WorldWideScience

Sample records for accelerated cosmological lattice

  1. Accelerating Cosmologies from Compactification

    CERN Document Server

    Townsend, P K; Townsend, Paul K.; Wohlfarth, Mattias N.R.

    2003-01-01

    A solution of the (4+n)-dimensional vacuum Einstein equations is found for which spacetime is compactified on a compact hyperbolic manifold of time-varying volume to a flat four-dimensional FLRW cosmology undergoing accelerated expansion in Einstein conformal frame. This shows that the `no-go' theorem forbidding acceleration in `standard' (time-independent) compactifications of string/M-theory does not apply to `cosmological' (time-dependent) hyperbolic compactifications.

  2. Lattice QCD for Cosmology

    CERN Document Server

    Borsanyi, Sz; Kampert, K H; Katz, S D; Kawanai, T; Kovacs, T G; Mages, S W; Pasztor, A; Pittler, F; Redondo, J; Ringwald, A; Szabo, K K

    2016-01-01

    We present a full result for the equation of state (EoS) in 2+1+1 (up/down, strange and charm quarks are present) flavour lattice QCD. We extend this analysis and give the equation of state in 2+1+1+1 flavour QCD. In order to describe the evolution of the universe from temperatures several hundreds of GeV to several tens of MeV we also include the known effects of the electroweak theory and give the effective degree of freedoms. As another application of lattice QCD we calculate the topological susceptibility (chi) up to the few GeV temperature region. These two results, EoS and chi, can be used to predict the dark matter axion's mass in the post-inflation scenario and/or give the relationship between the axion's mass and the universal axionic angle, which acts as a initial condition of our universe.

  3. On the solutions to accelerating cosmologies

    CERN Document Server

    Ito, M

    2003-01-01

    Motivated by recent accelerating cosmological model, we derive the solutions to vacuum Einstein equation in $(d+1)$-dimensional Minkowski space with $n$-dimensional hyperbolic manifold. The conditions of accelerating expansion are given in such a set up.

  4. Symplectic maps for accelerator lattices

    Energy Technology Data Exchange (ETDEWEB)

    Warnock, R.L.; Ruth, R.; Gabella, W.

    1988-05-01

    We describe a method for numerical construction of a symplectic map for particle propagation in a general accelerator lattice. The generating function of the map is obtained by integrating the Hamilton-Jacobi equation as an initial-value problem on a finite time interval. Given the generating function, the map is put in explicit form by means of a Fourier inversion technique. We give an example which suggests that the method has promise. 9 refs., 9 figs.

  5. Conformal symmetries of FRW accelerating cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Kehagias, A. [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece); Department of Theoretical Physics and Center for Astroparticle Physics (CAP) 24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland); Riotto, A. [Department of Theoretical Physics and Center for Astroparticle Physics (CAP) 24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland)

    2014-07-15

    We show that any accelerating Friedmann–Robertson–Walker (FRW) cosmology with equation of state w<−1/3 (and therefore not only a de Sitter stage with w=−1) exhibits three-dimensional conformal symmetry on future constant-time hypersurfaces if the bulk theory is invariant under bulk conformal Killing vectors. We also offer an alternative derivation of this result in terms of conformal Killing vectors and show that long wavelength comoving curvature perturbations of the perturbed FRW metric are just conformal Killing motions of the FRW background. We then extend the boundary conformal symmetry to the bulk for accelerating cosmologies. Our findings indicate that one can easily generate perturbations of scalar fields which are not only scale invariant, but also fully conformally invariant on super-Hubble scales. Measuring a scale-invariant power spectrum for the cosmological perturbation does not automatically imply that the universe went through a de Sitter stage.

  6. Accelerating multidimensional cosmologies with scalar fields

    CERN Document Server

    Victor, B

    2004-01-01

    We study multidimensional cosmological models with a higher-dimensional product manifold, that consists of spherical and flat spaces, in the presence of a minimal free scalar field. Dynamical behaviour of the model is analyzed both in Einstein and Brans-Dicke conformal frames. For a number of particular cases, it is shown that external space-time undergoes an accelerated expansion

  7. Cosmological Acceleration from Gravitational Waves

    CERN Document Server

    Marochnik, Leonid

    2015-01-01

    It is shown that the classical gravitational waves of super-horizon wavelengths are able to form the de Sitter accelerated expansion of the empty (with no matter fields) Universe. The contemporary Universe is about 70% empty and asymptotically is going to become completely empty, so the effect caused by emptiness should be already very noticeable. It could manifest itself as the dark energy.

  8. Cosmological acceleration. Dark energy or modified gravity?

    Energy Technology Data Exchange (ETDEWEB)

    Bludman, S.

    2006-05-15

    We review the evidence for recently accelerating cosmological expansion or ''dark energy'', either a negative pressure constituent in General Relativity (Dark Energy) or modified gravity (Dark Gravity), without any constituent Dark Energy. If constituent Dark Energy does not exist, so that our universe is now dominated by pressure-free matter, Einstein gravity must be modified at low curvature. The vacuum symmetry of any Robertson-Walker universe then characterizes Dark Gravity as low- or high-curvature modifications of Einstein gravity. The dynamics of either kind of ''dark energy'' cannot be derived from the homogeneous expansion history alone, but requires also observing the growth of inhomogeneities. Present and projected observations are all consistent with a small fine tuned cosmological constant, but also allow nearly static Dark Energy or gravity modified at cosmological scales. The growth of cosmological fluctuations will potentially distinguish between static and ''dynamic'' ''dark energy''. But, cosmologically distinguishing the Concordance Model {lambda}CDM from modified gravity will require a weak lensing shear survey more ambitious than any now projected. Dvali-Gabadadze-Porrati low-curvature modifications of Einstein gravity may also be detected in refined observations in the solar system (Lue and Starkman) or at the intermediate Vainstein scale (Iorio) in isolated galaxy clusters. Dark Energy's epicyclic character, failure to explain the original Cosmic Coincidence (''Why so small now?'') without fine tuning, inaccessibility to laboratory or solar system tests, along with braneworld theories, now motivate future precision solar system, Vainstein-scale and cosmological-scale studies of Dark Gravity. (Orig.)

  9. Diffusive Shock Acceleration at Cosmological Shock Waves

    CERN Document Server

    Kang, Hyesung

    2012-01-01

    We reexamine nonlinear diffusive shock acceleration (DSA) at cosmological shocks in the large scale structure of the Universe, incorporating wave-particle interactions that are expected to operate in collisionless shocks. Adopting simple phenomenological models for magnetic field amplification (MFA) by cosmic-ray (CR) streaming instabilities and Alfv'enic drift, we perform kinetic DSA simulations for a wide range of sonic and Alfv'enic Mach numbers and evaluate the CR injection fraction and acceleration efficiency. In our DSA model the CR acceleration efficiency is determined mainly by the sonic Mach number Ms, while the MFA factor depends on the Alfv'enic Mach number and the degree of shock modification by CRs. We show that at strong CR modified shocks, if scattering centers drift with an effective Alfv'en speed in the amplified magnetic field, the CR energy spectrum is steepened and the acceleration efficiency is reduced significantly, compared to the cases without such effects. As a result, the postshock C...

  10. DIFFUSIVE SHOCK ACCELERATION AT COSMOLOGICAL SHOCK WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyesung [Department of Earth Sciences, Pusan National University, Pusan 609-735 (Korea, Republic of); Ryu, Dongsu, E-mail: kang@uju.es.pusan.ac.kr, E-mail: ryu@canopus.cnu.ac.kr [Department of Astronomy and Space Science, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2013-02-10

    We reexamine nonlinear diffusive shock acceleration (DSA) at cosmological shocks in the large-scale structure of the universe, incorporating wave-particle interactions that are expected to operate in collisionless shocks. Adopting simple phenomenological models for magnetic field amplification (MFA) by cosmic-ray (CR) streaming instabilities and Alfvenic drift, we perform kinetic DSA simulations for a wide range of sonic and Alfvenic Mach numbers and evaluate the CR injection fraction and acceleration efficiency. In our DSA model, the CR acceleration efficiency is determined mainly by the sonic Mach number M{sub s} , while the MFA factor depends on the Alfvenic Mach number and the degree of shock modification by CRs. We show that at strong CR modified shocks, if scattering centers drift with an effective Alfven speed in the amplified magnetic field, the CR energy spectrum is steepened and the acceleration efficiency is reduced significantly, compared to the cases without such effects. As a result, the postshock CR pressure saturates roughly at {approx}20% of the shock ram pressure for strong shocks with M{sub s} {approx}> 10. In the test-particle regime (M{sub s} {approx}< 3), it is expected that the magnetic field is not amplified and the Alfvenic drift effects are insignificant, although relevant plasma physical processes at low Mach number shocks remain largely uncertain.

  11. Cosmological phase transitions from lattice field theory

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2011-11-22

    In this proceedings contribution we discuss the fate of the electroweak and the quantum chromodynamics phase transitions relevant for the early stage of the universe at non-zero temperature. These phase transitions are related to the Higgs mechanism and the breaking of chiral symmetry, respectively. We will review that non-perturbative lattice field theory simulations show that these phase transitions actually do not occur in nature and that physical observables show a completely smooth behaviour as a function of the temperature.

  12. Accelerating cosmological expansion from shear and bulk viscosity

    CERN Document Server

    Floerchinger, Stefan; Wiedemann, Urs Achim

    2015-01-01

    The dissipation of energy from local velocity perturbations in the cosmological fluid affects the time evolution of spatially averaged fluid dynamic fields and the cosmological solution of Einstein's field equations. We show how this backreaction effect depends on shear and bulk viscosity and other material properties of the dark sector, as well as the spectrum of perturbations. If sufficiently large, this effect could account for the acceleration of the cosmological expansion.

  13. Accelerating Cosmological Expansion from Shear and Bulk Viscosity

    Science.gov (United States)

    Floerchinger, Stefan; Tetradis, Nikolaos; Wiedemann, Urs Achim

    2015-03-01

    The dissipation of energy from local velocity perturbations in the cosmological fluid affects the time evolution of spatially averaged fluid dynamic fields and the cosmological solution of Einstein's field equations. We show how this backreaction effect depends on shear and bulk viscosity and other material properties of the dark sector, as well as the spectrum of perturbations. If sufficiently large, this effect could account for the acceleration of the cosmological expansion.

  14. A numerical study of the Regge Calculus and Smooth Lattice methods on a Kasner cosmology

    CERN Document Server

    Brewin, Leo

    2015-01-01

    Two lattice based methods for numerical relativity, the Regge Calculus and the Smooth Lattice Relativity, will be compared with respect to accuracy and computational speed in a full 3+1 evolution of initial data representing a standard Kasner cosmology. It will be shown that both methods provide convergent approximations to the exact Kasner cosmology. It will also be shown that the Regge Calculus is of the order of 110 times slower than the Smooth Lattice method.

  15. Learn-As-You-Go Acceleration of Cosmological Parameter Estimates

    CERN Document Server

    Aslanyan, Grigor; Price, Layne C

    2015-01-01

    Cosmological analyses can be accelerated by approximating slow calculations using a training set, which is either precomputed or generated dynamically. However, this approach is only safe if the approximations are well understood and controlled. This paper surveys issues associated with the use of machine-learning based emulation strategies for accelerating cosmological parameter estimation. We describe a learn-as-you-go algorithm that is implemented in the Cosmo++ code and (1) trains the emulator while simultaneously estimating posterior probabilities; (2) identifies unreliable estimates, computing the exact numerical likelihoods if necessary; and (3) progressively learns and updates the error model as the calculation progresses. We explicitly describe and model the emulation error and show how this can be propagated into the posterior probabilities. We apply these techniques to the Planck likelihood and the calculation of $\\Lambda$CDM posterior probabilities. The computation is significantly accelerated wit...

  16. Accelerating cosmologies and a phase transition in M-theory

    Energy Technology Data Exchange (ETDEWEB)

    Wohlfarth, Mattias N.R

    2003-06-19

    M-theory compactifies on a seven-dimensional time-dependent hyperbolic or flat space to a four-dimensional FLRW cosmology undergoing a period of accelerated expansion in Einstein conformal frame. The strong energy condition is violated by the scalar fields produced in the compactification, as is necessary to evade the no-go theorem for time-independent compactifications. The four-form field strength of eleven-dimensional supergravity smoothly switches on during the period of accelerated expansion in hyperbolic compactifications, whereas in flat compactifications, the three-form potential smoothly changes its sign. For small acceleration times, this behaviour is like a phase transition of the three-form potential, during which the cosmological scale factor approximately doubles.

  17. Accelerating Cosmologies and a Phase Transition in M-Theory

    CERN Document Server

    Wohlfarth, M N R

    2003-01-01

    M-theory compactifies on a seven-dimensional time-dependent hyperbolic or flat space to a four-dimensional FLRW cosmology undergoing a period of accelerated expansion in Einstein conformal frame. The strong energy condition is violated by the scalar fields produced in the compactification, as is necessary to evade the no-go theorem for time-independent compactifications. The four-form field strength of eleven-dimensional supergravity smoothly switches on during the period of accelerated expansion in hyperbolic compactifications, whereas in flat compactifications, the three-form potential smoothly changes its sign. For small acceleration times, this behaviour is like a phase transition of the three-form potential, during which the cosmological scale factor approximately doubles.

  18. Cosmic Rays Accelerated at Cosmological Shock Waves

    Indian Academy of Sciences (India)

    Renyi Ma; Dongsu Ryu; Hyesung Kang

    2011-03-01

    Based on hydrodynamic numerical simulations and diffusive shock acceleration model, we calculated the ratio of cosmic ray (CR) to thermal energy. We found that the CR fraction can be less than ∼ 0.1 in the intracluster medium, while it would be of order unity in the warm-hot intergalactic medium.

  19. Can superhorizon cosmological perturbations explain the acceleration of the universe?

    CERN Document Server

    Hirata, C M; Hirata, Christopher M.; Seljak, Uros

    2005-01-01

    We investigate the recent suggestions by Barausse et al. (astro-ph/0501152) and Kolb et al. (hep-th/0503117) that the acceleration of the universe could be explained by large superhorizon fluctuations generated by inflation. We show that no acceleration can be produced by this mechanism. We begin by showing how the application of Raychaudhuri equation to inhomogeneous cosmologies results in several ``no go'' theorems for accelerated expansion. Next we derive an exact solution for a specific case of initial perturbations, for which application of the Kolb et al. expressions leads to an acceleration, while the exact solution reveals that no acceleration is present. We show that the discrepancy can be traced to higher order terms that were dropped in the Kolb et al. analysis. We proceed with the analysis of initial value formulation of general relativity to argue that causality severely limits what observable effects can be derived from superhorizon perturbations. By constructing a Riemann normal coordinate syst...

  20. Viscous cosmological models and accelerated Universes

    CERN Document Server

    Kremer, G M

    2003-01-01

    It is shown that a present acceleration with a past deceleration is a possible solution of the Friedmann equation by considering the Universe as a mixture of a scalar with a matter field and by including a non-equilibrium pressure term in the energy-momentum tensor. The dark energy density decays more slowly with respect to the time than the matter energy density does. The inclusion of the non-equilibrium pressure leads to a less pronounced decay of the matter field with a shorter period of past deceleration.

  1. Area metric gravity and accelerating cosmology

    CERN Document Server

    Punzi, R; Wohlfarth, M N R; Punzi, Raffaele; Schuller, Frederic P.; Wohlfarth, Mattias N.R.

    2007-01-01

    Area metric manifolds emerge as effective classical backgrounds in quantum string theory and quantum gauge theory, and present a true generalization of metric geometry. Here, we consider area metric manifolds in their own right, and develop in detail the foundations of area metric differential geometry. Based on the construction of an area metric curvature scalar, which reduces in the metric-induced case to the Ricci scalar, we re-interpret the Einstein-Hilbert action as dynamics for an area metric spacetime. In contrast to modifications of general relativity based on metric geometry, no continuous deformation scale needs to be introduced; the extension to area geometry is purely structural and thus rigid. We present an intriguing prediction of area metric gravity: without dark energy or fine-tuning, the late universe exhibits a small acceleration.

  2. Accelerating cosmologies from non-local higher-derivative gravity

    CERN Document Server

    Capozziello, Salvatore; Nojiri, Shin'ichi; Odintsov, Sergei D

    2008-01-01

    We study accelerating cosmological solutions of a general class of non-linear gravities which depend on Gauss-Bonnet and other higher derivative invariants. To achieve this goal a local formulation with auxiliary scalars for arbitrary higher-derivative non-local gravity is developed. It is demonstrated that non-local Gauss-Bonnet gravity can be reduced, in the local formulation, to a model of string-inspired scalar-Gauss-Bonnet gravity. A natural unification, in the theory here developed, of the early-time inflation epoch with a late-time acceleration stage can also be realized.

  3. Accelerating cosmologies from non-local higher-derivative gravity

    Energy Technology Data Exchange (ETDEWEB)

    Capozziello, Salvatore [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , INFN Sez. di Napoli, Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126 Napoli (Italy); Elizalde, Emilio [Consejo Superior de Investigaciones Cientificas ICE/CSIC-IEEC, Campus UAB, Facultat de Ciencies, Torre C5-Parell-2a pl, E-08193 Bellaterra (Barcelona) (Spain); Nojiri, Shin' ichi [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)], E-mail: nojiri@phys.nagoya-u.ac.jp; Odintsov, Sergei D. [Institucio Catalana de Recerca i Estudis Avancats (ICREA) and Institut de Ciencies de l' Espai (IEEC-CSIC), Campus UAB, Facultat de Ciencies, Torre C5-Par-2a pl, E-08193 Bellaterra, Barcelona (Spain)

    2009-01-12

    We study accelerating cosmological solutions of a general class of non-linear gravities which depend on Gauss-Bonnet and other higher derivative invariants. To achieve this goal a local formulation with auxiliary scalars for arbitrary higher-derivative non-local gravity is developed. It is demonstrated that non-local Gauss-Bonnet gravity can be reduced, in the local formulation, to a model of string-inspired scalar-Gauss-Bonnet gravity. A natural unification, in the theory here developed, of the early-time inflation epoch with a late-time acceleration stage can also be realized.

  4. Rotating and accelerating black holes with cosmological constant

    CERN Document Server

    Chen, Yu; Teo, Edward

    2016-01-01

    We propose a new form of the rotating C-metric with cosmological constant, which generalises the form found by Hong and Teo for the Ricci-flat case. This solution describes the entire class of spherical black holes undergoing rotation and acceleration in dS or AdS space-time. The new form allows us to identify the complete ranges of coordinates and parameters of this solution. We perform a systematic study of its geometrical and physical properties, and of the various limiting cases that arise from it.

  5. Cosmological Implications of the Effective Field Theory of Cosmic Acceleration

    CERN Document Server

    Mueller, Eva-Maria; Watson, Scott

    2012-01-01

    We consider cosmological constraints arising from the background expansion history on the ef- fective field theory of cosmic acceleration, a theoretical framework that allows for a unified way to classify both models of dark energy and modified gravity within the linear regime. In the Einstein frame, the most general action for the background can be written in terms of a canonical scalar field which is non-minimally coupled to matter. The leading corrections to the action are expressible through a quartic kinetic term, and scalar couplings to a Gauss-Bonnet curvature term and the Einstein tensor. We determine the implications of the terms in this general action for the predicted expansion history in the context of dynamical attractors. We find that each modifies the matter dominated and/or accelerative eras in ways that allow us to place cosmological constraints on them. We present current constraints on the effective action using the latest Type Ia supernovae, Cosmic Microwave Background, and Baryonic Acoust...

  6. Axion cosmology, lattice QCD and the dilute instanton gas

    Energy Technology Data Exchange (ETDEWEB)

    Borsanyi, S. [Wuppertal Univ. (Germany). Dept. of Physics; Dierigl, M.; Ringwald, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Fodor, Z. [Wuppertal Univ. (Germany). Dept. of Physics; Forschungszentrum Juelich (Germany). Inst. for Advanced Simulation (IAS), Juelich Supercomputing Centre (JSC); Lorand Eoetvoes Univ., Budapest (Hungary). Inst. for Theoretical Physics; Katz, S.D. [Lorand Eoetvoes Univ., Budapest (Hungary). Inst. for Theoretical Physics; MTA-ELTE Lenduelet Lattice Gauge Theory Research Group, Budapest (Hungary); Mages, S.W. [Rgensburg Univ. (Germany); Forschungszentrum Juelich (Germany). Inst. for Advanced Simulation (IAS), Juelich Supercomputing Centre (JSC); Nogradi, D. [Lorand Eoetvoes Univ., Budapest (Hungary). Inst. for Theoretical Physics; MTA-ELTE Lenduelet Lattice Gauge Theory Research Group, Budapest (Hungary); Califonia Univ., Santa Barbara, CA (United States). Kavli Inst. for Theoretical Physics; Redondo, J. [Zaragoza Univ. (Spain). Dept. de Fisica Teorica; Max-Planck-Institut fuer Physik, Muenchen (Germany); Szabo, K.K. [Wuppertal Univ. (Germany). Dept. of Physics; Forschungszentrum Juelich (Germany). Inst. for Advanced Simulation (IAS), Juelich Supercomputing Centre (JSC)

    2015-08-15

    Axions are one of the most attractive dark matter candidates. The evolution of their number density in the early universe can be determined by calculating the topological susceptibility χ(T) of QCD as a function of the temperature. Lattice QCD provides an ab initio technique to carry out such a calculation. A full result needs two ingredients: physical quark masses and a controlled continuum extrapolation from non-vanishing to zero lattice spacings. We determine χ(T) in the quenched framework (infinitely large quark masses) and extrapolate its values to the continuum limit. The results are compared with the prediction of the dilute instanton gas approximation (DIGA). A nice agreement is found for the temperature dependence, whereas the overall normalization of the DIGA result still differs from the non-perturbative continuum extrapolated lattice results by a factor of order ten. We discuss the consequences of our findings for the prediction of the amount of axion dark matter.

  7. Axion cosmology, lattice QCD and the dilute instanton gas

    Directory of Open Access Journals (Sweden)

    Sz. Borsanyi

    2016-01-01

    Full Text Available Axions are one of the most attractive dark matter candidates. The evolution of their number density in the early universe can be determined by calculating the topological susceptibility χ(T of QCD as a function of the temperature. Lattice QCD provides an ab initio technique to carry out such a calculation. A full result needs two ingredients: physical quark masses and a controlled continuum extrapolation from non-vanishing to zero lattice spacings. We determine χ(T in the quenched framework (infinitely large quark masses and extrapolate its values to the continuum limit. The results are compared with the prediction of the dilute instanton gas approximation (DIGA. A nice agreement is found for the temperature dependence, whereas the overall normalization of the DIGA result still differs from the non-perturbative continuum extrapolated lattice results by a factor of order ten. We discuss the consequences of our findings for the prediction of the amount of axion dark matter.

  8. Axion cosmology, lattice QCD and the dilute instanton gas

    CERN Document Server

    Borsanyi, S; Fodor, Z; Katz, S D; Mages, S W; Nogradi, D; Redondo, J; Ringwald, A; Szabo, K K

    2015-01-01

    Axions are one of the most attractive dark matter candidates. The evolution of their number density in the early universe can be determined by calculating the topological susceptibility $\\chi(T)$ of QCD as a function of the temperature. Lattice QCD provides an ab initio technique to carry out such a calculation. A full result needs two ingredients: physical quark masses and a controlled continuum extrapolation from non-vanishing to zero lattice spacings. We determine $\\chi(T)$ in the quenched framework (infinitely large quark masses) and extrapolate its values to the continuum limit. The results are compared with the prediction of the dilute instanton gas approximation (DIGA). A nice agreement is found for the temperature dependence, whereas the overall normalization of the DIGA result still differs from the non-perturbative continuum extrapolated lattice results by a factor of order ten. We discuss the consequences of our findings for the prediction of the amount of axion dark matter.

  9. Cosmology with gamma-ray bursts. II. Cosmography challenges and cosmological scenarios for the accelerated Universe

    Science.gov (United States)

    Demianski, Marek; Piedipalumbo, Ester; Sawant, Disha; Amati, Lorenzo

    2017-02-01

    Context. Explaining the accelerated expansion of the Universe is one of the fundamental challenges in physics today. Cosmography provides information about the evolution of the universe derived from measured distances, assuming only that the space time geometry is described by the Friedman-Lemaitre-Robertson-Walker metric, and adopting an approach that effectively uses only Taylor expansions of basic observables. Aims: We perform a high-redshift analysis to constrain the cosmographic expansion up to the fifth order. It is based on the Union2 type Ia supernovae data set, the gamma-ray burst Hubble diagram, a data set of 28 independent measurements of the Hubble parameter, baryon acoustic oscillations measurements from galaxy clustering and the Lyman-α forest in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), and some Gaussian priors on h and ΩM. Methods: We performed a statistical analysis and explored the probability distributions of the cosmographic parameters. By building up their regions of confidence, we maximized our likelihood function using the Markov chain Monte Carlo method. Results: Our high-redshift analysis confirms that the expansion of the Universe currently accelerates; the estimation of the jerk parameter indicates a possible deviation from the standard ΛCDM cosmological model. Moreover, we investigate implications of our results for the reconstruction of the dark energy equation of state (EOS) by comparing the standard technique of cosmography with an alternative approach based on generalized Padé approximations of the same observables. Because these expansions converge better, is possible to improve the constraints on the cosmographic parameters and also on the dark matter EOS. Conclusions: The estimation of the jerk and the DE parameters indicates at 1σ a possible deviation from the ΛCDM cosmological model.

  10. New Low Emittance Lattice for the Super-B Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Biagini, M.E.; Boscolo, M.; Raimondi, P.; Tomassini, S.; Zobov, M.; /Frascati; Seeman, J.; Sullivan, M.; Wienands, U.; Wittmer, W.; /SLAC; Bettoni, S.; /CERN; Paoloni, E.; /Pisa U. /INFN, Pisa; Bogomyagkov, A.; Koop, I.; Levichev, E.; Nikitin, S.; Piminov, P.; Shatilov, D.; /Novosibirsk, IYF

    2011-10-21

    New low emittance lattices have been designed for the asymmetric SuperB accelerator, aiming at a luminosity of 10{sup 36} cm{sup -2} s{sup -1}. Main optics features are two alternating arc cells with different horizontal phase advance, decreasing beam emittance and allowing at the same time for easy chromaticity correction in the arcs. Emittance can be further reduced by a factor of two for luminosity upgrade. Spin rotation schemes for the e{sup -} beam have been studied to provide longitudinal polarization at the IP, and implementation into the lattice is in progress.

  11. Nonlinear accelerator lattices with one and two analytic invariants

    Energy Technology Data Exchange (ETDEWEB)

    Danilov, V.; /SNS Project, Oak Ridge; Nagaitsev, S.; /Fermilab

    2010-02-01

    Integrable systems appeared in physics long ago at the onset of classical dynamics with examples being Kepler's and other famous problems. Unfortunately, the majority of nonlinear problems turned out to be nonintegrable. In accelerator terms, any 2D nonlinear nonintegrable mapping produces chaotic motion and a complex network of stable and unstable resonances. Nevertheless, in the proximity of an integrable system the full volume of such a chaotic network is small. Thus, the integrable nonlinear motion in accelerators has the potential to introduce a large betatron tune spread to suppress instabilities and to mitigate the effects of space charge and magnetic field errors. To create such an accelerator lattice one has to find magnetic and electric field combinations leading to a stable integrable motion. This paper presents families of lattices with one invariant where bounded motion can be easily created in large volumes of the phase space. In addition, it presents 3 families of integrable nonlinear accelerator lattices, realizable with longitudinal-coordinate-dependent magnetic or electric fields with the stable nonlinear motion, which can be solved in terms of separable variables.

  12. Deformed phase space Kaluza–Klein cosmology and late time acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Sabido, M., E-mail: msabido@fisica.ugto.mx [Departamento de Física de la Universidad de Guanajuato, A.P. E-143, C.P. 37150, León, Guanajuato (Mexico); Yee-Romero, C., E-mail: carlos.yee@uabc.edu.mx [Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada, Baja California (Mexico)

    2016-06-10

    The effects of phase space deformations on Kaluza–Klein cosmology are studied. The deformation is introduced by modifying the symplectic structure of the minisuperspace variables. In the deformed model, we find an accelerating scale factor and therefore infer the existence of an effective cosmological constant from the phase space deformation parameter β.

  13. Deformed phase space Kaluza-Klein cosmology and late time acceleration

    Science.gov (United States)

    Sabido, M.; Yee-Romero, C.

    2016-06-01

    The effects of phase space deformations on Kaluza-Klein cosmology are studied. The deformation is introduced by modifying the symplectic structure of the minisuperspace variables. In the deformed model, we find an accelerating scale factor and therefore infer the existence of an effective cosmological constant from the phase space deformation parameter β.

  14. FFAG LATTICE FOR MUON ACCELERATION WITH DISTRIBUTED RF.

    Energy Technology Data Exchange (ETDEWEB)

    COURANT,E.D..TRBOJEVIC,D.BERG,S.J.BLASKIEWICZ,M.COURANT,E.D..TRBOJEVIC,D.BERG,S.J.BLASKIEWICZ,M.M.PALMER,R.GARREN,A.

    2003-05-12

    A future muon collider or neutrino factory requires fast acceleration to minimize muon decay. We have previously described an FFAG ring that accelerated muons from 10 to 20 GeV in energy. The ring achieved its large momentum acceptance using a low-emittance lattice with a small dispersion. In this paper, we present an update on that ring. We have used design tools that more accurately represent the ring's behavior at large momentum offsets. We have also improved the dynamic aperture from the earlier design.

  15. Considering Late-Time Acceleration in Some Cosmological Models

    Directory of Open Access Journals (Sweden)

    S. Davood Sadatian

    2013-01-01

    Full Text Available We study two cosmological models: a nonminimally coupled scalar field on brane world model and a minimally coupled scalar field on Lorentz invariance violation model. We compare some cosmological results in these scenarios. Also, we consider some types of Rip singularity solution in both models.

  16. Lorentz violation in brane cosmology, accelerated expansion and fundamental constants

    CERN Document Server

    Ahmadi, F; Sepangi, H R

    2006-01-01

    The notion of Lorentz violation in four dimensions is extended to a 5-dimensional brane-world scenario by utilizing a dynamical vector field assumed to point in the bulk direction, with Lorentz invariance holding on the brane. The cosmological consequences of this theory consisting of the time variation in the gravitational coupling $G$ and cosmological term $\\Lambda_4$ are explored. The brane evolution is addressed by studying the generalized Friedmann and Raychaudhuri equations. The behavior of the expansion scale factor is then considered for different possible scenarios where the bulk cosmological constant is zero, positive or negative.

  17. Cosmological Shocks in Eulerian Simulations: Main Properties and Cosmic Rays Acceleration

    CERN Document Server

    Vazza, F; Gheller, C

    2008-01-01

    Aims: morpholgies, number and energy distributions of Cosmological Shock Waves from a set of ENZO cosmological simulations are produced, along with a study of the connection with Cosmic Rays processes in different environments. Method: we perform cosmological simulations with the public release of the PPM code ENZO, adopt a simple and physically motivated numerical setup to follow the evolution of cosmic structures at the resolution of 125kpc per cell, and characterise shocks with a new post processing scheme. Results: we estimate the efficency of the acceleration of Cosmic Ray particles and present the first comparison of our results with existing limits from observations of galaxy clusters.

  18. The SuperB Accelerator: Overview and Lattice Studies

    Energy Technology Data Exchange (ETDEWEB)

    Biagini, M.E.; Boni, R.; Boscolo, M.; Drago, A.; Guiducci, S.; Preger, M.; Raimondi, P.; Tomassini, S.; Vaccarezza, C.; Zobov, M.; /Frascati; Cai, Y.; Fisher, A.; Heifets, S.; Novokhatski, A.; Pivi, M.T.; Seeman, J.; Sullivan, M.; Wienands, U.; /SLAC; Paoloni, E.; Marchiori, G.; /Pisa U.; Koop, I.; /Novosibirsk, IYF /Daresbury /LBL, Berkeley /CERN /Orsay, LAL /KEK, Tsukuba

    2011-11-22

    SuperB aims at the construction of a very high luminosity (10{sup 36} cm{sup -2} s{sup -1}) asymmetric e{sup +}e{sup -} Flavour Factory, with possible location at the campus of the University of Rome Tor Vergata, near the INFN Frascati National Laboratory. In this paper the basic principles of the design and details on the lattice are given. SuperB is a new machine that can exploit novel very promising design approaches: (1) large Piwinski angle scheme will allow for peak luminosity of the order of 10{sup 36} cm{sup -2} s{sup -1}, well beyond the current state-of-the-art, without a significant increase in beam currents or shorter bunch lengths; (2) 'crab waist' sextupoles will be used for suppression of dangerous resonances; (3) the low beam currents design presents reduced detector and background problems, and affordable operating costs; (4) a polarized electron beam can produce polarized {tau} leptons, opening an entirely new realm of exploration in lepton flavor physics. SuperB studies are already proving useful to the accelerator and particle physics communities. The principle of operation is being tested at DAFNE. The baseline lattice, based on the reuse of all PEP-II hardware, fits in the Tor Vergata University campus site, near Frascati. A CDR is being reviewed by an International Review Committee, chaired by J. Dainton (UK). A Technical Design Report will be prepared to be ready by beginning of 2010.

  19. HUBBLE PARAMETER MEASUREMENT CONSTRAINTS ON THE COSMOLOGICAL DECELERATION-ACCELERATION TRANSITION REDSHIFT

    Energy Technology Data Exchange (ETDEWEB)

    Farooq, Omer; Ratra, Bharat, E-mail: omer@phys.ksu.edu, E-mail: ratra@phys.ksu.edu [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, KS 66506 (United States)

    2013-03-20

    We compile a list of 28 independent measurements of the Hubble parameter between redshifts 0.07 {<=} z {<=} 2.3 and use this to place constraints on model parameters of constant and time-evolving dark energy cosmologies. These H(z) measurements by themselves require a currently accelerating cosmological expansion at about, or better than, 3{sigma} confidence. The mean and standard deviation of the six best-fit model deceleration-acceleration transition redshifts (for the three cosmological models and two Hubble constant priors we consider) are z{sub da} = 0.74 {+-} 0.05, in good agreement with the recent Busca et al. determination of z{sub da} = 0.82 {+-} 0.08 based on 11 H(z) measurements between redshifts 0.2 {<=} z {<=} 2.3, almost entirely from baryon-acoustic-oscillation-like data.

  20. Cosmology

    CERN Document Server

    Rubakov, V A

    2014-01-01

    In these lectures we first concentrate on the cosmological problems which, hopefully, have to do with the new physics to be probed at the LHC: the nature and origin of dark matter and generation of matter-antimatter asymmetry. We give several examples showing the LHC cosmological potential. These are WIMPs as cold dark matter, gravitinos as warm dark matter, and electroweak baryogenesis as a mechanism for generating matter-antimatter asymmetry. In the remaining part of the lectures we discuss the cosmological perturbations as a tool for studying the epoch preceeding the conventional hot stage of the cosmological evolution.

  1. Binned Hubble parameter measurements and the cosmological deceleration–acceleration transition

    Energy Technology Data Exchange (ETDEWEB)

    Farooq, Omer, E-mail: omer@phys.ksu.edu; Crandall, Sara, E-mail: sara1990@k-state.edu; Ratra, Bharat, E-mail: ratra@phys.ksu.edu

    2013-10-07

    Weighted mean and median statistics techniques are used to combine 23 independent lower redshift, z<1.04, Hubble parameter, H(z), measurements and determine binned forms of H(z). When these are combined with 5 higher redshift, 1.3≤z≤2.3, H(z) measurements the resulting constraints on cosmological parameters, of three cosmological models, that follow from the weighted-mean binned data are almost identical to those derived from analyses using the 28 independent H(z) measurements. This is consistent with what is expected if the lower redshift measurements errors are Gaussian. Plots of the binned weighted-mean H(z)/(1+z) versus z data are consistent with the presence of a cosmological deceleration–acceleration transition at redshift z{sub da}=0.74±0.05[30], which is expected in cosmological models with present-epoch energy budget dominated by dark energy as in the standard spatially-flat ΛCDM cosmological model.

  2. Binned Hubble parameter measurements and the cosmological deceleration-acceleration transition

    CERN Document Server

    Farooq, Omer; Ratra, Bharat

    2013-01-01

    Weighted mean and median statistics techniques are used to combine 23 independent lower redshift, $z<1.04$, Hubble parameter, $H(z)$, measurements and determine binned forms of $H(z)$. When these are combined with 5 higher redshift, $1.3\\leqslant z \\leqslant 2.3$, $H(z)$ measurements the resulting constraints on cosmological parameters, of three cosmological models, that follow from the weighted-mean binned data are almost identical to those derived from analyses using the 28 independent $H(z)$ measurements. This is consistent with what is expected if the lower redshift measurements errors are Gaussian. Plots of the binned weighted-mean $H(z)/(1+z)$ versus $z$ data are consistent with the presence of a cosmological deceleration-acceleration transition at redshift $z_{\\rm da}=0.74 \\pm 0.05$ \\citep{farooq3}, which is expected in cosmological models with present-epoch energy budget dominated by dark energy as in the standard spatially-flat $\\Lambda$CDM cosmological model.

  3. Fermions as sources of accelerated regimes in cosmology

    CERN Document Server

    Ribas, M O; Kremer, G M

    2005-01-01

    In this work it is investigated if fermionic sources could be responsible for accelerated periods during the evolution of a universe where a matter field would answer for the decelerated period. The self-interaction potential of the fermionic field is considered as a function of the scalar and pseudo-scalar invariants. Irreversible processes of energy transfer between the matter and gravitational fields are also considered. It is shown that the fermionic field could behave like an inflaton field in the early universe and as dark energy for an old universe.

  4. Gauss-Bonnet Cosmology Unifying Late and Early-time Acceleration Eras with Intermediate Eras

    CERN Document Server

    Oikonomou, V K

    2016-01-01

    In this paper we demonstrate that with vacuum $F(G)$ gravity it is possible to describe the unification of late and early-time acceleration eras with the radiation and matter domination era. The Hubble rate of the unified evolution contains two mild singularities, so called Type IV singularities, and the evolution itself has some appealing features, such as the existence of a deceleration-acceleration transition at late times. We also address quantitatively a fundamental question related to modified gravity models description of cosmological evolution: Is it possible for all modified gravity descriptions of our Universe evolution, to produce a nearly scale invariant spectrum of primordial curvature perturbations? As we demonstrate, the answer for the $F(G)$ description is no, since the resulting power spectrum is not scale invariant, in contrast to the $F(R)$ description studied in the literature. Therefore, although the cosmological evolution can be realized in the context of vacuum $F(G)$ gravity, the evolu...

  5. Cosmology with gamma-ray bursts: II Cosmography challenges and cosmological scenarios for the accelerated Universe

    CERN Document Server

    Demianski, Marek; Sawant, Disha; Amati, Lorenzo

    2016-01-01

    Context. Explaining the accelerated expansion of the Universe is one of the fundamental challenges in physics today. Cosmography provides information about the evolution of the universe derived from measured distances, assuming only that the space time ge- ometry is described by the Friedman-Lemaitre-Robertson-Walker metric, and adopting an approach that effectively uses only Taylor expansions of basic observables. Aims. We perform a high-redshift analysis to constrain the cosmographic expansion up to the fifth order. It is based on the Union2 type Ia supernovae data set, the gamma-ray burst Hubble diagram, a data set of 28 independent measurements of the Hubble param- eter, baryon acoustic oscillations measurements from galaxy clustering and the Lyman-{\\alpha} forest in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), and some Gaussian priors on h and {\\Omega}M . Methods. We performed a statistical analysis and explored the probability distributions of the cosmographic parameters. By building up ...

  6. Cosmology

    CERN Document Server

    Vittorio, Nicola

    2017-01-01

    Modern cosmology has changed significantly over the years, from the discovery to the precision measurement era. The data now available provide a wealth of information, mostly consistent with a model where dark matter and dark energy are in a rough proportion of 3:7. The time is right for a fresh new textbook which captures the state-of-the art in cosmology. Written by one of the world's leading cosmologists, this brand new, thoroughly class-tested textbook provides graduate and undergraduate students with coverage of the very latest developments and experimental results in the field. Prof. Nicola Vittorio shows what is meant by precision cosmology, from both theoretical and observational perspectives.

  7. The Accelerating Universe: Infinite Expansion, the Cosmological Constant, and the Beauty of the Cosmos

    Science.gov (United States)

    Livio, Mario

    2000-12-01

    Advance Praise for The Accelerating Universe "The Accelerating Universe is not only an informative book about modern cosmology. It is rich storytelling and, above all, a celebration of the human mind in its quest for beauty in all things." -Alan Lightman, author of Einstein's Dreams "This is a wonderfully lucid account of the extraordinary discoveries that have made the last years a golden period for observational cosmology. But Mario Livio has not only given the reader one clear explanation after another of what astronomers are up to, he has used them to construct a provocative argument for the importance of aesthetics in the development of science and for the inseparability of science, art, and culture." -Lee Smolin, author of The Life of the Cosmos "What a pleasure to read! An exciting, simple account of the universe revealed by modern astronomy. Beautifully written, clearly presented, informed by scientific and philosophical insights." -John Bahcall, Institute for Advanced Study "A book with charm, beauty, elegance, and importance. As authoritative a journey as can be taken through modern cosmology." -Allan Sandage, Observatories of the Carnegie Institution of Washington

  8. The Turning Point for the Recent Acceleration of the Universe with a Cosmological Constant

    Directory of Open Access Journals (Sweden)

    Zhang T. X.

    2012-04-01

    Full Text Available The turning point and acceleration expansion of the universe are investigated according to the standard cosmological theory with a non-zero cosmological constant. Choosing the Hubble constant H 0 , the radius of the present universe R 0 , and the density parameter in matter Ω M , 0 as three independent parameters, we have analytically examined the other properties of the universe such as the density parameter in dark energy, the cosmologi- cal constant, the mass of the universe, the turning point redshift, the age of the present universe, and the time-dependent radius, expansion rate, velocity, and acceleration pa- rameter of the universe. It is shown that the turning point redshift is only dependent of the density parameter in matter, not explicitly on the Hubble constant and the radius of the present universe. The universe turned its expansion from past deceleration to recent acceleration at the moment when its size was about 3 / 5 of the present size if the density parameter in matter is about 0.3 (or the turning point redshift is 0.67. The expansion rate is very large in the early period and decreases with time to approach the Hubble constant at the present time. The expansion velocity exceeds the light speed in the early period. It decreases to the minimum at the turning point and then increases with time. The minimum and present expansion velocities are determined with the independent parameters. The solution of time-dependent radius shows the universe expands all the time. The universe with a larger present radius, smaller Hubble constant, and / or smaller density parameter in matter is elder. The universe with smaller density parameter in matter accelerates recently in a larger rate but less than unity.

  9. Accelerating Cosmologies with an Anisotropic Equation of State: Vector Fields, Modified Gravity and Astrophysical Constraints

    CERN Document Server

    Koivisto, Tomi

    2008-01-01

    We investigate cosmologies where the accelerated expansion of the Universe is driven by a field with an anisotropic equation of state. We model such scenarios within the Bianchi I framework, introducing two skewness parameters to quantify the deviation of pressure from isotropy. Several viable vector alternatives to the inflaton and quintessence scalar fields are found. We reconstruct a vector-Gauss-Bonnet model which generates the concordance model background expansion at late times and supports an inflationary epoch at high curvatures. We show general conditions for the existence of scaling solutions for spatial fields. In particular, a vector with an inverse power-law potential, even if minimally coupled, scales with the matter component. Asymmetric generalizations of a cosmological constant are presented also. The anisotropic expansion is then confronted with, in addition to the cosmic microwave background (CMB) anisotropies for which the main signature appears to be a quadrupole contribution, the redshif...

  10. Cosmographic bounds on the cosmological deceleration-acceleration transition redshift in $f(\\mathcal{R})$ gravity

    CERN Document Server

    Capozziello, Salvatore; Luongo, Orlando; Ratra, Bharat

    2014-01-01

    We examine the observational viability of a class of $f(\\mathcal{R})$ gravity cosmological models. Particular attention is devoted to constraints from the recent observational determination of the redshift of the cosmological deceleration-acceleration transition. Making use of the fact that the Ricci scalar is a function of redshift $z$ in these models, $\\mathcal {R=R}(z)$, and so is $f(z)$, we use cosmography to relate a $f(z)$ test function evaluated at higher $z$ to late-time cosmographic bounds. First, we consider a model independent procedure to build up a numerical $f(z)$ by requiring that at $z=0$ the corresponding cosmological model reduces to standard $\\Lambda$CDM. We then infer late-time observational constraints on $f(z)$ in terms of bounds on the Taylor expansion cosmographic coefficients. In doing so we parameterize possible departures from the standard $\\Lambda$CDM model in terms of a two-parameter logarithmic correction. The physical meaning of the two parameters is also discussed in terms of t...

  11. Cosmographic bounds on the cosmological deceleration-acceleration transition redshift in f(R) gravity

    Science.gov (United States)

    Capozziello, Salvatore; Farooq, Omer; Luongo, Orlando; Ratra, Bharat

    2014-08-01

    We examine the observational viability of a class of f(R) gravity cosmological models. Particular attention is devoted to constraints from the recent observational determination of the redshift of the cosmological deceleration-acceleration transition. Making use of the fact that the Ricci scalar is a function of redshift z in these models, R =R(z), and so is f(z), we use cosmography to relate a f(z) test function evaluated at higher z to late-time cosmographic bounds. First, we consider a model-independent procedure to build up a numerical f(z) by requiring that at z=0 the corresponding cosmological model reduces to standard ΛCDM. We then infer late-time observational constraints on f(z) in terms of bounds on the Taylor expansion cosmographic coefficients. In doing so we parametrize possible departures from the standard ΛCDM model in terms of a two-parameter logarithmic correction. The physical meaning of the two parameters is also discussed in terms of the post-Newtonian approximation. Second, we provide numerical estimates of the cosmographic series terms by using type Ia supernova apparent magnitude data and Hubble parameter measurements. Finally, we use these estimates to bound the two parameters of the logarithmic correction. We find that the deceleration parameter in our model changes sign at a redshift consistent with what is observed.

  12. Accelerating Cosmology and Phase Structure of F(R) Gravity with Lagrange Multiplier Constraint: Mimetic Approach

    CERN Document Server

    Odintsov, S D

    2015-01-01

    We study mimetic $F(R)$ gravity with potential and Lagrange multiplier constraint. In the context of these theories, we introduce a reconstruction technique which enables us to realize arbitrary cosmologies, given the Hubble rate and an arbitrarily chosen $F(R)$ gravity. We exemplify our method by realizing cosmologies that are in concordance with current observations (Planck data) and also well known bouncing cosmologies. The attribute of our method is that the $F(R)$ gravity can be arbitrarily chosen, so we can have the appealing features of the mimetic approach combined with the known features of some $F(R)$ gravities, which unify early-time with late-time acceleration. Moreover, we study the existence and the stability of de Sitter points in the context of mimetic $F(R)$ gravity. In the case of unstable de Sitter points, it is demonstrated that graceful exit from inflation occurs. We also study the Einstein frame counterpart theory of the Jordan frame mimetic $F(R)$ gravity, we discuss the general propert...

  13. Freezing, accelerating and slowing directed currents in real time with superimposed driven lattices

    CERN Document Server

    Mukhopadhyay, Aritra K; Wulf, Thomas; Schmelcher, Peter

    2016-01-01

    We provide a generic scheme offering real time control of directed particle transport in superimposed driven lattices. This scheme allows to accelerate, slow and freeze the transport on demand, by switching one of the lattices subsequently on and off. The underlying physical mechanism hinges on a systematic opening and closing of channels between transporting and non-transporting phase space structures upon switching, and exploits cantori structures which generate memory effects in the population of these structures. Our results should allow for real time control of cold thermal atomic ensembles in optical lattices, but might also be useful as a design principle for targeted delivery of molecules or colloids in optical devices.

  14. Implications of an absolute simultaneity theory for cosmology and universe acceleration.

    Directory of Open Access Journals (Sweden)

    Edward T Kipreos

    Full Text Available An alternate Lorentz transformation, Absolute Lorentz Transformation (ALT, has similar kinematics to special relativity yet maintains absolute simultaneity in the context of a preferred reference frame. In this study, it is shown that ALT is compatible with current experiments to test Lorentz invariance only if the proposed preferred reference frame is locally equivalent to the Earth-centered non-rotating inertial reference frame, with the inference that in an ALT framework, preferred reference frames are associated with centers of gravitational mass. Applying this theoretical framework to cosmological data produces a scenario of universal time contraction in the past. In this scenario, past time contraction would be associated with increased levels of blueshifted light emissions from cosmological objects when viewed from our current perspective. The observation that distant Type Ia supernovae are dimmer than predicted by linear Hubble expansion currently provides the most direct evidence for an accelerating universe. Adjusting for the effects of time contraction on a redshift-distance modulus diagram produces a linear distribution of supernovae over the full redshift spectrum that is consistent with a non-accelerating universe.

  15. Implications of an absolute simultaneity theory for cosmology and universe acceleration.

    Science.gov (United States)

    Kipreos, Edward T

    2014-01-01

    An alternate Lorentz transformation, Absolute Lorentz Transformation (ALT), has similar kinematics to special relativity yet maintains absolute simultaneity in the context of a preferred reference frame. In this study, it is shown that ALT is compatible with current experiments to test Lorentz invariance only if the proposed preferred reference frame is locally equivalent to the Earth-centered non-rotating inertial reference frame, with the inference that in an ALT framework, preferred reference frames are associated with centers of gravitational mass. Applying this theoretical framework to cosmological data produces a scenario of universal time contraction in the past. In this scenario, past time contraction would be associated with increased levels of blueshifted light emissions from cosmological objects when viewed from our current perspective. The observation that distant Type Ia supernovae are dimmer than predicted by linear Hubble expansion currently provides the most direct evidence for an accelerating universe. Adjusting for the effects of time contraction on a redshift-distance modulus diagram produces a linear distribution of supernovae over the full redshift spectrum that is consistent with a non-accelerating universe.

  16. LINEAR LATTICE AND TRAJECTORY RECONSTRUCTION AND CORRECTION AT FAST LINEAR ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, A. [Fermilab; Edstrom, D. [Fermilab; Halavanau, A. [Northern Illinois U.

    2017-07-16

    The low energy part of the FAST linear accelerator based on 1.3 GHz superconducting RF cavities was successfully commissioned [1]. During commissioning, beam based model dependent methods were used to correct linear lattice and trajectory. Lattice correction algorithm is based on analysis of beam shape from profile monitors and trajectory responses to dipole correctors. Trajectory responses to field gradient variations in quadrupoles and phase variations in superconducting RF cavities were used to correct bunch offsets in quadrupoles and accelerating cavities relative to their magnetic axes. Details of used methods and experimental results are presented.

