WorldWideScience

Sample records for accelerated carbonation technology

  1. Environmental remediation and conversion of carbon dioxide (CO(2)) into useful green products by accelerated carbonation technology.

    Science.gov (United States)

    Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk

    2010-01-01

    This paper reviews the application of carbonation technology to the environmental industry as a way of reducing carbon dioxide (CO(2)), a green house gas, including the presentation of related projects of our research group. An alternative technology to very slow natural carbonation is the co-called 'accelerated carbonation', which completes its fast reaction within few hours by using pure CO(2). Carbonation technology is widely applied to solidify or stabilize solid combustion residues from municipal solid wastes, paper mill wastes, etc. and contaminated soils, and to manufacture precipitated calcium carbonate (PCC). Carbonated products can be utilized as aggregates in the concrete industry and as alkaline fillers in the paper (or recycled paper) making industry. The quantity of captured CO(2) in carbonated products can be evaluated by measuring mass loss of heated samples by thermo-gravimetric (TG) analysis. The industrial carbonation technology could contribute to both reduction of CO(2) emissions and environmental remediation.

  2. Environmental Remediation and Conversion of Carbon Dioxide (CO2 into Useful Green Products by Accelerated Carbonation Technology

    Directory of Open Access Journals (Sweden)

    Kwang-Suk You

    2010-01-01

    Full Text Available This paper reviews the application of carbonation technology to the environmental industry as a way of reducing carbon dioxide (CO2, a green house gas, including the presentation of related projects of our research group. An alternative technology to very slow natural carbonation is the co-called ‘accelerated carbonation’, which completes its fast reaction within few hours by using pure CO2. Carbonation technology is widely applied to solidify or stabilize solid combustion residues from municipal solid wastes, paper mill wastes, etc. and contaminated soils, and to manufacture precipitated calcium carbonate (PCC. Carbonated products can be utilized as aggregates in the concrete industry and as alkaline fillers in the paper (or recycled paper making industry. The quantity of captured CO2 in carbonated products can be evaluated by measuring mass loss of heated samples by thermo-gravimetric (TG analysis. The industrial carbonation technology could contribute to both reduction of CO2 emissions and environmental remediation.

  3. Accelerator Technology Division

    Science.gov (United States)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  4. Accelerating the development and deployment of carbon capture and storage technologies : an innovation system perspective

    NARCIS (Netherlands)

    van Alphen, K.

    2011-01-01

    In order to take up the twin challenge of reducing carbon dioxide (CO2) emissions, while meeting a growing energy demand, the potential deployment of carbon dioxide capture and storage (CCS) technologies is attracting a growing interest of policy makers around the world. At present CCS is the only t

  5. Advanced modeling to accelerate the scale up of carbon capture technologies

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David C.; Sun, XIN; Storlie, Curtis B.; Bhattacharyya, Debangsu

    2015-06-01

    In order to help meet the goals of the DOE carbon capture program, the Carbon Capture Simulation Initiative (CCSI) was launched in early 2011 to develop, demonstrate, and deploy advanced computational tools and validated multi-scale models to reduce the time required to develop and scale-up new carbon capture technologies. This article focuses on essential elements related to the development and validation of multi-scale models in order to help minimize risk and maximize learning as new technologies progress from pilot to demonstration scale.

  6. Accelerating Mineral Carbonation Using Carbonic Anhydrase.

    Science.gov (United States)

    Power, Ian M; Harrison, Anna L; Dipple, Gregory M

    2016-03-01

    Carbonic anhydrase (CA) enzymes have gained considerable attention for their potential use in carbon dioxide (CO2) capture technologies because they are able to catalyze rapidly the interconversion of aqueous CO2 and bicarbonate. However, there are challenges for widespread implementation including the need to develop mineralization process routes for permanent carbon storage. Mineral carbonation of highly reactive feedstocks may be limited by the supply rate of CO2. This rate limitation can be directly addressed by incorporating enzyme-catalyzed CO2 hydration. This study examined the effects of bovine carbonic anhydrase (BCA) and CO2-rich gas streams on the carbonation rate of brucite [Mg(OH)2], a highly reactive mineral. Alkaline brucite slurries were amended with BCA and supplied with 10% CO2 gas while aqueous chemistry and solids were monitored throughout the experiments (hours to days). In comparison to controls, brucite carbonation using BCA was accelerated by up to 240%. Nesquehonite [MgCO3·3H2O] precipitation limited the accumulation of hydrated CO2 species, apparently preventing BCA from catalyzing the dehydration reaction. Geochemical models reproduce observed reaction progress in all experiments, revealing a linear correlation between CO2 uptake and carbonation rate. Data demonstrates that carbonation in BCA-amended reactors remained limited by CO2 supply, implying further acceleration is possible. PMID:26829491

  7. Prospects for Accelerator Technology

    Science.gov (United States)

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  8. ACCELERATING NANO-TECHNOLOGICAL

    DEFF Research Database (Denmark)

    Jensen, Jens Stissing; Koch, Christian

    2007-01-01

    By viewing the construction industry as a technological innovation system (TIS) this paper discusses possible initiatives to accelerate nanotechnological innovations. The point of departure is a recent report on the application of nano-technology in the Danish construction industry, which concludes...... of the system are furthermore poorly equipped at identifying potentials within high-tech areas. In order to exploit the potentials of nano-technology it is thus argued that an alternative TIS needs to be established. Initiatives should identify and support “incubation rooms” or marked niches in order...... for the different elements of the TIS to evolve. This could involve nano-visioning including scenarios of future technological applications and industrial dynamics....

  9. Optimizing accelerator technology

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    A new EU-funded research and training network, oPAC, is bringing together 22 universities, research centres and industry partners to optimize particle accelerator technology. CERN is one of the network’s main partners and will host 5 early-stage researchers in the BE department.   A diamond detector that will be used for novel beam diagnostics applications in the oPAC project based at CIVIDEC. (Image courtesy of CIVIDEC.) As one of the largest Marie Curie Initial Training Networks ever funded by the EU – to the tune of €6 million – oPAC extends well beyond the particle physics community. “Accelerator physics has become integral to research in almost every scientific discipline – be it biology and life science, medicine, geology and material science, or fundamental physics,” explains Carsten P. Welsch, oPAC co-ordinator based at the University of Liverpool. “By optimizing the operation of accelerators, all of these...

  10. Accelerator Technology for the Mankind

    CERN Document Server

    Sultansoy, S

    2006-01-01

    Particle accelerators technology is one of the generic technologies which is locomotive of the development in almost all fields of science and technology. According to the U.S. Department of Energy: "Accelerators underpin every activity of the Office of Science and, increasingly, of the entire scientific enterprise. From biology to medicine, from materials to metallurgy, from elementary particles to the cosmos, accelerators provide the microscopic information that forms the basis for scientific understanding and applications. The combination of ground and satellite based observatories and particle accelerators will advance our understanding of our world, our galaxy, our universe, and ourselves." Because of this, accelerator technology should become widespread all over the world. Existing situation shows that a large portion of the world, namely the South and Mid-East, is poor on the accelerator technology. UNESCO has recognized this deficit and started SESAME project in Mid-East, namely Jordan. Turkic Acceler...

  11. Accelerator technology for the mankind

    International Nuclear Information System (INIS)

    Full text: Particle accelerators technology is one of the generic technologies which is locomotive of the development in almost all fields of science and technology. According to the U. S. Department of Energy: Accelerators underpin every activity of the Office of Science and, increasingly, of the entire scientific enterprise. From biology to medicine, from materials to metallurgy, from elementary particles to the cosmos, accelerators provide the microscopic information that forms the basis for scientific understanding and applications. The combination of ground and satellite based observatories and particle accelerators will advance our understanding of our world, our galaxy, our universe, and ourselves. Because of this, accelerator technology should become widespread all over the world. Existing situation shows that a large portion of the world, namely the South and Mid-East, is poor on the accelerator technology. UNESCO has recognized this deficit and started SESAME project in Mid-East, namely Jordan. Turkic Accelerator Complex (TAC) project is more comprehensive and ambitious project, from the point of view of it includes light sources, particle physics experiments and proton and secondary beam applications. At this stage, TAC project includes: Linac-ring type charm factory; Synchrotron light source based on positron ring; Free electron laser based on electron linac; GeV scale proton accelerator; TAC-Test Facility

  12. Accelerator technology working group summary

    International Nuclear Information System (INIS)

    A summary is presented of workshop deliberations on basic scaling, the economic viability of laser drive power for HEP accelerators, the availability of electron beam injectors for near-term experiments, and a few very general remarks on technology issues

  13. Industrial Applications of Accelerator Technologies

    International Nuclear Information System (INIS)

    PEFP(Proton Engineering Frontier Project) put its aim on development of high power linear proton accelerator and its beam applications. So, it has, since late 1990's, accumulated accelerator and ion source technologies, supplied beam utilization service to related industry. As of now, right after 10 year long project(PEFP), many of its low energy beam technologies seem to be successfully utilized for industrial purpose to meet the market needs, especially in improvement of production process and manufacturing performance, new substance development, etc. In this context, it is high time to carry out in-depth industrialization development on PEFP's retained ion beam technology prowess: To help them diffused profitable markets as soon as possible. So, in this work, through verification on the industrialization feasibility by experiments, it is going to get it started, with cooperation of participatory company, to enter into markets with developed technology and products

  14. Accelerator Technology Division annual report, FY 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This paper discusses: accelerator physics and special projects; experiments and injectors; magnetic optics and beam diagnostics; accelerator design and engineering; radio-frequency technology; accelerator theory and simulation; free-electron laser technology; accelerator controls and automation; and high power microwave sources and effects.

