Napoli “Federico II”, I-80126 Napoli (Italy); INFN Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Edificio G, I-80126 Napoli (Italy); Gran Sasso Science Institute (INFN), Viale F. Crispi, 7, I-67100 L' Aquila (Italy); Sardar, Iftikar Hossain, E-mail: iftikar.spm@gmail.com [Department of Mathematics, Jadavpur University, Kolkata 700032, West Bengal (India)
2015-07-30
We propose a cosmological model that unifies inflation, deceleration and acceleration phases of expansion history by a BIonic system. At the beginning, there are k black fundamental strings that transited to the BIon configuration at a given corresponding point. Here, two coupled universes, brane and antibrane, are created interacting each other through a wormhole and inflate. With decreasing temperature, the energy of this wormhole flows into the universe branes and leads to inflation. After a short time, the wormhole evaporates, the inflation ends and a deceleration epoch starts. By approaching the brane and antibrane universes together, a tachyon is born, grows and causes the creation of a new wormhole. At this time, the brane and antibrane universes result connected again and the late-time acceleration era of the universe begins. We compare our model with previous unified phantom models and observational data obtaining some cosmological parameters like temperature in terms of time. We also find that deceleration parameter is negative during inflation and late-time acceleration epochs, while it is positive during the deceleration era. This means that the model is consistent, in principle, with cosmological observations.
Unifying inflation with late-time acceleration by a BIonic system
Directory of Open Access Journals (Sweden)
Alireza Sepehri
2015-07-01
Full Text Available We propose a cosmological model that unifies inflation, deceleration and acceleration phases of expansion history by a BIonic system. At the beginning, there are k black fundamental strings that transited to the BIon configuration at a given corresponding point. Here, two coupled universes, brane and antibrane, are created interacting each other through a wormhole and inflate. With decreasing temperature, the energy of this wormhole flows into the universe branes and leads to inflation. After a short time, the wormhole evaporates, the inflation ends and a deceleration epoch starts. By approaching the brane and antibrane universes together, a tachyon is born, grows and causes the creation of a new wormhole. At this time, the brane and antibrane universes result connected again and the late-time acceleration era of the universe begins. We compare our model with previous unified phantom models and observational data obtaining some cosmological parameters like temperature in terms of time. We also find that deceleration parameter is negative during inflation and late-time acceleration epochs, while it is positive during the deceleration era. This means that the model is consistent, in principle, with cosmological observations.
Unifying inflation with late-time acceleration by a BIonic system
International Nuclear Information System (INIS)
Sepehri, Alireza; Rahaman, Farook; Setare, Mohammad Reza; Pradhan, Anirudh; Capozziello, Salvatore; Sardar, Iftikar Hossain
2015-01-01
We propose a cosmological model that unifies inflation, deceleration and acceleration phases of expansion history by a BIonic system. At the beginning, there are k black fundamental strings that transited to the BIon configuration at a given corresponding point. Here, two coupled universes, brane and antibrane, are created interacting each other through a wormhole and inflate. With decreasing temperature, the energy of this wormhole flows into the universe branes and leads to inflation. After a short time, the wormhole evaporates, the inflation ends and a deceleration epoch starts. By approaching the brane and antibrane universes together, a tachyon is born, grows and causes the creation of a new wormhole. At this time, the brane and antibrane universes result connected again and the late-time acceleration era of the universe begins. We compare our model with previous unified phantom models and observational data obtaining some cosmological parameters like temperature in terms of time. We also find that deceleration parameter is negative during inflation and late-time acceleration epochs, while it is positive during the deceleration era. This means that the model is consistent, in principle, with cosmological observations
Religion, theology and cosmology
Directory of Open Access Journals (Sweden)
John T. Fitzgerald
2013-10-01
Full Text Available Cosmology is one of the predominant research areas of the contemporary world. Advances in modern cosmology have prompted renewed interest in the intersections between religion, theology and cosmology. This article, which is intended as a brief introduction to the series of studies on theological cosmology in this journal, identifies three general areas of theological interest stemming from the modern scientific study of cosmology: contemporary theology and ethics; cosmology and world religions; and ancient cosmologies. These intersections raise important questions about the relationship of religion and cosmology, which has recently been addressed by William Scott Green and is the focus of the final portion of the article.
Narlikar, Jayant Vishnu
2002-01-01
The third edition of this successful textbook is fully updated and includes important recent developments in cosmology. It begins with an introduction to cosmology and general relativity, and goes on to cover the mathematical models of standard cosmology. The physical aspects of cosmology, including primordial nucleosynthesis, the astroparticle physics of inflation, and the current ideas on structure formation are discussed. Alternative models of cosmology are reviewed, including the model of Quasi-Steady State Cosmology, which has recently been proposed as an alternative to Big Bang Cosmology.
Cosmology of modified Gauss-Bonnet gravity
International Nuclear Information System (INIS)
Li Baojiu; Barrow, John D.; Mota, David F.
2007-01-01
We consider the cosmology where some function f(G) of the Gauss-Bonnet term G is added to the gravitational action to account for the late-time accelerating expansion of the universe. The covariant and gauge invariant perturbation equations are derived with a method which could also be applied to general f(R,R ab R ab ,R abcd R abcd ) gravitational theories. It is pointed out that, despite their fourth-order character, such f(G) gravity models generally cannot reproduce arbitrary background cosmic evolutions; for example, the standard ΛCDM paradigm with Ω DE =0.76 cannot be realized in f(G) gravity theories unless f is a true cosmological constant because it imposes exclusionary constraints on the form of f(G). We analyze the perturbation equations and find that, as in the f(R) model, the stability of early-time perturbation growth puts some constraints on the functional form of f(G), in this case ∂ 2 f/∂G 2 <0. Furthermore, the stability of small-scale perturbations also requires that f not deviate significantly from a constant. These analyses are illustrated by numerically propagating the perturbation equations with a specific model reproducing a representative ΛCDM cosmic history. Our results show how the f(G) models are highly constrained by cosmological data
The Future of Theoretical Physics and Cosmology
Gibbons, G. W.; Shellard, E. P. S.; Rankin, S. J.
2009-08-01
Preface; List of contributors; 1. Introduction; Part I. Popular Symposium: 2. Our complex cosmos and its future Martin J. Rees; 3. Theories of everything and Hawking's wave function of the Universe James B. Hartle; 4. The problem of space-time singularities: implications for quantum gravity? Roger Penrose; 5. Warping spacetime Kip Thorne; 6. 60 years in a nutshell Stephen W. Hawking; Part II. Spacetime Singularities: 7. Cosmological perturbations and singularities George F. R. Ellis; 8. The quantum physics of chronology protection Matt Visser; 9. Energy dominance and the Hawking-Ellis vacuum conservation theorem Brandon Carter; 10. On the instability of extra space dimensions Roger Penrose; Part III. Black Holes: 11. Black hole uniqueness and the inner horizon stability problem Werner Israel; 12. Black holes in the real universe and their prospects as probes of relativistic gravity Martin J. Rees; 13. Primordial black holes Bernard Carr; 14. Black hole pair creation Simon F. Ross; 15. Black holes as accelerators Steven Giddings; Part IV. Hawking Radiation: 16. Black holes and string theory Malcolm Perry; 17. M theory and black hole quantum mechanics Joe Polchinski; 18. Playing with black strings Gary Horowitz; 19. Twenty years of debate with Stephen Leonard Susskind; Part V. Quantum Gravity: 20. Euclidean quantum gravity: the view from 2002 Gary Gibbons; 21. Zeta functions, anomalies and stable branes Ian Moss; 22. Some reflections on the status of conventional quantum theory when applied to quantum gravity Chris Isham; 23. Quantum geometry and its ramifications Abhay Ashtekar; 24. Topology change in quantum gravity Fay Dowker; Part VI. M Theory and Beyond: 25. The past and future of string theory Edward Witten; 26. String theory David Gross; 27. A brief description of string theory Michael Green; 28. The story of M Paul Townsend; 29. Gauged supergravity and holographic field theory Nick Warner; 30. 57 varieties in a NUTshell Chris Pope; Part VII. de Sitter Space
GPU accelerated study of heat transfer and fluid flow by lattice Boltzmann method on CUDA
Ren, Qinlong
Lattice Boltzmann method (LBM) has been developed as a powerful numerical approach to simulate the complex fluid flow and heat transfer phenomena during the past two decades. As a mesoscale method based on the kinetic theory, LBM has several advantages compared with traditional numerical methods such as physical representation of microscopic interactions, dealing with complex geometries and highly parallel nature. Lattice Boltzmann method has been applied to solve various fluid behaviors and heat transfer process like conjugate heat transfer, magnetic and electric field, diffusion and mixing process, chemical reactions, multiphase flow, phase change process, non-isothermal flow in porous medium, microfluidics, fluid-structure interactions in biological system and so on. In addition, as a non-body-conformal grid method, the immersed boundary method (IBM) could be applied to handle the complex or moving geometries in the domain. The immersed boundary method could be coupled with lattice Boltzmann method to study the heat transfer and fluid flow problems. Heat transfer and fluid flow are solved on Euler nodes by LBM while the complex solid geometries are captured by Lagrangian nodes using immersed boundary method. Parallel computing has been a popular topic for many decades to accelerate the computational speed in engineering and scientific fields. Today, almost all the laptop and desktop have central processing units (CPUs) with multiple cores which could be used for parallel computing. However, the cost of CPUs with hundreds of cores is still high which limits its capability of high performance computing on personal computer. Graphic processing units (GPU) is originally used for the computer video cards have been emerged as the most powerful high-performance workstation in recent years. Unlike the CPUs, the cost of GPU with thousands of cores is cheap. For example, the GPU (GeForce GTX TITAN) which is used in the current work has 2688 cores and the price is only 1
Racetrack lattices for the TRIUMF KAON factory
International Nuclear Information System (INIS)
Servranckx, R.V.; Craddock, M.K.
1989-05-01
Separated-function racetrack lattices have been developed for the KAON Factory accelerators that have more flexibility than the old circular lattices. The arcs of the large rings have a regular FODO structure with a superimposed six-fold symmetric modulation of the betafunction in order to raise γ t to infinity. In the small rings, γ t is kept high enough by choosing a sufficiently large phase advance in the arcs. Straight sections with zero dispersion are provided for rf cavities and fast injection and extraction, and with controlled dispersion for H - injection and slow extraction. The ion-optical properties of the lattices and the results from tracking studies are discussed
Cosmology and modifications of gravity at large distances
International Nuclear Information System (INIS)
Ziour, R.
2010-01-01
In the framework of General Relativity, the observed current acceleration of the expansion of the Universe requires the presence of a Dark Energy component, whose nature is not well understood. In order to explain the acceleration of the Universe without introducing such a tantalizing source of energy, other gravitation theories have been designed. This thesis is devoted to the study of some of these modified gravity theories, as well as to the observation methods that could constrain them. The first part of this thesis presents a review of modified gravity theories and their motivations. The second part is devoted to the study of the massive gravity theories and of the so-called Vainshtein's mechanism, which allows some of the solutions of Massive Gravity to strongly differ from General Relativity at cosmological scales while satisfying the experimental constraints inside the solar system. For the first time, the validity of the Vainshtein's mechanism is demonstrated, through the study of specific spherically symmetric solutions. The third part deals with scalar modification of gravity; a new model of this sort is presented, inspired by the Vainshtein's mechanism in Massive Gravity. Finally, the fourth part discusses local, astrophysical and cosmological observations that might constrain modified gravity theories. (author)
International Nuclear Information System (INIS)
Landsberg, P.T.; Evans, D.A.
1977-01-01
The subject is dealt with in chapters, entitled: cosmology -some fundamentals; Newtonian gravitation - some fundamentals; the cosmological differential equation - the particle model and the continuum model; some simple Friedmann models; the classification of the Friedmann models; the steady-state model; universe with pressure; optical effects of the expansion according to various theories of light; optical observations and cosmological models. (U.K.)
Cosmology with exponential potentials
International Nuclear Information System (INIS)
Kehagias, Alex; Kofinas, Georgios
2004-01-01
We examine in the context of general relativity the dynamics of a spatially flat Robertson-Walker universe filled with a classical minimally coupled scalar field φ of exponential potential V(φ) ∼ exp(-μφ) plus pressureless baryonic matter. This system is reduced to a first-order ordinary differential equation for Ω φ (w φ ) or q(w φ ), providing direct evidence on the acceleration/deceleration properties of the system. As a consequence, for positive potentials, passage into acceleration not at late times is generically a feature of the system for any value of μ, even when the late-times attractors are decelerating. Furthermore, the structure formation bound, together with the constraints Ω m0 ∼ 0.25 - 0.3, -1 ≤ w φ0 ≤ -0.6, provides, independently of initial conditions and other parameters, the necessary condition 0 N , while the less conservative constraint -1 ≤ w φ ≤ -0.93 gives 0 N . Special solutions are found to possess intervals of acceleration. For the almost cosmological constant case w φ ∼ -1, the general relation Ω φ (w φ ) is obtained. The generic (nonlinearized) late-times solution of the system in the plane (w φ , Ω φ ) or (w φ , q) is also derived
Antipov, S. A.; Nagaitsev, S.; Valishev, A.
2017-04-01
Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R&D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually has both beneficial (improved Landau damping) and harmful properties, such as a resonant behavior and a reduction of the dynamic aperture. One of the research goals at the IOTA ring is to achieve a large betatron tune spread, while retaining a large dynamic aperture, using conventional octupole magnets in a special but realistic accelerator configuration. The configuration, although not integrable by design, approximates an autonomous 2D Hamiltonian system. In this paper, we present results of computer simulations of an electron beam in the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring's octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam. The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant for the parameters and levels of tolerances set by the design of the ring. The described octupole insert could be beneficial for enhancing Landau damping in high intensity machines.
Stability analysis in tachyonic potential chameleon cosmology
Energy Technology Data Exchange (ETDEWEB)
Farajollahi, H.; Salehi, A.; Tayebi, F.; Ravanpak, A., E-mail: hosseinf@guilan.ac.ir, E-mail: a.salehi@guilan.ac.ir, E-mail: ftayebi@guilan.ac.ir, E-mail: aravanpak@guilan.ac.ir [Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of)
2011-05-01
We study general properties of attractors for tachyonic potential chameleon scalar-field model which possess cosmological scaling solutions. An analytic formulation is given to obtain fixed points with a discussion on their stability. The model predicts a dynamical equation of state parameter with phantom crossing behavior for an accelerating universe. We constrain the parameters of the model by best fitting with the recent data-sets from supernovae and simulated data points for redshift drift experiment generated by Monte Carlo simulations.
Stability analysis in tachyonic potential chameleon cosmology
International Nuclear Information System (INIS)
Farajollahi, H.; Salehi, A.; Tayebi, F.; Ravanpak, A.
2011-01-01
We study general properties of attractors for tachyonic potential chameleon scalar-field model which possess cosmological scaling solutions. An analytic formulation is given to obtain fixed points with a discussion on their stability. The model predicts a dynamical equation of state parameter with phantom crossing behavior for an accelerating universe. We constrain the parameters of the model by best fitting with the recent data-sets from supernovae and simulated data points for redshift drift experiment generated by Monte Carlo simulations
Introduction to Microwave Linear [Accelerators
Energy Technology Data Exchange (ETDEWEB)
Whittum, David H
1999-01-04
The elements of microwave linear accelerators are introduced starting with the principles of acceleration and accelerating structures. Considerations for microwave structure modeling and design are developed from an elementary point of view. Basic elements of microwave electronics are described for application to the accelerator circuit and instrumentation. Concepts of beam physics are explored together with examples of common beamline instruments. Charged particle optics and lattice diagnostics are introduced. Considerations for fixed-target and colliding-beam experimentation are summarized.
Unified cosmology with scalar-tensor theory of gravity
Energy Technology Data Exchange (ETDEWEB)
Tajahmad, Behzad [Faculty of Physics, University of Tabriz, Tabriz (Iran, Islamic Republic of); Sanyal, Abhik Kumar [Jangipur College, Department of Physics, Murshidabad (India)
2017-04-15
Unlike the Noether symmetry, a metric independent general conserved current exists for non-minimally coupled scalar-tensor theory of gravity if the trace of the energy-momentum tensor vanishes. Thus, in the context of cosmology, a symmetry exists both in the early vacuum and radiation dominated era. For slow roll, symmetry is sacrificed, but at the end of early inflation, such a symmetry leads to a Friedmann-like radiation era. Late-time cosmic acceleration in the matter dominated era is realized in the absence of symmetry, in view of the same decayed and redshifted scalar field. Thus, unification of early inflation with late-time cosmic acceleration with a single scalar field may be realized. (orig.)
Unified cosmology with scalar-tensor theory of gravity
International Nuclear Information System (INIS)
Tajahmad, Behzad; Sanyal, Abhik Kumar
2017-01-01
Unlike the Noether symmetry, a metric independent general conserved current exists for non-minimally coupled scalar-tensor theory of gravity if the trace of the energy-momentum tensor vanishes. Thus, in the context of cosmology, a symmetry exists both in the early vacuum and radiation dominated era. For slow roll, symmetry is sacrificed, but at the end of early inflation, such a symmetry leads to a Friedmann-like radiation era. Late-time cosmic acceleration in the matter dominated era is realized in the absence of symmetry, in view of the same decayed and redshifted scalar field. Thus, unification of early inflation with late-time cosmic acceleration with a single scalar field may be realized. (orig.)
Models of f(R) cosmic acceleration that evade solar system tests
International Nuclear Information System (INIS)
Hu, Wayne; Sawicki, Ignacy
2007-01-01
We study a class of metric-variation f(R) models that accelerates the expansion without a cosmological constant and satisfies both cosmological and solar-system tests in the small-field limit of the parameter space. Solar-system tests alone place only weak bounds on these models, since the additional scalar degree of freedom is locked to the high-curvature general-relativistic prediction across more than 25 orders of magnitude in density, out through the solar corona. This agreement requires that the galactic halo be of sufficient extent to maintain the galaxy at high curvature in the presence of the low-curvature cosmological background. If the galactic halo and local environment in f(R) models do not have substantially deeper potentials than expected in ΛCDM, then cosmological field amplitudes |f R | > or approx.10 -6 will cause the galactic interior to evolve to low curvature during the acceleration epoch. Viability of large-deviation models therefore rests on the structure and evolution of the galactic halo, requiring cosmological simulations of f(R) models, and not directly on solar-system tests. Even small deviations that conservatively satisfy both galactic and solar-system constraints can still be tested by future, percent-level measurements of the linear power spectrum, while they remain undetectable to cosmological-distance measures. Although we illustrate these effects in a specific class of models, the requirements on f(R) are phrased in a nearly model-independent manner
GLAD: a generic lattice debugger
International Nuclear Information System (INIS)
Lee, M.J.
1992-01-01
Today, numerous simulation and analysis codes exist for the design, commission, and operation of accelerator beam lines. There is a need to develop a common user interface and database link to run these codes interactively. This paper will describe a proposed system, GLAD (Generic LAttice Debugger), to fulfill this need. Specifically, GLAD can be used to find errors in beam lines during commissioning, control beam parameters during operation, and design beam line optics and error correction systems for the next generation of linear accelerators and storage rings. (author)
Roos, Matts
2015-01-01
The Fourth Edition of Introduction to Cosmology provides a concise, authoritative study of cosmology at an introductory level. Starting from elementary principles and the early history of cosmology, the text carefully guides the student on to curved spacetimes, special and general relativity, gravitational lensing, the thermal history of the Universe, and cosmological models, including extended gravity models, black holes and Hawking's recent conjectures on the not-so-black holes.
On the cosmological gravitational waves and cosmological distances
Belinski, V. A.; Vereshchagin, G. V.
2018-03-01
We show that solitonic cosmological gravitational waves propagated through the Friedmann universe and generated by the inhomogeneities of the gravitational field near the Big Bang can be responsible for increase of cosmological distances.
Aspects of string phenomenology in particle physics and cosmology
Directory of Open Access Journals (Sweden)
Antoniadis I.
2017-01-01
Full Text Available I discuss possible connections between several scales in particle physics and cosmology, such the the electroweak, inflation, dark energy and Planck scales. In particular, I discuss the physics of extra dimensions and low scale gravity that are motivated from the problem of mass hierarchy, providing an alternative to low energy supersymmetry. I describe their realization in type I string theory with D-branes and I present the main experimental predictions in particle accelerators and their implications in cosmology. I also show that low-mass-scale string compactifications, with a generic D-brane configuration that realizes the Standard Model by open strings, can explain the relatively broad peak in the diphoton invariant mass spectrum at 750 GeV recently reported by the ATLAS and CMS collaborations.
International Nuclear Information System (INIS)
Jones, D.B.
1986-01-01
EPRI-LATTICE is a multigroup neutron transport computer code for the analysis of light water reactor fuel assemblies. It can solve the two-dimensional neutron transport problem by two distinct methods: (a) the method of collision probabilities and (b) the method of discrete ordinates. The code was developed by S. Levy Inc. as an account of work sponsored by the Electric Power Research Institute (EPRI). The collision probabilities calculation in EPRI-LATTICE (L-CP) is based on the same methodology that exists in the lattice codes CPM-2 and EPRI-CPM. Certain extensions have been made to the data representations of the CPM programs to improve the overall accuracy of the calculation. The important extensions include unique representations of scattering matrices and fission fractions (chi) for each composition in the problem. A new capability specifically developed for the EPRI-LATTICE code is a discrete ordinates methodology. The discrete ordinates calculation in EPRI-LATTICE (L-SN) is based on the discrete S/sub n/ methodology that exists in the TWODANT program. In contrast to TWODANT, which utilizes synthetic diffusion acceleration and supports multiple geometries, only the transport equations are solved by L-SN and only the data representations for the two-dimensional geometry are treated
Cosmological constraints on Lorentz violating dark energy
Audren, B; Lesgourgues, J; Sibiryakov, S
2013-01-01
The role of Lorentz invariance as a fundamental symmetry of nature has been lately reconsidered in different approaches to quantum gravity. It is thus natural to study whether other puzzles of physics may be solved within these proposals. This may be the case for the cosmological constant problem. Indeed, it has been shown that breaking Lorentz invariance provides Lagrangians that can drive the current acceleration of the universe without experiencing large corrections from ultraviolet physics. In this work, we focus on the simplest model of this type, called ThetaCDM, and study its cosmological implications in detail. At the background level, this model cannot be distinguished from LambdaCDM. The differences appear at the level of perturbations. We show that in ThetaCDM, the spectrum of CMB anisotropies and matter fluctuations may be affected by a rescaling of the gravitational constant in the Poisson equation, by the presence of extra contributions to the anisotropic stress, and finally by the existence of ...
International Nuclear Information System (INIS)
Wesson, P.S.
1979-01-01
The Cosmological Principle states: the universe looks the same to all observers regardless of where they are located. To most astronomers today the Cosmological Principle means the universe looks the same to all observers because density of the galaxies is the same in all places. A new Cosmological Principle is proposed. It is called the Dimensional Cosmological Principle. It uses the properties of matter in the universe: density (rho), pressure (p), and mass (m) within some region of space of length (l). The laws of physics require incorporation of constants for gravity (G) and the speed of light (C). After combining the six parameters into dimensionless numbers, the best choices are: 8πGl 2 rho/c 2 , 8πGl 2 rho/c 4 , and 2 Gm/c 2 l (the Schwarzchild factor). The Dimensional Cosmological Principal came about because old ideas conflicted with the rapidly-growing body of observational evidence indicating that galaxies in the universe have a clumpy rather than uniform distribution
Cosmology and particle physics
International Nuclear Information System (INIS)
Turner, M.S.
1985-01-01
The author reviews the standard cosmology, focusing on primordial nucleosynthesis, and discusses how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is examined in which the B, C, CP violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and the present baryon-to-baryon ratio. Monoposes, cosmology and astrophysics are reviewed. The author also discusses supersymmetry/supergravity and cosmology, superstrings and cosmology in extra dimensions, and axions, astrophics, and cosmology
Vittorio, Nicola
2018-01-01
Modern cosmology has changed significantly over the years, from the discovery to the precision measurement era. The data now available provide a wealth of information, mostly consistent with a model where dark matter and dark energy are in a rough proportion of 3:7. The time is right for a fresh new textbook which captures the state-of-the art in cosmology. Written by one of the world's leading cosmologists, this brand new, thoroughly class-tested textbook provides graduate and undergraduate students with coverage of the very latest developments and experimental results in the field. Prof. Nicola Vittorio shows what is meant by precision cosmology, from both theoretical and observational perspectives.
Testing the cosmological constant as a candidate for dark energy
International Nuclear Information System (INIS)
Kratochvil, Jan; Linde, Andrei; Linder, Eric V.; Shmakova, Marina
2004-01-01
It may be difficult to single out the best model of dark energy on the basis of the existing and planned cosmological observations, because many different models can lead to similar observational consequences. However, each particular model can be studied and either found consistent with observations or ruled out. In this paper, we concentrate on the possibility to test and rule out the simplest and by far the most popular of the models of dark energy, the theory described by general relativity with positive vacuum energy (the cosmological constant). We evaluate the conditions under which this model could be ruled out by the future observations made by the Supernova/Acceleration Probe SNAP (both for supernovae and weak lensing) and by the Planck Surveyor cosmic microwave background satellite
Chamcham, Khalil; Silk, Joseph; Barrow, John D.; Saunders, Simon
2017-04-01
Part I. Issues in the Philosophy of Cosmology: 1. Cosmology, cosmologia and the testing of cosmological theories George F. R. Ellis; 2. Black holes, cosmology and the passage of time: three problems at the limits of science Bernard Carr; 3. Moving boundaries? - comments on the relationship between philosophy and cosmology Claus Beisbart; 4. On the question why there exists something rather than nothing Roderich Tumulka; Part II. Structures in the Universe and the Structure of Modern Cosmology: 5. Some generalities about generality John D. Barrow; 6. Emergent structures of effective field theories Jean-Philippe Uzan; 7. Cosmological structure formation Joel R. Primack; 8. Formation of galaxies Joseph Silk; Part III. Foundations of Cosmology: Gravity and the Quantum: 9. The observer strikes back James Hartle and Thomas Hertog; 10. Testing inflation Chris Smeenk; 11. Why Boltzmann brains do not fluctuate into existence from the de Sitter vacuum Kimberly K. Boddy, Sean M. Carroll and Jason Pollack; 12. Holographic inflation revised Tom Banks; 13. Progress and gravity: overcoming divisions between general relativity and particle physics and between physics and HPS J. Brian Pitts; Part IV. Quantum Foundations and Quantum Gravity: 14. Is time's arrow perspectival? Carlo Rovelli; 15. Relational quantum cosmology Francesca Vidotto; 16. Cosmological ontology and epistemology Don N. Page; 17. Quantum origin of cosmological structure and dynamical reduction theories Daniel Sudarsky; 18. Towards a novel approach to semi-classical gravity Ward Struyve; Part V. Methodological and Philosophical Issues: 19. Limits of time in cosmology Svend E. Rugh and Henrik Zinkernagel; 20. Self-locating priors and cosmological measures Cian Dorr and Frank Arntzenius; 21. On probability and cosmology: inference beyond data? Martin Sahlén; 22. Testing the multiverse: Bayes, fine-tuning and typicality Luke A. Barnes; 23. A new perspective on Einstein's philosophy of cosmology Cormac O
Searching for a Cosmological Preferred Direction with 147 Rotationally Supported Galaxies
Zhou, Yong; Zhao, Zhi-Chao; Chang, Zhe
2017-10-01
It is well known that the Milgrom’s modified Newtonian dynamics (MOND) explains well the mass discrepancy problem in galaxy rotation curves. The MOND predicts a universal acceleration scale below which the Newtonian dynamics is still invalid. We get the universal acceleration scale of 1.02 × 10-10 m s-2 by using the Spitzer Photometry and Accurate Rotation Curves (SPARC) data set. Milgrom suggested that the acceleration scale may be a fingerprint of cosmology on local dynamics and related to the Hubble constant g † ˜ cH 0. In this paper, we use the hemisphere comparison method with the SPARC data set to investigate possible spatial anisotropy on the acceleration scale. It is found that the hemisphere of the maximum acceleration scale is in the direction (l,b)=(175\\buildrel{\\circ}\\over{.} {5}-{10^\\circ }+{6^\\circ }, -6\\buildrel{\\circ}\\over{.} {5}-{3^\\circ }+{9^\\circ }) with g †,max = 1.10 × 10-10 m s-2, while the hemisphere of the minimum acceleration scale is in the opposite direction (l,b)=(355\\buildrel{\\circ}\\over{.} {5}-{10^\\circ }+{6^\\circ }, 6\\buildrel{\\circ}\\over{.} {5}-{9^\\circ }+{3^\\circ }) with g †,min = 0.76 × 10-10 m s-2. The level of anisotropy reaches up to 0.37 ± 0.04. Robust tests show that such an anisotropy cannot be reproduced by a statistically isotropic data set. We also show that the spatial anisotropy on the acceleration scale is less correlated with the non-uniform distribution of the SPARC data points in the sky. In addition, we confirm that the anisotropy of the acceleration scale does not depend significantly on other physical parameters of the SPARC galaxies. It is interesting to note that the maximum anisotropy direction found in this paper is close with other cosmological preferred directions, particularly the direction of the “Australia dipole” for the fine structure constant.
Directory of Open Access Journals (Sweden)
Lorenzo Iorio
2014-01-01
Full Text Available By phenomenologically assuming a slow temporal variation of the percent acceleration rate S̈S -1 of the cosmic scale factor S(t, it is shown that the orbit of a local binary undergoes a secular expansion. To first order in the power expansion of S̈S -1 around the present epoch t0, a non-vanishing shift per orbit (Δr of the two-body relative distance r occurs for eccentric trajectories. A general relativistic expression, which turns out to be cubic in the Hubble parameter H0 at the present epoch, is explicitly calculated for it in the case of matter-dominated epochs with Dark Energy. For a highly eccentric Oort comet orbit with period Pb ≈ 31 Myr, the general relativistic distance shift per orbit turns out to be of the order of (Δr ≈ 70 km. For the Large Magellanic Cloud, assumed on a bound elliptic orbit around the Milky Way, the shift per orbit is of the order of (Δr ≈ 2–4 pc. Our result has a general validity since it holds in any cosmological model admitting the Hubble law and a slowly varying S̈S-1(t. More generally, it is valid for an arbitrary Hooke-like extra-acceleration whose “elastic” parameter κ is slowly time-dependent, irrespectively of the physical mechanism which may lead to it. The coefficient κ1 of the first-order term of the power expansion of κ(t can be preliminarily constrained in a model-independent way down to a κ1 ≲ 2 x 10-13 year-3 level from latest Solar System’s planetary observations. The radial velocities of the double lined spectroscopic binary ALPHA Cen AB yield κ1 ≲ 10-8 year-3.