  17. Accelerating and decelerating cosmology from spinor and scalar fields non-minimally coupled with f(R) gravity

    CERN Document Server

    Rybalov, Yu A; Osetrin, K E

    2014-01-01

    In this paper we investigate the accelerating and decelerating cosmological models with non-linear spinor fields and non-minimal interaction of $f(R)$ gravity with a scalar field. We combine two different approaches to the description of dark energy: modified gravity theory and introduction of the additional fields. Solutions for the FRW universe with power-law scale factor are reconstructed for the model under consideration with specific choice for scalar and spinor potentials. It is explained the role of scalar and spinor potentials as well as f(R) function for emergence of accelerating or decelerating cosmology.

  18. Steady-State Anderson Accelerated Coupling of Lattice Boltzmann and Navier–Stokes Solvers

    KAUST Repository

    Atanasov, Atanas

    2016-10-17

    We present an Anderson acceleration-based approach to spatially couple three-dimensional Lattice Boltzmann and Navier–Stokes (LBNS) flow simulations. This allows to locally exploit the computational features of both fluid flow solver approaches to the fullest extent and yields enhanced control to match the LB and NS degrees of freedom within the LBNS overlap layer. Designed for parallel Schwarz coupling, the Anderson acceleration allows for the simultaneous execution of both Lattice Boltzmann and Navier–Stokes solver. We detail our coupling methodology, validate it, and study convergence and accuracy of the Anderson accelerated coupling, considering three steady-state scenarios: plane channel flow, flow around a sphere and channel flow across a porous structure. We find that the Anderson accelerated coupling yields a speed-up (in terms of iteration steps) of up to 40% in the considered scenarios, compared to strictly sequential Schwarz coupling.

  19. Convergence acceleration algorithm via an equation related to the lattice Boussinesq equation

    CERN Document Server

    He, Yi; Sun, Jian-Qing; Weniger, Ernst Joachim

    2011-01-01

    The molecule solution of an equation related to the lattice Boussinesq equation is derived with the help of determinantal identities. It is shown that this equation can for certain sequences be used as a numerical convergence acceleration algorithm. Numerical examples with applications of this algorithm are presented.

  20. LATTICES FOR HIGH-POWER PROTON BEAM ACCELERATION AND SECONDARY BEAM COLLECTION AND COOLING.

    Energy Technology Data Exchange (ETDEWEB)

    WANG, S.; WEI, J.; BROWN, K.; GARDNER, C.; LEE, Y.Y.; LOWENSTEIN, D.; PEGGS, S.; SIMOS, N.

    2006-06-23

    Rapid cycling synchrotrons are used to accelerate high-intensity proton beams to energies of tens of GeV for secondary beam production. After primary beam collision with a target, the secondary beam can be collected, cooled, accelerated or decelerated by ancillary synchrotrons for various applications. In this paper, we first present a lattice for the main synchrotron. This lattice has: (a) flexible momentum compaction to avoid transition and to facilitate RF gymnastics (b) long straight sections for low-loss injection, extraction, and high-efficiency collimation (c) dispersion-free straights to avoid longitudinal-transverse coupling, and (d) momentum cleaning at locations of large dispersion with missing dipoles. Then, we present a lattice for a cooler ring for the secondary beam. The momentum compaction across half of this ring is near zero, while for the other half it is normal. Thus, bad mixing is minimized while good mixing is maintained for stochastic beam cooling.

  1. Classical and Quantum Cosmology of an Accelerating Model Universe with Compactification of Extra Dimensions

    CERN Document Server

    Darabi, F

    2009-01-01

    We study a $(4+D)$-dimensional Kaluza-Klein cosmology with a Robertson-Walker type metric having two scale factors $a$ and $R$, corresponding to $D$-dimensional internal space and 4-dimensional universe, respectively. By introducing an exotic matter in the form of perfect fluid with an special equation of state, as the space-time part of the higher dimensional energy-momentum tensor, a four dimensional effective decaying cosmological term appears as $\\lambda \\sim R^{-m}$ with $0 \\leq m\\leq 2$, playing the role of an evolving dark energy in the universe. By taking $m=2$, which has some interesting implications in reconciling observations with inflationary models and is consistent with quantum tunneling, the resulting Einstein's field equations yield the exponential solutions for the scale factors $a$ and $R$. These exponential behaviors may account for the dynamical compactification of extra dimensions and the accelerating expansion of the 4-dimensional universe in terms of Hubble parameter, $H$. The accelerat...

  2. The accelerating universe and other cosmological aspects of modified gravity models

    Science.gov (United States)

    de Felice, Antonio

    I give a short introduction to standard cosmology and a review of what it is meant by "the dark energy enigma" in chapter l. In chapter 2, I mention and describe some attempts found in the literature of the past few years to attack this problem. Dark energy candidates for which the equation-of-state parameter w is less than -1 violate the dominant energy condition. In scalar-tensor theories of gravity, however, the expansion of the universe can mimic the behavior of general relativity with w the universe in such models, examining the possibilities for cosmic acceleration and other ultimate destinies. The models generically possess de Sitter space as an unstable solution and exhibit an interesting set of attractor solutions which, in some cases, provide alternatives to dark energy models. In chapter 5, I study a baryogenesis mechanism operating in the context of hyperextended inflation and making use of a coupling between the scalar field and a standard model global current, such as B or B - L . The method is efficient at temperatures at which these currents are not conserved due to some higher dimensional operator. The particle physics and cosmological phenomenology are discussed. I consider constraints stemming from nucleosynthesis and solar system experiments.

  3. Late time acceleration in a non-commutative model of modified cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Malekolkalami, B., E-mail: b.malakolkalami@uok.ac.ir [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Atazadeh, K., E-mail: atazadeh@azaruniv.ac.ir [Department of Physics, Azarbaijan Shahid Madani University, 53714-161, Tabriz (Iran, Islamic Republic of); Vakili, B., E-mail: b-vakili@iauc.ac.ir [Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2014-12-12

    We investigate the effects of non-commutativity between the position–position, position–momentum and momentum–momentum of a phase space corresponding to a modified cosmological model. We show that the existence of such non-commutativity results in a Moyal Poisson algebra between the phase space variables in which the product law between the functions is of the kind of an α-deformed product. We then transform the variables in such a way that the Poisson brackets between the dynamical variables take the form of a usual Poisson bracket but this time with a noncommutative structure. For a power law expression for the function of the Ricci scalar with which the action of the gravity model is modified, the exact solutions in the commutative and noncommutative cases are presented and compared. In terms of these solutions we address the issue of the late time acceleration in cosmic evolution.

  4. Cosmological perturbations of self-accelerating universe in nonlinear massive gravity

    CERN Document Server

    Gumrukcuoglu, A Emir; Mukohyama, Shinji

    2011-01-01

    We study cosmological perturbations of self-accelerating universe solutions in the recently proposed nonlinear theory of massive gravity, with general matter content. While the broken diffeomorphism invariance implies that there generically are 2 tensor, 2 vector and 2 scalar degrees of freedom in the gravity sector, we find that the scalar and vector degrees have vanishing kinetic terms and nonzero mass terms. Depending on their nonlinear behavior, this indicates either nondynamical nature of these degrees or strong couplings. Assuming the former, we integrate out the 2 vector and 2 scalar degrees of freedom. We then find that in the scalar and vector sectors, gauge-invariant variables constructed from metric and matter perturbations have exactly the same quadratic action as in general relativity. The difference from general relativity arises only in the tensor sector, where the graviton mass modifies the dispersion relation of gravitational waves, with a time-dependent effective mass. This may lead to modif...

  5. Late time acceleration in a non-commutative model of modified cosmology

    Science.gov (United States)

    Malekolkalami, B.; Atazadeh, K.; Vakili, B.

    2014-12-01

    We investigate the effects of non-commutativity between the position-position, position-momentum and momentum-momentum of a phase space corresponding to a modified cosmological model. We show that the existence of such non-commutativity results in a Moyal Poisson algebra between the phase space variables in which the product law between the functions is of the kind of an α-deformed product. We then transform the variables in such a way that the Poisson brackets between the dynamical variables take the form of a usual Poisson bracket but this time with a noncommutative structure. For a power law expression for the function of the Ricci scalar with which the action of the gravity model is modified, the exact solutions in the commutative and noncommutative cases are presented and compared. In terms of these solutions we address the issue of the late time acceleration in cosmic evolution.

  6. Late time acceleration in a non-commutative model of modified cosmology

    CERN Document Server

    Malekolkalami, B; Vakili, B

    2014-01-01

    We investigate the effects of noncommutativity between the position-position, position-momentum and momentum-momentum of a phase space corresponding to a modified cosmological model. We show that the existence of such noncommutativity results in a Moyal Poisson algebra between the phase space variables in which the product law between the functions is of the kind of a $\\alpha$-deformed product. We then transform the variables in such a way that the Poisson brackets between the dynamical variables takes the form of a usual Poisson bracket but this time with a noncommutative structure. For a power law expression for the function of the Ricci scalar with which the action of the gravity model is modified, the exact solutions in the commutative and noncommutative cases are presented and compared. In terms of these solutions we address the issue of the late time acceleration in cosmic evolution.

  7. Late time acceleration in a non-commutative model of modified cosmology

    Directory of Open Access Journals (Sweden)

    B. Malekolkalami

    2014-12-01

    Full Text Available We investigate the effects of non-commutativity between the position–position, position–momentum and momentum–momentum of a phase space corresponding to a modified cosmological model. We show that the existence of such non-commutativity results in a Moyal Poisson algebra between the phase space variables in which the product law between the functions is of the kind of an α-deformed product. We then transform the variables in such a way that the Poisson brackets between the dynamical variables take the form of a usual Poisson bracket but this time with a noncommutative structure. For a power law expression for the function of the Ricci scalar with which the action of the gravity model is modified, the exact solutions in the commutative and noncommutative cases are presented and compared. In terms of these solutions we address the issue of the late time acceleration in cosmic evolution.

  8. Super-accelerating bouncing cosmology in asymptotically free non-local gravity

    Energy Technology Data Exchange (ETDEWEB)

    Calcagni, Gianluca [CSIC, Instituto de Estructura de la Materia, Madrid (Spain); Modesto, Leonardo [Fudan University, Department of Physics and Center for Field Theory and Particle Physics, Shanghai (China); Nicolini, Piero [Johann Wolfgang Goethe-Universitaet, Frankfurt Institute for Advanced Studies (FIAS) und Institut fuer Theoretische Physik, Frankfurt am Main (Germany)

    2014-08-15

    Recently, evidence has been collected that a class of gravitational theories with certain non-local operators is renormalizable. We consider one such model which, at the linear perturbative level, reproduces the effective non-local action for the light modes of bosonic closed string-field theory. Using the property of asymptotic freedom in the ultraviolet and fixing the classical behavior of the scale factor at late times, an algorithm is proposed to find general homogeneous cosmological solutions valid both at early and late times. Imposing a power-law classical limit, these solutions (including anisotropic ones) display a bounce, instead of a big-bang singularity, and super-accelerate near the bounce even in the absence of an inflaton or phantom field. (orig.)

  9. Probing lattice dynamics in silicon with laser-wakefield accelerated electrons

    Science.gov (United States)

    Nees, John; He, Z.-H.; Thomas, A. G. R.; Krushelnick, Karl; Scott, S.; Legally, M.; Beaurepaire, B.; Gallé, G.; Faure, J.

    2016-10-01

    Laser wakefield acceleration is the key technology in a new breed of electron and photon beam sources that operate in the ultrafast domain. We show that the spatial and temporal properties of wakefield-generated electron beams can be manipulated to enable them interrogate ultrafast lattice dynamics in freestanding single-crystal silicon membranes, while maintaining spatial resolution on the atomic scale. In particular, picosecond resolution of Si lattice dynamics is obtained by recording streaked electron diffraction peaks using static magnetic fields. We will also discuss the role of wave front control in establishing optimal beam characteristics and the significance of single-shot measurements. Michigan support from NSF PHY-1535628.

  10. Transition from accelerated to decelerated regimes in JT and CGHS cosmologies

    CERN Document Server

    Christmann, M H; Kremer, G M; Zanetti, C M

    2004-01-01

    In this work we discuss the possibility of positive-acceleration regimes, and their transition to decelerated regimes, in two-dimensional (2D) cosmological models. We use general relativity and the thermodynamics in a 2D space-time, where the gas is seen as the sources of the gravitational field. An early-Universe model is analyzed where the state equation of van der Waals is used, replacing the usual barotropic equation. We show that this substitution permits the simulation of a period of inflation, followed by a negative-acceleration era. The dynamical behavior of the system follows from the solution of the Jackiw-Teitelboim equations (JT equations) and the energy-momentum conservation laws. In a second stage we focus the Callan-Giddings-Harvey-Strominger model (CGHS model); here the transition from the inflationary period to the decelerated period is also present between the solutions, although this result depend strongly on the initial conditions used for the dilaton field. The temporal evolution of the c...

  11. Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology

    CERN Document Server

    Farhat, Hassan; Kondaraju, Sasidhar

    2014-01-01

    Colloids are ubiquitous in the food, medical, cosmetics, polymers, water purification, and pharmaceutical industries. The thermal, mechanical, and storage properties of colloids are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a convenient and reliable tool for the study of colloids. Accelerated Lattice Boltzmann Model for Colloidal Suspensions introduce the main building-blocks for an improved lattice Boltzmann–based numerical tool designed for the study of colloidal rheology and interface morphology. This book also covers the migrating multi-block used to simulate single component, multi-component, multiphase, and single component multiphase flows and their validation by experimental, numerical, and analytical solutions.   Among other topics discussed are the hybrid lattice Boltzmann method (LBM) for surfactant-covered droplets; biological suspensions such as blood; used in conjunction with the suppression of coalescence for investigating the...

  12. A stringent restriction from the growth of large-scale structure on apparent acceleration in inhomogeneous cosmological models

    CERN Document Server

    Ishak, Mustapha; Troxel, M A

    2013-01-01

    Probes of cosmic expansion constitute the main basis for arguments to support or refute a possible apparent acceleration due to uneven dynamics in the universe as described by inhomogeneous cosmological models. We present in this Letter a separate argument based on results from the study of the growth rate of large-scale structure in the universe as modeled by the Szekeres inhomogeneous cosmological models. We use the models in all generality with no assumptions of spherical or axial symmetries. We find that Szekeres inhomogeneous models that fit well the observed expansion history fail to explain the observed late-time suppression of the growth of structure unless a cosmological constant is added to the dynamics.

  13. Redshift remapping and cosmic acceleration in dark-matter-dominated cosmological models

    CERN Document Server

    Wojtak, Radosław

    2016-01-01

    The standard relation between the cosmological redshift and cosmic scale factor underlies cosmological inference from virtually all kinds of cosmological observations, leading to the emergence of the LambdaCDM cosmological model. This relation is not a fundamental theory and thus observational determination of this function (redshift remapping) should be regarded as an insightful alternative to holding its standard form in analyses of cosmological data. Here we present non-parametric reconstructions of redshift remapping in dark-matter-dominated models and constraints on cosmological parameters from a joint analysis of all primary cosmological probes including the local measurement of the Hubble constant, Type Ia supernovae, baryonic acoustic oscillations (BAO), Planck observations of the cosmic microwave background (CMB) radiation (temperature power spectrum) and cosmic chronometers. The reconstructed redshift remapping points to an additional boost of redshift operating in late epoch of cosmic evolution, bu...

  14. Singular $F(R)$ Cosmology Unifying Early and Late-time Acceleration with Matter and Radiation Domination Era

    CERN Document Server

    Odintsov, S D

    2016-01-01

    We present some cosmological models which unify the late and early-time acceleration eras with the radiation and the matter domination era, and we realize the cosmological models by using the theoretical framework of $F(R)$ gravity. Particularly, the first model unifies the late and early-time acceleration with the matter domination era, and the second model unifies all the evolution eras of our Universe. The two models are described in the same way at early and late times, and only the intermediate stages of the evolution have some differences. Each cosmological model contains two Type IV singularities which are chosen to occur one at the end of the inflationary era and one at the end of the matter domination era. The cosmological models at early times are approximately identical to the $R^2$ inflation model, so these describe a slow-roll inflationary era which ends when the slow-roll parameters become of order one. The inflationary era is followed by the radiation era and after that the matter domination er...

  15. Steady State Convergence Acceleration of the Generalized Lattice Boltzmann Equation with Forcing Term through Preconditioning

    CERN Document Server

    Premnath, Kannan N; Banerjee, Sanjoy

    2008-01-01

    Several applications exist in which lattice Boltzmann methods (LBM) are used to compute stationary states of fluid motions, particularly those driven or modulated by external forces. Standard LBM, being explicit time-marching in nature, requires a long time to attain steady state convergence, particularly at low Mach numbers due to the disparity in characteristic speeds of propagation of different quantities. In this paper, we present a preconditioned generalized lattice Boltzmann equation (GLBE) with forcing term to accelerate steady state convergence to flows driven by external forces. The use of multiple relaxation times in the GLBE allows enhancement of the numerical stability. Particular focus is given in preconditioning external forces, which can be spatially and temporally dependent. In particular, correct forms of moment-projections of source/forcing terms are derived such that they recover preconditioned Navier-Stokes equations with non-uniform external forces. As an illustration, we solve an extende...

  16. Observational constraints on the accelerating universe in the framework of a 5D bounce cosmological model

    Institute of Scientific and Technical Information of China (English)

    Lü Jian-Bo; Xu Li-Xin; Liu Mo-Lin; Gui Yuan-Xing

    2009-01-01

    In the framework of a five-dimensional(5D)bounce cosmological model,a useful function f(z)is obtained by giving a concrete expression of deceleration parameter q(z)=q1+q2/1+1n(1+z).Then usng the obtained Hubble parameter H(z)according to the function f(z),we constrain the accelerating universe from recent cosmic observations:the 192 ESSENCE SNe Ia and the 9 observational H(z)data.The best fitting values of transition redshift zT and current deceleration parameter q0 are given as zT=o.65±0.25-0.12 and q0=-0.76+0.15-0.15(1σ).Furthermore,in the 5D bounce model it can be seen that the evolution of equation of state(EOS)for dark energy ωde can cross over-1 at about z=0.23 and the current value ω0de=1.15<-1.On the other hand,by giving a concrete expression of model-independent EOS of dark energy ωde,in the 5D bounce model we obtain the best fitting values zT=0.66+0311-0.08 and q0=-0.69+0.10-0.10(1σ)from the recently observed data:the 192 ESSENCE SNe Ia,the observational H(z)data,the 3-year Wilkinson Microwave Anisotropy Probe(WMAP),the Sloan Digital Sky Survey(SDSS)baryon acoustic peak and the x-ray gas mass fraction in clusters.

  17. Acceleration of carbon-13 spin-lattice relaxation times in amino acids by electrolytes

    Institute of Scientific and Technical Information of China (English)

    Tian Jinping; Yin Yingwu

    2004-01-01

    A series of amino acids and carboxylic acids were determined by 13C NMR spectroscopy.The results showed that addition of 3M MgCl2 led to the 13C NMR integral area of samples being well proportional to number of carbon atoms that produce the particular signal with reliability over 95%. Measurements of 13C spin-lattice relaxation times (T1's) are reported for a number of amino acids. T1's of all the carbons in amino acids generally tend to decrease with the increase of the concentration of electrolytes, and the presence of magnesium slats is of significant. Carboxylic carbons in amino acids are the most sensitive "acceptor" of the 13C spin-lattice relaxation accelerating effects in electrolytes, and the 13C spin-lattice relaxation accelerating ability of electrolytes is Mg(ClO4)2 >MgCl2 >CaCl2 >NaCl >KCl >LiClO4 >NaOH. In general, T1's of C1 carbons in nonpolar a-amino acids are higher than those in polar and basic a-amino acids both in aqueous and 3M MgCl2 medium. In aliphatic straight-chain amino acids, a-, a-, a-, ai- and a- amino acids, T1's of C1 carbons tend to reduce with the increase of inserted carbon numbers between amino and carboxylic groups compared with Gly. T1's can be decreased even more when amino acids are mixed in 3M MgCl2, but T1's of carbons in amino acids decrease slightly with increase of the concentration of amino acids in 3M MgCl2. The mechanisms of the observed phenomena are discussed in terms of intermolecular interaction and paramagnetic impurity in electrolytes, large contributions of intermolecular interaction which is enhanced in electrolytes concentrate on the incoming "unsaturation" of the primary solvation shell of cations with the increase of electrolytes concentration and complexes formation of amino acids with metal ions. In electrolytes, amino acids are "anchored" to cations and molecule tumbling is slowed down, molecular rigidity is increased and molecular size is "enlarged", all of these are helpful to accelerate

  18. Expanding wave solutions of the Einstein equations that induce an anomalous acceleration into the Standard Model of Cosmology.

    Science.gov (United States)

    Temple, Blake; Smoller, Joel

    2009-08-25

    We derive a system of three coupled equations that implicitly defines a continuous one-parameter family of expanding wave solutions of the Einstein equations, such that the Friedmann universe associated with the pure radiation phase of the Standard Model of Cosmology is embedded as a single point in this family. By approximating solutions near the center to leading order in the Hubble length, the family reduces to an explicit one-parameter family of expanding spacetimes, given in closed form, that represents a perturbation of the Standard Model. By introducing a comoving coordinate system, we calculate the correction to the Hubble constant as well as the exact leading order quadratic correction to the redshift vs. luminosity relation for an observer at the center. The correction to redshift vs. luminosity entails an adjustable free parameter that introduces an anomalous acceleration. We conclude (by continuity) that corrections to the redshift vs. luminosity relation observed after the radiation phase of the Big Bang can be accounted for, at the leading order quadratic level, by adjustment of this free parameter. The next order correction is then a prediction. Since nonlinearities alone could actuate dissipation and decay in the conservation laws associated with the highly nonlinear radiation phase and since noninteracting expanding waves represent possible time-asymptotic wave patterns that could result, we propose to further investigate the possibility that these corrections to the Standard Model might be the source of the anomalous acceleration of the galaxies, an explanation not requiring the cosmological constant or dark energy.

  19. Determination of the cosmological rate of change of G and the tidal accelerations of earth and moon from ancient and modern astronomical data

    Science.gov (United States)

    Muller, P. M.

    1976-01-01

    The theory and numerical analysis of ancient astronomical observations (1374 to 1715) are combined with modern data in a simultaneous solution for: the tidal acceleration of the lunar longitude; the observed apparent acceleration of the earth's rotation; the true nontidal geophysical part of this acceleration; and the rate of change in the gravitational constant. Provided are three independent determinations of a rate of change of G consistent with the Hubble Constant and a near zero nontidal rotational acceleration of the earth. The tidal accelerations are shown to have remained constant during the historical period within uncertainties. Ancient and modern solar system data, and extragalactic observations provided a completely consistent astronomical and cosmological scheme.

  20. Lattice design of the integrable optics test accelerator and optical stochastic cooling experiment at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Kafka, Gene [Illinois Inst. of Technology, Chicago, IL (United States)

    2015-05-01

    The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.

  1. Accelerating anisotropic cosmological model in f(R,T) theory of gravity

    Science.gov (United States)

    Santhi Kumar, R.; Satyannarayana, B.

    2017-10-01

    Field equations in a modified theory of gravitation proposed by Harko et al. (Phys Rev D 84:024020, 8) are obtained with the aid of a spatially homogeneous and anisotropic LRS Bianchi type-I metric. Cosmological models corresponding to false vacuum and dust universe are obtained. Some physical and kinematical properties of each of the models are discussed. These models may be physically significant for discussion at an early stage of evolution of the universe.

  2. GPU accelerated study of heat transfer and fluid flow by lattice Boltzmann method on CUDA

    Science.gov (United States)

    Ren, Qinlong

    Lattice Boltzmann method (LBM) has been developed as a powerful numerical approach to simulate the complex fluid flow and heat transfer phenomena during the past two decades. As a mesoscale method based on the kinetic theory, LBM has several advantages compared with traditional numerical methods such as physical representation of microscopic interactions, dealing with complex geometries and highly parallel nature. Lattice Boltzmann method has been applied to solve various fluid behaviors and heat transfer process like conjugate heat transfer, magnetic and electric field, diffusion and mixing process, chemical reactions, multiphase flow, phase change process, non-isothermal flow in porous medium, microfluidics, fluid-structure interactions in biological system and so on. In addition, as a non-body-conformal grid method, the immersed boundary method (IBM) could be applied to handle the complex or moving geometries in the domain. The immersed boundary method could be coupled with lattice Boltzmann method to study the heat transfer and fluid flow problems. Heat transfer and fluid flow are solved on Euler nodes by LBM while the complex solid geometries are captured by Lagrangian nodes using immersed boundary method. Parallel computing has been a popular topic for many decades to accelerate the computational speed in engineering and scientific fields. Today, almost all the laptop and desktop have central processing units (CPUs) with multiple cores which could be used for parallel computing. However, the cost of CPUs with hundreds of cores is still high which limits its capability of high performance computing on personal computer. Graphic processing units (GPU) is originally used for the computer video cards have been emerged as the most powerful high-performance workstation in recent years. Unlike the CPUs, the cost of GPU with thousands of cores is cheap. For example, the GPU (GeForce GTX TITAN) which is used in the current work has 2688 cores and the price is only 1

  3. General relativistic self-similar waves that induce an anomalous acceleration into the standard model of cosmology

    CERN Document Server

    Smoller, Joel

    2012-01-01

    We prove that the Einstein equations in Standard Schwarzschild Coordinates close to form a system of three ordinary differential equations for a family of spherically symmetric, self-similar expansion waves, and the critical ($k=0$) Friedmann universe associated with the pure radiation phase of the Standard Model of Cosmology (FRW), is embedded as a single point in this family. Removing a scaling law and imposing regularity at the center, we prove that the family reduces to an implicitly defined one parameter family of distinct spacetimes determined by the value of a new {\\it acceleration parameter} $a$, such that $a=1$ corresponds to FRW. We prove that all self-similar spacetimes in the family are distinct from the non-critical $k\

  4. Lattice Boltzmann accelerated direct simulation Monte Carlo for dilute gas flow simulations.

    Science.gov (United States)

    Di Staso, G; Clercx, H J H; Succi, S; Toschi, F

    2016-11-13

    Hybrid particle-continuum computational frameworks permit the simulation of gas flows by locally adjusting the resolution to the degree of non-equilibrium displayed by the flow in different regions of space and time. In this work, we present a new scheme that couples the direct simulation Monte Carlo (DSMC) with the lattice Boltzmann (LB) method in the limit of isothermal flows. The former handles strong non-equilibrium effects, as they typically occur in the vicinity of solid boundaries, whereas the latter is in charge of the bulk flow, where non-equilibrium can be dealt with perturbatively, i.e. according to Navier-Stokes hydrodynamics. The proposed concurrent multiscale method is applied to the dilute gas Couette flow, showing major computational gains when compared with the full DSMC scenarios. In addition, it is shown that the coupling with LB in the bulk flow can speed up the DSMC treatment of the Knudsen layer with respect to the full DSMC case. In other words, LB acts as a DSMC accelerator.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  5. Lattice Boltzmann accelerated direct simulation Monte Carlo for dilute gas flow simulations

    Science.gov (United States)

    Di Staso, G.; Clercx, H. J. H.; Succi, S.; Toschi, F.

    2016-11-01

    Hybrid particle-continuum computational frameworks permit the simulation of gas flows by locally adjusting the resolution to the degree of non-equilibrium displayed by the flow in different regions of space and time. In this work, we present a new scheme that couples the direct simulation Monte Carlo (DSMC) with the lattice Boltzmann (LB) method in the limit of isothermal flows. The former handles strong non-equilibrium effects, as they typically occur in the vicinity of solid boundaries, whereas the latter is in charge of the bulk flow, where non-equilibrium can be dealt with perturbatively, i.e. according to Navier-Stokes hydrodynamics. The proposed concurrent multiscale method is applied to the dilute gas Couette flow, showing major computational gains when compared with the full DSMC scenarios. In addition, it is shown that the coupling with LB in the bulk flow can speed up the DSMC treatment of the Knudsen layer with respect to the full DSMC case. In other words, LB acts as a DSMC accelerator. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  6. Study of the possibility of solving cosmological lithium problem in an accelerator experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bystritsky, V. M., E-mail: bystvm@jinr.ru [Joint Institute for Nuclear Research (Russian Federation); Varlachev, V. A.; Dudkin, G. N. [National Research Tomsk Polytechnic University (Russian Federation); Krylov, A. R. [Joint Institute for Nuclear Research (Russian Federation); Gazi, S.; Guran, J. [Slovak Academy of Sciences, Institute of Electrical Engineering (Slovakia); Nechaev, B. A.; Padalko, V. N. [National Research Tomsk Polytechnic University (Russian Federation); Sadovsky, A. B. [Joint Institute for Nuclear Research (Russian Federation); Tuleushev, Yu. Zh. [Ministry of Energy of the Republic of Kazakhstan, Nuclear Physics Institute (Kazakhstan); Filipowicz, M. [AGH University of Science and Technology, Faculty of Energy and Fuels (Poland); Philippov, A. V. [Joint Institute for Nuclear Research (Russian Federation)

    2017-03-15

    Within the standar dmodel of Big Bang Nucleosynthesis (BBN), there is a cosmological lithium problem, which consists in a substantial difference between calculated data on the abundances of the isotopes {sup 6}Li and {sup 7}Li and those that were found from observational astronomy. An attempt at measuring the cross section for the main 6Li production reaction {sup 2}H({sup 4}He, γ){sup 6}Li induced by the interaction of {sup 4}He{sup +} ions with deuterons at collision energies less than the lower boundary of the BBN energy range was made in the present study. Upper limits on the cross sections for the reaction in question were set.

  7. Reconstruction of lattice parameters and beam momentum distribution from turn-by-turn beam position monitor readings in circular accelerators

    Directory of Open Access Journals (Sweden)

    C. S. Edmonds

    2014-05-01

    Full Text Available In high chromaticity circular accelerators, rapid decoherence of the betatron motion of a particle beam can make the measurement of lattice and bunch values, such as Courant-Snyder parameters and betatron amplitude, difficult. A method for reconstructing the momentum distribution of a beam from beam position measurements is presented. Further analysis of the same beam position monitor data allows estimates to be made of the Courant-Snyder parameters and the amplitude of coherent betatron oscillation of the beam. The methods are tested through application to data taken on the linear nonscaling fixed field alternating gradient accelerator, EMMA.

  8. Lattice design and beam dynamics studies of the high energy beam transport line in the RAON heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyunchang, E-mail: hcjin@ibs.re.kr; Jang, Ji-Ho; Jang, Hyojae; Jeon, Dong-O

    2015-12-01

    In RAON heavy ion accelerator, beams generated by superconducting electron cyclotron resonance ion source (ECR-IS) or Isotope Separation On-Line (ISOL) system are accelerated by lower energy superconducting linac and high energy superconducting linac. The accelerated beams are used in the high energy experimental hall which includes bio-medical and muon-SR facilities, after passing through the high energy beam transport lines. At the targets of those two facilities, the stable and small beams meeting the requirements rigorously are required in the transverse plane. Therefore the beams must be safely sent to the targets and simultaneously satisfy the two requirements, the achromatic condition and the mid-plane symmetric condition, of the targets. For this reason, the lattice design of the high energy beam transport lines in which the long deflecting sections are included is considered as a significant issue in the RAON accelerator. In this paper, we will describe the calculated beam optics satisfying the conditions and present the result of particle tracking simulations with the designed lattice of the high energy beam transport lines in the RAON accelerator. Also, the orbit distortion caused by the machine imperfections and the orbit correction with correctors will be discussed.

  9. Investigation of hadron matter using lattice QCD and implementation of lattice QCD applications on heterogeneous multicore acceleration processors

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Frank

    2011-07-01

    Observables relevant for the understanding of the structure of baryons were determined by means of Monte Carlo simulations of lattice Quantum Chromodynamics (QCD) using 2+1 dynamical quark flavours. Special emphasis was placed on how these observables change when flavour symmetry is broken in comparison to choosing equal masses for the two light and the strange quark. The first two moments of unpolarised, longitudinally, and transversely polarised parton distribution functions were calculated for the nucleon and hyperons. Modern lattice QCD simulations require petaflop computing and beyond, a regime of computing power we just reach today. Heterogeneous multicore computing is getting increasingly important in high performance computing and allows for deploying multiple types of processing elements within a single workflow. In this work new design concepts were developed for an active library (QDP++) exploiting the compute power of a heterogeneous multicore processor (IBM PowerXCell 8i processor). It was possible to run a QDP++ based physics application (Chroma) on an IBM BladeCenter QS22. (orig.)

  10. Accelerated expansion in bosonic and fermionic 2D cosmologies with quantum effects

    CERN Document Server

    Samojeden, L L; Devecchi, F P

    2009-01-01

    In this work we analyze the effects produced by bosonic and fermionic constituents, including quantum corrections, in two-dimensional (2D) cosmological models. We focus on a gravitational theory related to the Callan-Giddings-Harvey-Strominger model, to simulate the dynamics of a young, spatially-lineal, universe. The cosmic substratum is formed by an {\\it inflaton} field plus a matter component, sources of the 2D gravitational field; the degrees of freedom also include the presence of a dilaton field. We show that this combination permits, among other scenarios, the simulation of a period of inflation, that would be followed by a (bosonic/fermionic) matter dominated era. We also analyse how quantum effects contribute to the destiny of the expansion, given the fact that in 2D we have a consistent (renormalizable) quantum theory of gravity. The dynamical behavior of the system follows from the solution of the gravitational field equations, the (Klein-Gordon and Dirac) equations for the sources and the dilaton ...

  11. Two-Body Orbit Expansion Due to Time-Dependent Relative Acceleration Rate of the Cosmological Scale Factor

    Directory of Open Access Journals (Sweden)

    Lorenzo Iorio

    2014-01-01

    Full Text Available By phenomenologically assuming a slow temporal variation of the percent acceleration rate S̈S -1 of the cosmic scale factor S(t, it is shown that the orbit of a local binary undergoes a secular expansion. To first order in the power expansion of S̈S -1 around the present epoch t0, a non-vanishing shift per orbit (Δr of the two-body relative distance r occurs for eccentric trajectories. A general relativistic expression, which turns out to be cubic in the Hubble parameter H0 at the present epoch, is explicitly calculated for it in the case of matter-dominated epochs with Dark Energy. For a highly eccentric Oort comet orbit with period Pb ≈ 31 Myr, the general relativistic distance shift per orbit turns out to be of the order of (Δr ≈ 70 km. For the Large Magellanic Cloud, assumed on a bound elliptic orbit around the Milky Way, the shift per orbit is of the order of (Δr ≈ 2–4 pc. Our result has a general validity since it holds in any cosmological model admitting the Hubble law and a slowly varying S̈S-1(t. More generally, it is valid for an arbitrary Hooke-like extra-acceleration whose “elastic” parameter κ is slowly time-dependent, irrespectively of the physical mechanism which may lead to it. The coefficient κ1 of the first-order term of the power expansion of κ(t can be preliminarily constrained in a model-independent way down to a κ1 ≲ 2 x 10-13 year-3 level from latest Solar System’s planetary observations. The radial velocities of the double lined spectroscopic binary ALPHA Cen AB yield κ1 ≲ 10-8 year-3.

  12. Two-Body Orbit Expansion Due to Time-Dependent Relative Acceleration Rate of the Cosmological Scale Factor

    Science.gov (United States)

    Iorio, Lorenzo

    2014-01-01

    By phenomenologically assuming a slow temporal variation of the percent acceleration rate S̈S -1 of the cosmic scale factor S(t), it is shown that the orbit of a local binary undergoes a secular expansion. To first order in the power expansion of S̈S -1 around the present epoch t0, a non-vanishing shift per orbit (Δr) of the two-body relative distance r occurs for eccentric trajectories. A general relativistic expression, which turns out to be cubic in the Hubble parameter H0 at the present epoch, is explicitly calculated for it in the case of matter-dominated epochs with Dark Energy. For a highly eccentric Oort comet orbit with period Pb ≈ 31 Myr, the general relativistic distance shift per orbit turns out to be of the order of (Δr) ≈ 70 km. For the Large Magellanic Cloud, assumed on a bound elliptic orbit around the Milky Way, the shift per orbit is of the order of (Δr) ≈ 2-4 pc. Our result has a general validity since it holds in any cosmological model admitting the Hubble law and a slowly varying S̈S-1(t). More generally, it is valid for an arbitrary Hooke-like extra-acceleration whose "elastic" parameter κ is slowly time-dependent, irrespectively of the physical mechanism which may lead to it. The coefficient κ1 of the first-order term of the power expansion of κ(t) can be preliminarily constrained in a model-independent way down to a κ1 ≤ 2 x 10-13 year-3 level from latest Solar System's planetary observations. The radial velocities of the double lined spectroscopic binary ALPHA Cen AB yield κ1 ≤ 10-8 year-3.

  13. Cosmological Reflection of Particle Symmetry

    OpenAIRE

    Maxim Khlopov

    2016-01-01

    The standard model involves particle symmetry and the mechanism of its breaking. Modern cosmology is based on inflationary models with baryosynthesis and dark matter/energy, which involves physics beyond the standard model. Studies of the physical basis of modern cosmology combine direct searches for new physics at accelerators with its indirect non-accelerator probes, in which cosmological consequences of particle models play an important role. The cosmological reflection of particle symmetr...

  14. Single Particle Dynamics in a Quasi-Integrable Nonlinear Accelerator Lattice

    CERN Document Server

    Antipov, Sergey A; Valishev, Alexander

    2016-01-01

    Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R&D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually lead to a resonant behavior and a reduction of the dynamic aperture. One of the goals of the IOTA research program is to achieve a high betatron tune spread, while retaining a large dynamic aperture using conventional octupole magnets in a special but realistic accelerator configuration. In this report, we present results of computer simulations of an el...

  15. Phantom cosmologies and fermions

    CERN Document Server

    Chimento, Luis P; Forte, Monica; Kremer, Gilberto M

    2007-01-01

    Form invariance transformations can be used for constructing phantom cosmologies starting with conventional cosmological models. In this work we reconsider the scalar field case and extend the discussion to fermionic fields, where the "phantomization" process exhibits a new class of possible accelerated regimes.

  16. Three-form cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Koivisto, Tomi S., E-mail: T.Koivisto@ThPhys.Uni-Heidelberg.d [Institute for Theoretical Physics, University of Heidelberg, 69120 (Germany); Nunes, Nelson J. [Institute for Theoretical Physics, University of Heidelberg, 69120 (Germany)

    2010-03-01

    Cosmology of self-interacting three-forms is investigated. The minimally coupled canonical theory can naturally generate a variety of isotropic background dynamics, including scaling, possibly transient acceleration and phantom crossing. An intuitive picture of the cosmological dynamics is presented employing an effective potential. Numerical solutions and analytical approximations are provided for scenarios which are potentially important for inflation or dark energy.

  17. Comparative Analysis of Jüttner’s Calculation of the Energy of a Relativistic Ideal Gas and Implications for Accelerator Physics and Cosmology

    Directory of Open Access Journals (Sweden)

    John R. Fanchi

    2017-07-01

    Full Text Available Jüttner used the conventional theory of relativistic statistical mechanics to calculate the energy of a relativistic ideal gas in 1911. An alternative derivation of the energy of a relativistic ideal gas was published by Horwitz, Schieve and Piron in 1981 within the context of parametrized relativistic statistical mechanics. The resulting energy in the ultrarelativistic regime differs from Jüttner’s result. We review the derivations of energy and identify physical regimes for testing the validity of the two theories in accelerator physics and cosmology.

  18. Single-particle dynamics in a nonlinear accelerator lattice: attaining a large tune spread with octupoles in IOTA

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, S. A.; Nagaitsev, S.; Valishev, A.

    2017-04-01

    Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R&D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually lead to a resonant behavior and a reduction of the dynamic aperture. One of the goals of the IOTA research program is to achieve a high betatron tune spread, while retaining a large dynamic aperture using conventional octupole magnets in a special but realistic accelerator configuration. In this report, we present results of computer simulations of an electron beam in the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring's octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam. The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant for the parameters and levels of tolerances set by the design of the ring. The described octupole insert could be beneficial for suppression of space-charge induced instabilities in high intensity machines.

  19. Preferred axis in cosmology

    CERN Document Server

    Zhao, Wen

    2016-01-01

    The foundation of modern cosmology relies on the so-called cosmological principle which states an homogeneous and isotropic distribution of matter in the universe on large scales. However, recent observations, such as the temperature anisotropy of the cosmic microwave background (CMB) radiation, the motion of galaxies in the universe, the polarization of quasars and the acceleration of the cosmic expansion, indicate preferred directions in the sky. If these directions have a cosmological origin, the cosmological principle would be violated, and modern cosmology should be reconsidered. In this paper, by considering the preferred axis in the CMB parity violation, we find that it coincides with the preferred axes in CMB quadrupole and CMB octopole, and they all align with the direction of the CMB kinematic dipole. In addition, the preferred directions in the velocity flows, quasar alignment, anisotropy of the cosmic acceleration, the handedness of spiral galaxies, and the angular distribution of the fine-structu...

  20. Compact atomic gravimeter based on a pulsed and accelerated optical lattice

    CERN Document Server

    Andia, Manuel; Nez, François; Biraben, François; Guellati-Khélifa, Saïda; Cladé, Pierre

    2013-01-01

    We present a new scheme of compact atomic gravimeter based on atom interferometry. Atoms are maintained against gravity using a sequence of coherent accelerations performed by the Bloch oscillations technique. We demonstrate a sensitivity of 4.8$\\times 10^{-8}$ with an integration time of 4 min. Combining this method with an atomic elevator allows to measure the local gravity at different positions in the vacuum chamber. This method can be of relevance to improve the measurement of the Newtonian gravitational constant $G$.

  1. Lattice Multiverse Models

    OpenAIRE

    Williamson, S. Gill

    2010-01-01

    Will the cosmological multiverse, when described mathematically, have easily stated properties that are impossible to prove or disprove using mathematical physics? We explore this question by constructing lattice multiverses which exhibit such behavior even though they are much simpler mathematically than any likely cosmological multiverse.

  2. Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology

    Science.gov (United States)

    Farhat, Hassan

    Colloids are ubiquitous in the food, medical, cosmetic, polymer, water purification and pharmaceutical industries. Colloids thermal, mechanical and storage properties are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a cheap and reliable virtual laboratory for the study of colloids. However efficiency is a major concern to address when using numerical methods for practical applications. This work introduces the main building-blocks for an improved lattice Boltzmann-based numerical tool designed for the study of colloidal rheology and interface morphology. The efficiency of the proposed model is enhanced by using the recently developed and validated migrating multi-block algorithms for the lattice Boltzmann method (LBM). The migrating multi-block was used to simulate single component, multi-component, multiphase and single component multiphase flows. Results were validated by experimental, numerical and analytical solutions. The contamination of the fluid-fluid interface influences the colloids morphology. This issue was addressed by the introduction of the hybrid LBM for surfactant-covered droplets. The module was used for the simulation of surfactant-covered droplet deformation under shear and uniaxial extensional flows respectively and under buoyancy. Validation with experimental and theoretical results was provided. Colloids are non-Newtonian fluids which exhibit rich rheological behavior. The suppression of coalescence module is the part of the proposed model which facilitates the study of colloids rheology. The model results for the relative viscosity were in agreement with some theoretical results. Biological suspensions such as blood are macro-colloids by nature. The study of the blood flow in the microvasculature was heuristically approached by assuming the red blood cells as surfactant covered droplets. The effects of interfacial tension on the flow velocity and the droplet exclusion from the walls

  3. GPU-Accelerated Population Annealing Algorithm: Frustrated Ising Antiferromagnet on the Stacked Triangular Lattice

    Science.gov (United States)

    Borovský, Michal; Weigel, Martin; Barash, Lev Yu.; Žukovič, Milan

    2016-02-01

    The population annealing algorithm is a novel approach to study systems with rough free-energy landscapes, such as spin glasses. It combines the power of simulated annealing, Boltzmann weighted differential reproduction and sequential Monte Carlo process to bring the population of replicas to the equilibrium even in the low-temperature region. Moreover, it provides a very good estimate of the free energy. The fact that population annealing algorithm is performed over a large number of replicas with many spin updates, makes it a good candidate for massive parallelism. We chose the GPU programming using a CUDA implementation to create a highly optimized simulation. It has been previously shown for the frustrated Ising antiferromagnet on the stacked triangular lattice with a ferromagnetic interlayer coupling, that standard Markov Chain Monte Carlo simulations fail to equilibrate at low temperatures due to the effect of kinetic freezing of the ferromagnetically ordered chains. We applied the population annealing to study the case with the isotropic intra- and interlayer antiferromagnetic coupling (J2/|J1| = -1). The reached ground states correspond to non-magnetic degenerate states, where chains are antiferromagnetically ordered, but there is no long-range ordering between them, which is analogical with Wannier phase of the 2D triangular Ising antiferromagnet.

  4. GPU-Accelerated Population Annealing Algorithm: Frustrated Ising Antiferromagnet on the Stacked Triangular Lattice

    Directory of Open Access Journals (Sweden)

    Borovský Michal

    2016-01-01

    Full Text Available The population annealing algorithm is a novel approach to study systems with rough free-energy landscapes, such as spin glasses. It combines the power of simulated annealing, Boltzmann weighted differential reproduction and sequential Monte Carlo process to bring the population of replicas to the equilibrium even in the low-temperature region. Moreover, it provides a very good estimate of the free energy. The fact that population annealing algorithm is performed over a large number of replicas with many spin updates, makes it a good candidate for massive parallelism. We chose the GPU programming using a CUDA implementation to create a highly optimized simulation. It has been previously shown for the frustrated Ising antiferromagnet on the stacked triangular lattice with a ferromagnetic interlayer coupling, that standard Markov Chain Monte Carlo simulations fail to equilibrate at low temperatures due to the effect of kinetic freezing of the ferromagnetically ordered chains. We applied the population annealing to study the case with the isotropic intra- and interlayer antiferromagnetic coupling (J2/|J1| = −1. The reached ground states correspond to non-magnetic degenerate states, where chains are antiferromagnetically ordered, but there is no long-range ordering between them, which is analogical with Wannier phase of the 2D triangular Ising antiferromagnet.

  5. Fermionic cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Chimento, L P; Forte, M [Physics Department, UBA, 1428 Buenos Aires (Argentina); Devecchi, F P; Kremer, G M; Ribas, M O; Samojeden, L L, E-mail: kremer@fisica.ufpr.br, E-mail: devecchi@fisica.ufpr.br, E-mail: chimento@df.uba.ar [Physics Department, UFPR, 81531-990 Curitiba (Brazil)

    2011-07-08

    In this work we review if fermionic sources could be responsible for accelerated periods during the evolution of a FRW universe. In a first attempt, besides the fermionic source, a matter constituent would answer for the decelerated periods. The coupled differential equations that emerge from the field equations are integrated numerically. The self-interaction potential of the fermionic field is considered as a function of the scalar and pseudo-scalar invariants. It is shown that the fermionic field could behave like an inflaton field in the early universe, giving place to a transition to a matter dominated (decelerated) period. In a second formulation we turn our attention to analytical results, specifically using the idea of form-invariance transformations. These transformations can be used for obtaining accelerated cosmologies starting with conventional cosmological models. Here we reconsider the scalar field case and extend the discussion to fermionic fields. Finally we investigate the role of a Dirac field in a Brans-Dicke (BD) context. The results show that this source, in combination with the BD scalar, promote a final eternal accelerated era, after a matter dominated period.

  6. Cosmology Beyond Einstein

    CERN Document Server

    Solomon, Adam R

    2015-01-01

    The accelerating expansion of the Universe poses a major challenge to our understanding of fundamental physics. One promising avenue is to modify general relativity and obtain a new description of the gravitational force. Because gravitation dominates the other forces mostly on large scales, cosmological probes provide an ideal testing ground for theories of gravity. In this thesis, we describe two complementary approaches to the problem of testing gravity using cosmology. In the first part, we discuss the cosmological solutions of massive gravity and its generalisation to a bimetric theory. These theories describe a graviton with a small mass, and can potentially explain the late-time acceleration in a technically-natural way. We describe these self-accelerating solutions and investigate the cosmological perturbations in depth, beginning with an investigation of their linear stability, followed by the construction of a method for solving these perturbations in the quasistatic limit. This allows the predictio...

  7. Cosmological Reflection of Particle Symmetry

    Directory of Open Access Journals (Sweden)

    Maxim Khlopov

    2016-08-01

    Full Text Available The standard model involves particle symmetry and the mechanism of its breaking. Modern cosmology is based on inflationary models with baryosynthesis and dark matter/energy, which involves physics beyond the standard model. Studies of the physical basis of modern cosmology combine direct searches for new physics at accelerators with its indirect non-accelerator probes, in which cosmological consequences of particle models play an important role. The cosmological reflection of particle symmetry and the mechanisms of its breaking are the subject of the present review.

  8. Introduction to cosmology

    CERN Document Server

    Ryden, Barbara

    2002-01-01

    Introduction to Cosmology provides a rare combination of a solid foundation of the core physical concepts of cosmology and the most recent astronomical observations. The book is designed for advanced undergraduates or beginning graduate students and assumes no prior knowledge of general relativity. An emphasis is placed on developing the readers' physical insight rather than losing them with complex math. An approachable writing style and wealth of fresh and imaginative analogies from "everyday" physics are used to make the concepts of cosmology more accessible. The book is unique in that it not only includes recent major developments in cosmology, like the cosmological constant and accelerating universe, but also anticipates key developments expected in the next few years, such as detailed results on the cosmic microwave background.

  9. Cosmology as geodesic motion

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, Paul K [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Wohlfarth, Mattias N R [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2004-12-07

    For gravity coupled to N scalar fields, with arbitrary potential V, it is shown that all flat (homogeneous and isotropic) cosmologies correspond to geodesics in an (N + 1)-dimensional 'augmented' target space of Lorentzian signature (1, N), timelike if V > 0, null if V = 0 and spacelike if V < 0. Accelerating cosmologies correspond to timelike geodesics that lie within an 'acceleration subcone' of the 'lightcone'. Non-flat (k = {+-}1) cosmologies are shown to evolve as projections of geodesic motion in a space of dimension N + 2, of signature (1, N + 1) for k = -1 and signature (2, N) for k = +1. This formalism is illustrated by cosmological solutions of models with an exponential potential, which are comprehensively analysed; the late-time behaviour for other potentials of current interest is deduced by comparison.

  10. An accelerated conjugate gradient algorithm to compute low-lying eigenvalues a study for the Dirac operator in SU(2) lattice QCD

    CERN Document Server

    Kalkreuter, T; Kalkreuter, Thomas; Simma, Hubert

    1995-01-01

    The low-lying eigenvalues of a (sparse) hermitian matrix can be computed with controlled numerical errors by a conjugate gradient (CG) method. This CG algorithm is accelerated by alternating it with exact diagonalisations in the subspace spanned by the numerically computed eigenvectors. We study this combined algorithm in case of the Dirac operator with (dynamical) Wilson fermions in four-dimensional \\SUtwo gauge fields. The algorithm is numerically very stable and can be parallelized in an efficient way. On lattices of sizes 4^4-16^4 an acceleration of the pure CG method by a factor of~4-8 is found.