  15. Accelerator Technology Division annual report, FY 1989

    International Nuclear Information System (INIS)

    This paper discusses: accelerator physics and special projects; experiments and injectors; magnetic optics and beam diagnostics; accelerator design and engineering; radio-frequency technology; accelerator theory and simulation; free-electron laser technology; accelerator controls and automation; and high power microwave sources and effects

  16. The transfer of accelerator technology to industry

    International Nuclear Information System (INIS)

    The national laboratories and universities are sources for innovative accelerator technology developments. With the growing application of accelerators in such fields as semiconductor manufacturing, medical therapy isotope production, nuclear waste transmutation, materials testing, bomb detection, pure science, etc., it is becoming more important to transfer these technologies and build an accelerator industrial base. In this talk the methods of technology transfer, the issues involved in working with the labs and examples of successful technology transfers are discussed. (Author)

  17. Research needs of the new accelerator technologies

    International Nuclear Information System (INIS)

    A review is given of some of the new accelerator technologies with a special eye to the requirements which they generate for research and development. Some remarks are made concerning the organizational needs of accelerator research

  18. Accelerated carbonation of brucite in mine tailings for carbon sequestration.

    Science.gov (United States)

    Harrison, Anna L; Power, Ian M; Dipple, Gregory M

    2013-01-01

    Atmospheric CO(2) is sequestered within ultramafic mine tailings via carbonation of Mg-bearing minerals. The rate of carbon sequestration at some mine sites appears to be limited by the rate of CO(2) supply. If carbonation of bulk tailings were accelerated, large mines may have the capacity to sequester millions of tonnes of CO(2) annually, offsetting mine emissions. The effect of supplying elevated partial pressures of CO(2) (pCO(2)) at 1 atm total pressure, on the carbonation rate of brucite [Mg(OH)(2)], a tailings mineral, was investigated experimentally with conditions emulating those at Mount Keith Nickel Mine (MKM), Western Australia. Brucite was carbonated to form nesquehonite [MgCO(3) · 3H(2)O] at a rate that increased linearly with pCO(2). Geochemical modeling indicated that HCO(3)(-) promoted dissolution accelerated brucite carbonation. Isotopic and aqueous chemistry data indicated that equilibrium between CO(2) in the gas and aqueous phases was not attained during carbonation, yet nesquehonite precipitation occurred at equilibrium. This implies CO(2) uptake into solution remains rate-limiting for brucite carbonation at elevated pCO(2), providing potential for further acceleration. Accelerated brucite carbonation at MKM offers the potential to offset annual mine emissions by ~22-57%. Recognition of mechanisms for brucite carbonation will guide ongoing work to accelerate Mg-silicate carbonation in tailings. PMID:22770473

  19. Centre for Nuclear and Accelerator Technologies (CENTA)

    International Nuclear Information System (INIS)

    A Centre for Nuclear and Accelerator Technologies (CENTA) has been established at the Faculty of Mathematics, Physics and Informatics of the Comenius University in Bratislava comprising of a tandem laboratory designed for the Accelerator Mass Spectrometry (AMS) and Ion Beam Analysis (IBA). The 3 MV Pelletron accelerator is a key feature of the equipment which will enable to carry out state of the art research in physical, environmental, material, biological and medical sciences in collaboration with leading European and world laboratories. The laboratory is further equipped with two ion sources - Alphatros (RF source for H and He ions) and MC-SNICS source (target wheel with 40 positions for solid targets), and low and high energy analyzers of ions (all equipment of National Electrostatics Corp., USA). We shall discuss in detail development of methods for analysis of 14C around nuclear power plant in Jaslovske Bohunice, and present results of temporal 14C variations in atmospheric carbon dioxide and in tree rings collected at the monitoring stations in Zlkovce and in Bratislava. (authors)

  20. Accelerator Technology: Geodesy and Alignment for Particle Accelerators

    CERN Document Server

    Missiaen, D

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.9 Geodesy and Alignment for Particle Accelerators' of the Chapter '8 Accelerator Technology' with the content: 8.9 Geodesy and Alignment for Particle Accelerators 8.9.1 Introduction 8.9.2 Reference and Co-ordinate Systems 8.9.3 Definition of the Beam Line on the Accelerator Site 8.9.4 Geodetic Network 8.9.5 Tunnel Preliminary Works 8.9.6 The Alignment References 8.9.7 Alignment of Accelerator Components 8.9.8 Permanent Monitoring and Remote Alignment of Low Beta Quadrupoles 8.9.9 Alignment of Detector Components

  1. Accelerator Technology Division progress report, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-07-01

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  2. Accelerator Technology Division annual report, FY 1991

    International Nuclear Information System (INIS)

    This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; Φ Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations

  3. Accelerator Technology Division progress report, FY 1992

    International Nuclear Information System (INIS)

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations

  4. Will peak oil accelerate carbon dioxide emissions?

    Science.gov (United States)

    Caldeira, K.; Davis, S. J.; Cao, L.

    2008-12-01

    The relative scarcity of oil suggests that oil production is peaking and will decline thereafter. Some have suggested that this represents an opportunity to reduce carbon dioxide emissions. However, in the absence of constraints on carbon dioxide emission, "peak oil" may drive a shift towards increased reliance on coal as a primary energy source. Because coal per unit energy, in the absence of carbon capture and disposal, releases more carbon dioxide to the atmosphere than oil, "peak oil" may lead to an acceleration of carbon dioxide emissions. We will never run out of oil. As oil becomes increasingly scarce, prices will rise and therefore consumption will diminish. As prices rise, other primary energy sources will become increasingly competitive with oil. The developed world uses oil primarily as a source of transportation fuels. The developing world uses oil primarily for heat and power, but the trend is towards increasing reliance on oil for transportation. Liquid fuels, including petroleum derivatives such as gasoline and diesel fuel, are attractive as transportation fuels because of their relative abundance of energy per unit mass and volume. Such considerations are especially important for the air transport industry. Today, there is little that can compete with petroleum-derived transportation fuels. Future CO2 emissions from the transportation sector largely depend on what replaces oil as a source of fuel. Some have suggested that biomass-derived ethanol, hydrogen, or electricity could play this role. Each of these potential substitutes has its own drawbacks (e.g., low power density per unit area in the case of biomass, low power density per unit volume in the case of hydrogen, and low power density per unit mass in the case of battery storage). Thus, it is entirely likely that liquefaction of coal could become the primary means by which transportation fuels are produced. Since the burning of coal produces more CO2 per unit energy than does the burning of

  5. Conceptual and technological evolutions of particle accelerators

    Institute of Scientific and Technical Information of China (English)

    Lee C.Teng

    2009-01-01

    We give here an ordered list of all types of particle accelerators and exhibit how each type evolves conceptually and/or technologically from the preceding.This is in contrast to the usual "history of particle accelerators" in which unrelated accelerator types are listed in the chronological order.It is hoped that this discussion and understanding of the rationale and logic in the evolution of one accelerator type to the next will help to educe future inventions.

  6. A Survey of Hadron Therapy Accelerator Technologies

    International Nuclear Information System (INIS)

    Hadron therapy has entered a new age [1]. The number of facilities grows steadily, and 'consumer' interest is high. Some groups are working on new accelerator technology, while others optimize existing designs by reducing capital and operating costs, and improving performance. This paper surveys the current requirements and directions in accelerator technology for hadron therapy

  7. A Survey of Hadron Therapy Accelerator Technologies.

    Energy Technology Data Exchange (ETDEWEB)

    PEGGS,S.; SATOGATA, T.; FLANZ, J.

    2007-06-25

    Hadron therapy has entered a new age [1]. The number of facilities grows steadily, and 'consumer' interest is high. Some groups are working on new accelerator technology, while others optimize existing designs by reducing capital and operating costs, and improving performance. This paper surveys the current requirements and directions in accelerator technology for hadron therapy.