Time variation of the cosmological redshift in Dicke-Brans-Jordan cosmologies
International Nuclear Information System (INIS)
Ruediger, R.
1982-01-01
In this paper the time variation z of the cosmological redshift z is discussed for Dicke-Brans-Jordan (DBJ) cosmologies. We determine the general z-z relation in the functional form zH -1 0 = F(z; q 0 , sigma 0 ,xi 0 , ω) for small values of z, where all the symbols have their conventional meanings. For certain combinations of cosmological parameters, which are within the present observational limitations, the DBJ terms in the function F can dominate the general relativistic terms. Furthermore, zH -1 0 can be positive in DBJ cosmologies in contrast to general relativistic cosmologies with q 0 >0
CAS CERN Accelerator School second advanced accelerator physics course
International Nuclear Information System (INIS)
Turner, S.
1989-01-01
The advanced course on general accelerator physics given in West Berlin closely followed that organised by the CERN Accelerator School at Oxford in September 1985 and whose proceedings were published as CERN Yellow Report 87-03 (1987). However, certain subjects were treated in a different way, improved or extended, while some new ones were introduced and it is all of these which are included in the present proceedings. The lectures include particle-photon interactions, high-brilliance lattices and single/multiple Touschek effect, while the seminars are on the major accelerators presently under construction or proposed for the near future, applications of synchrotron radiation, free-electron lasers, cosmic accelerators and crystal beams. Also included are errata, and addenda to some of the lectures, of CERN 87-03. (orig.)
On the stability of the cosmological solutions in f(R, G) gravity
International Nuclear Information System (INIS)
De la Cruz-Dombriz, Álvaro; Sáez-Gómez, Diego
2012-01-01
Modified gravity is one of the most promising candidates for explaining the current accelerating expansion of the Universe, and even its unification with the inflationary epoch. Nevertheless, the wide range of models capable of explaining the phenomena of dark energy imposes that current research focuses on a more precise study of the possible effects of modified gravity on both cosmological and local levels. In this paper, we focus on the analysis of a type of modified gravity, the so-called f(R, G) gravity, and we perform a deep analysis on the stability of important cosmological solutions. This not only can help to constrain the form of the gravitational action, but also facilitate a better understanding of the behavior of the perturbations in this class of higher order theories of gravity, which will lead to a more precise analysis of the full spectrum of cosmological perturbations in future. (paper)
Backreaction mechanism in multifluid and extended cosmologies
Energy Technology Data Exchange (ETDEWEB)
Jiménez, Jose Beltrán [Centre for Cosmology, Particle Physics and Phenomenology, Institute of Mathematics and Physics, Louvain University, 2 Chemin du Cyclotron, 1348 Louvain-la-Neuve (Belgium); Cruz-Dombriz, Álvaro de la [Departamento de Física Teórica I, Ciudad Universitaria, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Dunsby, Peter K.S.; Sáez-Gómez, Diego, E-mail: jose.beltran@uclouvain.be, E-mail: dombriz@fis.ucm.es, E-mail: peter.dunsby@uct.ac.za, E-mail: diego.saezgomez@uct.ac.za [Astrophysics, Cosmology and Gravity Centre (ACGC), University of Cape Town, Rondebosch 7701, Cape Town (South Africa)
2014-05-01
One possible explanation for the present observed acceleration of the Universe is the breakdown of homogeneity and isotropy due to the formation of non-linear structures. How inhomogeneities affect the averaged cosmological expansion rate and lead to late-time acceleration is generally considered to be due to some backreaction mechanism. In the recent literature most averaging calculations have focused their attention on General Relativity together with pressure-free matter. In this communication we focus our attention on more general scenarios, including imperfect fluids as well as alternative theories of gravity, and apply an averaging procedure to them in order to determine possible backreaction effects. For illustrative purposes, we present our results for dark energy models, quintessence and Brans-Dicke theories. We also provide a discussion about the limitations of frame choices in the averaging procedure.
International Nuclear Information System (INIS)
Khalatnikov, I.M.; Belinskij, V.A.
1984-01-01
Application of the qualitative theory of dynamic systems to analysis of homogeneous cosmological models is described. Together with the well-known cases, requiring ideal liquid, the properties of cosmological evolution of matter with dissipative processes due to viscosity are considered. New cosmological effects occur, when viscosity terms being one and the same order with the rest terms in the equations of gravitation or even exceeding them. In these cases the description of the dissipative process by means of only two viscosity coefficients (volume and shift) may become inapplicable because all the rest decomposition terms of dissipative addition to the energy-momentum in velocity gradient can be large application of equations with hydrodynamic viscosty should be considered as a model of dissipative effects in cosmology
Detecting dark energy in orbit: The cosmological chameleon
International Nuclear Information System (INIS)
Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine; Khoury, Justin; Weltman, Amanda
2004-01-01
We show that the chameleon scalar field can drive the current phase of cosmic acceleration for a large class of scalar potentials that are also consistent with local tests of gravity. These provide explicit realizations of a quintessence model where the quintessence scalar field couples directly to baryons and dark matter with gravitational strength. We analyze the cosmological evolution of the chameleon field and show the existence of an attractor solution with the chameleon following the minimum of its effective potential. For a wide range of initial conditions, spanning many orders of magnitude in initial chameleon energy density, the attractor is reached before nucleosynthesis. Surprisingly, the range of allowed initial conditions leading to a successful cosmology is wider than in normal quintessence. We discuss applications to the cyclic model of the universe and show how the chameleon mechanism weakens some of the constraints on cyclic potentials
Forecast and analysis of the cosmological redshift drift
Energy Technology Data Exchange (ETDEWEB)
Lazkoz, Ruth; Leanizbarrutia, Iker [University of the Basque Country UPV/EHU, Department of Theoretical Physics, Bilbao (Spain); Salzano, Vincenzo [University of Szczecin, Institute of Physics, Sczcecin (Poland)
2018-01-15
The cosmological redshift drift could lead to the next step in high-precision cosmic geometric observations, becoming a direct and irrefutable test for cosmic acceleration. In order to test the viability and possible properties of this effect, also called Sandage-Loeb (SL) test, we generate a model-independent mock data set in order to compare its constraining power with that of the future mock data sets of Type Ia Supernovae (SNe) and Baryon Acoustic Oscillations (BAO). The performance of those data sets is analyzed by testing several cosmological models with the Markov chain Monte Carlo (MCMC) method, both independently as well as combining all data sets. Final results show that, in general, SL data sets allow for remarkable constraints on the matter density parameter today Ω{sub m} on every tested model, showing also a great complementarity with SNe and BAO data regarding dark energy parameters. (orig.)
Forecast and analysis of the cosmological redshift drift.
Lazkoz, Ruth; Leanizbarrutia, Iker; Salzano, Vincenzo
2018-01-01
The cosmological redshift drift could lead to the next step in high-precision cosmic geometric observations, becoming a direct and irrefutable test for cosmic acceleration. In order to test the viability and possible properties of this effect, also called Sandage-Loeb (SL) test, we generate a model-independent mock data set in order to compare its constraining power with that of the future mock data sets of Type Ia Supernovae (SNe) and Baryon Acoustic Oscillations (BAO). The performance of those data sets is analyzed by testing several cosmological models with the Markov chain Monte Carlo (MCMC) method, both independently as well as combining all data sets. Final results show that, in general, SL data sets allow for remarkable constraints on the matter density parameter today [Formula: see text] on every tested model, showing also a great complementarity with SNe and BAO data regarding dark energy parameters.
Roos, Matts
2003-01-01
The Third Edition of the hugely successful Introduction to Cosmology provides a concise, authoritative study of cosmology at an introductory level. Starting from elementary principles and the history of cosmology, the text carefully guides the student on to curved spacetimes, general relativity, black holes, cosmological models, particles and symmetries, and phase transitions. Extensively revised, this latest edition includes broader and updated coverage of distance measures, gravitational lensing and waves, dark energy and quintessence, the thermal history of the Universe, inflation,
International Nuclear Information System (INIS)
Antipov, S.A.; Nagaitsev, S.; Valishev, A.
2017-01-01
Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R and D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually has both beneficial (improved Landau damping) and harmful properties, such as a resonant behavior and a reduction of the dynamic aperture. One of the research goals at the IOTA ring is to achieve a large betatron tune spread, while retaining a large dynamic aperture, using conventional octupole magnets in a special but realistic accelerator configuration. The configuration, although not integrable by design, approximates an autonomous 2D Hamiltonian system. In this paper, we present results of computer simulations of an electron beam in the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring's octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam. The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant for the parameters and levels of tolerances set by the design of the ring. The described octupole insert could be beneficial for enhancing Landau damping in high intensity machines.
Rajantie, Arttu
2018-01-01
The discovery of the Higgs boson in 2012 and other results from the Large Hadron Collider have confirmed the standard model of particle physics as the correct theory of elementary particles and their interactions up to energies of several TeV. Remarkably, the theory may even remain valid all the way to the Planck scale of quantum gravity, and therefore it provides a solid theoretical basis for describing the early Universe. Furthermore, the Higgs field itself has unique properties that may have allowed it to play a central role in the evolution of the Universe, from inflation to cosmological phase transitions and the origin of both baryonic and dark matter, and possibly to determine its ultimate fate through the electroweak vacuum instability. These connections between particle physics and cosmology have given rise to a new and growing field of Higgs cosmology, which promises to shed new light on some of the most puzzling questions about the Universe as new data from particle physics experiments and cosmological observations become available. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.
. ______________________________________________________________________________________ Nobelist George Smoot to Direct Korean Cosmology Institute Nobel Laureate George Smoot has been appointed director of a new cosmology institute in South Korea that will work closely with the year-old Berkeley the Early Universe (IEU) at EWHA Womans University in Seoul, Korea will provide cosmology education
Intermediate Inflation or Late Time Acceleration?
International Nuclear Information System (INIS)
Sanyal, A.K.
2008-01-01
The expansion rate of intermediate inflation lies between the exponential and power law expansion but corresponding accelerated expansion does not start at the onset of cosmological evolution. Present study of intermediate inflation reveals that it admits scaling solution and has got a natural exit form it at a later epoch of cosmic evolution, leading to late time acceleration. The corresponding scalar field responsible for such feature is also found to behave as a tracker field for gravity with canonical kinetic term.
MAPA: Implementation of the Standard Interchange Format and use for analyzing lattices
Shasharina, Svetlana G.; Cary, John R.
1997-05-01
MAPA (Modular Accelerator Physics Analysis) is an object oriented application for accelerator design and analysis with a Motif based graphical user interface. MAPA has been ported to AIX, Linux, HPUX, Solaris, and IRIX. MAPA provides an intuitive environment for accelerator study and design. The user can bring up windows for fully nonlinear analysis of accelerator lattices in any number of dimensions. The current graphical analysis methods of Lifetime plots and Surfaces of Section have been used to analyze the improved lattice designs of Wan, Cary, and Shasharina (this conference). MAPA can now read and write Standard Interchange Format (MAD) accelerator description files and it has a general graphical user interface for adding, changing, and deleting elements. MAPA's consistency checks prevent deletion of used elements and prevent creation of recursive beam lines. Plans include development of a richer set of modeling tools and the ability to invoke existing modeling codes through the MAPA interface. MAPA will be demonstrated on a Pentium 150 laptop running Linux.
Extending cosmology: the metric approach
Mendoza, S.
2012-01-01
Comment: 2012, Extending Cosmology: The Metric Approach, Open Questions in Cosmology; Review article for an Intech "Open questions in cosmology" book chapter (19 pages, 3 figures). Available from: http://www.intechopen.com/books/open-questions-in-cosmology/extending-cosmology-the-metric-approach
Cosmological viability conditions for f(T) dark energy models
Energy Technology Data Exchange (ETDEWEB)
Setare, M.R.; Mohammadipour, N., E-mail: rezakord@ipm.ir, E-mail: N.Mohammadipour@uok.ac.ir [Department of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)
2012-11-01
Recently f(T) modified teleparallel gravity where T is the torsion scalar has been proposed as the natural gravitational alternative for dark energy. We perform a detailed dynamical analysis of these models and find conditions for the cosmological viability of f(T) dark energy models as geometrical constraints on the derivatives of these models. We show that in the phase space exists two cosmologically viable trajectory which (i) The universe would start from an unstable radiation point, then pass a saddle standard matter point which is followed by accelerated expansion de sitter point. (ii) The universe starts from a saddle radiation epoch, then falls onto the stable matter era and the system can not evolve to the dark energy dominated epoch. Finally, for a number of f(T) dark energy models were proposed in the more literature, the viability conditions are investigated.
Acceleration from Modified Gravity: Lessons from Worked Examples
International Nuclear Information System (INIS)
Hu, Wayne
2009-01-01
I examine how two specific examples of modified gravity explanations of cosmic acceleration help us understand some general problems confronting cosmological tests of gravity: how do we distinguish modified gravity from dark energy if they can be made formally equivalent? how do we parameterize deviations according to physical principles with sufficient generality, yet focus cosmological tests into areas that complement our existing knowledge of gravity? how do we treat the dynamics of modifications which necessarily involve non-linearities that preclude superposition of forces? The modified action f(R) and DGP braneworld models provide insight on these question as fully-worked examples whose expansion history, linear perturbation theory, and most recently, non-linear N-body and force-modification field dynamics of cosmological simulations are available for study.
Lattice Design for a High-Power Infrared FEL
Douglas, D. R.
1997-05-01
A 1 kW infrared FEL, funded by the U.S. Navy, is under construction at Jefferson Lab. This device will be driven by a compact, 42 MeV, 5 mA, energy-recovering, CW SRF-based linear accelerator to produce light in the 3-6.6 μm range. The machine concept comprises a 10 MeV injector, a linac based on a single high-gradient Jefferson Lab accelerator cryomodule, a wiggler and optical cavity, and an energy-recovery recirculation arc. Energy recovery limits cost and technical risk by reducing the RF power requirements in the driver accelerator. Following deceleration to 10 MeV, the beam is dumped. Stringent phase space requirements at the wiggler, low beam energy, and high beam current subject the accelerator lattice to numerous constraints. Principal considerations include: transport and delivery to the FEL of a high-quality, high-current beam; the impact of coherent synchrotron radiation (CSR) during beam recirculation transport; beam optics aberration control, to provide low-loss energy-recovery transport of a 5% relative momentum spread, high-current beam; attention to possible beam breakup (BBU) instabilities in the recirculating accelerator; and longitudinal phase space management during beam transport, to optimize RF drive system control during energy recovery and FEL operation. The presentation will address the design process and design solution for an accelerator transport lattice that meets the requirements imposed by these physical phenomena and operational necessities.
International Nuclear Information System (INIS)
Nojiri, S; Odintsov, S D; Oikonomou, V K
2016-01-01
We combine the unimodular gravity and mimetic gravity theories into a unified theoretical framework, which is proposed to provide a suggestive proposal for a framework that may assist in the discussion and search for a solution to the cosmological constant problem and the dark matter issue. After providing the formulation of the unimodular mimetic gravity and investigating all the new features that the vacuum unimodular gravity implies, by using the underlying reconstruction method, we realize some well known cosmological evolutions, with some of these being exotic for the ordinary Einstein–Hilbert gravity. Specifically we provide the vacuum unimodular mimetic gravity description of the de Sitter cosmology and of the perfect fluid with constant equation of state cosmology. As we demonstrate, these cosmologies can be realized by vacuum mimetic unimodular gravity, without the existence of any matter fluid source. Moreover, we investigate how cosmologically viable cosmologies, which are compatible with the recent observational data, can be realized by the vacuum unimodular mimetic gravity. Since in some cases, a graceful exit from inflation problem might exist, we provide a qualitative description of the mechanism that can potentially generate the graceful exit from inflation in these theories, by searching for the unstable de Sitter solutions in the context of unimodular mimetic theories of gravity. (paper)
International Nuclear Information System (INIS)
Weinberg, S.
1989-01-01
Cosmological constant problem is discussed. History of the problem is briefly considered. Five different approaches to solution of the problem are described: supersymmetry, supergravity, superstring; anthropic approach; mechamism of lagrangian alignment; modification of gravitation theory and quantum cosmology. It is noted that approach, based on quantum cosmology is the most promising one
CERN. Geneva. Audiovisual Unit
2001-01-01
Cosmology and particle physics have enjoyed a useful relationship over the entire histories of both subjects. Today, ideas and techniques in cosmology are frequently used to elucidate and constrain theories of elementary particles. These lectures give an elementary overview of the essential elements of cosmology, which is necessary to understand this relationship.
CERN. Geneva
1999-01-01
Cosmology and particle physics have enjoyed a useful relationship over the entire histories of both subjects. Today, ideas and techniques in cosmology are frequently used to elucidate and constrain theories of elementary particles. These lectures give an elementary overview of the essential elements of cosmology, which is necessary to understand this relationship.
Hidden past of dark energy cosmological models
International Nuclear Information System (INIS)
Fernandez-Jambrina, L.
2007-01-01
In this Letter we analyse the possibility of having homogeneous isotropic cosmological models with observers reaching t=∞ in finite proper time. It is shown that just observationally-suggested dark energy models with w element of (-5/3,-1) show this feature and that they are endowed with an exotic curvature singularity. Furthermore, it is shown that non-accelerated observers in these models may experience a duration of the universe as short as desired by increasing their linear momentum. A subdivision of phantom models in two families according to this behavior is suggested
Benoit-Lévy, Aurélien; Chardin, Gabriel
2014-05-01
We study an unconventional cosmology, in which we investigate the consequences that antigravity would pose to cosmology. We present the main characteristics of the Dirac-Milne Universe, a cosmological model where antimatter has a negative active gravitational mass. In this non-standard Universe, separate domains of matter and antimatter coexist at our epoch without annihilation, separated by a gravitationally induced depletion zone. We show that this cosmology does not require a priori the Dark Matter and Dark Energy components of the standard model of cosmology. Additionally, inflation becomes an unnecessary ingredient. Investigating this model, we show that the classical cosmological tests such as primordial nucleosynthesis, Type Ia supernovæ and Cosmic Microwave Background are surprisingly concordant.
International Nuclear Information System (INIS)
Rami, El-Nabulsi Ahmad
2009-01-01
Higher dimensional cosmological implications of a decay law for the cosmological constant term are analyzed. Three independent cosmological models are explored mainly: 1) In the first model, the effective cosmological constant was chosen to decay with times like Δ effective = Ca -2 + D(b/a I ) 2 where a I is an arbitrary scale factor characterizing the isotropic epoch which proceeds the graceful exit period. Further, the extra-dimensional scale factor decays classically like b(t) approx. a x (t), x is a real negative number. 2) In the second model, we adopt in addition to Δ effective = Ca -2 + D(b/a I ) 2 the phenomenological law b(t) = a(t)exp( -Qt) as we expect that at the origin of time, there is no distinction between the visible and extra dimensions; Q is a real number. 3) In the third model, we study a Δ - decaying extra-dimensional cosmology with a static traversable wormhole in which the four-dimensional Friedmann-Robertson-Walker spacetime is subject to the conventional perfect fluid while the extra-dimensional part is endowed by an exotic fluid violating strong energy condition and where the cosmological constant in (3+n+1) is assumed to decays like Δ(a) = 3Ca -2 . The three models are discussed and explored in some details where many interesting points are revealed. (author)
BOOK REVIEW: Observational Cosmology Observational Cosmology
Howell, Dale Andrew
2013-04-01
Observational Cosmology by Stephen Serjeant fills a niche that was underserved in the textbook market: an up-to-date, thorough cosmology textbook focused on observations, aimed at advanced undergraduates. Not everything about the book is perfect - some subjects get short shrift, in some cases jargon dominates, and there are too few exercises. Still, on the whole, the book is a welcome addition. For decades, the classic textbooks of cosmology have focused on theory. But for every Sunyaev-Zel'dovich effect there is a Butcher-Oemler effect; there are as many cosmological phenomena established by observations, and only explained later by theory, as there were predicted by theory and confirmed by observations. In fact, in the last decade, there has been an explosion of new cosmological findings driven by observations. Some are so new that you won't find them mentioned in books just a few years old. So it is not just refreshing to see a book that reflects the new realities of cosmology, it is vital, if students are to truly stay up on a field that has widened in scope considerably. Observational Cosmology is filled with full-color images, and graphs from the latest experiments. How exciting it is that we live in an era where satellites and large experiments have gathered so much data to reveal astounding details about the origin of the universe and its evolution. To have all the latest data gathered together and explained in one book will be a revelation to students. In fact, at times it was to me. I've picked up modern cosmological knowledge through a patchwork of reading papers, going to colloquia, and serving on grant and telescope allocation panels. To go back and see them explained from square one, and summarized succinctly, filled in quite a few gaps in my own knowledge and corrected a few misconceptions I'd acquired along the way. To make room for all these graphs and observational details, a few things had to be left out. For one, there are few derivations
Algebraic collapsing acceleration of the characteristics method with anisotropic scattering
International Nuclear Information System (INIS)
Le Tellier, R.; Hebert, A.; Roy, R.
2004-01-01
In this paper, the characteristics solvers implemented in the lattice code Dragon are extended to allow a complete anisotropic treatment of the collision operator. An efficient synthetic acceleration method, called Algebraic Collapsing Acceleration (ACA), is presented. Tests show that this method can substantially speed up the convergence of scattering source iterations. The effect of boundary conditions, either specular or white reflections, on anisotropic scattering lattice-cell problems is also considered. (author)
Self-accelerating universe in scalar-tensor theories after GW170817
Crisostomi, Marco; Koyama, Kazuya
2018-04-01
The recent simultaneous detection of gravitational waves and a gamma-ray burst from a neutron star merger significantly shrank the space of viable scalar-tensor theories by demanding that the speed of gravity is equal to that of light. The survived theories belong to the class of degenerate higher order scalar-tensor theories. We study whether these theories are suitable as dark energy candidates. We find scaling solutions in the matter dominated universe that lead to de Sitter solutions at late times without the cosmological constant, realizing self-acceleration. We evaluate quasistatic perturbations around self-accelerating solutions and show that the stringent constraints coming from astrophysical objects and gravitational waves can be satisfied, leaving interesting possibilities to test these theories by cosmological observations.
Simulations of structure formation in interacting dark energy cosmologies
International Nuclear Information System (INIS)
Baldi, M.
2009-01-01
The evidence in favor of a dark energy component dominating the Universe, and driving its presently accelerated expansion, has progressively grown during the last decade of cosmological observations. If this dark energy is given by a dynamic scalar field, it may also have a direct interaction with other matter fields in the Universe, in particular with cold dark matter. Such interaction would imprint new features on the cosmological background evolution as well as on the growth of cosmic structure, like an additional long-range fifth-force between massive particles, or a variation in time of the dark matter particle mass. We present here the implementation of these new physical effects in the N-body code GADGET-2, and we discuss the outcomes of a series of high-resolution N-body simulations for a selected family of interacting dark energy models. We interestingly find, in contrast with previous claims, that the inner overdensity of dark matter halos decreases in these models with respect to ΛCDM, and consistently halo concentrations show a progressive reduction for increasing couplings. Furthermore, the coupling induces a bias in the overdensities of cold dark matter and baryons that determines a decrease of the halo baryon fraction below its cosmological value. These results go in the direction of alleviating tensions between astrophysical observations and the predictions of the ΛCDM model on small scales, thereby opening new room for coupled dark energy models as an alternative to the cosmological constant.
Encyclopedia of cosmology historical, philosophical, and scientific foundations of modern cosmology
Hetherington, Norriss S
2014-01-01
The Encyclopedia of Cosmology, first published in 1993, recounts the history, philosophical assumptions, methodological ambiguities, and human struggles that have influenced the various responses to the basic questions of cosmology through the ages, as well as referencing important scientific theories.Just as the recognition of social conventions in other cultures can lead to a more productive perspective on our own behaviour, so too a study of the cosmologies of other times and places can enable us recognise elements of our own cosmology that might otherwise pass as inevitable developments.Ap
Rajantie, Arttu
2018-03-06
The discovery of the Higgs boson in 2012 and other results from the Large Hadron Collider have confirmed the standard model of particle physics as the correct theory of elementary particles and their interactions up to energies of several TeV. Remarkably, the theory may even remain valid all the way to the Planck scale of quantum gravity, and therefore it provides a solid theoretical basis for describing the early Universe. Furthermore, the Higgs field itself has unique properties that may have allowed it to play a central role in the evolution of the Universe, from inflation to cosmological phase transitions and the origin of both baryonic and dark matter, and possibly to determine its ultimate fate through the electroweak vacuum instability. These connections between particle physics and cosmology have given rise to a new and growing field of Higgs cosmology, which promises to shed new light on some of the most puzzling questions about the Universe as new data from particle physics experiments and cosmological observations become available.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).
Lesgourgues, Julien; Miele, Gennaro; Pastor, Sergio
2013-01-01
The role that neutrinos have played in the evolution of the Universe is the focus of one of the most fascinating research areas that has stemmed from the interplay between cosmology, astrophysics and particle physics. In this self-contained book, the authors bring together all aspects of the role of neutrinos in cosmology, spanning from leptogenesis to primordial nucleosynthesis, their role in CMB and structure formation, to the problem of their direct detection. The book starts by guiding the reader through aspects of fundamental neutrino physics, such as the standard cosmological model and the statistical mechanics in the expanding Universe, before discussing the history of neutrinos in chronological order from the very early stages until today. This timely book will interest graduate students and researchers in astrophysics, cosmology and particle physics, who work with either a theoretical or experimental focus.
Value of H, space-time patterns, vacuum, matter, expansion of the Universe, alternative cosmologies
Directory of Open Access Journals (Sweden)
Gonzalez-Mestres Luis
2017-01-01
Full Text Available To the experimental uncertainties on the present value H0 of the Lundmark - Lemaître-Hubble constant, fundamental theoretical uncertainties of several kinds should also be added. In standard Cosmology, consistency problems are really serious. The cosmological constant is a source of well-known diffculties while the associated dark energy is assumed to be at the origin of the observed acceleration of the expansion of the Universe. But in alternative cosmologies, possible approaches without these problems exist. An example is the pattern based on the spinorial space-time (SST we introduced in 1996-97 where the H t = 1 relation (t = cosmic time = age of the Universe is automatically generated by a pre-existing cosmic geometry before standard matter and conventional forces, including gravitation and relativity, are introduced. We analyse present theoretical, experimental and observational uncertainties, focusing also on the possible sources of the acceleration of the expansion of the Universe as well as on the structure of the physical vacuum and its potential cosmological role. Particular attention is given to alternative approaches to both Particle Physics and Cosmology including possible preonic constituents of the physical vacuum and associated pre-Big Bang patterns. A significant example is provided by the cosmic SST geometry together with the possibility that the expanding cosmological vacuum releases energy in the form of standard matter and dark matter, thus modifying the dependence of the matter energy density with respect to the age and size of our Universe. The SST naturally generates a new leading contribution to the value of H. If the matter energy density decreases more slowly than in standard patterns, it can naturally be at the origin of the observed acceleration of the expansion of the Universe. The mathematical and dynamical structure of standard Physics at very short distances can also be modified by an underlying preonic
Value of H, space-time patterns, vacuum, matter, expansion of the Universe, alternative cosmologies
Gonzalez-Mestres, Luis
2017-12-01
To the experimental uncertainties on the present value H0 of the Lundmark - Lemaître-Hubble constant, fundamental theoretical uncertainties of several kinds should also be added. In standard Cosmology, consistency problems are really serious. The cosmological constant is a source of well-known diffculties while the associated dark energy is assumed to be at the origin of the observed acceleration of the expansion of the Universe. But in alternative cosmologies, possible approaches without these problems exist. An example is the pattern based on the spinorial space-time (SST) we introduced in 1996-97 where the H t = 1 relation (t = cosmic time = age of the Universe) is automatically generated by a pre-existing cosmic geometry before standard matter and conventional forces, including gravitation and relativity, are introduced. We analyse present theoretical, experimental and observational uncertainties, focusing also on the possible sources of the acceleration of the expansion of the Universe as well as on the structure of the physical vacuum and its potential cosmological role. Particular attention is given to alternative approaches to both Particle Physics and Cosmology including possible preonic constituents of the physical vacuum and associated pre-Big Bang patterns. A significant example is provided by the cosmic SST geometry together with the possibility that the expanding cosmological vacuum releases energy in the form of standard matter and dark matter, thus modifying the dependence of the matter energy density with respect to the age and size of our Universe. The SST naturally generates a new leading contribution to the value of H. If the matter energy density decreases more slowly than in standard patterns, it can naturally be at the origin of the observed acceleration of the expansion of the Universe. The mathematical and dynamical structure of standard Physics at very short distances can also be modified by an underlying preonic structure. If preons are
TeV/m Nano-Accelerator: Current Status of CNT-Channeling Acceleration Experiment
Energy Technology Data Exchange (ETDEWEB)
Shin, Young Min [Northern Illinois U.; Lumpkin, Alex H. [Fermilab; Thangaraj, Jayakar Charles [Fermilab; Thurman-Keup, Randy Michael [Fermilab; Shiltsev, Vladimir D. [Fermilab
2014-09-17
Crystal channeling technology has offered various opportunities in the accelerator community with a viability of ultrahigh gradient (TV/m) acceleration for future HEP collider. The major challenge of channeling acceleration is that ultimate acceleration gradients might require a high power driver in the hard x-ray regime (~ 40 keV). This x-ray energy exceeds those for x-rays as of today, although x-ray lasers can efficiently excite solid plasma and accelerate particles inside a crystal channel. Moreover, only disposable crystal accelerators are possible at such high externally excited fields which would exceed the ionization thresholds destroying the atomic structure, so acceleration will take place only in a short time before full dissociation of the lattice. Carbon-based nanostructures have great potential with a wide range of flexibility and superior physical strength, which can be applied to channeling acceleration. This paper presents a beam- driven channeling acceleration concept with CNTs and discusses feasible experiments with the Advanced Superconducting Test Accelerator (ASTA) in Fermilab.