  11. Cascading Cosmology

    CERN Document Server

    Agarwal, Nishant; Khoury, Justin; Trodden, Mark

    2009-01-01

    We develop a fully covariant, well-posed 5D effective action for the 6D cascading gravity brane-world model, and use this to study cosmological solutions. We obtain this effective action through the 6D decoupling limit, in which an additional scalar degree mode, \\pi, called the brane-bending mode, determines the bulk-brane gravitational interaction. The 5D action obtained this way inherits from the sixth dimension an extra \\pi self-interaction kinetic term. We compute appropriate boundary terms, to supplement the 5D action, and hence derive fully covariant junction conditions and the 5D Einstein field equations. Using these, we derive the cosmological evolution induced on a 3-brane moving in a static bulk. We study the strong- and weak-coupling regimes analytically in this static ansatz, and perform a complete numerical analysis of our solution. Although the cascading model can generate an accelerating solution in which the \\pi field comes to dominate at late times, the presence of a critical singularity prev...

  12. Cosmological effects of nonlinear electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Novello, M [Instituto de Cosmologia Relatividade Astrofisica (ICRA-Brasil/CBPF), Rua Dr Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro (Brazil); Goulart, E [Instituto de Cosmologia Relatividade Astrofisica (ICRA-Brasil/CBPF), Rua Dr Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro (Brazil); Salim, J M [Instituto de Cosmologia Relatividade Astrofisica (ICRA-Brasil/CBPF), Rua Dr Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro (Brazil); Bergliaffa, S E Perez [Departamento de Fisica Teorica, Universidade do Estado do Rio de Janeiro, R. Sao Francisco Xavier, 524, Maracana, CEP 20559-900, Rio de Janeiro (Brazil)

    2007-06-07

    It will be shown that a given realization of nonlinear electrodynamics, used as a source of Einstein's equations, generates a cosmological model with interesting features, namely a phase of current cosmic acceleration, and the absence of an initial singularity, thus pointing to a way of solving two important problems in cosmology.

  13. Nonstandard cosmologies from physics beyond the Standard model

    OpenAIRE

    Khlopov, M. Yu.

    2016-01-01

    The modern cosmology is based on inflationary models with baryosynthesis and dark matter/energy.It implies extension of particle symmetry beyond the Standard model. Studies of physical basis of the modern cosmology combine direct searches for new physics at accelerators with its indirect non-accelerator probes, in which cosmological consequences of particle models play important role. The cosmological consequences of particle models inevitably go beyond the 'standard' cosmological $\\Lambda$CD...

  14. Testing Fractional Action Cosmology

    CERN Document Server

    Shchigolev, V K

    2015-01-01

    The present work deals with a combined test of the so-called Fractional Action Cosmology (FAC) on the example of a specific model obtained by the author earlier. In this model, the effective cosmological term is proportional to the Hubble parameter squared through the so-called kinematic induction. The reason of studying this cosmological model could be explained by its ability to describe two periods of accelerated expansion, that is in agreement with the recent observations and the cosmological inflation paradigm. First of all, we put our model through the theoretical tests that gives a general conception of the influence of the model parameters on its behavior. Then, we obtain some restrictions on the principal parameters of the model, including the fractional index, by means of the observational data. Finally, the cosmography parameters and the observational data compared to the theoretical predictions are presented both analytically and graphically.

  15. Testing fractional action cosmology

    Science.gov (United States)

    Shchigolev, V. K.

    2016-08-01

    The present work deals with a combined test of the so-called Fractional Action Cosmology (FAC) on the example of a specific model obtained by the author earlier. In this model, the effective cosmological term is proportional to the Hubble parameter squared through the so-called kinematic induction. The reason of studying this cosmological model could be explained by its ability to describe two periods of accelerated expansion, that is in agreement with the recent observations and the cosmological inflation paradigm. First of all, we put our model through the theoretical tests, which gives a general conception of the influence of the model parameters on its behavior. Then, we obtain some restrictions on the principal parameters of the model, including the fractional index, by means of the observational data. Finally, the cosmography parameters and the observational data compared to the theoretical predictions are presented both analytically and graphically.

  16. Introduction to cosmology

    CERN Document Server

    Ryden, Barbara

    2017-01-01

    This second edition of Introduction to Cosmology is an exciting update of an award-winning textbook. It is aimed primarily at advanced undergraduate students in physics and astronomy, but is also useful as a supplementary text at higher levels. It explains modern cosmological concepts, such as dark energy, in the context of the Big Bang theory. Its clear, lucid writing style, with a wealth of useful everyday analogies, makes it exceptionally engaging. Emphasis is placed on the links between theoretical concepts of cosmology and the observable properties of the universe, building deeper physical insights in the reader. The second edition includes recent observational results, fuller descriptions of special and general relativity, expanded discussions of dark energy, and a new chapter on baryonic matter that makes up stars and galaxies. It is an ideal textbook for the era of precision cosmology in the accelerating universe.

  17. Real-Time History of the Cosmological Electroweak Phase Transition

    CERN Document Server

    Kurki-Suonio, H

    1996-01-01

    We study numerically the real-time history of the cosmological electrow= eak phase transition, as it may take place in the Standard Model or in MSSM f= or m_H < m_W according to recent lattice results. We follow the nucleated bubble= s from the initial stages of acceleration and rapid growth, through collisions w= ith compression waves resulting in slowing down and reheating to T_c, until t= he final stages of slow growth and evaporation. We find that collisions with compression waves may make the bubble walls oscillate in the radial direc= tion, and that reheating to T_c takes generically place.

  18. Cosmology as Geodesic Motion

    CERN Document Server

    Townsend, P K; Townsend, Paul K.; Wohlfarth, Mattias N.R.

    2004-01-01

    For gravity coupled to N scalar fields with arbitrary potential V, it is shown that all flat (homogeneous and isotropic) cosmologies correspond to geodesics in an (N+1)-dimensional `extended target space' of Lorentzian signature (1,N), timelike if V>0 and spacelike if V<0. Accelerating cosmologies correspond to timelike geodesics that lie within an `acceleration subcone' of the `lightcone'. Non-flat (k=-1,+1) cosmologies are shown to evolve as projections of geodesic motion in a space of dimension N+2, of signature (1,N+1) for k=-1 and signature (2,N) for k=+1. We illustrate these results for various potentials of current interest, including exponential and inverse power potentials.

  19. The strained state cosmology

    CERN Document Server

    Tartaglia, Angelo

    2015-01-01

    Starting from some relevant facts concerning the behaviour of the universe over large scale and time span, the analogy between the geometric approach of General Relativ- ity and the classical description of an elastic strained material continuum is discussed. Extending the elastic deformation approach to four dimensions it is shown that the accelerated expansion of the universe is recovered. The strain field of space-time repro- duces properties similar to the ones ascribed to the dark energy currently called in to explain the accelerated expansion. The strain field in the primordial universe behaves as radiation, but asymptotically it reproduces the cosmological constant. Subjecting the theory to a number of cosmological tests confirms the soundness of the approach and gives an optimal value for the one parameter of the model, i.e. the bulk modulus of the space-time continuum. Finally various aspects of the Strained State Cosmology (SSC) are discussed and contrasted with some non-linear massive gravity theor...

  20. Cosmological dark energy effects from entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Capozziello, Salvatore, E-mail: capozziello@na.infn.it [Dipartimento di Fisica, Università di Napoli “Federico II”, Via Cinthia, 80126 Napoli (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sez. di Napoli, Via Cinthia, 80126 Napoli (Italy); Luongo, Orlando [Dipartimento di Fisica, Università di Napoli “Federico II”, Via Cinthia, 80126 Napoli (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sez. di Napoli, Via Cinthia, 80126 Napoli (Italy); Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de México (UNAM) (Mexico); Mancini, Stefano [Scuola di Scienze and Tecnologie, Università di Camerino, 62032 Camerino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sez. di Perugia, Via Pascoli, 06123 Perugia (Italy)

    2013-06-03

    The thorny issue of relating information theory to cosmology is here addressed by assuming a possible connection between quantum entanglement measures and observable universe. In particular, we propose a cosmological toy model, where the equation of state of the cosmological fluid, which drives the today observed cosmic acceleration, can be inferred from quantum entanglement between different cosmological epochs. In such a way the dynamical dark energy results as byproduct of quantum entanglement.

  1. Cosmology from start to finish.

    Science.gov (United States)

    Bennett, Charles L

    2006-04-27

    Cosmology is undergoing a revolution. With recent precise measurements of the cosmic microwave background radiation, large galaxy redshift surveys, better measurements of the expansion rate of the Universe and a host of other astrophysical observations, there is now a standard, highly constrained cosmological model. It is not a cosmology that was predicted. Unidentified dark particles dominate the matter content of our Universe, and mysteries surround the processes responsible for the accelerated expansion at its earliest moments (inflation?) and for its recent acceleration (dark energy?). New measurements must address the fundamental questions: what happened at the birth of the Universe, and what is its ultimate fate?

  2. Two-body orbit expansion due to time-dependent relative acceleration rate of the cosmological scale factor

    CERN Document Server

    Iorio, Lorenzo

    2013-01-01

    By phenomenologically assuming a slow temporal variation of the percent acceleration rate $\\ddot S S^{-1}$ of the cosmic scale factor $S(t)$, it is shown that the orbit of a local binary undergoes a secular expansion. To first order in the power expansion of $\\ddot S S^{-1}$ around the present epoch $t_0$, a non-vanishing shift per orbit $\\left\\langle\\Delta r\\right\\rangle$ of the two-body relative distance $r$ occurs for eccentric trajectories. A general relativistic expression, which turns out to be cubic in the Hubble parameter $H_0$ at the present epoch, is explicitly calculated for it in the case of matter-dominated epochs with Dark Energy. For a highly eccentric Oort comet orbit with period $P_{\\rm b}\\approx 31$ Myr, the general relativistic distance shift per orbit turns out to be of the order of $\\left\\langle\\Delta r\\right\\rangle\\approx 70$ km. For the Large Magellanic Cloud, assumed on a bound elliptic orbit around the Milky Way, the shift per orbit is of the order of $\\left\\langle\\Delta r\\right\\rangl...

  3. Exploring the role of turbulent acceleration and heating in fractal current sheet of solar flares­ from hybrid particle in cell and lattice Boltzmann virtual test

    Science.gov (United States)

    Zhu, B.; Lin, J.; Yuan, X.; Li, Y.; Shen, C.

    2016-12-01

    The role of turbulent acceleration and heating in the fractal magnetic reconnection of solar flares is still not clear, especially at the X-point in the diffusion region. At virtual test aspect, it is hardly to quantitatively analyze the vortex generation, turbulence evolution, particle acceleration and heating in the magnetic islands coalesce in fractal manner, formatting into largest plasmid and ejection process in diffusion region through classical magnetohydrodynamics numerical method. With the development of physical particle numerical method (particle in cell method [PIC], Lattice Boltzmann method [LBM]) and high performance computing technology in recently two decades. Kinetic simulation has developed into an effectively manner to exploring the role of magnetic field and electric field turbulence in charged particles acceleration and heating process, since all the physical aspects relating to turbulent reconnection are taken into account. In this paper, the LBM based lattice DxQy grid and extended distribution are added into charged-particles-to-grid-interpolation of PIC based finite difference time domain scheme and Yee Grid, the hybrid PIC-LBM simulation tool is developed to investigating turbulence acceleration on TIANHE-2. The actual solar coronal condition (L≈105Km,B≈50-500G,T≈5×106K, n≈108-109, mi/me≈500-1836) is applied to study the turbulent acceleration and heating in solar flare fractal current sheet. At stage I, magnetic islands shrink due to magnetic tension forces, the process of island shrinking halts when the kinetic energy of the accelerated particles is sufficient to halt the further collapse due to magnetic tension forces, the particle energy gain is naturally a large fraction of the released magnetic energy. At stage II and III, the particles from the energized group come in to the center of the diffusion region and stay longer in the area. In contract, the particles from non energized group only skim the outer part of the

  4. Explanation of New Astronomical Distance Data Resulted From Measurements of Type Ia Supernovae Lies Not In Cosmological Constant and Accelerating Expansion; Rather, It Is Another Aspect/Effect of the General Exponential Decay Universe

    CERN Document Server

    Ellman, R

    2000-01-01

    Recently it has become possible to determine the distance to Type Ia supernovae by redshift-independent means. Those new distance determinations exceed the Hubble distance by 10 - 15%. The explanation others propose is that an "antigravity effect" is accelerating the universe' expansion, which had hitherto been thought to be slowing down because of gravitation. That has led to their proposing reinstatement of Einstein's "cosmological constant", a term in his equations introduced to account for gravitation not promptly collapsing the universe and which he disavowed upon Hubble's discovery of the expansion of the universe. And that has further led to their proposing some form of the Ancients' fifth essence, quintessence [the first four being earth, air, fire and water], to account for the "antigravity effect". Any "antigravity effect", regardless of its cause, would have the effect of counteracting ordinary gravitation. Inasmuch as one of the major current problems in cosmology is to identify more gravitation t...

  5. Precision Cosmology

    Science.gov (United States)

    Jones, Bernard J. T.

    2017-04-01

    Preface; Notation and conventions; Part I. 100 Years of Cosmology: 1. Emerging cosmology; 2. The cosmic expansion; 3. The cosmic microwave background; 4. Recent cosmology; Part II. Newtonian Cosmology: 5. Newtonian cosmology; 6. Dark energy cosmological models; 7. The early universe; 8. The inhomogeneous universe; 9. The inflationary universe; Part III. Relativistic Cosmology: 10. Minkowski space; 11. The energy momentum tensor; 12. General relativity; 13. Space-time geometry and calculus; 14. The Einstein field equations; 15. Solutions of the Einstein equations; 16. The Robertson–Walker solution; 17. Congruences, curvature and Raychaudhuri; 18. Observing and measuring the universe; Part IV. The Physics of Matter and Radiation: 19. Physics of the CMB radiation; 20. Recombination of the primeval plasma; 21. CMB polarisation; 22. CMB anisotropy; Part V. Precision Tools for Precision Cosmology: 23. Likelihood; 24. Frequentist hypothesis testing; 25. Statistical inference: Bayesian; 26. CMB data processing; 27. Parametrising the universe; 28. Precision cosmology; 29. Epilogue; Appendix A. SI, CGS and Planck units; Appendix B. Magnitudes and distances; Appendix C. Representing vectors and tensors; Appendix D. The electromagnetic field; Appendix E. Statistical distributions; Appendix F. Functions on a sphere; Appendix G. Acknowledgements; References; Index.

  6. Nonstandard cosmologies from physics beyond the Standard model

    CERN Document Server

    Khlopov, M Yu

    2016-01-01

    The modern cosmology is based on inflationary models with baryosynthesis and dark matter/energy.It implies extension of particle symmetry beyond the Standard model. Studies of physical basis of the modern cosmology combine direct searches for new physics at accelerators with its indirect non-accelerator probes, in which cosmological consequences of particle models play important role. The cosmological consequences of particle models inevitably go beyond the 'standard' cosmological $\\Lambda$CDM model and some possible feature of such 'nonstandard'cosmological scenarios is the subject of the present brief review.

  7. MOND cosmology from holographic principle

    CERN Document Server

    Zhang, Hongsheng

    2011-01-01

    We derive the MOND cosmology which is uniquely corresponding to the original MOND in galaxies via holographic approach of gravity. It inherits the key merit of MOND, that is, it reduces the byronic matter and mysterious non-byronic dark matter (dark matter for short) in the standard cosmology into byronic matter only. For the first time we derive the critical parameter in MOND, i.e., the transition acceleration $a_c$ on cosmological scale. We thus solve the long-standing coincidence problem $a_c\\sim cH_{0}$. More interestingly, a term like age-graphic dark energy emerges naturally. In the frame of this MOND cosmology, we only need byronic matter to describe both dark matter and dark energy in standard cosmology.

  8. GPU Accelerated Lattice Boltzmann Simulation of Flow in Porous Media%基于格子Boltzmann方法的多孔介质流动模拟GPU加速

    Institute of Scientific and Technical Information of China (English)

    朱炼华; 郭照立

    2015-01-01

    A sparse lattice representation lattice Boltzmann method algorithm is implemented on Graphics Processing Units ( GPU) to accelerate pore scale flow simuation. Prefomance testing shows that sparse lattice representation approach grately reduces memory requirement and maintains performance under low porosity compared with basic algorithm. Overall speedup reaches two orders of magnitude compared with serial code. Various factors including collision model, float number precision, and GPU that affect computing speed of the algorithm are invesgated independently. It indicates that MRT model runs as fast as LBGK model on new generation of GPU cards. While on old GPU cards, MRT model’ s computing speed matchs LBGK only when using single precision float.%利用NVIDIA CUDA平台,在GPU上结合稀疏存贮算法实现基于格子Boltzmann方法的孔隙尺度多孔介质流动模拟加速,测试该算法相对基本算法的性能。比较该算法在不同GPU上使用LBGK和MRT两种碰撞模型及单、双精度计算时的性能差异。测试结果表明在GPU环境下采用稀疏存贮算法相对基本算法能大幅提高计算速度并节省显存,相对于串行CPU程序加速比达到两个量级。使用较新构架的GPU时,MRT和LBGK碰撞模型在单、双浮点数精度下计算速度相同。而在较上一代的GPU上,计算精度对MRT碰撞模型计算速度影响较大。

  9. Observational cosmology

    NARCIS (Netherlands)

    Sanders, RH; Papantonopoulos, E

    2005-01-01

    I discuss the classical cosmological tests, i.e., angular size-redshift, flux-redshift, and galaxy number counts, in the light of the cosmology prescribed by the interpretation of the CMB anisotropies. The discussion is somewhat of a primer for physicists, with emphasis upon the possible systematic

  10. Imaginative Cosmology

    CERN Document Server

    Brandenberger, R H; Brandenberger, Robert H.; Magueijo, Joao

    1999-01-01

    We review a few off-the-beaten-track ideas in cosmology. They solve a variety of fundamental problems; also they are fun. We start with a description of non-singular dilaton cosmology. In these scenarios gravity is modified so that the Universe does not have a singular birth. We then present a variety of ideas mixing string theory and cosmology. These solve the cosmological problems usually solved by inflation, and furthermore shed light upon the issue of the number of dimensions of our Universe. We finally review several aspects of the varying speed of light theory. We show how the horizon, flatness, and cosmological constant problems may be solved in this scenario. We finally present a possible experimental test for a realization of this theory: a test in which the Supernovae results are to be combined with recent evidence for redshift dependence in the fine structure constant.

  11. The screening Horndeski cosmologies

    Science.gov (United States)

    Starobinsky, Alexei A.; Sushkov, Sergey V.; Volkov, Mikhail S.

    2016-06-01

    We present a systematic analysis of homogeneous and isotropic cosmologies in a particular Horndeski model with Galileon shift symmetry, containing also a Λ-term and a matter. The model, sometimes called Fab Five, admits a rich spectrum of solutions. Some of them describe the standard late time cosmological dynamic dominated by the Λ-term and matter, while at the early times the universe expands with a constant Hubble rate determined by the value of the scalar kinetic coupling. For other solutions the Λ-term and matter are screened at all times but there are nevertheless the early and late accelerating phases. The model also admits bounces, as well as peculiar solutions describing ``the emergence of time''. Most of these solutions contain ghosts in the scalar and tensor sectors. However, a careful analysis reveals three different branches of ghost-free solutions, all showing a late time acceleration phase. We analyse the dynamical stability of these solutions and find that all of them are stable in the future, since all their perturbations stay bounded at late times. However, they all turn out to be unstable in the past, as their perturbations grow violently when one approaches the initial spacetime singularity. We therefore conclude that the model has no viable solutions describing the whole of the cosmological history, although it may describe the current acceleration phase. We also check that the flat space solution is ghost-free in the model, but it may acquire ghost in more general versions of the Horndeski theory.

  12. Observational Aspects of an Inhomogeneous Cosmology

    CERN Document Server

    Saulder, Christoph; Zeilinger, Werner W

    2012-01-01

    One of the biggest mysteries in cosmology is Dark Energy, which is required to explain the accelerated expansion of the universe within the standard model. But maybe one can explain the observations without introducing new physics, by simply taking one step back and re-examining one of the basic concepts of cosmology, homogeneity. In standard cosmology, it is assumed that the universe is homogeneous, but this is not true at small scales (<200 Mpc). Since general relativity, which is the basis of modern cosmology, is a non-linear theory, one can expect some backreactions in the case of an inhomogeneous matter distribution. Estimates of the magnitude of these backreactions (feedback) range from insignificant to being perfectly able to explain the accelerated expansion of the universe. In the end, the only way to be sure is to test predictions of inhomogeneous cosmological theories, such as timescape cosmology, against observational data. If these theories provide a valid description of the universe, one expe...

  13. Hamiltonian cosmology.

    Science.gov (United States)

    Ryan, M.

    1972-01-01

    The study of cosmological models by means of equations of motion in Hamiltonian form is considered. Hamiltonian methods applied to gravity seem to go back to Rosenfeld (1930), who constructed a quantum-mechanical Hamiltonian for linearized general relativity theory. The first to notice that cosmologies provided a simple model in which to demonstrate features of Hamiltonian formulation was DeWitt (1967). Applications of the ADM formalism to homogeneous cosmologies are discussed together with applications of the Hamiltonian formulation, giving attention also to Bianchi-type universes. Problems involving the concept of superspace and techniques of quantization are investigated.

  14. Beyond lensing by the cosmological constant

    CERN Document Server

    Faraoni, Valerio

    2016-01-01

    The long-standing problem of whether the cosmological constant affects directly the deflection of light caused by a gravitational lens is reconsidered. We use a new approach based on the Hawking quasilocal mass of a sphere grazed by light rays and on its splitting into local and cosmological parts. Previous literature restricted to the cosmological constant is extended to any form of dark energy accelerating the universe in which the gravitational lens is embedded.

  15. Beyond lensing by the cosmological constant

    Science.gov (United States)

    Faraoni, Valerio; Lapierre-Léonard, Marianne

    2017-01-01

    The long-standing problem of whether the cosmological constant affects directly the deflection of light caused by a gravitational lens is reconsidered. We use a new approach based on the Hawking quasilocal mass of a sphere grazed by light rays and on its splitting into local and cosmological parts. Previous literature restricted to the cosmological constant is extended to any form of dark energy accelerating the universe in which the gravitational lens is embedded.

  16. Accelerated kinetics of amorphous silicon using an on-the-fly off-lattice kinetic Monte-Carlo method

    Science.gov (United States)

    Joly, Jean-Francois; El-Mellouhi, Fedwa; Beland, Laurent Karim; Mousseau, Normand

    2011-03-01

    The time evolution of a series of well relaxed amorphous silicon models was simulated using the kinetic Activation-RelaxationTechnique (kART), an on-the-fly off-lattice kinetic Monte Carlo method. This novel algorithm uses the ART nouveau algorithm to generate activated events and links them with local topologies. It was shown to work well for crystals with few defects but this is the first time it is used to study an amorphous material. A parallel implementation allows us to increase the speed of the event generation phase. After each KMC step, new searches are initiated for each new topology encountered. Well relaxed amorphous silicon models of 1000 atoms described by a modified version of the empirical Stillinger-Weber potential were used as a starting point for the simulations. Initial results show that the method is faster by orders of magnitude compared to conventional MD simulations up to temperatures of 500 K. Vacancy-type defects were also introduced in this system and their stability and lifetimes are calculated.

  17. Cosmological singularity

    CERN Document Server

    Belinski, V

    2009-01-01

    The talk at international conference in honor of Ya. B. Zeldovich 95th Anniversary, Minsk, Belarus, April 2009. The talk represents a review of the old results and contemporary development on the problem of cosmological singularity.

  18. Neutrino cosmology

    CERN Document Server

    Lesgourgues, Julien; Miele, Gennaro; Pastor, Sergio

    2013-01-01

    The role that neutrinos have played in the evolution of the Universe is the focus of one of the most fascinating research areas that has stemmed from the interplay between cosmology, astrophysics and particle physics. In this self-contained book, the authors bring together all aspects of the role of neutrinos in cosmology, spanning from leptogenesis to primordial nucleosynthesis, their role in CMB and structure formation, to the problem of their direct detection. The book starts by guiding the reader through aspects of fundamental neutrino physics, such as the standard cosmological model and the statistical mechanics in the expanding Universe, before discussing the history of neutrinos in chronological order from the very early stages until today. This timely book will interest graduate students and researchers in astrophysics, cosmology and particle physics, who work with either a theoretical or experimental focus.

  19. BOOK REVIEW: Cosmology

    Science.gov (United States)

    Silk, Joseph

    2008-11-01

    The field of cosmology has been transformed since the glorious decades of the 1920's and 1930's when theory and observation converged to develop the current model of the expanding universe. It was a triumph of the theory of general relativity and astronomy. The first revolution came when the nuclear physicists entered the fray. This marked the debut of the hot big bang, in which the light elements were synthesized in the first three minutes. It was soon realised that elements like carbon and iron were synthesized in exploding stars. However helium, as well as deuterium and lithium, remain as George Gamow envisaged, the detritus of the big bang. The climax arrived with one of the most remarkable discoveries of the twentieth century, the cosmic microwave background radiation, in 1964. The fossil glow turned out to have the spectrum of an ideal black body. One could not imagine a stronger confirmation of the hot and dense origin of the universe. This discovery set the scene for the next major advance. It was now the turn of the particle physicists, who realized that the energies attained near the beginning of the universe, and unachievable in any conceivable terrestrial accelerator, provided a unique testing ground for theories of grand unification of the fundamental forces. This led Alan Guth and Andrei Linde in 1980 to propose the theory of inflation, which solved outstanding puzzles of the big bang. One could now understand why the universe is so large and homogeneous, and the origin of the seed fluctuations that gave rise to large-scale structure. A key prediction was that the universe should have Euclidean geometry, now verified to a precision of a few percent. Modern cosmology is firmly embedded in particle physics. It merits a text written by a particle physicist who can however appreciate the contributions of astronomy that provide the foundation and infrastructure for the theory of the expanding universe. There are now several such texts available. The most

  20. Cosmological Inflation: A Personal Perspective

    Science.gov (United States)

    Kazanas, Demos

    2008-01-01

    We present a brief review of Cosmological Inflation from the personal perspective of the speaker who almost 30 years ago proposed a way of resolving the problem of Cosmological Horizon by employing certain notions and developments from the field of High Energy Physics. Along with a brief introduction of the Horizon and Flatness problems of standard cosmology, this lecture concentrates on personal reminiscing of the notions and ideas that prevailed and influenced the author's thinking at the time. The lecture then touches upon some more recent developments related to the subject including exact solutions to conformal gravity that provide a first principles emergence of a characteristic acceleration in the universe and concludes with some personal views concerning the direction that the cosmology field has taken in the past couple of decades and certain speculations some notions that may indicate future directions of research.

  1. Cosmological principle

    Energy Technology Data Exchange (ETDEWEB)

    Wesson, P.S.

    1979-10-01

    The Cosmological Principle states: the universe looks the same to all observers regardless of where they are located. To most astronomers today the Cosmological Principle means the universe looks the same to all observers because density of the galaxies is the same in all places. A new Cosmological Principle is proposed. It is called the Dimensional Cosmological Principle. It uses the properties of matter in the universe: density (rho), pressure (p), and mass (m) within some region of space of length (l). The laws of physics require incorporation of constants for gravity (G) and the speed of light (C). After combining the six parameters into dimensionless numbers, the best choices are: 8..pi..Gl/sup 2/ rho/c/sup 2/, 8..pi..Gl/sup 2/ rho/c/sup 4/, and 2 Gm/c/sup 2/l (the Schwarzchild factor). The Dimensional Cosmological Principal came about because old ideas conflicted with the rapidly-growing body of observational evidence indicating that galaxies in the universe have a clumpy rather than uniform distribution. (SC)

  2. Cosmological and astrophysical neutrino mass measurements

    DEFF Research Database (Denmark)

    Abazajian, K.N.; Calabrese, E.; Cooray, A.

    2011-01-01

    Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach.......Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach....

  3. Cosmological tests of modified gravity

    Science.gov (United States)

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein’s theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard Λ CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.

  4. Cosmological tests of modified gravity.

    Science.gov (United States)

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.

  5. Quantum Gravity and Cosmology: an intimate interplay

    Science.gov (United States)

    Sakellariadou, Mairi

    2017-08-01

    I will briefly discuss three cosmological models built upon three distinct quantum gravity proposals. I will first highlight the cosmological rôle of a vector field in the framework of a string/brane cosmological model. I will then present the resolution of the big bang singularity and the occurrence of an early era of accelerated expansion of a geometric origin, in the framework of group field theory condensate cosmology. I will then summarise results from an extended gravitational model based on non-commutative spectral geometry, a model that offers a purely geometric explanation for the standard model of particle physics.

  6. Cosmological Tests of Gravity

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Extensions of Einstein’s theory of General Relativity are under investigation as a potential explanation of the accelerating expansion rate of the universe. I’ll present a cosmologist’s overview of attempts to test these ideas in an efficient and unbiased manner. I’ll start by introducing the bestiary of alternative gravity theories that have been put forwards. This proliferation of models motivates us to develop model-independent, agnostic tools for comparing the theory space to cosmological data. I’ll introduce the effective field theory for cosmological perturbations, a framework designed to unify modified gravity theories in terms of a manageable set of parameters. Having outlined the formalism, I’ll talk about the current constraints on this framework, and the improvements expected from the next generation of large galaxy clustering, weak lensing and intensity mapping experiments.

  7. Cosmological extrapolation of MOND

    CERN Document Server

    Kiselev, V V

    2011-01-01

    Regime of MOND, which is used in astronomy to describe the gravitating systems of island type without the need to postulate the existence of a hypothetical dark matter, is generalized to the case of homogeneous distribution of usual matter by introducing a linear dependence of the critical acceleration on the size of region under consideration. We show that such the extrapolation of MOND in cosmology is consistent with both the observed dependence of brightness on the redshift for type Ia supernovae and the parameters of large-scale structure of Universe in the evolution, that is determined by the presence of a cosmological constant, the ordinary matter of baryons and electrons as well as the photon and neutrino radiation without any dark matter.

  8. An Improved Cosmological Model

    CERN Document Server

    Tsamis, N C

    2016-01-01

    We study a class of non-local, action-based, and purely gravitational models. These models seek to describe a cosmology in which inflation is driven by a large, bare cosmological constant that is screened by the self-gravitation between the soft gravitons that inflation rips from the vacuum. Inflation ends with the universe poised on the verge of gravitational collapse, in an oscillating phase of expansion and contraction that should lead to rapid reheating when matter is included. After the attainment of a hot, dense universe the nonlocal screening terms become constant as the universe evolves through a conventional phase of radiation domination. The onset of matter domination triggers a much smaller anti-screening effect that could explain the current phase of acceleration.

  9. Improved cosmological model

    Science.gov (United States)

    Tsamis, N. C.; Woodard, R. P.

    2016-08-01

    We study a class of nonlocal, action-based, and purely gravitational models. These models seek to describe a cosmology in which inflation is driven by a large, bare cosmological constant that is screened by the self-gravitation between the soft gravitons that inflation rips from the vacuum. Inflation ends with the Universe poised on the verge of gravitational collapse, in an oscillating phase of expansion and contraction that should lead to rapid reheating when matter is included. After the attainment of a hot, dense Universe the nonlocal screening terms become constant as the Universe evolves through a conventional phase of radiation domination. The onset of matter domination triggers a much smaller antiscreening effect that could explain the current phase of acceleration.

  10. Deconstructing cosmology

    CERN Document Server

    Sanders, Robert H

    2016-01-01

    The advent of sensitive high-resolution observations of the cosmic microwave background radiation and their successful interpretation in terms of the standard cosmological model has led to great confidence in this model's reality. The prevailing attitude is that we now understand the Universe and need only work out the details. In this book, Sanders traces the development and successes of Lambda-CDM, and argues that this triumphalism may be premature. The model's two major components, dark energy and dark matter, have the character of the pre-twentieth-century luminiferous aether. While there is astronomical evidence for these hypothetical fluids, their enigmatic properties call into question our assumptions of the universality of locally determined physical law. Sanders explains how modified Newtonian dynamics (MOND) is a significant challenge for cold dark matter. Overall, the message is hopeful: the field of cosmology has not become frozen, and there is much fundamental work ahead for tomorrow's cosmologis...

  11. Dimensionless cosmology

    CERN Document Server

    Narimani, Ali; Scott, Douglas

    2011-01-01

    Although it is possible that some fundamental physical constants could vary in time, it is important to only consider dimensionless combinations, such as the fine structure constant or the equivalent coupling constant for gravity. Once all such dimensionless numbers have been given, then we can be sure that our cosmological picture is governed by the same physical laws as that of another civilization with an entirely different set of units. An additional feature of the standard model of cosmology raises an extra complication, namely that the epoch at which we live is a crucial part of the model. This can be defined by giving the value of any one of the evolving cosmological parameters. It takes some care to avoid inconsistent results for constraints on variable constants, which could be caused by effectively fixing more than one parameter today. We show examples of this effect by considering in some detail the physics of Big Bang nucleosynthesis, recombination and microwave background anisotropies, being care...

  12. Inflationary Cosmologies from Compactification?

    CERN Document Server

    Wohlfarth, M N R

    2004-01-01

    We consider the compactification of (d+n)-dimensional pure gravity and of superstring/M-theory on an n-dimensional internal space to a d-dimensional FLRW cosmology, with spatial curvature k=-1,0,+1, in Einstein conformal frame. The internal space is taken to be a product of Einstein spaces, each of which is allowed to have arbitrary curvature and a time-dependent volume. By investigating the effective d-dimensional scalar potential, which is a sum of exponentials, it is shown that such compactifications, in the k=0,+1 cases, do not lead to large amounts of accelerating expansion of the scale factor of the resulting FLRW universe, and, in particular, not to inflation. The case k=-1 admits solutions with eternal accelerating expansion for which the acceleration, however, tends to zero at late times.

  13. Cosmological bootstrap

    CERN Document Server

    Kiselev, V V

    2012-01-01

    A huge value of cosmological constant characteristic for the particle physics and the inflation of early Universe are inherently related to each other: one can construct a fine-tuned superpotential, which produces a flat potential of inflaton with a constant density of energy V=\\Lambda^4 after taking into account for leading effects due to the supergravity, so that an introduction of small quantum loop-corrections to parameters of this superpotential naturally results in the dynamical instability relaxing the primary cosmological constant by means of inflationary regime. The model phenomenologically agrees with observational data on the large scale structure of Universe at \\Lambda~10^{16} GeV.

  14. Supernova constraints on decaying vacuum cosmology

    CERN Document Server

    Carneiro, S; Borges, H A; Alcaniz, J S

    2006-01-01

    There is mounting observational evidence that the expansion of our Universe is undergoing a late-time acceleration. Among many proposals to describe this phenomenon, the cosmological constant seems to be the simplest and the most natural explanation. However, despite its observational successes, such a possibility exacerbates the well known cosmological constant problem, requiring a natural explanation for its small, but nonzero, value. In this paper we consider a cosmological scenario driven by a varying cosmological term, in which the vacuum energy density decays linearly with the Hubble parameter. We show that this model is indistinguishable from the standard one in that the early radiation phase is followed by a long dust-dominated era, and only recently the varying cosmological term becomes dominant, accelerating the cosmic expansion. In order to test the viability of this scenario we have used the most recent type Ia supernova data, i.e., the High-Z SN Search (HZS) Team and the Supernova Legacy Survey (...

  15. New Cosmological Solutions in Massive Gravity Theory

    Science.gov (United States)

    Pinho, S. S. A.; Pereira, S. H.; Mendonça, E. L.

    2017-04-01

    In this paper we present some new cosmological solutions in massive gravity theory. Some homogeneous and isotropic solutions correctly describe accelerated evolutions for the universe. The study was realized considering a specific form to the fiducial metric and found different functions and constant parameters of the theory that guarantee the conservation of the energy momentum tensor. Several accelerating cosmologies were found, all of them reproducing a cosmological constant term proportional to the graviton mass, with a de Sitter type solution for the scale factor. We have also verified that when the fiducial metric is close to the physical metric the solutions are absent, except for some specific open cases.

  16. Cosmology with the Square Kilometre Array by SKA-Japan

    Science.gov (United States)

    Yamauchi, Daisuke; Ichiki, Kiyotomo; Kohri, Kazunori; Namikawa, Toshiya; Oyama, Yoshihiko; Sekiguchi, Toyokazu; Shimabukuro, Hayato; Takahashi, Keitaro; Takahashi, Tomo; Yokoyama, Shuichiro; Yoshikawa, Kohji

    2016-12-01

    In the past several decades, the standard cosmological model has been established and its parameters have been measured to a high precision, while there are still many fundamental questions in cosmology; such as the physics in the very early universe, the origin of the cosmic acceleration, and the nature of dark matter. The forthcoming radio telescope, the Square Kilometre Array (SKA), which will be the world's largest, will be able to open a new frontier in cosmology and will be one of the most powerful tools for cosmology in the coming decade. The cosmological surveys conducted by the SKA would have the potential not only to answer these fundamental questions but also deliver precision cosmology. In this article we briefly review the role of the SKA from the viewpoint of modern cosmology. The cosmological science led by the SKA-Japan Consortium (SKA-JP) Cosmology Science Working Group is also discussed.

  17. Cosmology with the Square Kilometre Array by SKA-Japan

    Science.gov (United States)

    Yamauchi, Daisuke; Ichiki, Kiyotomo; Kohri, Kazunori; Namikawa, Toshiya; Oyama, Yoshihiko; Sekiguchi, Toyokazu; Shimabukuro, Hayato; Takahashi, Keitaro; Takahashi, Tomo; Yokoyama, Shuichiro; Yoshikawa, Kohji

    2016-10-01

    In the past several decades, the standard cosmological model has been established and its parameters have been measured to a high precision, while there are still many fundamental questions in cosmology; such as the physics in the very early universe, the origin of the cosmic acceleration, and the nature of dark matter. The forthcoming radio telescope, the Square Kilometre Array (SKA), which will be the world's largest, will be able to open a new frontier in cosmology and will be one of the most powerful tools for cosmology in the coming decade. The cosmological surveys conducted by the SKA would have the potential not only to answer these fundamental questions but also deliver precision cosmology. In this article we briefly review the role of the SKA from the viewpoint of modern cosmology. The cosmological science led by the SKA-Japan Consortium (SKA-JP) Cosmology Science Working Group is also discussed.

  18. Cosmology with the Square Kilometre Array by SKA-Japan

    CERN Document Server

    Yamauchi, Daisuke; Kohri, Kazunori; Namikawa, Toshiya; Oyama, Yoshihiko; Sekiguchi, Toyokazu; Shimabukuro, Hayato; Takahashi, Keitaro; Takahashi, Tomo; Yokoyama, Shuichiro; Yoshikawa, Kohji

    2016-01-01

    In the past several decades, the standard cosmological model has been established and its parameters have been measured to a high precision, while there are still many of the fundamental questions in cosmology; such as the physics in the very early Universe, the origin of the cosmic acceleration and the nature of the dark matter. The future world's largest radio telescope, Square Kilometre Array (SKA), will be able to open the new frontier of cosmology and will be one of the most powerful tools for cosmology in the next decade. The cosmological surveys conducted by the SKA would have the potential not only to answer these fundamental questions but also deliver the precision cosmology. In this article we briefly review the role of the SKA from the view point of the modern cosmology. The cosmology science led by the SKA-Japan Consortium (SKA-JP) Cosmology Science Working Group is also discussed.

  19. Multiwavelength Cosmology

    Science.gov (United States)

    Plionis, M.

    2004-07-01

    The recent scientific efforts in Astrophysics & Cosmology have brought a revolution to our understanding of the Cosmos. Amazing results is the outcome of amazing experiments! The huge scientific, technological & financial effort that has gone into building the 10-m class telescopes as well as many space and balloon observatories, essential to observe the multitude of cosmic phenomena in their manifestations at different wavelengths, from gamma-rays to the millimetre and the radio, has given and is still giving its fruits of knowledge. These recent scientific achievements in Observational and Theoretical Cosmology were presented in the "Multiwavelength Cosmology" conference that took place on beautiful Mykonos island in the Aegean between 17 and 20 June 2003. More than 180 Cosmologists from all over the world gathered for a four-day intense meeting in which recent results from large ground based surveys (AAT/2-df, SLOAN) and space missions (WMAP, Chandra, XMM, ISO, HST) were presented and debated, providing a huge impetus to our knowledge of the Cosmos. The future of the subject (experiments, and directions of research) was also discussed. The conference was devoted mostly on the constraints on Cosmological models and galaxy formation theories that arise from the study of the high redshift Universe, from clusters of galaxies, and their evolution, from the cosmic microwave background, the large-scale structure and star-formation history. Link: http://www.wkap.nl/prod/b/1-4020-1971-8

  20. Axion Cosmology

    CERN Document Server

    Marsh, David J E

    2015-01-01

    Axions comprise a broad class of particles that can play a major role in explaining the unknown aspects of cosmology. They are also extraordinarily well-motivated within high energy physics, and so axion cosmology offers us a unique view onto these theories. I present a comprehensive and pedagogical view on the cosmology and astrophysics of axion-like particles, starting from inflation and progressing via the CMB and structure formation up to the present-day Universe. I briefly review the motivation and models for axions in particle physics and string theory. The primary focus is on the population of ultralight axions created via vacuum realignment, and its role as a dark matter (DM) candidate with distinctive phenomenology. Cosmological observations place robust constraints on the axion mass and relic density in this scenario, and I review where such constraints come from. I next cover aspects of galaxy formation with axion DM, and ways this can be used to further search for evidence of axions. An absolute l...

  1. Lecture review, question collection: accelerators, detectors, particle and heavy ion physics, cosmology / Az előadások megbeszélése, kérdések összegyűjtése: gyorsítók, detektorok, részecske- és nehézion-fizika, kozmológia

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Lecture review, question collection: accelerators, detectors, particle and heavy ion physics, cosmology / Az előadások megbeszélése, kérdések összegyűjtése: gyorsítók, detektorok, részecske- és nehézion-fizika, kozmológia

  2. The screening Horndeski cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Starobinsky, Alexei A. [L.D. Landau Institute for Theoretical Physics RAS,Moscow 119334 (Russian Federation); Department of General Relativity and Gravitation, Institute of Physics,Kazan Federal University,Kremlevskaya street 18, 420008 Kazan (Russian Federation); Sushkov, Sergey V. [Department of General Relativity and Gravitation, Institute of Physics,Kazan Federal University,Kremlevskaya street 18, 420008 Kazan (Russian Federation); Volkov, Mikhail S. [Laboratoire de Mathématiques et Physique Théorique CNRS-UMR 7350,Université de Tours,Parc de Grandmont, 37200 Tours (France); Department of General Relativity and Gravitation, Institute of Physics,Kazan Federal University,Kremlevskaya street 18, 420008 Kazan (Russian Federation)

    2016-06-06

    We present a systematic analysis of homogeneous and isotropic cosmologies in a particular Horndeski model with Galileon shift symmetry, containing also a Λ-term and a matter. The model, sometimes called Fab Five, admits a rich spectrum of solutions. Some of them describe the standard late time cosmological dynamic dominated by the Λ-term and matter, while at the early times the universe expands with a constant Hubble rate determined by the value of the scalar kinetic coupling. For other solutions the Λ-term and matter are screened at all times but there are nevertheless the early and late accelerating phases. The model also admits bounces, as well as peculiar solutions describing “the emergence of time”. Most of these solutions contain ghosts in the scalar and tensor sectors. However, a careful analysis reveals three different branches of ghost-free solutions, all showing a late time acceleration phase. We analyse the dynamical stability of these solutions and find that all of them are stable in the future, since all their perturbations stay bounded at late times. However, they all turn out to be unstable in the past, as their perturbations grow violently when one approaches the initial spacetime singularity. We therefore conclude that the model has no viable solutions describing the whole of the cosmological history, although it may describe the current acceleration phase. We also check that the flat space solution is ghost-free in the model, but it may acquire ghost in more general versions of the Horndeski theory.

  3. Cosmological ``Truths''

    Science.gov (United States)

    Bothun, Greg

    2011-10-01

    Ever since Aristotle placed us, with certainty, in the Center of the Cosmos, Cosmological models have more or less operated from a position of known truths for some time. As early as 1963, for instance, it was ``known'' that the Universe had to be 15-17 billion years old due to the suspected ages of globular clusters. For many years, attempts to determine the expansion age of the Universe (the inverse of the Hubble constant) were done against this preconceived and biased notion. Not surprisingly when more precise observations indicated a Hubble expansion age of 11-13 billion years, stellar models suddenly changed to produce a new age for globular cluster stars, consistent with 11-13 billion years. Then in 1980, to solve a variety of standard big bang problems, inflation was introduced in a fairly ad hoc manner. Inflation makes the simple prediction that the net curvature of spacetime is zero (i.e. spacetime is flat). The consequence of introducing inflation is now the necessary existence of a dark matter dominated Universe since the known baryonic material could comprise no more than 1% of the necessary energy density to make spacetime flat. As a result of this new cosmological ``truth'' a significant world wide effort was launched to detect the dark matter (which obviously also has particle physics implications). To date, no such cosmological component has been detected. Moreover, all available dynamical inferences of the mass density of the Universe showed in to be about 20% of that required for closure. This again was inconsistent with the truth that the real density of the Universe was the closure density (e.g. Omega = 1), that the observations were biased, and that 99% of the mass density had to be in the form of dark matter. That is, we know the universe is two component -- baryons and dark matter. Another prevailing cosmological truth during this time was that all the baryonic matter was known to be in galaxies that populated our galaxy catalogs. Subsequent

  4. Axion cosmology

    Science.gov (United States)

    Marsh, David J. E.

    2016-07-01

    Axions comprise a broad class of particles that can play a major role in explaining the unknown aspects of cosmology. They are also well-motivated within high energy physics, appearing in theories related to CP-violation in the standard model, supersymmetric theories, and theories with extra-dimensions, including string theory, and so axion cosmology offers us a unique view onto these theories. I review the motivation and models for axions in particle physics and string theory. I then present a comprehensive and pedagogical view on the cosmology and astrophysics of axion-like particles, starting from inflation and progressing via BBN, the CMB, reionization and structure formation, up to the present-day Universe. Topics covered include: axion dark matter (DM); direct and indirect detection of axions, reviewing existing and future experiments; axions as dark radiation; axions and the cosmological constant problem; decays of heavy axions; axions and stellar astrophysics; black hole superradiance; axions and astrophysical magnetic fields; axion inflation, and axion DM as an indirect probe of inflation. A major focus is on the population of ultralight axions created via vacuum realignment, and its role as a DM candidate with distinctive phenomenology. Cosmological observations place robust constraints on the axion mass and relic density in this scenario, and I review where such constraints come from. I next cover aspects of galaxy formation with axion DM, and ways this can be used to further search for evidence of axions. An absolute lower bound on DM particle mass is established. It is ma > 10-24eV from linear observables, extending to ma ≳ 10-22eV from non-linear observables, and has the potential to reach ma ≳ 10-18eV in the future. These bounds are weaker if the axion is not all of the DM, giving rise to limits on the relic density at low mass. This leads to the exciting possibility that the effects of axion DM on structure formation could one day be detected

  5. Cosmological evolution in exponential gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bamba, Kazuharu; Geng, Chao-Qiang; Lee, Chung-Chi, E-mail: bamba@phys.nthu.edu.tw, E-mail: geng@phys.nthu.edu.tw, E-mail: g9522545@oz.nthu.edu.tw [Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China)

    2010-08-01

    We explore the cosmological evolution in the exponential gravity f(R) = R+c{sub 1}(1−e{sup −c{sub 2}R}) (c{sub 1,2} = constant). We summarize various viability conditions and explicitly demonstrate that the late-time cosmic acceleration following the matter-dominated stage can be realized. We also study the equation of state for dark energy and confirm that the crossing of the phantom divide from the phantom phase to the non-phantom (quintessence) one can occur. Furthermore, we illustrate that the cosmological horizon entropy globally increases with time.

  6. Cosmological evolution in exponential gravity

    CERN Document Server

    Bamba, Kazuharu; Lee, Chung-Chi

    2010-01-01

    We explore the cosmological evolution in the exponential gravity $f(R)=R +c_1 \\left(1-e^{- c_2 R} \\right)$ ($c_{1, 2} = \\mathrm{constant}$). We summarize various viability conditions and explicitly demonstrate that the late-time cosmic acceleration following the matter-dominated stage can be realized. We also study the equation of state for dark energy and confirm that the crossing of the phantom divide from the phantom phase to the non-phantom (quintessence) one can occur. Furthermore, we illustrate that the cosmological horizon entropy globally increases with time.

  7. Dionysian cosmology

    CERN Document Server

    Neves, J C S

    2015-01-01

    In the Nietzschean philosophy, the concept of force from physics is important to build one of its main concepts: the will to power. The concept of force, which Nietzsche found out in the Classical Mechanics, almost disappears in the physics of the XX century with the Quantum Field Theory and General Relativity. Is the Nietzschean world as contending forces, a Dionysian cosmology, possible in the current science?

  8. Superstring cosmology

    Science.gov (United States)

    Alvarez, Enrique

    1985-01-01

    Some cosmological consequences of the assumption that superstrings are more fundamental objects than ordinary local quantum fields are examined. We study, in particular, the dependence of both the string tension and the temperature of the primordial string soup on cosmic time. A particular scenario is proposed in which the universe undergoes a contracting ``string phase'' before the ordinary ``big bang,'' which according to this picture is nothing but the outcome of the transition from nonlocal to local fundamental physics.

  9. Medieval Cosmology

    Science.gov (United States)

    Grant, E.; Murdin, P.

    2000-11-01

    During the early Middle Ages (ca 500 to ca 1130) scholars with an interest in cosmology had little useful and dependable literature. They relied heavily on a partial Latin translation of PLATO's Timaeus by Chalcidius (4th century AD), and on a series of encyclopedic treatises associated with the names of Pliny the Elder (ca AD 23-79), Seneca (4 BC-AD 65), Macrobius (fl 5th century AD), Martianus ...

  10. Goldstone Cosmology

    CERN Document Server

    Brax, Philippe

    2016-01-01

    We investigate scalar-tensor theories where matter couples to the scalar field via a kinetically dependent conformal coupling. These models can be seen as the low-energy description of invariant field theories under a global Abelian symmetry. The scalar field is then identified with the Goldstone mode of the broken symmetry. It turns out that the properties of these models are very similar to the ones of ultralocal theories where the scalar-field value is directly determined by the local matter density. This leads to a complete screening of the fifth force in the Solar System and between compact objects, through the ultralocal screening mechanism. On the other hand, the fifth force can have large effects in extended structures with large-scale density gradients, such as galactic halos. Interestingly, it can either amplify or damp Newtonian gravity, depending on the model parameters. We also study the background cosmology and the linear cosmological perturbations. The background cosmology is hardly different f...