  8. Carbon beams, production and acceleration

    International Nuclear Information System (INIS)

    Installation, test and working conditions of a new negative-ion facility of the Salazar EN tandem are briefly described. Carbon is the material used for the test and the heavy ion stripping phenomenon is reviewed. (author)

  9. Superconducting Radiofrequency (SRF) Acceleration Technology

    Data.gov (United States)

    Federal Laboratory Consortium — SRF cavities enable accelerators to increase particle beam energy levels while minimizing the use of electrical power by all but eliminating electrical resistance....

  10. Advances of Accelerator Physics and Technologies

    CERN Document Server

    1993-01-01

    This volume, consisting of articles written by experts with international repute and long experience, reviews the state of the art of accelerator physics and technologies and the use of accelerators in research, industry and medicine. It covers a wide range of topics, from basic problems concerning the performance of circular and linear accelerators to technical issues and related fields. Also discussed are recent achievements that are of particular interest (such as RF quadrupole acceleration, ion sources and storage rings) and new technologies (such as superconductivity for magnets and RF ca

  11. Accelerator Technology Division progress report, FY 1993

    International Nuclear Information System (INIS)

    This report discusses the following topics: A Next-Generation Spallation-Neutron Source; Accelerator Performance Demonstration Facility; APEX Free-Electron Laser Project; The Ground Test Accelerator (GTA) Program; Intense Neutron Source for Materials Testing; Linac Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Radio-Frequency Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operation

  12. Superconducting magnet technology for accelerators

    International Nuclear Information System (INIS)

    A review article on superconducting magnets for accelerators should first answer the question, why superconductivity. The answer revolves around two pivotal facts: (1) fields in the range of 2 T to 10 T can be achieved; and (2) the operating cost can be less than conventional magnets. The relative importance of these two factors depends on the accelerator. In the case where an upgrade of an accelerator at an existing facility is planned, the ability to obtain fields higher than conventional magnets leads directly to an increase in machine energy for the given tunnel. In the case of a new facility, both factors must be balanced for the most economical machine. Ways to achieve this are discussed

  13. Accelerators for the advanced radiation technology project

    International Nuclear Information System (INIS)

    Ion beam irradiation facilities are now under construction for the advanced radiation technology (ART) project in Takasaki Radiation Chemistry Research Establishment of (Japan Atomic Energy Research Institute) JAERI. The project is intended to make an effective use of ion beams, especially ion beams, in the research field of radiation application technology. The TIARA (Takasaki Ion Accelerators for Advanced Radiation Application) facilities include four ion accelerators to produce almost all kinds of energetic ions in the periodic table. The facilities are also provided with several advanced irradiation means and act as very powerful accelerator complex for material development. Specifically, this report presents an outline of the ART project, features of TIARA as accelerator facilities dedicated to material development, the AVF cyclotron under construction (Sumitomo Heavy Industries, Ltd., Model 930), tandem accelerator, microbeam, and experimental instruments used. (N.K.)

  14. Laser technologies for laser accelerators. Annual report

    International Nuclear Information System (INIS)

    The primary result of the work reported is the determination of laser system architectures that satsify the requirements of high luminosity, high energy (about 1 TeV), electron accelerators. It has been found that high laser efficiency is a very hard driver for these accelerators as the total average laser output optical power is likely to fall above 10 MW. The luminosity requires rep rates in the kHz range, and individual pulse lengths in the 1-10 psec range are required to satisfy acceleration gradient goals. CO2 and KrF lasers were chosen for study because of their potential to simultaneously satisfy the given requirements. Accelerator luminosity is reviewed, and requirements on laser system average power and rep rate are determined as a function of electron beam bunch parameters. Laser technologies are reviewed, including CO2, excimers, solid state, and free electron lasers. The proposed accelerator mechanisms are summarized briefly. Work on optical transport geometries for near and far field accelerators are presented. Possible exploitation of the CO2 and DrF laser technology to generate the required pulse lengths, rep rates, and projected efficiencies is illustrated and needed development work is suggested. Initial efforts at developing a 50 GeV benchmark conceptual design and a 100 MeV demonstration experiment conceptual design are presented

  15. CAS CERN Accelerator School vacuum technology. Proceedings

    International Nuclear Information System (INIS)

    These proceedings present the lectures given at the twelfth specialized course organized by the CERN Accelerator School (CAS), the topic this time being 'Vacuum Technology'. Despite the importance of vacuum technology in the design and operation of particle accelerators at CERN and at the many other accelerators already installed around the world, this was the first time that CAS has organized a course devoted entirely to this topic. Perhaps this reflects the facts that vacuum has become one of the more critical aspects of future accelerators, and that many of the pioneers in the accelerator field are being replaced by new, younger personnel. The lectures start with the basic concepts of the physics and technology of vacuum followed by detailed descriptions of the many different types of gas-pumping devices and methods to measure the pressures achieved. The outgassing characteristics of the different materials used in the construction of vacuum systems and the optimisation of cleaning methods to reduce this outgassing are then explained together with the effects of the residual gases on the particle beams. Then follow chapters on leak detection, materials and vacuum system engineering. Finally, seminars are presented on designing vacuum systems, the history of vacuum devices, the LHC (large hadron collider) vacuum system, vacuum systems for electron storage rings, and quality assurance for vacuum. (orig.)

  16. Technologies for Advanced Induction Accelerators

    CERN Document Server

    Hernández, M A; Autrey, D; Duncan, G; Friedman, A; Grote, D P; Halaxa, E; Hanks, R; Kamin, G; Sangster, C; Sharp, W; Williams, C

    2000-01-01

    To harness fusion energy is one of today's greatest technological challenges, and one well worth pursuing. Success in the development of fusion power would result in a virtually inexhaustible source of energy. The fusion reaction, the process that powers the sun and the stars, can be duplicated on Earth. However, to date these fusion processes have been the products of large-scale experimental efforts. They have yet to achieve fusion in a manner that is cost effective and efficient enough to be applied in a commercial reactor. Lawrence Livermore National Laboratory (LLNL) has been centrally involved in the Nation's inertial confinement fusion (ICF) program for over 25 years. Much of the focus of the LLNL ICF Program has been the well-known effort to develop high power, short wavelength laser drivers to create the conditions necessary for the fusion process. But the ICF Program has also been investigating, in collaboration with Lawrence Berkeley National Laboratory (LBNL), the potential of heavy-ion accelerato...

  17. Department of Accelerator Physics and Technology: Overview

    Energy Technology Data Exchange (ETDEWEB)

    Pachan, M. [The Andrzej Soltan Institute for Nuclear Studies, Otwock-Swierk (Poland)

    1999-10-01

    Full text: As presented at the overview seminar held on December 98, the activities of the Department were shared among several directions of accelerator applications, as well as research and development works on new accelerator techniques and technologies. In the group of proton and ion accelerators, two main tasks were advanced. The first was a further step in the optimization of operational parameters of multicusp ion-source, prepared for axial injection system in C-30 cyclotron. Another one is the participation in important modifications of r.f. acceleration system in heavy-ion accelerator C-200 of Warsaw University. In the broad field of electron accelerators our main attention was directed at medical applications. Most important of them was the designing and construction of a full scale technological model of a high-gradient accelerating structure for low-energy radiotherapy unit CO-LINE 1000. Microwave measurements, and tuning were accomplished, and the technical documentation for construction of radiation unit completed. This work was supported by the State Committee for Scientific Research. Preparatory work was continued to undertake in the year 1999 the design of two new medical accelerators. First is a new generation radiotherapy unit, with 15 MeV electron beam and two selected energies of X-ray photons. This accelerator should in future replace the existing Neptun 10 MeV units. The work will be executed in the frame of the Project-Ordered commissioned by the State Committee for Scientific Research. The next type of accelerators in preparation is the mobile, self-shielded electron-beam unit for inter operative irradiation. The specification of parameters was completed and study of possible solutions advanced. The programme of medical accelerator development is critically dependent on the existence of a metrological and experimental basis. Therefore the building of a former proton linear accelerator was adopted to the new function as electron accelerators