International Nuclear Information System (INIS)
Feng, Jonathan L.
2005-01-01
Cosmology now provides unambiguous, quantitative evidence for new particle physics. I discuss the implications of cosmology for supersymmetry and vice versa. Topics include: motivations for supersymmetry; supersymmetry breaking; dark energy; freeze out and WIMPs; neutralino dark matter; cosmologically preferred regions of minimal supergravity; direct and indirect detection of neutralinos; the DAMA and HEAT signals; inflation and reheating; gravitino dark matter; Big Bang nucleosynthesis; and the cosmic microwave background. I conclude with speculations about the prospects for a microscopic description of the dark universe, stressing the necessity of diverse experiments on both sides of the particle physics/cosmology interface
International Nuclear Information System (INIS)
Sasaki, Misao
1983-01-01
We review the recent status of the inflationary cosmology. After exhibiting the essence of difficulties associated with the horizon, flatness and baryon number problems in the standard big-bang cosmology, we discuss that the inflationary universe scenario is one of the most plausible solutions to these fundamental cosmological problems. Since there are two qualitatively different versions of the inflationary universe scenario, we review each of them separately and discuss merits and demerits of each version. The Hawking radiation in de Sitter space is also reviewed since it may play an essential role in the inflationary cosmology. (author)
Hybrid petacomputing meets cosmology: The Roadrunner Universe project
International Nuclear Information System (INIS)
Habib, Salman; Pope, Adrian; Lukic, Zarija; Daniel, David; Fasel, Patricia; Desai, Nehal; Heitmann, Katrin; Hsu, Chung-Hsing; Ankeny, Lee; Mark, Graham; Bhattacharya, Suman; Ahrens, James
2009-01-01
The target of the Roadrunner Universe project at Los Alamos National Laboratory is a set of very large cosmological N-body simulation runs on the hybrid supercomputer Roadrunner, the world's first petaflop platform. Roadrunner's architecture presents opportunities and difficulties characteristic of next-generation supercomputing. We describe a new code designed to optimize performance and scalability by explicitly matching the underlying algorithms to the machine architecture, and by using the physics of the problem as an essential aid in this process. While applications will differ in specific exploits, we believe that such a design process will become increasingly important in the future. The Roadrunner Universe project code, MC 3 (Mesh-based Cosmology Code on the Cell), uses grid and direct particle methods to balance the capabilities of Roadrunner's conventional (Opteron) and accelerator (Cell BE) layers. Mirrored particle caches and spectral techniques are used to overcome communication bandwidth limitations and possible difficulties with complicated particle-grid interaction templates.
Cosmological evolution as squeezing: a toy model for group field cosmology
Adjei, Eugene; Gielen, Steffen; Wieland, Wolfgang
2018-05-01
We present a simple model of quantum cosmology based on the group field theory (GFT) approach to quantum gravity. The model is formulated on a subspace of the GFT Fock space for the quanta of geometry, with a fixed volume per quantum. In this Hilbert space, cosmological expansion corresponds to the generation of new quanta. Our main insight is that the evolution of a flat Friedmann–Lemaître–Robertson–Walker universe with a massless scalar field can be described on this Hilbert space as squeezing, familiar from quantum optics. As in GFT cosmology, we find that the three-volume satisfies an effective Friedmann equation similar to the one of loop quantum cosmology, connecting the classical contracting and expanding solutions by a quantum bounce. The only free parameter in the model is identified with Newton’s constant. We also comment on the possible topological interpretation of our squeezed states. This paper can serve as an introduction into the main ideas of GFT cosmology without requiring the full GFT formalism; our results can also motivate new developments in GFT and its cosmological application.
Report of the workshop on realistic SSC lattices
International Nuclear Information System (INIS)
1985-10-01
A workshop was held at the SSC Central Design Group from May 29 to June 4, 1985, on topics relating to the lattice of the SSC. The workshop marked a shift of emphasis from the investigation of simplified test lattices to the development of a realistic lattice suitable for the conceptual design report. The first day of the workshop was taken up by reviews of accelerator system requirements, of the reference design solutions for these requirements, of lattice work following the reference design, and of plans for the workshop. The work was divided among four working groups. The first, chaired by David Douglas, concerned the arcs of regular cells. The second group, which studied the utility insertions, was chaired by Beat Leemann. The third group, under David E. Johnson, concerned itself with the experimental insertions, dispersion suppressors, and phase trombones. The fourth group, responsible for global lattice considerations and the design of a new realistic lattice example, was led by Ernest Courant. The papers resulting from this workshop are roughly divided into three sets: those relating to specific lattice components, to complete lattices, and to other topics. Among the salient accomplishments of the workshop were additions to and optimization of lattice components, especially those relating to lattices using 1-in-1 magnets, either horizontally or vertically separated, and the design of complete lattice examples. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database
Cosmology based on f(R) gravity admits 1 eV sterile neutrinos.
Motohashi, Hayato; Starobinsky, Alexei A; Yokoyama, Jun'ichi
2013-03-22
It is shown that the tension between recent neutrino oscillation experiments, favoring sterile neutrinos with masses of the order of 1 eV, and cosmological data which impose stringent constraints on neutrino masses from the free streaming suppression of density fluctuations, can be resolved in models of the present accelerated expansion of the Universe based on f(R) gravity.
Cosmological attractors in massive gravity
Dubovsky, S; Tkachev, I I
2005-01-01
We study Lorentz-violating models of massive gravity which preserve rotations and are invariant under time-dependent shifts of the spatial coordinates. In the linear approximation the Newtonian potential in these models has an extra ``confining'' term proportional to the distance from the source. We argue that during cosmological expansion the Universe may be driven to an attractor point with larger symmetry which includes particular simultaneous dilatations of time and space coordinates. The confining term in the potential vanishes as one approaches the attractor. In the vicinity of the attractor the extra contribution is present in the Friedmann equation which, in a certain range of parameters, gives rise to the cosmic acceleration.
Post-inflationary brane cosmology
International Nuclear Information System (INIS)
Mazumdar, Anupam
2001-01-01
The brane cosmology has invoked new challenges to the usual Big Bang cosmology. In this paper we present a brief account on thermal history of the post-inflationary brane cosmology. We have realized that it is not obvious that the post-inflationary brane cosmology would always deviate from the standard Big Bang cosmology. However, if it deviates some stringent conditions on the brane tension are to be satisfied. In this regard we study various implications on gravitino production and its abundance. We discuss Affleck-Dine mechanism for baryogenesis and make some comments on moduli and dilaton problems in this context
Inhomogeneity and the foundations of concordance cosmology
International Nuclear Information System (INIS)
Clarkson, Chris; Maartens, Roy
2010-01-01
The apparent accelerating expansion of the universe is forcing us to examine the foundational aspects of the standard model of cosmology-in particular, the fact that dark energy is a direct consequence of the homogeneity assumption. We discuss the foundations of the assumption of spatial homogeneity, in the case when the Copernican principle is adopted. We present results that show how (almost) homogeneity follows from (almost) isotropy of various observables. The analysis requires fully nonlinear field equations-i.e. it is not possible to use second- or higher-order perturbation theory, since one cannot assume a homogeneous and isotropic background. Then we consider what happens if the Copernican principle is abandoned in our Hubble volume. The simplest models are inhomogeneous but spherically symmetric universes which do not require dark energy to fit the distance modulus. Key problems in these models are to compute the CMB anisotropies and the features of large-scale structure. We review how to construct perturbation theory on a non-homogeneous cosmological background, and discuss the complexities that arise in using this to determine the growth of large-scale structure.
Scale factor duality for conformal cyclic cosmologies
Energy Technology Data Exchange (ETDEWEB)
Silva, University Camara da; Lima, A.L. Alves; Sotkov, G.M. [Departamento de Física - CCE,Universidade Federal de Espirito Santo, 29075-900, Vitoria ES (Brazil)
2016-11-16
The scale factor duality is a symmetry of dilaton gravity which is known to lead to pre-big-bang cosmologies. A conformal time version of the scale factor duality (SFD) was recently implemented as a UV/IR symmetry between decelerated and accelerated phases of the post-big-bang evolution within Einstein gravity coupled to a scalar field. The problem investigated in the present paper concerns the employment of the conformal time SFD methods to the construction of pre-big-bang and cyclic extensions of these models. We demonstrate that each big-bang model gives rise to two qualitatively different pre-big-bang evolutions: a contraction/expansion SFD model and Penrose’s Conformal Cyclic Cosmology (CCC). A few examples of SFD symmetric cyclic universes involving certain gauged Kähler sigma models minimally coupled to Einstein gravity are studied. We also describe the specific SFD features of the thermodynamics and the conditions for validity of the generalized second law in the case of Gauss-Bonnet (GB) extension of these selected CCC models.
Scale factor duality for conformal cyclic cosmologies
International Nuclear Information System (INIS)
Silva, University Camara da; Lima, A.L. Alves; Sotkov, G.M.
2016-01-01
The scale factor duality is a symmetry of dilaton gravity which is known to lead to pre-big-bang cosmologies. A conformal time version of the scale factor duality (SFD) was recently implemented as a UV/IR symmetry between decelerated and accelerated phases of the post-big-bang evolution within Einstein gravity coupled to a scalar field. The problem investigated in the present paper concerns the employment of the conformal time SFD methods to the construction of pre-big-bang and cyclic extensions of these models. We demonstrate that each big-bang model gives rise to two qualitatively different pre-big-bang evolutions: a contraction/expansion SFD model and Penrose’s Conformal Cyclic Cosmology (CCC). A few examples of SFD symmetric cyclic universes involving certain gauged Kähler sigma models minimally coupled to Einstein gravity are studied. We also describe the specific SFD features of the thermodynamics and the conditions for validity of the generalized second law in the case of Gauss-Bonnet (GB) extension of these selected CCC models.
International Nuclear Information System (INIS)
Gekman, O.
1982-01-01
The brief essay of the development of the main ideas of relativistic cosmology is presented. The Einstein's cosmological work about the Universe - ''Cosmological considerations in connection with the general relativity theory'' - gave the basis to all further treatments in this field. In 1922 A. Friedman's work appeared, in which the first expanding Universe model was proposed as a solution of the Einstein field equations. The model was spherically closed, but its curvature radius was a function of time. About 1955 the searches for anisotropic homogeneous solutions to Einstein field equation began. It turned out that isotropic cosmological models are unstable in general. The predominant part of them transform to anisotropic at insignificant breaking of isotropy. The discovery of isotropic background cosmic radiation in 1965, along with the Hubble low of the Universe expansion, served as the direct confirmation of cosmology based on the Einstein theory
Particle physics and cosmology
International Nuclear Information System (INIS)
Turner, M.S.; Schramm, D.N.
1985-01-01
During the past year, the research of the members of our group has spanned virtually all the topics at the interface of cosmology and particle physics: inflationary Universe scenarios, astrophysical and cosmological constraints on particle properties, ultra-high energy cosmic ray physics, quantum field theory in curved space-time, cosmology with extra dimensions, superstring cosmology, neutrino astronomy with large, underground detectors, and the formation of structure in the Universe
Precision cosmological measurements: Independent evidence for dark energy
International Nuclear Information System (INIS)
Bothun, Greg; Hsu, Stephen D.H.; Murray, Brian
2008-01-01
Using recent precision measurements of cosmological parameters, we re-examine whether these observations alone, independent of type Ia supernova surveys, are sufficient to imply the existence of dark energy. We find that best measurements of the age of the Universe t 0 , the Hubble parameter H 0 and the matter fraction Ω m strongly favor an equation of state defined by (w<-1/3). This result is consistent with the existence of a repulsive, acceleration-causing component of energy if the Universe is nearly flat
Directory of Open Access Journals (Sweden)
Balbi Amedeo
2013-09-01
Full Text Available Time has always played a crucial role in cosmology. I review some of the aspects of the present cosmological model which are more directly related to time, such as: the definition of a cosmic time; the existence of typical timescales and epochs in an expanding universe; the problem of the initial singularity and the origin of time; the cosmological arrow of time.
Quantum cosmology - science of Genesis
International Nuclear Information System (INIS)
Padmanabhan, Thanu
1987-01-01
Quantum cosmology, the marriage between the theories of the microscopic and macroscopic Universe, is examined in an attempt to explain the birth of the Universe in the 'big bang'. A quantum cosmological model of the Universe does not exist, but a rough approximation, or 'poor man's' version of quantum cosmology has been developed. The idea is to combine the theory of quantum mechanics with the classical cosmological solutions to obtain a quantum mechanical version of cosmology. Such a model of quantum cosmology is described -here the quantum universe behaves like a hydrogen atom with the Planck length replacing the Bohr radius. Properties of quantum cosmologies and the significance of the Planck length are both discussed. (UK)
International Nuclear Information System (INIS)
Kehagias, A.; Riotto, A.
2016-01-01
Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.
Energy Technology Data Exchange (ETDEWEB)
Kehagias, A. [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece); Riotto, A. [Department of Theoretical Physics,24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland); Center for Astroparticle Physics (CAP),24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland)
2016-05-25
Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.
Philosophical Roots of Cosmology
Ivanovic, M.
2008-10-01
We shall consider the philosophical roots of cosmology in the earlier Greek philosophy. Our goal is to answer the question: Are earlier Greek theories of pure philosophical-mythological character, as often philosophers cited it, or they have scientific character. On the bases of methodological criteria, we shall contend that the latter is the case. In order to answer the question about contemporary situation of the relation philosophy-cosmology, we shall consider the next question: Is contemporary cosmology completely independent of philosophical conjectures? The answer demands consideration of methodological character about scientific status of contemporary cosmology. We also consider some aspects of the relation contemporary philosophy-cosmology.
Sanders, RH; Papantonopoulos, E
2005-01-01
I discuss the classical cosmological tests, i.e., angular size-redshift, flux-redshift, and galaxy number counts, in the light of the cosmology prescribed by the interpretation of the CMB anisotropies. The discussion is somewhat of a primer for physicists, with emphasis upon the possible systematic
Lattice Gauge Theories Within and Beyond the Standard Model
Energy Technology Data Exchange (ETDEWEB)
Gelzer, Zechariah John [Iowa U.
2017-01-01
The Standard Model of particle physics has been very successful in describing fundamental interactions up to the highest energies currently probed in particle accelerator experiments. However, the Standard Model is incomplete and currently exhibits tension with experimental data for interactions involving $B$~mesons. Consequently, $B$-meson physics is of great interest to both experimentalists and theorists. Experimentalists worldwide are studying the decay and mixing processes of $B$~mesons in particle accelerators. Theorists are working to understand the data by employing lattice gauge theories within and beyond the Standard Model. This work addresses the theoretical effort and is divided into two main parts. In the first part, I present a lattice-QCD calculation of form factors for exclusive semileptonic decays of $B$~mesons that are mediated by both charged currents ($B \\to \\pi \\ell \
International Nuclear Information System (INIS)
Berstein, J.
1984-01-01
These lectures offer a self-contained review of the role of neutrinos in cosmology. The first part deals with the question 'What is a neutrino.' and describes in a historical context the theoretical ideas and experimental discoveries related to the different types of neutrinos and their properties. The basic differences between the Dirac neutrino and the Majorana neutrino are pointed out and the evidence for different neutrino 'flavours', neutrino mass, and neutrino oscillations is discussed. The second part summarizes current views on cosmology, particularly as they are affected by recent theoretical and experimental advances in high-energy particle physics. Finally, the close relationship between neutrino physics and cosmology is brought out in more detail, to show how cosmological constraints can limit the various theoretical possibilities for neutrinos and, more particularly, how increasing knowledge of neutrino properties can contribute to our understanding of the origin, history, and future of the Universe. The level is that of the beginning graduate student. (orig.)
Anisotropic scalar field with cosmological time
International Nuclear Information System (INIS)
Kleber, A.; Teixeira, A.F.F.
1978-04-01
A static, nonsingular, plane-symmetric scalar field of long range is considered under the general relativity, and a one-parametric class of exact solutions with cosmological time is obtained, in harmonic coordinates. In the absence of any material source, the gravitation originated by the pure scalar field can be studied in detail. A velocity-dependent acceleration field is found, acting attractively on the component of the velocity normal to the plane of symmetry, and repulsively on the component parallel to that plane. Particles at rest are insensitive to the gravitation, although the time component of the energy momentum tensor is point dependent and positive definite
Cosmological equivalence principle and the weak-field limit
International Nuclear Information System (INIS)
Wiltshire, David L.
2008-01-01
The strong equivalence principle is extended in application to averaged dynamical fields in cosmology to include the role of the average density in the determination of inertial frames. The resulting cosmological equivalence principle is applied to the problem of synchronization of clocks in the observed universe. Once density perturbations grow to give density contrasts of order 1 on scales of tens of megaparsecs, the integrated deceleration of the local background regions of voids relative to galaxies must be accounted for in the relative synchronization of clocks of ideal observers who measure an isotropic cosmic microwave background. The relative deceleration of the background can be expected to represent a scale in which weak-field Newtonian dynamics should be modified to account for dynamical gradients in the Ricci scalar curvature of space. This acceleration scale is estimated using the best-fit nonlinear bubble model of the universe with backreaction. At redshifts z -10 ms -2 , is small, when integrated over the lifetime of the universe it amounts to an accumulated relative difference of 38% in the rate of average clocks in galaxies as compared to volume-average clocks in the emptiness of voids. A number of foundational aspects of the cosmological equivalence principle are also discussed, including its relation to Mach's principle, the Weyl curvature hypothesis, and the initial conditions of the universe.
Experience with split transition lattices at RHIC
International Nuclear Information System (INIS)
Montag, C.; Tepikian, S.; Blaskiewicz, M.; Brennan, J.M.
2010-01-01
During the acceleration process, heavy ion beams in RHIC cross the transition energy. When RHIC was colliding deuterons and gold ions during Run-8, lattices with different integer tunes were used for the two rings. This resulted in the two rings crossing transition at different times, which proved beneficial for the 'Yellow' ring, the RF system of which is slaved to the 'Blue' ring. For the symmetric gold-gold run in FY2010, lattices with different transition energies but equal tunes were implemented. We report the optics design concept as well as operational experience with this configuration.
CAS CERN Accelerator School. Third advanced accelerator physics course
International Nuclear Information System (INIS)
Turner, S.
1990-01-01
The third version of the CERN Accelerator School's (CAS) advanced course on General Accelerator Physics was given at Uppsala University from 18-29 September, 1989. Its syllabus was based on the previous courses held in Oxford, 1985 and Berlin, 1987 whose proceedings were published as CERN Yellow Reports 87-03 and 89-01 respectively. However, the opportunity was taken to emphasize the physics of small accelerators and storage rings, to present some topics in new ways, and to introduce new seminars. Thus the lectures contained in the present volume include chromaticity, dynamic aperture, kinetic theory, Landau damping, ion-trapping, Schottky noise, laser cooling and small ring lattice problems while the seminars include interpretation of numerical tracking, internal targets and living with radiation. (orig.)
Massive graviton and determination of cosmological constant from gauge theory of gravity
International Nuclear Information System (INIS)
Mitrut, Alexandru
2002-01-01
The universe contains a lot more than the eye meets . Sophisticated experiments search diligently for this invisible dark matter. Here we will describe some theoretical implications of the gravitational gauge theory recently proposed by Ning Wu (hep-th/0112062), namely the possibility of the existence of massive gravitons which fill the intergalactic space. Dark matter is an important problem in cosmology. In gravitational gauge field theory, the following effects should be taken into account to solve this problem: 1) The existence of massive graviton will have some contribution to the dark matter; 2) If the gravitational magnetic field is strong inside a celestial system, the gravitational Lorentz force will provide additional centripetal force for circular motion of a celestial object; 3) The existence of a factor which violate inverse square law of classical gravity. Combining general relativity and gravitational gauge theory the cosmological constant is determined theoretically. The cosmological constant is related to the average vacuum energy of the gravitational gauge field. Because the vacuum energy of the gravitational gauge field is negative, the cosmological constant is positive what generates repulsive force on stars to make the expansion rate of the Universe accelerated. A rough estimation of it gives out its magnitude order 10 -52 m -2 , which is well consistent with experimental results. (authors)
Thermodynamics of an accelerated expanding universe
International Nuclear Information System (INIS)
Wang Bin; Gong Yungui; Abdalla, Elcio
2006-01-01
We investigate the laws of thermodynamics in an accelerating universe driven by dark energy with a time-dependent equation of state. In the case we consider that the physically relevant part of the Universe is that enveloped by the dynamical apparent horizon, we have shown that both the first law and second law of thermodynamics are satisfied. On the other hand, if the boundary of the Universe is considered to be the cosmological event horizon the thermodynamical description based on the definitions of boundary entropy and temperature breaks down. No parameter redefinition can rescue the thermodynamics laws from such a fate, rendering the cosmological event horizon unphysical from the point of view of the laws of thermodynamics
Lyra’s cosmology of hybrid universe in Bianchi-V space-time
Yadav, Anil Kumar; Bhardwaj, Vinod Kumar
2018-06-01
In this paper we have searched for the existence of Lyra’s cosmology in a hybrid universe with minimal interaction between dark energy and normal matter using Bianchi-V space-time. To derive the exact solution, the average scale factor is taken as a={({t}n{e}kt)}\\frac{1{m}} which describes the hybrid nature of the scale factor and generates a model of the transitioning universe from the early deceleration phase to the present acceleration phase. The quintessence model makes the matter content of the derived universe remarkably able to satisfy the null, dominant and strong energy condition. It has been found that the time varying displacement β(t) co-relates with the nature of cosmological constant Λ(t). We also discuss some physical and geometrical features of the universe.
Cosmology and particle physics
International Nuclear Information System (INIS)
Turner, M.S.
1986-01-01
Progress in cosmology has become linked to progress in elementary particle physics. In these six lectures, the author illustrates the two-way nature of the interplay between these fields by focusing on a few selected topics. In the next section the author reviews the standard cosmology, especially concentrating on primordial nucleosynthesis and discusses how the standard cosmology has been used to place constraints on the properties of various particles. Grand Unification makes two striking predictions: (i) B non-conservation; (ii) the existence of stable, superheavy magnetic monopoles. Both have had great cosmological impact. In the following section the author discusses baryogenesis, the very attractive scenario in which the B,C,CP violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and the present baryon-to-photon ratio. Monopoles are a cosmological disaster and an astrophysicist's delight. In Section 4 discusses monopoles, cosmology, and astrophysics. In the fourth lecture the author discusses how a very early (t≤10/sup -34/ sec) phase transition associated with spontaneous symmetry breaking (SSB) has the potential to explain a handful of very fundamental cosmological facts, facts which can be accommodated by the standard cosmology, but which are not ''explained'' by it. The fifth lecture is devoted to a discussion of structure formation in the universe
The cosmological perturbation theory in loop cosmology with holonomy corrections
International Nuclear Information System (INIS)
Wu, Jian-Pin; Ling, Yi
2010-01-01
In this paper we investigate the scalar mode of first-order metric perturbations over spatially flat FRW spacetime when the holonomy correction is taken into account in the semi-classical framework of loop quantum cosmology. By means of the Hamiltonian derivation, the cosmological perturbation equations is obtained in longitudinal gauge. It turns out that in the presence of metric perturbation the holonomy effects influence both background and perturbations, and contribute the non-trivial terms S h1 and S h2 in the cosmological perturbation equations
Fitting oscillating string gas cosmology to supernova data
International Nuclear Information System (INIS)
Ferrer, Francesc; Multamaeki, Tuomas; Raesaenen, Syksy
2009-01-01
In string gas cosmology, extra dimensions are stabilised by a gas of strings. In the matter-dominated era, competition between matter pushing the extra dimensions to expand and the string gas pulling them back can lead to oscillations of the extra dimensions and acceleration in the visible dimensions. We fit this model to supernova data, taking into account the Big Bang Nucleosynthesis constraint on the energy density of the string gas. The fit to the Union set of supernova data is acceptable, but the fit to the ESSENCE data is poor.
Lagrangian derivation of the two coupled field equations in the Janus cosmological model
Petit, Jean-Pierre; D'Agostini, G.
2015-05-01
After a review citing the results obtained in previous articles introducing the Janus Cosmological Model, consisting of a set of two coupled field equations, where one metrics refers to the positive masses and the other to the negative masses, which explains the observed cosmic acceleration and the nature of dark energy, we present the Lagrangian derivation of the model.
Nonlocal gravity. Conceptual aspects and cosmological predictions
Belgacem, Enis; Dirian, Yves; Foffa, Stefano; Maggiore, Michele
2018-03-01
Even if the fundamental action of gravity is local, the corresponding quantum effective action, that includes the effect of quantum fluctuations, is a nonlocal object. These nonlocalities are well understood in the ultraviolet regime but much less in the infrared, where they could in principle give rise to important cosmological effects. Here we systematize and extend previous work of our group, in which it is assumed that a mass scale Λ is dynamically generated in the infrared, giving rise to nonlocal terms in the quantum effective action of gravity. We give a detailed discussion of conceptual aspects related to nonlocal gravity (including causality, degrees of freedom, ambiguities related to the boundary conditions of the nonlocal operator, scenarios for the emergence of a dynamical scale in the infrared) and of the cosmological consequences of these models. The requirement of providing a viable cosmological evolution severely restricts the form of the nonlocal terms, and selects a model (the so-called RR model) that corresponds to a dynamical mass generation for the conformal mode. For such a model: (1) there is a FRW background evolution, where the nonlocal term acts as an effective dark energy with a phantom equation of state, providing accelerated expansion without a cosmological constant. (2) Cosmological perturbations are well behaved. (3) Implementing the model in a Boltzmann code and comparing with observations we find that the RR model fits the CMB, BAO, SNe, structure formation data and local H0 measurements at a level statistically equivalent to ΛCDM. (4) Bayesian parameter estimation shows that the value of H0 obtained in the RR model is higher than in ΛCDM, reducing to 2.0σ the tension with the value from local measurements. (5) The RR model provides a prediction for the sum of neutrino masses that falls within the limits set by oscillation and terrestrial experiments (in contrast to ΛCDM, where letting the sum of neutrino masses vary as a free
International Nuclear Information System (INIS)
Verde, L.
2011-01-01
This is the summary of two lectures that aim to give an overview of cosmology. I will not try to be toa rigorous in derivations, nor to give a full historical overview. The idea is to provide a 'taste' of cosmology and some of the interesting topics it covers. The standard cosmological model is presented and I highlight the successes of cosmology over the past decade or so. Keys to the development of the standard cosmological model are observations of the cosmic microwave background and of large-scale structure, which are introduced. Inflation and dark energy and the outlook for the future are also discussed. Slides from the lectures are available from the school web site: physicschool.web.cern.ch/PhysicSchool/CLASHEP/CLASHEP2011/. (author)
Verde, L.
2013-06-27
This is the summary of two lectures that aim to give an overview of cosmology. I will not try to be too rigorous in derivations, nor to give a full historical overview. The idea is to provide a "taste" of cosmology and some of the interesting topics it covers. The standard cosmological model is presented and I highlight the successes of cosmology over the past decade or so. Keys to the development of the standard cosmological model are observations of the cosmic microwave background and of large-scale structure, which are introduced. Inflation and dark energy and the outlook for the future are also discussed. Slides from the lectures are available from the school website: physicschool.web.cern.ch/PhysicSchool/CLASHEP/CLASHEP2011/.
Acceleration of polarized protons in the IHEP accelerator complex
International Nuclear Information System (INIS)
Anferov, V.A.; Ado, Yu.M.; Shoumkin, D.
1995-01-01
The paper considers possibility to accelerate polarized beam in the IHEP accelerator complex (including first stage of the UNK). The scheme of preserving beam polarization is described for all acceleration stages up to 400 GeV beam energy. Polarization and intensity of the polarized proton beam are estimated. The suggested scheme includes using two Siberian snakes in opposite straight sections of the UNK-1, where each snake consists of five dipole magnets. In the U-70 it is suggested to use one helical Siberian snake, which is turned on adiabatically at 10 GeV, and four pulsed quadrupoles. To incorporate the snake into the accelerator lattice it is proposed to make modification of one superperiod. This would make a 13 m long straight section. Spin depolarization in the Booster is avoided by decreasing the extraction energy to 0.9 GeV. Then no additional hardware is required in the Booster
Lattice design of beam transport system of FELI
International Nuclear Information System (INIS)
Miyauchi, Y.; Koga, A.; Morii, Y.; Sato, S.; Keishi, T.; Tomimasu, T.
1994-01-01
A plan of lasing wide range FEL (Free Electron Laser) is in progress at FELI. For this purpose, an S-band linac accelerator system of four output energy levels is under construction. This paper describes the lattice design of its beam transport (BT) system. (author)
Stability analysis and observational measurement in chameleonic generalised Brans-Dicke cosmology
International Nuclear Information System (INIS)
Farajollahi, Hossein; Salehi, Amin
2011-01-01
We investigate the dynamics of the chameleonic Generalised Brans-Dicke model in flat FRW cosmology. In a new approach, a framework to study stability and attractor solutions in the phase space for the model is developed by simultaneously best fitting the stability and model parameters with the observational data. The results show that for an accelerating universe the phantom crossing does not occur in the past and near future
International Nuclear Information System (INIS)
Heller, M.