  11. The screening Horndeski cosmologies

    CERN Document Server

    Starobinsky, Alexei A; Volkov, Mikhail S

    2016-01-01

    We present a systematic analysis of homogeneous and isotropic cosmologies in a particular Horndeski model with Galileon shift symmetry, containing also a $\\Lambda$-term and a matter. The model, sometimes called Fab Five, admits a rich spectrum of solutions. Some of them describe the standard late time cosmological dynamic dominated by the $\\Lambda$-term and matter, while at the early times the universe expands with a constant Hubble rate determined by the value of the scalar kinetic coupling. For other solutions the $\\Lambda$-term and matter are screened at all times but there are nevertheless the early and late accelerating phases. The model also admits bounces, as well as peculiar solutions describing "the emergence of time". Most of these solutions contain ghosts in the scalar and tensor sectors. However, a careful analysis reveals three different branches of ghost-free solutions, all showing a late time acceleration phase. We analyze the dynamical stability of these solutions and find that all of them are...

  12. Non-Abelian brane cosmology

    CERN Document Server

    Galtsov, D V

    2003-01-01

    We discuss isotropic and homogeneous D-brane-world cosmology with non-Abelian Born-Infeld (NBI) matter on the brane. In the usual Friedmann-Robertson-Walker (FRW) model the scale non-invariant NBI matter gives rise to an equation of state which asymptotes to the string gas equation $p=-\\epsilon/3$ and ensures a start-up of the cosmological expansion with zero acceleration. We show that the same state equation in the brane-world setup leads to the Tolman type evolution as if the conformal symmetry was effectively restored. This is not precisely so in the NBI model with symmetrized trace, but the leading term in the expansion law is still the same. A cosmological sphaleron solution on the D-brane is presented.

  13. Cosmological constraints on a classical limit of quantum gravity

    CERN Document Server

    Easson, D A; Trodden, M; Wohlfarth, M N R; Easson, Damien A.; Schuller, Frederic P.; Trodden, Mark; Wohlfarth, Mattias N.R.

    2005-01-01

    We investigate the cosmology of a recently proposed deformation of Einstein gravity, emerging from quantum gravity heuristics. The theory is constructed to have de Sitter space as a vacuum solution, and thus to be relevant to the accelerating universe. However, this solution turns out to be unstable, and the true phase space of cosmological solutions is significantly more complex, displaying two late-time power-law attractors -- one accelerating and the other dramatically decelerating. It is also shown that non-accelerating cosmologies sit on a separatrix between the two basins of attraction of these attractors. Hence it is impossible to pass from a decelerating cosmology to an accelerating one, as required in standard cosmology for consistency with nucleosynthesis and structure formation and compatibility with the data inferred from supernovae Ia. We point out that alternative models of the early universe, such as the one investigated here might provide possible ways to circumvent these requirements.

  14. The velocity field in MOND cosmology

    CERN Document Server

    Candlish, G N

    2016-01-01

    The recently developed code for N-body/hydrodynamics simulations in Modified Newtonian Dynamics (MOND), known as RAyMOND, is used to investigate the consequences of MOND on structure formation in a cosmological context, with a particular focus on the velocity field. This preliminary study investigates the results obtained with the two formulations of MOND implemented in RAyMOND, as well as considering the effects of changing the choice of MOND interpolation function, and the cosmological evolution of the MOND acceleration scale. The simulations are contrived such that structure forms in a background cosmology that is similar to $\\Lambda$CDM, but with a significantly lower matter content. Given this, and the fact that a fully consistent MOND cosmology is still lacking, we compare our results with a standard $\\Lambda$CDM simulation, rather than observations. As well as demonstrating the effectiveness of using RAyMOND for cosmological simulations, it is shown that a significant enhancement of the velocity field ...

  15. Brane Cosmology and Higher Derivative Theory

    CERN Document Server

    Naboulsi, R

    2003-01-01

    In this paper, we have considered a cosmological model with density perturbation and decreasing cosmological constant of the form Lambda = 3beta (frac{dot{R}^2}{R^2}) + delta (frac{ddot{R}}{R}), beta, gamma = const. Inspired from brane cosmology, we supposed the presence of exotic density related to the cosmological constant by the formula 2Lambda = 3m^2, where m is a constant having the dimension of Hubble constant. Their effects on the evolution of the spatially, flat FRW cosmoligical model of the Universe is analyzed in the framework of higher derivative theory. The Universe is found to be accelerating with time with no initial singularity for beta < frac{1}{3} and the cosmological constant is found to decrease as t^{-2} but smaller than 3H^2. The presence of interacting scalar field is also discussed.

  16. Religion, theology and cosmology

    Directory of Open Access Journals (Sweden)

    John T. Fitzgerald

    2013-10-01

    Full Text Available Cosmology is one of the predominant research areas of the contemporary world. Advances in modern cosmology have prompted renewed interest in the intersections between religion, theology and cosmology. This article, which is intended as a brief introduction to the series of studies on theological cosmology in this journal, identifies three general areas of theological interest stemming from the modern scientific study of cosmology: contemporary theology and ethics; cosmology and world religions; and ancient cosmologies. These intersections raise important questions about the relationship of religion and cosmology, which has recently been addressed by William Scott Green and is the focus of the final portion of the article.

  17. The case for the cosmological constant

    Indian Academy of Sciences (India)

    Varun Sahni

    2000-07-01

    I present a short overview of current observational results and theoretical models for a cosmological constant. The main motivation for invoking a small cosmological constant (or -term) at the present epoch has to do with observations of high redshift Type Ia supernovae which suggest an accelerating universe. A flat accelerating universe is strongly favoured by combining supernovae observations with observations of CMB anisotropies on degree scales which give the `best-fit’ values ≃ 0.7 and m ≃ 0.3. A time dependent cosmological -term can be generated by scalar field models with exponential and power law potentials. Some of these models can alleviate the `fine tuning’ problem which faces the cosmological constant.

  18. Dark Energy, Particle Physics and Cosmology

    Science.gov (United States)

    Turner, Michael S.

    2012-05-01

    Dark energy and cosmic acceleration is one of the three pillars of the current cosmological paradigm. Moreover, both raise fundamental issues in cosmology and particle physics. In particle physics, the dark energy problem is intimately related to the perplexing issue of why the quantum energy of the vacuum is so small. In cosmology, the nature of the dark energy is crucial to understanding the destiny of the Universe. I will discuss the status of current models for dark energy -- including vacuum energy and rolling scalar fields -- their implications for cosmology and for particle physics and how they can be tested by WFIRST. I will also address the status of the possibility that cosmic acceleration is explained by modifying or replacing general relativity.

  19. Chemical cosmology

    CERN Document Server

    Boeyens, Jan CA

    2010-01-01

    The composition of the most remote objects brought into view by the Hubble telescope can no longer be reconciled with the nucleogenesis of standard cosmology and the alternative explanation, in terms of the LAMBDA-Cold-Dark-Matter model, has no recognizable chemical basis. A more rational scheme, based on the chemistry and periodicity of atomic matter, opens up an exciting new interpretation of the cosmos in terms of projective geometry and general relativity. The response of atomic structure to environmental pressure predicts non-Doppler cosmical redshifts and equilibrium nucleogenesis by alp

  20. Quantum Cosmology

    OpenAIRE

    Bojowald, Martin

    1999-01-01

    A complete model of the universe needs at least three parts: (1) a complete set of physical variables and dynamical laws for them, (2) the correct solution of the dynamical laws, and (3) the connection with conscious experience. In quantum cosmology, item (2) is the quantum state of the cosmos. Hartle and Hawking have made the `no-boundary' proposal, that the wavefunction of the universe is given by a path integral over all compact Euclidean 4-dimensional geometries and matter fields that hav...

  1. Rastall cosmology

    CERN Document Server

    Fabris, J C; Rodrigues, D C; Batista, C E M; Daouda, M H

    2012-01-01

    We review the difficulties of the generalized Chaplygin gas model to fit observational data, due to the tension between background and perturbative tests. We argue that such issues may be circumvented by means of a self-interacting scalar field representation of the model. However, this proposal seems to be successful only if the self-interacting scalar field has a non-canonical form. The latter can be implemented in Rastall's theory of gravity, which is based on a modification of the usual matter conservation law. We show that, besides its application to the generalized Chaplygin gas model, other cosmological models based on Rastall's theory have many interesting and unexpected new features.

  2. Coasting cosmologies with time dependent cosmological constant

    CERN Document Server

    Pimentel, L O; Pimentel, Luis O.

    1999-01-01

    The effect of a time dependent cosmological constant is considered in a family of scalar tensor theories. Friedmann-Robertson-Walker cosmological models for vacumm and perfect fluid matter are found. They have a linear expansion factor, the so called coasting cosmology, the gravitational "constant" decreace inversely with time; this model satisfy the Dirac hipotesis. The cosmological "constant" decreace inversely with the square of time, therefore we can have a very small value for it at present time.

  3. Non-Abelian Born--Infeld cosmology

    CERN Document Server

    Dyadichev, V V; Zorin, A G; Zotov, M Yu

    2002-01-01

    We investigate homogeneous and isotropic cosmological solutions supported by the SU(2) gauge field governed by the Born-Infeld lagrangian. In the framework of the Friedmann-Robertson-Walker cosmology, with or without cosmological constant $\\lambda$, we derive dynamical systems that give rather complete description of the space of solutions. For $\\lambda=0$ the effective equation of state $\\ve(p)$ is shown to interpolate between $p=-\\ve/3$ in the regime of the strong field and $p=\\ve/3$ for the weak field. Correspondingly, the Universe starts with zero acceleration and gradually enters the decelerating regime, asymptotically approaching the Tolman solution.

  4. Symmetron Cosmology

    CERN Document Server

    Hinterbichler, Kurt; Levy, Aaron; Matas, Andrew

    2011-01-01

    The symmetron is a scalar field associated with the dark sector whose coupling to matter depends on the ambient matter density. The symmetron is decoupled and screened in regions of high density, thereby satisfying local constraints from tests of gravity, but couples with gravitational strength in regions of low density, such as the cosmos. In this paper we derive the cosmological expansion history in the presence of a symmetron field, tracking the evolution through the inflationary, radiation- and matter-dominated epochs, using a combination of analytical approximations and numerical integration. For a broad range of initial conditions at the onset of inflation, the scalar field reaches its symmetry-breaking vacuum by the present epoch, as assumed in the local analysis of spherically-symmetric solutions and tests of gravity. For the simplest form of the potential, the energy scale is too small for the symmetron to act as dark energy, hence we must add a cosmological constant to drive late-time cosmic acceler...

  5. Newtonian cosmology - Problems of cosmological didactics

    Energy Technology Data Exchange (ETDEWEB)

    Skarzynski, E.

    1983-03-01

    The article presents different methods of model construction in Newtonian cosmology. Newtonian cosmology is very convenient for discussion of local problems, so the problems presented are of great didactic importance. The constant k receives a new interpretation in relativistic cosmology as the curvature of the space in consequence of the greater informational capacity of Riemann space in comparison to Euclidean space. 11 references.

  6. Fermions in a Walecka-type cosmology

    CERN Document Server

    Ribas, Marlos O; Devecchi, Fernando P; Kremer, Gilberto M

    2012-01-01

    A simplified Walecka-type model is investigated in a cosmological scenario. The model includes fermionic, scalar and vector fields as sources. It is shown that their interactions, taking place in a Robertson-Walker metric, could be responsible for the transition of accelerated-decelerated periods in the early universe and a current accelerated regime. It is also discussed the role of the fermionic field as the promoter of the accelerated regimes in the early and the late stages of the universe.

  7. Observational constraints on undulant cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Barenboim, Gabriela; /Valencia U.; Mena Requejo, Olga; Quigg, Chris; /Fermilab

    2005-10-01

    In an undulant universe, cosmic expansion is characterized by alternating periods of acceleration and deceleration. We examine cosmologies in which the dark-energy equation of state varies periodically with the number of e-foldings of the scale factor of the universe, and use observations to constrain the frequency of oscillation. We find a tension between a forceful response to the cosmic coincidence problem and the standard treatment of structure formation.

  8. The JKJ Lattice

    Science.gov (United States)

    Shigaki, Kenta; Noda, Fumiaki; Yamamoto, Kazami; Machida, Shinji; Molodojentsev, Alexander; Ishi, Yoshihiro

    2002-12-01

    The JKJ high-intensity proton accelerator facility consists of a 400-MeV linac, a 3-GeV 1-MW rapid-cycling synchrotron and a 50-GeV 0.75-MW synchrotron. The lattice and beam dynamics design of the two synchrotrons are reported.

  9. Cosmological bimetric model with interacting positive and negative masses and two different speeds of light, in agreement with the observed acceleration of the Universe

    Science.gov (United States)

    Petit, J. P.; D'Agostini, G.

    2014-10-01

    An extension of a previously published model of a bimetric Universe is presented, where the speeds of light associated to positive and negative mass species are different. As shown earlier, the asymmetry of the model explains the acceleration of the positive species, while the negative one slows down. Asymmetry affects scale factors linked to lengths, times and speeds of light; so that if a mass inversion of a craft can be achieved, then interstellar travels would become non-impossible at a velocity less than the speed of light of the negative sector, and possibly much higher than that of the positive sector.

  10. An introduction to cosmology

    CERN Document Server

    Narlikar, Jayant Vishnu

    2002-01-01

    The third edition of this successful textbook is fully updated and includes important recent developments in cosmology. It begins with an introduction to cosmology and general relativity, and goes on to cover the mathematical models of standard cosmology. The physical aspects of cosmology, including primordial nucleosynthesis, the astroparticle physics of inflation, and the current ideas on structure formation are discussed. Alternative models of cosmology are reviewed, including the model of Quasi-Steady State Cosmology, which has recently been proposed as an alternative to Big Bang Cosmology.

  11. Negative Energy Cosmology and the Cosmological Constant

    CERN Document Server

    Prokopec, Tomislav

    2011-01-01

    It is well known that string theories naturally compactify on anti-de Sitter spaces, and yet cosmological observations show no evidence of a negative cosmological constant in the early Universe's evolution. In this letter we present two simple nonlocal modifications of the standard Friedmann cosmology that can lead to observationally viable cosmologies with an initial (negative) cosmological constant. The nonlocal operators we include are toy models for the quantum cosmological backreaction. In Model I an initial quasiperiodic oscillatory epoch is followed by inflation and a late time matter era, representing a dark matter candidate. The backreaction in Model II quickly compensates the negative cosmological term such that the Ricci curvature scalar rapidly approaches zero, and the Universe ends up in a late time radiation era.

  12. Cosmological networks

    CERN Document Server

    Boguna, Marian; Krioukov, Dmitri

    2013-01-01

    Networks often represent systems that do not have a long history of studies in traditional fields of physics, albeit there are some notable exceptions such as energy landscapes and quantum gravity. Here we consider networks that naturally arise in cosmology. Nodes in these networks are stationary observers uniformly distributed in an expanding open FLRW universe with any scale factor, and two observers are connected if one can causally influence the other. We show that these networks are growing Lorentz-invariant graphs with power-law distributions of node degrees. New links in these networks not only connect new nodes to existing ones, but also appear at a certain rate between existing nodes, as they do in many complex networks.

  13. Qualitative Analysis and Numerical Simulation of Equations of the Standard Cosmological Model: $\\Lambda\

    CERN Document Server

    Ignat'ev, Yurii

    2016-01-01

    On the basis of qualitative analysis of the system of differential equations of the standard cosmological model it is shown that in the case of zero cosmological constant this system has a stable center corresponding to zero values of potential and its derivative at infinity. Thus, the cosmological model based on single massive classical scalar field in infinite future would give a flat Universe. The carried out numerical simulation of the dynamic system corresponding to the system of Einstein - Klein - Gordon equations showed that at great times of the evolution the invariant cosmological acceleration has an oscillating character and changes from $-2$ (braking), to $+1$ (acceleration). Average value of the cosmological acceleration is negative and is equal to $-1/2$. Oscillations of the cosmological acceleration happen on the background of rapidly falling Hubble constant. In the case of nonzero value of the cosmological constant depending on its value there are possible three various qualitative behavior typ...

  14. Inhomogeneous Cosmology Redux

    CERN Document Server

    Moffat, J W

    2016-01-01

    An alternative to the postulate of dark energy required to explain the accelerated expansion of the universe is to adopt an inhomogeneous cosmological model to explain the supernovae data without dark energy. We adopt a void cosmology model, based on the inhomogeneous Lema\\^{i}tre-Tolman-Bondi solution of Einstein's field equations. The model can resolve observational anomalies in the $\\Lambda CDM$ model, such as the discrepancy between the locally measured value of the Hubble constant, $H_0=73.24\\pm 1.74\\,{\\rm km}\\,{\\rm s}^{-1}\\,{\\rm Mpc}^{-1}$, and the $H_0=66.93\\pm 0.62\\,{\\rm km}\\,{\\rm s}^{-1}\\,{\\rm Mpc}^{-1}$ determined by the Planck satellite data and the $\\Lambda CDM$ model, and the lithium $^{7}{\\rm Li}$ problem, which is a $5\\sigma$ mismatch between the theoretical prediction for the $^{7}{\\rm Li}$ from big bang nucleosynthesis and the value that we observe locally today at $z=0$. The void model can also resolve the tension between the number of massive clusters derived from the Sunyaev-Zel'dovich eff...

  15. On an Alternative Cosmology

    CERN Document Server

    Vankov, A

    1998-01-01

    The suggested alternative cosmology is based on the idea of barion symmetric universe, in which our home universe is a representative of multitude of typical matter and antimatter universes. This alternative concept gives a physically reasonable explanation of all major problems of the Standard Cosmological Model. Classification Code MSC: Cosmology 524.8 Key words: standard cosmological model, alternative cosmology, barionic symmetry, typical universe, quasars, cosmic rays.

  16. Real-time Cosmology

    CERN Document Server

    Quercellini, Claudia; Balbi, Amedeo; Cabella, Paolo; Quartin, Miguel

    2010-01-01

    In recent years the possibility of measuring the temporal change of radial and transverse position of sources in the sky in real time have become conceivable thanks to the thoroughly improved technique applied to new astrometric and spectroscopic experiments, leading to the research domain we call Real-time cosmology. We review for the first time great part of the work done in this field, analysing both the theoretical framework and some endeavor to foresee the observational strategies and their capability to constrain models. We firstly focus on real time measurements of the overall redshift drift and angular separation shift in distant source, able to trace background cosmic expansion and large scale anisotropy, respectively. We then examine the possibility of employing the same kind of observations to probe peculiar and proper acceleration in clustered systems and therefore the gravitational potential. The last two sections are devoted to the short time future change of the cosmic microwave background, as ...

  17. String Theory, Cosmology And Brany Geometry

    CERN Document Server

    Pokotilov, A

    2005-01-01

    Motivated by cosmological applications in this thesis we describe several string theory based models of the early Universe. The major property of these models is that they lead to inflationary-like expansion for early times. The interaction properties of fundamental strings, leading to the velocity dependent potentials are used to describe this accelerating expansion rate. Other types of extended objects such as fivebranes dual to fundamental strings are shown to lead to the similar cosmological implications. Our findings are consistent with recent astronomical observations of an accelerated expansion of the Universe and predict an asymptotically constant late time expansion rate.

  18. Lattice Bosons

    CERN Document Server

    Chakrabarti, J; Bagchi, B; Chakrabarti, Jayprokas; Basu, Asis; Bagchi, Bijon

    2000-01-01

    Fermions on the lattice have bosonic excitations generated from the underlying periodic background. These, the lattice bosons, arise near the empty band or when the bands are nearly full. They do not depend on the nature of the interactions and exist for any fermion-fermion coupling. We discuss these lattice boson solutions for the Dirac Hamiltonian.

  19. Braneworld cosmology and noncommutative inflation

    Science.gov (United States)

    Calcagni, Gianluca

    2005-03-01

    In this work we develop the patch formalism, an approach providing a very simple and compact description of braneworld-motivated cosmologies with nonstandard effective Friedmann equations. In particular, the Hubble parameter is assumed to depend on some power of the brane energy density, H^2 propto rho^q. The high-energy limit of Randall-Sundrum (q=2) and Gauss-Bonnet (q=2/3) braneworlds are considered, during an accelerating era triggered by a single ordinary or tachyonic scalar field. The inflationary dynamics, solutions, and spectra are provided. Using the latest results from WMAP and other experiments for estimates of cosmological observables, it is shown that future data and missions can in principle discriminate between standard four-dimensional and braneworld scenarios. The issue of non-Gaussianity is also studied within nonlinear perturbation theory. The introduction of a fundamental energy scale reinforces these results. Several classes of noncommutative inflationary models are considered and their features analyzed in a number of ways and energy regimes. Finally, we establish dual relations between inflationary, cyclic/ekpyrotic and phantom cosmologies, as well as between scalar-driven and tachyon-driven cosmologies. The exact dualities relating the four-dimensional spectra are broken in favour of their braneworld counterparts. The dual solutions display new interesting features because of the modification of the effective Friedmann equation on the brane.

  20. Dark D-brane cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Koivisto, Tomi [Institute for Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway); Wills, Danielle [Centre for Particle Theory, Department of Mathematical Sciences, Durham University, South Road, Durham, DH1 3LE (United Kingdom); Zavala, Ivonne, E-mail: t.s.koivisto@astro.uio.no, E-mail: d.e.wills@durham.ac.uk, E-mail: e.i.zavala@rug.nl [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2014-06-01

    Disformally coupled cosmologies arise from Dirac-Born-Infeld actions in Type II string theories, when matter resides on a moving hidden sector D-brane. Since such matter interacts only very weakly with the standard model particles, this scenario can provide a natural origin for the dark sector of the universe with a clear geometrical interpretation: dark energy is identified with the scalar field associated to the D-brane's position as it moves in the internal space, acting as quintessence, while dark matter is identified with the matter living on the D-brane, which can be modelled by a perfect fluid. The coupling functions are determined by the (warped) extra-dimensional geometry, and are thus constrained by the theory. The resulting cosmologies are studied using both dynamical system analysis and numerics. From the dynamical system point of view, one free parameter controls the cosmological dynamics, given by the ratio of the warp factor and the potential energy scales. The disformal coupling allows for new scaling solutions that can describe accelerating cosmologies alleviating the coincidence problem of dark energy. In addition, this scenario may ameliorate the fine-tuning problem of dark energy, whose small value may be attained dynamically, without requiring the mass of the dark energy field to be unnaturally low.

  1. Quantized Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, M

    2003-11-19

    This paper discusses the problem of inflation in the context of Friedmann-Robertson-Walker Cosmology. We show how, after a simple change of variables, one can quantize the problem in a way which parallels the classical discussion. The result is that two of the Einstein equations arise as exact equations of motion; one of the usual Einstein equations (suitably quantized) survives as a constraint equation to be imposed on the space of physical states. However, the Friedmann equation, which is also a constraint equation and which is the basis of the Wheeler-DeWitt equation, acquires a welcome quantum correction that becomes significant for small scale factors. We then discuss the extension of this result to a full quantum mechanical derivation of the anisotropy ({delta}{rho}/{rho}) in the cosmic microwave background radiation and the possibility that the extra term in the Friedmann equation could have observable consequences. Finally, we suggest interesting ways in which these techniques can be generalized to cast light on the question of chaotic or eternal inflation. In particular, we suggest that one can put an experimental bound on how far away a universe with a scale factor very different from our own must be, by looking at its effects on our CMB radiation.

  2. Cosmological daemon

    Science.gov (United States)

    Aref'eva, I. Ya.; Volovich, I. V.

    2011-08-01

    Classical versions of the Big Bang cosmological models of the universe contain a singularity at the start of time, hence the time variable in the field equations should run over a half-line. Nonlocal string field theory equations with infinite number of derivatives are considered and an important difference between nonlocal operators on the whole real line and on a half-line is pointed out. We use the heat equation method and show that on the half-line in addition to the usual initial data a new arbitrary function (external source) occurs that we call the daemon function. The daemon function governs the evolution of the universe similar to Maxwell's demon in thermodynamics. The universe and multiverse are open systems interacting with the daemon environment. In the simplest case the nonlocal scalar field reduces to the usual local scalar field coupled with an external source which is discussed in the stochastic approach to inflation. The daemon source can help to get the chaotic inflation scenario with a small scalar field.

  3. Newtonian cosmology revisited

    Science.gov (United States)

    Tipler, Frank J.

    1996-09-01

    I show that if Newtonian gravity is formulated in geometrical language, then Newtonian cosmology is as rigorous as relativistic cosmology. In homogeneous and isotropic universes, the geodesic deviation equation in Newtonian cosmology is proven to be exactly the same as the geodesic deviation equation in relativistic Friedmann cosmologies. This equation can be integrated to yield a constraint equation formally identical to the Friedmann equation. However, Newtonian cosmology is more general than Friedmann cosmology: by generalizing the flat-space Newtonian gravity force law to Riemannian metrics, I show that ever-expanding and recollapsing universes are allowed in any homogeneous and isotropic spatial geometry.

  4. How Fabulous Is Fab 5 Cosmology?

    CERN Document Server

    Linder, Eric V

    2013-01-01

    Extended gravity origins for cosmic acceleration can solve some fine tuning issues and have useful characteristics, but generally have little to say regarding the cosmological constant problem. Fab 5 gravity can be ghost free and stable, have attractor solutions in the past and future, and possess self tuning that solves the original cosmological constant problem. Here we show however it does not possess all these qualities at the same time. We also demonstrate that the self tuning is so powerful that it not only cancels the cosmological constant but also all other energy density, and we derive the scalings of its approach to a renormalized de Sitter cosmology. While this strong cancellation is bad for the late universe, it greatly eases early universe inflation.

  5. Dynamics of anisotropic f(R) cosmology

    CERN Document Server

    Leon, Genly

    2010-01-01

    We construct general anisotropic cosmological scenarios governed by an f(R) gravitational sector. Focusing then on Kantowski-Sachs geometries in the case of $R^n$-gravity we perform a detailed phase-space analysis. We find that at late times the universe can result to a state of accelerating expansion, and additionally, for a particular n-range (2cosmological bounce and turnaround, as well as of cyclic cosmology. These features indicate that anisotropic geometries in modified gravitational frameworks present radically different cosmological behaviors comparing to the simple isotropic scenarios.

  6. The Age of Precision Cosmology

    Science.gov (United States)

    Chuss, David T.

    2012-01-01

    In the past two decades, our understanding of the evolution and fate of the universe has increased dramatically. This "Age of Precision Cosmology" has been ushered in by measurements that have both elucidated the details of the Big Bang cosmology and set the direction for future lines of inquiry. Our universe appears to consist of 5% baryonic matter; 23% of the universe's energy content is dark matter which is responsible for the observed structure in the universe; and 72% of the energy density is so-called "dark energy" that is currently accelerating the expansion of the universe. In addition, our universe has been measured to be geometrically flat to 1 %. These observations and related details of the Big Bang paradigm have hinted that the universe underwent an epoch of accelerated expansion known as Uinflation" early in its history. In this talk, I will review the highlights of modern cosmology, focusing on the contributions made by measurements of the cosmic microwave background, the faint afterglow of the Big Bang. I will also describe new instruments designed to measure the polarization of the cosmic microwave background in order to search for evidence of cosmic inflation.

  7. Arbitrary scalar field and quintessence cosmological models

    CERN Document Server

    Harko, Tiberiu; Mak, M K

    2014-01-01

    The mechanism of the initial inflationary scenario of the universe and of its late-time acceleration can be described by assuming the existence of some gravitationally coupled scalar fields $\\phi $, with the inflaton field generating inflation and the quintessence field being responsible for the late accelerated expansion. Various inflationary and late-time accelerated scenarios are distinguished by the choice of an effective self-interaction potential $V(\\phi)$, which simulates a temporarily non-vanishing cosmological term. In this work, we present a new formalism for the analysis of scalar fields in flat isotropic and homogeneous cosmological models. The basic evolution equation of the models can be reduced to a first order non-linear differential equation. Approximate solutions of this equation can be constructed in the limiting cases of the scalar field kinetic energy and potential energy dominance, respectively, as well as in the intermediate regime. Moreover, we present several new accelerating and dece...

  8. Cosmology with higher-derivative matter fields

    CERN Document Server

    Harko, Tiberiu; Saridakis, Emmanuel N

    2014-01-01

    We investigate the cosmological implications of a new class of modified gravity, where the field equations generically include higher-order derivatives of the matter fields, arising from the introduction of non-dynamical auxiliary fields in the action. Imposing a flat, homogeneous and isotropic geometry we extract the Friedmann equations, obtaining an effective dark-energy sector containing higher derivatives of the matter energy density and pressure. For the cases of dust, radiation, and stiff matter we analyze the cosmological behavior, finding accelerating, de Sitter, and non-accelerating phases, dominated by matter or dark energy. Additionally, the effective dark-energy equation-of-state parameter can be quintessence-like, cosmological-constant-like, or even phantom-like. The detailed study of these scenarios may provide signatures that could distinguish them from other candidates of modified gravity.

  9. Braneworld cosmology and noncommutative inflation

    CERN Document Server

    Calcagni, G

    2005-01-01

    In this work we develop the patch formalism, an approach providing a very simple and compact description of braneworld-motivated cosmologies with nonstandard effective Friedmann equations. In particular, the Hubble parameter is assumed to depend on some power of the brane energy density, H^2 \\propto \\rho^q. The high-energy limit of Randall-Sundrum (q=2) and Gauss-Bonnet (q=2/3) braneworlds are considered, during an accelerating era triggered by a single ordinary or tachyonic scalar field. The inflationary dynamics, solutions, and spectra are provided. Using the latest results from WMAP and other experiments for estimates of cosmological observables, it is shown that future data and missions can in principle discriminate between standard four-dimensional and braneworld scenarios. The issue of non-Gaussianity is also studied within nonlinear perturbation theory. The introduction of a fundamental energy scale reinforces these results. Several classes of noncommutative inflationary models are considered and their...

  10. Unimodular-Mimetic Cosmology

    CERN Document Server

    Nojiri, S; Oikonomou, V K

    2016-01-01

    We combine the unimodular gravity and mimetic gravity theories into a unified theoretical framework, which is proposed to solve the cosmological constant problem and the dark matter issue. After providing the formulation of the unimodular mimetic gravity and investigating all the new features that the vacuum unimodular gravity implies, by using the underlying reconstruction method, we realize some well known cosmological evolutions, with some of these being exotic for the ordinary Einstein-Hilbert gravity. Specifically we provide the vacuum unimodular mimetic gravity description of the de Sitter cosmology, of the perfect fluid with constant equation of state cosmology, of the Type IV singular cosmology and of the $R^2$ inflation cosmology. Moreover, we investigate how cosmologically viable cosmologies, which are compatible with the recent observational data, can be realized by the vacuum unimodular mimetic gravity. Since in some cases, the graceful exit from inflation problem might exist, we provide a qualita...

  11. An introduction to cosmology

    CERN Document Server

    Kunze, Kerstin E

    2016-01-01

    Cosmology is becoming an important tool to test particle physics models. We provide an overview of the standard model of cosmology with an emphasis on the observations relevant for testing fundamental physics.

  12. Piecewise Silence in Discrete Cosmological Models

    CERN Document Server

    Clifton, Timothy; Rosquist, Kjell

    2014-01-01

    We consider a family of cosmological models in which all mass is confined to a regular lattice of identical black holes. By exploiting the reflection symmetry about planes that bisect these lattices into identical halves, we are able to consider the evolution of a number of geometrically distinguished surfaces that exist within each of them. We show that gravitational waves are effectively trapped within small chambers for all time, and are not free to propagate throughout the space-time. Each chamber therefore evolves as if it were in isolation from the rest of the universe. We call this phenomenon "piecewise silence".

  13. Introduction to cosmology

    CERN Document Server

    Roos, Matts

    2015-01-01

    The Fourth Edition of Introduction to Cosmology provides a concise, authoritative study of cosmology at an introductory level. Starting from elementary principles and the early history of cosmology, the text carefully guides the student on to curved spacetimes, special and general relativity, gravitational lensing, the thermal history of the Universe, and cosmological models, including extended gravity models, black holes and Hawking's recent conjectures on the not-so-black holes.

  14. Elements of String Cosmology

    Science.gov (United States)

    Gasperini, Maurizio

    2011-03-01

    Preface; Acknowledgements; Notation, units and conventions; 1. A short review of standard and inflationary cosmology; 2. The basic string cosmology equations; 3. Conformal invariance and string effective action; 4. Duality symmetries and cosmological solutions; 5. Inflationary kinematics; 6. The string phase; 7. The cosmic background of relic gravitational waves; 8. Scalar perturbations and the anisotropy of the CMB radiation; 9. Dilaton phenomenology; 10. Elements of brane cosmology; Index.

  15. Combination and interpretation of observables in Cosmology

    Directory of Open Access Journals (Sweden)

    Virey Jean-Marc

    2010-04-01

    Full Text Available The standard cosmological model has deep theoretical foundations but need the introduction of two major unknown components, dark matter and dark energy, to be in agreement with various observations. Dark matter describes a non-relativistic collisionless fluid of (non baryonic matter which amount to 25% of the total density of the universe. Dark energy is a new kind of fluid not of matter type, representing 70% of the total density which should explain the recent acceleration of the expansion of the universe. Alternatively, one can reject this idea of adding one or two new components but argue that the equations used to make the interpretation should be modified consmological scales. Instead of dark matter one can invoke a failure of Newton's laws. Instead of dark energy, two approaches are proposed : general relativity (in term of the Einstein equation should be modified, or the cosmological principle which fixes the metric used for cosmology should be abandonned. One of the main objective of the community is to find the path of the relevant interpretations thanks to the next generation of experiments which should provide large statistics of observationnal data. Unfortunately, cosmological in formations are difficult to pin down directly fromt he measurements, and it is mandatory to combine the various observables to get the cosmological parameters. This is not problematic from the statistical point of view, but assumptions and approximations made for the analysis may bias our interprettion of the data. Consequently, a strong attention should be paied to the statistical methods used to make parameters estimation and for model testing. After a review of the basics of cosmology where the cosmological parameters are introduced, we discuss the various cosmological probes and their associated observables used to extract cosmological informations. We present the results obtained from several statistical analyses combining data of diferent nature but

  16. Triplet Focusing for Recirculating Linear Muon Accelerators

    CERN Document Server

    Keil, Eberhard

    2001-01-01

    Focusing by symmetrical triplets is studied for the linear accelerator lattices in recirculating muon accelerators with several passes where the ratio of final to initial muon energy is about four. Triplet and FODO lattices are compared. At similar acceptance, triplet lattices have straight sections for the RF cavities that are about twice as long as in FODO lat-tices. For the same energy gain, the total lengths of the linear accelerators with triplet lattices are about the same as of those with FODO lattices.

  17. Summary of cosmology workshop

    Indian Academy of Sciences (India)

    Tarun Sandeep

    2004-10-01

    Cosmology is passing through a golden phase of rapid advance. The cosmology workshop at ICGC-2004 attracted a large number of research contributions to diverse topics of cosmology. I attempt to classify and summarize the research work and results of the oral and poster presentations made at the meeting.

  18. The Case Against Cosmology

    CERN Document Server

    Disney, M J

    2000-01-01

    It is argued that some of the recent claims for cosmology are grossly overblown. Cosmology rests on a very small database: it suffers from many fundamental difficulties as a science (if it is a science at all) whilst observations of distant phenomena are difficult to make and harder to interpret. It is suggested that cosmological inferences should be tentatively made and sceptically received.

  19. Duality extended Chaplygin cosmologies with a big rip

    CERN Document Server

    Chimento, L P; Chimento, Luis P.; Lazkoz, Ruth

    2006-01-01

    We consider modifications to the Friedmann equation motivated by recent proposals along these lines pursuing an explanation to the observed late time acceleration. Here we show those modifications can be framed within a theory with self-interacting gravity, where the term self-interaction refers here to the presence of functions of $\\rho$ and $p$ in the right hand side of the Einstein equations. We then discuss the construction of the duals of the cosmologies generated within that framework. After that we investigate the modifications required to generate generalized and modified Chaplygin cosmologies and show that their duals belong to a larger family of cosmologies we call extended Chaplygin cosmologies. Finally, by letting the parameters of those models take values not earlier considered in the literature we show some representatives of that family of cosmologies display sudden future singularities, which indicates their behavior is rather different from generalized or modified Chaplygin gas cosmologies. T...

  20. Duality gives rise to Chaplygin cosmologies with a big rip

    Science.gov (United States)

    Chimento, Luis P.; Lazkoz, Ruth

    2006-05-01

    We consider modifications to the Friedmann equation motivated by recent proposals along these lines pursuing an explanation to the observed late time acceleration. Here we show that these approaches can be framed within a theory with modified gravity, and we discuss the construction of the duals of the cosmologies generated within that framework. We then investigate the modifications required to generate extended, generalized and modified Chaplygin cosmologies, and then show that their duals belong to a larger family of cosmologies we call enlarged Chaplygin cosmologies. Finally, by letting the parameters of these models take values not earlier considered in the literature we show that some representatives of that family of cosmologies display sudden future singularities. This fact indicates that the behaviour of these spacetimes is rather different from that of generalized or modified Chaplygin gas cosmologies. This reinforces the idea that modifications of gravity can be responsible for unexpected evolutionary features in the universe.

  1. Quantum Cosmology

    Science.gov (United States)

    Bojowald, Martin

    The universe, ultimately, is to be described by quantum theory. Quantum aspects of all there is, including space and time, may not be significant for many purposes, but are crucial for some. And so a quantum description of cosmology is required for a complete and consistent worldview. At any rate, even if we were not directly interested in regimes where quantum cosmology plays a role, a complete physical description could not stop at a stage before the whole universe is reached. Quantum theory is essential in the microphysics of particles, atoms, molecules, solids, white dwarfs and neutron stars. Why should one expect this ladder of scales to end at a certain size? If regimes are sufficiently violent and energetic, quantum effects are non-negligible even on scales of the whole cosmos; this is realized at least once in the history of the universe: at the big bang where the classical theory of general relativity would make energy densities diverge. 1.Lachieze-Rey, M., Luminet, J.P.: Phys. Rept. 254,135 (1995), gr-qc/9605010 2.BSDeWitt1967Phys. Rev.160511131967PhRv..160.1113D0158.4650410.1103/PhysRev.160.1113DeWitt, B.S.: Phys. Rev. 160(5), 1113 (1967) 3.Wiltshire, D.L.: In: Robson B., Visvanathan N., Woolcock W.S. (eds.) Cosmology: The Physics of the Universe, pp. 473-531. World Scientific, Singapore (1996). gr-qc/0101003 4.Isham C.J.: In: DeWitt, B.S., Stora, R. (eds.) Relativity, Groups and Topology II. Lectures Given at the 1983 Les Houches Summer School on Relativity, Groups and Topology, Elsevier Science Publishing Company (1986) 5.Klauder, J.: Int. J. Mod. Phys. D 12, 1769 (2003), gr-qc/0305067 6.Klauder, J.: Int. J. Geom. Meth. Mod. Phys. 3, 81 (2006), gr-qc/0507113 7.DGiulini1995Phys. Rev. D5110563013381161995PhRvD..51.5630G10.1103/PhysRevD.51.5630Giulini, D.: Phys. Rev. D 51(10), 5630 (1995) 8.Kiefer, C., Zeh, H.D.: Phys. Rev. D 51, 4145 (1995), gr-qc/9402036 9.WFBlythCJIsham1975Phys. Rev. D117684086991975PhRvD..11..768B10.1103/PhysRevD.11.768Blyth, W

  2. The Philosophy of Cosmology

    Science.gov (United States)

    Chamcham, Khalil; Silk, Joseph; Barrow, John D.; Saunders, Simon

    2017-04-01

    Part I. Issues in the Philosophy of Cosmology: 1. Cosmology, cosmologia and the testing of cosmological theories George F. R. Ellis; 2. Black holes, cosmology and the passage of time: three problems at the limits of science Bernard Carr; 3. Moving boundaries? – comments on the relationship between philosophy and cosmology Claus Beisbart; 4. On the question why there exists something rather than nothing Roderich Tumulka; Part II. Structures in the Universe and the Structure of Modern Cosmology: 5. Some generalities about generality John D. Barrow; 6. Emergent structures of effective field theories Jean-Philippe Uzan; 7. Cosmological structure formation Joel R. Primack; 8. Formation of galaxies Joseph Silk; Part III. Foundations of Cosmology: Gravity and the Quantum: 9. The observer strikes back James Hartle and Thomas Hertog; 10. Testing inflation Chris Smeenk; 11. Why Boltzmann brains do not fluctuate into existence from the de Sitter vacuum Kimberly K. Boddy, Sean M. Carroll and Jason Pollack; 12. Holographic inflation revised Tom Banks; 13. Progress and gravity: overcoming divisions between general relativity and particle physics and between physics and HPS J. Brian Pitts; Part IV. Quantum Foundations and Quantum Gravity: 14. Is time's arrow perspectival? Carlo Rovelli; 15. Relational quantum cosmology Francesca Vidotto; 16. Cosmological ontology and epistemology Don N. Page; 17. Quantum origin of cosmological structure and dynamical reduction theories Daniel Sudarsky; 18. Towards a novel approach to semi-classical gravity Ward Struyve; Part V. Methodological and Philosophical Issues: 19. Limits of time in cosmology Svend E. Rugh and Henrik Zinkernagel; 20. Self-locating priors and cosmological measures Cian Dorr and Frank Arntzenius; 21. On probability and cosmology: inference beyond data? Martin Sahlén; 22. Testing the multiverse: Bayes, fine-tuning and typicality Luke A. Barnes; 23. A new perspective on Einstein's philosophy of cosmology Cormac O

  3. GPU Accelerated Monte Carlo Algorithm of Ising Model on Triangular Lattice%三角晶格Ising模型Monte Carlo模拟的GPU加速算法

    Institute of Scientific and Technical Information of China (English)

    陆星; 蔡静; 张伟

    2012-01-01

    In the statistical model, the efficiency of most Monte Carlo algorithm reduces quickly near the critical point. In the analysis of traditional local algorithms, a GPU-based parallel simulation algorithm on the triangular lattice Ising model, which greatly improves the efficiency of the Monte Carlo simulation, is raised. For the model with the size of 1 024 X 1 024, a speedup of 69 is achieved. Besides, the critical behavior is analyzed, a high-precision critical point (/Jc = 0.274 66( 1) ) and critical exponents (y, = 1.01(2), yh= 1. 875 6(3) ) of triangular lattice Ising model are obtained, which implies the effectiveness of the GPU algorithm.%在分析传统Monte Carlo算法的基础上,针对三角晶格Ising模型提出了一种基于GPU的并行模拟方法,大大提高了算法的效率.对1 024×1 024的模型,实现了69倍的加速比.通过该算法所得数据分析模型的临界行为,获得了高精度的临界点βc=0.27466(1)和临界指数y1=1.01(2),yh=1.875 6(3).

  4. Tensile lattice strain accelerates oxygen surface exchange and diffusion in La1-xSrxCoO3-δ thin films.

    Science.gov (United States)

    Kubicek, Markus; Cai, Zhuhua; Ma, Wen; Yildiz, Bilge; Hutter, Herbert; Fleig, Jürgen

    2013-04-23

    The influence of lattice strain on the oxygen exchange kinetics and diffusion in oxides was investigated on (100) epitaxial La1-xSrxCoO3-δ (LSC) thin films grown by pulsed laser deposition. Planar tensile and compressively strained LSC films were obtained on single-crystalline SrTiO3 and LaAlO3. 18O isotope exchange depth profiling with ToF-SIMS was employed to simultaneously measure the tracer surface exchange coefficient k* and the tracer diffusion coefficient D* in the temperature range 280-475 °C. In accordance with recent theoretical findings, much faster surface exchange (∼4 times) and diffusion (∼10 times) were observed for the tensile strained films compared to the compressively strained films in the entire temperature range. The same strain effect--tensile strain leading to higher k* and D*--was found for different LSC compositions (x=0.2 and x=0.4) and for surface-etched films. The temperature dependence of k* and D* is discussed with respect to the contributions of strain states, formation enthalpy of oxygen vacancies, and vacancy mobility at different temperatures. Our findings point toward the control of oxygen surface exchange and diffusion kinetics by means of lattice strain in existing mixed conducting oxides for energy conversion applications.

  5. Elements of String Cosmology

    CERN Document Server

    Tseytlin, Arkady A

    1992-01-01

    Aspects of string cosmology for critical and non-critical strings are discussed emphasizing the necessity to account for the dilaton dynamics for a proper incorporation of ``large - small" duality. This drastically modifies the intuition one has with Einstein's gravity. For example winding modes, even though contribute to energy density, oppose expansion and if not annihilated will stop the expansion. Moreover we find that the radiation dominated era of the standard cosmology emerges quite naturally in string cosmology. Our analysis of non-critical string cosmology provides a reinterpretation of the (universal cover of the) recently studied two dimensional black hole solution as a conformal realization of cosmological solutions found previously by Mueller.

  6. Superradiance Lattice

    CERN Document Server

    Wang, Da-Wei; Zhu, Shi-Yao; Scully, Marlan O

    2014-01-01

    We show that the timed Dicke states of a collection of three-level atoms can form a tight-binding lattice in the momentum space. This lattice, coined the superradiance lattice (SL), can be constructed based on an electromagnetically induced transparency (EIT) system. For a one-dimensional SL, we need the coupling field of the EIT system to be a standing wave. The detuning between the two components of the standing wave introduces an effective electric field. The quantum behaviours of electrons in lattices, such as Bloch oscillations, Wannier-Stark ladders, Bloch band collapsing and dynamic localization can be observed in the SL. The SL can be extended to two, three and even higher dimensions where no analogous real space lattices exist and new physics are waiting to be explored.

  7. Rigorous Newtonian cosmology

    Science.gov (United States)

    Tipler, Frank J.

    1996-10-01

    It is generally believed that it is not possible to rigorously analyze a homogeneous and isotropic cosmological model in Newtonian mechanics. I show on the contrary that if Newtonian gravity theory is rewritten in geometrical language in the manner outlined in 1923-1924 by Élie Cartan [Ann. Ecole Norm. Sup. 40, 325-412 (1923); 41, 1-25 (1924)], then Newtonian cosmology is as rigorous as Friedmann cosmology. In particular, I show that the equation of geodesic deviation in Newtonian cosmology is exactly the same as equation of geodesic deviation in the Friedmann universe, and that this equation can be integrated to yield a constraint equation formally identical to the Friedmann equation. However, Newtonian cosmology is more general than Friedmann cosmology: Ever-expanding and recollapsing universes are allowed in any noncompact homogeneous and isotropic spatial topology. I shall give a brief history of attempts to do cosmology in the framework of Newtonian mechanics.

  8. BRS structure of simple model of cosmological constant and cosmology

    Science.gov (United States)

    Mori, Taisaku; Nitta, Daisuke; Nojiri, Shin'ichi

    2017-07-01

    In Mod. Phys. Lett. A 31, 1650213 (2016, 10.1142/S0217732316502138), Nojiri proposed a simple model in order to solve one of the problems related to the cosmological constant. The model is induced from a topological field theory, and the model has an infinite number of BRS symmetries. The BRS symmetries are, in general, spontaneously broken, however. We investigate the BRS symmetry in detail and show that there is one and only one BRS symmetry which is not broken, and the unitarity can be guaranteed. In the model, the quantum problem of the vacuum energy, which may be identified with the cosmological constant, reduces to the classical problem of the initial condition. We investigate the cosmology given by the model and specify the region of the initial conditions, which could be consistent with the evolution of the Universe. We also show that there is a stable solution describing the de Sitter space-time, which may explain the accelerating expansion in the current Universe.

  9. Network Cosmology

    CERN Document Server

    Krioukov, Dmitri; Sinkovits, Robert S; Rideout, David; Meyer, David; Boguna, Marian

    2012-01-01

    Causal sets are an approach to quantum gravity in which the causal structure of spacetime plays a fundamental role. The causal set is a quantum network which underlies the fabric of spacetime. The nodes in this network are tiny quanta of spacetime, with two such quanta connected if they are causally related. Here we show that the structure of these networks in de Sitter spacetime, such as our accelerating universe, is remarkably similar to the structure of complex networks -- the brain or the Internet, for example. Specifically, we show that the node degree distribution of causal sets in de Sitter spacetime is described by a power law with exponent 2, similar to many complex networks. Quantifying the differences between the causal set structure in de Sitter spacetime and in the real universe, we find that since the universe today is relatively young, its power-law exponent is not 2 but 3/4, yet exponent 2 is currently emerging. Finally, we show that as a consequence of a simple geometric duality, the growth d...

  10. Acceleration parameters for fluid physics with accelerating bodies

    CSIR Research Space (South Africa)

    Gledhill, Irvy MA

    2016-06-01

    Full Text Available to an acceleration parameter that appears to be new in fluid physics, but is known in cosmology. A selection of cases for rectilinear acceleration has been chosen to illustrate the point that this parameter alone does not govern regimes of flow about significantly...

  11. Cosmological Perturbations in Extended Massive Gravity

    CERN Document Server

    Gumrukcuoglu, A Emir; Lin, Chunshan; Mukohyama, Shinji; Trodden, Mark

    2013-01-01

    We study cosmological perturbations around self-accelerating solutions to two extensions of nonlinear massive gravity: the quasi-dilaton theory and the mass-varying theory. We examine stability of the cosmological solutions, and the extent to which the vanishing of the kinetic terms for scalar and vector perturbations of self-accelerating solutions in massive gravity is generic when the theory is extended. We find that these kinetic terms are in general non-vanishing in both extensions, though there are constraints on the parameters and background evolution from demanding that they have the correct sign. In particular, the self-accelerating solutions of the quasi-dilaton theory are always unstable to scalar perturbations with wavelength shorter than the Hubble length.

  12. Axion-dilaton cosmology and dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Catena, R.; Moeller, J.

    2007-09-15

    We discuss a class of flat FRW cosmological models based on D=4 axion-dilaton gravity universally coupled to cosmological background fluids. In particular, we investigate the possibility of recurrent acceleration, which was recently shown to be generically realized in a wide class of axion-dilaton models, but in absence of cosmological background fluids. We observe that, once we impose the existence of radiation - and matter - dominated earlier stages of cosmic evolution, the axion-dilaton dynamics is altered significantly with respect to the case of pure axion-dilaton gravity. During the matter dominated epoch the scalar fields remain either frozen, due to the large expansion rate, or enter a cosmological scaling regime. In both cases, oscillations of the effective equation of state around the acceleration boundary value are impossible. Models which enter an oscillatory stage in the low redshift regime, on the other hand, are disfavored by observations. We also comment on the viability of the axion-dilaton system as a candidate for dynamical dark energy. In a certain subclass of models, an intermediate scaling regime is succeeded by eternal acceleration. We also briefly discuss the issue of dependence on initial conditions. (orig.)