  18. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    problems with DKFZ Heidelberg, where she participates in the development so called scanning collimators. As a result of a collaboration with LNF INFN Frascati, apart from two travelling wave RF structures now operated in the CTF3 experiment at CERN, one additional TW structure was made in our Department. It serves as an experimental unit for further study of TW technology. The collaboration with the DESY TESLA-FEL Project during the past years concerned mainly the RF accelerating super-conducting superstructures. This work ended with good results; it was reported in a common international oral session held during PAC2003 in Portland, USA. The superstructures have a chance to be mass-produced if the TESLA Superconducting Collider gets international financial approval. The work on RF vacuum windows upgrading against the multipactor effects in high power couplers was continued at DESY till the end of 2003. The original new technologies of thin TiN coating of ceramic windows were applied using newly constructed coating set-up. The summary of our 2003 results on coating will be presented in the TESLA Report 2004-02. A prerequisite of practising Accelerator Physics is understanding its importance in the wider context. Looking to professional literature on accelerators applications, one finds that in the developed world roughly 20000 accelerators exist (excluding electron units below 0.2 MeV) and yearly this number increases by at least 10%. More than half are used for material modification and roughly 30 % in radiotherapy. The most advanced technically and technologically are accelerators for subatomic physics and synchrotron radiation sources, where the total number of existing or under construction machines surpasses 200. New solutions, new technologies, cost reductions are still being investigated. So, in spite of difficult financial conditions, there is real motivation to keep accelerator physics alive in our Institute. (author)

  19. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Full text: The principal Department's duties in 1999 have not changed and were consequently directed on development in the area of electron and ion accelerators and their applications in science, medicine and technology. Two important events dominated the current and future orientation of R and D activity. The first was finalizing of long time efforts for preparing of the ordered research project granted by the State Committee of Scientific Research and devoted to elaboration and design of a new electron accelerator for radiotherapy, with two energies of X-ray photon beams. This project was formally approved in March 1999 and due to organisatory procedures set in operation after few months. In the second half of 1999, an important progress was done in advancing the project. The second mentioned event is foundation by the government of a Multiyear Research Programme - called ''Isotopes and Accelerators''. This programme formulates a broad spectrum of important tasks oriented on application of isotopes and accelerator techniques in many branches of science and national economy. The expected participation of the Department in this programme comprises following subjects: medical interoperative accelerator, high power electron accelerator for radiation technology, and upgrading of cyclotron for isotopes production. In course of 1999, preparatory studies in these subjects were carried out. Some of the results were presented on conferences and seminars. An interesting experience was the expertise done on technical status of Eindhoven isochronous cyclotron and its possible transfer to Swierk as a professional tool for isotopes production. In the group of medical applications, three subjects were continued during 1999 and brought important results: - completion of microwave measurements of high gradient acceleration structure for low energy accelerators; such structure will be very useful solution for Co-Line and interoperative accelerator; - evaluation of design data and

  20. Carbon Farming as a Carbon Negative Technology

    Science.gov (United States)

    Anderson, C.; Laird, D.; Hayes, D. J.

    2015-12-01

    Carbon farms have a pivotal role in national and international efforts to mitigate and adapt to climate change. A carbon farm in its broadest sense is one that reduces greenhouse gas (GHG) emissions or captures and holds carbon in vegetation and soils. Their capacity to remove carbon from the air and store it safely and permanently, while providing additional human and ecosystem benefits, means they could contribute significantly to national efforts to stabilize or reduce GHGs. We examine carbon farms in the context of corn and soybean production agriculture. We illustrate, using Iowa data but with relevance across United States corn and soybean production, the potential for carbon farms to reduce human GHG emissions and sequester carbon permanently at a rate that has meaningful impact on global greenhouse gas concentration. Carbon has been viewed as a next generation cash crop in Iowa for over a decade. The carbon farm perspective, however, goes beyond carbon as cash crop to make carbon the center of an entire farm enterprise. The transformation is possible through slight adjustment crop practices mixed with advances in technology to sequester carbon through biochar. We examine carbon balance of Iowa agriculture given only the combination of slight reduction in fertilizer and sequestration by biochar. We find the following. Iowa carbon farms could turn Iowa agriculture into a carbon sink. The estimated range of GHG reduction by statewide implementation of carbon farms is 19.46 to 90.27 MMt CO2-equivalent (CO2-e), while the current agricultural CO2-e emission estimate is 35.38 MMt CO2-e. Iowa carbon farm GHG reduction would exceed Iowa GHG reduction by wind energy (8.7 MMt CO2-e) and could exceed combined reductions from wind energy and corn grain ethanol (10.7 MMt CO2-e; 19.4 MMt CO2-e combined). In fact, Iowa carbon farms alone could exceed GHG reduction from national corn grain ethanol production (39.6 MMt CO2-e). A carbon price accessible to agricultural

  1. Laser technology inspires new accelerator concepts

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    A new EU-funded research network, LA³NET, is bringing together universities, research centres and industry partners worldwide to explore the use of laser technology in particle beam generation, acceleration and diagnostics. As one of the network partners, CERN will be hosting three early stage researchers in the BE and EN Departments.   One of the laser systems now in use in the ISOLDE experiment. If you take a closer look at recent experimental developments, you’ll notice a new topic trending: laser technology. It’s being used to study the characteristics of particles, as incorporated into the new ALPHA-2 set-up; to conduct diagnostics of particle beams, as used in a laser wire scanner at Petra III; to “breed” unusual ion beams, as carried out by ISOLDE’s Resonance Ionization Laser Ion Source (RILIS); and even to accelerate particles to high energies, as explored at Berkeley’s BELLA facility. These projects notwithstanding...

  2. New directions for accelerator mass spectrometry technology

    International Nuclear Information System (INIS)

    The influence on accelerator mass spectrometry (AMS) of developments in other fields is reviewed and three examples are discussed in detail. The appropriate use of electric and magnetic analysers with small AMS systems (129I, for nuclear fuel monitoring and ocean circulation tracer studies. The inclusion of gas chromatography technology extends the capability of AMS to applications which require large numbers of samples with rapid turn-around. The adaptation of chemical reaction cell technology to negative ion beams adds new isobar selection capability to AMS and will permit analyses of isotopes such as 36Cl on small AMS systems. (author)

  3. Carbon Fiber Technology Facility (CFTF)

    Data.gov (United States)

    Federal Laboratory Consortium — Functionally within the MDF, ORNL operates DOE’s unique Carbon Fiber Technology Facility (CFTF)—a 42,000 ft2 innovative technology facility and works with leading...

  4. Department of Accelerator Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Full text: The work of Department P-10 in 2004 included the following subjects: - development of radiographic 4 MeV electron accelerator, - physical and technological problems related to the development of accelerating and deflecting types travelling and standing wave RF structures and their subsystems, - MC simulations applied to radiotherapy; continuation study of photon beams with the use of BEAMnrc Monte Carlo codes, - minor works concerning the C-30 cyclotron: the modifications of an H- external ion source and actualisation our list for cyclotron upgrading. The compact 6 MeV electron linac constructed in Department P-10 was mounted on an experimental stand, equipped with necessary auxiliary systems (pulsed high power RF supply, focusing and beam measuring system, cooling and temperature stabilising and safety system) and put into preliminary operation. The output energy and current intensity of the structure were measured and compared with the calculated values. The computational codes written in our Department during realisation of the 6/15 MeV project were used for that purpose, giving satisfactory agreement of calculations with measurements. The accelerator can be operated in electron or X-ray mode depending on demand. In 2004 all sub-units of the accelerator were operationally tested and intensity optimisation for e-/X-ray conversion was made. As the linac is thought primarily as a tool for radiographic services which may be offered by the Department, a number of X-ray exposures to radiographic films has been made in order to check its usability and the quality of pictures. The MC calculations of photon beams produced on the e-/X converter were made to complete the design of radiographic facility. Apart from radiography, the output beams of electrons and/or X-rays can also be used for studies in dosimetry, radiation effects in electronic components, neutron production in RT low energy linacs and so on. The TiN coating of accelerator components, in

  5. Accelerator Technology: Magnets, Normal and Superconducting

    CERN Document Server

    Bottura, L

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.1 Magnets, Normal and Superconducting' of the Chapter '8 Accelerator Technology' with the content: 8.1 Magnets, Normal and Superconducting 8.1.1 Introduction 8.1.2 Normal Conducting Magnets 8.1.2.1 Magnetic Design 8.1.2.2 Coils 8.1.2.3 Yoke 8.1.2.4 Costs 8.1.2.5 Undulators, Wigglers, Permanent Magnets 8.1.2.6 Solenoids 8.1.3 Superconducting Magnets 8.1.3.1 Superconducting Materials 8.1.3.2 Superconducting Cables 8.1.3.3 Stability and Margins, Quench and Protection 8.1.3.4 Magnetization, Coupling and AC Loss 8.1.3.5 Magnetic Design of Superconducting Accelerator Magnets 8.1.3.6 Current Leads 8.1.3.7 Mechanics, Insulation, Cooling and Manufacturing Aspects

  6. Protolytic carbon film technology

    Energy Technology Data Exchange (ETDEWEB)

    Renschler, C.L.; White, C.A.

    1996-04-01

    This paper presents a technique for the deposition of polyacrylonitrile (PAN) on virtually any surface allowing carbon film formation with only the caveat that the substrate must withstand carbonization temperatures of at least 600 degrees centigrade. The influence of processing conditions upon the structure and properties of the carbonized film is discussed. Electrical conductivity, microstructure, and morphology control are also described.