1985-01-01
Two Friedman's cosmological papers (1922, 1924) and his own interpretation of the obtained results are briefly reviewed. Discussion follows of Friedman's role in the early development of relativistic cosmology. 18 refs. (author)
International Nuclear Information System (INIS)
Chow, Nathan; Khoury, Justin
2009-01-01
We study the cosmology of a galileon scalar-tensor theory, obtained by covariantizing the decoupling Lagrangian of the Dvali-Gabadadze-Poratti (DGP) model. Despite being local in 3+1 dimensions, the resulting cosmological evolution is remarkably similar to that of the full 4+1-dimensional DGP framework, both for the expansion history and the evolution of density perturbations. As in the DGP model, the covariant galileon theory yields two branches of solutions, depending on the sign of the galileon velocity. Perturbations are stable on one branch and ghostlike on the other. An interesting effect uncovered in our analysis is a cosmological version of the Vainshtein screening mechanism: at early times, the galileon dynamics are dominated by self-interaction terms, resulting in its energy density being suppressed compared to matter or radiation; once the matter density has redshifted sufficiently, the galileon becomes an important component of the energy density and contributes to dark energy. We estimate conservatively that the resulting expansion history is consistent with the observed late-time cosmology, provided that the scale of modification satisfies r c > or approx. 15 Gpc.
Particle physics and cosmology
International Nuclear Information System (INIS)
Schramm, D.N.; Turner, M.S.
1982-06-01
work is described in these areas: cosmological baryon production; cosmological production of free quarks and other exotic particle species; the quark-hadron transition in the early universe; astrophysical and cosmological constraints on particle properties; massive neutrinos; phase transitions in the early universe; and astrophysical implications of an axion-like particle
Open problems in string cosmology
International Nuclear Information System (INIS)
Toumbas, N.
2010-01-01
Some of the open problems in string cosmology are highlighted within the context of the recently constructed thermal and quantum superstring cosmological solutions. Emphasis is given on the high temperature cosmological regime, where it is argued that thermal string vacua in the presence of gravito-magnetic fluxes can be used to bypass the Hagedorn instabilities of string gas cosmology. This article is based on a talk given at the workshop on ''Cosmology and Strings'', Corfu, September 6-13, 2009. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Crucial test of the Dirac cosmologies
International Nuclear Information System (INIS)
Steigman, G.
1978-01-01
In a cosmology consistent with the Cosmological Principle (large scale, statistical isotropy and homogeneity of the universe), a Planck spectrum is not preserved as the universe evolves unless the number of photons in a comoving volume is conserved. It is shown that a large class of cosmological models based on Dirac's Large Numbers Hypothesis (LNH) violate this constraint. The observed isotropy and spectral distribution of the microwave background radiation thus provide a crucial test of such cosmologies. After reviewing the LNH, the general evolution of radiation spectra in cosmologies consistent with the cosmological principle is outlined. It is shown that the predicted deviations from a Planck spectrum for Dirac cosmologies (as well as for ''tired-light'' cosmologies) are enormous. The Planckian (or near-Planckian) spectral form for the microwave radiation provides a crucial test, failed by such cosmologies
International Nuclear Information System (INIS)
Langer, M.
2007-01-01
This is a very concise introductory lecture to Cosmology. We start by reviewing the basics of homogeneous and isotropic cosmology. We then spend some time on the description of the Cosmic Microwave Background. Finally, a small section is devoted to the discussion of the cosmological constant and of some of the related problems
Lattice design for a high-power infrared FEL
International Nuclear Information System (INIS)
Douglas, D.R.
1997-01-01
A 1 kW infrared FEL, funded by the U.S. Navy, is being built at Jefferson Lab. It will be driven by a compact energy-recovering CW superconducting radio-frequency (SRF)-based linear accelerator. Stringent phase space requirements at the wiggler, low beam energy, and high beam current subject the design to numerous constraints. This report addresses these issues and presents a design solution for an accelerator transport lattice meeting the requirements imposed by physical phenomena and operational necessities
Evolution of the Brans—Dicke Parameter in Generalized Chameleon Cosmology
International Nuclear Information System (INIS)
Jamil, Mubasher; Momeni, D.
2011-01-01
Motivated by an earlier study of Sahoo and Singh [Mod. Phys. Lett. A 17 (2002) 2409], we investigate the time dependence of the Brans-Dicke parameter ω(t) for an expanding Universe in the generalized Brans-Dicke Chameleon cosmology, and obtain an explicit dependence of ω(t) in different expansion phases of the Universe. Also, we discuss how the observed accelerated expansion of the observable Universe can be accommodated in the present formalism. (geophysics, astronomy, and astrophysics)
Lesgourgues, Julien
2012-01-01
Neutrinos can play an important role in the evolution of the Universe, modifying some of the cosmological observables. In this contribution we summarize the main aspects of cosmological relic neutrinos and we describe how the precision of present cosmological data can be used to learn about neutrino properties, in particular their mass, providing complementary information to beta decay and neutrinoless double-beta decay experiments. We show how the analysis of current cosmological observations, such as the anisotropies of the cosmic microwave background or the distribution of large-scale structure, provides an upper bound on the sum of neutrino masses of order 1 eV or less, with very good perspectives from future cosmological measurements which are expected to be sensitive to neutrino masses well into the sub-eV range.
Constraining viscous dark energy models with the latest cosmological data
Wang, Deng; Yan, Yang-Jie; Meng, Xin-He
2017-10-01
Based on the assumption that the dark energy possessing bulk viscosity is homogeneously and isotropically permeated in the universe, we propose three new viscous dark energy (VDE) models to characterize the accelerating universe. By constraining these three models with the latest cosmological observations, we find that they just deviate very slightly from the standard cosmological model and can alleviate effectively the current H_0 tension between the local observation by the Hubble Space Telescope and the global measurement by the Planck Satellite. Interestingly, we conclude that a spatially flat universe in our VDE model with cosmic curvature is still supported by current data, and the scale invariant primordial power spectrum is strongly excluded at least at the 5.5σ confidence level in the three VDE models as the Planck result. We also give the 95% upper limits of the typical bulk viscosity parameter η in the three VDE scenarios.
CAS CERN Accelerator School: Fourth general accelerator physics course
International Nuclear Information System (INIS)
Turner, S.
1991-01-01
The fourth CERN Accelerator School (CAS) basic course on General Accelerator Physics was given at KFA, Juelich, from 17 to 28 September 1990. Its syllabus was based on the previous similar courses held at Gif-sur-Yvette in 1984, Aarhus 1986, and Salamanca 1988, and whose proceedings were published as CERN Reports 85-19, 87-10, and 89-05, respectively. However, certain topics were treated in a different way, improved or extended, while new subjects were introduced. All of these appear in the present proceedings, which include lectures or seminars on the history and applications of accelerators, phase space and emittance, chromaticity, beam-beam effects, synchrotron radiation, radiation damping, tune measurement, transition, electron cooling, the designs of superconducting magnets, ring lattices, conventional RF cavities and ring RF systems, and an introduction to cyclotrons. (orig.)
Cosmological Models and Stability
Andersson, Lars
Principles in the form of heuristic guidelines or generally accepted dogma play an important role in the development of physical theories. In particular, philosophical considerations and principles figure prominently in the work of Albert Einstein. As mentioned in the talk by Jiří Bičák at this conference, Einstein formulated the equivalence principle, an essential step on the road to general relativity, during his time in Prague 1911-1912. In this talk, I would like to discuss some aspects of cosmological models. As cosmology is an area of physics where "principles" such as the "cosmological principle" or the "Copernican principle" play a prominent role in motivating the class of models which form part of the current standard model, I will start by comparing the role of the equivalence principle to that of the principles used in cosmology. I will then briefly describe the standard model of cosmology to give a perspective on some mathematical problems and conjectures on cosmological models, which are discussed in the later part of this paper.
Fourth International Meeting on Gravitation and Cosmology
Aguilar, José; Barrera, Luz; Accelerated Cosmic Expansion
2014-01-01
This volume provides both an update and a review of the state of alternative theories of gravity, in connection with the issue of the accelerated expansion of the universe. Different theoretical proposals explain the acceleration in cosmic expansion, generating the dark energy issue and opening the possibilities of alternative theories of gravity (besides general relativity). Related issues, such as the problem of dark matter, are also surveyed in order to give the readers profound insight on the subject from different points of view. Comprised of short talks and plenary lectures given by leading experts in the field, some of them with brilliant and historic contributions, this book allows the reader to find referenced surveys in topics like f(R) theories, the dark matter and dark energy issues, Modified Newtonian Dynamics (MOND) scenarios, f(T) theories, scalar-tensor theories derived from non-Riemannian geometries, emergent universes, the cosmological constant and other topics of current interest for physic...
Constraints on cosmological parameters in power-law cosmology
International Nuclear Information System (INIS)
Rani, Sarita; Singh, J.K.; Altaibayeva, A.; Myrzakulov, R.; Shahalam, M.
2015-01-01
In this paper, we examine observational constraints on the power law cosmology; essentially dependent on two parameters H 0 (Hubble constant) and q (deceleration parameter). We investigate the constraints on these parameters using the latest 28 points of H(z) data and 580 points of Union2.1 compilation data and, compare the results with the results of ΛCDM . We also forecast constraints using a simulated data set for the future JDEM, supernovae survey. Our studies give better insight into power law cosmology than the earlier done analysis by Kumar [arXiv:1109.6924] indicating it tuning well with Union2.1 compilation data but not with H(z) data. However, the constraints obtained on i.e. H 0 average and q average using the simulated data set for the future JDEM, supernovae survey are found to be inconsistent with the values obtained from the H(z) and Union2.1 compilation data. We also perform the statefinder analysis and find that the power-law cosmological models approach the standard ΛCDM model as q → −1. Finally, we observe that although the power law cosmology explains several prominent features of evolution of the Universe, it fails in details
International Nuclear Information System (INIS)
Coule, D H
2005-01-01
We contrast the initial condition requirements of various contemporary cosmological models including inflationary and bouncing cosmologies. Canonical quantization of general relativity is used, as a first approximation to full quantum gravity, to determine whether suitable initial conditions are present. Various proposals such as Hartle-Hawking's 'no boundary' or tunnelling boundary conditions are assessed on grounds of naturalness and fine tuning. Alternatively, a quiescent initial state or an initial closed timelike curve 'time machine' is considered. Possible extensions to brane models are also addressed. Further ideas about universe creation from a meta-universe are outlined. Semiclassical and time asymmetry requirements of cosmology are briefly discussed and contrasted with the black-hole final-state proposal. We compare the recent loop quantum cosmology of Bojowald and co-workers with these earlier schemes. A number of possible difficulties and limitations are outlined. (topical review)
A varying-α brane world cosmology
International Nuclear Information System (INIS)
Youm, Donam
2001-08-01
We study the brane world cosmology in the RS2 model where the electric charge varies with time in the manner described by the varying fine-structure constant theory of Bekenstein. We map such varying electric charge cosmology to the dual variable-speed-of-light cosmology by changing system of units. We comment on cosmological implications for such cosmological models. (author)
Projective relativity, cosmology and gravitation
International Nuclear Information System (INIS)
Arcidiacono, G.
1986-01-01
This book describes the latest applications of projective geometry to cosmology and gravitation. The contents of the book are; the Poincare group and Special Relativity, the thermodynamics and electromagnetism, general relativity, gravitation and cosmology, group theory and models of universe, the special projective relativity, the Fantappie group and Big-Bang cosmology, a new cosmological projective mechanics, the plasma physics and cosmology, the projective magnetohydrodynamics field, projective relativity and waves propagation, the generalizations of the gravitational field, the general projective relativity, the projective gravitational field, the De Sitter Universe and quantum physics, the conformal relativity and Newton gravitation
Longitudinal transport measurements in an energy recovery accelerator with triple bend achromat arcs
Directory of Open Access Journals (Sweden)
F. Jackson
2016-12-01
Full Text Available Longitudinal properties of electron bunches (energy spread and bunch length and their manipulation are of importance in free electron lasers (FELs, where magnetic bunch length compression is a common feature of beam transport. Recirculating accelerators and energy recovery linac accelerators (ERLs have been used as FEL drivers for several decades and control of longitudinal beam transport is particularly important in their magnet lattices. We report on measurements of longitudinal transport properties in an ERL-FEL, the ALICE (Accelerators and Lasers in Combined Experiments accelerator at Daresbury Laboratory. ALICE is an energy recovery research accelerator that drives an infrared free electron laser. By measuring the time of arrival of electron bunches, the canonical longitudinal transport quantities were measured in the beam transport and bunch compression sections of the lattice. ALICE includes a four-dipole bunch compression chicane providing fixed longitudinal transport, and triple bend achromat arcs including sextupole magnets where the first and second order longitudinal transport can be adjusted. The longitudinal transport properties in these lattice sections were measured and compared with the theoretical model of the lattice. A reasonable level of agreement has been found. The effect of sextupoles in second order, as well as first order, longitudinal correction is considered, with the measurements indicating the level of alignment of the beam to the center of the sextupole.
A Non-anthropic Solution to the Cosmological Constant Problem
Directory of Open Access Journals (Sweden)
Spivey R. J.
2016-01-01
Full Text Available Accelerating cosmological expansion is driven by a minuscule vacuum energy density possibly seeking opportunities to decay to a true ground state. Quasar characteristics imply their central engines possess an intrinsic magnetic field compatible with the pres- ence of an electrically charged toroidal dark hole, an eternally collapsing structure lack- ing an event horizon. The possibility is consistent with the inability of black holes to capture particles in a universe of finite age, Einstein’s dismissal of the Schwarzschild metric as unphysical and the implausibility of the various paradoxes invoked by black hole existence. The uncloaked innards of these dark holes would expose immense vac- uum accelerations at their cores, inevitably tempered by Planck scale physics. The Unruh effect predicts that intense yet highly localised heating should occur there. As thermal energy gradually amasses and dissipates, radiation would eventually start to escape into the surrounding environment. Virtual from the d ark hole perspective, the emissions could not decrease the dark hole’s mass: the energy source must instead be the universal vacuum, the likely repository of dark energy. In analogy with core- collapse supernovae, neutrinos should dominate the cooling flows. Red-shifting to low energies upon escape, quantum degenerate haloes should for m predominantly around the largest galaxies. This mechanism is promising from the perspective of enabling the future universe to efficiently sustain aquatic life before stars become scarce, offering a biological yet decidedly non-anthropic solution to the cosmological constant problem.
On estimating cosmology-dependent covariance matrices
International Nuclear Information System (INIS)
Morrison, Christopher B.; Schneider, Michael D.
2013-01-01
We describe a statistical model to estimate the covariance matrix of matter tracer two-point correlation functions with cosmological simulations. Assuming a fixed number of cosmological simulation runs, we describe how to build a 'statistical emulator' of the two-point function covariance over a specified range of input cosmological parameters. Because the simulation runs with different cosmological models help to constrain the form of the covariance, we predict that the cosmology-dependent covariance may be estimated with a comparable number of simulations as would be needed to estimate the covariance for fixed cosmology. Our framework is a necessary first step in planning a simulations campaign for analyzing the next generation of cosmological surveys
Classical and quantum cosmology
Calcagni, Gianluca
2017-01-01
This comprehensive textbook is devoted to classical and quantum cosmology, with particular emphasis on modern approaches to quantum gravity and string theory and on their observational imprint. It covers major challenges in theoretical physics such as the big bang and the cosmological constant problem. An extensive review of standard cosmology, the cosmic microwave background, inflation and dark energy sets the scene for the phenomenological application of all the main quantum-gravity and string-theory models of cosmology. Born of the author's teaching experience and commitment to bridging the gap between cosmologists and theoreticians working beyond the established laws of particle physics and general relativity, this is a unique text where quantum-gravity approaches and string theory are treated on an equal footing. As well as introducing cosmology to undergraduate and graduate students with its pedagogical presentation and the help of 45 solved exercises, this book, which includes an ambitious bibliography...
International Nuclear Information System (INIS)
Klebanov, I.; Susskind, L.
1988-10-01
We review Coleman's wormhole mechanism for the vanishing of the cosmological constant. We find a discouraging result that wormholes much bigger than the Planck size are generated. We also consider the implications of the wormhole theory for cosmology. 7 refs., 2 figs
Axions in inflationary cosmology
International Nuclear Information System (INIS)
Linde, A.
1991-01-01
The problem of the cosmological constraints on the axion mass is re-examined. It is argued that in the context of inflationary cosmology the constraint m a > or approx.10 -5 eV can be avoided even when the axion perturbations produced during inflation are taken into account. It is shown also that in most axion models the effective parameter f a rapidly changes during inflation. This modifies some earlier statements concerning isothermal perturbations in the axion cosmology. A hybrid inflation scenario is proposed which combines some advantages of chaotic inflation with specific features of new and/or extended inflation. Its implications for the axion cosmology are discussed. (orig.)
Testing cosmology with galaxy clusters
DEFF Research Database (Denmark)
Rapetti Serra, David Angelo
2011-01-01
PASCOS 2011 will be held in Cambridge UK. The conference will be hosted by the Centre for Theoretical Cosmology (DAMTP) at the Mathematical Sciences site in the University of Cambridge. The aim of the conference is to explore and develop synergies between particle physics, string theory and cosmo......PASCOS 2011 will be held in Cambridge UK. The conference will be hosted by the Centre for Theoretical Cosmology (DAMTP) at the Mathematical Sciences site in the University of Cambridge. The aim of the conference is to explore and develop synergies between particle physics, string theory...... and cosmology. There will be an emphasis on timely interdisciplinary topics: • critical tests of inflationary cosmology • advances in fundamental cosmology • applications of string theory (AdS/CMT) • particle and string phenomenology • new experimental particle physics results • and cosmological probes...
Symmetry breaking in nematic liquid crystals: analogy with cosmology and magnetism.
Repnik, R; Ranjkesh, A; Simonka, V; Ambrozic, M; Bradac, Z; Kralj, S
2013-10-09
Universal behavior related to continuous symmetry breaking in nematic liquid crystals is studied using Brownian molecular dynamics. A three-dimensional lattice system of rod-like objects interacting via the Lebwohl-Lasher interaction is considered. We test the applicability of predictions originally derived in cosmology and magnetism. In the first part we focus on coarsening dynamics following the temperature driven isotropic-nematic phase transition for different quench rates. The behavior in the early coarsening regime supports predictions made originally by Kibble in cosmology. For fast enough quenches, symmetry breaking and causality give rise to a dense tangle of defects. When the degree of orientational ordering is large enough, well defined protodomains characterized by a single average domain length are formed. With time subcritical domains gradually vanish and supercritical domains grow with time, exhibiting a universal scaling law. In the second part of the paper we study the impact of random-field-type disorder on a range of ordering in the (symmetry broken) nematic phase. We demonstrate that short-range order is observed even for a minute concentration of impurities, giving rise to disorder in line with the Imry-Ma theorem prediction only for the appropriate history of systems.
Implementation of the Lattice Boltzmann Method on Heterogeneous Hardware and Platforms using OpenCL
Directory of Open Access Journals (Sweden)
TEKIC, P. M.
2012-02-01
Full Text Available The Lattice Boltzmann method (LBM has become an alternative method for computational fluid dynamics with a wide range of applications. Besides its numerical stability and accuracy, one of the major advantages of LBM is its relatively easy parallelization and, hence, it is especially well fitted to many-core hardware as graphics processing units (GPU. The majority of work concerning LBM implementation on GPU's has used the CUDA programming model, supported exclusively by NVIDIA. Recently, the open standard for parallel programming of heterogeneous systems (OpenCL has been introduced. OpenCL standard matures and is supported on processors from most vendors. In this paper, we make use of the OpenCL framework for the lattice Boltzmann method simulation, using hardware accelerators - AMD ATI Radeon GPU, AMD Dual-Core CPU and NVIDIA GeForce GPU's. Application has been developed using a combination of Java and OpenCL programming languages. Java bindings for OpenCL have been utilized. This approach offers the benefits of hardware and operating system independence, as well as speeding up of lattice Boltzmann algorithm. It has been showed that the developed lattice Boltzmann source code can be executed without modification on all of the used hardware accelerators. Performance results have been presented and compared for the hardware accelerators that have been utilized.
International Nuclear Information System (INIS)
Davies, P.
1991-01-01
The main concepts of cosmology are discussed, and some of the misconceptions are clarified. The features of big bang cosmology are examined, and it is noted that the existence of the cosmic background radiation provides welcome confirmation of the big bang theory. Calculations of relative abundances of the elements conform with observations, further strengthening the confidence in the basic ideas of big bang cosmology
Cosmological applications in Kaluza—Klein theory
International Nuclear Information System (INIS)
Wanas, M.I.; Nashed, Gamal G. L.; Nowaya, A.A.
2012-01-01
The field equations of Kaluza—Klein (KK) theory have been applied in the domain of cosmology. These equations are solved for a flat universe by taking the gravitational and the cosmological constants as a function of time t. We use Taylor's expansion of cosmological function, Λ(t), up to the first order of the time t. The cosmological parameters are calculated and some cosmological problems are discussed. (geophysics, astronomy, and astrophysics)
Conformal symmetry and holographic cosmology
Bzowski, A.W.
2013-01-01
This thesis presents a novel approach to cosmology using gauge/gravity duality. Analysis of the implications of conformal invariance in field theories leads to quantitative cosmological predictions which are in agreement with current data. Furthermore, holographic cosmology extends the theory of
The cosmological term and a modified Brans-Dicke cosmology
International Nuclear Information System (INIS)
Endo, M.; Fukui, T.
1977-01-01
Adding the cosmological term Λ, which is assumed to be variable in this paper, to the Brans-Dicke Lagrangian, an attempt is made to understand the meaning of the term and to relate it to the mass of the universe. The Dirac large-number hypothesis is considered, applying the results obtained from the application of the present theory to a uniform cosmological model. (author)
Constraining viscous dark energy models with the latest cosmological data
Energy Technology Data Exchange (ETDEWEB)
Wang, Deng [Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Yan, Yang-Jie; Meng, Xin-He [Nankai University, Department of Physics, Tianjin (China)
2017-10-15
Based on the assumption that the dark energy possessing bulk viscosity is homogeneously and isotropically permeated in the universe, we propose three new viscous dark energy (VDE) models to characterize the accelerating universe. By constraining these three models with the latest cosmological observations, we find that they just deviate very slightly from the standard cosmological model and can alleviate effectively the current H{sub 0} tension between the local observation by the Hubble Space Telescope and the global measurement by the Planck Satellite. Interestingly, we conclude that a spatially flat universe in our VDE model with cosmic curvature is still supported by current data, and the scale invariant primordial power spectrum is strongly excluded at least at the 5.5σ confidence level in the three VDE models as the Planck result. We also give the 95% upper limits of the typical bulk viscosity parameter η in the three VDE scenarios. (orig.)
25th Rencontres de Blois on "Particle Physics and Cosmology"
2013-01-01
This will be the 25th meeting in this series of annual international multidisciplinary meetings, created in 1989 by Jean Tran Thân Van and which has in the past covered many topics in physics, astronomy and biology. All sessions take place in the Château of Blois, a beautiful renaissance castle which has housed many French kings, and notably François 1st. The 25th Rencontres de Blois on "Particle Physics and Cosmology" (Blois2013) will emphasize the increasing interplay between high energy accelerator based physics and cosmology. The conference will consist of plenary sessions for invited in-depth oral presentations (review talks) and contributed papers, in the form of relatively short oral papers. We will aim to achieve a balance between review talks, provocative talks given by recognized specialists, and shorter contributions. Special emphasis is being placed on active participation by younger researchers and post-docs. Parallel sessions are foreseen, and are being organised as the need arises.
Cosmology and Gravitation: the grand scheme for High-Energy Physics
Binétruy, P.
2014-12-10
These lectures describe how the Standard Model of cosmology ( Λ CDM) has developped, based on observational facts but also on ideas formed in the context of the theory of fundamental interactions, both gravitational and non-gravitational, the latter being described by the Standard Model of high energy physics. It focuses on the latest developments, in particular the precise knowledge of the early Universe provided by the observation of the Cosmic Microwave Background and the discovery of the present acceleration of the expansion of the Universe. While insisting on the successes of the Standard Model of cosmology, we will stress that it rests on three pillars which involve many open questions: the theory of inflation, the nature of dark matter and of dark energy. We will devote one chapter to each of these issues, describing in particular how this impacts our views on the theory of fundamental interactions. More technical parts are given in italics. They may be skipped altogether.
iCosmo: an interactive cosmology package
Refregier, A.; Amara, A.; Kitching, T. D.; Rassat, A.
2011-04-01
Aims: The interactive software package iCosmo, designed to perform cosmological calculations is described. Methods: iCosmo is a software package to perfom interactive cosmological calculations for the low-redshift universe. Computing distance measures, the matter power spectrum, and the growth factor is supported for any values of the cosmological parameters. It also computes derived observed quantities for several cosmological probes such as cosmic shear, baryon acoustic oscillations, and type Ia supernovae. The associated errors for these observable quantities can be derived for customised surveys, or for pre-set values corresponding to current or planned instruments. The code also allows for calculation of cosmological forecasts with Fisher matrices, which can be manipulated to combine different surveys and cosmological probes. The code is written in the IDL language and thus benefits from the convenient interactive features and scientific libraries available in this language. iCosmo can also be used as an engine to perform cosmological calculations in batch mode, and forms a convenient adaptive platform for the development of further cosmological modules. With its extensive documentation, it may also serve as a useful resource for teaching and for newcomers to the field of cosmology. Results: The iCosmo package is described with a number of examples and command sequences. The code is freely available with documentation at http://www.icosmo.org, along with an interactive web interface and is part of the Initiative for Cosmology, a common archive for cosmological resources.
Proceedings of the SLAC/KEK ATF lattice workshop
International Nuclear Information System (INIS)
Urakawa, Junji
1993-04-01
The SLAC/KEK ATF Lattice Workshop was held on December 8-11, 1992 at KEK, National Laboratory for High Energy Physics. The purpose of this workshop is to critically review the ATF lattice design for any possible improvements, and also to bring SLAC colleagues up to date on recent progress at KEK. At KEK studies on intense multi-bunch beam acceleration and emittance reduction have been actively pursued, evolving into the ATF project since 1990. In 1991 we have launched a large scale reconstruction of the experimental hall. This is to build the shielded housing for the 1.54 GeV injector linac and the test damping ring. Our plan is to begin construction of the linac in March 1993. Some results from the discussions during the Workshop have been already incorporated in the revised ATF lattice design. (J.P.N.)
Is the cosmological singularity compulsory
International Nuclear Information System (INIS)
Bekenstein, J.D.; Meisels, A.
1980-01-01
The cosmological singularity is inherent in all conventional general relativistic cosmological models. There can be no question that it is an unphysical feature; yet there does not seem to be any convervative way of eliminating it. Here we present singularity-free isotropic cosmological models which are indistinguishable from general relativistic ones at late times. They are based on the general theory of variable rest masses that we developed recently. Outside cosmology this theory simulates general relativity well. Thus it provides a framework incorporating those features which have made geneal relativity so sucessful while providing a way out of singularity dilemma. The cosmological models can be made to incorporate Dirac's large numbers hypothesis. G(now)/G(0)approx.10 -38
International Nuclear Information System (INIS)
Turner, Michael S.
1999-01-01
For two decades the hot big-bang model as been referred to as the standard cosmology - and for good reason. For just as long cosmologists have known that there are fundamental questions that are not answered by the standard cosmology and point to a grander theory. The best candidate for that grander theory is inflation + cold dark matter. It holds that the Universe is flat, that slowly moving elementary particles left over from the earliest moments provide the cosmic infrastructure, and that the primeval density inhomogeneities that seed all the structure arose from quantum fluctuations. There is now prima facie evidence that supports two basic tenets of this paradigm. An avalanche of high-quality cosmological observations will soon make this case stronger or will break it. Key questions remain to be answered; foremost among them are: identification and detection of the cold dark matter particles and elucidation of the dark-energy component. These are exciting times in cosmology!
Energy Technology Data Exchange (ETDEWEB)
Turner, Michael S
1999-03-01
For two decades the hot big-bang model as been referred to as the standard cosmology - and for good reason. For just as long cosmologists have known that there are fundamental questions that are not answered by the standard cosmology and point to a grander theory. The best candidate for that grander theory is inflation + cold dark matter. It holds that the Universe is flat, that slowly moving elementary particles left over from the earliest moments provide the cosmic infrastructure, and that the primeval density inhomogeneities that seed all the structure arose from quantum fluctuations. There is now prima facie evidence that supports two basic tenets of this paradigm. An avalanche of high-quality cosmological observations will soon make this case stronger or will break it. Key questions remain to be answered; foremost among them are: identification and detection of the cold dark matter particles and elucidation of the dark-energy component. These are exciting times in cosmology{exclamation_point}.
Partial rip scenario - a cosmology with a growing cosmological term
International Nuclear Information System (INIS)
Stefancic, H.
2004-01-01
A cosmology with the growing cosmological term is considered. If there is no exchange of energy between vacuum and matter components, the requirement of general covariance implies the time dependence of the gravitational constant G. Irrespectively of the exact functional form of the cosmological term growth, the universe ends in a de Sitter regime with a constant asymptotic Λ, but vanishing G. Although there is no divergence of the scale factor in finite time, such as in the 'Big Rip' scenario, gravitationally bound systems eventually become unbound. In the case of systems bound by non-gravitational forces, there is no unbounding effect, as the asymptotic Λ is insufficiently large to disturb these systems
Energy Technology Data Exchange (ETDEWEB)
Moresco, Michele; Cimatti, Andrea; Citro, Annalisa [Dipartimento di Fisica e Astronomia, Università di Bologna, V.le Berti Pichat, 6/2, 40127, Bologna (Italy); Pozzetti, Lucia [INAF—Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna (Italy); Jimenez, Raul; Verde, Licia [ICREA and ICC, University of Barcelona (IEEC-UB), Barcelona 08028 (Spain); Maraston, Claudia; Thomas, Daniel; Wilkinson, David [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom); Tojeiro, Rita, E-mail: michele.moresco@unibo.it, E-mail: lucia.pozzetti@oabo.inaf.it, E-mail: a.cimatti@unibo.it, E-mail: rauljimenez@g.harvard.edu, E-mail: claudia.maraston@port.ac.uk, E-mail: liciaverde@icc.ub.edu, E-mail: daniel.thomas@port.ac.uk, E-mail: annalisa.citro@unibo.it, E-mail: rmftr@st-andrews.ac.uk, E-mail: david.wilkinson@port.ac.uk [School of Physics and Astronomy, University of St. Andrews, Saint Andrews, KY16 9SS (United Kingdom)
2016-05-01
Deriving the expansion history of the Universe is a major goal of modern cosmology. To date, the most accurate measurements have been obtained with Type Ia Supernovae (SNe) and Baryon Acoustic Oscillations (BAO), providing evidence for the existence of a transition epoch at which the expansion rate changes from decelerated to accelerated. However, these results have been obtained within the framework of specific cosmological models that must be implicitly or explicitly assumed in the measurement. It is therefore crucial to obtain measurements of the accelerated expansion of the Universe independently of assumptions on cosmological models. Here we exploit the unprecedented statistics provided by the Baryon Oscillation Spectroscopic Survey (BOSS, [1-3]) Data Release 9 to provide new constraints on the Hubble parameter H ( z ) using the cosmic chronometers approach. We extract a sample of more than 130000 of the most massive and passively evolving galaxies, obtaining five new cosmology-independent H ( z ) measurements in the redshift range 0.3 < z < 0.5, with an accuracy of ∼11–16% incorporating both statistical and systematic errors. Once combined, these measurements yield a 6% accuracy constraint of H ( z = 0.4293) = 91.8 ± 5.3 km/s/Mpc. The new data are crucial to provide the first cosmology-independent determination of the transition redshift at high statistical significance, measuring z {sub t} = 0.4 ± 0.1, and to significantly disfavor the null hypothesis of no transition between decelerated and accelerated expansion at 99.9% confidence level. This analysis highlights the wide potential of the cosmic chronometers approach: it permits to derive constraints on the expansion history of the Universe with results competitive with standard probes, and most importantly, being the estimates independent of the cosmological model, it can constrain cosmologies beyond—and including—the ΛCDM model.