  13. Cosmology and the S-matrix

    Energy Technology Data Exchange (ETDEWEB)

    Bousso, Raphael

    2005-01-25

    We study conditions for the existence of asymptotic observables in cosmology. With the exception of de Sitter space, the thermal properties of accelerating universes permit arbitrarily long observations, and guarantee the production of accessible states of arbitrarily large entropy. This suggests that some asymptotic observables may exist, despite the presence of an event horizon. Comparison with decelerating universes shows surprising similarities: Neither type suffers from the limitations encountered in de Sitter space, such as thermalization and boundedness of entropy. However, we argue that no realistic cosmology permits the global observations associated with an S-matrix.

  14. Radiation-dominated area metric cosmology

    CERN Document Server

    Schuller, Frederic P

    2007-01-01

    We provide further crucial support for a refined, area metric structure of spacetime. Based on the solution of conceptual issues, such as the consistent coupling of fermions and the covariant identification of radiation fields on area metric backgrounds, we show that the radiation-dominated epoch of area metric cosmology is equivalent to that epoch in standard Einstein cosmology. This ensures, in particular, successful nucleosynthesis. This surprising result complements the previously derived prediction of a small late-time acceleration of an area metric universe.

  15. Early Cosmology Constrained

    CERN Document Server

    Verde, Licia; Pigozzo, Cassio; Heavens, Alan F; Jimenez, Raul

    2016-01-01

    We investigate our knowledge of early universe cosmology by exploring how much additional energy density can be placed in different components beyond those in the $\\Lambda$CDM model. To do this we use a method to separate early- and late-universe information enclosed in observational data, thus markedly reducing the model-dependency of the conclusions. We find that the 95\\% credibility regions for extra energy components of the early universe at recombination are: non-accelerating additional fluid density parameter $\\Omega_{\\rm MR} < 0.006$ and extra radiation parameterised as extra effective neutrino species $2.3 < N_{\\rm eff} < 3.2$ when imposing flatness. Our constraints thus show that even when analyzing the data in this largely model-independent way, the possibility of hiding extra energy components beyond $\\Lambda$CDM in the early universe is seriously constrained by current observations. We also find that the standard ruler, the sound horizon at radiation drag, can be well determined in a way ...

  16. Dark matter and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  17. Dark matter and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  18. Plasma Redshift Cosmology

    Science.gov (United States)

    Brynjolfsson, Ari

    2011-04-01

    The newly discovered plasma redshift cross section explains a long range of phenomena; including the cosmological redshift, and the intrinsic redshift of Sun, stars, galaxies and quasars. It explains the beautiful black body spectrum of the CMB, and it predicts correctly: a) the observed XRB, b) the magnitude redshift relation for supernovae, and c) the surface- brightness-redshift relation for galaxies. There is no need for Big Bang, Inflation, Dark Energy, Dark Matter, Accelerated Expansion, and Black Holes. The universe is quasi-static and can renew itself forever (for details, see: http://www.plasmaredshift.org). There is no cosmic time dilation. In intergalactic space, the average electron temperature is T = 2.7 million K, and the average electron density is N = 0.0002 per cubic cm. Plasma redshift is derived theoretically from conventional axioms of physics by using more accurate methods than those conventionally used. The main difference is: 1) the proper inclusion of the dielectric constant, 2) more exact calculations of imaginary part of the dielectric constant, and as required 3) a quantum mechanical treatment of the interactions.

  19. Translational symmetry breaking in field theories and the cosmological constant

    Science.gov (United States)

    Evans, Nick; Morris, Tim R.; Scott, Marc

    2016-01-01

    We argue, at a very basic effective field theory level, that higher dimension operators in scalar theories that break symmetries at scales close to their ultraviolet completion cutoff include terms that favor the breaking of translation (Lorentz) invariance, potentially resulting in striped, checkerboard or general crystal-like phases. Such descriptions can be thought of as the effective low energy description of QCD-like gauge theories near their strong coupling scale where terms involving higher dimension operators are generated. Our low energy theory consists of scalar fields describing operators such as q ¯q and q ¯F(2 n )q . Such scalars can have kinetic mixing terms that generate effective momentum dependent contributions to the mass matrix. We show that these can destabilize the translationally invariant vacuum. It is possible that in some real gauge theory such operators could become sufficiently dominant to realize such phases, and it would be interesting to look for them in lattice simulations. We present a holographic model of the same phenomena which includes renormalization group running. A key phenomenological motive to look at such states is recent work that shows that the nonlinear response in R2 gravity to such short-range fluctuations can mimic a cosmological constant. Intriguingly in a cosmology with such a Starobinsky inflation term, to generate the observed value of the present day acceleration would require stripes at the electroweak scale. Unfortunately, low energy phenomenological constraints on Lorentz violation in the electron-photon system appear to strongly rule out any such possibility outside of a disconnected dark sector.

  20. Probing The New Cosmology

    CERN Document Server

    Zentner, A R

    2003-01-01

    Improvements in observational techniques have transformed cosmology into a field inundated with ever-expanding, high-quality data sets and driven cosmology toward a standard model where the classic cosmological parameters are accurately measured. I briefly discuss some of the methods used to determine cosmological parameters, particularly primordial nucleosynthesis, the magnitude- redshift relation of supernovae, and cosmic microwave background anisotropy. I demonstrate how cosmological data can be used to complement particle physics and constrain extensions to the Standard Model. Specifically, I present bounds on light particle species and the properties of unstable, weakly-interacting, massive particles. Despite the myriad successes of the emerging standard cosmological model, unanswered questions linger. Numerical simulations of structure formation predict galactic central densities that are considerably higher than observed. They also reveal hundreds of satellites orbiting Milky Way-like galaxies while th...

  1. Cosmology and time

    Directory of Open Access Journals (Sweden)

    Balbi Amedeo

    2013-09-01

    Full Text Available Time has always played a crucial role in cosmology. I review some of the aspects of the present cosmological model which are more directly related to time, such as: the definition of a cosmic time; the existence of typical timescales and epochs in an expanding universe; the problem of the initial singularity and the origin of time; the cosmological arrow of time.

  2. Dark Energy and the Cosmological Constant: A Brief Introduction

    Science.gov (United States)

    Harvey, Alex

    2009-01-01

    The recently observed acceleration of the expansion of the universe is a topic of intense interest. The favoured causes are the "cosmological constant" or "dark energy". The former, which appears in the Einstein equations as the term [lambda]g[subscript [mu]v], provides an extremely simple, well-defined mechanism for the acceleration. However,…

  3. Sociology of Modern Cosmology

    Science.gov (United States)

    López-Corredoira, M.

    2009-08-01

    Certain results of observational cosmology cast critical doubt on the foundations of standard cosmology but leave most cosmologists untroubled. Alternative cosmological models that differ from the Big Bang have been published and defended by heterodox scientists; however, most cosmologists do not heed these. This may be because standard theory is correct and all other ideas and criticisms are incorrect, but it is also to a great extent due to sociological phenomena such as the ``snowball effect'' or ``groupthink''. We might wonder whether cosmology, the study of the Universe as a whole, is a science like other branches of physics or just a dominant ideology.

  4. Inhomogeneous Big Bang Cosmology

    CERN Document Server

    Wagh, S M

    2002-01-01

    In this letter, we outline an inhomogeneous model of the Big Bang cosmology. For the inhomogeneous spacetime used here, the universe originates in the infinite past as the one dominated by vacuum energy and ends in the infinite future as the one consisting of "hot and relativistic" matter. The spatial distribution of matter in the considered inhomogeneous spacetime is {\\em arbitrary}. Hence, observed structures can arise in this cosmology from suitable "initial" density contrast. Different problems of the standard model of Big Bang cosmology are also resolved in the present inhomogeneous model. This inhomogeneous model of the Big Bang Cosmology predicts "hot death" for the universe.

  5. The supernova cosmology cookbook: Bayesian numerical recipes

    CERN Document Server

    Karpenka, N V

    2015-01-01

    Theoretical and observational cosmology have enjoyed a number of significant successes over the last two decades. Cosmic microwave background measurements from the Wilkinson Microwave Anisotropy Probe and Planck, together with large-scale structure and supernova (SN) searches, have put very tight constraints on cosmological parameters. Type Ia supernovae (SNIa) played a central role in the discovery of the accelerated expansion of the Universe, recognised by the Nobel Prize in Physics in 2011. The last decade has seen an enormous increase in the amount of high quality SN observations, with SN catalogues now containing hundreds of objects. This number is expected to increase to thousands in the next few years, as data from next-generation missions, such as the Dark Energy Survey and Large Synoptic Survey Telescope become available. In order to exploit the vast amount of forthcoming high quality data, it is extremely important to develop robust and efficient statistical analysis methods to answer cosmological q...

  6. Statefinder diagnostic in a torsion cosmology

    CERN Document Server

    Li, Xin-zhou; Xi, Ping

    2009-01-01

    We apply the statefinder diagnostic to the torsion cosmology, in which an accounting for the accelerated universe is considered in term of a Riemann-Cartan geometry: dynamic scalar torsion. We find that there are some typical characteristic of the evolution of statefinder parameters for the torsion cosmology that can be distinguished from the other cosmological models. Furthermore, we also show that statefinder diagnostic has a direct bearing on the critical points. The statefinder diagnostic divides the torsion parameter $a_1$ into differential ranges, which is in keeping with the requirement of dynamical analysis. In addition, we fit the scalar torsion model to ESSENCE supernovae data and give the best fit values of the model parameters.

  7. New type scalar fields for cosmic acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Kehagias, A; Pakis, S [Department of Physics, National Technical University of Athens, GR-15773, Zografou, Athens (Greece)

    2007-05-15

    We present a model where a non-conventional scalar field may act like dark energy and leads to cosmic acceleration. The latter is driven by an appropriate field configuration, which result in an effective cosmological constant. The potential role of such a scalar in the cosmological constant problem is also discussed.

  8. The universe dynamics in the tachyon cosmology with non-minimal coupling to matter

    CERN Document Server

    Farajollahi, H; Fadakar, G F

    2011-01-01

    Recently, the tachyon cosmology has been represented as dark energy model to support the current acceleration of the universe without phantom crossing. In this paper, we study the dynamics of the tachyon cosmology in which the field plays the role of tachyon field and also non--minimally coupled to the matter lagrangian. The model shows current universe acceleration and also phantom crossing in the future. Two cosmological tests are also performed to validate the model; the difference in the distance modulus and the model independent Cosmological Redshift Drift (CRD) test.

  9. Exact Scalar-Tensor Cosmological Solutions via Noether Symmetry

    CERN Document Server

    Belinchón, J A; Mak, M K

    2016-01-01

    In this paper, we investigate the Noether symmetries of a generalized scalar-tensor, Brans-Dicke type cosmological model, in which we consider explicit scalar field dependent couplings to the Ricci scalar, and to the scalar field kinetic energy, respectively. We also include the scalar field self-interaction potential into the gravitational action. From the condition of the vanishing of the Lie derivative of the gravitational cosmological Lagrangian with respect to a given vector field we obtain three cosmological solutions describing the time evolution of a spatially flat Friedman-Robertson-Walker Universe filled with a scalar field. The cosmological properties of the solutions are investigated in detail, and it is shown that they can describe a large variety of cosmological evolutions, including models that experience a smooth transition from a decelerating to an accelerating phase.

  10. Cosmology in time asymmetric extensions of general relativity

    CERN Document Server

    Leon, Genly

    2015-01-01

    We investigate the cosmological behavior in a universe governed by time asymmetric extensions of general relativity, which is a novel modified gravity based on the addition of new, time-asymmetric, terms on the Hamiltonian framework, in a way that the algebra of constraints and local physics remain unchanged. Nevertheless, at cosmological scales these new terms can have significant effects that can alter the universe evolution, both at early and late times, and the freedom in the choice of the involved modification function makes the scenario able to produce a huge class of cosmological behaviors. For basic ansatzes of modification, we perform a detailed dynamical analysis, extracting the stable late time solutions. Amongst others, we find that the universe can result in dark-energy dominated, accelerating solutions, even in the absence of an explicit cosmological constant, in which the dark energy can be quintessence-like, phantom-like, or behave as an effective cosmological constant. Moreover, it can result...

  11. Observational constraints on late-time \\Lambda(t) cosmology

    CERN Document Server

    Carneiro, S; Pigozzo, C; Alcaniz, J S

    2007-01-01

    The cosmological constant, i.e., the energy density stored in the true vacuum state of all existing fields in the Universe, is the simplest and the most natural possibility to describe the current cosmic acceleration. However, despite its observational successes, such a possibility exacerbates the well known cosmological constant problem, requiring a natural explanation for its small, but nonzero, value. In this paper we study cosmological consequences of a scenario driven by a varying cosmological term, in which the vacuum energy density decays linearly with the Hubble parameter. We test the viability of this scenario and study a possible way to distinguish it from the current standard cosmological model by using recent observations of type Ia supernova (Supernova Legacy Survey Collaboration), measurements of the baryonic acoustic oscillation from the Sloan Digital Sky Survey and the position of the first peak of the cosmic microwave background angular spectrum from the three-year Wilkinson Microwave Anisotr...

  12. Brane-world cosmology with black strings

    Science.gov (United States)

    Gergely, László Á.

    2006-07-01

    We consider the simplest scenario when black strings/cigars penetrate the cosmological brane. As a result, the brane has a Swiss-cheese structure, with Schwarzschild black holes immersed in a Friedmann-Lemaître-Robertson-Walker brane. There is no dark radiation in the model, the cosmological regions of the brane are characterized by a cosmological constant Λ and flat spatial sections. Regardless of the value of Λ, these brane-world universes forever expand and forever decelerate. The totality of source terms in the modified Einstein equation sum up to a dust, establishing a formal equivalence with the general relativistic Einstein-Straus model. However in this brane-world scenario with black strings the evolution of the cosmological fluid strongly depends on Λ. For Λ≤0 it has positive energy density ρ and negative pressure p and at late times it behaves as in the Einstein-Straus model. For (not too high) positive values of Λ the cosmological evolution begins with positive ρ and negative p, but this is followed by an epoch with both ρ and p positive. Eventually, ρ becomes negative, while p stays positive. A similar evolution is present for high positive values of Λ, however in this case the evolution ends in a pressure singularity, accompanied by a regular behavior of the cosmic acceleration. This is a novel type of singularity appearing in brane-worlds.

  13. Perspectives in cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Vilenkin, Alexander, E-mail: vilenkin@cosmos.phy.tufts.ed [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)

    2010-01-01

    The 'new standard cosmology', based on the theory of inflation, has very impressive observational support. I review some outstanding problems of the new cosmology and the global view of the universe - the multiverse - that it suggests. I focus in particular on prospects for further observational tests of inflation and of the multiverse.

  14. String Cosmology: A Review

    Energy Technology Data Exchange (ETDEWEB)

    McAllister, Liam P.; Silverstein, Eva

    2007-10-22

    We give an overview of the status of string cosmology. We explain the motivation for the subject, outline the main problems, and assess some of the proposed solutions. Our focus is on those aspects of cosmology that benefit from the structure of an ultraviolet-complete theory.

  15. Cosmological implications of Geometrothermodynamics

    CERN Document Server

    Luongo, Orlando

    2013-01-01

    We use the formalism of Geometrothermodynamics to derive a series of fundamental equations for thermodynamic systems. It is shown that all these fundamental equations can be used in the context of relativistic cosmology to derive diverse scenarios which include the standard cosmological model, a unified model for dark energy and dark matter, and an effective inflationary model.

  16. Cosmological Implications of Geometrothermodynamics

    Science.gov (United States)

    Luongo, O.; Quevedo, H.

    2015-01-01

    We use the formalism of Geometrothermodynamics to derive a series of fundamental equations for thermodynamic systems. It is shown that all these fundamental equations can be used in the context of relativistic cosmology to derive diverse scenarios which include the standard cosmological model, a unified model for dark energy and dark matter, and an effective inflationary model.

  17. Neutrino properties from cosmology

    DEFF Research Database (Denmark)

    Hannestad, S.

    2013-01-01

    In recent years precision cosmology has become an increasingly powerful probe of particle physics. Perhaps the prime example of this is the very stringent cosmological upper bound on the neutrino mass. However, other aspects of neutrino physics, such as their decoupling history and possible non-s...

  18. Dwarf-Galaxy Cosmology

    CERN Document Server

    Schulte-Ladbeck, Regina; Brinks, Elias; Kravtsov, Andrey

    2010-01-01

    Dwarf galaxies provide opportunities for drawing inferences about the processes in the early universe by observing our "cosmological backyard"-the Local Group and its vicinity. This special issue of the open-access journal Advances in Astronomy is a snapshot of the current state of the art of dwarf-galaxy cosmology.

  19. Lattice theory

    CERN Document Server

    Donnellan, Thomas; Maxwell, E A; Plumpton, C

    1968-01-01

    Lattice Theory presents an elementary account of a significant branch of contemporary mathematics concerning lattice theory. This book discusses the unusual features, which include the presentation and exploitation of partitions of a finite set. Organized into six chapters, this book begins with an overview of the concept of several topics, including sets in general, the relations and operations, the relation of equivalence, and the relation of congruence. This text then defines the relation of partial order and then partially ordered sets, including chains. Other chapters examine the properti

  20. Cosmological perturbations in massive gravity with doubly coupled matter

    CERN Document Server

    Gümrükçüoğlu, A Emir; Mukohyama, Shinji

    2014-01-01

    We investigate the cosmological perturbations around FLRW solutions to non- linear massive gravity with a new effective coupling to matter proposed recently. Unlike the case with minimal matter coupling, all five degrees of freedom in the gravity sector propagate on generic self-accelerating FLRW backgrounds. We study the stability of the cosmological solutions and put constraints on the parameters of the theory by demanding the correct sign for the kinetic terms for scalar, vector and tensor perturbations.

  1. Cosmological perturbations in massive gravity with doubly coupled matter

    Science.gov (United States)

    Gümrükçüoğlu, A. Emir; Heisenberg, Lavinia; Mukohyama, Shinji

    2015-02-01

    We investigate the cosmological perturbations around FLRW solutions to non- linear massive gravity with a new effective coupling to matter proposed recently. Unlike the case with minimal matter coupling, all five degrees of freedom in the gravity sector propagate on generic self-accelerating FLRW backgrounds. We study the stability of the cosmological solutions and put constraints on the parameters of the theory by demanding the correct sign for the kinetic terms for scalar, vector and tensor perturbations.

  2. BMS in Cosmology

    CERN Document Server

    Kehagias, Alex

    2016-01-01

    Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to both scalar and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic d...

  3. Classical and quantum cosmology

    CERN Document Server

    Calcagni, Gianluca

    2017-01-01

    This comprehensive textbook is devoted to classical and quantum cosmology, with particular emphasis on modern approaches to quantum gravity and string theory and on their observational imprint. It covers major challenges in theoretical physics such as the big bang and the cosmological constant problem. An extensive review of standard cosmology, the cosmic microwave background, inflation and dark energy sets the scene for the phenomenological application of all the main quantum-gravity and string-theory models of cosmology. Born of the author's teaching experience and commitment to bridging the gap between cosmologists and theoreticians working beyond the established laws of particle physics and general relativity, this is a unique text where quantum-gravity approaches and string theory are treated on an equal footing. As well as introducing cosmology to undergraduate and graduate students with its pedagogical presentation and the help of 45 solved exercises, this book, which includes an ambitious bibliography...

  4. Cosmology and particle physics

    Science.gov (United States)

    Turner, Michael S.

    1988-01-01

    The interplay between cosmology and elementary particle physics is discussed. The standard cosmology is reviewed, concentrating on primordial nucleosynthesis and discussing how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is discussed, showing how a scenario in which the B-, C-, and CP-violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and for the present baryon-to-photon ratio. It is shown how the very early dynamical evolution of a very weakly coupled scalar field which is initially displaced from the minimum of its potential may explain a handful of very fundamental cosmological facts which are not explained by the standard cosmology.

  5. Testing loop quantum cosmology

    Science.gov (United States)

    Wilson-Ewing, Edward

    2017-03-01

    Loop quantum cosmology predicts that quantum gravity effects resolve the big-bang singularity and replace it by a cosmic bounce. Furthermore, loop quantum cosmology can also modify the form of primordial cosmological perturbations, for example by reducing power at large scales in inflationary models or by suppressing the tensor-to-scalar ratio in the matter bounce scenario; these two effects are potential observational tests for loop quantum cosmology. In this article, I review these predictions and others, and also briefly discuss three open problems in loop quantum cosmology: its relation to loop quantum gravity, the trans-Planckian problem, and a possible transition from a Lorentzian to a Euclidean space-time around the bounce point.

  6. A Taste of Cosmology

    CERN Document Server

    Verde, L

    2013-01-01

    This is the summary of two lectures that aim to give an overview of cosmology. I will not try to be too rigorous in derivations, nor to give a full historical overview. The idea is to provide a "taste" of cosmology and some of the interesting topics it covers. The standard cosmological model is presented and I highlight the successes of cosmology over the past decade or so. Keys to the development of the standard cosmological model are observations of the cosmic microwave background and of large-scale structure, which are introduced. Inflation and dark energy and the outlook for the future are also discussed. Slides from the lectures are available from the school website: physicschool.web.cern.ch/PhysicSchool/CLASHEP/CLASHEP2011/.

  7. Phase Space of Anisotropic $R^n$ Cosmologies

    CERN Document Server

    Leon, Genly

    2014-01-01

    We construct general anisotropic cosmological scenarios governed by an $f(R)=R^n$ gravitational sector. Focusing then on some specific geometries, and modelling the matter content as a perfect fluid, we perform a phase-space analysis. We analyze the possibility of accelerating expansion at late times, and additionally, we determine conditions for the parameter $n$ for the existence of phantom behavior, contracting solutions as well as of cyclic cosmology. Furthermore, we analyze if the universe evolves towards the future isotropization without relying on a cosmic no-hair theorem. Our results indicate that anisotropic geometries in modified gravitational frameworks present radically different cosmological behaviors compared to the simple isotropic scenarios.

  8. Cosmological anomalies and exotic smoothness structures

    OpenAIRE

    Asselmeyer-Maluga, Torsten; Brans, Carl H.

    2001-01-01

    It seems to be generally accepted that apparently anomalous cosmological observations, such as accelerating expansion, etc., necessarily are inconsistent with standard general relativity and standard matter sources. Following the suggestions of S{\\l}adkowski, we point out that in addition to exotic theories and exotic matter there is another possibility. We refer to exotic differential structures on ${\\mathbb R}^4$ which could be the source of the observed anomalies without changing the Einst...

  9. A New Type of Isotropic Cosmological Model

    CERN Document Server

    Naboulsi, R

    2003-01-01

    The Einstein equations with quantum one-loop contributions of conformally covariant matter fields in the poresence of frac{1}{t^2} decaying matter density and decaying cosmological constant is used to study an isotropic homogenous FRW space-time. We show that scale factor depends on the sums of contributions from quantum fields with different spin values. For some specific values of this later, the Universe could be in an accelerated regime.

  10. BMS in cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Kehagias, A. [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece); Riotto, A. [Department of Theoretical Physics,24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland); Center for Astroparticle Physics (CAP),24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland)

    2016-05-25

    Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.

  11. Unimodular-mimetic cosmology

    Science.gov (United States)

    Nojiri, S.; Odintsov, S. D.; Oikonomou, V. K.

    2016-06-01

    We combine the unimodular gravity and mimetic gravity theories into a unified theoretical framework, which is proposed to provide a suggestive proposal for a framework that may assist in the discussion and search for a solution to the cosmological constant problem and the dark matter issue. After providing the formulation of the unimodular mimetic gravity and investigating all the new features that the vacuum unimodular gravity implies, by using the underlying reconstruction method, we realize some well known cosmological evolutions, with some of these being exotic for the ordinary Einstein-Hilbert gravity. Specifically we provide the vacuum unimodular mimetic gravity description of the de Sitter cosmology and of the perfect fluid with constant equation of state cosmology. As we demonstrate, these cosmologies can be realized by vacuum mimetic unimodular gravity, without the existence of any matter fluid source. Moreover, we investigate how cosmologically viable cosmologies, which are compatible with the recent observational data, can be realized by the vacuum unimodular mimetic gravity. Since in some cases, a graceful exit from inflation problem might exist, we provide a qualitative description of the mechanism that can potentially generate the graceful exit from inflation in these theories, by searching for the unstable de Sitter solutions in the context of unimodular mimetic theories of gravity.

  12. BMS in cosmology

    Science.gov (United States)

    Kehagias, A.; Riotto, A.

    2016-05-01

    Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.

  13. Cosmic inhomogeneities and averaged cosmological dynamics.

    Science.gov (United States)

    Paranjape, Aseem; Singh, T P

    2008-10-31

    If general relativity (GR) describes the expansion of the Universe, the observed cosmic acceleration implies the existence of a "dark energy." However, while the Universe is on average homogeneous on large scales, it is inhomogeneous on smaller scales. While GR governs the dynamics of the inhomogeneous Universe, the averaged homogeneous Universe obeys modified Einstein equations. Can such modifications alone explain the acceleration? For a simple generic model with realistic initial conditions, we show the answer to be "no." Averaging effects negligibly influence the cosmological dynamics.

  14. Magnetogenesis in bouncing cosmology

    CERN Document Server

    Qian, Peng; Easson, Damien A; Guo, Zong-Kuan

    2016-01-01

    We consider the process of magnetogenesis in the context of nonsingular bounce cosmology. We show that large primordial magnetic fields can be generated during contraction without encountering strong coupling and backreaction issues. The fields may seed large-scale magnetic fields with observationally interesting strengths. This result leads to a theoretical constraint on the relation of the energy scale of the bounce cosmology to the number of effective e-folding of the contracting phase in the case of scale invariance for the power spectrum of primordial magnetic fields. We show that this constraint can be satisfied in a sizable region of the parameter space for the nonsingular bounce cosmology.

  15. Cosmology Theory and Observations

    CERN Document Server

    Dolgov, A D

    1998-01-01

    The comparison of the Standard Cosmological Model (SCM) with astronomical observations, i.e. theory versus experiment, and with the Minimal Standard Model (MSM) in particle physics, i.e. theory versus theory, is discussed. The main issue of this talk is whether cosmology indicates new physics beyond the standard $SU(3)\\times SU(2)\\times U(1)$ model with minimal particle content. The answer to this question is strongly and definitely "YES". New, yet unknown, physics exists and cosmology presents very weighty arguments in its favor.

  16. Magnetogenesis in bouncing cosmology

    Science.gov (United States)

    Qian, Peng; Cai, Yi-Fu; Easson, Damien A.; Guo, Zong-Kuan

    2016-10-01

    We consider the process of magnetogenesis in the context of nonsingular bounce cosmology. We show that large primordial magnetic fields can be generated during contraction without encountering strong coupling and backreaction issues. The fields may seed large-scale magnetic fields with observationally interesting strengths. This result leads to a theoretical constraint on the relation of the energy scale of the bounce cosmology to the number of effective e -foldings of the contracting phase in the case of scale invariance for the power spectrum of primordial magnetic fields. We show that this constraint can be satisfied in a sizable region of the parameter space for the nonsingular bounce cosmology.

  17. Cosmology, Epistemology and Chaos

    Science.gov (United States)

    Unno, Wasaburo

    1992-03-01

    We may consider the following three fundamental epistemological questions concerning cosmology. Can cosmology at last understand the origin of the universe? Can computers at last create? Can life be formed at last synthetically? These questions are in some sense related to the liar paradox containing the self-reference and, therefore, may not be answered by recursive processes in finite time. There are, however, various implications such that the chaos may break the trap of the self- reference paradox. In other words, Goedel's incompleteness theorem would not apply to chaos, even if the chaos can be generated by recursive processes. Internal relations among cosmology, epistemology and chaos must be investigated in greater detail

  18. FFAGS for rapid acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Carol J. Johnstone and Shane Koscielniak

    2002-09-30

    When large transverse and longitudinal emittances are to be transported through a circular machine, extremely rapid acceleration holds the advantage that the beam becomes immune to nonlinear resonances because there is insufficient time for amplitudes to build up. Uncooled muon beams exhibit large emittances and require fast acceleration to avoid decay losses and would benefit from this style of acceleration. The approach here employs a fixed-field alternating gradient or FFAG magnet structure and a fixed frequency acceleration system. Acceptance is enhanced by the use only of linear lattice elements, and fixed-frequency rf enables the use of cavities with large shunt resistance and quality factor.

  19. Radio Relics in Cosmological Simulations

    Indian Academy of Sciences (India)

    M. Hoeft; S. E. Nuza; S. Gottlöber; R. J. van Weeren; H. J. A. Röttgering; M. Brüggen

    2011-12-01

    Radio relics have been discovered in many galaxy clusters. They are believed to trace shock fronts induced by cluster mergers. Cosmological simulations allow us to study merger shocks in detail since the intra-cluster medium is heated by shock dissipation. Using high resolution cosmological simulations, identifying shock fronts and applying a parametric model for the radio emission allows us to simulate the formation of radio relics. We analyze a simulated shock front in detail. We find a rather broad Mach number distribution. The Mach number affects strongly the number density of relativistic electrons in the downstream area, hence, the radio luminosity varies significantly across the shock surface. The abundance of radio relics can be modeled with the help of the radio power probability distribution which aims at predicting radio relic number counts. Since the actual electron acceleration efficiency is not known, predictions for the number counts need to be normalized by the observed number of radio relics. For the characteristics of upcoming low frequency surveys we find that about thousand relics are awaiting discovery.

  20. Arguments concerning Relativity and Cosmology.

    Science.gov (United States)

    Klein, O

    1971-01-29

    In the first place I have reviewed the true foundation of Einstein's theory of general relativity, the so-called principle of equivalence, according to which there is no essential difference between "genuine" gravitation and inertial forces, well known from accelerated vehicles. By means of a comparison with Gaussian geometry of curved surfaces-the background of Riemannian geometry, the tool used by Einstein for the mathematical formulation of his theory-it is made clear that this principle is incompatible with the idea proposed by Mach and accepted by Einstein as an incitement to his attempt to describe the main situation in the universe as an analogy in three dimensions to the closed surface of a sphere. In the later attempts toward a mathematical description of the universe, where Einstein's cosmology was adapted to the discovery by Hubble that its observed part is expanding, the socalled cosmological postulate has been used as a kind of axiomatic background which, when analyzed, makes it probable that this expansion is shared by a very big, but still bounded system. This implies that our expanding metagalaxy is probably just one of a type of stellar objects in different phases of evolution, some expanding and some contracting. Some attempts toward the description of this evolution are sketched in the article with the hope that further investigation, theoretical and observational, may lead to an interesting advance in this part of astrophysics.

  1. Introduction to Microwave Linear [Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Whittum, David H

    1999-01-04

    The elements of microwave linear accelerators are introduced starting with the principles of acceleration and accelerating structures. Considerations for microwave structure modeling and design are developed from an elementary point of view. Basic elements of microwave electronics are described for application to the accelerator circuit and instrumentation. Concepts of beam physics are explored together with examples of common beamline instruments. Charged particle optics and lattice diagnostics are introduced. Considerations for fixed-target and colliding-beam experimentation are summarized.

  2. Cosmological model with dynamical curvature

    CERN Document Server

    Stichel, Peter C

    2016-01-01

    We generalize the recently introduced relativistic Lagrangian darkon fluid model (EPJ C (2015) 75:9) by starting with a self-gravitating geodesic fluid whose energy-momentum tensor is dust-like with a nontrivial energy flow. The corresponding covariant propagation and constraint equations are considered in a shear-free nonrelativistic limit whose analytic solutions determine the 1st-order relativistic correction to the spatial curvature. This leads to a cosmological model where the accelerated expansion of the Universe is driven by a time-dependent spatial curvature without the need for introducing any kind of dark energy. We derive the differential equation to be satisfied by the area distance for this model.

  3. Holographic Cosmology from BIonic Solutions

    CERN Document Server

    Sepehri, Alireza; Setare, Mohammad Reza; Ali, Ahmed Farag

    2015-01-01

    In this paper, we will use a BIonic solution for analysing the holographic cosmology. A BIonic solution is a configuration of a D-brane and an anti-D-brane connected by a wormhole. A BIonic configuration can form due to a transition of fundamental black strings. After the BIon has formed, the wormhole in the BIon will act act as a channel for the energy to flow into the D3-brane. This will increase the degrees of freedom of the D3-brane causing inflation. The inflation will end when the wormhole gets annihilated. However, as the distance between the D3-brane and the anti-D3-brane reduces, tachyonic states get created. These tachyonic states will lead to the formation of a new wormhole. This new wormhole will again increasing the degrees of freedom on the D3-brane causing late time acceleration.

  4. Cosmological attractors in massive gravity

    CERN Document Server

    Dubovsky, S; Tkachev, I I

    2005-01-01

    We study Lorentz-violating models of massive gravity which preserve rotations and are invariant under time-dependent shifts of the spatial coordinates. In the linear approximation the Newtonian potential in these models has an extra ``confining'' term proportional to the distance from the source. We argue that during cosmological expansion the Universe may be driven to an attractor point with larger symmetry which includes particular simultaneous dilatations of time and space coordinates. The confining term in the potential vanishes as one approaches the attractor. In the vicinity of the attractor the extra contribution is present in the Friedmann equation which, in a certain range of parameters, gives rise to the cosmic acceleration.

  5. Building Cosmological Frozen Stars

    CERN Document Server

    Kastor, David

    2016-01-01

    Janis-Newman-Winicour (JNW) spacetimes generalize the Schwarzschild solution to include a massless scalar field. Although suffering from naked singularities, they share the `frozen star' features of Schwarzschild black holes. Cosmological versions of the JNW spacetimes were discovered some time ago by Husain, Martinez and Nunez and by Fonarev. Unlike Schwarzschild-deSitter black holes, these solutions are dynamical, and the scarcity of exact solutions for dynamical black holes in cosmological backgrounds motivates their further study. Here we show how the cosmological JNW spacetimes can be built, starting from simpler, static, higher dimensional, vacuum `JNW brane' solutions via two different generalized dimensional reduction schemes that together cover the full range of JNW parameter space. Cosmological versions of a BPS limit of charged dilaton black holes are also known. JNW spacetimes represent a different limiting case of the charged, dilaton black hole family. We expect that understanding this second da...

  6. Cosmological Probes for Supersymmetry

    Directory of Open Access Journals (Sweden)

    Maxim Khlopov

    2015-05-01

    Full Text Available The multi-parameter character of supersymmetric dark-matter models implies the combination of their experimental studies with astrophysical and cosmological probes. The physics of the early Universe provides nontrivial effects of non-equilibrium particles and primordial cosmological structures. Primordial black holes (PBHs are a profound signature of such structures that may arise as a cosmological consequence of supersymmetric (SUSY models. SUSY-based mechanisms of baryosynthesis can lead to the possibility of antimatter domains in a baryon asymmetric Universe. In the context of cosmoparticle physics, which studies the fundamental relationship of the micro- and macro-worlds, the development of SUSY illustrates the main principles of this approach, as the physical basis of the modern cosmology provides cross-disciplinary tests in physical and astronomical studies.

  7. Cosmological Ontology and Epistemology

    CERN Document Server

    Page, Don N

    2014-01-01

    In cosmology, we would like to explain our observations and predict future observations from theories of the entire universe. Such cosmological theories make ontological assumptions of what entities exist and what their properties and relationships are. One must also make epistemological assumptions or metatheories of how one can test cosmological theories. Here I shall propose a Bayesian analysis in which the likelihood of a complete theory is given by the normalized measure it assigns to the observation used to test the theory. In this context, a discussion is given of the trade-off between prior probabilities and likelihoods, of the measure problem of cosmology, of the death of Born's rule, of the Boltzmann brain problem, of whether there is a better principle for prior probabilities than mathematical simplicity, and of an Optimal Argument for the Existence of God.

  8. Cosmology: macro and micro

    CERN Document Server

    Holland, Jonathan

    2014-01-01

    A new approach to cosmology and space-time is developed, which emphasizes the description of the matter degrees of freedom of Einstein's theory of gravity by a family of K\\"ahler-Einstein Fano manifolds.

  9. Cosmological Probes for Supersymmetry

    CERN Document Server

    Khlopov, Maxim

    2015-01-01

    The multi-parameter character of supersymmetric dark-matter models implies the combination of their experimental studies with astrophysical and cosmological probes. The physics of the early Universe provides nontrivial effects of non-equilibrium particles and primordial cosmological structures. Primordial black holes (PBHs) are a profound signature of such structures that may arise as a cosmological consequence of supersymmetric (SUSY) models. SUSY-based mechanisms of baryosynthesis can lead to the possibility of antimatter domains in a baryon asymmetric Universe. In the context of cosmoparticle physics, which studies the fundamental relationship of the micro- and macro-worlds, the development of SUSY illustrates the main principles of this approach, as the physical basis of the modern cosmology provides cross-disciplinary tests in physical and astronomical studies.

  10. Tensors, relativity, and cosmology

    CERN Document Server

    Dalarsson, Mirjana

    2015-01-01

    Tensors, Relativity, and Cosmology, Second Edition, combines relativity, astrophysics, and cosmology in a single volume, providing a simplified introduction to each subject that is followed by detailed mathematical derivations. The book includes a section on general relativity that gives the case for a curved space-time, presents the mathematical background (tensor calculus, Riemannian geometry), discusses the Einstein equation and its solutions (including black holes and Penrose processes), and considers the energy-momentum tensor for various solutions. In addition, a section on relativistic astrophysics discusses stellar contraction and collapse, neutron stars and their equations of state, black holes, and accretion onto collapsed objects, with a final section on cosmology discussing cosmological models, observational tests, and scenarios for the early universe. This fully revised and updated second edition includes new material on relativistic effects, such as the behavior of clocks and measuring rods in m...

  11. Quantum Cosmology: Effective Theory

    CERN Document Server

    Bojowald, Martin

    2012-01-01

    Quantum cosmology has traditionally been studied at the level of symmetry-reduced minisuperspace models, analyzing the behavior of wave functions. However, in the absence of a complete full setting of quantum gravity and detailed knowledge of specific properties of quantum states, it remained difficult to make testable predictions. For quantum cosmology to be part of empirical science, it must allow for a systematic framework in which corrections to well-tested classical equations can be derived, with any ambiguities and ignorance sufficiently parameterized. As in particle and condensed-matter physics, a successful viewpoint is one of effective theories, adapted to specific issues one encounters in quantum cosmology. This review presents such an effective framework of quantum cosmology, taking into account, among other things, space-time structures, covariance, the problem of time and the anomaly issue.

  12. Cosmological diagrammatic rules

    CERN Document Server

    Giddings, Steven B

    2010-01-01

    A simple set of diagrammatic rules is formulated for perturbative evaluation of ``in-in" correlators, as is needed in cosmology and other nonequilibrium problems. These rules are both intuitive, and efficient for calculational purposes.

  13. Cosmological diagrammatic rules

    Energy Technology Data Exchange (ETDEWEB)

    Giddings, Steven B. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Sloth, Martin S., E-mail: giddings@physics.ucsb.edu, E-mail: sloth@cern.ch [CERN, Physics Department, Theory Unit, CH-1211 Geneva 23 (Switzerland)

    2010-07-01

    A simple set of diagrammatic rules is formulated for perturbative evaluation of ''in-in'' correlators, as is needed in cosmology and other nonequilibrium problems. These rules are both intuitive, and efficient for calculational purposes.

  14. Discrete Newtonian Cosmology

    CERN Document Server

    Gibbons, Gary W

    2013-01-01

    In this paper we lay down the foundations for a purely Newtonian theory of cosmology, valid at scales small compared with the Hubble radius, using only Newtonian point particles acted on by gravity and a possible cosmological term. We describe the cosmological background which is given by an exact solution of the equations of motion in which the particles expand homothetically with their comoving positions constituting a central configuration. We point out, using previous work, that an important class of central configurations are homogeneous and isotropic, thus justifying the usual assumptions of elementary treatments. The scale factor is shown to satisfy the standard Raychaudhuri and Friedmann equations without making any fluid dynamic or continuum approximations. Since we make no commitment as to the identity of the point particles, our results are valid for cold dark matter, galaxies, or clusters of galaxies. In future publications we plan to discuss perturbations of our cosmological background from the p...

  15. The Interacting and Non-constant Cosmological Constant

    CERN Document Server

    Verma, Murli Manohar

    2009-01-01

    We propose a time-varying cosmological constant with a fixed equation of state, which evolves mainly through its interaction with the background during most of the long history of the universe. However, such interaction does not exist in the very early and the late-time universe and produces the acceleration during these eras when it becomes very nearly a constant. It is found that after the initial inflationary phase, the cosmological constant, that we call as lambda parameter, rolls down from a large constant value to another but very small constant value and further dominates the present epoch showing up in form of the dark energy driving the acceleration.

  16. Classification of cosmological milestones

    CERN Document Server

    Fernández-Jambrina, L

    2006-01-01

    In this paper causal geodesic completeness of FLRW cosmological models is analysed in terms of generalised power expansions of the scale factor in coordinate time. The strength of the found singularities is discussed following the usual definitions due to Tipler and Krolak. It is shown that while classical cosmological models are both timelike and lightlike geodesically incomplete, certain observationally alllowed models which have been proposed recently are lightlike geodesically complete.

  17. A Planck Vacuum Cosmology

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2009-04-01

    Full Text Available Both the big-bang and the quasi-steady-state cosmologies originate in some type of Planck state. This paper presents a new cosmological theory based on the Planck- vacuum negative-energy state, a state consisting of a degenerate collection of negative- energy Planck particles. A heuristic look at the Einstein field equation provides a con- vincing argument that such a vacuum state could provide a theoretical explanation for the visible universe.

  18. Relativistic cosmological hydrodynamics

    CERN Document Server

    Hwang, J

    1997-01-01

    We investigate the relativistic cosmological hydrodynamic perturbations. We present the general large scale solutions of the perturbation variables valid for the general sign of three space curvature, the cosmological constant, and generally evolving background equation of state. The large scale evolution is characterized by a conserved gauge invariant quantity which is the same as a perturbed potential (or three-space curvature) in the comoving gauge.

  19. On cosmic acceleration without dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, E.W.; /Fermilab /Chicago U., Astron. Astrophys. Ctr. /Chicago U., EFI; Matarrese, S.; /Padua U. /INFN, Padua; Riotto, A.; /INFN, Padua

    2005-06-01

    We elaborate on the proposal that the observed acceleration of the Universe is the result of the backreaction of cosmological perturbations, rather than the effect of a negative-pressure dark energy fluid or a modification of general relativity. Through the effective Friedmann equations describing an inhomogeneous Universe after smoothing, we demonstrate that acceleration in our local Hubble patch is possible even if fluid elements do not individually undergo accelerated expansion. This invalidates the no-go theorem that there can be no acceleration in our local Hubble patch if the Universe only contains irrotational dust. We then study perturbatively the time behavior of general-relativistic cosmological perturbations, applying, where possible, the renormalization group to regularize the dynamics. We show that an instability occurs in the perturbative expansion involving sub-Hubble modes, which indicates that acceleration in our Hubble patch may originate from the backreaction of cosmological perturbations on observable scales.

  20. Building cosmological frozen stars

    Science.gov (United States)

    Kastor, David; Traschen, Jennie

    2017-02-01

    Janis–Newman–Winicour (JNW) solutions generalize Schwarzschild to include a massless scalar field. While they share the familiar infinite redshift feature of Schwarzschild, they suffer from the presence of naked singularities. Cosmological versions of JNW spacetimes were discovered some years ago, in the most general case, by Fonarev. Fonarev solutions are also plagued by naked singularities, but have the virtue, unlike e.g. Schwarzschild–deSitter, of being dynamical. Given that exact dynamical cosmological black hole solutions are scarce, Fonarev solutions merit further study. We show how Fonarev solutions can be obtained via generalized dimensional reduction from simpler static vacuum solutions. These results may lead towards constructions of actual dynamical cosmological black holes. In particular, we note that cosmological versions of extremal charged dilaton black holes are known. JNW spacetimes represent a different limiting case of the family of charged dilaton black holes, which have been important in the context of string theory, and better understanding their cosmological versions of JNW spacetimes thus provides a second data point towards finding cosmological versions of the entire family.

  1. Emergent cosmology revisited

    Energy Technology Data Exchange (ETDEWEB)

    Bag, Satadru; Sahni, Varun [Inter-University Centre for Astronomy and Astrophysics, Pune 411007 (India); Shtanov, Yuri [Bogolyubov Institute for Theoretical Physics, Kiev 03680 (Ukraine); Unnikrishnan, Sanil, E-mail: satadru@iucaa.ernet.in, E-mail: varun@iucaa.ernet.in, E-mail: shtanov@bitp.kiev.ua, E-mail: sanil@lnmiit.ac.in [Department of Physics, The LNM Institute of Information Technology, Jaipur 302031 (India)

    2014-07-01

    We explore the possibility of emergent cosmology using the effective potential formalism. We discover new models of emergent cosmology which satisfy the constraints posed by the cosmic microwave background (CMB). We demonstrate that, within the framework of modified gravity, the emergent scenario can arise in a universe which is spatially open/closed. By contrast, in general relativity (GR) emergent cosmology arises from a spatially closed past-eternal Einstein Static Universe (ESU). In GR the ESU is unstable, which creates fine tuning problems for emergent cosmology. However, modified gravity models including Braneworld models, Loop Quantum Cosmology (LQC) and Asymptotically Free Gravity result in a stable ESU. Consequently, in these models emergent cosmology arises from a larger class of initial conditions including those in which the universe eternally oscillates about the ESU fixed point. We demonstrate that such an oscillating universe is necessarily accompanied by graviton production. For a large region in parameter space graviton production is enhanced through a parametric resonance, casting serious doubts as to whether this emergent scenario can be past-eternal.

  2. String cosmology versus standard and inflationary cosmology

    CERN Document Server

    Gasperini, M

    2000-01-01

    This paper presents a review of the basic, model-independent differences between the pre-big bang scenario, arising naturally in a string cosmology context, and the standard inflationary scenario. We use an unconventional approach in which the introduction of technical details is avoided as much as possible, trying to focus the reader's attention on the main conceptual aspects of both scenarios. The aim of the paper is not to conclude in favour either of one or of the other scenario, but to raise questions that are left to the reader's meditation. Warnings: the paper does not contain equations, and is not intended as a complete review of all aspects of string cosmology.

  3. Cosmological perturbations in teleparallel Loop Quantum Cosmology

    CERN Document Server

    Haro, Jaime

    2013-01-01

    Cosmological perturbations in Loop Quantum Cosmology (LQC) could be studied from two totally different ways. The first one, called holonomy corrected LQC, is performed in the Hamiltonian framework, where the Asthekar connection is replaced by a suitable sinus function (holonomy correction), in order to have a well-defined quantum analogue. The alternative approach is based in the fact that isotropic LQC could be also obtained as a particular case of teleparallel $F(T)$ gravity (teleparallel LQC). Then, working in the Lagrangian framework and using the well-know perturbation equations in $F(T)$ gravity, we have obtained, in teleparallel LQC, the equations for scalar and tensor perturbations, and the corresponding Mukhanov-Sasaki equations. For scalar perturbations, our equation only differs from the one obtained by holonomy corrections in the velocity of sound, leading both formulations, essentially to the same scale invariant power spectrum when a matter-dominated universe is considered. However for tensor pe...

  4. Lattice QCD on fine lattices

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Stefan [DESY (Germany). Neumann Inst. for Computing

    2016-11-01

    These configurations are currently in use in many on-going projects carried out by researchers throughout Europe. In particular this data will serve as an essential input into the computation of the coupling constant of QCD, where some of the simulations are still on-going. But also projects computing the masses of hadrons and investigating their structure are underway as well as activities in the physics of heavy quarks. As this initial project of gauge field generation has been successful, it is worthwhile to extend the currently available ensembles with further points in parameter space. These will allow to further study and control systematic effects like the ones introduced by the finite volume, the non-physical quark masses and the finite lattice spacing. In particular certain compromises have still been made in the region where pion masses and lattice spacing are both small. This is because physical pion masses require larger lattices to keep the effects of the finite volume under control. At light pion masses, a precise control of the continuum extrapolation is therefore difficult, but certainly a main goal of future simulations. To reach this goal, algorithmic developments as well as faster hardware will be needed.

  5. Exploring Bouncing Cosmologies with Cosmological Surveys

    CERN Document Server

    Cai, Yi-Fu

    2014-01-01

    In light of the recent observational data coming from the sky we have two significant directions in the field of theoretical cosmology recently. First, we are now able to make use of present observations, such as the Planck and BICEP2 data, to examine theoretical predictions from the standard inflationary $\\Lambda$CDM which were made decades of years ago. Second, we can search for new cosmological signatures as a way to explore physics beyond the standard cosmic paradigm. In particular, a subset of early universe models admit a nonsingular bouncing solution that attempts to address the issue of the big bang singularity. These models have achieved a series of considerable developments in recent years, in particular in their perturbative frameworks, which made brand-new predictions of cosmological signatures that could be visible in current and forthcoming observations. In this article we present two representative paradigms of very early universe physics. The first is the so-called new matter (or matter-ekpyro...

  6. BOOK REVIEW: Observational Cosmology Observational Cosmology

    Science.gov (United States)

    Howell, Dale Andrew

    2013-04-01

    Observational Cosmology by Stephen Serjeant fills a niche that was underserved in the textbook market: an up-to-date, thorough cosmology textbook focused on observations, aimed at advanced undergraduates. Not everything about the book is perfect - some subjects get short shrift, in some cases jargon dominates, and there are too few exercises. Still, on the whole, the book is a welcome addition. For decades, the classic textbooks of cosmology have focused on theory. But for every Sunyaev-Zel'dovich effect there is a Butcher-Oemler effect; there are as many cosmological phenomena established by observations, and only explained later by theory, as there were predicted by theory and confirmed by observations. In fact, in the last decade, there has been an explosion of new cosmological findings driven by observations. Some are so new that you won't find them mentioned in books just a few years old. So it is not just refreshing to see a book that reflects the new realities of cosmology, it is vital, if students are to truly stay up on a field that has widened in scope considerably. Observational Cosmology is filled with full-color images, and graphs from the latest experiments. How exciting it is that we live in an era where satellites and large experiments have gathered so much data to reveal astounding details about the origin of the universe and its evolution. To have all the latest data gathered together and explained in one book will be a revelation to students. In fact, at times it was to me. I've picked up modern cosmological knowledge through a patchwork of reading papers, going to colloquia, and serving on grant and telescope allocation panels. To go back and see them explained from square one, and summarized succinctly, filled in quite a few gaps in my own knowledge and corrected a few misconceptions I'd acquired along the way. To make room for all these graphs and observational details, a few things had to be left out. For one, there are few derivations

  7. Cosmology with Galaxy Cluster Phase Spaces

    CERN Document Server

    Stark, Alejo; Huterer, Dragan

    2016-01-01

    We present a novel approach to constrain accelerating cosmologies with galaxy cluster phase spaces. With the Fisher matrix formalism we forecast constraints on the cosmological parameters that describe the cosmological expansion history. We find that our probe has the potential of providing constraints comparable to, or even stronger than, those from other cosmological probes. More specifically, with 1000 (100) clusters uniformly distributed in redshift between $ 0 \\leq z \\leq 0.8$, after applying a conservative $40\\%$ mass scatter prior on each cluster and marginalizing over all other parameters, we forecast $1\\sigma$ constraints on the dark energy equation of state $w$ and matter density parameter $\\Omega_M$ of $\\sigma_w = 0.161 (0.508)$ and $\\sigma_{\\Omega_M} = 0.001 (0.005)$ in a flat universe. Assuming the same galaxy cluster parameter priors and adding a prior on the Hubble constant we can achieve tight constraints on the CPL parametrization of the dark energy equation of state parameters $w_0$ and $w_a...