  7. Department of Accelerator Physics and Technology - Overview

    International Nuclear Information System (INIS)

    The activities of P-10 Department in year 2005 were devoted to: - development of radiographic 4 MeV electron accelerator, - development of accelerating and deflecting types travelling (TW) and standing wave (SW) RF structures for electrons and ions, - MC simulations applied to photon and ion radiotherapy The compact 6 MeV electron linac constructed in Department P-10 was put in the beginning of reported year into experimental operation. The request for permission to use ionisation source (6 MeV linac) was submitted to National Atomic Energy Agency. On the basis of all necessary documents the permission for routine using of our linac was granted. Actually the e/X conversion tungsten target has been moved from vacuum to air. To improve the safety of accelerator operation, the new collimator and some shielding walls were added. Two regimes of operation are actually possible: X ray output beam or electron beam depending on user demand. Some old non-reliable sub-units of accelerator were replaced, and energy and intensity optimisation for e-/X-ray conversion were made. The MC calculations of photon beams produced on e-/X converter were repeated taking into account the new collimator and additional shields. The triode gun, originally thought of as a part of 6/15 MeV medical accelerator is still on long term tests showing excellent performance; it was twice opened to air to confirm the possibility of repeated formation of gun dispenser cathode. New pulse modulator was routinely used in these tests. The sublimation set-up designed and made in our Department for the TiN coating of accelerator components underwent successfully the technological test including coating quality of several ceramic RF power vacuum windows. Within the German heavy ion therapy program the DKFZ Heidelberg is responsible for medical physics problems of treatment planning and modeling of ion beams for GSI Radiotherapy Facility. The MC simulations are used to calibrate the X-ray CT scanners to obtain

  8. Industrial applications of low energy accelerator technologies

    International Nuclear Information System (INIS)

    Industrial application researches utilizing a beam extracting unit and an accelerator with an energy less than 3 MeV have been conducted. Although a number of industrial application areas exist, a few research items had been selected for this project, which include the gemstone coloration and the surface modifications of metals/polymers. In the case of gemstone coloration, the green/yellow colored diamond by a proton beam irradiation and blue color emitting sapphire utilizing Co ion implantation are being evaluated as the high potential for commercialization. And, the band gap structures as a result of impurities' doping was calculated with density functional theory (DFT) and it was found to be well consistent with experimental results. The surface modification of stainless juice extracting gears have been successful and patented, resulting in a technology transfer to the company. The reduction in the detachment of the metallic elements during juice extracting as a results of ion beam surface modification is expected to be broadly applicable to the other relevant industrial materials and parts. In the case of gemstone coloration, it is estimated to be one of the highest commercially valuable items because of its extremely low processing expense. The research results have been successful and is worth while transferring the technologies to the industrial sectors. During the second phase research, 6 SCI papers have been published and 9 patents have been submitted and 3 patents have been registered. 1 technology has been transferred to the company for industrialization and 1 technology is pending for a transference

  9. Department of Accelerator Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Full text: The activity of the P-10 department is focused on the development of new acceleration techniques and technology, as well as on applications of particle accelerators. Our team is able to perform all kind of calculations of research, medical and industrial accelerator components, including accelerating cavities, magnets, transfer lines, sources and targets, collimators and applicators. The main topic of the 2010 was the realization of the ' Accelerators and Detectors ' project. All results of this work are included in detailed descriptions of the particular machines. The other tasks are summarized below: 1) WP-06 Task in the European XFEL Project As part of the EXFEL preparatory phase, IPJ is developing HOM and Pickup output lines from superconducting cavities antennas, and Beam Line Absorbers of travelling HOM. This abridged WP-06 task is wholly realized by IPJ and belongs to WPG-1 (Work Package Group 1- Cold linac). The HOM couplers are used to extract and to dissipate Radio Frequency ('' RF '') energy present in the cavity due to the excitation of the HOMs by the electron beam bunches. The low frequency part of the HOM spectrum (below the cut-off frequency of the beam tube) will be extracted by HOM couplers and transmitted via coax lines to external loads. Each 9-cell cavity is equipped with two HOM couplers placed close to the end cells and working in a 2K environment. The propagating HOM power will be ca. 5.4 W/cryomodule for operation with 40000 bunches/s of a nominal charge of 1 nCoulomb. Power dissipated in BLA will be transferred to the 70 K environment by a copper stub brazed directly to the absorbing ceramic ring. The stub holds the ring in a stainless steel vacuum chamber thermally isolated from the 2K region by a flexible bellows. In 2010 the wakefields excited by beam bunches down to 40 microns were calculated, and the related wake potential and frequency spectrum of HOMs evaluated. The absorbing material (CA137 of Ceradyne Enterprice

  10. An Alternative Mechanism for Accelerated Carbon Sequestration in Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Haselbach, Liv M.; Thomle, Jonathan N.

    2014-07-01

    The increased rate of carbon dioxide sequestration (carbonation) is desired in many primary and secondary life applications of concrete in order to make the life cycle of concrete structures more carbon neutral. Most carbonation rate studies have focused on concrete exposed to air under various conditions. An alternative mechanism for accelerated carbon sequestration in concrete was investigated in this research based on the pH change of waters in contact with pervious concrete which have been submerged in carbonate laden waters. The results indicate that the concrete exposed to high levels of carbonate species in water may carbonate faster than when exposed to ambient air, and that the rate is higher with higher concentrations. Validation of increased carbon dioxide sequestration was also performed via thermogravimetric analysis (TGA). It is theorized that the proposed alternative mechanism reduces a limiting rate effect of carbon dioxide dissolution in water in the micro pores of the concrete.

  11. Accelerator physics and technology research toward future multi-MW proton accelerators

    CERN Document Server

    Shiltsev, V; Romanenko, A; Valishev, A; Zwaska, R

    2015-01-01

    Recent P5 report indicated the accelerator-based neutrino and rare decay physics research as a centrepiece of the US domestic HEP program. Operation, upgrade and development of the accelerators for the near-term and longer-term particle physics program at the Intensity Frontier face formidable challenges. Here we discuss accelerator physics and technology research toward future multi-MW proton accelerators.

  12. Electromagnetic forming - a potentially viable technique for accelerator technology

    International Nuclear Information System (INIS)

    Modern day accelerator development encompasses a myriad technologies required for their diverse needs. Whereas RF, high voltage, vacuum, cryogenics etc., technologies meet their functional requirements, high finish lapping processes, ceramic-metal joining, oven brazing, spark erosion or wire cutting etc., are a must to meet their fabrication requirements. Electromagnetic (EM) forming technique falls in the latter category and is developed as a special technology. It is currently catering to the development as a nuclear reactor technology, but has the potential to meet accelerator requirements too. This paper highlights the general principle of its working, simple design guidelines, advantages, and suggests some specific areas where this could benefit accelerator technologies

  13. Accelerator Technology Program. Status report, April-September 1985

    International Nuclear Information System (INIS)

    This report presents highlights of major projects in the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. The first section deals with the Fusion Materials Irradiation Test Facility. The second section covers code development and documentation done by the Accelerator Theory and Simulation Group. Following sections relate to the Proton Storage Ring, the racetrack microtron projects, beam dynamics, accelerator structure development, and LAMPF II. The last sections discuss programs involving free-electron laser technology, microwave and magnet technology, the portable accelerator, and klystron code development. The report concludes with a listing of papers published by AT-Division personnel during this reporting period

  14. Self-shielded electron linear accelerators designed for radiation technologies

    Science.gov (United States)

    Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.

    2009-09-01

    This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.

  15. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization

  16. Clean Coal Technologies - Accelerating Commerical and Policy Drivers for Deployment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Coal is and will remain the world's most abundant and widely distributed fossil fuel. Burning coal, however, can pollute and it produces carbon dioxide. Clean coal technologies address this problem. The widespread deployment of pollution-control equipment to reduce sulphur dioxide, Nox and dust emissions from industry is just one example which has brought cleaner air to many countries. Since the 1970s, various policy and regulatory measures have created a growing commercial market for these clean coal technologies, with the result that costs have fallen and performance has improved. More recently, the need to tackle rising CO2 emissions to address climate change means that clean coal technologies now extend to include those for CO2 capture and storage (CCS). This short report from the IEA Coal Industry Advisory Board (CIAB) presents industry's considered recommendations on how to accelerate the development and deployment of this important group of new technologies and to grasp their very signifi cant potential to reduce emissions from coal use. It identifies an urgent need to make progress with demonstration projects and prove the potential of CCS through government-industry partnerships. Its commercialisation depends upon a clear legal and regulatory framework,public acceptance and market-based financial incentives. For the latter, the CIAB favours cap-and-trade systems, price supports and mandatory feed-in tariffs, as well as inclusion of CCS in the Kyoto Protocol's Clean Development Mechanism to create demand in developing economies where coal use is growing most rapidly. This report offers a unique insight into the thinking of an industry that recognises both the threats and growing opportunities for coal in a carbon constrained world.