International Nuclear Information System (INIS)
Moresco, Michele; Cimatti, Andrea; Citro, Annalisa; Pozzetti, Lucia; Jimenez, Raul; Verde, Licia; Maraston, Claudia; Thomas, Daniel; Wilkinson, David; Tojeiro, Rita
2016-01-01
Deriving the expansion history of the Universe is a major goal of modern cosmology. To date, the most accurate measurements have been obtained with Type Ia Supernovae (SNe) and Baryon Acoustic Oscillations (BAO), providing evidence for the existence of a transition epoch at which the expansion rate changes from decelerated to accelerated. However, these results have been obtained within the framework of specific cosmological models that must be implicitly or explicitly assumed in the measurement. It is therefore crucial to obtain measurements of the accelerated expansion of the Universe independently of assumptions on cosmological models. Here we exploit the unprecedented statistics provided by the Baryon Oscillation Spectroscopic Survey (BOSS, [1-3]) Data Release 9 to provide new constraints on the Hubble parameter H ( z ) using the cosmic chronometers approach. We extract a sample of more than 130000 of the most massive and passively evolving galaxies, obtaining five new cosmology-independent H ( z ) measurements in the redshift range 0.3 < z < 0.5, with an accuracy of ∼11–16% incorporating both statistical and systematic errors. Once combined, these measurements yield a 6% accuracy constraint of H ( z = 0.4293) = 91.8 ± 5.3 km/s/Mpc. The new data are crucial to provide the first cosmology-independent determination of the transition redshift at high statistical significance, measuring z t = 0.4 ± 0.1, and to significantly disfavor the null hypothesis of no transition between decelerated and accelerated expansion at 99.9% confidence level. This analysis highlights the wide potential of the cosmic chronometers approach: it permits to derive constraints on the expansion history of the Universe with results competitive with standard probes, and most importantly, being the estimates independent of the cosmological model, it can constrain cosmologies beyond—and including—the ΛCDM model.
Axion cold dark matter in nonstandard cosmologies
International Nuclear Information System (INIS)
Visinelli, Luca; Gondolo, Paolo
2010-01-01
We study the parameter space of cold dark matter axions in two cosmological scenarios with nonstandard thermal histories before big bang nucleosynthesis: the low-temperature reheating (LTR) cosmology and the kination cosmology. If the Peccei-Quinn symmetry breaks during inflation, we find more allowed parameter space in the LTR cosmology than in the standard cosmology and less in the kination cosmology. On the contrary, if the Peccei-Quinn symmetry breaks after inflation, the Peccei-Quinn scale is orders of magnitude higher than standard in the LTR cosmology and lower in the kination cosmology. We show that the axion velocity dispersion may be used to distinguish some of these nonstandard cosmologies. Thus, axion cold dark matter may be a good probe of the history of the Universe before big bang nucleosynthesis.
Dark Energy Survey Year 1 Results: The Photometric Data Set for Cosmology
Drlica-Wagner, A.; Sevilla-Noarbe, I.; Rykoff, E. S.; Gruendl, R. A.; Yanny, B.; Tucker, D. L.; Hoyle, B.; Carnero Rosell, A.; Bernstein, G. M.; Bechtol, K.; Becker, M. R.; Benoit-Lévy, A.; Bertin, E.; Carrasco Kind, M.; Davis, C.; de Vicente, J.; Diehl, H. T.; Gruen, D.; Hartley, W. G.; Leistedt, B.; Li, T. S.; Marshall, J. L.; Neilsen, E.; Rau, M. M.; Sheldon, E.; Smith, J.; Troxel, M. A.; Wyatt, S.; Zhang, Y.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Banerji, M.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Dietrich, J. P.; Doel, P.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Giannantonio, T.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Jeltema, T.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Lima, M.; Lin, H.; Maia, M. A. G.; Martini, P.; McMahon, R. G.; Melchior, P.; Menanteau, F.; Miquel, R.; Nichol, R. C.; Ogando, R. L. C.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Zuntz, J.; DES Collaboration
2018-04-01
We describe the creation, content, and validation of the Dark Energy Survey (DES) internal year-one cosmology data set, Y1A1 GOLD, in support of upcoming cosmological analyses. The Y1A1 GOLD data set is assembled from multiple epochs of DES imaging and consists of calibrated photometric zero-points, object catalogs, and ancillary data products—e.g., maps of survey depth and observing conditions, star–galaxy classification, and photometric redshift estimates—that are necessary for accurate cosmological analyses. The Y1A1 GOLD wide-area object catalog consists of ∼ 137 million objects detected in co-added images covering ∼ 1800 {\\deg }2 in the DES grizY filters. The 10σ limiting magnitude for galaxies is g=23.4, r=23.2, i=22.5, z=21.8, and Y=20.1. Photometric calibration of Y1A1 GOLD was performed by combining nightly zero-point solutions with stellar locus regression, and the absolute calibration accuracy is better than 2% over the survey area. DES Y1A1 GOLD is the largest photometric data set at the achieved depth to date, enabling precise measurements of cosmic acceleration at z ≲ 1.
Cosmology and the early universe
Di Bari, Pasquale
2018-01-01
This book discusses cosmology from both an observational and a strong theoretical perspective. The first part focuses on gravitation, notably the expansion of the universe and determination of cosmological parameters, before moving onto the main emphasis of the book, the physics of the early universe, and the connections between cosmological models and particle physics. Readers will gain a comprehensive account of cosmology and the latest observational results, without requiring prior knowledge of relativistic theories, making the text ideal for students.
Evidence for maximal acceleration and singularity resolution in covariant loop quantum gravity.
Rovelli, Carlo; Vidotto, Francesca
2013-08-30
A simple argument indicates that covariant loop gravity (spin foam theory) predicts a maximal acceleration and hence forbids the development of curvature singularities. This supports the results obtained for cosmology and black holes using canonical methods.
International Nuclear Information System (INIS)
Stecker, F.W.
1989-01-01
This paper discusses two aspects of antimatter and cosmology: 1. the fundamental cosmological question as to whether antimatter plays an equally important role as matter in the universe (overall baryon symmetry), and 2. cosmic-ray antimatter tests for the nature of the dark matter in the universe. (orig.)
International Nuclear Information System (INIS)
Surdin, M.
1980-01-01
It is shown that viewed from the 'outside', our universe is a black hole. Hence the 'inside' cosmology considered is termed as the Bright Universe Cosmology. The model proposed avoids the singularities of cosmologies of the Big Bang variety, it gives a good account of the redshifts, the cosmic background radiation, the number counts; it also gives a satisfactory explanation of the 'large numbers coincidence' and of the variation in time of fundamental constants. (Auth.)
Acceleration and dissolution of stars in the antibang
International Nuclear Information System (INIS)
Harrison, E.R.
1983-01-01
If the universe is spatially closed, and the simplest cosmological models are valid approximations, then in 10 11 years the universe will recollapse into an antibang. Stars will then accelerate. In this paper, the author calculates the temperatures at which black dwarfs, white dwarfs and neutron stars become maximally relativistic. He also calculates the temperatures at which these stars are subjected to dissolution. It turns out that the maximal relativistic speeds will never be attained. Besides those, the increase of entropy due to the acceleration is calculated. (Auth.)
Tunneling in cosmology and isothermal inflation
International Nuclear Information System (INIS)
Brout, R.; Spindel, P.
1991-01-01
The wave function for the universe, as proposed by Hartle and Hawking, experiences tunneling for small values of the radius of the universe. This induces thermal effects and so a hot big bang. We first give a detailed analysis of the observer accelerating in Minkowski space in terms of the tunneling of his wave function beyond his turning point. Applied to cosmology one finds a temperature at the big bang equal to the Gibbons-Hawking value. The residual thermal effects which result in an isothermal inflationary expansion give rise to a renormalized self-consistently determined Hubble constant (and hence Gibbons-Hawking temperature) through the trace anomaly. A thermodynamic interpretation is given. These results militate against phase transitions as a motor for inflation. (orig.)
Friedmann cosmology with a cosmological 'constant' in the scale covariant theory
International Nuclear Information System (INIS)
Beesham, A.
1986-01-01
Homogeneous isotropic cosmologies in the presence of a cosmological 'constant' are studied in the scale covariant theory. A class of solutions is obtained for kappa = 0 for models filled with dust, radiation or stiff matter. For kappa not= 0, solutions are presented for the radiation models. (author)
Arguments concerning Relativity and Cosmology.
Klein, O
1971-01-29
In the first place I have reviewed the true foundation of Einstein's theory of general relativity, the so-called principle of equivalence, according to which there is no essential difference between "genuine" gravitation and inertial forces, well known from accelerated vehicles. By means of a comparison with Gaussian geometry of curved surfaces-the background of Riemannian geometry, the tool used by Einstein for the mathematical formulation of his theory-it is made clear that this principle is incompatible with the idea proposed by Mach and accepted by Einstein as an incitement to his attempt to describe the main situation in the universe as an analogy in three dimensions to the closed surface of a sphere. In the later attempts toward a mathematical description of the universe, where Einstein's cosmology was adapted to the discovery by Hubble that its observed part is expanding, the socalled cosmological postulate has been used as a kind of axiomatic background which, when analyzed, makes it probable that this expansion is shared by a very big, but still bounded system. This implies that our expanding metagalaxy is probably just one of a type of stellar objects in different phases of evolution, some expanding and some contracting. Some attempts toward the description of this evolution are sketched in the article with the hope that further investigation, theoretical and observational, may lead to an interesting advance in this part of astrophysics.
Interactions in the Dark Sector of Cosmology
Bean, Rachel
The success of modern cosmology hinges on two dramatic augmentations beyond the minimalist assumption of baryonic matter interacting gravitationally through general relativity. The first assumption is that there must exist either new gravitational dynamics or a new component of the cosmic energy budget - dark matter - that allows structure to form and accounts for weak lensing and galactic rotation curves. The second assumption is that a further dynamical modification or energy component - dark energy - exists, driving late-time cosmic acceleration. The need for these is now firmly established through a host of observations, which have raised crucial questions, and present a deep challenge to fundamental physics. The central theme of this proposal is the detailed understanding of the nature of the dark sector through the inevitable interactions between its individual components and with the visible universe. Such interactions can be crucial to a given model's viability, affecting its capability to reproduce the cosmic expansion history; the detailed predictions or structure formation; the gravitational dynamics on astrophysical and solar system scales; the stability of the microphysical model, and its ultimate consistency. While many models are consistent with cosmology on the coarsest scales, as is often the case, the devil may lie in the details. In this proposal we plan a comprehensive analysis of these details, focusing on the interactions within the dark sector and between it and visible matter, and on how these interactions affect the observational and theoretical consistency of models. Since it is unlikely that there will be a silver bullet allowing us to isolate the cause of cosmic acceleration, it is critical to develop a coherent view of the landscape of proposed models, extract clear predictions, and determine what combination of experiments and observations might allow us to test these predictions.
Cosmological Probes for Supersymmetry
Directory of Open Access Journals (Sweden)
Maxim Khlopov
2015-05-01
Full Text Available The multi-parameter character of supersymmetric dark-matter models implies the combination of their experimental studies with astrophysical and cosmological probes. The physics of the early Universe provides nontrivial effects of non-equilibrium particles and primordial cosmological structures. Primordial black holes (PBHs are a profound signature of such structures that may arise as a cosmological consequence of supersymmetric (SUSY models. SUSY-based mechanisms of baryosynthesis can lead to the possibility of antimatter domains in a baryon asymmetric Universe. In the context of cosmoparticle physics, which studies the fundamental relationship of the micro- and macro-worlds, the development of SUSY illustrates the main principles of this approach, as the physical basis of the modern cosmology provides cross-disciplinary tests in physical and astronomical studies.
A Framework for Lattice QCD Calculations on GPUs
Energy Technology Data Exchange (ETDEWEB)
Winter, Frank; Clark, M A; Edwards, Robert G; Joo, Balint
2014-08-01
Computing platforms equipped with accelerators like GPUs have proven to provide great computational power. However, exploiting such platforms for existing scientific applications is not a trivial task. Current GPU programming frameworks such as CUDA C/C++ require low-level programming from the developer in order to achieve high performance code. As a result porting of applications to GPUs is typically limited to time-dominant algorithms and routines, leaving the remainder not accelerated which can open a serious Amdahl's law issue. The lattice QCD application Chroma allows to explore a different porting strategy. The layered structure of the software architecture logically separates the data-parallel from the application layer. The QCD Data-Parallel software layer provides data types and expressions with stencil-like operations suitable for lattice field theory and Chroma implements algorithms in terms of this high-level interface. Thus by porting the low-level layer one can effectively move the whole application in one swing to a different platform. The QDP-JIT/PTX library, the reimplementation of the low-level layer, provides a framework for lattice QCD calculations for the CUDA architecture. The complete software interface is supported and thus applications can be run unaltered on GPU-based parallel computers. This reimplementation was possible due to the availability of a JIT compiler (part of the NVIDIA Linux kernel driver) which translates an assembly-like language (PTX) to GPU code. The expression template technique is used to build PTX code generators and a software cache manages the GPU memory. This reimplementation allows us to deploy an efficient implementation of the full gauge-generation program with dynamical fermions on large-scale GPU-based machines such as Titan and Blue Waters which accelerates the algorithm by more than an order of magnitude.
International Nuclear Information System (INIS)
Zeldovich, Ya.
1984-01-01
The knowledge is summed up of contemporary cosmology on the universe and its development resulting from a great number of highly sensitive observations and the application of contemporary physical theories to the entire universe. The questions are assessed of mass density in the universe, the structure and origin of the universe, its baryon asymmetry and the quantum explanation of the origin of the universe. Physical problems are presented which should be resolved for the future development of cosmology. (Ha)
CERN. Geneva
2007-01-01
The understanding of the Universe at the largest and smallest scales traditionally has been the subject of cosmology and particle physics, respectively. Studying the evolution of the Universe connects today's large scales with the tiny scales in the very early Universe and provides the link between the physics of particles and of the cosmos. This series of five lectures aims at a modern and critical presentation of the basic ideas, methods, models and observations in today's particle cosmology.
International Nuclear Information System (INIS)
Vilenkin, Alexander
2010-01-01
The n ew standard cosmology , based on the theory of inflation, has very impressive observational support. I review some outstanding problems of the new cosmology and the global view of the universe - the multiverse - that it suggests. I focus in particular on prospects for further observational tests of inflation and of the multiverse.
International Nuclear Information System (INIS)
Schramm, D.N.; Fields, B.; Thomas, D.
1992-01-01
The possible implications of the quark-hadron transition for cosmology are explored. Possible surviving signatures are discussed. In particular, the possibility of generating a dark matter candidate such as strange nuggets or planetary mass black holes is noted. Much discussion is devoted to the possible role of the transition for cosmological nucleosynthesis. It is emphasized that even an optimized first order phase transition will not significantly alter the nucleosynthesis constraints on the cosmological baryon density nor on neutrino counting. However, it is noted that Be and B observations in old stars may eventually be able to be a signature of a cosmologically significant quark-hadron transition. It is pointed out that the critical point in this regard is whether the observed B/Be ratio can be produced by spallation processes or requires cosmological input. Spallation cannot produce a B/Be ratio below 7.6. A supporting signature would be Be and B ratios to oxygen that greatly exceed galactic values. At present, all data is still consistent with a spallagenic origin
Standard cosmological evolution in the f(R) model to Kaluza-Klein cosmology
International Nuclear Information System (INIS)
Aghmohammadi, A; Abolhassani, M R; Saaidi, Kh; Vajdi, A
2009-01-01
In this paper, using f(R) theory of gravity we explicitly calculate cosmological evolution in the presence of a perfect fluid source in four- and five-dimensional space-time in which this cosmological evolution in self-creation is presented by Reddy et al (2009 Int. J. Theor. Phys. 48 10). An exact cosmological model is presented using a relation between Einstein's gravity field equation components due to a metric with the same component from f(R) theory of gravity. Some physics and kinematical properties of the model are also discussed.
An Introduction to General Relativity and Cosmology
International Nuclear Information System (INIS)
Wainwright, John
2007-01-01
-Walker geometry and the FL models. The rest of part II, two lengthy chapters, deals with two classes of solutions of Einstein's field equations that represent spatially inhomogeneous cosmological models, and that contain the FL models as a special case. Parts of these two chapters are based on Krasinski's book on inhomogeneous cosmologies, with the difference that the present work does not attempt to be comprehensive, but instead provides clear derivations of the most important results. A potential reader may ask how this book differs from other texts on general relativity. It is unique in a number of respects. First is the authors' emphasis on spatially inhomogeneous cosmological models, i.e. models that do not satisfy the cosmological principle. The authors appear to have reservations about the almost universal preference in the cosmological community for working within the framework of the FL models, combined with the inflationary scenario in the very early universe, and these reservations motivate the above emphasis. They remind the reader that the FL models are based on the cosmological principle, which has a philosophical rather than a physical status, since it cannot be directly tested by observation. In other words, observations alone do not uniquely select the FL models. Moreover the interpretation of cosmological observations depends on the choice of the underlying spacetime geometry. For example, there is ambiguity in inferring the spatial distribution of matter from redshift measurements. The authors discuss in some detail the work of Kurki-Suonio and Liang to illustrate this point. They also refer to Celerier who shows that the high redshift type Ia supernovae observations are compatible with a Lemaitre-Tolman model with zero cosmological constant, i.e. these observations do not imply that the universe is accelerating if one considers models more general than the FL models, in contrast to the usual interpretation. The authors also give a critique of the cosmological
An introduction to modern cosmology
Liddle, Andrew
2015-01-01
An Introduction to Modern Cosmology Third Edition is an accessible account of modern cosmological ideas. The Big Bang Cosmology is explored, looking at its observational successes in explaining the expansion of the Universe, the existence and properties of the cosmic microwave background, and the origin of light elements in the universe. Properties of the very early Universe are also covered, including the motivation for a rapid period of expansion known as cosmological inflation. The third edition brings this established undergraduate textbook up-to-date with the rapidly evolving observation
Perturbations in loop quantum cosmology
International Nuclear Information System (INIS)
Nelson, W; Agullo, I; Ashtekar, A
2014-01-01
The era of precision cosmology has allowed us to accurately determine many important cosmological parameters, in particular via the CMB. Confronting Loop Quantum Cosmology with these observations provides us with a powerful test of the theory. For this to be possible, we need a detailed understanding of the generation and evolution of inhomogeneous perturbations during the early, quantum gravity phase of the universe. Here, we have described how Loop Quantum Cosmology provides a completion of the inflationary paradigm, that is consistent with the observed power spectra of the CMB
Kunze, Kerstin E.
2016-12-20
Cosmology is becoming an important tool to test particle physics models. We provide an overview of the standard model of cosmology with an emphasis on the observations relevant for testing fundamental physics.
Cosmological horizons, quintessence and string theory
International Nuclear Information System (INIS)
Kaloper, Nemanja
2003-01-01
String theory is presently the best candidate for a quantum theory of gravity unified with other forces. It is natural to hope that applications of string theory to cosmology may shed new light on the cosmological conundra, such as singularities, initial conditions, cosmological constant problem and the origin of inflation. Before we can apply string theory to cosmology, there are important conceptual and practical problems which must be addressed. We have reviewed here some of these problems, related to how one defines string theory in a cosmological setting. (author)
Subatomic Physics and Cosmology Laboratory - LPSC Grenoble. Activity report 2008-2009
International Nuclear Information System (INIS)
Berat, Corinne; Baylac, Maud; Cholat, Christine; Collot, Johann; Derome, Laurent; Kox, Serge; Lamy, Thierry; Pelletier, Jacques; Renault, Cecile; Real, Jean-Sebastien; Regairaz, William; Richard, Jean-Marc; Vernay, Emmanuelle; Favro, Christian
2010-01-01
seek answers to the existence of dark matter and dark energy in the universe. The locations of the experiments are very diverse: ground-based, underground-based or even satellite-based. LPSC also studies artificially created short-lived particles (created by accelerators which our laboratory helps to design) or cosmic particles that were produced at different epochs of the history of the universe. These activities require the development of sophisticated, state-of-the-art instrumentation. A close collaboration between physicists, engineers and technicians is required to achieve the required performance. In addition, a strong theoretical research activity supports the experiments during the preparatory stages and during the data analysis. This report presents the activities of the laboratory during the years 2008-2009: 1 - Forewords, Presentation of the laboratory; 2 - Quarks, leptons and FUNDAMENTAL INTERACTIONS (DΦ experiment at Tevatron, ATLAS experiment at LHC, International Linear Collider (ILC) project, Ultra-cold Neutrons (UCN); 3 - Astro-particles and Observational Cosmology (ultra-high energy cosmic radiation, ultra-high energy cosmic rays: Auger and CODALEMA projects, fossil radiation study with PLANCK, Large Synoptic Survey Telescope (LSST) experiment and theoretical activity, MIMAC (MIcro-tpc MAtrix of Chambers) project; 4 - Hadrons and nuclei (neutron-rich nuclei structure, nucleon structure, ALICE experiment at LHC); 5 - Reactor physics: Molten Salt Fast Reactor (MSFR), Molten Salt physico-chemistry and technologies, nuclear data, High Conversion Water Reactors (HCWR) simulation, ADS on-line reactivity monitoring validation (GUINEVERE project); 6 - Theoretical physics (nuclei, hadrons and few-body systems, lattice QCD, perturbative QCD and supersymmetry); 7 - Interdisciplinary research (hadron-therapy, Tomography, Research centre on plasmas-materials-nano-structures - CRPMN); 8 - Accelerators (SPIRAL2 Project, GENEPI-3C accelerator, 60 GHz ECR ion source
Cosmology and fundamental physics with the Euclid satellite.
Amendola, Luca; Appleby, Stephen; Avgoustidis, Anastasios; Bacon, David; Baker, Tessa; Baldi, Marco; Bartolo, Nicola; Blanchard, Alain; Bonvin, Camille; Borgani, Stefano; Branchini, Enzo; Burrage, Clare; Camera, Stefano; Carbone, Carmelita; Casarini, Luciano; Cropper, Mark; de Rham, Claudia; Dietrich, Jörg P; Di Porto, Cinzia; Durrer, Ruth; Ealet, Anne; Ferreira, Pedro G; Finelli, Fabio; García-Bellido, Juan; Giannantonio, Tommaso; Guzzo, Luigi; Heavens, Alan; Heisenberg, Lavinia; Heymans, Catherine; Hoekstra, Henk; Hollenstein, Lukas; Holmes, Rory; Hwang, Zhiqi; Jahnke, Knud; Kitching, Thomas D; Koivisto, Tomi; Kunz, Martin; La Vacca, Giuseppe; Linder, Eric; March, Marisa; Marra, Valerio; Martins, Carlos; Majerotto, Elisabetta; Markovic, Dida; Marsh, David; Marulli, Federico; Massey, Richard; Mellier, Yannick; Montanari, Francesco; Mota, David F; Nunes, Nelson J; Percival, Will; Pettorino, Valeria; Porciani, Cristiano; Quercellini, Claudia; Read, Justin; Rinaldi, Massimiliano; Sapone, Domenico; Sawicki, Ignacy; Scaramella, Roberto; Skordis, Constantinos; Simpson, Fergus; Taylor, Andy; Thomas, Shaun; Trotta, Roberto; Verde, Licia; Vernizzi, Filippo; Vollmer, Adrian; Wang, Yun; Weller, Jochen; Zlosnik, Tom
2018-01-01
Euclid is a European Space Agency medium-class mission selected for launch in 2020 within the cosmic vision 2015-2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid's Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.
Cosmology and fundamental physics with the Euclid satellite
Amendola, Luca; Appleby, Stephen; Avgoustidis, Anastasios; Bacon, David; Baker, Tessa; Baldi, Marco; Bartolo, Nicola; Blanchard, Alain; Bonvin, Camille; Borgani, Stefano; Branchini, Enzo; Burrage, Clare; Camera, Stefano; Carbone, Carmelita; Casarini, Luciano; Cropper, Mark; de Rham, Claudia; Dietrich, Jörg P.; Di Porto, Cinzia; Durrer, Ruth; Ealet, Anne; Ferreira, Pedro G.; Finelli, Fabio; García-Bellido, Juan; Giannantonio, Tommaso; Guzzo, Luigi; Heavens, Alan; Heisenberg, Lavinia; Heymans, Catherine; Hoekstra, Henk; Hollenstein, Lukas; Holmes, Rory; Hwang, Zhiqi; Jahnke, Knud; Kitching, Thomas D.; Koivisto, Tomi; Kunz, Martin; La Vacca, Giuseppe; Linder, Eric; March, Marisa; Marra, Valerio; Martins, Carlos; Majerotto, Elisabetta; Markovic, Dida; Marsh, David; Marulli, Federico; Massey, Richard; Mellier, Yannick; Montanari, Francesco; Mota, David F.; Nunes, Nelson J.; Percival, Will; Pettorino, Valeria; Porciani, Cristiano; Quercellini, Claudia; Read, Justin; Rinaldi, Massimiliano; Sapone, Domenico; Sawicki, Ignacy; Scaramella, Roberto; Skordis, Constantinos; Simpson, Fergus; Taylor, Andy; Thomas, Shaun; Trotta, Roberto; Verde, Licia; Vernizzi, Filippo; Vollmer, Adrian; Wang, Yun; Weller, Jochen; Zlosnik, Tom
2018-04-01
Euclid is a European Space Agency medium-class mission selected for launch in 2020 within the cosmic vision 2015-2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid's Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.
Cosmology and Fundamental Physics with the Euclid Satellite
Directory of Open Access Journals (Sweden)
Luca Amendola
2013-09-01
Full Text Available Euclid is a European Space Agency medium-class mission selected for launch in 2019 within the Cosmic Vision 2015-2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid's Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.
Cosmological histories in bimetric gravity: a graphical approach
International Nuclear Information System (INIS)
Mörtsell, E.
2017-01-01
The bimetric generalization of general relativity has been proven to be able to give an accelerated background expansion consistent with observations. Apart from the energy densities coupling to one or both of the metrics, the expansion will depend on the cosmological constant contribution to each of them, as well as the three parameters describing the interaction between the two metrics. Even for fixed values of these parameters can several possible solutions, so called branches, exist. Different branches can give similar background expansion histories for the observable metric, but may have different properties regarding, for example, the existence of ghosts and the rate of structure growth. In this paper, we outline a method to find viable solution branches for arbitrary parameter values. We show how possible expansion histories in bimetric gravity can be inferred qualitatively, by picturing the ratio of the scale factors of the two metrics as the spatial coordinate of a particle rolling along a frictionless track. A particularly interesting example discussed is a specific set of parameter values, where a cosmological dark matter background is mimicked without introducing ghost modes into the theory.
Quintessence and the cosmological constant
International Nuclear Information System (INIS)
Doran, M.; Wetterich, C.
2003-01-01
Quintessence -- the energy density of a slowly evolving scalar field -- may constitute a dynamical form of the homogeneous dark energy in the universe. We review the basic idea in the light of the cosmological constant problem. Cosmological observations or a time variation of fundamental 'constants' can distinguish quintessence from a cosmological constant
FRW cosmology in F(R,T) gravity
International Nuclear Information System (INIS)
Myrzakulov, Ratbay
2012-01-01
In this paper, we consider a theory of gravity with a metric-dependent torsion namely the F(R,T) gravity, where R is the curvature scalar and T is the torsion scalar. We study the geometric root of such theory. In particular we give the derivation of the model from the geometrical point of view. Then we present the more general form of F(R,T) gravity with two arbitrary functions and give some of its particular cases. In particular, the usual F(R) and F(T) gravity theories are particular cases of the F(R,T) gravity. In the cosmological context, we find that our new gravitational theory can describe the accelerated expansion of the Universe. (orig.)
On the cosmology of scalar-tensor-vector gravity theory
Jamali, Sara; Roshan, Mahmood; Amendola, Luca
2018-01-01
We consider the cosmological consequences of a special scalar-tensor-vector theory of gravity, known as MOG (for MOdified Gravity), proposed to address the dark matter problem. This theory introduces two scalar fields G(x) and μ(x), and one vector field phiα(x), in addition to the metric tensor. We set the corresponding self-interaction potentials to zero, as in the standard form of MOG. Then using the phase space analysis in the flat Friedmann-Robertson-Walker background, we show that the theory possesses a viable sequence of cosmological epochs with acceptable time dependency for the cosmic scale factor. We also investigate MOG's potential as a dark energy model and show that extra fields in MOG cannot provide a late time accelerated expansion. Furthermore, using a dynamical system approach to solve the non-linear field equations numerically, we calculate the angular size of the sound horizon, i.e. θs, in MOG. We find that 8× 10‑3rad<θs<8.2× 10‑3 rad which is way outside the current observational bounds. Finally, we generalize MOG to a modified form called mMOG, and we find that mMOG passes the sound-horizon constraint. However, mMOG also cannot be considered as a dark energy model unless one adds a cosmological constant, and more importantly, the matter dominated era is still slightly different from the standard case.