  8. A Time-Dependent Λ and G Cosmological Model Consistent with Cosmological Constraints

    Directory of Open Access Journals (Sweden)

    L. Kantha

    2016-01-01

    Full Text Available The prevailing constant Λ-G cosmological model agrees with observational evidence including the observed red shift, Big Bang Nucleosynthesis (BBN, and the current rate of acceleration. It assumes that matter contributes 27% to the current density of the universe, with the rest (73% coming from dark energy represented by the Einstein cosmological parameter Λ in the governing Friedmann-Robertson-Walker equations, derived from Einstein’s equations of general relativity. However, the principal problem is the extremely small value of the cosmological parameter (~10−52 m2. Moreover, the dark energy density represented by Λ is presumed to have remained unchanged as the universe expanded by 26 orders of magnitude. Attempts to overcome this deficiency often invoke a variable Λ-G model. Cosmic constraints from action principles require that either both G and Λ remain time-invariant or both vary in time. Here, we propose a variable Λ-G cosmological model consistent with the latest red shift data, the current acceleration rate, and BBN, provided the split between matter and dark energy is 18% and 82%. Λ decreases (Λ~τ-2, where τ is the normalized cosmic time and G increases (G~τn with cosmic time. The model results depend only on the chosen value of Λ at present and in the far future and not directly on G.

  9. Thomas Precession by Uniform Acceleration

    CERN Document Server

    Pardy, Miroslav

    2015-01-01

    We determine the nonlinear transformations between coordinate systems which are mutually in a constant symmetrical accelerated motion. The maximal acceleration limit follows from the kinematical origin and it is an analogue of the maximal velocity in special relativity. We derive the dependence of mass, length, time, Doppler effect, Cherenkov effect and transition radiation angle on acceleration as an analogue phenomena in special theory of relativity. The last application of our method is the Thomas precession by uniform acceleration with the possible role in the modern physics and cosmology. The comparison of derived results with other relativistic methods is necessary.

  10. Modern Cosmology: Assumptions and Limits

    Science.gov (United States)

    Hwang, Jai-Chan

    2012-06-01

    Physical cosmology tries to understand the Universe at large with its origin and evolution. Observational and experimental situations in cosmology do not allow us to proceed purely based on the empirical means. We examine in which sense our cosmological assumptions in fact have shaped our current cosmological worldview with consequent inevitable limits. Cosmology, as other branches of science and knowledge, is a construct of human imagination reflecting the popular belief system of the era. The question at issue deserves further philosophic discussions. In Whitehead's words, ``philosophy, in one of its functions, is the critic of cosmologies.'' (Whitehead 1925).

  11. Modern Cosmology: Assumptions and Limits

    CERN Document Server

    Hwang, Jai-chan

    2012-01-01

    Physical cosmology tries to understand the Universe at large with its origin and evolution. Observational and experimental situations in cosmology do not allow us to proceed purely based on the empirical means. We examine in which sense our cosmological assumptions in fact have shaped our current cosmological worldview with consequent inevitable limits. Cosmology, as other branches of science and knowledge, is a construct of human imagination reflecting the popular belief system of the era. The question at issue deserves further philosophic discussions. In Whitehead's words, "philosophy, in one of its functions, is the critic of cosmologies". (Whitehead 1925)

  12. Cosmology in massive gravity with effective composite metric

    CERN Document Server

    Heisenberg, Lavinia

    2016-01-01

    This paper is dedicated to scrutinizing the cosmology in massive gravity. A matter field of the dark sector is coupled to an effective composite metric while a standard matter field couples to the dynamical metric in the usual way. For this purpose, we study the dynamical system of cosmological solutions by using phase analysis, which provides an overview of the class of cosmological solutions in this setup. This also permits us to study the critical points of the cosmological equations together with their stability. We show the presence of stable attractor de Sitter critical points relevant to the late-time cosmic acceleration. Furthermore, we study the tensor, vector and scalar perturbations in the presence of standard matter fields and obtain the conditions for the absence of ghost and gradient instabilities. Hence, massive gravity in the presence of the effective composite metric can accommodate interesting dark energy phenomenology, that can be observationally distinguished from the standard model accord...

  13. Born-Infeld cosmology with scalar Born-Infeld matter

    CERN Document Server

    Jana, Soumya

    2016-01-01

    Cosmology in Eddington-inspired Born-Infeld gravity is investigated using a scalar Born-Infeld field (eg. tachyon condensate) as matter. In this way, both in the gravity and matter sectors we have Born-Infeld-like structures characterised by their actions and via two separate constants, $\\kappa$ and $\\alpha_T^2$ respectively. With a particular choice of the form of $\\dot{\\phi}$ (time derivative of the Born-Infeld scalar), analytical cosmological solutions are found. Thereafter, we explore some of the unique features of the corresponding cosmological spacetimes. For $\\kappa>0$, our solution has a de Sitter-like expansion both at early and late times, with an intermediate deceleration sandwiched between the accelerating phases. On the other hand, when $\\kappa0$ solution, are as good as in $\\Lambda$CDM cosmology. However, the $\\kappa<0$ solution has to be discarded due to the occurrence of a bounce at an unacceptably low redshift.

  14. Modern Cosmology: Interactive Computer Simulations that use Recent Observational Surveys

    CERN Document Server

    Moldenhauer, Jacob; Stone, Keenan; Shuler, Ezekiel

    2013-01-01

    We present a collection of new, open-source computational tools for numerically modeling recent large-scale observational data sets using modern cosmology theory. Specifically, these tools will allow both students and researchers to constrain the parameter values in competitive cosmological models, thereby discovering both the accelerated expansion of the universe and its composition (e.g., dark matter and dark energy). These programs have several features to help the non-cosmologist build an understanding of cosmological models and their relation to observational data: a built-in collection of several real observational data sets; sliders to vary the values of the parameters that define different cosmological models; real-time plotting of simulated data; and $\\chi^2$ calculations of the goodness of fit for each choice of parameters (theory) and observational data (experiment). The current list of built-in observations includes several recent supernovae Type Ia surveys, baryon acoustic oscillations, the cosmi...

  15. Born-Infeld cosmology with scalar Born-Infeld matter

    Science.gov (United States)

    Jana, Soumya; Kar, Sayan

    2016-09-01

    Cosmology in Eddington-inspired Born-Infeld gravity is investigated using a scalar Born-Infeld field (e.g. tachyon condensate) as matter. In this way, both in the gravity and matter sectors we have Born-Infeld-like structures characterized by their actions and via two separate constants, κ and αT2 , respectively. With a particular choice of the form of ϕ ˙ (the time derivative of the Born-Infeld scalar), analytical cosmological solutions are found. Thereafter, we explore some of the unique features of the corresponding cosmological spacetimes. For κ >0 , our solution has a de Sitter-like expansion both at early and late times, with an intermediate deceleration sandwiched between the accelerating phases. On the other hand, when κ 0 solution are as good as in Λ CDM cosmology. However, the κ <0 solution has to be discarded due to the occurrence of a bounce at an unacceptably low redshift.

  16. Cosmological test of the Yilmaz theory of gravity

    CERN Document Server

    Ibison, M

    2006-01-01

    We test the Yilmaz theory of gravitation by working out the corresponding Friedmann-type equations generated by assuming the Friedmann-Robertson-Walker cosmological metrics. In the case that space is flat the theory is consistent only with either a completely empty universe or a negative energy vacuum that decays to produce a constant density of matter. In both cases the total energy remains zero at all times, and in the latter case the acceleration of the expansion is always negative. To obtain a more flexible and potentially more realistic cosmology, the equation of state relating the pressure and energy density of the matter creation process must be different from the vacuum, as for example is the case in the steady-state models of Gold, Bondi, Hoyle and others. The theory does not support the cosmological principle for curved space K =/= 0 cosmological metrics.

  17. Quantum Vacuum and a Matter - Antimatter Cosmology

    CERN Document Server

    Rothwarf, F; Rothwarf, Frederick; Roy, Sisir

    2007-01-01

    A model of the universe as proposed by Allen Rothwarf based upon a degenerate Fermion fluid composed of polarizable particle-antiparticle pairs leads to a big bang model of the universe where the velocity of light varies inversely with the square root of cosmological time, t. This model is here extended to predict a decelerating expansion of the universe and to derive the Tully-Fisher law describing the flat rotation curves of spiral galaxies. The estimated critical acceleration parameter, aoR, is compared to the experimental, critical modified Newtonian Dynamics (MOND) cosmological acceleration constant, obtained by fitting a large number of rotation curves. The present estimated value is much closer to the experimental value than that obtained with the other models. This model for aR(t) allows the derivation of the time dependent radius of the universe as a function of red shift Other cosmological parameters such as the velocity of light, Hubble's constant, the Tully-Fisher relation, and the index of refrac...

  18. On the cosmology of massive gravity

    CERN Document Server

    De Felice, Antonio; Lin, Chunshan; Mukohyama, Shinji

    2013-01-01

    We present a review of cosmological solutions in non-linear massive gravity, focusing on the stability of perturbations. Although homogeneous and isotropic solutions have been found, these are now known to suffer from either Higuchi ghost or a new non-linear ghost instability. We discuss two approaches to alleviate this issue. By relaxing the symmetry of the background by e.g. breaking isotropy in the hidden sector, it is possible to accommodate a stable cosmological solution. Alternatively, extending the theory to allow for new dynamical degrees of freedom can also remove the conditions which lead to the instability. As examples for this case, we study the stability of self-accelerating solutions in the quasi-dilatonic extension and generic cosmological solutions in the varying mass extension. While the quasi-dilaton case turns out to be unstable, the varying mass case allows stable regimes of parameters. Viable self-accelerating solutions in the varying mass theory yet remain to be found.

  19. The Accelerator Markup Language and the Universal Accelerator Parser

    Energy Technology Data Exchange (ETDEWEB)

    Sagan, D.; Forster, M.; /Cornell U., LNS; Bates, D.A.; /LBL, Berkeley; Wolski, A.; /Liverpool U. /Cockcroft Inst. Accel. Sci. Tech.; Schmidt, F.; /CERN; Walker, N.J.; /DESY; Larrieu, T.; Roblin, Y.; /Jefferson Lab; Pelaia, T.; /Oak Ridge; Tenenbaum, P.; Woodley, M.; /SLAC; Reiche, S.; /UCLA

    2006-10-06

    A major obstacle to collaboration on accelerator projects has been the sharing of lattice description files between modeling codes. To address this problem, a lattice description format called Accelerator Markup Language (AML) has been created. AML is based upon the standard eXtensible Markup Language (XML) format; this provides the flexibility for AML to be easily extended to satisfy changing requirements. In conjunction with AML, a software library, called the Universal Accelerator Parser (UAP), is being developed to speed the integration of AML into any program. The UAP is structured to make it relatively straightforward (by giving appropriate specifications) to read and write lattice files in any format. This will allow programs that use the UAP code to read a variety of different file formats. Additionally, this will greatly simplify conversion of files from one format to another. Currently, besides AML, the UAP supports the MAD lattice format.

  20. The Accelerator Markup Language and the Universal Accelerator Parser

    Energy Technology Data Exchange (ETDEWEB)

    Sagan, D.; Forster, M.; /Cornell U., LNS; Bates, D.A.; /LBL, Berkeley; Wolski, A.; /Liverpool U. /Cockcroft Inst. Accel. Sci. Tech.; Schmidt, F.; /CERN; Walker, N.J.; /DESY; Larrieu, T.; Roblin, Y.; /Jefferson Lab; Pelaia, T.; /Oak Ridge; Tenenbaum, P.; Woodley, M.; /SLAC; Reiche, S.; /UCLA

    2006-10-06

    A major obstacle to collaboration on accelerator projects has been the sharing of lattice description files between modeling codes. To address this problem, a lattice description format called Accelerator Markup Language (AML) has been created. AML is based upon the standard eXtensible Markup Language (XML) format; this provides the flexibility for AML to be easily extended to satisfy changing requirements. In conjunction with AML, a software library, called the Universal Accelerator Parser (UAP), is being developed to speed the integration of AML into any program. The UAP is structured to make it relatively straightforward (by giving appropriate specifications) to read and write lattice files in any format. This will allow programs that use the UAP code to read a variety of different file formats. Additionally, this will greatly simplify conversion of files from one format to another. Currently, besides AML, the UAP supports the MAD lattice format.

  1. Can Cosmological Constant be a Forbidden Zone (GAP) in Quantum Vacuum

    CERN Document Server

    Pankovic, Vladan; Ciganovic, Simo

    2008-01-01

    In this work we suggest, without detailed mathematical analysis, a hypothesis on the physical meaning of cosmological constant. It is primarily based on a conceptual analogy with energy characteristics of the crystal lattice structure, i.e. energy zones theory in solid state physics. Namely, according to some theories (holographic principle, emergent gravity etc.) it is supposed that empty space, i.e. quantum vacuum holds a structure like to crystal lattice. It implies a possibility of the existence of totally occupied zones consisting of many levels of the negative energies as well as at least one negative energy forbidden zone, i.e. negative energy gap without any (occupied or empty) level of the negative energy. We suppose that given negative energy forbidden zone in the quantum vacuum represents effectively a positive energy zone without quantum particles that corresponds to cosmological constant. Also we suggest some other (less extravagant) model of the cosmological constant. Here cosmological constant ...

  2. Dark Energy or local acceleration?

    CERN Document Server

    Feoli, Antonio

    2016-01-01

    We find that an observer with a suitable acceleration relative to the frame comoving whit the cosmic fluid, in the context of the FRW decelerating universe, measures the same cosmological redshift as the LambdaCDM model. The estimated value of this acceleration is beta = 1.4x10^-9m/s^2. The problem of a too high peculiar velocity can be solved assuming, for the observer, a sort of helical motion.

  3. Inhomogeneous anisotropic cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Kleban, Matthew [Center for Cosmology and Particle Physics, New York University,4 Washington Place, New York, NY 10003 (United States); Senatore, Leonardo [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,382 Via Pueblo Mall, Stanford, CA 94306 (United States); Kavli Institute for Particle Astrophysics and Cosmology, Stanford University and SLAC,2575 Sand Hill Road, M/S 29, Menlo Park, CA 94025 (United States)

    2016-10-12

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.

  4. Thermal Tachyacoustic Cosmology

    CERN Document Server

    Agarwal, Abhineet

    2014-01-01

    An intriguing possibility that can address pathologies in both early universe cosmology (i.e. the horizon problem) and quantum gravity (i.e. non-renormalizability), is that particles at very high energies and/or temperatures could propagate arbitrarily fast. A concrete realization of this possibility for the early universe is the Tachyacoustic (or Speedy Sound) cosmology, which could also produce a scale-invariant spectrum for scalar cosmological perturbations. Here, we study Thermal Tachyacoustic Cosmology (TTC), i.e. this scenario with thermal initial conditions. We find that a phase transition in the early universe, around the scale of Grand Unified Theories (GUT scale; $T\\sim 10^{15}$ GeV), during which the speed of sound drops by $25$ orders of magnitude within a Hubble time, can fit current CMB observations. We further discuss how production of primordial black holes constrains the cosmological acoustic history, while coupling TTC to Horava-Lifshitz gravity leads to a lower limit on the amplitude of ten...

  5. Thermal tachyacoustic cosmology

    Science.gov (United States)

    Agarwal, Abhineet; Afshordi, Niayesh

    2014-08-01

    An intriguing possibility that can address pathologies in both early Universe cosmology (i.e. the horizon problem) and quantum gravity (i.e. nonrenormalizability), is that particles at very high energies and/or temperatures could propagate arbitrarily fast. A concrete realization of this possibility for the early Universe is the tachyacoustic (or speedy sound) cosmology, which could also produce a scale-invariant spectrum for scalar cosmological perturbations. Here, we study thermal tachyacoustic cosmology (TTC), i.e. this scenario with thermal initial conditions. We find that a phase transition in the early Universe, around the scale of the grand unified theory (GUT scale; T ˜1015 GeV), during which the speed of sound drops by 25 orders of magnitude within a Hubble time, can fit current CMB observations. We further discuss how production of primordial black holes constrains the cosmological acoustic history, while coupling TTC to Horava-Lifshitz gravity leads to a lower limit on the amplitude of tensor modes (r≳10-3), that are detectable by CMBpol (and might have already been seen by the BICEP-Keck Collaboration).

  6. Conceptual Problems in Cosmology

    CERN Document Server

    Vieira, F J Amaral

    2011-01-01

    In this essay a critical review of present conceptual problems in current cosmology is provided from a more philosophical point of view. In essence, a digression on how could philosophy help cosmologists in what is strictly their fundamental endeavor is presented. We start by recalling some examples of enduring confrontations among philosophers and physicists on what could be contributed by the formers to the day-time striving of the second ones. Then, a short review of the standard model Friedmann-Lema\\^itre-Robertson-Walter (FLRW) of cosmology is given. It seems apparent that cosmology is living a golden age with the advent of observations of high precision. Nonetheless, a critical revisiting of the direction in which it should go on appears also needed, for misconcepts like "quantum backgrounds for cosmological classical settings" and "quantum gravity unification" have not been properly constructed up-to-date. Thus, knowledge-building in cosmology, more than in any other field, should begin with visions of...

  7. Inhomogeneous anisotropic cosmology

    Science.gov (United States)

    Kleban, Matthew; Senatore, Leonardo

    2016-10-01

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with ``flat'' (including toroidal) and ``open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are ``flat'' or ``open''. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with ``flat'' or ``open'' topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.

  8. A Riccati equation based approach to isotropic scalar field cosmologies with arbitrary self-interaction potentials

    CERN Document Server

    Harko, Tiberiu; Mak, M K

    2014-01-01

    Gravitationally coupled scalar fields $\\phi $, distinguished by the choice of an effective self-interaction potential $V(\\phi )$, simulating a temporarily non-vanishing cosmological term, can generate both inflation and late time acceleration. In scalar field cosmological models the evolution of the Hubble function is determined, in terms of the interaction potential, by a Riccati type equation. In the present work we investigate scalar field cosmological models that can be obtained as solutions of the Riccati evolution equation for the Hubble function. Four exact integrability cases of the field equations are presented, representing classes of general solutions of the Riccati evolution equation, and their cosmological properties are investigated in detail.

  9. Cosmological special relativity the large scale structure of space, time and velocity

    CERN Document Server

    Carmeli, Moshe

    2002-01-01

    This book presents Einstein's theory of space and time in detail, and describes the large-scale structure of space, time and velocity as a new cosmological special relativity. A cosmological Lorentz-like transformation, which relates events at different cosmic times, is derived and applied. A new law of addition of cosmic times is obtained, and the inflation of the space at the early universe is derived, both from the cosmological transformation. The relationship between cosmic velocity, acceleration and distances is given. In the appendices gravitation is added in the form of a cosmological g

  10. The Fermilab Lattice Information Repository

    CERN Document Server

    Ostiguy, Jean-Francois; McCusker-Whiting, Michele; Michelotti, Leo

    2005-01-01

    Fermilab is a large accelerator complex with six rings and sixteen transfer beamlines operating in various modes and configurations, subject to modifications, improvements and occasional major redesign. Over the years, it became increasingly obvious that a centralized lattice repository with the ability to track revisions would be of great value. To that end, we evaluated potentially suitable revision systems, either freely available or commercial, and decided that expecting infrequent users to become fully conversant with complex revision system software was neither realistic nor practical. In this paper, we discuss technical aspects of the recently introduced FNAL Accelerator Division's Lattice Repository, whose fully web-based interface hides the complexity of Subversion, a comprehensive open source revision system. In particular we emphasize how the architecture of Subversion was a key ingredient in the technical success of the repository's implementation.

  11. Cosmological structure formation shocks and cosmic rays in hydrodynamical simulations

    CERN Document Server

    Pfrommer, C; Ensslin, T A; Jubelgas, M; Pfrommer, Christoph; Springel, Volker; Ensslin, Torsten A.; Jubelgas, Martin

    2006-01-01

    Cosmological shock waves during structure formation not only play a decisive role for the thermalization of gas in virializing structures but also for the acceleration of relativistic cosmic rays (CRs) through diffusive shock acceleration. We discuss a novel numerical treatment of the physics of cosmic rays in combination with a formalism for identifying and measuring the shock strength on-the-fly during a smoothed particle hydrodynamics simulation. In our methodology, the non-thermal CR population is treated self-consistently in order to assess its dynamical impact on the thermal gas as well as other implications on cosmological observables. Using this formalism, we study the history of the thermalization process in high-resolution hydrodynamic simulations of the Lambda cold dark matter model. Collapsed cosmological structures are surrounded by shocks with high Mach numbers up to 1000, but they play only a minor role in the energy balance of thermalization. However, this finding has important consequences fo...

  12. A Cosmological Study in Massive Gravity theory

    CERN Document Server

    Pan, Supriya

    2015-01-01

    A detailed study of the various cosmological aspects in massive gravity theory has been presented in the present work. For the homogeneous and isotropic FLRW model, the deceleration parameter has been evaluated, and, it has been examined whether there is any transition from deceleration to acceleration in recent past, or not. With the proper choice of the free parameters, it has been shown that the massive gravity theory is equivalent to Einstein gravity with a modified Newtonian gravitational constant together with a negative cosmological constant. Also, in this context, it has been examined whether the emergent scenario is possible, or not, in massive gravity theory. Finally, we have done a cosmographic analysis in massive gravity theory.

  13. Realistic coasting cosmology from the Milne model

    CERN Document Server

    John, Moncy V

    2016-01-01

    In the context of the recent synchronicity problem in $\\Lambda$CDM cosmology, coasting models such as the classic Milne model and the $R_h=ct$ model have attracted much attention. Also, a very recent analysis of supernovae Ia data is reported to favour models with constant expansion rates. We point out that the nonempty $R_h=ct$ model has some known antecedents in the literature. Some of these are published even before the discovery of the accelerated expansion and were shown to have none of the cosmological problems and also that $H_0t_0=1$ and $\\Omega_m/\\Omega_{dark \\; energy}$ = some constant of the order of unity. In this paper, we also derive such a model by a complex extension of scale factor in the Milne model.

  14. Holographic Theory of Gravity and Cosmology

    CERN Document Server

    Ng, Y Jack

    2016-01-01

    According to the holographic principle, the maximum amount of information stored in a region of space scales as the area of its two-dimensional surface, like a hologram. We show that the holographic principle can be understood heuristically as originated from quantum fluctuations of spacetime. Applied to cosmology, this consideration leads to a dynamical cosmological constant $\\Lambda$ of the observed magnitude, in agreement with the result obtained for the present and recent cosmic eras, by using unimodular gravity and causal-set theory. By generalizing the concept of entropic gravity, we find a critical acceleration parameter related to $\\Lambda$ in galactic dynamics, and we construct a phenomenological model of dark matter which we call "modified dark matter" (MDM). We provide successful observational tests of MDM at both the galactic and cluster scales. We also discuss the possibility that the quanta of both dark energy and dark matter obey the quantum Boltzmann statistics or infinite statistics as descri...

  15. f(T) teleparallel gravity and cosmology

    CERN Document Server

    Cai, Yi-Fu; De Laurentis, Mariafelicia; Saridakis, Emmanuel N

    2015-01-01

    Over the past decades, the role of torsion in gravity has been extensively investigated along the main direction of bringing gravity closer to its gauge formulation and incorporating spin in a geometric description. Here we review various torsional constructions, from teleparallel, to Einstein-Cartan, and metric-affine gauge theories, resulting in extending torsional gravity in the paradigm of f(T) gravity, where f(T) is an arbitrary function of the torsion scalar. Based on this theory, we further review the corresponding cosmological and astrophysical applications. In particular, we study cosmological solutions arising from f(T) gravity, both at the background and perturbation levels, in different eras along the cosmic expansion. The f(T) gravity construction can provide a theoretical interpretation of the late-time universe acceleration, and it can easily accommodate with the regular thermal expanding history including the radiation and cold dark matter dominated phases. Furthermore, if one traces back to v...

  16. Cosmological Constant, Quintessence and Expansive Nondecelerative Universe

    CERN Document Server

    Sima, J; Sima, Jozef; Sukenik, Miroslav

    2001-01-01

    Recent observations of the Universe have led to a conclusion suppressing an up-to-now supposed deceleration of the Universe caused by attractive gravitational forces. Contrary, there is a renaissance of the cosmological member lambda and introduction of enigmatic repulsive dark energy in attempts to rationalize a would-be acceleration of the Universe expansion. It is documented that the model of Expansive Nondecelerative Universe is capable to offer acceptable answers to the questions on the Universe expansion, state equations of the Universe, the parameter omega, the cosmological member lambda without any necessity to introduce new strange kinds of matter or energy being in accord with the fundamental conservation laws and generally accepted parameters of the Universe.

  17. A college course on relativity and cosmology

    CERN Document Server

    Cheng, Ta-Pei

    2015-01-01

    This advanced undergraduate text introduces Einstein's general theory of relativity. The topics covered include geometric formulation of special relativity, the principle of equivalence, Einstein's field equation and its spherical-symmetric solution, as well as cosmology. An emphasis is placed on physical examples and simple applications without the full tensor apparatus. It begins by examining the physics of the equivalence principle and looks at how it inspired Einstein's idea of curved spacetime as the gravitational field. At a more mathematically accessible level, it provides a metric description of a warped space, allowing the reader to study many interesting phenomena such as gravitational time dilation, GPS operation, light deflection, precession of Mercury's perihelion, and black holes. Numerous modern topics in cosmology are discussed from primordial inflation and cosmic microwave background to the dark energy that propels an accelerating universe. Building on Cheng's previous book, 'Relativity, Grav...

  18. Cosmology calculations almost without general relativity

    CERN Document Server

    Jordan, T F

    2003-01-01

    The Friedmann equation can be derived for a Newtonian universe. Changing mass density to energy density gives exactly the Friedmann equation of general relativity. Accounting for work done by pressure then yields the two Einstein equations that govern the expansion of the universe. Descriptions and explanations of radiation pressure and vacuum pressure are added to complete a basic kit of cosmology tools. It provides a basis for teaching cosmology to undergraduates in a way that quickly equips them to do basic calculations. This is demonstrated with calculations involving: characteristics of the expansion for densities dominated by radiation, matter, or vacuum; the closeness of the density to the critical density; how much vacuum energy compared to matter energy is needed to make the expansion accelerate; and how little is needed to make it stop. Travel time and luninosity distance are calculated in terms of the redshift and the densities of matter and vacuum energy, using a scaled Friedmann equation with the...

  19. Cosmological Consequences of QCD Phase Transition(s) in Early Universe

    CERN Document Server

    Tawfik, A

    2008-01-01

    We discuss the cosmological consequences of QCD phase transition(s) on the early universe. We argue that our recent knowledge about the transport properties of quark-gluon plasma (QGP) should throw additional lights on the actual time evolution of our universe. Understanding the nature of QCD phase transition(s), which can be studied in lattice gauge theory and verified in heavy ion experiments, provides an explanation for cosmological phenomenon stem from early universe.

  20. Axions : Theory and Cosmological Role

    OpenAIRE

    Kawasaki, Masahiro; Nakayama, Kazunori

    2013-01-01

    We review recent developments on axion cosmology. Topics include : axion cold dark matter, axions from topological defects, axion isocurvature perturbation and its non-Gaussianity and axino/saxion cosmology in supersymmetric axion model.

  1. Dual Lattice of ℤ-module Lattice

    Directory of Open Access Journals (Sweden)

    Futa Yuichi

    2017-07-01

    Full Text Available In this article, we formalize in Mizar [5] the definition of dual lattice and their properties. We formally prove that a set of all dual vectors in a rational lattice has the construction of a lattice. We show that a dual basis can be calculated by elements of an inverse of the Gram Matrix. We also formalize a summation of inner products and their properties. Lattice of ℤ-module is necessary for lattice problems, LLL(Lenstra, Lenstra and Lovász base reduction algorithm and cryptographic systems with lattice [20], [10] and [19].

  2. Strongly Coupled Cosmologies

    CERN Document Server

    Bonometto, S A; Musco, I; Mainini, R; Maccio', A V

    2014-01-01

    Models including an energy transfer from CDM to DE are widely considered in the literature, namely to allow DE a significant high-z density. Strongly Coupled cosmologies assume a much larger coupling between DE and CDM, together with the presence of an uncoupled warm DM component, as the role of CDM is mostly restricted to radiative eras. This allows us to preserve small scale fluctuations even if the warm particle, possibly a sterile neutrino, is quite light, O(100 eV). Linear theory and numerical simulations show that these cosmologies agree with LCDM on supergalactic scales; e.g., CMB spectra are substantially identical. Simultaneously, simulations show that they significantly ease problems related to the properties of MW satellites and cores in dwarfs. SC cosmologies also open new perspectives on early black hole formation, and possibly lead towards unificating DE and inflationary scalar fields.

  3. The philosophy of cosmology

    CERN Document Server

    Silk, Joseph; Barrow, John D; Saunders, Simon

    2017-01-01

    Following a long-term international collaboration between leaders in cosmology and the philosophy of science, this volume addresses foundational questions at the limit of science across these disciplines, questions raised by observational and theoretical progress in modern cosmology. Space missions have mapped the Universe up to its early instants, opening up questions on what came before the Big Bang, the nature of space and time, and the quantum origin of the Universe. As the foundational volume of an emerging academic discipline, experts from relevant fields lay out the fundamental problems of contemporary cosmology and explore the routes toward finding possible solutions. Written for graduates and researchers in physics and philosophy, particular efforts are made to inform academics from other fields, as well as the educated public, who wish to understand our modern vision of the Universe, related philosophical questions, and the significant impacts on scientific methodology.

  4. Evolving Horava Cosmological Horizons

    CERN Document Server

    Fathi, Mohsen

    2016-01-01

    Several sets of radially propagating null congruence generators are exploited in order to form 3-dimensional marginally trapped surfaces, referred to as black hole and cosmological apparent horizons in a Horava universe. Based on this method, we deal with the characteristics of the 2-dimensional space-like spheres of symmetry and the peculiarities of having trapping horizons. Moreover, we apply this method in standard expanding and contracting FLRW cosmological models of a Horava universe to investigate the conditions under which the extra parameters of the theory may lead to trapped/anti-trapped surfaces both in the future and in the past. We also include the cases of negative time, referred to as the finite past, and discuss the formation of anti-trapped surfaces inside the cosmological apparent horizons.

  5. Cosmological Black Holes

    CERN Document Server

    Stornaiolo, C

    2002-01-01

    In this letter we propose the existence of low density black holes and discuss its compatibility with the cosmological observations. The origin of these black holes can be traced back to the collapse of long wavelength cosmological perturbations during the matter dominated era, when the densities are low enough to neglect any internal and thermal pressure. By introducing a threshold density $\\hat{\\rho}$ above which pressure and non-gravitational interactions become effective, we find the highest wavelength for the perturbations that can reach an equilibrium state instead of collapsing to a black hole. The low density black holes introduced here, if they exist, can be observed through weak and strong gravitational lensing effects. Finally we observe that we obtained here a cosmological model which is capable to explain in a qualitative way the void formation together with the value $\\Omega=1$. But we remark that it needs to be improved by considering non spherical symmetric black holes.

  6. Cosmological Perturbations in Antigravity

    CERN Document Server

    Oltean, Marius

    2014-01-01

    We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely-signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the Standard Model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically-complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity", during each successive transition from a Big Crunch to a Big Bang. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, its cosmological solutions are stable at the perturbative level.

  7. Time in quantum cosmology

    CERN Document Server

    Bojowald, Martin

    2016-01-01

    A cosmological model with two global internal times shows that time reparameterization invariance, and therefore covariance, is not guaranteed by deparameterization. In particular, it is impossible to derive proper-time effective equations from a single deparameterized model if quantum corrections from fluctuations and higher moments are included. The framework of effective constraints shows how proper-time evolution can consistently be defined in quantum cosmological systems, such that it is time reparameterization invariant when compared with other choices of coordinate time. At the same time, it allows transformations of moment corrections in different deparameterizations of the same model, indicating partial time reparameterization of internal-time evolution. However, in addition to corrections from moments such as quantum fluctuations, also factor ordering corrections may appear. The latter generically break covariance in internal-time formulations. Fluctuation effects in quantum cosmology are therefore ...

  8. General relativity and cosmology

    CERN Document Server

    Bucher, Martin

    2015-01-01

    This year marks the hundredth anniversary of Einstein's 1915 landmark paper "Die Feldgleichungen der Gravitation" in which the field equations of general relativity were correctly formulated for the first time, thus rendering general relativity a complete theory. Over the subsequent hundred years physicists and astronomers have struggled with uncovering the consequences and applications of these equations. This contribution, which was written as an introduction to six chapters dealing with the connection between general relativity and cosmology that will appear in the two-volume book "One Hundred Years of General Relativity: From Genesis and Empirical Foundations to Gravitational Waves, Cosmology and Quantum Gravity," endeavors to provide a historical overview of the connection between general relativity and cosmology, two areas whose development has been closely intertwined.

  9. f(T) teleparallel gravity and cosmology

    Science.gov (United States)

    Cai, Yi-Fu; Capozziello, Salvatore; De Laurentis, Mariafelicia; Saridakis, Emmanuel N.

    2016-10-01

    Over recent decades, the role of torsion in gravity has been extensively investigated along the main direction of bringing gravity closer to its gauge formulation and incorporating spin in a geometric description. Here we review various torsional constructions, from teleparallel, to Einstein-Cartan, and metric-affine gauge theories, resulting in extending torsional gravity in the paradigm of f (T) gravity, where f (T) is an arbitrary function of the torsion scalar. Based on this theory, we further review the corresponding cosmological and astrophysical applications. In particular, we study cosmological solutions arising from f (T) gravity, both at the background and perturbation levels, in different eras along the cosmic expansion. The f (T) gravity construction can provide a theoretical interpretation of the late-time universe acceleration, alternative to a cosmological constant, and it can easily accommodate with the regular thermal expanding history including the radiation and cold dark matter dominated phases. Furthermore, if one traces back to very early times, for a certain class of f (T) models, a sufficiently long period of inflation can be achieved and hence can be investigated by cosmic microwave background observations—or, alternatively, the Big Bang singularity can be avoided at even earlier moments due to the appearance of non-singular bounces. Various observational constraints, especially the bounds coming from the large-scale structure data in the case of f (T) cosmology, as well as the behavior of gravitational waves, are described in detail. Moreover, the spherically symmetric and black hole solutions of the theory are reviewed. Additionally, we discuss various extensions of the f (T) paradigm. Finally, we consider the relation with other modified gravitational theories, such as those based on curvature, like f (R) gravity, trying to illuminate the subject of which formulation, or combination of formulations, might be more

  10. f(T) teleparallel gravity and cosmology.

    Science.gov (United States)

    Cai, Yi-Fu; Capozziello, Salvatore; De Laurentis, Mariafelicia; Saridakis, Emmanuel N

    2016-10-01

    Over recent decades, the role of torsion in gravity has been extensively investigated along the main direction of bringing gravity closer to its gauge formulation and incorporating spin in a geometric description. Here we review various torsional constructions, from teleparallel, to Einstein-Cartan, and metric-affine gauge theories, resulting in extending torsional gravity in the paradigm of f (T) gravity, where f (T) is an arbitrary function of the torsion scalar. Based on this theory, we further review the corresponding cosmological and astrophysical applications. In particular, we study cosmological solutions arising from f (T) gravity, both at the background and perturbation levels, in different eras along the cosmic expansion. The f (T) gravity construction can provide a theoretical interpretation of the late-time universe acceleration, alternative to a cosmological constant, and it can easily accommodate with the regular thermal expanding history including the radiation and cold dark matter dominated phases. Furthermore, if one traces back to very early times, for a certain class of f (T) models, a sufficiently long period of inflation can be achieved and hence can be investigated by cosmic microwave background observations-or, alternatively, the Big Bang singularity can be avoided at even earlier moments due to the appearance of non-singular bounces. Various observational constraints, especially the bounds coming from the large-scale structure data in the case of f (T) cosmology, as well as the behavior of gravitational waves, are described in detail. Moreover, the spherically symmetric and black hole solutions of the theory are reviewed. Additionally, we discuss various extensions of the f (T) paradigm. Finally, we consider the relation with other modified gravitational theories, such as those based on curvature, like f (R) gravity, trying to illuminate the subject of which formulation, or combination of formulations, might be more suitable

  11. The Cosmological Constant for the Crystalline Vacuum Cosmic Space Model

    CERN Document Server

    Montemayor-Aldrete, J A; Morales-Mori, A; Mendoza-Allende, A; Montemayor-Varela, A; Castillo-Mussot, M; Vazquez, G J

    2005-01-01

    The value of the cosmological constant arising from a crystalline model for vacuum cosmic space with lattice parameter of the order of the neutron radius [1] has been calculated. The model allows to solve, in an easy way, the problem of the cosmological constant giving the right order of magnitude, which corresponds very well with the mean value of matter density in the universe. The obtained value is about 10-48 Km-2. Diffraction experiments with non-thermal neutron beam in cosmic space are proposed to search for the possibility of crystalline structure of vacuum space and to measure the lattice parameter. PACS numbers: 98.80.Es, 04.20.-q, 03.65.-w, 61.50.-f, 98.80.Ft

  12. Transient cosmic acceleration from interacting fluids

    CERN Document Server

    Fabris, Julio C; Pinto-Neto, Nelson; Zimdahl, Winfried

    2009-01-01

    Recent investigations seem to favor a cosmological dynamics according to which the accelerated expansion of the Universe may have already peaked and is now slowing down again \\cite{sastaro}. As a consequence, the cosmic acceleration may be a transient phenomenon. We investigate a toy model that reproduces such a background behavior as the result of a time-dependent coupling in the dark sector which implies a cancelation of the "bare" cosmological constant. With the help of a statistical analysis of Supernova Type Ia (SNIa) data we demonstrate that for a certain parameter combination a transient accelerating phase emerges as a pure interaction effect.

  13. Brane cosmology in teleparallel gravity

    CERN Document Server

    Atazadeh, K

    2014-01-01

    We consider cosmology of brane-world scenario in the frame work of teleparallel gravity in that way matter is localized on the brane. We show that the cosmology of such branes is different from the standard cosmology in teleparallelism. In particular, we obtain a class of new solutions with a constant five-dimensional radius and cosmologically evolving brane in the context of constant torsion $f(T)$ gravity.

  14. The Lindquist-Wheeler formulation of lattice universes

    CERN Document Server

    Liu, Rex G

    2015-01-01

    This paper examines the properties of `lattice universes' wherein point masses are arranged in a regular lattice on space-like hypersurfaces; open, flat, and closed universes are considered. The universes are modelled using the Lindquist-Wheeler approximation scheme, which approximates the space-time in each lattice cell by Schwarzschild geometry. It is shown that the resulting dynamics strongly resemble those of the Friedmann-Lema\\^itre-Robertson-Walker (FLRW) universes. The cosmological redshifts for such universes are determined numerically, using a modification of Clifton and Ferreira's approach, and they are found to closely resemble their FLRW counterparts, though with certain differences attributable to the `lumpiness' in the underlying matter content.

  15. Relativistic Cosmology Revisited

    Directory of Open Access Journals (Sweden)

    Crothers S. J.

    2007-04-01

    Full Text Available In a previous paper the writer treated of particular classes of cosmological solutions for certain Einstein spaces and claimed that no such solutions exist in relation thereto. In that paper the assumption that the proper radius is zero when the line-element is singular was generally applied. This general assumption is unjustified and must be dropped. Consequently, solutions do exist in relation to the aforementioned types, and are explored herein. The concept of the Big Bang cosmology is found to be inconsistent with General Relativity

  16. Fluids in cosmology

    CERN Document Server

    Cervantes-Cota, Jorge L

    2014-01-01

    We review the role of fluids in cosmology by first introducing them in General Relativity and then applied to a FRW Universe's model. We describe how relativistic and non-relativistic components evolve in the background dynamics. We also introduce scalar fields to show that they are able to yield an inflationary dynamics at very early times (inflation) and late times (quintessence). Then, we proceed to study the thermodynamical properties of the fluids and, lastly, its perturbed kinematics. We make emphasis in the constrictions of parameters by recent cosmological probes.

  17. Horizons of cosmology

    CERN Document Server

    Silk, Joseph

    2011-01-01

    Horizons of Cosmology: Exploring Worlds Seen and Unseen is the fourth title published in the Templeton Science and Religion Series, in which scientists from a wide range of fields distill their experience and knowledge into brief tours of their respective specialties. In this volume, highly esteemed astrophysicist Joseph Silk explores the vast mysteries and speculations of the field of cosmology in a way that balances an accessible style for the general reader and enough technical detail for advanced students and professionals. Indeed, while the p

  18. The Cosmological Mass Function

    CERN Document Server

    Monaco, P

    1997-01-01

    This thesis aims to review the cosmological mass function problem, both from the theoretical and the observational point of view, and to present a new mass function theory, based on realistic approximations for the dynamics of gravitational collapse. Chapter 1 gives a general introduction on gravitational dynamics in cosmological models. Chapter 2 gives a complete review of the mass function theory. Chapters 3 and 4 present the ``dynamical'' mass function theory, based on truncated Lagrangian dynamics and on the excursion set approach. Chapter 5 reviews the observational state-of-the-art and the main applications of the mass function theories described before. Finally, Chapter 6 gives conclusions and future prospects.

  19. Advances in modern cosmology

    CERN Document Server

    2011-01-01

    The twentieth century elevated our understanding of the Universe from its early stages to what it is today and what is to become of it. Cosmology is the weapon that utilizes all the scientific tools that we have created to feel less lost in the immensity of our Universe. The standard model is the theory that explains the best what we observe. Even with all the successes that this theory had, two main questions are still to be answered: What is the nature of dark matter and dark energy? This book attempts to understand these questions while giving some of the most promising advances in modern cosmology.

  20. Adventures in cosmology

    CERN Document Server

    2012-01-01

    This volume tells of the quest for cosmology as seen by some of the finest cosmologists in the world. It starts with "Galaxy Formation from Start to Finish" and ends with "The First Supermassive Black Holes in the Universe," exploring in between the grand themes of galaxies, the early universe, expansion of the universe, dark matter and dark energy. This up-to-date collection of review articles offers a general introduction to cosmology and is intended for all probing into the profound questions on where we came from and where we are going.

  1. Anisotropic cosmological models in $f (R, T)$ theory of gravitation

    Indian Academy of Sciences (India)

    Shri Ram; Priyanka; Manish Kumar Singh

    2013-07-01

    A class of non-singular bouncing cosmological models of a general class of Bianchi models filled with perfect fluid in the framework of $f (R, T)$ gravity is presented. The model initially accelerates for a certain period of time and decelerates thereafter. The physical behaviour of the model is also studied.

  2. Cosmological tracking solution and the Super-Higgs mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Landim, Ricardo C.G. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, Sao Paulo (Brazil)

    2016-08-15

    In this paper we argue that minimal supergravity with a flat Kaehler metric and a power-law superpotential can relate the Super-Higgs mechanism for the local spontaneous supersymmetry breaking and the cosmological tracking solution, leading in turn to a late-time accelerated expansion of the universe and alleviating the coincidence problem. (orig.)

  3. Noether Symmetry Approach for Dirac-Born-Infeld Cosmology

    CERN Document Server

    Capozziello, Salvatore; Myrzakulov, Ratbay

    2014-01-01

    We consider the Noether Symmetry Approach for a cosmological model derived from a tachyon scalar field $T$ with a Dirac-Born-Infeld Lagrangian and a potential $V(T)$. Furthermore, we assume a coupled canonical scalar field $\\phi$ with an arbitrary interaction potential $B(T,\\phi)$. Exact solutions are derived consistent with the accelerated behavior of cosmic fluid.

  4. Non-decoupling of heavy scalars in cosmology

    NARCIS (Netherlands)

    Hardeman, Sjoerd Reimer

    2012-01-01

    The theory describing physics at the highest energy scales likely contains extra dimensions, whose internal degrees of freedom result in many massive field and particles. At accelerator experiments these fields and particles generally decouple from the low energy physics. However, in cosmology gravi

  5. Bimetric gravity doubly coupled to matter: theory and cosmological implications

    Energy Technology Data Exchange (ETDEWEB)

    Akrami, Yashar; Koivisto, Tomi S.; Mota, David F.; Sandstad, Marit, E-mail: yashar.akrami@astro.uio.no, E-mail: t.s.koivisto@astro.uio.no, E-mail: d.f.mota@astro.uio.no, E-mail: marit.sandstad@astro.uio.no [Institute of Theoretical Astrophysics, University of Oslo P.O. Box 1029 Blindern, N-0315 Oslo (Norway)

    2013-10-01

    A ghost-free theory of gravity with two dynamical metrics both coupled to matter is shown to be consistent and viable. Its cosmological implications are studied, and the models, in particular in the context of partially massless gravity, are found to explain the cosmic acceleration without resorting to dark energy.

  6. Constraining the $\\Lambda$CDM and Galileon models with recent cosmological data

    CERN Document Server

    Neveu, J; Astier, P; Besançon, M; Guy, J; Möller, A; Babichev, E

    2016-01-01

    The Galileon theory belongs to the class of modified gravity models that can explain the late-time accelerated expansion of the Universe. In previous works, cosmological constraints on the Galileon model were derived, both in the uncoupled case and with a disformal coupling of the Galileon field to matter. There, we showed that these models agree with the most recent cosmological data. In this work, we used updated cosmological data sets to derive new constraints on Galileon models, including the case of a constant conformal Galileon coupling to matter. We also explored the tracker solution of the uncoupled Galileon model. After updating our data sets, especially with the latest \\textit{Planck} data and BAO measurements, we fitted the cosmological parameters of the $\\Lambda$CDM and Galileon models. The same analysis framework as in our previous papers was used to derive cosmological constraints, using precise measurements of cosmological distances and of the cosmic structure growth rate. We showed that all te...

  7. Is the expansion of the universe accelerating? All signs point to yes

    OpenAIRE

    Rubin, David; Hayden, Brian

    2016-01-01

    The accelerating expansion of the universe is one of the most profound discoveries in modern cosmology, pointing to a universe in which 70% of the mass-energy density has an unknown form spread uniformly across the universe. This result has been well established using a combination of cosmological probes (e.g., Planck Collaboration et al. 2016), resulting in a "standard model" of modern cosmology that is a combination of a cosmological constant with cold dark matter and baryons. The first com...

  8. Ekpyrotic and Cyclic Cosmology

    CERN Document Server

    Lehners, Jean-Luc

    2008-01-01

    Ekpyrotic and cyclic cosmologies provide theories of the very early and of the very late universe. In these models, the big bang is described as a collision of branes - and thus the big bang is not the beginning of time. Before the big bang, there is an ekpyrotic phase with equation of state w=P/rho >> 1 (where P is the average pressure and rho the average energy density) during which the universe slowly contracts. This phase resolves the standard cosmological puzzles and generates a nearly scale-invariant spectrum of cosmological perturbations containing a significant non-gaussian component. At the same time it produces small-amplitude gravitational waves with a blue spectrum. The dark energy dominating the present-day cosmological evolution is reinterpreted as a small attractive force between our brane and a parallel one. This force eventually induces a new ekpyrotic phase and a new brane collision, leading to the idea of a cyclic universe. This review discusses the detailed properties of these models, thei...

  9. Quantum cosmological metroland model

    NARCIS (Netherlands)

    Anderson, E.; Franzen, A.T.

    2010-01-01

    Relational particle mechanics is useful for modelling whole-universe issues such as quantum cosmology or the problem of time in quantum gravity, including some aspects outside the reach of comparably complex mini-superspace models. In this paper, we consider the mechanics of pure shape and not scale

  10. Cosmological dynamical systems

    CERN Document Server

    Leon, Genly

    2014-01-01

    In this book are studied, from the perspective of the dynamical systems, several Universe models. In chapter 1 we give a bird's eye view on cosmology and cosmological problems. Chapter 2 is devoted to a brief review on some results and useful tools from the qualitative theory of dynamical systems. They provide the theoretical basis for the qualitative study of concrete cosmological models. Chapters 1 and 2 are a review of well-known results. Chapters 3, 4, 5 and 6 are devoted to our main results. In these chapters are extended and settled in a substantially different, more strict mathematical language, several results obtained by one of us in arXiv:0812.1013 [gr-qc]; arXiv:1009.0689 [gr-qc]; arXiv:0904.1577[gr-qc]; and arXiv:0909.3571 [hep-th]. In chapter 6, we provide a different approach to the subject discussed in astro-ph/0503478. Additionally, we perform a Poincar\\'e compactification process allowing to construct a global phase space containing all the cosmological information in both finite and infinite...

  11. Relativistic cosmology; Cosmologia Relativista

    Energy Technology Data Exchange (ETDEWEB)

    Bastero-Gil, M.

    2015-07-01

    Relativistic cosmology is nothing but the study of the evolution of our universe expanding from the General Theory of Relativity, which describes the gravitational interaction at any scale and given its character far-reaching is the force that dominate the evolution of the universe. (Author)

  12. Ekpyrotic and cyclic cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Lehners, Jean-Luc [Princeton Center for Theoretical Science, Jadwin Hall, Princeton University, Princeton NJ 08544 (United States)], E-mail: jlehners@princeton.edu

    2008-09-15

    Ekpyrotic and cyclic cosmologies provide theories of the very early and of the very late universe. In these models, the big bang is described as a collision of branes - and thus the big bang is not the beginning of time. Before the big bang, there is an ekpyrotic phase with equation of state w=P/({rho}) >>1 (where P is the average pressure and {rho} the average energy density) during which the universe slowly contracts. This phase resolves the standard cosmological puzzles and generates a nearly scale-invariant spectrum of cosmological perturbations containing a significant non-Gaussian component. At the same time it produces small-amplitude gravitational waves with a blue spectrum. The dark energy dominating the present-day cosmological evolution is reinterpreted as a small attractive force between our brane and a parallel one. This force eventually induces a new ekpyrotic phase and a new brane collision, leading to the idea of a cyclic universe. This review discusses the detailed properties of these models, their embedding in M-theory and their viability, with an emphasis on open issues and observational signatures.