  17. Accelerator Technology Program. Status report, April-September 1985

    International Nuclear Information System (INIS)

    This report presents highlights of major projects in the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. Radio-frequency and microwave technology are dealt with. The p-bar gravity experiment, accelerator theory and simulation activities, the Proton Storage Ring, and the Fusion Materials Irradiation Test accelerator are discussed. Activities on the proposed LAMPF II accelerator, the BEAR (Beam Experiment Aboard Rocket) project, beam dynamics, the National Bureau of Standards racetrack microtron, and the University of Illinois racetrack microtron are covered. Papers published by AT-Division personnel during this reporting period are listed

  18. Reviews of accelerator science and technology

    CERN Document Server

    Chou, Weiren

    2008-01-01

    Particle accelerators are a major invention of the 20th century. In the last eight decades, they have evolved enormously and have fundamentally changed the way we live, think and work. Accelerators are the most powerful microscopes for viewing the tiniest inner structure of cells, genes, molecules, atoms and their constituents such as protons, neutrons, electrons, neutrinos and quarks. This opens up a whole new world for materials science, chemistry and molecular biology.Accelerators with megawatt beam power may ultimately solve a critical problem faced by our society, namely, the treatment of nuclear waste and the supply of an alternative type of energy. There are also tens of thousands of small accelerators all over the world. They are used every day for medical imaging, cancer therapy, radioisotope production, high-density chip-making, mass spectrometry, cargo x-ray/gamma-ray imaging, detection of explosives and illicit drugs, and weapons. This volume provides a comprehensive review of this driving and fas...

  19. Assesment of Ion Accelerator Technology for Material Engineering

    International Nuclear Information System (INIS)

    The assesment of ion accelerator technology for material engineering has been carried out. The objective of the assesment is to prepare the document about application of ion accelerator technology for the industry of material engineering. The assesment is related with the plan of establishment of accelerator laboratory at CRDAT of BATAN, where the one of its applications in the future is for industry of material engineering. Application of accelerator technology for material engineering is mostly using ion implantation technique, where ions of certain atoms (called dopan) are implanted into material after accelerating up to a certain kinetic energy. Ion implantation technique in material engineering can be used for surface treatment of industrial engine components such as heat exchanger, turbine, seeker ring, gear, roller, etc. The kinds of dopan ions, which were used for surface treatment, are reactive elements such as Y, Ce, Zr, Hf, Ti, and Cr, Ta as well as N ions. The ion current for surface treatment is from μA up to mA, with the energy of 20 to 600 keV which can be provided by ion implantation accelerator. Therefore the application of accelerator laboratory for the industry of material engineering needs one unit of ion implantation accelerator which produces various kind of ions with variable ions energy from 20 up to 600 keV and equipped with its supporting facilities. (author)

  20. Commnity Petascale Project for Accelerator Science And Simulation: Advancing Computational Science for Future Accelerators And Accelerator Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Spentzouris, Panagiotis; /Fermilab; Cary, John; /Tech-X, Boulder; Mcinnes, Lois Curfman; /Argonne; Mori, Warren; /UCLA; Ng, Cho; /SLAC; Ng, Esmond; Ryne, Robert; /LBL, Berkeley

    2011-10-21

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  1. Accelerator science and technology in Europe 2008-2017

    Science.gov (United States)

    Romaniuk, Ryszard S.

    2013-10-01

    European Framework Research Projects have recently added a lot of meaning to the building process of the ERA - the European Research Area. Inside this, the accelerator technology plays an essential role. Accelerator technology includes large infrastructure and intelligent, modern instrumentation embracing mechatronics, electronics, photonics and ICT. During the realization of the European research and infrastructure project FP6 CARE 2004-2008 (Coordinated Accelerator Research in Europe), concerning the development of large accelerator infrastructure in Europe, it was decided that a scientific editorial series of peer-reviewed monographs from this research area will be published in close relation with the projects. It was a completely new and quite brave idea to combine a kind of a strictly research publisher with a transient project, lasting only four or five years. Till then nobody did something like that. The idea turned out to be a real success. The publications now known and valued in the accelerator world, as the (CERN-WUT) Editorial Series on Accelerator Science and Technology, is successfully continued in already the third European project EuCARD2 and has logistic guarantees, for the moment, till the 2017, when it will mature to its first decade. During the realization of the European projects EuCARD (European Coordination for Accelerator R&D 2009-2013 and TIARA (Test Infrastructure of Accelerator Research Area in Europe) there were published 18 volumes in this series. The ambitious plans for the nearest years is to publish, hopefully, a few tens of new volumes. Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. The paper presents a digest of the research results in the domain of accelerator science and technology in Europe, published in the monographs of the European Framework Projects (FP) on accelerator technology. The succession of CARE, Eu

  2. Biomass carbon-14 ratio measured by accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Measurement methods of a biomass carbon ratio in biomass products based on 14C-radiocarbon concentration have been reviewed. Determination of the biomass carbon ratio in biomass products is important to secure the reliance in the commercial market, because the 'biomass products' could contain products from petroleum. The biomass carbon ratio can be determined from percent Modern Carbon (pMC) using ASTM D6866 methods. The pMC value is calculated from the comparison between the 14C in sample and 14C in reference material. The 14C concentration in chemical products can be measured by liquid scintillation counter (LSC) and accelerator mass spectrometry (AMS). LSC can be applicable to determine the biomass carbon ratio for liquid samples such as gasoline with bioethanol (E5 or E10). On the other hand, AMS can be used to determine the biomass carbon ratio for almost all kinds of organic and inorganic compounds such as starch, cellulose, ethanol, gasoline, or polymer composite with inorganic fillers. AMS can accept the gaseous and solid samples. The graphite derived from samples included in solid phase is measured by AMS. The biomass carbon of samples derived from wood were higher than 100% due to the effect of atomic bomb test in the atmosphere around 1950 which caused the artificial 14C injection. Exact calculation methods of the biomass carbon ratio from pMC will be required for the international standard (ISO standard). (author)

  3. Computational Tools for Accelerating Carbon Capture Process Development

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David; Sahinidis, N V; Cozad, A; Lee, A; Kim, H; Morinelly, J; Eslick, J; Yuan, Z

    2013-06-04

    This presentation reports development of advanced computational tools to accelerate next generation technology development. These tools are to develop an optimized process using rigorous models. They include: Process Models; Simulation-Based Optimization; Optimized Process; Uncertainty Quantification; Algebraic Surrogate Models; and Superstructure Optimization (Determine Configuration).

  4. Indigenous development of advanced technologies lasers and accelerators

    International Nuclear Information System (INIS)

    Lasers and accelerators are powerful tools at the fore-front of the present day scientific research and technological developments. R and D activities in the areas of lasers and accelerators being pursued at various laboratories of the Department of Atomic Energy (DAE) span wide-ranging applications in basic research, industry, health care, and strategic areas covering energy research and national security, besides participation in large scale international projects. Core strength in these areas has been built through indigenous development of related advanced technologies like radio-frequency (RF) power; ultra-high vacuum, laser and accelerator materials, magnets, power supplies and control systems, superconducting radio-frequency cavities, cryogenics, and high damage threshold optical coatings. An overview of the laser and accelerator activities in DAE laboratories is presented in this article. (author)

  5. Neural computation and particle accelerators research, technology and applications

    CERN Document Server

    D'Arras, Horace

    2010-01-01

    This book discusses neural computation, a network or circuit of biological neurons and relatedly, particle accelerators, a scientific instrument which accelerates charged particles such as protons, electrons and deuterons. Accelerators have a very broad range of applications in many industrial fields, from high energy physics to medical isotope production. Nuclear technology is one of the fields discussed in this book. The development that has been reached by particle accelerators in energy and particle intensity has opened the possibility to a wide number of new applications in nuclear technology. This book reviews the applications in the nuclear energy field and the design features of high power neutron sources are explained. Surface treatments of niobium flat samples and superconducting radio frequency cavities by a new technique called gas cluster ion beam are also studied in detail, as well as the process of electropolishing. Furthermore, magnetic devises such as solenoids, dipoles and undulators, which ...

  6. Accelerator technology program. Status report, October 1984-March 1985

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, R.A.; Schriber, S.O. (comps.)