Energy Technology Data Exchange (ETDEWEB)
Vilenkin, Alexander, E-mail: vilenkin@cosmos.phy.tufts.ed [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)
2010-01-01
The 'new standard cosmology', based on the theory of inflation, has very impressive observational support. I review some outstanding problems of the new cosmology and the global view of the universe - the multiverse - that it suggests. I focus in particular on prospects for further observational tests of inflation and of the multiverse.
Inflation and quantum cosmology
International Nuclear Information System (INIS)
Linde, A.
1991-01-01
In this article a review of the present status of inflationary cosmology is given. We start with a discussion of the simplest version of the chaotic inflation scenario. Then we discuss some recent develoments in the inflationary cosmology, including the theory of a self-reproducing inflationary universe (eternal chaotic inflation). We do it with the help of stochastic approach to inflation. The results obtained within this approach are compared with the results obtained in the context of Euclidean quantum cosmology. (WL)
National software infrastructure for lattice gauge theory
International Nuclear Information System (INIS)
Brower, Richard C
2005-01-01
The current status of the SciDAC software infrastructure project for lattice gauge theory is summarized. This includes the the design of a QCD application programmers interface (API) that allows existing and future codes to be run efficiently on Terascale hardware facilities and to be rapidly ported to new dedicated or commercial platforms. The critical components of the API have been implemented and are in use on the US QCDOC hardware at BNL and on both the switched and mesh architecture Pentium 4 clusters at Fermi National Accelerator Laboratory (FNAL) and Thomas Jefferson National Accelerator Facility (JLab). Future software infrastructure requirements and research directions are also discussed
Cosmological dynamical systems
Leon, Genly
2011-01-01
In this book are studied, from the perspective of the dynamical systems, several Universe models. In chapter 1 we give a bird's eye view on cosmology and cosmological problems. Chapter 2 is devoted to a brief review on some results and useful tools from the qualitative theory of dynamical systems. They provide the theoretical basis for the qualitative study of concrete cosmological models. Chapters 1 and 2 are a review of well-known results. Chapters 3, 4, 5 and 6 are devoted to our main results. In these chapters are extended and settled in a substantially different, more strict mathematical language, several results obtained by one of us in arXiv:0812.1013 [gr-qc]; arXiv:1009.0689 [gr-qc]; arXiv:0904.1577[gr-qc]; and arXiv:0909.3571 [hep-th]. In chapter 6, we provide a different approach to the subject discussed in astro-ph/0503478. Additionally, we perform a Poincar\\'e compactification process allowing to construct a global phase space containing all the cosmological information in both finite and infinite...
Graviton fluctuations erase the cosmological constant
Wetterich, C.
2017-10-01
Graviton fluctuations induce strong non-perturbative infrared renormalization effects for the cosmological constant. The functional renormalization flow drives a positive cosmological constant towards zero, solving the cosmological constant problem without the need to tune parameters. We propose a simple computation of the graviton contribution to the flow of the effective potential for scalar fields. Within variable gravity, with effective Planck mass proportional to the scalar field, we find that the potential increases asymptotically at most quadratically with the scalar field. The solutions of the derived cosmological equations lead to an asymptotically vanishing cosmological "constant" in the infinite future, providing for dynamical dark energy in the present cosmological epoch. Beyond a solution of the cosmological constant problem, our simplified computation also entails a sizeable positive graviton-induced anomalous dimension for the quartic Higgs coupling in the ultraviolet regime, substantiating the successful prediction of the Higgs boson mass within the asymptotic safety scenario for quantum gravity.
Lachieze-Rey, Marc
This book delivers a quantitative account of the science of cosmology, designed for a non-specialist audience. The basic principles are outlined using simple maths and physics, while still providing rigorous models of the Universe. It offers an ideal introduction to the key ideas in cosmology, without going into technical details. The approach used is based on the fundamental ideas of general relativity such as the spacetime interval, comoving coordinates, and spacetime curvature. It provides an up-to-date and thoughtful discussion of the big bang, and the crucial questions of structure and galaxy formation. Questions of method and philosophical approaches in cosmology are also briefly discussed. Advanced undergraduates in either physics or mathematics would benefit greatly from use either as a course text or as a supplementary guide to cosmology courses.
Cosmological solutions in string theory with dilaton self interaction potential
International Nuclear Information System (INIS)
Mora, C.; Pimentel, L.O.
2003-01-01
In this work we present homogeneous and isotropic cosmological solutions for the low energy limit of string theory with a self interacting potential for the scalar field. For a potential that is a linear combination of two exponential, a family of exact solutions are found for the different spatial curvatures. Among this family a non singular accelerating solution for positive curvature is singled out and the violation of the energy conditions for that solution is studied, and also its astrophysical consequences. The string coupling for this solution is finite. (Author)
Cosmological constant--the weight of the vacuum
International Nuclear Information System (INIS)
Padmanabhan, T.
2003-01-01
Recent cosmological observations suggest the existence of a positive cosmological constant Λ with the magnitude Λ(Gℎ/c 3 )∼10 -123 . This review discusses several aspects of the cosmological constant both from the cosmological (Sections 1-6) and field theoretical (Sections 7-11) perspectives. After a brief introduction to the key issues related to cosmological constant and a historical overview, a summary of the kinematics and dynamics of the standard Friedmann model of the universe is provided. The observational evidence for cosmological constant, especially from the supernova results, and the constraints from the age of the universe, structure formation, Cosmic Microwave Background Radiation (CMBR) anisotropies and a few others are described in detail, followed by a discussion of the theoretical models (quintessence, tachyonic scalar field, ...) from different perspectives. The latter part of the review (Sections 7-11) concentrates on more conceptual and fundamental aspects of the cosmological constant like some alternative interpretations of the cosmological constant, relaxation mechanisms to reduce the cosmological constant to the currently observed value, the geometrical structure of the de Sitter spacetime, thermodynamics of the de Sitter universe and the role of string theory in the cosmological constant problem
The possibility of an accelerating cosmology in Rastall's theory
International Nuclear Information System (INIS)
Capone, M; Cardone, V F; Ruggiero, M L
2010-01-01
In an attempt to look for a viable mechanism leading to a present day accelerated expansion, we investigate the possibility that the observed cosmic speed up may be recovered in the framework of the Rastall's theory, relying on the non-conservativity of the stress-energy tensor, i.e. T μ v;μ ≠ 0. We derive the modified Friedmann equations and show that they correspond to Cardassian-like equations. We also show that, under suitable assumptions on the equation of state of the matter term sourcing the gravitational field, it is indeed possible to get an accelerated expansion, in agreement with the Hubble diagram of both Type Ia Supernovae (SNeIa) and Gamma Ray Bursts (GRBs). Unfortunately, to achieve such a result one has to postulate a matter density parameter larger than the typical Ω M ≅ 0.3 value inferred from cluster gas mass fraction data. As a further issue, we discuss the possibility to retrieve the Rastall's theory from a Palatini variational principle approach to f(R) gravity. However, such an attempt turns out to be unsuccessful.
Sanders, Robert H
2016-01-01
The advent of sensitive high-resolution observations of the cosmic microwave background radiation and their successful interpretation in terms of the standard cosmological model has led to great confidence in this model's reality. The prevailing attitude is that we now understand the Universe and need only work out the details. In this book, Sanders traces the development and successes of Lambda-CDM, and argues that this triumphalism may be premature. The model's two major components, dark energy and dark matter, have the character of the pre-twentieth-century luminiferous aether. While there is astronomical evidence for these hypothetical fluids, their enigmatic properties call into question our assumptions of the universality of locally determined physical law. Sanders explains how modified Newtonian dynamics (MOND) is a significant challenge for cold dark matter. Overall, the message is hopeful: the field of cosmology has not become frozen, and there is much fundamental work ahead for tomorrow's cosmologis...
Neutrino properties from cosmology
CERN. Geneva
2013-01-01
Future, massive large-scale structure survey have been presented and approved.On the theory side, a significant effort has bene devoted to achieve better modeling of small scale clustering that is of cosmological non-linearities. As a result it has become clear that forthcoming cosmological data have enough statitsical power to detect the effect of non-zero neutrino mass (even at the lower mass scale limit imposed by oscillations) and to constrain the absolute neutrino mass scale.Cosmological data can also constrain the numb...
Scalar field cosmology: I. Asymptotic freedom and the initial-value problem
International Nuclear Information System (INIS)
Huang, Kerson; Low, Hwee-Boon; Tung, Roh-Suan
2012-01-01
The purpose of this work is to use a renormalized quantum scalar field to investigate very early cosmology, in the Planck era immediately following the big bang. Renormalization effects make the field potential dependent on length scale, and are important during the big bang era. We use the asymptotically free Halpern-Huang scalar field, which is derived from renormalization-group analysis, and solve Einstein's equation with Robertson-Walker metric as an initial-value problem. The main prediction is that the Hubble parameter follows a power law: H≡ a-dot /a∼t -p , and the universe expands at an accelerated rate: a ∼ expt 1-p . This gives 'dark energy', with an equivalent cosmological constant that decays in time like t -2p , which avoids the 'fine-tuning' problem. The power law predicts a simple relation for the galactic redshift. Comparison with data leads to the speculation that the universe experienced a crossover transition, which was completed about seven billion years ago. (paper)
Inhomogeneous anisotropic cosmology
International Nuclear Information System (INIS)
Kleban, Matthew; Senatore, Leonardo
2016-01-01
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.
Tau/Charm Factory Accelerator Report
M. E. BiaginiINFN, Laboratori Nazionali Frascati, Italy; R. BoniINFN, Laboratori Nazionali Frascati, Italy; M. BoscoloINFN, Laboratori Nazionali Frascati, Italy; A. ChiarucciINFN, Laboratori Nazionali Frascati, Italy; R. CiminoINFN, Laboratori Nazionali Frascati, Italy; A. ClozzaINFN, Laboratori Nazionali Frascati, Italy; A. DragoINFN, Laboratori Nazionali Frascati, Italy; S. GuiducciINFN, Laboratori Nazionali Frascati, Italy; C. LigiINFN, Laboratori Nazionali Frascati, Italy; G. MazzitelliINFN, Laboratori Nazionali Frascati, Italy; R. RicciINFN, Laboratori Nazionali Frascati, Italy; C. SanelliINFN, Laboratori Nazionali Frascati, Italy; M. SerioINFN, Laboratori Nazionali Frascati, Italy; A. StellaINFN, Laboratori Nazionali Frascati, Italy; S. TomassiniINFN, Laboratori Nazionali Frascati, Italy
2014-01-01
The present Report concerns the current status of the Italian Tau/Charm accelerator project and in particular discusses the issues related to the lattice design, to the accelerators systems and to the associated conventional facilities. The project aims at realizing a variable energy Flavor Factory between 1 and 4.6 GeV in the center of mass, and succeeds to the SuperB project from which it inherits most of the solutions proposed in this document. The work comes from a cooperation involving t...
Space lattice focusing on the way to extremely low accelerated beam divergence
Kushin, V V
1999-01-01
It is widely known the multiple channel acceleration is the most adequate way to save initial beam parameters due to the possibility of decreasing Coulomb forces in intensive input beams. To keep beam initial emittance and divergence for high enough specific value of the injection ion beam during acceleration the input beam should be split on multiple beams and every the micro beam must be screened from each other as much as possible. On the other hand, it is very much desirable to keep the total macro beam rather compact transversally and try to accelerate all the micro beams within the same accelerator structure at the same RF field. Attempts to use conventional quadruple focusing channels both RF and electrostatic for multiple beam acceleration usually lead to extremely complicate and bulky construction of the structure. We suppose multiple beam linac channels with alternating phase focusing (APF) as more adequate for the purpose while they are limited by less values of beam capture into acceleration proce...
Parameterized post-Newtonian cosmology
International Nuclear Information System (INIS)
Sanghai, Viraj A A; Clifton, Timothy
2017-01-01
Einstein’s theory of gravity has been extensively tested on solar system scales, and for isolated astrophysical systems, using the perturbative framework known as the parameterized post-Newtonian (PPN) formalism. This framework is designed for use in the weak-field and slow-motion limit of gravity, and can be used to constrain a large class of metric theories of gravity with data collected from the aforementioned systems. Given the potential of future surveys to probe cosmological scales to high precision, it is a topic of much contemporary interest to construct a similar framework to link Einstein’s theory of gravity and its alternatives to observations on cosmological scales. Our approach to this problem is to adapt and extend the existing PPN formalism for use in cosmology. We derive a set of equations that use the same parameters to consistently model both weak fields and cosmology. This allows us to parameterize a large class of modified theories of gravity and dark energy models on cosmological scales, using just four functions of time. These four functions can be directly linked to the background expansion of the universe, first-order cosmological perturbations, and the weak-field limit of the theory. They also reduce to the standard PPN parameters on solar system scales. We illustrate how dark energy models and scalar-tensor and vector-tensor theories of gravity fit into this framework, which we refer to as ‘parameterized post-Newtonian cosmology’ (PPNC). (paper)
Parameterized post-Newtonian cosmology
Sanghai, Viraj A. A.; Clifton, Timothy
2017-03-01
Einstein’s theory of gravity has been extensively tested on solar system scales, and for isolated astrophysical systems, using the perturbative framework known as the parameterized post-Newtonian (PPN) formalism. This framework is designed for use in the weak-field and slow-motion limit of gravity, and can be used to constrain a large class of metric theories of gravity with data collected from the aforementioned systems. Given the potential of future surveys to probe cosmological scales to high precision, it is a topic of much contemporary interest to construct a similar framework to link Einstein’s theory of gravity and its alternatives to observations on cosmological scales. Our approach to this problem is to adapt and extend the existing PPN formalism for use in cosmology. We derive a set of equations that use the same parameters to consistently model both weak fields and cosmology. This allows us to parameterize a large class of modified theories of gravity and dark energy models on cosmological scales, using just four functions of time. These four functions can be directly linked to the background expansion of the universe, first-order cosmological perturbations, and the weak-field limit of the theory. They also reduce to the standard PPN parameters on solar system scales. We illustrate how dark energy models and scalar-tensor and vector-tensor theories of gravity fit into this framework, which we refer to as ‘parameterized post-Newtonian cosmology’ (PPNC).
A new cosmological paradigm: the cosmological constant and dark matter
International Nuclear Information System (INIS)
Krauss, L.M.
1998-01-01
The Standard Cosmological Model of the 1980 close-quote s is no more. I describe the definitive evidence that the density of matter is insufficient to result in a flat universe, as well as the mounting evidence that the cosmological constant is not zero. I finally discuss the implications of these results for particle physics and direct searches for non-baryonic dark matter. copyright 1998 American Institute of Physics
Tensors, relativity, and cosmology
Dalarsson, Mirjana
2015-01-01
Tensors, Relativity, and Cosmology, Second Edition, combines relativity, astrophysics, and cosmology in a single volume, providing a simplified introduction to each subject that is followed by detailed mathematical derivations. The book includes a section on general relativity that gives the case for a curved space-time, presents the mathematical background (tensor calculus, Riemannian geometry), discusses the Einstein equation and its solutions (including black holes and Penrose processes), and considers the energy-momentum tensor for various solutions. In addition, a section on relativistic astrophysics discusses stellar contraction and collapse, neutron stars and their equations of state, black holes, and accretion onto collapsed objects, with a final section on cosmology discussing cosmological models, observational tests, and scenarios for the early universe. This fully revised and updated second edition includes new material on relativistic effects, such as the behavior of clocks and measuring rods in m...
Astrophysical Tests of Kinematical Conformal Cosmology in Fourth-Order Conformal Weyl Gravity
Directory of Open Access Journals (Sweden)
Gabriele U. Varieschi
2014-12-01
Full Text Available In this work we analyze kinematical conformal cosmology (KCC, an alternative cosmological model based on conformal Weyl gravity (CG, and test it against current type Ia supernova (SNIa luminosity data and other astrophysical observations. Expanding upon previous work on the subject, we revise the analysis of SNIa data, confirming that KCC can explain the evidence for an accelerating expansion of the Universe without using dark energy or other exotic components. We obtain an independent evaluation of the Hubble constant, H0 = 67:53 kms-1 Mpc-1, very close to the current best estimates. The main KCC and CG parameters are re-evaluated and their revised values are found to be close to previous estimates. We also show that available data for the Hubble parameter as a function of redshift can be fitted using KCC and that this model does not suffer from any apparent age problem. Overall,
Neutrino properties from cosmology
DEFF Research Database (Denmark)
Hannestad, S.
2013-01-01
In recent years precision cosmology has become an increasingly powerful probe of particle physics. Perhaps the prime example of this is the very stringent cosmological upper bound on the neutrino mass. However, other aspects of neutrino physics, such as their decoupling history and possible non......-standard interactions, can also be probed using observations of cosmic structure. Here, I review the current status of cosmological bounds on neutrino properties and discuss the potential of future observations, for example by the recently approved EUCLID mission, to precisely measure neutrino properties....
On the Cold Big Bang Cosmology
Directory of Open Access Journals (Sweden)
Assis A. V. D. B.
2011-04-01
Full Text Available We solve the general relativity (GR field equations under the cosmological scope via one extra postulate. The plausibility of the postulate resides within the Heisenberg indeterminacy principle, being heuristically analysed throughout the appendix. Under this approach, a negative energy density may provide the positive energy content of the universe via fluctuation, since the question of conservation of energy in cosmology is weakened, supported by the known lack of scope of the Noether's theorem in cosmology. The initial condition of the primordial universe turns out to have a natural cutoff such that the temperature of the cosmological substratum converges to the absolute zero, instead of the established divergence at the very beginning. The adopted postulate provides an explanation for the cosmological dark energy open question. The solution agrees with cosmological observations, including a 2.7K CMBT prediction.
Anisotropic cosmological solutions in massive vector theories
Energy Technology Data Exchange (ETDEWEB)
Heisenberg, Lavinia [Institute for Theoretical Studies, ETH Zurich, Clausiusstrasse 47, 8092 Zurich (Switzerland); Kase, Ryotaro; Tsujikawa, Shinji, E-mail: Lavinia.heisenberg@googlemail.com, E-mail: r.kase@rs.tus.ac.jp, E-mail: shinji@rs.kagu.tus.ac.jp [Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan)
2016-11-01
In beyond-generalized Proca theories including the extension to theories higher than second order, we study the role of a spatial component v of a massive vector field on the anisotropic cosmological background. We show that, as in the case of the isotropic cosmological background, there is no additional ghostly degrees of freedom associated with the Ostrogradski instability. In second-order generalized Proca theories we find the existence of anisotropic solutions on which the ratio between the anisotropic expansion rate Σ and the isotropic expansion rate H remains nearly constant in the radiation-dominated epoch. In the regime where Σ/ H is constant, the spatial vector component v works as a dark radiation with the equation of state close to 1/3. During the matter era, the ratio Σ/ H decreases with the decrease of v . As long as the conditions |Σ| || H and v {sup 2} || φ{sup 2} are satisfied around the onset of late-time cosmic acceleration, where φ is the temporal vector component, we find that the solutions approach the isotropic de Sitter fixed point (Σ = 0 = v ) in accordance with the cosmic no-hair conjecture. In the presence of v and Σ the early evolution of the dark energy equation of state w {sub DE} in the radiation era is different from that in the isotropic case, but the approach to the isotropic value w {sub DE}{sup (iso)} typically occurs at redshifts z much larger than 1. Thus, apart from the existence of dark radiation, the anisotropic cosmological dynamics at low redshifts is similar to that in isotropic generalized Proca theories. In beyond-generalized Proca theories the only consistent solution to avoid the divergence of a determinant of the dynamical system corresponds to v = 0, so Σ always decreases in time.
Anisotropic cosmological solutions in massive vector theories
International Nuclear Information System (INIS)
Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji
2016-01-01
In beyond-generalized Proca theories including the extension to theories higher than second order, we study the role of a spatial component v of a massive vector field on the anisotropic cosmological background. We show that, as in the case of the isotropic cosmological background, there is no additional ghostly degrees of freedom associated with the Ostrogradski instability. In second-order generalized Proca theories we find the existence of anisotropic solutions on which the ratio between the anisotropic expansion rate Σ and the isotropic expansion rate H remains nearly constant in the radiation-dominated epoch. In the regime where Σ/ H is constant, the spatial vector component v works as a dark radiation with the equation of state close to 1/3. During the matter era, the ratio Σ/ H decreases with the decrease of v . As long as the conditions |Σ| || H and v 2 || φ 2 are satisfied around the onset of late-time cosmic acceleration, where φ is the temporal vector component, we find that the solutions approach the isotropic de Sitter fixed point (Σ = 0 = v ) in accordance with the cosmic no-hair conjecture. In the presence of v and Σ the early evolution of the dark energy equation of state w DE in the radiation era is different from that in the isotropic case, but the approach to the isotropic value w DE (iso) typically occurs at redshifts z much larger than 1. Thus, apart from the existence of dark radiation, the anisotropic cosmological dynamics at low redshifts is similar to that in isotropic generalized Proca theories. In beyond-generalized Proca theories the only consistent solution to avoid the divergence of a determinant of the dynamical system corresponds to v = 0, so Σ always decreases in time.
Present Trends In The Configurations And Applications Of Electrostatic Accelerator Systems
International Nuclear Information System (INIS)
Norton, Gregory A.; Klody, George M.
2011-01-01
Despite the worldwide economic meltdown during the past two years and preceding any stimulus program projects, the market for electrostatic accelerators has increased on three fronts: new applications developed in an expanding range of fields; technical enhancements that increase the range, precision, and sensitivity of existing systems; and new accelerator projects in a growing number of developing countries. From the single application of basic nuclear structure research from the 1930's into the 1970's, the continued expansion of new applications and the technical improvements in electrostatic accelerators have dramatically affected the configurations and capabilities of accelerator systems to meet new requirements. This paper describes examples of recent developments in cosmology, exotic materials, high resolution RBS, compact AMS, dust acceleration, ion implantation, etc.
Higher dimensional loop quantum cosmology
International Nuclear Information System (INIS)
Zhang, Xiangdong
2016-01-01
Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n + 1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n + 1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n + 1 dimensional model and the 3 + 1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology. (orig.)
Highlights in gravitation and cosmology
International Nuclear Information System (INIS)
Iyer, B.R.; Kembhavi, Ajit; Narlikar, J.V.; Vishveshwara, C.V.
1988-01-01
This book assesses research into gravitation and cosmology by examining the subject from various viewpoints: the classical and quantum pictures, along with the cosmological and astrophysical applications. There are 35 articles by experts of international standing. Each defines the state of the art and contains a concise summary of our present knowledge of a facet of gravitational physics. These edited papers are based on those first given at an international conference held in Goa, India at the end of 1987. The following broad areas are covered: classical relativity, quantum gravity, cosmology, black holes, compact objects, gravitational radiation and gravity experiments. In this volume there are also summaries of discussions on the following special topics: exact solutions of cosmological equations, mathematical aspects of general relativity, the early universe, and quantum gravity. For research workers in cosmology and gravitation this reference book provides a broad view of present achievements and current problems. (author)
van de Weygaert, Rien; van Albada, Tjeerd S.
1996-01-01
A detailed account of the ways in which a square kilometer array could further cosmological research. Observational and theoretical studies of the large scale structure and morphology of the local universe are reviewed against the potential capabilities of a new generation telescope. Cosmological
Cosmological implications of modified gravity induced by quantum metric fluctuations
Energy Technology Data Exchange (ETDEWEB)
Liu, Xing [Sun Yat-Sen University, School of Physics, Guangzhou (China); Sun Yat-Sen University, Yat Sen School, Guangzhou (China); Harko, Tiberiu [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); University College London, Department of Mathematics, London (United Kingdom); Liang, Shi-Dong [Sun Yat-Sen University, School of Physics, Guangzhou (China); Sun Yat-Sen University, State Key Laboratory of Optoelectronic Material and Technology, Guangdong Province Key Laboratory of Display Material and Technology, School of Physics, Guangzhou (China)
2016-08-15
We investigate the cosmological implications of modified gravities induced by the quantum fluctuations of the gravitational metric. If the metric can be decomposed as the sum of the classical and of a fluctuating part, of quantum origin, then the corresponding Einstein quantum gravity generates at the classical level modified gravity models with a non-minimal coupling between geometry and matter. As a first step in our study, after assuming that the expectation value of the quantum correction can be generally expressed in terms of an arbitrary second order tensor constructed from the metric and from the thermodynamic quantities characterizing the matter content of the Universe, we derive the (classical) gravitational field equations in their general form. We analyze in detail the cosmological models obtained by assuming that the quantum correction tensor is given by the coupling of a scalar field and of a scalar function to the metric tensor, and by a term proportional to the matter energy-momentum tensor. For each considered model we obtain the gravitational field equations, and the generalized Friedmann equations for the case of a flat homogeneous and isotropic geometry. In some of these models the divergence of the matter energy-momentum tensor is non-zero, indicating a process of matter creation, which corresponds to an irreversible energy flow from the gravitational field to the matter fluid, and which is direct consequence of the non-minimal curvature-matter coupling. The cosmological evolution equations of these modified gravity models induced by the quantum fluctuations of the metric are investigated in detail by using both analytical and numerical methods, and it is shown that a large variety of cosmological models can be constructed, which, depending on the numerical values of the model parameters, can exhibit both accelerating and decelerating behaviors. (orig.)
Cosmological phase transitions
International Nuclear Information System (INIS)
Kolb, E.W.
1993-10-01
If modern ideas about the role of spontaneous symmetry breaking in fundamental physics are correct, then the Universe should have undergone a series of phase transitions early in its history. The study of cosmological phase transitions has become an important aspect of early-Universe cosmology. In this lecture I review some very recent work on three aspects of phase transitions: the electroweak transition, texture, and axions
Lattice site location of electrical dopant impurities in group-III nitrides
Amorim, Lígia; Temst, Kristiaan; Wahl, Ulrich
Dopants are impurities introduced in semiconductors in small quantities to tailor the material characteristics, the effects of which depend on the exact site the dopant occupies in the crystal lattice. The lattice location of impurities is, thus, crucial for the overall understanding of the semiconductor characteristics. In general, several techniques can be used to investigate the lattice site of an impurity, the most accurate and dedicated being emission channeling. However, a characteristic of this technique is that it requires the implantation of radioactive probes, usually created and accelerated in a radioactive ion beam facility. In some cases, emission channeling might however be the only technique capable to investigate the lattice sites occupied by the impurity atoms, provided an appropriate isotope for this technique can be used. For instance, the use of other methods such as Rutherford backscattering spectrometry, perturbed angular correlations, Mössbauer spectroscopy and extended X-ray absorptio...
Recursive evaluation of space-time lattice Green's functions
International Nuclear Information System (INIS)
De Hon, Bastiaan P; Arnold, John M
2012-01-01
Up to a multiplicative constant, the lattice Green's function (LGF) as defined in condensed matter physics and lattice statistical mechanics is equivalent to the Z-domain counterpart of the finite-difference time-domain Green's function (GF) on a lattice. Expansion of a well-known integral representation for the LGF on a ν-dimensional hyper-cubic lattice in powers of Z −1 and application of the Chu–Vandermonde identity results in ν − 1 nested finite-sum representations for discrete space-time GFs. Due to severe numerical cancellations, these nested finite sums are of little practical use. For ν = 2, the finite sum may be evaluated in closed form in terms of a generalized hypergeometric function. For special lattice points, that representation simplifies considerably, while on the other hand the finite-difference stencil may be used to derive single-lattice-point second-order recurrence schemes for generating 2D discrete space-time GF time sequences on the fly. For arbitrary symbolic lattice points, Zeilberger's algorithm produces a third-order recurrence operator with polynomial coefficients of the sixth degree. The corresponding recurrence scheme constitutes the most efficient numerical method for the majority of lattice points, in spite of the fact that for explicit numeric lattice points the associated third-order recurrence operator is not the minimum recurrence operator. As regards the asymptotic bounds for the possible solutions to the recurrence scheme, Perron's theorem precludes factorial or exponential growth. Along horizontal lattices directions, rapid initial growth does occur, but poses no problems in augmented dynamic-range fixed precision arithmetic. By analysing long-distance wave propagation along a horizontal lattice direction, we have concluded that the chirp-up oscillations of the discrete space-time GF are the root cause of grid dispersion anisotropy. With each factor of ten increase in the lattice distance, one would have to roughly
The Case for a Hierarchical Cosmology
Vaucouleurs, G. de
1970-01-01
The development of modern theoretical cosmology is presented and some questionable assumptions of orthodox cosmology are pointed out. Suggests that recent observations indicate that hierarchical clustering is a basic factor in cosmology. The implications of hierarchical models of the universe are considered. Bibliography. (LC)
Tomaschitz, R
1994-01-01
Spinor fields are studied in infinite, topologically multiply connected Robertson-Walker cosmologies. Unitary spinor representations for the discrete covering groups of the spacelike slices are constructed. The spectral resolution of Dirac's equation is given in terms of horospherical elementary waves, on which the treatment of spin and energy is based in these cosmologies. The meaning of the energy and the particle-antiparticle concept is explained in the context of this varying cosmic background. Discrete symmetries, in particular inversions of the multiply connected spacelike slices, are studied. The violation of the unitarity of the parity operator, due to self-interference of P-reflected wave packets, is discussed. The violation of the CP and CPT invariance - already on the level of the free Dirac equation on this cosmological background - is pointed out.
Heavy ion collisions and cosmology
Energy Technology Data Exchange (ETDEWEB)
Floerchinger, Stefan
2016-12-15
There are interesting parallels between the physics of heavy ion collisions and cosmology. Both systems are out-of-equilibrium and relativistic fluid dynamics plays an important role for their theoretical description. From a comparison one can draw interesting conclusions for both sides. For heavy ion physics it could be rewarding to attempt a theoretical description of fluid perturbations similar to cosmological perturbation theory. In the context of late time cosmology, it could be interesting to study dissipative properties such as shear and bulk viscosity and corresponding relaxation times in more detail. Knowledge and experience from heavy ion physics could help to constrain the microscopic properties of dark matter from observational knowledge of the cosmological fluid properties.