  13. Cosmology and the Bispectrum

    Energy Technology Data Exchange (ETDEWEB)

    Sefusatti, Emiliano; /Fermilab /CCPP, New York; Crocce, Martin; Pueblas, Sebastian; Scoccimarro, Roman; /CCPP, New York

    2006-04-01

    The present spatial distribution of galaxies in the Universe is non-Gaussian, with 40% skewness in 50 h{sup -1} Mpc spheres, and remarkably little is known about the information encoded in it about cosmological parameters beyond the power spectrum. In this work they present an attempt to bridge this gap by studying the bispectrum, paying particular attention to a joint analysis with the power spectrum and their combination with CMB data. They address the covariance properties of the power spectrum and bispectrum including the effects of beat coupling that lead to interesting cross-correlations, and discuss how baryon acoustic oscillations break degeneracies. They show that the bispectrum has significant information on cosmological parameters well beyond its power in constraining galaxy bias, and when combined with the power spectrum is more complementary than combining power spectra of different samples of galaxies, since non-Gaussianity provides a somewhat different direction in parameter space. In the framework of flat cosmological models they show that most of the improvement of adding bispectrum information corresponds to parameters related to the amplitude and effective spectral index of perturbations, which can be improved by almost a factor of two. Moreover, they demonstrate that the expected statistical uncertainties in {sigma}s of a few percent are robust to relaxing the dark energy beyond a cosmological constant.

  14. Notes on Hadza cosmology

    DEFF Research Database (Denmark)

    Skaanes, Thea

    2015-01-01

    Abstract: This article concerns Hadza cosmology examined through objects, rituals and the Hadza concept of epeme. A brief background to the Hadza and the eldwork that informs this study is followed by a close analysis of three key objects that are central to the argument presented. The objects ar...

  15. Anisotropic Lyra cosmology

    Indian Academy of Sciences (India)

    B B Bhowmik; A Rajput

    2004-06-01

    Anisotropic Bianchi Type-I cosmological models have been studied on the basis of Lyra's geometry. Two types of models, one with constant deceleration parameter and the other with variable deceleration parameter have been derived by considering a time-dependent displacement field.

  16. Some epistemic questions of cosmology

    CERN Document Server

    Grujic, Petar V

    2007-01-01

    We discuss a number of fundamental aspects of modern cosmological concepts, from the phenomenological, observational, theoretical and epistemic points of view. We argue that the modern cosmology, despite a great advent, in particular in the observational sector, is yet to solve important problems, posed already by the classical times. In particular the stress is put on discerning the scientific features of modern cosmological paradigms from the more speculative ones, with the latter immersed in some aspects deeply into mythological world picture. We finally discuss the principal paradigms, which are present in the modern cosmological studies and evaluate their epistemic merits. KEY WORDS: cosmology, epistemology, methodology, mythology, philosophy of science

  17. A Riccati equation based approach to isotropic scalar field cosmologies

    Science.gov (United States)

    Harko, Tiberiu; Lobo, Francisco S. N.; Mak, M. K.

    2014-05-01

    Gravitationally coupled scalar fields ϕ, distinguished by the choice of an effective self-interaction potential V(ϕ), simulating a temporarily nonvanishing cosmological term, can generate both inflation and late time acceleration. In scalar field cosmological models the evolution of the Hubble function is determined, in terms of the interaction potential, by a Riccati type equation. In the present work, we investigate scalar field cosmological models that can be obtained as solutions of the Riccati evolution equation for the Hubble function. Four exact integrability cases of the field equations are presented, representing classes of general solutions of the Riccati evolution equation. The solutions correspond to cosmological models in which the Hubble function is proportional to the scalar field potential plus a linearly decreasing function of time, models with the time variation of the scalar field potential proportional to the potential minus its square, models in which the potential is the sum of an arbitrary function and the square of the function integral, and models in which the potential is the sum of an arbitrary function and the derivative of its square root, respectively. The cosmological properties of all models are investigated in detail, and it is shown that they can describe the inflationary or the late accelerating phase in the evolution of the universe.

  18. Bianchi-I cosmology from causal thermodynamics

    CERN Document Server

    Bittencourt, Eduardo; Klippert, Renato

    2016-01-01

    We investigate diagonal Bianchi-I spacetimes in the presence of viscous fluids by using the shear and the anisotropic pressure components as the basic variables, where the viscosity is driven by the (second-order) causal thermodynamics. A few exact solutions are presented, among which we mention the anisotropic versions of de Sitter/anti-de Sitter geometries as well as an asymptotically isotropic spacetime presenting an effective constant cosmic acceleration without any cosmological constant. The qualitative analysis of the solutions for barotropic fluids with linear equations of state suggests that the behaviour is quite general.

  19. Dynamical symmetries in Brans-Dicke cosmology

    CERN Document Server

    Papagiannopoulos, G; Basilakos, S; Giacomini, A; Paliathanasis, A

    2016-01-01

    In the context of generalised Brans-Dicke cosmology we use the Killing tensors of the minisuperspace in order to determine the unspecified potential of a scalar-tensor gravity theory. Specifically, based on the existence of contact symmetries of the field equations, we find four types of potentials which provide exactly integrable dynamical systems. We investigate the dynamical properties of these potentials by using a critical point analysis and we find solutions which lead to cosmic acceleration and under specific conditions we can have de-Sitter points as stable late-time attractors.

  20. Causal Space-Times on a Null Lattice

    CERN Document Server

    Schaden, Martin

    2015-01-01

    I investigate a model of quantum gravity based on the first order Hilbert Palatini action with cosmological constant, discretized on a causal null-lattice with SL(2,C) structure group. The description is coordinate invariant and foliates in a causal and physically transparent manner. Lattice variables and observables are constructed. Conditions for a lattice configuration to describe a triangulated causal manifold are derived and encoded by a topological lattice theory. An equivariant BRST-construction is used to partially localize the SL(2,C) structure group of this model to the compact SU(2) of local spatial rotations. The latter in turn is completely localized using the spinors of this formulation. The integration measure of this completely localized model is derived from the SL(2,C)-invariant integration measure and is expressed in terms of SL(2,C)-invariant variables. An invariant regularization of the lattice integration measure that suppresses configurations with small local four-volumes is proposed. N...

  1. The Future of Theoretical Physics and Cosmology

    Science.gov (United States)

    Gibbons, G. W.; Shellard, E. P. S.; Rankin, S. J.

    2009-08-01

    Preface; List of contributors; 1. Introduction; Part I. Popular Symposium: 2. Our complex cosmos and its future Martin J. Rees; 3. Theories of everything and Hawking's wave function of the Universe James B. Hartle; 4. The problem of space-time singularities: implications for quantum gravity? Roger Penrose; 5. Warping spacetime Kip Thorne; 6. 60 years in a nutshell Stephen W. Hawking; Part II. Spacetime Singularities: 7. Cosmological perturbations and singularities George F. R. Ellis; 8. The quantum physics of chronology protection Matt Visser; 9. Energy dominance and the Hawking-Ellis vacuum conservation theorem Brandon Carter; 10. On the instability of extra space dimensions Roger Penrose; Part III. Black Holes: 11. Black hole uniqueness and the inner horizon stability problem Werner Israel; 12. Black holes in the real universe and their prospects as probes of relativistic gravity Martin J. Rees; 13. Primordial black holes Bernard Carr; 14. Black hole pair creation Simon F. Ross; 15. Black holes as accelerators Steven Giddings; Part IV. Hawking Radiation: 16. Black holes and string theory Malcolm Perry; 17. M theory and black hole quantum mechanics Joe Polchinski; 18. Playing with black strings Gary Horowitz; 19. Twenty years of debate with Stephen Leonard Susskind; Part V. Quantum Gravity: 20. Euclidean quantum gravity: the view from 2002 Gary Gibbons; 21. Zeta functions, anomalies and stable branes Ian Moss; 22. Some reflections on the status of conventional quantum theory when applied to quantum gravity Chris Isham; 23. Quantum geometry and its ramifications Abhay Ashtekar; 24. Topology change in quantum gravity Fay Dowker; Part VI. M Theory and Beyond: 25. The past and future of string theory Edward Witten; 26. String theory David Gross; 27. A brief description of string theory Michael Green; 28. The story of M Paul Townsend; 29. Gauged supergravity and holographic field theory Nick Warner; 30. 57 varieties in a NUTshell Chris Pope; Part VII. de Sitter Space

  2. Induced dark energy in a warped braneworld and accelerating universe

    Science.gov (United States)

    Lee, Tae Hoon

    2016-10-01

    In the six-dimensional (6D) Einstein gravity with a negative cosmological constant, we determine the structure of warped spacetimes bounded by 4-branes. We find an accelerating Universe solution with the induced dark energy, from the 4-brane obtained by orbifolding an external space, and suggest a possibility of addressing problems related to the cosmological constant.

  3. Closed String Tachyon: Inflation and Cosmological Collapse

    CERN Document Server

    Escamilla-Rivera, Celia; Loaiza-Brito, Oscar; Obregon, Octavio

    2011-01-01

    By compactifying a critical bosonic string theory on an internal non-flat space with a constant volume, we study the role played by the closed string tachyon in the cosmology of the effective four-dimensional space-time. The effective tachyon potential consists on a negative constant related to the internal curvature space and a polynomial with only quadratic and quartic terms of the tachyon field. Based on it, we present a solution for the tachyon field and the scale factor, which describes an accelerated universe which expands to a maximum value before collapsing. At early times, the closed string tachyon potential behaves as a cosmological constant driving the Universe to an expansion. The value of the cosmological constant is determined by the curvature of the internal space which also fixes the value of the vacuum energy. As time evolves, inflation is present in our models, and it finishes long before the collapsing. At late times, we show that the collapse of the Universe starts as soon as the tachyon f...

  4. The Directedness of Time in Classical Cosmology

    Science.gov (United States)

    Bartels, Andreas; Wohlfarth, Daniel

    2014-03-01

    The aim of this paper is to show that a new understanding of fundamentality can be applied successfully in classical cosmology based on General Relativity. We are thereby able to achieve an account of cosmological time asymmetry as an intrinsic and fun-damental property of the universe. First, we consider Price's arguments against the fundamental status of time-asymmetry (Price (1996, 2002, 2011)). We show that these arguments have some force, but their force depends on understanding fundamentality as law-likeness. Second, we show that alternative approaches attempting to explain time directedness either by applying an anthropic strategy based on a multiverse approach, or by using the empirical fact of accelerated expansion of the universe, equally fail to provide a fundamental explanation of time directedness. In the third part, we present our own new concept of fundamentality based on properties of the solution space of fundamental laws. We demonstrate how this new concept of fundamentality is effective in understanding the cosmological asymmetry.

  5. Constraining cosmological parameter with SN Ia

    Science.gov (United States)

    Indra Putri, A. N.; Wulandari, H. R. Tri

    2016-11-01

    A type I supemovae (SN Ia) is an exploding white dwarf, whose mass exceeds Chandrasekar limit (1.44 solar mass). If a white dwarf is in a binary system, it may accrete matter from the companion, resulting in an excess mass that cannot be balanced by the pressure of degenerated electrons in the core. SNe Ia are highly luminous objects, that they are visible from very high distances. After some corrections (stretch (s), colour (c), K-corrections, etc.), the variations in the light curves of SNe Ia can be suppressed to be no more than 10%. Their high luminosity and almost uniform intrinsic brightness at the peak light, i.e. MB ∼ -19, make SNe Ia ideal standard candle. Because of their visibility from large distances, SNe Ia can be employed as a cosmological measuring tool. It was analysis of SNe Ia data that indicated for the first time, that the universe is not only expanding, but also accelerating. This work analyzed a compilation of SNe Ia data to determine several cosmological parameters (H0, Ωm, Ωa, and w). It can be concluded from the analysis, that our universe is a flat, dark energy dominated universe, and that the cosmological constant A is a suitable candidate for dark energy.

  6. $C$-field cosmological models: revisited

    CERN Document Server

    Yadav, A K; Ray, Saibal; Rahaman, F; Sardar, I H

    2015-01-01

    We investigate plane symmetric space-time filled with perfect fluid in the $C$-field cosmology of Hoyle and Narlikar. A new class of exact solutions have been obtained by considering the creation field $C$ as a function of time only. To get the deterministic solution, it has been assumed that the rate of creation of matter-energy density is proportional to the strength of the existing $C$-field energy density. Several physical aspects and geometrical properties of the models are discussed in detail, especially it is shown that some of our solutions of $C$-field cosmology are free from singularity in contrast to the Big Bang cosmology. A comparative study has been carried out between two models, one singular and the other nonsingular, by contrasting the behaviour of the physical parameters and noted that the model in a unique way represents both the features of the accelerating as well as decelerating Universe depending on the parameters and thus seems provides glimpses of the oscillating or cyclic model of th...

  7. Free µ-Lattices

    DEFF Research Database (Denmark)

    Santocanale, Luigi

    2002-01-01

    A μ-lattice is a lattice with the property that every unary polynomial has both a least and a greatest fix-point. In this paper we define the quasivariety of μ-lattices and, for a given partially ordered set P, we construct a μ-lattice JP whose elements are equivalence classes of games in a preor...

  8. Brane cosmology with a van der Waals equation of state

    CERN Document Server

    Kremer, G M

    2004-01-01

    The evolution of a Universe confined onto a 3-brane embedded in a five-dimensional space-time is investigated where the cosmological fluid on the brane is modeled by the van der Waals equation of state. It is shown that the Universe on the brane evolves in such a manner that three distinct periods concerning its acceleration field are attained: (a) an initial accelerated epoch where the van der Waals fluid behaves like a scalar field with a negative pressure; (b) a past decelerated period which has two contributions, one of them is related to the van der Waals fluid which behaves like a matter field with a positive pressure, whereas the other contribution comes from a term of the Friedmann equation on the brane which is inversely proportional to the scale factor to the fourth power and can be interpreted as a radiation field, and (c) a present accelerated phase due to a cosmological constant on the brane.

  9. Constraining Cosmological Models with Different Observations

    Science.gov (United States)

    Wei, J. J.

    2016-07-01

    With the observations of Type Ia supernovae (SNe Ia), scientists discovered that the Universe is experiencing an accelerated expansion, and then revealed the existence of dark energy in 1998. Since the amazing discovery, cosmology has became a hot topic in the physical research field. Cosmology is a subject that strongly depends on the astronomical observations. Therefore, constraining different cosmological models with all kinds of observations is one of the most important research works in the modern cosmology. The goal of this thesis is to investigate cosmology using the latest observations. The observations include SNe Ia, Type Ic Super Luminous supernovae (SLSN Ic), Gamma-ray bursts (GRBs), angular diameter distance of galaxy cluster, strong gravitational lensing, and age measurements of old passive galaxies, etc. In Chapter 1, we briefly review the research background of cosmology, and introduce some cosmological models. Then we summarize the progress on cosmology from all kinds of observations in more details. In Chapter 2, we present the results of our studies on the supernova cosmology. The main difficulty with the use of SNe Ia as standard candles is that one must optimize three or four nuisance parameters characterizing SN luminosities simultaneously with the parameters of an expansion model of the Universe. We have confirmed that one should optimize all of the parameters by carrying out the method of maximum likelihood estimation in any situation where the parameters include an unknown intrinsic dispersion. The commonly used method, which estimates the dispersion by requiring the reduced χ^{2} to equal unity, does not take into account all possible variances among the parameters. We carry out such a comparison of the standard ΛCDM cosmology and the R_{h}=ct Universe using the SN Legacy Survey sample of 252 SN events, and show that each model fits its individually reduced data very well. Moreover, it is quite evident that SLSNe Ic may be useful

  10. Minimally coupled scalar field cosmology in anisotropic cosmological model

    Science.gov (United States)

    Singh, C. P.; Srivastava, Milan

    2017-02-01

    We study a spatially homogeneous and anisotropic cosmological model in the Einstein gravitational theory with a minimally coupled scalar field. We consider a non-interacting combination of scalar field and perfect fluid as the source of matter components which are separately conserved. The dynamics of cosmic scalar fields with a zero rest mass and an exponential potential are studied, respectively. We find that both assumptions of potential along with the average scale factor as an exponential function of scalar field lead to the logarithmic form of scalar field in each case which further gives power-law form of the average scale factor. Using these forms of the average scale factor, exact solutions of the field equations are obtained to the metric functions which represent a power-law and a hybrid expansion, respectively. We find that the zero-rest-mass model expands with decelerated rate and behaves like a stiff matter. In the case of exponential potential function, the model decelerates, accelerates or shows the transition depending on the parameters. The isotropization is observed at late-time evolution of the Universe in the exponential potential model.

  11. Minimally coupled scalar field cosmology in anisotropic cosmological model

    Indian Academy of Sciences (India)

    C P SINGH; MILAN SRIVASTAVA

    2017-02-01

    We study a spatially homogeneous and anisotropic cosmological model in the Einstein gravitational theory with a minimally coupled scalar field. We consider a non-interacting combination of scalar field and perfect fluid as the source of matter components which are separately conserved. The dynamics of cosmic scalar fields with a zero rest mass and an exponential potential are studied, respectively. We find that both assumptions of potential along with the average scale factor as an exponential function of scalar field lead to the logarithmic formof scalar field in each case which further gives power-law form of the average scale factor. Using these forms of the average scale factor, exact solutions of the field equations are obtained to the metric functions which represent a power-law and a hybrid expansion, respectively. We find that the zero-rest-mass model expands with decelerated rate and behaves like a stiff matter. In the case of exponential potential function, the model decelerates, accelerates or shows the transition depending on the parameters. The isotropization is observed at late-time evolution of the Universe in the exponential potential model.

  12. Early universe cosmology and tests of fundamental physics

    Energy Technology Data Exchange (ETDEWEB)

    Andreas Albrecht, Joshua A. Frieman and Mark Trodden

    2002-03-04

    This is the report of the Working Group on Early Universe Cosmology and tests of Fundamental Physics, group P4.8 of the of the Snowmass 2001 conference. Here we summarize the impressive array of advances that have taken place in this field, and identify opportunities for even greater progress in the future. Topics include Dark Energy, Cosmic Acceleration, Inflation, Phase Transitions, Baryogenesis, and String/M-theory Cosmology. The introductory section gives an executive summary with six key open questions on which we can expect to make significant progress.

  13. Stable cosmology in ghost-free quasidilaton theory

    Science.gov (United States)

    Gümrükçüoǧlu, A. Emir; Koyama, Kazuya; Mukohyama, Shinji

    2017-08-01

    We present a novel cosmological solution in the framework of extended quasidilaton theory which underwent scrutiny recently. We only consider terms that do not generate the Boulware-Deser degree of freedom, hence the ghost-free quasidilaton theory, and show three new branches of cosmological evolution therein. One of the solutions passes the perturbative stability tests. This new solution exhibits a late time self-acceleration and all graviton polarizations acquire masses that converge to a constant in the asymptotic future. Moreover, all modes propagate at the speed of light. We propose that this solution can be used as a benchmark model for future phenomenological studies.

  14. Integrable Cosmological Models From Higher Dimensional Einstein Equations

    CERN Document Server

    Sano, M; Sano, Masakazu; Suzuki, Hisao

    2007-01-01

    We consider the cosmological models for the higher dimensional spacetime which includes the curvatures of our space as well as the curvatures of the internal space. We find that the condition for the integrability of the cosmological equations is that the total space-time dimensions are D=10 or D=11 which is exactly the conditions for superstrings or M-theory. We obtain analytic solutions with generic initial conditions in the four dimensional Einstein frame and study the accelerating universe when both our space and the internal space have negative curvatures.

  15. Decelaration/acceleration phases with the Higgs field

    CERN Document Server

    Dzhunushaliev, V; Myrzakulov, R

    2009-01-01

    It is shown that the Einstein gravity + Higgs scalar field have cosmological regular solutions with deceleration/acceleration phases and with bouncing off from a singularity. The behavior of the solution near to a flex point is in detail considered.

  16. Conformal frames in cosmology

    CERN Document Server

    Domènech, Guillem

    2016-01-01

    From higher dimensional theories, e.g. string theory, one expects the presence of non-minimally coupled scalar fields. We review the notion of conformal frames in cosmology and emphasize their physical equivalence, which holds at least at a classical level. Furthermore, if there is a field, or fields, which dominates the universe, as it is often the case in cosmology, we can use such notion of frames to treat our system, matter and gravity, as two different sectors. On one hand, the gravity sector which describes the dynamics of the geometry and on the other hand the matter sector which has such geometry as a playground. We use this interpretation to build a model where the fact that a curvaton couples to a particular frame metric could leave an imprint in the CMB.

  17. Relativistic Fractal Cosmologies

    CERN Document Server

    Ribeiro, Marcelo B

    2009-01-01

    This article reviews an approach for constructing a simple relativistic fractal cosmology whose main aim is to model the observed inhomogeneities of the distribution of galaxies by means of the Lemaitre-Tolman solution of Einstein's field equations for spherically symmetric dust in comoving coordinates. This model is based on earlier works developed by L. Pietronero and J.R. Wertz on Newtonian cosmology, whose main points are discussed. Observational relations in this spacetime are presented, together with a strategy for finding numerical solutions which approximate an averaged and smoothed out single fractal structure in the past light cone. Such fractal solutions are shown, with one of them being in agreement with some basic observational constraints, including the decay of the average density with the distance as a power law (the de Vaucouleurs' density power law) and the fractal dimension in the range 1 <= D <= 2. The spatially homogeneous Friedmann model is discussed as a special case of the Lemait...

  18. Wormholes in viscous cosmology

    CERN Document Server

    Wang, Deng

    2016-01-01

    We study the wormhole spacetime configurations in bulk viscosity cosmology. Considering three classes of viscous models, i.e., bulk viscosity as a function of Hubble parameter $H$, temperature $T$ and dark energy density $\\rho$, respectively, we obtain nine wormhole solutions. Through the analysis for the anisotropic solutions, we conclude that, to some extent, these three classes of viscous models have very high degeneracy with each other. Subsequently, without the loss of generality, to investigate the traversabilities, energy conditions and stability for the wormhole solution, we study the wormhole solution of the constant redshift function of the viscous $\\omega$CDM model with a constant bulk viscosity coefficient. We obtain the following conclusions: the value of traversal velocity decreases for decreasing bulk viscosity, and the traversal velocity for a traveler depends on not only the wormhole geometry but also the effects of cosmological background evolution; the null energy condition will be violated...

  19. Fundamentals of cosmology

    CERN Document Server

    Rich, James

    2009-01-01

    The book is aimed at astrophysics students and professional physicists who wish to understand the basics of cosmology and general relativity as well as the observational foundations of the LambdaCDM model of the Universe. The book provides a self-contained introduction to general relativity that is based on the homogeneity and isotropy of the local universe. The simplicity of this space allows general relativity to be presented in a very elementary manner while laying the foundation for the treatment of more complicated problems. The new edition presents the most recent observations, including those of CMB anisotropies by WMAP and of Baryon Acoustic Oscillations by SDSS. Future observational and theoretical challenges for the understanding of dark energy and dark matter are discussed. From 1st edition reviews: "The book provides a comprehensive and thorough explication of current cosmology at a level appropriate for a beginning graduate student or an advanced and motivated undergraduate. ... This is an extrem...

  20. Integrable Cosmological Potentials

    CERN Document Server

    Sokolov, V V

    2016-01-01

    The problem of classification of the Einstein--Friedman cosmological Hamiltonians $H$ with a single scalar inflaton field $\\varphi$ that possess an additional integral of motion polynomial in momenta on the shell of the Friedman constraint $H=0$ is considered. Necessary and sufficient conditions for the existence of first, second, and third degree integrals are derived. These conditions have the form of ODEs for the cosmological potential $V(\\varphi)$. In the case of linear and quadratic integrals we find general solutions of the ODEs and construct the corresponding integrals explicitly. A new wide class of Hamiltonians that possess a cubic integral is derived. The corresponding potentials are represented in a parametric form in terms of the associated Legendre functions. Six families of special elementary solutions are described and sporadic superintegrable cases are discussed.

  1. Cosmological memory effect

    Science.gov (United States)

    Tolish, Alexander; Wald, Robert M.

    2016-08-01

    The "memory effect" is the permanent change in the relative separation of test particles resulting from the passage of gravitational radiation. We investigate the memory effect for a general, spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology by considering the radiation associated with emission events involving particle-like sources. We find that if the resulting perturbation is decomposed into scalar, vector, and tensor parts, only the tensor part contributes to memory. Furthermore, the tensor contribution to memory depends only on the cosmological scale factor at the source and observation events, not on the detailed expansion history of the universe. In particular, for sources at the same luminosity distance, the memory effect in a spatially flat FLRW spacetime is enhanced over the Minkowski case by a factor of (1 +z ).

  2. The Cosmological Memory Effect

    CERN Document Server

    Tolish, Alexander

    2016-01-01

    The "memory effect" is the permanent change in the relative separation of test particles resulting from the passage of gravitational radiation. We investigate the memory effect for a general, spatially flat FLRW cosmology by considering the radiation associated with emission events involving particle-like sources. We find that if the resulting perturbation is decomposed into scalar, vector, and tensor parts, only the tensor part contributes to memory. Furthermore, the tensor contribution to memory depends only on the cosmological scale factor at the source and observation events, not on the detailed expansion history of the universe. In particular, for sources at the same luminosity distance, the memory effect in a spatially flat FLRW spacetime is enhanced over the Minkowski case by a factor of $(1 + z)$.

  3. Holography from quantum cosmology

    CERN Document Server

    Rashki, M

    2014-01-01

    The Weyl-Wigner-Groenewold-Moyal formalism of deformation quantization is applied to the closed Friedmann-Lema\\^itre-Robertson-Walker (FLRW) cosmological model. We show that the phase space average for the surface of the apparent horizon is quantized in units of the Planck's surface, and that the total entropy of the universe is also quantized. Taking into account these two concepts, it is shown that 't Hooft conjecture on the cosmological holographic principle (CHP) in radiation and dust dominated quantum universes is satisfied as a manifestation of quantization. This suggests that the entire universe (not only inside the apparent horizon) can be seen as a two-dimensional information structure encoded on the apparent horizon.

  4. Cosmology at the crossroads

    CERN Document Server

    Steinhardt, Paul Joseph

    1995-01-01

    Observational tests during the next decade may determine if the evolution of the Universe can be understood from fundamental physical principles, or if special initial conditions, coincidences, and new, untestable physical laws must be invoked. The inflationary model of the Universe is an important example of a predictive cosmological theory based on physical principles. In this talk, we discuss the distinctive fingerprint that inflation leaves on the cosmic microwave background anisotropy. We then suggest a series of five milestone experimental tests of the microwave background which could determine the validity of the inflationary hypothesis within the next decade. The paper is a Review based on a Plenary talk given at the Snowmass Workshop on Particle Astrophysics and Cosmology, 1995 It will appear in the Proceedings edited by E. Kolb and R.Peccei. Software package for computing filter functions and band power estimates available thru world-wide-web at http://dept.physics.upenn.edu/~www/as tro-cosmo/ .

  5. Successful Modular Cosmology

    CERN Document Server

    Kadota, K; Kadota, Kenji; Stewart, Ewan D.

    2003-01-01

    We present a modular cosmology scenario where the difficulties encountered in conventional modular cosmology are solved in a self-consistent manner, with definite predictions to be tested by observation. Notably, the difficulty of the dilaton finding its way to a precarious weak coupling minimum is made irrelevant by having eternal modular inflation at the vacuum supersymmetry breaking scale after the dilaton is stabilised. Neither this eternal inflation nor the subsequent non-slow-roll modular inflation destabilise the dilaton from its precarious minimum due to the low energy scale of the inflation and consequent small back reaction on the dilaton potential. The observed flat CMB spectrum is obtained from fluctuations in the angular component of a modulus near a symmetric point, which are hugely magnified by the roll down of the modulus to Planckian values, allowing them to dominate the final curvature perturbation. We also give precise calculations of the spectral index and its running.

  6. Cosmology and Convention

    Science.gov (United States)

    Merritt, David

    2017-02-01

    I argue that some important elements of the current cosmological model are "conventionalist" in the sense defined by Karl Popper. These elements include dark matter and dark energy; both are auxiliary hypotheses that were invoked in response to observations that falsified the standard model as it existed at the time. The use of conventionalist stratagems in response to unexpected observations implies that the field of cosmology is in a state of 'degenerating problemshift' in the language of Imre Lakatos. I show that the 'concordance' argument, often put forward by cosmologists in support of the current paradigm, is weaker than the convergence arguments that were made in the past in support of the atomic theory of matter or the quantization of energy.

  7. Integrable cosmological potentials

    Science.gov (United States)

    Sokolov, V. V.; Sorin, A. S.

    2017-05-01

    The problem of classification of the Einstein-Friedman cosmological Hamiltonians H with a single scalar inflaton field φ, which possess an additional integral of motion polynomial in momenta on the shell of the Friedman constraint H=0 , is considered. Necessary and sufficient conditions for the existence of the first-, second- and third-degree integrals are derived. These conditions have the form of ODEs for the cosmological potential V(φ) . In the case of linear and quadratic integrals we find general solutions of the ODEs and construct the corresponding integrals explicitly. A new wide class of Hamiltonians that possess a cubic integral is derived. The corresponding potentials are represented in parametric form in terms of the associated Legendre functions. Six families of special elementary solutions are described, and sporadic superintegrable cases are discussed.

  8. Noncommutative Quantum Cosmology

    CERN Document Server

    García-Compéan, H; Ramírez, C

    2001-01-01

    We propose a model for noncommutative quantum cosmology by means of a deformation of minisuperspace. For the Kantowski-Sachs metric we are able to find the exact solution to the deformed Wheeler-DeWitt equation. We construct wave packets and show that noncommutativity could remarkably modify the quantum behavior of the universe. We discuss the relation with space-time noncommutativity and exhibit a program to search for the influence of noncommutativity at early times in the universe.

  9. The Cosmological Memory Effect

    OpenAIRE

    Tolish, Alexander; Wald, Robert M.

    2016-01-01

    The "memory effect" is the permanent change in the relative separation of test particles resulting from the passage of gravitational radiation. We investigate the memory effect for a general, spatially flat FLRW cosmology by considering the radiation associated with emission events involving particle-like sources. We find that if the resulting perturbation is decomposed into scalar, vector, and tensor parts, only the tensor part contributes to memory. Furthermore, the tensor contribution to m...

  10. Cosmology and astrophysics 1992

    CERN Document Server

    Krauss, L M

    1992-01-01

    I review recent developments in cosmology and astrophysics relevant to particle physics, focussing on the following questions: What's new in 1992? What have we learned since the last ICHEP meeting in 1990? and What are the prospects for the future? AMong the topics explicitly discussed are: COBE, Large Scale Structure, and Dark Matter; Bib Bang Nucleosynthesis; the Solar Neutrino Problem; and High Energy Gamma Ray PHysics.

  11. Relational Quantum Cosmology

    CERN Document Server

    Vidotto, Francesca

    2015-01-01

    The application of quantum theory to cosmology raises a number of conceptual questions, such as the role of the quantum-mechanical notion of "observer" or the absence of a time variable in the Wheeler-DeWitt equation. I point out that a relational formulation of quantum mechanics, and more in general the observation that evolution is always relational, provides a coherent solution to this tangle of problems.

  12. String Scale Cosmological Constant

    OpenAIRE

    Chalmers, Gordon

    2006-01-01

    The cosmological constant is an unexplained until now phenomena of nature that requires an explanation through string effects. The apparent discrepancy between theory and experiment is enourmous and has already been explained several times by the author including mechanisms. In this work the string theory theory of abolished string modes is documented and given perturbatively to all loop orders. The holographic underpinning is also exposed. The matching with the data of the LIGO and D0 experi...

  13. Cosmology in generalized Proca theories

    Science.gov (United States)

    De Felice, Antonio; Heisenberg, Lavinia; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li

    2016-06-01

    We consider a massive vector field with derivative interactions that propagates only the 3 desired polarizations (besides two tensor polarizations from gravity) with second-order equations of motion in curved space-time. The cosmological implications of such generalized Proca theories are investigated for both the background and the linear perturbation by taking into account the Lagrangian up to quintic order. In the presence of a matter fluid with a temporal component of the vector field, we derive the background equations of motion and show the existence of de Sitter solutions relevant to the late-time cosmic acceleration. We also obtain conditions for the absence of ghosts and Laplacian instabilities of tensor, vector, and scalar perturbations in the small-scale limit. Our results are applied to concrete examples of the general functions in the theory, which encompass vector Galileons as a specific case. In such examples, we show that the de Sitter fixed point is always a stable attractor and study viable parameter spaces in which the no-ghost and stability conditions are satisfied during the cosmic expansion history.

  14. Virial mass in DGP cosmology

    CERN Document Server

    Shahidi, Shahab

    2012-01-01

    In this proposal we study the problem of the virial mass discrepancy in the context of DGP brane gravity. DGP model is a kind of brane-world model such that the corrections to the usual gravity occurred in the large distance limit relative to the distance scale of the model defined as a ratio of the brane Planck scale to the bulk Planck scale. The extra dimension of this model is noncompact. This model is composed with an Einstein-Hilbert action in 5 dimensions plus an induced 4D action guarantees the existence of gravity on the brane. The importance of this model is that it can explain the self-acceleration of our universe without use of any type of dark energy. The virial mass discrepancy is an important problem in cosmology and it can be explained by dark matter. This is due to our various ways in measurement of the mass of the galaxy clusters. One of the ways we can measure the mass of a cluster of galaxies is to measure the galaxy masses and then add them up to obtain the cluster mass. Another way is to ...

  15. Causal viscous cosmology without singularities

    CERN Document Server

    Laciana, Carlos E

    2016-01-01

    An isotropic and homogeneous cosmological model with a source of dark energy is studied. That source is simulated with a viscous relativistic fluid with minimal causal correction. In this model the restrictions on the parameters coming from the following conditions are analized: a) energy density without singularities along time, b) scale factor increasing with time, c) universe accelerated at present time, d) state equation for dark energy with "w" bounded and close to -1. It is found that those conditions are satified for the following two cases. i) When the transport coefficient ({\\tau}_{{\\Pi}}), associated to the causal correction, is negative, with the aditional restriction {\\zeta}|{\\tau}_{{\\Pi}}|>2/3, where {\\zeta} is the relativistic bulk viscosity coefficient. The state equation is in the "phantom" energy sector. ii) For {\\tau}_{{\\Pi}} positive, in the "k-essence" sector. It is performed an exact calculation for the case where the equation of state is constant, finding that option (ii) is favored in r...

  16. Cosmology in generalized Proca theories

    CERN Document Server

    De Felice, Antonio; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li

    2016-01-01

    We consider a massive vector field with derivative interactions that propagates only the 3 desired polarizations (besides two tensor polarizations from gravity) with second-order equations of motion in curved space-time. The cosmological implications of such generalized Proca theories are investigated for both the background and the linear perturbation by taking into account the Lagrangian up to quintic order. In the presence of a matter fluid with a temporal component of the vector field, we derive the background equations of motion and show the existence of de Sitter solutions relevant to the late-time cosmic acceleration. We also obtain conditions for the absence of ghosts and Laplacian instabilities of tensor, vector, and scalar perturbations in the small-scale limit. Our results are applied to concrete examples of the general functions in the theory, which encompass vector Galileons as a specific case. In such examples, we show that the de Sitter fixed point is always a stable attractor and study viable ...

  17. Revisiting Cosmological parameter estimation

    CERN Document Server

    Prasad, Jayanti

    2014-01-01

    Constraining theoretical models with measuring the parameters of those from cosmic microwave background (CMB) anisotropy data is one of the most active areas in cosmology. WMAP, Planck and other recent experiments have shown that the six parameters standard $\\Lambda$CDM cosmological model still best fits the data. Bayesian methods based on Markov-Chain Monte Carlo (MCMC) sampling have been playing leading role in parameter estimation from CMB data. In one of the recent studies \\cite{2012PhRvD..85l3008P} we have shown that particle swarm optimization (PSO) which is a population based search procedure can also be effectively used to find the cosmological parameters which are best fit to the WMAP seven year data. In the present work we show that PSO not only can find the best-fit point, it can also sample the parameter space quite effectively, to the extent that we can use the same analysis pipeline to process PSO sampled points which is used to process the points sampled by Markov Chains, and get consistent res...

  18. Cosmology and astroparticles

    CERN Document Server

    Gelmini, Graciela B

    1996-01-01

    Talks given at the V Taller de Particulas y Campos (V-TPyC) and V Taller Latinoam. de Fenomenologia de las Interac. Fundam. (V-TLFIF), Puebla, Mexico, 10/30 - 11/3 1995. These lectures are devoted to elementary particle physicists and assume the reader has very little or no knowledge of cosmology and astrophysics. After a brief historical introduction to the development of modern cosmology and astro-particles in which the Hot Big Bang model is defined, the Robertson-Walker metric and the dynamics of the Friedmann-Robertson-Walker cosmology are discussed in section 2. In section 3 the main observational features of the Universe are reviewed, including a description of our neighbourhood, homogeneity and isotropy, the cosmic background radiation, the expansion, the age and the matter content of the Universe. A brief account of the thermal history of the Universe follows in section 4, and relic abundances are discussed in section 5. Section 6 is devoted to primordial nucleosynthesis, section 7 to structure format...

  19. Einstein's cosmological considerations

    CERN Document Server

    Janzen, Daryl

    2014-01-01

    The objective of this paper is not simply to present an historical overview of Einstein's cosmological considerations, but to discuss the central role they played in shaping the paradigm of relativistic cosmology. This, we'll show, was a result of both his actions and, perhaps more importantly, his inactions. Accordingly, discussion won't simply be restricted to Einstein's considerations, as we'll analyse relevant contributions to the relativistic expansion paradigm during the approximately twenty years following Slipher's first redshift measurements in 1912. Our aim is to shed some light on why we think some of the things we do, with the idea that a better understanding of the reasoning that fundamentally influenced the common idea of our expanding universe might help to resolve some of the significant problems that modern cosmology now faces; and we eventually use this knowledge to probe the foundations of the standard model. Much of the information we present, including many of the historical details, we e...

  20. Cosmological perturbations in antigravity

    Science.gov (United States)

    Oltean, Marius; Brandenberger, Robert

    2014-10-01

    We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the standard model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity," during each successive transition from a big crunch to a big bang. For simplicity, we consider scalar perturbations in the absence of anisotropies, with potential set to zero and without any radiation. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, these perturbations are neither ghostlike nor tachyonic in the limit of strongly repulsive gravity. On this basis, we argue—pending a future analysis of vector and tensor perturbations—that, with respect to perturbative stability, the cosmological solutions of this theory are viable.

  1. Symmetries of homogeneous cosmologies

    CERN Document Server

    Cotsakis, S; Pantazi, H; Cotsakis, Spiros; Leach, Peter; Pantazi, Hara

    1998-01-01

    We reformulate the dynamics of homogeneous cosmologies with a scalar field matter source with an arbitrary self-interaction potential in the language of jet bundles and extensions of vector fields. In this framework, the Bianchi-scalar field equations become subsets of the second Bianchi jet bundle, $J^2$, and every Bianchi cosmology is naturally extended to live on a variety of $J^2$. We are interested in the existence and behaviour of extensions of arbitrary Bianchi-Lie and variational vector fields acting on the Bianchi variety and accordingly we classify all such vector fields corresponding to both Bianchi classes $A$ and $B$. We give examples of functions defined on Bianchi jet bundles which are constant along some Bianchi models (first integrals) and use these to find particular solutions in the Bianchi total space. We discuss how our approach could be used to shed new light to questions like isotropization and the nature of singularities of homogeneous cosmologies by examining the behaviour of the vari...

  2. Cosmology with a spin

    CERN Document Server

    Magueijo, Joao; Kibble, T W B

    2013-01-01

    Using the chiral representation for spinors we present a particularly transparent way to generate the most general spinor dynamics in a theory where gravity is ruled by the Einstein-Cartan-Holst action. In such theories torsion need not vanish, but it can be re-interpreted as a 4-fermion self-interaction within a torsion-free theory. The self-interaction may or may not break parity invariance, and may contribute positively or negatively to the energy density, depending on the couplings considered. We then examine cosmological models ruled by a spinorial field within this theory. We find that while there are cases for which no significant cosmological novelties emerge, the self-interaction can also turn a mass potential into an upside-down Mexican hat potential. Then, as a general rule, the model leads to cosmologies with a bounce, for which there is a maximal energy density, and where the cosmic singularity has been removed. These solutions are stable, and range from the very simple to the very complex.

  3. Cosmological consequences of Modified Gravity (MOG)

    CERN Document Server

    Toth, Viktor T

    2010-01-01

    As an alternative to the LCDM concordance model, Scalar-Tensor-Vector Modified Gravity (MOG) theory reproduces key cosmological observations without postulating the presence of an exotic dark matter component. MOG is a field theory based on an action principle, with a variable gravitational constant and a repulsive vector field with variable range. MOG yields a phenomenological acceleration law that includes strong tensorial gravity partially canceled by a repulsive massive vector force. This acceleration law can be used to model the CMB acoustic spectrum and the matter power spectrum yielding good agreement with observation. A key prediction of MOG is the presence of strong baryonic oscillations, which will be detectable by future surveys. MOG is also consistent with Type Ia supernova data. We also describe on-going research of the coupling between MOG and continuous matter, consistent with the weak equivalence principle and solar system observations.

  4. Irreversible Processes in Inflationary Cosmological Models

    CERN Document Server

    Kremer, G M

    2002-01-01

    By using the thermodynamic theory of irreversible processes and Einstein general relativity, a cosmological model is proposed where the early universe is considered as a mixture of a scalar field with a matter field. The scalar field refers to the inflaton while the matter field to the classical particles. The irreversibility is related to a particle production process at the expense of the gravitational energy and of the inflaton energy. The particle production process is represented by a non-equilibrium pressure in the energy-momentum tensor. The non-equilibrium pressure is proportional to the Hubble parameter and its proportionality factor is identified with the coefficient of bulk viscosity. The dynamic equations of the inflaton and the Einstein field equations determine the time evolution of the cosmic scale factor, the Hubble parameter, the acceleration and of the energy densities of the inflaton and matter. Among other results it is shown that in some regimes the acceleration is positive which simulate...

  5. Fourth International Meeting on Gravitation and Cosmology

    CERN Document Server

    Aguilar, José; Barrera, Luz; Accelerated Cosmic Expansion

    2014-01-01

    This volume provides both an update and a review of the state of alternative theories of gravity, in connection with the issue of the accelerated expansion of the universe. Different theoretical proposals explain the acceleration in cosmic expansion, generating the dark energy issue and opening the possibilities of alternative theories of gravity (besides general relativity). Related issues, such as the problem of dark matter, are also surveyed in order to give the readers profound insight on the subject from different points of view. Comprised of short talks and plenary lectures given by leading experts in the field, some of them with brilliant and historic contributions, this book allows the reader to find referenced surveys in topics like f(R) theories, the dark matter and dark energy issues, Modified Newtonian Dynamics (MOND) scenarios, f(T) theories, scalar-tensor theories derived from non-Riemannian geometries, emergent universes, the cosmological constant and other topics of current interest for physic...

  6. Some Cosmological Consequences of Weyl Invariance

    CERN Document Server

    Álvarez, Enrique; Herrero-Valea, Mario

    2015-01-01

    Some Weyl invariant cosmological models are examined in the framework of dilaton gravity. It will be shown that When the FRW ansatz for the spacetime metric is assumed, the Ward identity for conformal invariance guarantees that the gravitational equations hold whenever the matter EM do so. It follows that any scale factor can solve the theory provided a non-trivial profile for a dilaton field. In particular, accelerated expansion is a natural solution to the full set of equations. When two or more scalar fields are coupled to gravity in a Weyl invariant way there is an antigravity phase in which the effective Newton constant is negative. This phase is separated from the atractive gravity phase by a strong coupling barrier. Nevertheles, and perhaps contradicting na\\"ive beliefs, the antigravity phase does not imply accelerated expansion, although it is compatible with it.

  7. Backreaction mechanism in multifluid and extended cosmologies

    CERN Document Server

    Jimenez, Jose Beltran; Dunsby, P K S; Saez-Gomez, D

    2013-01-01

    One possible explanation for the present observed acceleration of the Universe is the breakdown of homogeneity and isotropy due to the formation of non-linear structures. How inhomogeneities affect the averaged cosmological expansion rate and lead to late-time acceleration is generally considered to be due to some backreaction mechanism. General Relativity together with pressure-free matter have until recently been considered as the sole ingredients for averaged calculations. In this communication we focus our attention on more general scenarios, including imperfect fluids as well as alternative theories of gravity, and apply an averaging procedure to them in order to determine possible backreaction effects. For illustrative purposes, we present our results for dark energy models, quintessence and Brans-Dicke theories. We also provide a discussion about the limitations of frame choices in the averaging procedure.

  8. Scientific Realism and Primordial Cosmology

    CERN Document Server

    Azhar, Feraz

    2016-01-01

    We discuss scientific realism from the perspective of modern cosmology, especially primordial cosmology: i.e. the cosmological investigation of the very early universe. We first (Section 2) state our allegiance to scientific realism, and discuss what insights about it cosmology might yield, as against "just" supplying scientific claims that philosophers can then evaluate. In particular, we discuss: the idea of laws of cosmology, and limitations on ascertaining the global structure of spacetime. Then we review some of what is now known about the early universe (Section 3): meaning, roughly, from a thousandth of a second after the Big Bang onwards(!). The rest of the paper takes up two issues about primordial cosmology, i.e. the very early universe, where "very early" means, roughly, much earlier (logarithmically) than one second after the Big Bang: say, less than $10^{-11}$ seconds. Both issues illustrate that familiar philosophical threat to scientific realism, the under-determination of theory by data---on a...

  9. Double Field Theory Inspired Cosmology

    CERN Document Server

    Wu, Houwen

    2014-01-01

    Double field theory proposes a generalized spacetime action possessing manifest T-duality on the level of component fields. We calculate the cosmological solutions of double field theory with vanishing Kalb-Ramond field. It turns out that double field theory provides a more consistent way to construct cosmological solutions than the standard string cosmology. We find two sets of solutions in double field theory cosmology, respecting or violating the strong (weak) constraint. Both sets of solutions naturally contain the pre- and post-big bang evolutions in one single line element. This novel feature opens a window for possible resolution of the cosmic amnesia. We also demonstrate that the scale factor duality in the standard string cosmology is nothing but the T-duality in double field theory. The scale dual dilatons in the standard string cosmology is simply the usual diffeomorphic scalar dilaton $\\phi$ and dual diffeomorphic scalar dilaton $\\tilde\\phi$ in double field theory. Furthermore, we identify the "sh...

  10. The Dirac-Milne cosmology

    Science.gov (United States)

    Benoit-Lévy, Aurélien; Chardin, Gabriel

    2014-05-01

    We study an unconventional cosmology, in which we investigate the consequences that antigravity would pose to cosmology. We present the main characteristics of the Dirac-Milne Universe, a cosmological model where antimatter has a negative active gravitational mass. In this non-standard Universe, separate domains of matter and antimatter coexist at our epoch without annihilation, separated by a gravitationally induced depletion zone. We show that this cosmology does not require a priori the Dark Matter and Dark Energy components of the standard model of cosmology. Additionally, inflation becomes an unnecessary ingredient. Investigating this model, we show that the classical cosmological tests such as primordial nucleosynthesis, Type Ia supernovæ and Cosmic Microwave Background are surprisingly concordant.

  11. Loop Quantum Cosmology Gravitational Baryogenesis

    CERN Document Server

    Odintsov, S D

    2016-01-01

    Loop Quantum Cosmology is an appealing quantum completion of classical cosmology, which brings along various theoretical features which in many cases offer remedy or modify various classical cosmology aspects. In this paper we address the gravitational baryogenesis mechanism in the context of Loop Quantum Cosmology. As we demonstrate, when Loop Quantum Cosmology effects are taken into account in the resulting Friedmann equations for a flat Friedmann-Robertson-Walker Universe, then even for a radiation dominated Universe, the predicted baryon-to-entropy ratio from the gravitational baryogenesis mechanism is non-zero, in contrast to the Einstein-Hilbert case, in which case the baryon-to-entropy ratio is zero. We also discuss various other cases apart from the radiation domination case, and we discuss how the baryon-to-entropy ratio is affected from the parameters of the quantum theory. In addition, we use illustrative exact solutions of Loop Quantum Cosmology and we investigate under which circumstances the bar...

  12. Inflation and the cosmological constant

    Directory of Open Access Journals (Sweden)

    FENG Chaojun

    2014-08-01

    Full Text Available By assuming the cosmological “constant” is no longer a constant during the inflation epoch,it is found that the cosmological constant fine-tuning problem is solved.In the meanwhile,inflation models could predict a large tensor-to-scalar ratio,correct power spectral index and a larger running of it.Furthermore,the e-folding number is large enough to overcome the horizon,flatness problems in the Big Bang cosmology.

  13. Brane and Nonisotropic Bianchi Cosmology

    CERN Document Server

    Naboulsi, R

    2003-01-01

    In this letter, we use Einstein field equations in the presence of gravitino cosmological density derived in a previous paper [1] to study a spatially honogenous, nonisotropic cosmological model, in particular the Bianchi IV model. We find a axisymmetric Universe, free of singularity in the past, asymptotically flat as time grows, and admit the presence of gravitino mass as missing energy and positive cosmological constant as Lambda > 3m^2.

  14. Cosmological Black Holes on Branes

    OpenAIRE

    Rogatko, Marek

    2003-01-01

    We examined analytically a cosmological black hole domain wall system. Using the C-metric construction we derived the metric for the spacetime describing an infinitely thin domain wall intersecting a cosmological black hole. We studied the behaviour of the scalar field describing a self-interacting cosmological domain wall and find the approximated solution valid for large distances. The thin wall approximation and the back raection problem were elaborated finding that the topological kink so...

  15. Quintessential Maldacena-Maoz Cosmologies

    OpenAIRE

    McInnes, Brett

    2004-01-01

    Maldacena and Maoz have proposed a new approach to holographic cosmology based on Euclidean manifolds with disconnected boundaries. This approach appears, however, to be in conflict with the known geometric results [the Witten-Yau theorem and its extensions] on spaces with boundaries of non-negative scalar curvature. We show precisely how the Maldacena-Maoz approach evades these theorems. We also exhibit Maldacena-Maoz cosmologies with [cosmologically] more natural matter content, namely quin...

  16. Probing Cosmological Isotropy With Type IA Supernovae

    CERN Document Server

    Bengaly, C A P; Alcaniz, J S

    2015-01-01

    We investigate the validity of the Cosmological Principle by mapping the cosmological parameters $H_0$ and $q_0$ through the celestial sphere. In our analysis, performed in a low-redshift regime to follow a model-independent approach, we use two compilations of type Ia Supernovae (SNe Ia), namely the Union2.1 and the JLA datasets. Firstly, we show that the angular distributions for both SNe Ia datasets are statistically anisotropic at high confidence level ($p$-value $<$ 0.0001), in particular the JLA sample. Then we find that the cosmic expansion and acceleration are mainly of dipolar type, with maximal anisotropic expansion [acceleration] pointing towards $(l,b) \\simeq (326^{\\circ},12^{\\circ})$ [$(l,b) \\simeq (174^{\\circ},27^{\\circ})$], and $(l,b) \\simeq (58^{\\circ},-60^{\\circ})$ [$(l,b) \\simeq (225^{\\circ},51^{\\circ})$] for the Union2.1 and JLA data, respectively. Secondly, we use a geometrical method to test the hypothesis that the non-uniformly distributed SNe Ia events could introduce anisotropic imp...