    1986-04-01

    Activities of the racetrack-microtron development programs are highlighted, one of which is being done in collaboration with the National Bureau of Standards and the other with the University of Illinois; the BEAR (Beam Experiment Aboard Rocket) project; work in beam dynamics; the proposed LAMPF II accelerator; and the Proton Storage Ring. Discussed next is radio-frequency and microwave technology, followed by activities in accelerator theory and simulation, and free-electron laser technology. The report concludes with a listing of papers published during this reporting period.

  7. Accelerator technology program. Status report, October 1984-March 1985

    International Nuclear Information System (INIS)

    Activities of the racetrack-microtron development programs are highlighted, one of which is being done in collaboration with the National Bureau of Standards and the other with the University of Illinois; the BEAR (Beam Experiment Aboard Rocket) project; work in beam dynamics; the proposed LAMPF II accelerator; and the Proton Storage Ring. Discussed next is radio-frequency and microwave technology, followed by activities in accelerator theory and simulation, and free-electron laser technology. The report concludes with a listing of papers published during this reporting period

  8. Acid neutralisation capacity of accelerated carbonated stainless steel slag.

    Science.gov (United States)

    Johnson, D C; MacLeod, C L; Hills, C D

    2003-05-01

    The acid neutralisation capacity test is widely used to assess the long-term performance of waste materials prior to disposal. Samples of fixed mass are exposed to increasing additions of nitric add in sealed containers and the resultant pH is plotted as a titration curve. In this work, the add neutralisation capacity test was used in the assessment of an accelerated carbonated stainless steel slag. Difficulties arose in applying the test procedure to this material. This was largely because of the raised pressure from significant volumes of released carbon dioxide trapped in the sealed sample containers, causing an alteration to leachate pH values. Consequently, the add neutralisation capacity test was modified to enable testing of samples in equilibrium with the atmosphere. No adverse effects on the results from testing of a carbonate free material were recorded. PMID:12803247

  9. ACCELERATED CARBONATION OF STEEL SLAG COMPACTS: DEVELOPMENT OF HIGH STRENGTH CONSTRUCTION MATERIALS

    Directory of Open Access Journals (Sweden)

    Mieke eQuaghebeur

    2015-12-01

    Full Text Available Mineral carbonation involves the capture and storage of carbon dioxide in carbonate minerals. Mineral carbonation presents opportunities for the recycling of steel slags and other alkaline residues that are currently landfilled. The Carbstone process was initially developed to transform non-hydraulic steel slags (stainless steel slag and basic oxygen furnace slags in high quality construction materials. The process makes use of accelerated mineral carbonation by treating different types of steel slags with CO2 at elevated pressure (up to 2 MPa and temperatures (20 to 140°C. For stainless steel slags raising the temperature from 20 to 140°C had a positive effect on the CO2 uptake, strength development and the environmental properties (i.e. leaching of Cr and Mo of the carbonated slag compacts. For BOF slags raising the temperature was not beneficial for the carbonation process. Elevated CO2 pressure and CO2 concentration of the feed gas had a positive effect on the CO2 uptake and strength development for both types of steel slags. In addition also the compaction force had a positive effect on the strength development. The carbonates that are produced in-situ during the carbonation reaction act as a binder, cementing the slag particles together. The carbonated compacts (Carbstones have technical properties that are equivalent to conventional concrete products. An additional advantage is that the carbonated materials sequester 100 to 150 g CO2/kg slag. The technology was developed on lab scale by optimisation of process parameters with regard to compressive strength development, CO2 uptake and environmental properties of the carbonated construction materials. The Carbstone technology was validated using (semi-industrial equipment and process conditions.

  10. Separations technology development to support accelerator-driven transmutation concepts

    International Nuclear Information System (INIS)

    This is the final report of a one-year Laboratory-Directed Research and Development (LDRD) Project at the Los Alamos National Laboratory (LANL). This project investigated separations technology development needed for accelerator-driven transmutation technology (ADTT) concepts, particularly those associated with plutonium disposition (accelerator-based conversion, ABC) and high-level radioactive waste transmutation (accelerator transmutation of waste, ATW). Specific focus areas included separations needed for preparation of feeds to ABC and ATW systems, for example from spent reactor fuel sources, those required within an ABC/ATW system for material recycle and recovery of key long-lived radionuclides for further transmutation, and those required for reuse and cleanup of molten fluoride salts. The project also featured beginning experimental development in areas associated with a small molten-salt test loop and exploratory centrifugal separations systems

  11. Evidence for super-exponentially accelerating atmospheric carbon dioxide growth

    CERN Document Server

    Hüsler, Andreas D

    2011-01-01

    We analyze the growth rates of atmospheric carbon dioxide and human population, by comparing the relative merits of two benchmark models, the exponential law and the finite-time-singular (FTS) power law. The later results from positive feedbacks, either direct or mediated by other dynamical variables, as shown in our presentation of a simple endogenous macroeconomic dynamical growth model. Our empirical calibrations confirm that human population has decelerated from its previous super-exponential growth until 1960 to ``just' an exponential growth, but with no sign of more deceleration. As for atmospheric CO2 content, we find that it is at least exponentially increasing and most likely characterized by an accelerating growth rate as off 2009, consistent with an unsustainable FTS power law regime announcing a drastic change of regime. The coexistence of a quasi-exponential growth of human population with a super-exponential growth of carbon dioxide content in the atmosphere is a diagnostic of insignificant impr...

  12. Accelerating innovation in information and communication technology for health.

    Science.gov (United States)

    Crean, Kevin W

    2010-02-01

    Around the world, inventors are creating novel information and communication technology applications and systems that can improve health for people in disparate settings. However, it is very difficult to find investment funding needed to create business models to expand and develop the prototype technologies. A comprehensive, long-term investment strategy for e-health and m-health is needed. The field of social entrepreneurship offers an integrated approach to develop needed investment models, so that innovations can reach more patients, more effectively. Specialized financing techniques and sustained support from investors can spur the expansion of mature technologies to larger markets, accelerating global health impacts. PMID:20348074

  13. Accelerator Technology Program. Status report, October 1983-March 1984

    International Nuclear Information System (INIS)

    This report covers major projects in the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. The first sections highlight activities related to beam dynamics, inertial fusion, structure development, the racetrack microtron, and the CERN high-energy physics experiment NA-12. Discussed next is the Fusion Materials Irradiation Test Facility, followed by a summary of progress on the Proton Storage Ring and activities of the Theory and Simulation Group. The report concludes with a discussion of the H- accelerator program and a listing of papers published by AT-Division personnel during this reporting period

  14. Enhancement of accelerated carbonation of alkaline waste residues by ultrasound.

    Science.gov (United States)

    Araizi, Paris K; Hills, Colin D; Maries, Alan; Gunning, Peter J; Wray, David S

    2016-04-01

    The continuous growth of anthropogenic CO2 emissions into the atmosphere and the disposal of hazardous wastes into landfills present serious economic and environmental issues. Reaction of CO2 with alkaline residues or cementitius materials, known as accelerated carbonation, occurs rapidly under ambient temperature and pressure and is a proven and effective process of sequestering the gas. Moreover, further improvement of the reaction efficiency would increase the amount of CO2 that could be permanently sequestered into solid products. This paper examines the potential of enhancing the accelerated carbonation of air pollution control residues, cement bypass dust and ladle slag by applying ultrasound at various water-to-solid (w/s) ratios. Experimental results showed that application of ultrasound increased the CO2 uptake by up to four times at high w/s ratios, whereas the reactivity at low water content showed little change compared with controls. Upon sonication, the particle size of the waste residues decreased and the amount of calcite precipitates increased. Finally, the sonicated particles exhibited a rounded morphology when observed by scanning electron microscopy. PMID:26905698

  15. EuCARD 2010 Accelerator Technology in Europe

    CERN Document Server

    Romaniuk, R S

    2010-01-01

    Accelerators are basic tools of the experimental physics of elementary particles, nuclear physics, light sources of the fourth generation. They are also used in myriad other applications in research, industry and medicine. For example, there are intensely developed transmutation techniques for nuclear waste from nuclear power and atomic industries. The European Union invests in the development of accelerator infrastructures inside the framework programs to build the European Research Area. The aim is to build new infrastructure, develop the existing, and generally make the infrastructure available to competent users. The paper summarizes the first year of activities of the EU FP7 Project Capacities EuCARD –European Coordination of Accelerator R&D. Several teams from this country participate actively in this project. The contribution from Polish research teams concerns: photonic and electronic measurement – control systems, RF-gun co-design, thin-film superconducting technology, superconducting transpo...