National Computational Infrastructure for Lattice Gauge Theory: Final report
International Nuclear Information System (INIS)
Reed, Daniel A.
2008-01-01
In this document we describe work done under the SciDAC-1 Project National Computerational Infrastructure for Lattice Gauge Theory. The objective of this project was to construct the computational infrastructure needed to study quantum chromodynamics (QCD). Nearly all high energy and nuclear physicists in the United States working on the numerical study of QCD are involved in the project, as are Brookhaven National Laboratory (BNL), Fermi National Accelerator Laboratory (FNAL), and Thomas Jefferson National Accelerator Facility (JLab). A list of the senior participants is given in Appendix A.2. The project includes the development of community software for the effective use of the terascale computers, and the research and development of commodity clusters optimized for the study of QCD. The software developed as part of this effort is publicly available, and is being widely used by physicists in the United States and abroad. The prototype clusters built with SciDAC-1 fund have been used to test the software, and are available to lattice gauge theorists in the United States on a peer reviewed basis
DGP cosmological model with generalized Ricci dark energy
Energy Technology Data Exchange (ETDEWEB)
Aguilera, Yeremy [Universidad de Santiago, Departamento de Matematicas y Ciencia de la Computacion, Santiago (Chile); Avelino, Arturo [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Cruz, Norman [Universidad de Santiago, Departamento de Fisica, Facultad de Ciencia, Santiago (Chile); Lepe, Samuel [Pontificia Universidad Catolica de Valparaiso, Facultad de Ciencias, Instituto de Fisica, Valparaiso (Chile); Pena, Francisco [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria y Ciencias, Temuco (Chile)
2014-11-15
The brane-world model proposed by Dvali, Gabadadze and Porrati (DGP) leads to an accelerated universe without cosmological constant or other form of dark energy for the positive branch (element of = +1). For the negative branch (element of = -1) we have investigated the behavior of a model with an holographic Ricci-like dark energy and dark matter, where the IR cutoff takes the form αH{sup 2} + βH, H being the Hubble parameter and α, β positive constants of the model. We perform an analytical study of the model in the late-time dark energy dominated epoch, where we obtain a solution for r{sub c}H(z), where r{sub c} is the leakage scale of gravity into the bulk, and conditions for the negative branch on the holographic parameters α and β, in order to hold the conditions of weak energy and accelerated universe. On the other hand, we compare the model versus the late-time cosmological data using the latest type Ia supernova sample of the Joint Light-curve Analysis (JLA), in order to constrain the holographic parameters in the negative branch, as well as r{sub c}H{sub 0} in the positive branch, where H{sub 0} is the Hubble constant. We find that the model has a good fit to the data and that the most likely values for (r{sub c}H{sub 0}, α, β) lie in the permitted region found from an analytical solution in a dark energy dominated universe. We give a justification to use a holographic cutoff in 4D for the dark energy in the 5-dimensional DGP model. Finally, using the Bayesian Information Criterion we find that this model is disfavored compared with the flat ΛCDM model. (orig.)
Cosmology of a charged universe
International Nuclear Information System (INIS)
Barnes, A.
1979-01-01
The Proca generalization of electrodynamics admits the possibility that the universe could possess a net electric charge uniformly distributed throughout space, while possessing no electric field. A charged intergalactic (and intragalactic) medium of this kind could contain enough energy to be of cosmological importance. A general-relativistic model of cosmological expansion dominated by such a charged background has been calculated, and is consistent with present observational limits on the Hubble constant, the decleration parameter, and the age of the universe. However, if this cosmology applied at the present epoch, the very early expansion of the universe would have been much more rapid than in conventional ''big bang'' cosmologies, too rapid for cosmological nucleosynthesis or thermalization of the background radiation to have occurred. Hence, domination of the present expansion by background charge appears to be incompatible with the 3 K background and big-bang production of light elements. If the present background charge density were sufficiently small (but not strictly zero), expansion from the epoch of nucleosynthesis would proceed according to the conventional scenario, but the energy due to the background charge would have dominated at some earlier epoch. This last possibility leads to equality of pressure and energy density in the primordial universe, a condition of special significance in certain cosmological theories
Nonlinear evolution of f(R) cosmologies. II. Power spectrum
International Nuclear Information System (INIS)
Oyaizu, Hiroaki; Hu, Wayne; Lima, Marcos
2008-01-01
We carry out a suite of cosmological simulations of modified action f(R) models where cosmic acceleration arises from an alteration of gravity instead of dark energy. These models introduce an extra scalar degree of freedom which enhances the force of gravity below the inverse mass or Compton scale of the scalar. The simulations exhibit the so-called chameleon mechanism, necessary for satisfying local constraints on gravity, where this scale depends on environment, in particular, the depth of the local gravitational potential. We find that the chameleon mechanism can substantially suppress the enhancement of power spectrum in the nonlinear regime if the background field value is comparable to or smaller than the depth of the gravitational potentials of typical structures. Nonetheless power spectrum enhancements at intermediate scales remain at a measurable level for models even when the expansion history is indistinguishable from a cosmological constant, cold dark matter model. Simple scaling relations that take the linear power spectrum into a nonlinear spectrum fail to capture the modifications of f(R) due to the change in collapsed structures, the chameleon mechanism, and the time evolution of the modifications.
The Janus Cosmological Model (JCM) : An answer to the missing cosmological antimatter
D'Agostini, Gilles; Petit, Jean-Pierre
2017-01-01
Cosmological antimatter absence remains unexplained. Twin universes 1967 Sakarov's model suggests an answer: excess of matter and anti-quarks production in our universe is balanced by equivalent excess of antimatter and quark in twin universe. JCM provides geometrical framework, with a single manifold , two metrics solutions of two coupled field equations, to describe two populations of particles, one with positive energy-mass and the other with negative energy-mass : the `twin matter'. In a quantum point of view, it's a copy of the standard matter but with negative mass and energy. The matter-antimatter duality holds in both sectors. The standard and twin matters do not interact except through the gravitational coupling expressed in field equations. The twin matter is unobservable from matter-made apparatus. Field equations shows that matter and twin matter repel each other. Twin matter surrounding galaxies explains their confinement (dark matter role) and, in the dust universe era, mainly drives the process of expansion of the positive sector, responsible of the observed acceleration (dark energy role).
International Nuclear Information System (INIS)
Heller, M.
1986-01-01
It is proposed to understand cosmology as a non-local physics. Non-local methods, when developed from locally performed observations, imply a considerable extrapolation, which in turn is possible without some unverifiable assumptions. Cosmology is, therefore, not only a science on the Universe but also about assumptions that render such a science possible. As far as theoretical aspects of cosmology are concerned, cosmology can be treated as a theory of the space of all solutions to Einstein's field equations (called the ensemble of universes). The very distinction is touched upon between solutions of differential equations, expressing laws of nature, and boundary conditions identifying particular instances of the law's operation. Both observational and theoretical studies demonstrate that our Universe occupies a distinguished position within the ensemble of universes. This fact remains in a close relationship with the existence and developing of structures in the Universe. Possible philosophies aimed at justifying or neutralizing our distinguished situation in the ensemble of universes are discussed at some length. 60 refs. (author)
Accelerator physics analysis with interactive tools
International Nuclear Information System (INIS)
Holt, J.A.; Michelotti, L.
1993-05-01
Work is in progress on interactive tools for linear and nonlinear accelerator design, analysis, and simulation using X-based graphics. The BEAMLINE and MXYZPTLK class libraries, were used with an X Windows graphics library to build a program for interactively editing lattices and studying their properties
Determination of the cosmological parameters and the nature of dark energy
International Nuclear Information System (INIS)
Linden, S.
2010-04-01
The measured properties of the dark energy component being consistent with a Cosmological Constant, Λ, this cosmological standard model is referred to as the Λ-Cold-Dark-Matter (ΛCDM) model. Despite its overall success, this model suffers from various problems. The existence of a Cosmological Constant raises fundamental questions. Attempts to describe it as the energy contribution from the vacuum as following from Quantum Field Theory failed quantitatively. In consequence, a large number of alternative models have been developed to describe the dark energy component: modified gravity, additional dimensions, Quintessence models. Also, astrophysical effects have been considered to mimic an accelerated expansion. The basics of the ΛCDM model and the various attempts of explaining dark energy are outlined in this thesis. Another major problem of the model comes from the dependencies of the fit results on a number of a priori assumptions and parameterization effects. Today, combined analyses of the various cosmological probes are performed to extract the parameters of the model. Due to a wrong model assumption or a bad parameterization of the real physics, one might end up measuring with high precision something which is not there. We show, that indeed due to the high precision of modern cosmological measurements, purely kinematic approaches to distance measurements no longer yield valid fit results except for accidental special cases, and that a fit of the exact (integral) redshift-distance relation is necessary. The main results of this work concern the use of the CPL parameterization of dark energy when coping with the dynamics of tracker solutions of Quintessence models, and the risk of introducing biases on the parameters due to the possibly prohibited extrapolation to arbitrary high redshifts of the SN type Ia magnitude calibration relation, which is obtained in the low-redshift regime. Whereas the risks of applying CPL shows up to be small for a wide range of
Conformal Cosmology and Supernova Data
Behnke, Danilo; Blaschke, David; Pervushin, Victor; Proskurin, Denis
2000-01-01
We define the cosmological parameters $H_{c,0}$, $\\Omega_{m,c}$ and $\\Omega_{\\Lambda, c}$ within the Conformal Cosmology as obtained by the homogeneous approximation to the conformal-invariant generalization of Einstein's General Relativity theory. We present the definitions of the age of the universe and of the luminosity distance in the context of this approach. A possible explanation of the recent data from distant supernovae Ia without a cosmological constant is presented.
The several faces of the cosmological principle
Energy Technology Data Exchange (ETDEWEB)
Beisbart, Claus [TU Dortmund (Germany). Fakultaet 14, Institut fuer Philosophie und Politikwissenschaft
2010-07-01
Much work in relativistic cosmology relies upon the cosmological principle. Very roughly, this principle has it hat the universe is spatially homogeneous and isotropic. However, if the principle is to do some work, it has to be rendered more precise. The aim of this talk is to show that such a precification significantly depends on the theoretical framework adopted and on its ontology. Moreover, it is shown that present-day cosmology uses the principle in different versions that do not fit together nicely. Whereas, in theoretical cosmology, the principle is spelt out as a requirement on space-time manifolds, observational cosmology cashes out the principle using the notion of a random process. I point out some philosophical problems that arise in this context. My conclusion is that the cosmological principle is not a very precise hypothesis, but rather a rough idea that has several faces in contemporary cosmology.
Current observations with a decaying cosmological constant allow for chaotic cyclic cosmology
International Nuclear Information System (INIS)
Ellis, George F.R.; Platts, Emma; Weltman, Amanda; Sloan, David
2016-01-01
We use the phase plane analysis technique of Madsen and Ellis [1] to consider a universe with a true cosmological constant as well as a cosmological 'constant' that is decaying. Time symmetric dynamics for the inflationary era allows eternally bouncing models to occur. Allowing for scalar field dynamic evolution, we find that if dark energy decays in the future, chaotic cyclic universes exist provided the spatial curvature is positive. This is particularly interesting in light of current observations which do not yet rule out either closed universes or possible evolution of the cosmological constant. We present only a proof of principle, with no definite claim on the physical mechanism required for the present dark energy to decay
Exact solutions in string-motivated scalar-field cosmology
International Nuclear Information System (INIS)
Oezer, M.; Taha, M.O.
1992-01-01
Two exact cosmological solutions to a scalar-field potential motivated by six-dimensional (6D) Einstein-Maxwell theory are given. The resulting pure scalar-field cosmology is free of singularity and causality problems but conserves entropy. These solutions are then extended into exact cosmological solutions for a decaying scalar field with an approximate two-loop 4D string potential. The resulting cosmology is, for both solutions, free of cosmological problems and close to the standard cosmology of the radiation era
Cosmology based on f(R) gravity with O(1) eV sterile neutrino
Energy Technology Data Exchange (ETDEWEB)
Chudaykin, Anton S.; Gorbunov, Dmitry S. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation); Starobinsky, Alexei A. [L.D. Landau Institute for Theoretical Physics of the Russian Academy of Sciences, Moscow 119334 (Russian Federation); Burenin, Rodion A., E-mail: chudy@ms2.inr.ac.ru, E-mail: gorby@ms2.inr.ac.ru, E-mail: alstar@landau.ac.ru, E-mail: rodion@hea.iki.rssi.ru [Space Research Institute of the Russian Academy of Sciences (IKI), Moscow, ul. Profsoyuznaya, 84/32, 117997 (Russian Federation)
2015-05-01
We address the cosmological role of an additional O(1) eV sterile neutrino in modified gravity models. We confront the present cosmological data with predictions of the FLRW cosmological model based on a variant of f(R) modified gravity proposed by one of the authors previously. This viable cosmological model which deviation from general relativity with a cosmological constant Λ decreases as R{sup −2n} for large, but not too large values of the Ricci scalar R (while no Λ is introduced by hand at small R) provides an alternative explanation of present dark energy and the accelerated expansion of the Universe (the case n=2 is considered in the paper). Various up-to-date cosmological data sets exploited include measurements of the cosmic microwave background (CMB) anisotropy, the CMB lensing potential, the baryon acoustic oscillations (BAO), the cluster mass function and the Hubble constant. We find that the CMB+BAO constraints strongly restrict the sum of neutrino masses from above. This excludes values of the model parameter λ∼ 1 for which distinctive cosmological features of the model are mostly pronounced as compared to the ΛCDM model, since then free streaming damping of perturbations due to neutrino rest masses is not sufficient to compensate their extra growth occurring in f(R) modified gravity. Thus, in the gravity sector we obtain λ>8.2 (2σ) with the account of systematic uncertainties in galaxy cluster mass function measurements and λ>9.4 (2σ) without them. At the same time in the latter case we find for the sterile neutrino mass 0.47 eV < m{sub ν, sterile} < 1 eV (2σ) assuming that the sterile neutrinos are thermalized and the active neutrinos are massless, not significantly larger than in the standard ΛCDM with the same data set: 0.45 eV < m{sub ν, sterile} < 0.92 eV (2σ). However, a possible discovery of a sterile neutrino with the mass m{sub ν, sterile} ≈ 1.5 eV motivated by various anomalies in neutrino oscillation
Kaluza-Klein cosmological model in f(R, T) gravity with Λ(T)
Sahoo, P. K.; Mishra, B.; Tripathy, S. K.
2016-04-01
A class of Kaluza-Klein cosmological models in $f(R,T)$ theory of gravity have been investigated. In the work, we have considered the functional $f(R,T)$ to be in the form $f(R,T)=f(R)+f(T)$ with $f(R)=\\lambda R$ and $f(T)=\\lambda T$. Such a choice of the functional $f(R,T)$ leads to an evolving effective cosmological constant $\\Lambda$ which depends on the stress energy tensor. The source of the matter field is taken to be a perfect cosmic fluid. The exact solutions of the field equations are obtained by considering a constant deceleration parameter which leads two different aspects of the volumetric expansion namely a power law and an exponential volumetric expansion. Keeping an eye on the accelerating nature of the universe in the present epoch, the dynamics and physical behaviour of the models have been discussed. From statefinder diagnostic pair we found that the model with exponential volumetric expansion behaves more like a $\\Lambda$CDM model.
Beyond Einstein Gravity A Survey of Gravitational Theories for Cosmology and Astrophysics
Faraoni, Valerio
2011-01-01
Beyond Einstein’s Gravity is a graduate level introduction to extended theories of gravity and cosmology, including variational principles, the weak-field limit, gravitational waves, mathematical tools, exact solutions, as well as cosmological and astrophysical applications. The book provides a critical overview of the research in this area and unifies the existing literature using a consistent notation. Although the results apply in principle to all alternative gravities, a special emphasis is on scalar-tensor and f(R) theories. They were studied by theoretical physicists from early on, and in the 1980s they appeared in attempts to renormalize General Relativity and in models of the early universe. Recently, these theories have seen a new lease of life, in both their metric and metric-affine versions, as models of the present acceleration of the universe without introducing the mysterious and exotic dark energy. The dark matter problem can also be addressed in extended gravity. These applications are contr...
International Nuclear Information System (INIS)
Dickau, Jonathan J.
2009-01-01
The use of fractals and fractal-like forms to describe or model the universe has had a long and varied history, which begins long before the word fractal was actually coined. Since the introduction of mathematical rigor to the subject of fractals, by Mandelbrot and others, there have been numerous cosmological theories and analyses of astronomical observations which suggest that the universe exhibits fractality or is by nature fractal. In recent years, the term fractal cosmology has come into usage, as a description for those theories and methods of analysis whereby a fractal nature of the cosmos is shown.
On Traveling Waves in Lattices: The Case of Riccati Lattices
Dimitrova, Zlatinka
2012-09-01
The method of simplest equation is applied for analysis of a class of lattices described by differential-difference equations that admit traveling-wave solutions constructed on the basis of the solution of the Riccati equation. We denote such lattices as Riccati lattices. We search for Riccati lattices within two classes of lattices: generalized Lotka-Volterra lattices and generalized Holling lattices. We show that from the class of generalized Lotka-Volterra lattices only the Wadati lattice belongs to the class of Riccati lattices. Opposite to this many lattices from the Holling class are Riccati lattices. We construct exact traveling wave solutions on the basis of the solution of Riccati equation for three members of the class of generalized Holling lattices.
LATTICE: an interactive lattice computer code
International Nuclear Information System (INIS)
Staples, J.
1976-10-01
LATTICE is a computer code which enables an interactive user to calculate the functions of a synchrotron lattice. This program satisfies the requirements at LBL for a simple interactive lattice program by borrowing ideas from both TRANSPORT and SYNCH. A fitting routine is included
Introduction to particle cosmology the standard model of cosmology and its open problems
Bambi, Cosimo
2016-01-01
This book introduces the basic concepts of particle cosmology and covers all the main aspects of the Big Bang Model (expansion of the Universe, Big Bang Nucleosynthesis, Cosmic Microwave Background, large scale structures) and the search for new physics (inflation, baryogenesis, dark matter, dark energy). It also includes the majority of recent discoveries, such as the precise determination of cosmological parameters using experiments like WMAP and Planck, the discovery of the Higgs boson at LHC, the non-discovery to date of supersymmetric particles, and the search for the imprint of gravitational waves on the CMB polarization by Planck and BICEP. This textbook is based on the authors’ courses on Cosmology, and aims at introducing Particle Cosmology to senior undergraduate and graduate students. It has been especially written to be accessible even for those students who do not have a strong background in General Relativity and quantum field theory. The content of this book is organized in an easy-to-use ...
Newtonian cosmology Newton would understand
International Nuclear Information System (INIS)
Lemons, D.S.
1988-01-01
Isaac Newton envisioned a static, infinite, and initially uniform, zero field universe that was gravitationally unstable to local condensations of matter. By postulating the existence of such a universe and using it as a boundary condition on Newtonian gravity, a new field equation for gravity is derived, which differs from the classical one by a time-dependent cosmological term proportional to the average mass density of the universe. The new field equation not only makes Jeans' analysis of the gravitational instability of a Newtonian universe consistent, but also gives rise to a family of Newtonian evolutionary cosmologies parametrized by a time-invariant expansion velocity. This Newtonian cosmology contrasts with both 19th-century ones and with post general relativity Newtonian cosmology
Chaos, decoherence and quantum cosmology
International Nuclear Information System (INIS)
Calzetta, Esteban
2012-01-01
In this topical review we discuss the connections between chaos, decoherence and quantum cosmology. We understand chaos as classical chaos in systems with a finite number of degrees of freedom, decoherence as environment induced decoherence and quantum cosmology as the theory of the Wheeler-DeWitt equation or else the consistent history formulation thereof, first in mini super spaces and later through its extension to midi super spaces. The overall conclusion is that consideration of decoherence is necessary (and probably sufficient) to sustain an interpretation of quantum cosmology based on the wavefunction of the Universe adopting a Wentzel-Kramers-Brillouin form for large Universes, but a definitive account of the semiclassical transition in classically chaotic cosmological models is not available in the literature yet. (topical review)
Cosmology and particle physics
International Nuclear Information System (INIS)
Barrow, J.D.
1982-01-01
A brief overview is given of recent work that integrates cosmology and particle physics. The observational data regarding the abundance of matter and radiation in the Universe is described. The manner in which the cosmological survival density of stable massive particles can be calculated is discussed along with the process of cosmological nucleosynthesis. Several applications of these general arguments are given with reference to the survival density of nucleons, neutrinos and unconfined fractionally charge particles. The use of nucleosynthesis to limit the number of lepton generations is described together with the implications of a small neutrino mass for the origin of galaxies and clusters. (Auth.)
Cosmology for high energy physicists
International Nuclear Information System (INIS)
Albrecht, A.
1987-11-01
The standard big bang model of cosmology is presented. Although not perfect, its many successes make it a good starting point for most discussions of cosmology. Places are indicated where well understood laboratory physics is incorporated into the big bang, leading to successful predictions. Much less established aspects of high energy physics and some of the new ideas they have introduced into the field of cosmology are discussed, such as string theory, inflation and monopoles. 49 refs., 5 figs
Recirculating induction accelerators for inertial fusion: Prospects and status
International Nuclear Information System (INIS)
Friedman, A.; Barnard, J.J.; Cable, M.D.
1995-01-01
The US is developing the physics and technology of induction accelerators for heavy-ion beam-driven inertial fusion. The recirculating induction accelerator repeatedly passes beams through the same set of accelerating and focusing elements, thereby reducing both the length and gradient of the accelerator structure. This promises an attractive driver cost, if the technical challenges associated with recirculation can be met. Point designs for recirculator drivers were developed in a multi-year study by LLNL, LBNL, and FM Technologies, and that work is briefly reviewed here. To validate major elements of the recirculator concept, we are developing a small (4-5-m diameter) prototype recirculator which will accelerate a space-charge-dominated beam of K + ions through 15 laps, from 80 to 320 keV and from 2 to 8 mA. Transverse beam confinement is effected via permanent-magnet quadrupoles; bending is via electric dipoles. This ''Small Recirculator'' is being developed in a build-and-test sequence of experiments. An injector, matching section, and linear magnetic channel using seven half-lattice periods of permanent-magnet quadrupole lenses are operational. A prototype recirculator half-lattice period is being fabricated. This paper outlines the research program, and presents initial experimental results
Observational probes of cosmic acceleration
International Nuclear Information System (INIS)
Weinberg, David H.; Mortonson, Michael J.; Eisenstein, Daniel J.; Hirata, Christopher; Riess, Adam G.; Rozo, Eduardo
2013-01-01
The accelerating expansion of the universe is the most surprising cosmological discovery in many decades, implying that the universe is dominated by some form of “dark energy” with exotic physical properties, or that Einstein’s theory of gravity breaks down on cosmological scales. The profound implications of cosmic acceleration have inspired ambitious efforts to understand its origin, with experiments that aim to measure the history of expansion and growth of structure with percent-level precision or higher. We review in detail the four most well established methods for making such measurements: Type Ia supernovae, baryon acoustic oscillations (BAO), weak gravitational lensing, and the abundance of galaxy clusters. We pay particular attention to the systematic uncertainties in these techniques and to strategies for controlling them at the level needed to exploit “Stage IV” dark energy facilities such as BigBOSS, LSST, Euclid, and WFIRST. We briefly review a number of other approaches including redshift-space distortions, the Alcock–Paczynski effect, and direct measurements of the Hubble constant H 0 . We present extensive forecasts for constraints on the dark energy equation of state and parameterized deviations from General Relativity, achievable with Stage III and Stage IV experimental programs that incorporate supernovae, BAO, weak lensing, and cosmic microwave background data. We also show the level of precision required for clusters or other methods to provide constraints competitive with those of these fiducial programs. We emphasize the value of a balanced program that employs several of the most powerful methods in combination, both to cross-check systematic uncertainties and to take advantage of complementary information. Surveys to probe cosmic acceleration produce data sets that support a wide range of scientific investigations, and they continue the longstanding astronomical tradition of mapping the universe in ever greater detail over ever
Observational probes of cosmic acceleration
Energy Technology Data Exchange (ETDEWEB)
Weinberg, David H., E-mail: dhw@astronomy.ohio-state.edu [Department of Astronomy, Ohio State University, Columbus, OH (United States); Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH (United States); Mortonson, Michael J. [Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH (United States); Eisenstein, Daniel J. [Steward Observatory, University of Arizona, Tucson, AZ (United States); Harvard College Observatory, Cambridge, MA (United States); Hirata, Christopher [California Institute of Technology, Pasadena, CA (United States); Riess, Adam G. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD (United States); Rozo, Eduardo [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL (United States)
2013-09-10
The accelerating expansion of the universe is the most surprising cosmological discovery in many decades, implying that the universe is dominated by some form of “dark energy” with exotic physical properties, or that Einstein’s theory of gravity breaks down on cosmological scales. The profound implications of cosmic acceleration have inspired ambitious efforts to understand its origin, with experiments that aim to measure the history of expansion and growth of structure with percent-level precision or higher. We review in detail the four most well established methods for making such measurements: Type Ia supernovae, baryon acoustic oscillations (BAO), weak gravitational lensing, and the abundance of galaxy clusters. We pay particular attention to the systematic uncertainties in these techniques and to strategies for controlling them at the level needed to exploit “Stage IV” dark energy facilities such as BigBOSS, LSST, Euclid, and WFIRST. We briefly review a number of other approaches including redshift-space distortions, the Alcock–Paczynski effect, and direct measurements of the Hubble constant H{sub 0}. We present extensive forecasts for constraints on the dark energy equation of state and parameterized deviations from General Relativity, achievable with Stage III and Stage IV experimental programs that incorporate supernovae, BAO, weak lensing, and cosmic microwave background data. We also show the level of precision required for clusters or other methods to provide constraints competitive with those of these fiducial programs. We emphasize the value of a balanced program that employs several of the most powerful methods in combination, both to cross-check systematic uncertainties and to take advantage of complementary information. Surveys to probe cosmic acceleration produce data sets that support a wide range of scientific investigations, and they continue the longstanding astronomical tradition of mapping the universe in ever greater detail over
Relic gravitons and viscous cosmologies
International Nuclear Information System (INIS)
Cataldo, Mauricio; Mella, Patricio
2006-01-01
Previously it was shown that there exists a class of viscous cosmological models which violate the dominant energy condition for a limited amount of time after which they are smoothly connected to the ordinary radiation era (which preserves the dominant energy conditions). This violation of the dominant energy condition at an early cosmological epoch may influence the slopes of energy spectra of relic gravitons that might be of experimental relevance. However, the bulk viscosity coefficient of these cosmologies became negative during the ordinary radiation era, and then the entropy of the sources driving the geometry decreases with time. We show that in the presence of viscous sources with a linear barotropic equation of state p=γρ we get viscous cosmological models with positive bulk viscous stress during all their evolution, and hence the matter entropy increases with the expansion time. In other words, in the framework of viscous cosmologies, there exist isotropic models compatible with the standard second law of thermodynamics which also may influence the slopes of energy spectra of relic gravitons
Weak lensing cosmology beyond ΛCDM
International Nuclear Information System (INIS)
Das, Sudeep; Linder, Eric V.; Nakajima, Reiko; Putter, Roland de
2012-01-01
Weak gravitational lensing is one of the key probes of the cosmological model, dark energy, and dark matter, providing insight into both the cosmic expansion history and large scale structure growth history. Taking into account a broad spectrum of physics affecting growth — dynamical dark energy, extended gravity, neutrino masses, and spatial curvature — we analyze the cosmological constraints. Similarly we consider the effects of a range of systematic uncertainties, in shear measurement, photometric redshifts, intrinsic alignments, and the nonlinear power spectrum, on cosmological parameter extraction. We also investigate, and provide fitting formulas for, the influence of survey parameters such as redshift depth, galaxy number densities, and sky area on the cosmological constraints in the beyond-ΛCDM parameter space. Finally, we examine the robustness of results for different fiducial cosmologies
Dynamical system approach to running Λ cosmological models
International Nuclear Information System (INIS)
Stachowski, Aleksander; Szydlowski, Marek
2016-01-01
We study the dynamics of cosmological models with a time dependent cosmological term. We consider five classes of models; two with the non-covariant parametrization of the cosmological term Λ: Λ(H)CDM cosmologies, Λ(a)CDM cosmologies, and three with the covariant parametrization of Λ: Λ(R)CDM cosmologies, where R(t) is the Ricci scalar, Λ(φ)-cosmologies with diffusion, Λ(X)-cosmologies, where X = (1)/(2)g"α"β∇_α∇_βφ is a kinetic part of the density of the scalar field. We also consider the case of an emergent Λ(a) relation obtained from the behaviour of trajectories in a neighbourhood of an invariant submanifold. In the study of the dynamics we used dynamical system methods for investigating how an evolutionary scenario can depend on the choice of special initial conditions. We show that the methods of dynamical systems allow one to investigate all admissible solutions of a running Λ cosmology for all initial conditions. We interpret Alcaniz and Lima's approach as a scaling cosmology. We formulate the idea of an emergent cosmological term derived directly from an approximation of the exact dynamics. We show that some non-covariant parametrization of the cosmological term like Λ(a), Λ(H) gives rise to the non-physical behaviour of trajectories in the phase space. This behaviour disappears if the term Λ(a) is emergent from the covariant parametrization. (orig.)