  17. Moving mesh cosmology: tracing cosmological gas accretion

    CERN Document Server

    Nelson, Dylan; Genel, Shy; Sijacki, Debora; Keres, Dusan; Springel, Volker; Hernquist, Lars; 10.1093/mnras/sts595

    2013-01-01

    We investigate the nature of gas accretion onto haloes and galaxies at z=2 using cosmological hydrodynamic simulations run with the moving mesh code AREPO. Implementing a Monte Carlo tracer particle scheme to determine the origin and thermodynamic history of accreting gas, we make quantitative comparisons to an otherwise identical simulation run with the smoothed particle hydrodynamics (SPH) code GADGET-3. Contrasting these two numerical approaches, we find significant physical differences in the thermodynamic history of accreted gas in haloes above 10^10.5 solar masses. In agreement with previous work, GADGET simulations show a cold fraction near unity for galaxies forming in massive haloes, implying that only a small percentage of accreted gas heats to an appreciable fraction of the virial temperature during accretion. The same galaxies in AREPO show a much lower cold fraction, <20% in haloes above 10^11 solar masses. This results from a hot gas accretion rate which, at this same halo mass, is an order o...

  18. An introduction to modern cosmology

    CERN Document Server

    Liddle, Andrew

    2015-01-01

    An Introduction to Modern Cosmology Third Edition is an accessible account of modern cosmological ideas. The Big Bang Cosmology is explored, looking at its observational successes in explaining the expansion of the Universe, the existence and properties of the cosmic microwave background, and the origin of light elements in the universe. Properties of the very early Universe are also covered, including the motivation for a rapid period of expansion known as cosmological inflation. The third edition brings this established undergraduate textbook up-to-date with the rapidly evolving observation

  19. $\\Psi$-Epistemic Quantum Cosmology?

    CERN Document Server

    Evans, Peter W; Thébault, Karim P Y

    2016-01-01

    This paper provides a prospectus for a new way of thinking about the wavefunction of the universe: a $\\Psi$-epistemic quantum cosmology. We present a proposal that, if successfully implemented, would resolve the cosmological measurement problem and simultaneously allow us to think sensibly about probability and evolution in quantum cosmology. Our analysis draws upon recent work on the problem of time in quantum gravity, upon causally-symmetric local hidden variable theories, and upon a dynamical origin for the cosmological arrow of time. Our conclusion weighs the strengths and weaknesses of the approach and points towards paths for future development.

  20. Cosmological consequences of extended quintessence after approaching $\\Lambda$

    CERN Document Server

    Geng, Chao-Qiang; Wu, Yi-Peng

    2015-01-01

    We investigate cosmological implications of a quintessence field $\\phi$ with a nonminimal coupling to gravity (extended quintessence) since driving the late-time cosmic acceleration. While the fraction of quintessence density invoked by such a nonminimal coupling, $\\Omega^{nc}_\\phi$, is highly suppressed once the field $\\phi$ recovers the dynamics of a cosmological constant via an extremely flat potential, we show that $\\Omega^{nc}_\\phi$ generally controls the future cosmological evolutions, leading to new attractor solutions depending on the value of the coupling constant $\\xi$. By applying the observational constraints from CMB, BAO, Type-Ia supernovae and Solar System measurements to the simplest scenario with a constant potential, we find that $\\vert\\Omega^{nc}_\\phi\\vert\\lesssim 0.003 \\%$ ($0.01 \\%$) at present, which may start to govern the expansion rate of our universe some $30$ ($180$) billion years later for $\\xi\\simeq 1$ ($0.1$).

  1. Tachyon field in Loop Quantum Cosmology: inflation and evolution picture

    CERN Document Server

    Xiong, H H; Xiong, Hua-Hui; Zhu, Jian-Yang

    2007-01-01

    Loop quantum cosmology (LQC) predicts a nonsingular evolution of the universe through a bounce in the high energy region. We show that this is always true in tachyon matter LQC. Different from the classical FRW cosmology, the superinflation can appear in the tachyon matter LQC; furthermore, the inflation can be extended to the region where classical inflation stops. Using numerical method, we give an evolution picture of the tachyon field with an exponential potential in the context of LQC. It indicates that the quantum dynamical solutions have the attractor behavior as the classical solutions does. And, the whole evolution of the tachyon field is that: at the far past, the tachyon field, being in the contracting cosmology, is accelerated to climb up the potential hill with a negative velocity; and then, the tachyon field at the boundary is bounced into an expanding universe with positive velocity rolling down to the bottom of the potential.

  2. Dynamics of anisotropic power-law f(R) cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Shamir, M. F., E-mail: farasat.shamir@nu.edu.pk [National University of Computer and Emerging Sciences, Lahore Campus, Department of Sciences and Humanities (Pakistan)

    2016-12-15

    Modified theories of gravity have attracted much attention of the researchers in the recent years. In particular, the f(R) theory has been investigated extensively due to important f(R) gravity models in cosmological contexts. This paper is devoted to exploring an anisotropic universe in metric f(R) gravity. A locally rotationally symmetric Bianchi type I cosmological model is considered for this purpose. Exact solutions of modified field equations are obtained for a well-known f(R) gravity model. The energy conditions are also discussed for the model under consideration. The viability of the model is investigated via graphical analysis using the present-day values of cosmological parameters. The model satisfies null energy, weak energy, and dominant energy conditions for a particular range of the anisotropy parameter while the strong energy condition is violated, which shows that the anisotropic universe in f(R) gravity supports the crucial issue of accelerated expansion of the universe.

  3. A dynamical system analysis of hybrid metric-Palatini cosmologies

    CERN Document Server

    Carloni, Sante; Lobo, Francisco S N

    2015-01-01

    The so called $f(X)$ hybrid metric-Palatini gravity presents a unique viable generalisation of the $f(R)$ theories within the metric-affine formalism. Here the cosmology of the $f(X)$ theories is studied using the dynamical system approach. The method consists of formulating the propagation equation in terms of suitable (expansion-normalised) variables as an autonomous system. The fixed points of the system then represent exact cosmological solutions described by power-law or de Sitter expansion. The formalism is applied to two classes of $f(X)$ models, revealing both standard cosmological fixed points and new accelerating solutions that can be attractors in the phase space. In addition, the fixed point with vanishing expansion rate are considered with special care in order to characterise the stability of Einstein static spaces and bouncing solutions.

  4. Is cosmography a useful tool for testing cosmology?

    Science.gov (United States)

    Busti, Vinicius C.; de la Cruz-Dombriz, Álvaro; Dunsby, Peter K. S.; Sáez-Gómez, Diego

    2015-12-01

    Model-independent methods in cosmology have become an essential tool to deal with an increasing number of theoretical alternatives for explaining the late-time acceleration of the Universe. In principle, this provides a way of testing the cosmological concordance (or Λ CDM ) model under different assumptions and ruling out whole classes of competing theories. One such model-independent method is the so-called "cosmographic approach", which relies only on the homogeneity and isotropy of the Universe on large scales. We show that this method suffers from many shortcomings, providing biased results depending on the auxiliary variable used in the series expansion, and is unable to rule out models or adequately reconstruct theories with higher-order derivatives in either the gravitational or matter sector. Consequently, in its present form, this method seems unable to provide reliable or useful results for cosmological applications.

  5. Fundamental Cosmology from Precision Spectroscopy: I. Varying Couplings

    CERN Document Server

    Leite, A C O; Pedrosa, P O J; Nunes, N J

    2014-01-01

    The observational evidence for the acceleration of the universe demonstrates that canonical theories of cosmology and particle physics are incomplete, if not incorrect, and that new physics is out there, waiting to be discovered. Forthcoming high-resolution ultra-stable spectrographs will play a crucial role in this quest for new physics, by enabling a new generation of precision consistency tests. Here we focus on astrophysical tests of the stability of nature's fundamental couplings, and by using Principal Component Analysis techniques further calibrated by existing VLT data we discuss how the improvements that can be expected with ESPRESSO and ELT-HIRES will impact on fundamental cosmology. In particular we show that a 20 to 30 night program on ELT-HIRES will allow it to play a leading role in fundamental cosmology.

  6. Cosmological and astrophysical constraints on tachyon dark energy models

    CERN Document Server

    Martins, C J A P

    2016-01-01

    Rolling tachyon field models are among the candidates suggested as explanations for the recent acceleration of the Universe. In these models the field is expected to interact with gauge fields and lead to variations of the fine-structure constant $\\alpha$. Here we take advantage of recent observational progress and use a combination of background cosmological observations of Type Ia supernovas and astrophysical and local measurements of $\\alpha$ to improve constraints on this class of models. We show that the constraints on $\\alpha$ imply that the field dynamics must be extremely slow, leading to a constraint of the present-day dark energy equation of state $(1+w_0)<2.4\\times10^{-7}$ at the $99.7\\%$ confidence level. Therefore current and forthcoming standard background cosmology observational probes can't distinguish this class of models from a cosmological constant, while detections of $\\alpha$ variations could possibly do so since they would have a characteristic redshift dependence.

  7. Cosmological and astrophysical constraints on tachyon dark energy models

    Science.gov (United States)

    Martins, C. J. A. P.; Moucherek, F. M. O.

    2016-06-01

    Rolling tachyon field models are among the candidates suggested as explanations for the recent acceleration of the Universe. In these models the field is expected to interact with gauge fields and lead to variations of the fine-structure constant α . Here we take advantage of recent observational progress and use a combination of background cosmological observations of type Ia supernovas and astrophysical and local measurements of α to improve constraints on this class of models. We show that the constraints on α imply that the field dynamics must be extremely slow, leading to a constraint of the present-day dark energy equation of state (1 +w0)<2.4 ×10-7 at the 99.7% confidence level. Therefore current and forthcoming standard background cosmology observational probes cannot distinguish this class of models from a cosmological constant, while detections of α variations could possibly do so since they would have a characteristic redshift dependence.

  8. Dynamics of anisotropic power-law f( R) cosmology

    Science.gov (United States)

    Shamir, M. F.

    2016-12-01

    Modified theories of gravity have attracted much attention of the researchers in the recent years. In particular, the f( R) theory has been investigated extensively due to important f( R) gravity models in cosmological contexts. This paper is devoted to exploring an anisotropic universe in metric f( R) gravity. A locally rotationally symmetric Bianchi type I cosmological model is considered for this purpose. Exact solutions of modified field equations are obtained for a well-known f( R) gravity model. The energy conditions are also discussed for the model under consideration. The viability of the model is investigated via graphical analysis using the present-day values of cosmological parameters. The model satisfies null energy, weak energy, and dominant energy conditions for a particular range of the anisotropy parameter while the strong energy condition is violated, which shows that the anisotropic universe in f( R) gravity supports the crucial issue of accelerated expansion of the universe.

  9. Physical consequences of black holes in non-perturbative quantum gravity and inflationary cosmology

    NARCIS (Netherlands)

    Reska, P.M.

    2011-01-01

    In this thesis the consequences of the presence of a Schwarzschild black hole in de Sitter space are studied in the setting of non-perturbative quantum gravity and in inflationary cosmology. We first review the formalism of Causal Dynamical Triangulations (CDT) which implements a lattice regularizat

  10. The ultimate fate of life in an accelerating universe

    Energy Technology Data Exchange (ETDEWEB)

    Freese, Katherine; Kinney, William H

    2003-04-10

    The ultimate fate of life in a universe with accelerated expansion is considered. Previous work [J.D. Barrow, F. Tipler, The Anthropic Cosmological Principle, Oxford Univ. Press, Oxford, 1986; L.M. Krauss, G.D. Starkman, Astrophys. J. 531 (2000) 22] showed that life cannot go on indefinitely in a universe dominated by a cosmological constant. In this Letter we consider instead other models of acceleration (including quintessence and Cardassian expansion). We find that it is possible in these cosmologies for life to persist indefinitely. As an example we study potentials of the form V{proportional_to}phi{sup n} and find the requirement n<-2.

  11. Observational Probes of Cosmic Acceleration

    CERN Document Server

    Weinberg, David H; Eisenstein, Daniel J; Hirata, Christopher; Riess, Adam G; Rozo, Eduardo

    2012-01-01

    The accelerating expansion of the universe is the most surprising cosmological discovery in many decades, implying that the universe is dominated by some form of "dark energy" with exotic physical properties, or that Einstein's theory of gravity breaks down on cosmological scales. The profound implications of cosmic acceleration have inspired ambitious experimental efforts to measure the history of expansion and growth of structure with percent-level precision or higher. We review in detail the four most well established methods for making such measurements: Type Ia supernovae, baryon acoustic oscillations (BAO), weak gravitational lensing, and galaxy clusters. We pay particular attention to the systematic uncertainties in these techniques and to strategies for controlling them at the level needed to exploit "Stage IV" dark energy facilities such as BigBOSS, LSST, Euclid, and WFIRST. We briefly review a number of other approaches including redshift-space distortions, the Alcock-Paczynski test, and direct meas...

  12. Loop Quantum Cosmology

    Directory of Open Access Journals (Sweden)

    Bojowald Martin

    2008-07-01

    Full Text Available Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time.

  13. Loop Quantum Cosmology

    Directory of Open Access Journals (Sweden)

    Bojowald Martin

    2005-12-01

    Full Text Available Quantum gravity is expected to be necessary in order to understand situations where classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical space-time inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding space-time is then modified. One particular realization is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. Main effects are introduced into effective classical equations which allow to avoid interpretational problems of quantum theory. They give rise to new kinds of early universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function which allows to extend space-time beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of space-time arising in loop quantum gravity and its application to cosmology sheds new light on more general issues such as time.

  14. Nonlinear field space cosmology

    Science.gov (United States)

    Mielczarek, Jakub; Trześniewski, Tomasz

    2017-08-01

    We consider the FRW cosmological model in which the matter content of the Universe (playing the role of an inflaton or quintessence) is given by a novel generalization of the massive scalar field. The latter is a scalar version of the recently introduced nonlinear field space theory, where the physical phase space of a given field is assumed to be compactified at large energies. For our analysis, we choose the simple case of a field with the spherical phase space and endow it with the generalized Hamiltonian analogous to the XXZ Heisenberg model, normally describing a system of spins in condensed matter physics. Subsequently, we study both the homogenous cosmological sector and linear perturbations of such a test field. In the homogenous sector, we find that nonlinearity of the field phase space is becoming relevant for large volumes of the Universe and can lead to a recollapse, and possibly also at very high energies, leading to the phase of a bounce. Quantization of the field is performed in the limit where the nontrivial nature of its phase space can be neglected, while there is a nonvanishing contribution from the Lorentz symmetry breaking term of the Hamiltonian. As a result, in the leading order of the XXZ anisotropy parameter, we find that the inflationary spectral index remains unmodified with respect to the standard case but the total amplitude of perturbations is subject to a correction. The Bunch-Davies vacuum state also becomes appropriately corrected. The proposed new approach is bringing cosmology and condensed matter physics closer together, which may turn out to be beneficial for both disciplines.

  15. The Principles of Self Creation Cosmology and its Comparison with General Relativity

    CERN Document Server

    Barber, G A

    2002-01-01

    There are, at present, several gravitational and cosmological anomalies; the dark energy problem, the lambda problem, accelerating cosmological expansion, the anomalous Pioneer spacecraft acceleration, a spin-up of the Earth and an apparent variation of G observed from analysis of the evolution of planetary longitudes. These conundrums may be resolved in the theory of Self Creation Cosmology, in which the Principle of Mutual Interaction subsumes both Mach's Principle and the Local Conservation of Energy. The theory is conformally equivalent to General Relativity in vacuo with the consequence that predictions of the theory are identical with General Relativity in the standard solar system experiments. Other observable local and cosmological consequences offer an explanation for the anomalies above. The SCC universe expands linearly in its Einstein Frame and it is static in its Jordan Frame; hence, as there are no density, smoothness or horizon problems, there is no requirement for Inflation. The theory determi...

  16. Cosmology with the WFIRST High Latitude Survey

    Science.gov (United States)

    Dore, Olivier

    Cosmic acceleration is the most surprising cosmological discovery in many decades. Testing and distinguishing among possible explanations requires cosmological measurements of extremely high precision that probe the full history of cosmic expansion and structure growth. The WFIRST-AFTA mission, as described in the Science Definition Team (SDT) reports (Spergel 2013, 2015), has the ability to improve these measurements by 1-2 orders of magnitude compared to the current state of the art, while simultaneously extending their redshift grasp, greatly improving control of systematic effects, and taking a unified approach to multiple probes that provide complementary physical information and cross-checks of cosmological results. We have assembled a team with the expertise and commitment needed to address the stringent challenges of the WFIRST dark energy program through the Project's formulation phase. After careful consideration, we have elected to address investigations A (Galaxy Redshift Survey) and C (Weak Lensing and Cluster Growth) of the WFIRST SIT NRA with a unified team, because the two investigations are tightly linked at both the technical level and the theoretical modeling level. The imaging and spectroscopic elements of the High Latitude Survey (HLS) will be realized as an integrated observing program, and they jointly impose requirements on instrument and telescope performance, operations, and data transfer. The methods for simulating and interpreting weak lensing and galaxy clustering observations largely overlap, and many members of our team have expertise in both areas. The team PI, Olivier Dore, is a cosmologist with a broad expertise in cosmic microwave background and large scale structures. Yun Wang and Chris Hirata will serve as Lead Co-Investigators for topics A and C, respectively. Many members of our team have been involved with the design and requirements of a dark energy space mission for a decade or more, including the Co-Chair and three

  17. Cosmology with a stiff matter era

    Science.gov (United States)

    Chavanis, Pierre-Henri

    2015-11-01

    bouncing like in loop quantum cosmology. At t =0 , the scale factor is finite and the energy density is equal to zero. The universe first has a phantom behavior where the energy density increases with the scale factor, then a normal behavior where the energy density decreases with the scale factor. For the sake of generality, we consider a cosmological constant of arbitrary sign. When the cosmological constant is positive, the Universe asymptotically reaches a de Sitter regime where the scale factor increases exponentially rapidly with time. This can account for the accelerating expansion of the Universe that we observe at present. When the cosmological constant is negative (anti-de Sitter), the evolution of the Universe is cyclic. Therefore, depending on the sign of the internal energy of the dark fluid and on the sign of the cosmological constant, we obtain analytical solutions of the Friedmann equations describing singular and nonsingular expanding, bouncing, or cyclic universes.

  18. Cosmology of hybrid metric-Palatini f(X)-gravity

    Energy Technology Data Exchange (ETDEWEB)

    Capozziello, Salvatore [Dipartimento di Fisica, Università di Napoli ' ' Federico II' ' , Napoli (Italy); Harko, Tiberiu [Department of Mathematics, University College London, Gower Street, London, WC1E 6BT (United Kingdom); Koivisto, Tomi S. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway); Lobo, Francisco S.N. [Centro de Astronomia e Astrofísica da Universidade de Lisboa, Campo Grande, Ed. C8 1749-016 Lisboa (Portugal); Olmo, Gonzalo J., E-mail: capozzie@na.infn.it, E-mail: t.harko@ucl.ac.uk, E-mail: tomi.koivisto@fys.uio.no, E-mail: flobo@cii.fc.ul.pt, E-mail: gonzalo.olmo@csic.es [Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia - CSIC. Universidad de Valencia, Burjassot-46100, Valencia (Spain)

    2013-04-01

    A new class of modified theories of gravity, consisting of the superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed à la Palatini was proposed recently. The dynamically equivalent scalar-tensor representation of the model was also formulated, and it was shown that even if the scalar field is very light, the theory passes the Solar System observational constraints. Therefore the model predicts the existence of a long-range scalar field, modifying the cosmological and galactic dynamics. An explicit model that passes the local tests and leads to cosmic acceleration was also obtained. In the present work, it is shown that the theory can be also formulated in terms of the quantity X≡κ{sup 2}T+R, where T and R are the traces of the stress-energy and Ricci tensors, respectively. The variable X represents the deviation with respect to the field equation trace of general relativity. The cosmological applications of this hybrid metric-Palatini gravitational theory are also explored, and cosmological solutions coming from the scalar-tensor representation of f(X)-gravity are presented. Criteria to obtain cosmic acceleration are discussed and the field equations are analyzed as a dynamical system. Several classes of dynamical cosmological solutions, depending on the functional form of the effective scalar field potential, describing both accelerating and decelerating Universes are explicitly obtained. Furthermore, the cosmological perturbation equations are derived and applied to uncover the nature of the propagating scalar degree of freedom and the signatures these models predict in the large-scale structure.

  19. Inflationary axion cosmology

    Science.gov (United States)

    Turner, Michael S.; Wilczek, Frank

    1991-01-01

    If Peccei-Quinn (PQ) symmetry is broken after inflation, the initial axion angle is a random variable on cosmological scales; based on this fact, estimates of the relic-axion mass density give too large a value if the axion mass is less than about 10 to the -6th eV. This bound can be evaded if the universe underwent inflation after PQ-symmetry breaking and if the observable universe happens to be a region where the initial axion angle was atypically small. Consideration of fluctuations induced during inflation severely constrains the latter alternative is shown.

  20. Tilted string cosmologies

    Science.gov (United States)

    Clancy, Dominic; Feinstein, Alexander; Lidsey, James E.; Tavakol, Reza

    1999-04-01

    Global symmetries of the string effective action are employed to generate tilted, homogeneous Bianchi type VIh string cosmologies from a previously known stiff perfect fluid solution to Einstein gravity. The dilaton field is not constant on the surfaces of homogeneity. The future asymptotic state of the models is interpreted as a plane wave and is itself an exact solution to the string equations of motion to all orders in the inverse string tension. An inhomogeneous generalization of the Bianchi type III model is also found.

  1. Cosmology in antiquity

    CERN Document Server

    Wright, Rosemary

    1995-01-01

    The popularity of Stephen Hawking's work has put cosmology back in the public eye. The question of how the universe began, and why it hangs together, still puzzles scientists. Their puzzlement began two and a half thousand years ago when Greek philosophers first 'looked up at the sky and formed a theory of everything.' Though their solutions are little credited today, the questions remain fresh.The early Greek thinkers struggled to come to terms with and explain the totality of their surroundings; to identitify an original substance from which the universe was compounded; and to reconcil

  2. Solar gravitation and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, J.A. (Departamento de Fisica, Facultad de Humanidades y Ciencias, Montevideo (Uruguay))

    1984-08-11

    The objective of this paper is to discuss some implications of a scalar of gravitation developed in a previous paper. At the beginning we shall show that, on the basis of a scalar theory of gravitation, it is possible to predict a gravitational light drag. The remainder of this paper is devoted to cosmology. We shall prove that Hubble's red shift, the existence of an age and an ''effective radius'' of the Universe can be deduced from a model of the universe that is Euclidean, infinite and nonexpanding. Finally, we discuss briefly Olbers' paradox and the thermal evolution of the universe.

  3. Cosmology from quantum potential

    Energy Technology Data Exchange (ETDEWEB)

    Farag Ali, Ahmed, E-mail: ahmed.ali@fsc.bu.edu.eg [Center for Fundamental Physics, Zewail City of Science and Technology, Giza, 12588 (Egypt); Dept. of Physics, Faculty of Sciences, Benha University, Benha, 13518 (Egypt); Das, Saurya, E-mail: saurya.das@uleth.c [Department of Physics and Astronomy, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, T1K 3M4 (Canada)

    2015-02-04

    It was shown recently that replacing classical geodesics with quantal (Bohmian) trajectories gives rise to a quantum corrected Raychaudhuri equation (QRE). In this article we derive the second order Friedmann equations from the QRE, and show that this also contains a couple of quantum correction terms, the first of which can be interpreted as cosmological constant (and gives a correct estimate of its observed value), while the second as a radiation term in the early universe, which gets rid of the big-bang singularity and predicts an infinite age of our universe.

  4. Cosmology on a Mesh

    CERN Document Server

    Gill, S P D; Gibson, B K; Flynn, C; Ibata, R A; Lewis, G F; Gill, Stuart P.D.; Knebe, Alexander; Gibson, Brad K.; Flynn, Chris; Ibata, Rodrigo A.; Lewis, Geraint F.

    2002-01-01

    An adaptive multi grid approach to simulating the formation of structure from collisionless dark matter is described. MLAPM (Multi-Level Adaptive Particle Mesh) is one of the most efficient serial codes available on the cosmological 'market' today. As part of Swinburne University's role in the development of the Square Kilometer Array, we are implementing hydrodynamics, feedback, and radiative transfer within the MLAPM adaptive mesh, in order to simulate baryonic processes relevant to the interstellar and intergalactic media at high redshift. We will outline our progress to date in applying the existing MLAPM to a study of the decay of satellite galaxies within massive host potentials.

  5. Inflationary Axion Cosmology

    Science.gov (United States)

    Wilczek, Frank; Turner, Michael S.

    1990-09-01

    If Peccei-Quinn (PQ) symmetry is broken after inflation, the initial axion angle is a random variable on cosmological scales; based on this fact, estimates of the relic-axion mass density give too large a value if the axion mass is less than about 10-6 eV. This bound can be evaded if the Universe underwent inflation after PQ symmetry breaking and if the observable Universe happens to be a region where the initial axion angle was atypically small, .1 . (ma/10-6eV)0.59. We show consideration of fluctuations induced during inflation severely constrains the latter alternative.

  6. Anistropic Invariant FRW Cosmology

    CERN Document Server

    Chagoya, J F

    2015-01-01

    In this paper we study the effects of including anisotropic scaling invariance in the minisuperspace Lagrangian for a universe modelled by the Friedman-Robertson-Walker metric, a massless scalar field and cosmological constant. We find that canonical quantization of this system leads to a Schroedinger type equation, thus avoiding the frozen time problem of the usual Wheeler-DeWitt equation. Furthermore, we find numerical solutions for the classical equations of motion, and we also find evidence that under some conditions the big bang singularity is avoided in this model.

  7. Constraining entropic cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Koivisto, Tomi S. [Institute for Theoretical Physics and the Spinoza Institute, Utrecht University, Leuvenlaan 4, Postbus 80.195, 3508 TD Utrecht (Netherlands); Mota, David F. [Institute of Theoretical Astrophysics, University of Oslo, 0315 Oslo (Norway); Zumalacárregui, Miguel, E-mail: t.s.koivisto@uu.nl, E-mail: d.f.mota@astro.uio.no, E-mail: miguelzuma@icc.ub.edu [Institute of Cosmos Sciences (ICC-IEEC), University of Barcelona, Marti i Franques 1, E-08028 Barcelona (Spain)

    2011-02-01

    It has been recently proposed that the interpretation of gravity as an emergent, entropic phenomenon might have nontrivial implications to cosmology. Here several such approaches are investigated and the underlying assumptions that must be made in order to constrain them by the BBN, SneIa, BAO and CMB data are clarified. Present models of inflation or dark energy are ruled out by the data. Constraints are derived on phenomenological parameterizations of modified Friedmann equations and some features of entropic scenarios regarding the growth of perturbations, the no-go theorem for entropic inflation and the possible violation of the Bekenstein bound for the entropy of the Universe are discussed and clarified.

  8. Ultralocality on the lattice

    CERN Document Server

    Campos, R G; Campos, Rafael G.; Tututi, Eduardo S.

    2002-01-01

    It is shown that the nonlocal Dirac operator yielded by a lattice model that preserves chiral symmetry and uniqueness of fields, approaches to an ultralocal and invariant under translations operator when the size of the lattice tends to zero.

  9. New integrable lattice hierarchies

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, Andrew [Area de Matematica Aplicada, ESCET, Universidad Rey Juan Carlos, c/ Tulipan s/n, 28933 Mostoles, Madrid (Spain); Zhu Zuonong [Departamento de Matematicas, Universidad de Salamanca, Plaza de la Merced 1, 37008 Salamanca (Spain) and Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200030 (China)]. E-mail: znzhu2@yahoo.com.cn

    2006-01-23

    In this Letter we give a new integrable four-field lattice hierarchy, associated to a new discrete spectral problem. We obtain our hierarchy as the compatibility condition of this spectral problem and an associated equation, constructed herein, for the time-evolution of eigenfunctions. We consider reductions of our hierarchy, which also of course admit discrete zero curvature representations, in detail. We find that our hierarchy includes many well-known integrable hierarchies as special cases, including the Toda lattice hierarchy, the modified Toda lattice hierarchy, the relativistic Toda lattice hierarchy, and the Volterra lattice hierarchy. We also obtain here a new integrable two-field lattice hierarchy, to which we give the name of Suris lattice hierarchy, since the first equation of this hierarchy has previously been given by Suris. The Hamiltonian structure of the Suris lattice hierarchy is obtained by means of a trace identity formula.

  10. Non-minimal derivative coupling gravity in cosmology

    CERN Document Server

    Gumjudpai, Burin

    2015-01-01

    We give a brief review of the non-minimal derivative coupling (NMDC) scalar field theory in which there is non-minimal coupling between the scalar field derivative term and the Einstein tensor. We assume that the expansion is of power-law type or super-acceleration type for small redshift. The Lagrangian includes the NMDC term, a free kinetic term, a cosmological constant term and a barotropic matter term. For a value of the coupling constant that is compatible with inflation, we use the combined WMAP9 (WMAP9+eCMB+BAO+ $H_0$) dataset, the PLANCK+WP dataset, and the PLANCK $TT,TE,EE$+lowP+Lensing+ext datasets to find the value of the cosmological constant in the model. Modeling the expansion with power-law gives a negative cosmological constants while the phantom power-law (super-acceleration) expansion gives positive cosmological constant with large error bar. The value obtained is of the same order as in the $\\Lambda$CDM model, since at late times the NMDC effect is tiny due to small curvature.

  11. Scale invariant cosmology II: model equations and properties

    CERN Document Server

    Maeder, Andre

    2016-01-01

    We want to establish the basic properties of a scale invariant cosmology, that also accounts for the hypothesis of scale invariance of the empty space at large scales. We write the basic analytical properties of the scale invariant cosmological models. The hypothesis of scale invariance of the empty space at large scale brings interesting simplifications in the scale invariant equations for cosmology. There is one new term, depending on the scale factor of the scale invariant cosmology, that opposes to gravity and favours an accelerated expansion. We first consider a zero-density model and find an accelerated expansion, going like t square. In models with matter present, the displacements due to the new term make a significant contribution Omega_l to the energy-density of the Universe, satisfying an equation of the form Omega_m + Omega_k + Omega_l = 1. Unlike the Friedman's models, there is a whole family of flat models (k=0) with different density parameters Omega_m smaller than 1. We examine the basic relat...

  12. Cosmology: From Hubble to HST

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Michael S.

    1997-03-01

    The Hubble constant sets the size and age of the Universe, and, together with independent determinations of the age, provides a consistency check of the standard cosmology. The Hubble constant also provides an important test of our most attractive paradigm for extending the standard cosmology, inflation and cold dark matter.

  13. Neutrino physics and precision cosmology

    DEFF Research Database (Denmark)

    Hannestad, Steen

    2016-01-01

    I review the current status of structure formation bounds on neutrino properties such as mass and energy density. I also discuss future cosmological bounds as well as a variety of different scenarios for reconciling cosmology with the presence of light sterile neutrinos....

  14. Phenomenology of loop quantum cosmology

    CERN Document Server

    Sakellariadou, Mairi

    2010-01-01

    After introducing the basic ingredients of Loop Quantum Cosmology, I will briefly discuss some of its phenomenological aspects. Those can give some useful insight about the full Loop Quantum Gravity theory and provide an answer to some long-standing questions in early universe cosmology.

  15. Neutrino physics and precision cosmology

    DEFF Research Database (Denmark)

    Hannestad, Steen

    2016-01-01

    I review the current status of structure formation bounds on neutrino properties such as mass and energy density. I also discuss future cosmological bounds as well as a variety of different scenarios for reconciling cosmology with the presence of light sterile neutrinos....

  16. Vignettes in Gravitation and Cosmology

    CERN Document Server

    Sriramkumar, L

    2012-01-01

    This book comprises expository articles on different aspects of gravitation and cosmology that are aimed at graduate students. The topics discussed are of contemporary interest assuming only an elementary introduction to gravitation and cosmology. The presentations are to a certain extent pedagogical in nature, and the material developed is not usually found in sufficient detail in recent textbooks in these areas.

  17. Cosmological solutions with massive gravitons

    Energy Technology Data Exchange (ETDEWEB)

    Chamseddine, Ali H. [Physics Department, American University of Beirut (Lebanon); Laboratoire de Mathematiques et Physique Theorique CNRS-UMR 6083, Universite de Tours, Parc de Grandmont, 37200 Tours (France); LE STUDIUM, Loire Valley Institute for Advanced Studies, Tours and Orleans (France); I.H.E.S., F-91440 Bures-sur-Yvette (France); Volkov, Mikhail S., E-mail: volkov@lmpt.univ-tours.fr [Laboratoire de Mathematiques et Physique Theorique CNRS-UMR 6083, Universite de Tours, Parc de Grandmont, 37200 Tours (France)

    2011-10-25

    We present solutions describing spatially closed, open, or flat cosmologies in the massive gravity theory within the recently proposed tetrad formulation. We find that the effect of the graviton mass is equivalent to introducing to the Einstein equations a matter source that can consist of several different matter types - a cosmological term, quintessence, gas of cosmic strings, and non-relativistic cold matter.

  18. Geometry for the accelerating universe

    CERN Document Server

    Punzi, R; Wohlfarth, M N R; Punzi, Raffaele; Schuller, Frederic P.; Wohlfarth, Mattias N.R.

    2006-01-01

    The Lorentzian spacetime metric is replaced by an area metric which naturally emerges as a generalized geometry in quantum string and gauge theory. Employing the area metric curvature scalar, the gravitational Einstein-Hilbert action is re-interpreted as dynamics for an area metric. Without the need for dark energy or fine-tuning, area metric cosmology explains the observed small acceleration of the late Universe.

  19. Sober Topological Molecular Lattices

    Institute of Scientific and Technical Information of China (English)

    张德学; 李永明

    2003-01-01

    A topological molecular lattice (TML) is a pair (L, T), where L is a completely distributive lattice and r is a subframe of L. There is an obvious forgetful functor from the category TML of TML's to the category Loc of locales. In this note,it is showed that this forgetful functor has a right adjoint. Then, by this adjunction,a special kind of topological molecular lattices called sober topological molecular lattices is introduced and investigated.

  20. String Cosmological Solutions with O(d, d) Duality Symmetry and Matter Coupling

    Institute of Scientific and Technical Information of China (English)

    LI Bao-Lin; YAN Jun

    2013-01-01

    The duality properties of string cosmology model with negative energy matter are investigated by means of renormalization group equation,the cosmological solutions with exotic matter coupling are obtained in D =d + 1dimensional space-time.These inflation-power solutions can describe accelerated and decelerated process in the early universe,and the duality solutions can be generated through O(d,d) transformations.

  1. More problems for Newtonian cosmology

    CERN Document Server

    Wallace, David

    2016-01-01

    I point out a radical indeterminism in potential-based formulations of Newtonian gravity once we drop the condition that the potential vanishes at infinity (as is necessary, and indeed celebrated, in cosmological applications). This indeterminism, which is well known in theoretical cosmology but has received little attention in foundational discussions, can be removed only by specifying boundary conditions at all instants of time, which undermines the theory's claim to be fully cosmological, i.e., to apply to the Universe as a whole. A recent alternative formulation of Newtonian gravity due to Saunders (Philosophy of Science 80 (2013) pp.22-48) provides a conceptually satisfactory cosmology but fails to reproduce the Newtonian limit of general relativity in homogenous but anisotropic universes. I conclude that Newtonian gravity lacks a fully satisfactory cosmological formulation.

  2. Back Reaction of Cosmological Perturbations

    CERN Document Server

    Brandenberger, R H

    2000-01-01

    The presence of cosmological perturbations affects the background metric and matter configuration in which the perturbations propagate. This effect, studied a long time ago for gravitational waves, also is operational for scalar gravitational fluctuations, inhomogeneities which are believed to be more important in inflationary cosmology. The back-reaction of fluctuations can be described by an effective energy-momentum tensor. The issue of coordinate invariance makes the analysis more complicated for scalar fluctuations than for gravitational waves. We show that the back-reaction of fluctuations can be described in a diffeomorphism-invariant way. In an inflationary cosmology, the back-reaction is dominated by infrared modes. We show that these modes give a contribution to the effective energy-momentum tensor of the form of a negative cosmological constant whose absolute value grows in time. We speculate that this may lead to a self-regulating dynamical relaxation mechanism for the cosmological constant. This ...

  3. Higher dimensional loop quantum cosmology

    Science.gov (United States)

    Zhang, Xiangdong

    2016-07-01

    Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n+1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n+1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n+1 dimensional model and the 3+1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology.

  4. On Hamiltonian formulation of cosmologies

    Indian Academy of Sciences (India)

    K D Krori; S Dutta

    2000-03-01

    Novello et al [1,2] have shown that it is possible to find a pair of canonically conjugate variables (written in terms of gauge-invariant variables) so as to obtain a Hamiltonian that describes the dynamics of a cosmological system. This opens up the way to the usual technique of quantization. Elbaz et al [4] have applied this method to the Hamiltonian formulation of FRW cosmological equations. This note presents a generalization of this approach to a variety of cosmologies. A general Schrödinger wave equation has been derived and exact solutions have been worked out for the stiff matter era for some cosmological models. It is argued that these solutions appear to hint at their possible relevance in the early phase of cosmological evolution.

  5. Supernovae, dark energy and the accelerating universe

    CERN Document Server

    Perlmutter, Saul

    1999-01-01

    Based on an analysis of 42 high-redshift supernovae discovered by the supernovae cosmology project, we have found evidence for a positive cosmological constant, Lambda, and hence an accelerating universe. In particular, the data are strongly inconsistent with a Lambda=0 flat cosmology, the simplest inflationary universe model. The size of our supernova sample allows us to perform a variety of statistical tests to check for possible systematic errors and biases. We will discuss results of these and other studies and the ongoing hunt for further loopholes to evade the apparent consequences of the measurements. We will present further work that begins to constrain the alternative physics theories of "dark energy" that have been proposed to explain these results. Finally, we propose a new concept for a definitive supernova measurement of the cosmological parameters.

  6. A model of an accelerating Universe

    CERN Document Server

    Arbab, A I

    1999-01-01

    We have considered a cosmological model with a cosmological term proportional to the deceleration parameter. For age parameter consistent with observational data the Universe must be accelerating in the presence of a positive cosmological term. The minimum age of the Universe is $H_0^{-1}$, where $H_0$ is the present Hubble constant. The cosmological term decreases as $t^{-2}$. The rate of particle creation is very small compared with the Steady State prediction. Allowing the gravitational constant to change with time leads to an ever increasing gravitational constant at the present epoch. In the presence of a viscous fluid this decay law for $\\Lambda$ is equivalent to the one with the de-Sitter type.

  7. Infinite resistive lattices

    NARCIS (Netherlands)

    Atkinson, D; van Steenwijk, F.J.

    The resistance between two arbitrary nodes in an infinite square lattice of:identical resistors is calculated, The method is generalized to infinite triangular and hexagonal lattices in two dimensions, and also to infinite cubic and hypercubic lattices in three and more dimensions. (C) 1999 American

  8. Lattice Regularization and Symmetries

    CERN Document Server

    Hasenfratz, Peter; Von Allmen, R; Allmen, Reto von; Hasenfratz, Peter; Niedermayer, Ferenc

    2006-01-01

    Finding the relation between the symmetry transformations in the continuum and on the lattice might be a nontrivial task as illustrated by the history of chiral symmetry. Lattice actions induced by a renormalization group procedure inherit all symmetries of the continuum theory. We give a general procedure which gives the corresponding symmetry transformations on the lattice.

  9. FFAG lattice without opposite bends

    Science.gov (United States)

    Trbojevic, Dejan; Courant, Ernest D.; Garren, Al

    2000-08-01

    A future "neutrino factory" or Muon Collider requires fast muon acceleration before the storage ring. Several alternatives for fast muon acceleration have previously been considered. One of them is the FFAG (Fixed Field Alternating Gradient) synchrotron. The FFAG concept was developed in 1952 by K. R. Symon (ref. 1). The advantages of this design are the fixed magnetic field, large range of particle energy, simple RF; power supplies are simple, and there is no transition energy. But a drawback is that reverse bending magnets are included in the configuration; this increases the size and cost of the ring. Recently some modified FFAG lattice designs have been described where the amount of opposite bending was significantly reduced (ref. 2, ref. 3).

  10. FFAG lattice without opposite bends

    CERN Document Server

    Trbojevic, D; Garren, A

    2000-01-01

    A future 'neutrino factory' or Muon Collider requires fast muon acceleration before the storage ring. Several alternatives for fast muon acceleration have previously been considered. One of them is the FFAG (Fixed Field Alternating Gradient) synchrotron. The FFAG concept was developed in 1952 by K. R. Symon (ref. 1). The advantages of this design are the fixed magnetic field, large range of particle energy, simple RF; power supplies are simple, and there is no transition energy. But a drawback is that reverse bending magnets are included in the configuration; this increases the size and cost of the ring. Recently some modified FFAG lattice designs have been described where the amount of opposite bending was significantly reduced (ref. 2, ref. 3).

  11. A trace of inflation in the local behavior of cosmological constant

    CERN Document Server

    Benedetto, Elmo; Pizza, Liberato

    2015-01-01

    Assuming the existence of a cosmological constant depending on time, we study the evolution of this field in a local region of spacetime. Solving the standard equations of Einstein Relativity in the weak field approximation we find two asymptotes in the behavior of the cosmological constant. Their meaning is the existence of an inflationary era both in the far past and in the future. A trace of the initial acceleration of the Universe can be found also in the local behavior of cosmological constant.

  12. Particle physics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, E.W.

    1986-10-01

    This series of lectures is about the role of particle physics in physical processes that occurred in the very early stages of the bug gang. Of particular interest is the role of particle physics in determining the evolution of the early Universe, and the effect of particle physics on the present structure of the Universe. The use of the big bang as a laboratory for placing limits on new particle physics theories will also be discussed. Section 1 reviews the standard cosmology, including primordial nucleosynthesis. Section 2 reviews the decoupling of weakly interacting particles in the early Universe, and discusses neutrino cosmology and the resulting limits that may be placed on the mass and lifetime of massive neutrinos. Section 3 discusses the evolution of the vacuum through phase transitions in the early Universe and the formation of topological defects in the transitions. Section 4 covers recent work on the generation of the baryon asymmetry by baryon-number violating reactions in Grand Unified Theories, and mentions some recent work on baryon number violation effects at the electroweak transition. Section 5 is devoted to theories of cosmic inflation. Finally, Section 6 is a discussion of the role of extra spatial dimensions in the evolution of the early Universe. 78 refs., 32 figs., 6 tabs.

  13. Cosmology Without Finality

    Science.gov (United States)

    Mahootian, F.

    2009-12-01

    The rapid convergence of advancing sensor technology, computational power, and knowledge discovery techniques over the past decade has brought unprecedented volumes of astronomical data together with unprecedented capabilities of data assimilation and analysis. A key result is that a new, data-driven "observational-inductive'' framework for scientific inquiry is taking shape and proving viable. The anticipated rise in data flow and processing power will have profound effects, e.g., confirmations and disconfirmations of existing theoretical claims both for and against the big bang model. But beyond enabling new discoveries can new data-driven frameworks of scientific inquiry reshape the epistemic ideals of science? The history of physics offers a comparison. The Bohr-Einstein debate over the "completeness'' of quantum mechanics centered on a question of ideals: what counts as science? We briefly examine lessons from that episode and pose questions about their applicability to cosmology. If the history of 20th century physics is any indication, the abandonment of absolutes (e.g., space, time, simultaneity, continuity, determinacy) can produce fundamental changes in understanding. The classical ideal of science, operative in both physics and cosmology, descends from the European Enlightenment. This ideal has for over 200 years guided science to seek the ultimate order of nature, to pursue the absolute theory, the "theory of everything.'' But now that we have new models of scientific inquiry powered by new technologies and driven more by data than by theory, it is time, finally, to relinquish dreams of a "final'' theory.

  14. Cosmology with MATLAB

    CERN Document Server

    Green, Dan

    2016-01-01

    This volume makes explicit use of the synergy between cosmology and high energy physics, for example, supersymmetry and dark matter, or nucleosynthesis and the baryon-to-photon ratio. In particular the exciting possible connection between the recently discovered Higgs scalar and the scalar field responsible for inflation is explored.The recent great advances in the accuracy of the basic cosmological parameters is exploited in that no free scale parameters such as h appear, rather the basic calculations are done numerically using all sources of energy density simultaneously. Scripts are provided that allow the reader to calculate exact results for the basic parameters. Throughout MATLAB tools such as symbolic math, numerical solutions, plots and 'movies' of the dynamical evolution of systems are used. The GUI package is also shown as an example of the real time manipulation of parameters which is available to the reader.All the MATLAB scripts are made available to the reader to explore examples of the uses of ...

  15. Cosmology With Negative Potentials

    CERN Document Server

    Felder, G; Kofman, L A; Linde, Andrei D; Felder, Gary; Frolov, Andrei; Kofman, Lev; Linde, Andrei

    2002-01-01

    We investigate cosmological evolution in models where the effective potential V(\\phi) may become negative for some values of the field \\phi. Phase portraits of such theories in space of variables (\\phi,\\dot\\phi,H) have several qualitatively new features as compared with phase portraits in the theories with V(\\phi) > 0. Cosmological evolution in models with potentials with a "stable" minimum at V(\\phi)<0 is similar in some respects to the evolution in models with potentials unbounded from below. Instead of reaching an AdS regime dominated by the negative vacuum energy, the universe reaches a turning point where its energy density vanishes, and then it contracts to a singularity with properties that are practically independent of V(\\phi). We apply our methods to investigation of the recently proposed cyclic universe scenario. We show that in addition to the singularity problem there are other problems that need to be resolved in order to realize a cyclic regime in this scenario. We propose several modificati...

  16. Cosmological Simulations using GCMHD+

    CERN Document Server

    Barnes, David J; Wu, Kinwah

    2011-01-01

    Radio observations of galaxy clusters show that the intra cluster medium is permeated by \\mu G magnetic fields. The origin and evolution of these cosmological magnetic fields is currently not well understood and so their impact on the dynamics of structure formation is not known. Numerical simulations are required to gain a greater understanding and produce predictions for the next generation of radio telescopes. We present the galactic chemodynamics smoothed particle magnetohydrodynamic (SPMHD) code (GCMHD+), which is an MHD implementation for the cosmological smoothed particle hydrodynamic code GCD+. The results of 1, 2 and 3 dimensional tests are presented and the performance of the code is shown relative to the ATHENA grid code. GCMHD+ shows good agreement with the reference solutions produced by ATHENA. The code is then used to simulate the formation of a galaxy cluster with a simple primordial magnetic field embedded in the gas. A homogeneous seed field of 10^-11 G is amplified by a factor of 10^3 durin...

  17. Cosmological simulations using GCMHD+

    Science.gov (United States)

    Barnes, David J.; Kawata, Daisuke; Wu, Kinwah

    2012-03-01

    Radio observations of galaxy clusters show that the intracluster medium is permeated by ? magnetic fields. The origin and evolution of these cosmological magnetic fields is currently not well understood, and so their impact on the dynamics of structure formation is not known. Numerical simulations are required to gain a greater understanding and produce predictions for the next generation of radio telescopes. We present the galactic chemodynamics smoothed particle magnetohydrodynamics (SPMHD) code (GCMHD+), which is an MHD implementation for the cosmological smoothed particle hydrodynamics code GCD+. The results of 1D, 2D and 3D tests are presented and the performance of the code is shown relative to the ATHENA grid code. GCMHD+ shows good agreement with the reference solutions produced by ATHENA. The code is then used to simulate the formation of a galaxy cluster with a simple primordial magnetic field embedded in the gas. A homogeneous seed field of 3.5 × 10-11 G is amplified by a factor of 103 during the formation of the cluster. The results show good agreement with the profiles found in other magnetic cluster simulations of similar resolution.

  18. Sewn singularity cosmology

    CERN Document Server

    Szydlowski, Marek; Borowiec, Andrzej; Wojnar, Aneta

    2015-01-01

    We investigate modified gravity cosmological model $f(R)=R+\\gamma R^2$ in Palatini formalism. We consider the universe filled with the Chaplygin gas and baryonic matter. The dynamics is reduced to the 2D sewn dynamical system of a Newtonian type. For this aim we use dynamical system theory. We classify all evolutional paths in the model as well as trajectories in the phase space. We demonstrate that the presence of a degenerate freeze singularity (glued freeze type singularities) is a generic feature of early evolution of the universe. We point out that a degenerate type III of singularity can be considered as an endogenous model of inflation between the matter dominating epoch and the dark energy phase. We also investigate cosmological models with negative $\\gamma$. It is demonstrated that $\\gamma$ equal zero is a bifurcation parameter and dynamics qualitatively changes in comparison to positive $\\gamma$. Instead of the big bang the sudden singularity appears and there is a generic class of bouncing solution...

  19. Indian cosmogonies and cosmologies

    Directory of Open Access Journals (Sweden)

    Pajin Dušan

    2011-01-01

    Full Text Available Various ideas on how the universe appeared and develops, were in Indian tradition related to mythic, religious, or philosophical ideas and contexts, and developed during some 3.000 years - from the time of Vedas, to Puranas. Conserning its appeareance, two main ideas were presented. In one concept it appeared out of itself (auto-generated, and gods were among the first to appear in the cosmic sequences. In the other, it was a kind of divine creation, with hard work (like the dismembering of the primal Purusha, or as emanation of divine dance. Indian tradition had also various critiques of mythic and religious concepts (from the 8th c. BC, to the 6c., who favoured naturalistic and materialistic explanations, and concepts, in their cosmogony and cosmology. One the peculiarities was that indian cosmogony and cosmology includes great time spans, since they used a digit system which was later (in the 13th c. introduced to Europe by Fibonacci (Leonardo of Pisa, 1170-1240.

  20. Cosmology with matter diffusion

    CERN Document Server

    Calogero, Simone

    2013-01-01

    We construct a viable cosmological model based on velocity diffusion of matter particles. In order to ensure the conservation of the total energy-momentum tensor in the presence of diffusion, we include a cosmological scalar field $\\phi$ which we identify with the dark energy component of the Universe. The model is characterized by only one new degree of freedom, the diffusion parameter $\\sigma$. The standard $\\Lambda$CDM model can be recovered by setting $\\sigma=0$. If diffusion takes place ($\\sigma >0$) the dynamics of the matter and of the dark energy fields are coupled. We argue that the existence of a diffusion mechanism in the Universe can serve as a theoretical motivation for interacting models. We constrain the background dynamics of the diffusion model with Supernovae, H(z) and BAO data. We also perform a perturbative analysis of this model in order to understand structure formation in the Universe. We calculate the impact of diffusion both on the CMB spectrum, with particular attention to the integr...