The Atacama Cosmology Telescope: Cosmological Parameters from the 2008 Power Spectrum
Dunkley, J.; Hlozek, R.; Sievers, J.; Acquaviva, V.; Ade, P. A. R.; Aguirre, P.; Amiri, M.; Appel, J. W.; Barrientos, L. F.; Battistelli, E. S.;
2011-01-01
We present cosmological parameters derived from the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz and 218 GHz over 296 deg(exp 2) with the Atacama Cosmology Telescope (ACT) during its 2008 season. ACT measures fluctuations at scales 500 cosmological parameters from the less contaminated 148 GHz spectrum, marginalizing over SZ and source power. The ACDM cosmological model is a good fit to the data (chi square/dof = 29/46), and ACDM parameters estimated from ACT+Wilkinson Microwave Anisotropy Probe (WMAP) are consistent with the seven-year WMAP limits, with scale invariant n(sub s) = 1 excluded at 99.7% confidence level (CL) (3 sigma). A model with no CMB lensing is disfavored at 2.8 sigma. By measuring the third to seventh acoustic peaks, and probing the Silk damping regime, the ACT data improve limits on cosmological parameters that affect the small-scale CMB power. The ACT data combined with WMAP give a 6 sigma detection of primordial helium, with Y(sub p) = 0.313 +/- 0.044, and a 4 sigma detection of relativistic species, assumed to be neutrinos, with N(sub eff) = 5.3 +/- 1.3 (4.6 +/- 0.8 with BAO+H(sub 0) data). From the CMB alone the running of the spectral index is constrained to be d(sub s) / d ln k = -0,034 +/- 0,018, the limit on the tensor-to-scalar ratio is r < 0,25 (95% CL), and the possible contribution of Nambu cosmic strings to the power spectrum is constrained to string tension G(sub mu) < 1.6 x 10(exp -7) (95% CL),
Quantum cosmology and baby universes
International Nuclear Information System (INIS)
Grishchuk, L.P.
1990-01-01
The contributed papers presented to the workshop on ''Quantum Cosmology and Baby Universes'' have demonstrated the great interest in, and rapid development of, the field of quantum cosmology. In my view, there are at least three areas of active research at present. The first area can be defined as that of practical calculations. Here researchers are dealing with the basic quantum cosmological equation, which is the Wheeler-DeWitt equation. They try to classify all possible solutions to the Wheeler-DeWitt equation or seek a specific integration contour in order to select one particular wave function or generalize the simple minisuperspace models to more complicated cases, including various inhomogeneities, anisotropies, etc. The second area of research deals with the interpretational issues of quantum cosmology. There are still many questions about how to extract the observational consequences from a given cosmological wave function, the role of time in quantum cosmology, and how to reformulate the rules of quantum mechanics in such a way that they could be applicable to the single system which is our Universe. The third area of research is concerned with the so-called ''third quantization'' of gravity. In this approach a wave function satisfying the Wheeler-DeWitt equation becomes an operator acting on a Wave Function of the many-universes system. Within this approach one operates with Euclidean worm-holes joining different Lorentzian universes. (author)
International Nuclear Information System (INIS)
Akarsu, Özgür; Kumar, Suresh; Myrzakulov, R.; Sami, M.; Xu, Lixin
2014-01-01
In this paper, we consider a simple form of expansion history of Universe referred to as the hybrid expansion law - a product of power-law and exponential type of functions. The ansatz by construction mimics the power-law and de Sitter cosmologies as special cases but also provides an elegant description of the transition from deceleration to cosmic acceleration. We point out the Brans-Dicke realization of the cosmic history under consideration. We construct potentials for quintessence, phantom and tachyon fields, which can give rise to the hybrid expansion law in general relativity. We investigate observational constraints on the model with hybrid expansion law applied to late time acceleration as well as to early Universe a la nucleosynthesis
Effective field theory of cosmological perturbations
International Nuclear Information System (INIS)
Piazza, Federico; Vernizzi, Filippo
2013-01-01
The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu–Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry—that allows us to write down the most general Lagrangian—and of the Stückelberg ‘trick’—that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed analysis of the action in the ADM variables. We also review some basic applications to inflation and dark energy. (paper)
Effective field theory of cosmological perturbations
Piazza, Federico; Vernizzi, Filippo
2013-11-01
The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu-Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry—that allows us to write down the most general Lagrangian—and of the Stückelberg ‘trick’—that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed analysis of the action in the ADM variables. We also review some basic applications to inflation and dark energy.
Design and status of the AGS booster accelerator
International Nuclear Information System (INIS)
Forsyth, E.B.; Lee, Y.Y.
1987-01-01
Comments are given on some areas of the design considered for the AGS Booster Accelerator, including lattice design, energy and repetition rate, injection, radio frequency system, and the vacuum system. The current status is then briefly described
Inflationary phase in Brans-Dicke cosmology with a cosmological constant
Berman, Marcelo Samuel
1989-12-01
It has been shown earlier that, for a perfect fluid, a perfect gas law of state, and the Robertson-Walker metric, an exponential phase in Brans-Dicke cosmology is possible, with both positive pressure and density, but not with the violated energy condition p = -ρ. We demonstrate in this paper that the inclusion of a cosmological constant into the theory does not change that picture. Permanent address: Departamento de Ciencias Exatas da Faculdade de Filosofia, Ceincias e Letras da FURJ, Joinville, SC 89200, Brazil.
Design and high order optimization of the ATF2 lattices
Marin, E; Woodley, M; Kubo, K; Okugi, T; Tauchi, T; Urakawa, J; Tomas, R
2013-01-01
The next generation of future linear colliders (LC) demands nano-meter beam sizes at the interaction point (IP) in order to reach the required luminosity. The final focus system (FFS) of a LC is meant to deliver such small beam sizes. The Accelerator Test Facility (ATF) aims to test the feasibility of the new local chromaticity correction scheme which the future LCs are based on. To this end the ATF2 nominal and ultra-low beta* lattices are design to vertically focus the beam at the IP to 37nm and 23nm, respectively if error-free lattices are considered. However simulations show that the measured field errors of the ATF2 magnets preclude to reach the mentioned spot sizes. This paper describes the optimization of high order aberrations of the ATF2 lattices in order to minimize the detrimental effect of the measured multipole components for both ATF2 lattices. Specifically three solutions are studied, the replacement of the last focusing quadrupole (QF1FF), insertion of octupole magnets and optics modification....
Thermodynamics in Loop Quantum Cosmology
International Nuclear Information System (INIS)
Li, L.F.; Zhu, J.Y.
2009-01-01
Loop quantum cosmology (LQC) is very powerful to deal with the behavior of early universe. Moreover, the effective loop quantum cosmology gives a successful description of the universe in the semiclassical region. We consider the apparent horizon of the Friedmann-Robertson-Walker universe as a thermodynamical system and investigate the thermodynamics of LQC in the semiclassical region. The effective density and effective pressure in the modified Friedmann equation from LQC not only determine the evolution of the universe in LQC scenario but also are actually found to be the thermodynamic quantities. This result comes from the energy definition in cosmology (the Misner-Sharp gravitational energy) and is consistent with thermodynamic laws. We prove that within the framework of loop quantum cosmology, the elementary equation of equilibrium thermodynamics is still valid.
International Nuclear Information System (INIS)
Leon, Genly; Saridakis, Emmanuel N.
2010-01-01
We investigate several varying-mass dark matter particle models in the framework of phantom cosmology. We examine whether there exist late-time cosmological solutions, corresponding to an accelerating universe and possessing dark energy and dark matter densities of the same order. Imposing exponential or power-law potentials and exponential or power-law mass dependence, we conclude that the coincidence problem cannot be solved or even alleviated. Thus, if dark energy is attributed to the phantom paradigm, varying-mass dark matter models cannot fulfill the basic requirement that led to their construction.
Study of the possibility of solving cosmological lithium problem in an accelerator experiment
Energy Technology Data Exchange (ETDEWEB)
Bystritsky, V. M., E-mail: bystvm@jinr.ru [Joint Institute for Nuclear Research (Russian Federation); Varlachev, V. A.; Dudkin, G. N. [National Research Tomsk Polytechnic University (Russian Federation); Krylov, A. R. [Joint Institute for Nuclear Research (Russian Federation); Gazi, S.; Guran, J. [Slovak Academy of Sciences, Institute of Electrical Engineering (Slovakia); Nechaev, B. A.; Padalko, V. N. [National Research Tomsk Polytechnic University (Russian Federation); Sadovsky, A. B. [Joint Institute for Nuclear Research (Russian Federation); Tuleushev, Yu. Zh. [Ministry of Energy of the Republic of Kazakhstan, Nuclear Physics Institute (Kazakhstan); Filipowicz, M. [AGH University of Science and Technology, Faculty of Energy and Fuels (Poland); Philippov, A. V. [Joint Institute for Nuclear Research (Russian Federation)
2017-03-15
Within the standar dmodel of Big Bang Nucleosynthesis (BBN), there is a cosmological lithium problem, which consists in a substantial difference between calculated data on the abundances of the isotopes {sup 6}Li and {sup 7}Li and those that were found from observational astronomy. An attempt at measuring the cross section for the main 6Li production reaction {sup 2}H({sup 4}He, γ){sup 6}Li induced by the interaction of {sup 4}He{sup +} ions with deuterons at collision energies less than the lower boundary of the BBN energy range was made in the present study. Upper limits on the cross sections for the reaction in question were set.
Belinski, Vladimir
2018-01-01
Written for researchers focusing on general relativity, supergravity, and cosmology, this is a self-contained exposition of the structure of the cosmological singularity in generic solutions of the Einstein equations, and an up-to-date mathematical derivation of the theory underlying the Belinski–Khalatnikov–Lifshitz (BKL) conjecture on this field. Part I provides a comprehensive review of the theory underlying the BKL conjecture. The generic asymptotic behavior near the cosmological singularity of the gravitational field, and fields describing other kinds of matter, is explained in detail. Part II focuses on the billiard reformulation of the BKL behavior. Taking a general approach, this section does not assume any simplifying symmetry conditions and applies to theories involving a range of matter fields and space-time dimensions, including supergravities. Overall, this book will equip theoretical and mathematical physicists with the theoretical fundamentals of the Big Bang, Big Crunch, Black Hole singula...
Solitons in relativistic cosmologies
International Nuclear Information System (INIS)
Pullin, J.
1988-08-01
The application to the construction of solitonic cosmologies in General Relativity of the Inverse Scattering Technique of Belinskii an Zakharov is analyzed. Three improvements to the mentioned technique are proposed: the inclusion of higher order poles in the scattering matrix, a new renormalization technique for diagonal metrics and the extension of the technique to include backgrounds with material content by means of a Kaluza-Klein formalism. As a consequence of these improvements, three new aspects can be analyzed: a) The construction of anisotropic and inhomogeneous cosmological models which can mimic the formation of halos and voids, due to the presence of a material content. The new renormalization technique allows to construct an exact perturbation theory. b) The analysis of the dynamics of models with cosmological constant (inflationary models) and their perturbations. c) The study of interaction of gravitational solitonic waves on material backgrounds. Moreover, some additional works, connected with the existance of 'Crack of doom' type singularities in Kaluza-Klein cosmologies, stochastic perturbations in inflationary universes and inflationary phase transitions in rotating universes are described. (Author) [es
Ekpyrotic and cyclic cosmology
International Nuclear Information System (INIS)
Lehners, Jean-Luc
2008-01-01
Ekpyrotic and cyclic cosmologies provide theories of the very early and of the very late universe. In these models, the big bang is described as a collision of branes - and thus the big bang is not the beginning of time. Before the big bang, there is an ekpyrotic phase with equation of state w=P/(ρ) >>1 (where P is the average pressure and ρ the average energy density) during which the universe slowly contracts. This phase resolves the standard cosmological puzzles and generates a nearly scale-invariant spectrum of cosmological perturbations containing a significant non-Gaussian component. At the same time it produces small-amplitude gravitational waves with a blue spectrum. The dark energy dominating the present-day cosmological evolution is reinterpreted as a small attractive force between our brane and a parallel one. This force eventually induces a new ekpyrotic phase and a new brane collision, leading to the idea of a cyclic universe. This review discusses the detailed properties of these models, their embedding in M-theory and their viability, with an emphasis on open issues and observational signatures
Design and status of the AGS booster accelerator
Energy Technology Data Exchange (ETDEWEB)
Forsyth, E.B.; Lee, Y.Y.
1987-01-01
Comments are given on some areas of the design considered for the AGS Booster Accelerator, including lattice design, energy and repetition rate, injection, radio frequency system, and the vacuum system. The current status is then briefly described. (LEW)
International Nuclear Information System (INIS)
Buchert, Thomas
2006-01-01
In the framework of spatially averaged inhomogeneous cosmologies in classical general relativity, effective Einstein equations govern the regional and the global dynamics of averaged scalar variables of cosmological models. A particular solution may be characterized by a cosmic equation of state. In this paper, it is pointed out that a globally static averaged dust model is conceivable without employing a compensating cosmological constant. Much in the spirit of Einstein's original model we discuss consequences for the global, but also for the regional properties of this cosmology. We then consider the wider class of globally stationary cosmologies that are conceivable in the presented framework. All these models are based on exact solutions of the averaged Einstein equations and provide examples of cosmologies in an out-of-equilibrium state, which we characterize by an information-theoretical measure. It is shown that such cosmologies preserve high-magnitude kinematical fluctuations and so tend to maintain their global properties. The same is true for a Λ-driven cosmos in such a state despite exponential expansion. We outline relations to inflationary scenarios and put the dark energy problem into perspective. Here, it is argued, on the grounds of the discussed cosmologies, that a classical explanation of dark energy through backreaction effects is theoretically conceivable, if the matter-dominated universe emerged from a non-perturbative state in the vicinity of the stationary solution. We also discuss a number of caveats that furnish strong counter arguments in the framework of structure formation in a perturbed Friedmannian model
Dilaton cosmology and the modified uncertainty principle
International Nuclear Information System (INIS)
Majumder, Barun
2011-01-01
Very recently Ali et al. (2009) proposed a new generalized uncertainty principle (with a linear term in Plank length which is consistent with doubly special relativity and string theory. The classical and quantum effects of this generalized uncertainty principle (termed as modified uncertainty principle or MUP) are investigated on the phase space of a dilatonic cosmological model with an exponential dilaton potential in a flat Friedmann-Robertson-Walker background. Interestingly, as a consequence of MUP, we found that it is possible to get a late time acceleration for this model. For the quantum mechanical description in both commutative and MUP framework, we found the analytical solutions of the Wheeler-DeWitt equation for the early universe and compare our results. We have used an approximation method in the case of MUP.
Particle physics and cosmology
International Nuclear Information System (INIS)
Ellis, J.; Nanopoulos, D.
1983-01-01
The authors describe the connection between cosmology and particle physics in an introductory way. In this connection the big bang theory and unified gauge models of strong, electromagnetic, and weak interactions are considered. Furthermore cosmological nucleosynthesis is discussed in this framework, and the problem of cosmic neutrinos is considered with special regards to its rest mass. (HSI).
Barkana, Rennan; Tsujikawa, Shinji; Kim, Jihn E; Nagamine, Kentaro
2018-01-01
The Encyclopedia of Cosmology, in four volumes, is a major, long-lasting, seminal reference at the graduate student level, laid out by the most prominent, respected researchers in the general field of Cosmology. These volumes will be a comprehensive review of the most important concepts and current status in the field, covering both theory and observation.
Frequency comparison of lattice clocks toward the redefinition of the second
International Nuclear Information System (INIS)
Ido, T
2014-01-01
Strontium is the most popular species for optical lattice clocks. Recent reports of the accuracies from Boulder, U.S. and Tokyo reach 10 −18 level, which is better than state-of-the-art caesium clocks more than one order of magnitude. While this achievement accelerates the discussion to redefine the second, the agreement of frequencies in separate laboratories is of critical importance. For this context, intercontinental comparison of Sr lattice clocks were demonstrated between Japan and Germany using a satellite-based technique. The frequency difference was consistent with zero with an uncertainty of 1.6 × 10 −15
Computational tools and lattice design for the PEP-II B-Factory
International Nuclear Information System (INIS)
Cai Yunhai; Irwin, John; Nosochkov, Yuri; Yan, Yiton
1997-01-01
Several accelerator codes were used to design the PEP-II lattices, ranging from matrix-based codes, such as MAD and DIMAD, to symplectic-integrator codes, such as TRACY and DESPOT. In addition to element-by-element tracking, we constructed maps to determine aberration strengths. Furthermore, we have developed a fast and reliable method (nPB tracking) to track particles with a one-turn map. This new technique allows us to evaluate performance of the lattices on the entire tune-plane. Recently, we designed and implemented an object-oriented code in C++ called LEGO which integrates and expands upon TRACY and DESPOT
From Mateev's baryogenesis ideas to contemporary cosmological constraints
International Nuclear Information System (INIS)
Kirilova, D.
2011-01-01
Mateev's ideas on baryogenesis and the possibility to constrain new physics on the basis of cosmological observations present the first impulse for the development of the physical cosmology and astroparticle physics in Bulgaria. Contemporary cosmological models of baryogenesis, leptogenesis, primordial nucleosynthesis and cosmological constraints on new physics are discussed
Energy Technology Data Exchange (ETDEWEB)
Romanov, A. [Fermilab
2016-10-09
Many modern and most future accelerators rely on precise configuration of lattice and trajectory. The Integrable Optics Test Accelerator (IOTA) at Fermilab that is coming to final stages of construction will be used to test advanced approaches of control over particles dynamics. Various experiments planned at IOTA require high flexibility of lattice configuration as well as high precision of lattice and closed orbit control. Dense element placement does not allow to have ideal configuration of diagnostics and correctors for all planned experiments. To overcome this limitations advanced method of lattice an beneficial for other machines. Developed algorithm is based on LOCO approach, extended with various sets of other experimental data, such as dispersion, BPM BPM phase advances, beam shape information from synchrotron light monitors, responses of closed orbit bumps to variations of focusing elements and other. Extensive modeling of corrections for a big number of random seed errors is used to illustrate benefits from developed approach.
Cosmology and unified gauge theory
Oraifeartaigh, L.
1981-09-01
Theoretical points in common between cosmology and unified gauge theory (UGT) are reviewed, with attention given to areas of one which have proven useful for the other. The underlying principles for both theoretical frameworks are described, noting the differences in scale, i.e., 10 to the 25th cm in cosmology and 10 to the -15th cm for UGT. Cosmology has produced bounds on the number of existing neutrino species, and also on the mass of neutrinos, two factors of interest in particle physics. Electrons, protons, and neutrinos, having been spawned from the same massive leptons, each composed of three quarks, have been predicted to be present in equal numbers in the Universe by UGT, in line with necessities of cosmology. The Grand UGT also suggests specific time scales for proton decay, thus accounting for the observed baryon assymmetry.
Dissipative Boltzmann-Robertson-Walker cosmologies
International Nuclear Information System (INIS)
Hiscock, W.A.; Salmonson, J.
1991-01-01
The equations governing a flat Robertson-Walker cosmological model containing a dissipative Boltzmann gas are integrated numerically. The bulk viscous stress is modeled using the Eckart and Israel-Stewart theories of dissipative relativistic fluids; the resulting cosmologies are compared and contrasted. The Eckart models are shown to always differ in a significant quantitative way from the Israel-Stewart models. It thus appears inappropriate to use the pathological (nonhyperbolic) Eckart theory for cosmological applications. For large bulk viscosities, both cosmological models approach asymptotic nonequilibrium states; in the Eckart model the total pressure is negative, while in the Israel-Stewart model the total pressure is asymptotically zero. The Eckart model also expands more rapidly than the Israel-Stewart models. These results suggest that ''bulk-viscous'' inflation may be an artifact of using a pathological fluid theory such as the Eckart theory
On the Cold Big Bang Cosmology
Directory of Open Access Journals (Sweden)
Assis A. V. D. B.
2011-04-01
Full Text Available We solve the general relativity (GR field equations under the cosmological scope via one extra postulate. The plausibility of the postulate resides within the Heisenberg in- determinacy principle, being heuristically analysed throughout the appendix. Under this approach, a negative energy density may provide the positive energy content of the universe via fluctuation, since the question of conservation of energy in cosmol- ogy is weakened, supported by the known lack of scope of the Noether’s theorem in cosmology. The initial condition of the primordial universe turns out to have a natural cuto such that the temperature of the cosmological substratum converges to the ab- solute zero, instead of the established divergence at the very beginning. The adopted postulate provides an explanation for the cosmological dark energy open question. The solution agrees with cosmological observations, including a 2.7K CMBT prediction.
Black hole versus cosmological horizon entropy
International Nuclear Information System (INIS)
Davis, Tamara M; Davies, P C W; Lineweaver, Charles H
2003-01-01
The generalized second law of thermodynamics states that entropy always increases when all event horizons are attributed with an entropy proportional to their area. We test the generalized second law by investigating the change in entropy when dust, radiation and black holes cross a cosmological event horizon. We generalize for flat, open and closed Friedmann-Robertson-Walker universes by using numerical calculations to determine the cosmological horizon evolution. In most cases, the loss of entropy from within the cosmological horizon is more than balanced by an increase in cosmological event horizon entropy, maintaining the validity of the generalized second law of thermodynamics. However, an intriguing set of open universe models shows an apparent entropy decrease when black holes disappear over the cosmological event horizon. We anticipate that this apparent violation of the generalized second law will disappear when solutions are available for black holes embedded in arbitrary backgrounds
Landscape predictions from cosmological vacuum selection
Energy Technology Data Exchange (ETDEWEB)
Bousso, Raphael; Bousso, Raphael; Yang, Sheng
2007-04-23
In Bousso-Polchinski models with hundreds of fluxes, we compute the effects of cosmological dynamics on the probability distribution of landscape vacua. Starting from generic initial conditions, we find that most fluxes are dynamically driven into a different and much narrower range of values than expected from landscape statistics alone. Hence, cosmological evolution will access only a tiny fraction of the vacua with small cosmological constant. This leads to a host of sharp predictions. Unlike other approaches to eternal inflation, the holographic measure employed here does not lead to staggering, an excessive spread of probabilities that would doom the string landscape as a solution to the cosmological constant problem.
Landscape predictions from cosmological vacuum selection
International Nuclear Information System (INIS)
Bousso, Raphael; Yang, I-S.
2007-01-01
In Bousso-Polchinski models with hundreds of fluxes, we compute the effects of cosmological dynamics on the probability distribution of landscape vacua. Starting from generic initial conditions, we find that most fluxes are dynamically driven into a different and much narrower range of values than expected from landscape statistics alone. Hence, cosmological evolution will access only a tiny fraction of the vacua with small cosmological constant. This leads to a host of sharp predictions. Unlike other approaches to eternal inflation, the holographic measure employed here does not lead to staggering, an excessive spread of probabilities that would doom the string landscape as a solution to the cosmological constant problem
Cosmological string solutions by dimensional reduction
International Nuclear Information System (INIS)
Behrndt, K.; Foerste, S.
1993-12-01
We obtain cosmological four dimensional solutions of the low energy effective string theory by reducing a five dimensional black hole, and black hole-de Sitter solution of the Einstein gravity down to four dimensions. The appearance of a cosmological constant in the five dimensional Einstein-Hilbert produces a special dilaton potential in the four dimensional effective string action. Cosmological scenarios implement by our solutions are discussed
J. Rodnizki, D. Berkovits, K. Lavie, I. Mardor, A. Shor and Y. Yanay (Soreq NRC, Yavne), K. Dunkel, C. Piel (ACCEL, Bergisch Gladbach), A. Facco (INFN/LNL, Legnaro, Padova), V. Zviagintsev (TRIUMF, Vancouver)
AbstractBeam dynamics simulations of SARAF (Soreq Applied Research Accelerator Facility) superconducting RF linear accelerator have been performed in order to establish the accelerator design. The multi-particle simulation includes 3D realistic electromagnetic field distributions, space charge forces and fabrication, misalignment and operation errors. A 4 mA proton or deuteron beam is accelerated up to 40 MeV with a moderated rms emittance growth and a high real-estate gradient of 2 MeV/m. An envelope of 40,000 macro-particles is kept under a radius of 1.1 cm, well below the beam pipe bore radius. The accelerator design of SARAF is proposed as an injector for the EURISOL driver accelerator. The Accel 176 MHZ β0=0.09 and β0=0.15 HWR lattice was extended to 90 MeV based on the LNL 352 MHZ β0=0.31 HWR. The matching between both lattices ensures smooth transition and the possibility to extend the accelerator to the required EURISOL ion energy.
An exposition on Friedmann cosmology with negative energy densities
International Nuclear Information System (INIS)
Nemiroff, Robert J.; Joshi, Ravi; Patla, Bijunath R.
2015-01-01
How would negative energy density affect a classic Friedmann cosmology? Although never measured and possibly unphysical, certain realizations of quantum field theories leaves the door open for such a possibility. In this paper we analyze the evolution of a universe comprising varying amounts of negative energy forms. Negative energy components have negative normalized energy densities, Ω < 0. They include negative phantom energy with an equation of state parameter w < −1, negative cosmological constant: w=−1, negative domain walls: w = −2/3, negative cosmic strings: w=−1/3, negative mass: w = 0, negative radiation: w = 1/3 and negative ultralight: w > 1/3. Assuming that such energy forms generate pressure like perfect fluids, the attractive or repulsive nature of negative energy components are reviewed. The Friedmann equation is satisfied only when negative energy forms are coupled to a greater magnitude of positive energy forms or positive curvature. We show that the solutions exhibit cyclic evolution with bounces and turnovers.The future and fate of such universes in terms of curvature, temperature, acceleration, and energy density are reviewed. The end states are dubbed ''big crunch,' '' big void,' or ''big rip' and further qualified as ''warped',''curved', or ''flat',''hot' versus ''cold', ''accelerating' versus ''decelerating' versus ''coasting'. A universe that ends by contracting to zero energy density is termed ''big poof.' Which contracting universes ''bounce' in expansion and which expanding universes ''turnover' into contraction are also reviewed
Elements of the universe in Philo’s De Vita Mosis: Cosmological theology or theological cosmology?
Directory of Open Access Journals (Sweden)
Gert J. Steyn
2013-11-01
Full Text Available It is the intention of this article to investigate how Philo’s understanding of the universe, and particularly its four basic elements as taught by the Greek philosophers, influenced his description of the God of Israel’s world in which the Moses narrative unfolds. Given the fact that Philo was a theologian par excellence, the question can be asked whether Philo’s approach is closer to what one might call ‘theological cosmology’ or rather closer to ‘cosmological theology’? After a brief survey of Philo’s inclination to interpret Jewish history in the light of Greek cosmology, the study proceeds with his universe as symbolised in the high priest’s vestments. The τετρακτύςwith its 10 points of harmony is a key to Philo’s symbolism and numerology. The article concludes that Philo is not writing cosmology per se in his De Vita Mosis, but he is rather writing a theology that sketches the cosmic superiority and involvement of Israel’s God against the backdrop of Greek cosmology as it was influenced by Pythagoras’ geometry and numerology as well as by Plato’s philosophy. In this sense his account in the De Vita Mosisis closer to a cosmological theology. He utilises the cosmological picture of the Greco-Hellenistic world in order to introduce and present the powerful nature and qualities of Israel’s God.
Zero cosmological constant from normalized general relativity
International Nuclear Information System (INIS)
Davidson, Aharon; Rubin, Shimon
2009-01-01
Normalizing the Einstein-Hilbert action by the volume functional makes the theory invariant under constant shifts in the Lagrangian. The associated field equations then resemble unimodular gravity whose otherwise arbitrary cosmological constant is now determined as a Machian universal average. We prove that an empty space-time is necessarily Ricci tensor flat, and demonstrate the vanishing of the cosmological constant within the scalar field paradigm. The cosmological analysis, carried out at the mini-superspace level, reveals a vanishing cosmological constant for a universe which cannot be closed as long as gravity is attractive. Finally, we give an example of a normalized theory of gravity which does give rise to a non-zero cosmological constant.
Astroparticle physics and cosmology
International Nuclear Information System (INIS)
Senjanovic, G.; Smirnov, A.Yu.; Thompson, G.
2001-01-01
In this volume a wide spectrum of topics of modern astroparticle physics, such as neutrino astrophysics, dark matter of the universe, high energy cosmic rays, topological defects in cosmology, γ-ray bursts, phase transitions at high temperatures, is covered. The articles written by top level experts in the field give a comprehensive view of the state-of-the-art of modern cosmology
Astroparticle physics and cosmology
Energy Technology Data Exchange (ETDEWEB)
Senjanovic, G; Smirnov, A Yu; Thompson, G [eds.
2001-11-15
In this volume a wide spectrum of topics of modern astroparticle physics, such as neutrino astrophysics, dark matter of the universe, high energy cosmic rays, topological defects in cosmology, {gamma}-ray bursts, phase transitions at high temperatures, is covered. The articles written by top level experts in the field give a comprehensive view of the state-of-the-art of modern cosmology.
DESY. Scientific annual report 2006; DESY. Wissenschaftlicher Jahresbericht 2006
Energy Technology Data Exchange (ETDEWEB)
NONE
2007-06-15
The following topics are dealt with: The H1 experiment, the ZEUS experiment, the HERMES experiment, the HERA-B experiment, the ATLAS experiment, the CMS experiment, astroparticle physics, theoretical work on the standard model and its possible extensions, particle cosmology, string theory, and lattice gauge theory, the International Linear Collider, linear-accelerator technologies, the storage rings HERA and DORIS III, the preaccelerators, the free electron laser FLASH, the future synchrotron radiation source PETRA III, the XFEL, accelerator technologies concerning injection and ejection, RF techniques, accelerator control, personnel safety system, beam diagnostics and instrumentation, beam control, vacuum techniques, cryogenics and superconductivity, power supplies, as well as vacuum techniques. (HSI)
DESY. Scientific annual report 2006
International Nuclear Information System (INIS)
2007-06-01
The following topics are dealt with: The H1 experiment, the ZEUS experiment, the HERMES experiment, the HERA-B experiment, the ATLAS experiment, the CMS experiment, astroparticle physics, theoretical work on the standard model and its possible extensions, particle cosmology, string theory, and lattice gauge theory, the International Linear Collider, linear-accelerator technologies, the storage rings HERA and DORIS III, the preaccelerators, the free electron laser FLASH, the future synchrotron radiation source PETRA III, the XFEL, accelerator technologies concerning injection and ejection, RF techniques, accelerator control, personnel safety system, beam diagnostics and instrumentation, beam control, vacuum techniques, cryogenics and superconductivity, power supplies, as well as vacuum techniques. (HSI)