  16. Advanced visualization technology for terascale particle accelerator simulations

    International Nuclear Information System (INIS)

    This paper presents two new hardware-assisted rendering techniques developed for interactive visualization of the terascale data generated from numerical modeling of next generation accelerator designs. The first technique, based on a hybrid rendering approach, makes possible interactive exploration of large-scale particle data from particle beam dynamics modeling. The second technique, based on a compact texture-enhanced representation, exploits the advanced features of commodity graphics cards to achieve perceptually effective visualization of the very dense and complex electromagnetic fields produced from the modeling of reflection and transmission properties of open structures in an accelerator design. Because of the collaborative nature of the overall accelerator modeling project, the visualization technology developed is for both desktop and remote visualization settings. We have tested the techniques using both time varying particle data sets containing up to one billion particle s per time step and electromagnetic field data sets with millions of mesh elements

  17. Accelerator technology program. Status report, July-December 1982

    International Nuclear Information System (INIS)

    Major projects of the Los Alamos National Laboratory's Accelerator Technology Division are discussed, covering activities that occurred during the last six months of calendar 1982. The first sections report highlights in beam dynamics, accelerator inertial fusion, radio-frequency structure development, the racetrack microtron, CERN high-energy physics experiment NA-12, and high-flux radiographic linac study. Next we report on selected proton Storage Ring activities that have made significant progress during this reporting period, followed by an update on the free electron laser. The Fusion Materials Irradiation Test Facility work is discussed next, then progress on the klystron development project and on the gyrocon project. The activities of the newly formed Theory and Simulation Group are outlined. The last section covers activities concerning the accelerator test stand for the neutral particle beam program

  18. Development of small applied accelerator in Tokyo Institute of Technology

    CERN Document Server

    Hattori, T

    2002-01-01

    Interdigital-H(IH) Linac was constructed and applied to materials research in the University. IH Linac uses 1.6 MV small tandem pelletron and accelerates ion (>Q/A=1/4) from 240 KeV to 2.4 MeV. The secondary IH Linac was built and increased the energy to 3.4 MeV/u. In order to apply linac to therapy, IH Linac for PET (Position Emission Tomography), Carbon 6 MeV/u Linac for cancer therapy, APF (Alternating Phase Focus)-IH prototype linac, Carbon 2 MeV/u test APF-IH linac were developed. On application to semiconductor and industry, IHQ type MeV ion implantation device, APF-IH type MeV ion implantation device and high-energy electron accelerator were developed. A bone density measurement instrument was developed and the data was proved better values than ordinary instrument. The problems of prototype small accelerator are summarized. (S.Y.)

  19. Accelerator Technology Program. Progress report, January-June 1980

    International Nuclear Information System (INIS)

    The activities of Los Alamos Scientific Laboratory's (LASL) Accelerator Technology (AT) Division during the first six months of calendar 1980 are discussed. This report is organized around major projects of the Division, reflecting a wide variety of applications and sponsors. The first section summarizes progress on the Proton Storage Ring to be located between LAMPF and the LASL Pulsed Neutron Research facility, followed by a section on the gyrocon, a new type of high-power, high-efficiency radio-frequency (rf) amplifier. The third section discusses the racetrack microtron being developed jointly by AT Division and the National Bureau of Standards; the fourth section concerns the free-electron studies. The fifth section covers the radio-frequency quadrupole linear accelerator, a new concept for the acceleration of low-velocity particles; this section is followed by a section discussing heavy ion fusion accelerator development. The next section reports activities in the Fusion Materials Irradiation Test program, a collaborative effort with the Hanford Engineering Development Laboratory. The final section deals first with development of H- ion sources and injectors, then with accelerator instrumentation and beam dynamics

  20. The final technical report of the CRADA, 'Medical Accelerator Technology'

    International Nuclear Information System (INIS)

    Under this CRADA, Berkeley Lab and the industry partner, General Atomics (GA), have cooperatively developed hadron therapy technologies for commercialization. Specifically, Berkeley Lab and GA jointly developed beam transport systems to bring the extracted protons from the accelerator to the treatment rooms, rotating gantries to aim the treatment beams precisely into patients from any angle, and patient positioners to align the patient accurately relative to the treatment beams. We have also jointly developed a patient treatment delivery system that controls the radiation doses in the patient, and hardware to improve the accelerator performances, including a radio-frequency ion source and its low-energy beam transport (LEBT) system. This project facilitated the commercialization of the DOE-developed technologies in hadron therapy by the private sector in order to improve the quality of life of the nation

  1. Leveraging Old Intellectual Property to Accelerate Technology Entrepreneurship

    Directory of Open Access Journals (Sweden)

    Derek Smith

    2013-06-01

    Full Text Available Acquiring or licensing assets to older technologies, including surviving intellectual property rights, is an often-overlooked viable strategy for accelerating technology entrepreneurship. This strategy can help entrepreneurs short-cut the growth of a customer base, reduce development effort, and shorten the time to market with a minimum viable product. However, this strategy is not without risk; entrepreneurs need to be careful that the acquired intellectual property rights are not fraught with issues that could severely outweigh any perceived value. Proper investigation is required to ensure success because the current literature fails to provide tools that an entrepreneur can apply when considering the acquisition of intellectual property. This article includes a case study of a technology company – Piranha Games – that indirectly acquired sole and exclusive access to a substantial historical customer base by acquiring and licensing older technology and surviving intellectual property assets. The founders then leveraged the existing product brand and its historical customers to acquire significant funding and went global with a minimum viable product in three years. The copyright and trademark assets provided value on day one to Piranha Games by making it difficult and risky for others to exploit the technology. Based on this case study, this article offers recommendations to entrepreneurs who may benefit from acquiring old intellectual property to accelerate the growth of their startups.

  2. Accelerating nano-technological innovation in the Danish construction industry

    DEFF Research Database (Denmark)

    Koch, Christian; Stissing Jensen, Jens

    2007-01-01

      By viewing the construction industry as a technological innovation system (TIS) this paper discusses possible initiatives to accelerate nanotechnological innovations. The point of departure is a recent report on the application of nano-technology in the Danish construction industry, which....... The institutional features of the system are furthermore poorly equipped at identifying potentials within high-tech areas. In order to exploit the potentials of nano-technology it is thus argued that an alternative TIS needs to be established. Initiatives should identify and support "incubation rooms" or marked...... niches in order for the different elements of the TIS to evolve. This could involve nano-visioning including scenarios of future technological applications and industrial dynamics....

  3. Proceeding of the Scientific Meeting and Presentation on Accelerator Technology and its Application

    International Nuclear Information System (INIS)

    The proceeding contains papers presented on Scientific Meeting and Presentation on Accelerator Technology and Its Application, held in Yogyakarta, 16 january 1996. This proceeding contains papers on accelerator technology, especially electron beam machine. There are 11 papers indexed individually. (ID)

  4. Compact and energy saving magnet technology for particle accelerators

    International Nuclear Information System (INIS)

    Despite the fact that funding agencies and industrial users of particle accelerators get more and more alerted about costs of civil engineering, installation and operation, only little effort has been put into development of sustainable, energy and cost saving accelerator technology. In order to reduce the total-cost-of ownership of accelerator magnets, operating at high electrical power for twenty years or more, permanent magnet based Green Magnet technology has been developed at a consortium around Danfysik's R and D team. Together with our partners from ISA, Aarhus University, the Aarhus School of Engineering, the company Sintex and Aalborg University all obstacles in applying permanent magnet technology as e.g. thermal drift and inhomogeneities of magnetic fields have been overcome. The first Green Magnet has now been operated for more than half a year in an Accelerator Mass Spectrometry facility at the ETH in Zurich. The performance of this B=0.43T 90 deg. H-type bending magnet and the most recently builtB=1T, 30 deg. C-type Green Magnet for the synchrotron light source ASTRID2 at ISA in Aarhus will be presented. Danfysik also is designing, manufacturing and testing 60 compact magnet systems, developed at MAX-Lab for the new MAXIV 3.0 GeV synchrotron light source. In addition, 12 for the 1.5 GeV light source and another 12 for the new SOLARIS light source in Krakow, Poland are buying built. Up to a dozen or more magnet functions have been integrated into one yoke of these compact magnet systems, which makes the new MAXIV light sources compact, energy saving and at the same time very bright. Test results and design concepts of the new MAXIV and SOLARIS magnets will be presented. (author)

  5. Accelerator Technology Program. Status report, January-September 1983

    International Nuclear Information System (INIS)

    This report presents highlights of major projects in the Accelerator Technology Division of the Los Alamos National Laboratory. The first section deals with the Fusion Materials Irradiation Test Facility's 2-MeV accelerator on which tests began in May, as scheduled. Then, activities are reported on beam dynamics, inertial fusion, structure development, the racetrack microtron, the CERN high-energy physics experiment NA-12, and LAMPF II. The Proton Storage Ring is discussed next, with emphasis on the computer control system, diagnostics interfacing, and theoretical support. Other sections summarize progress on a portable radiographic linac, developments on the klystron code, and on permanent magnets. Activities of the Theory and Simulation Group are outlined next, followed by discussion of the oscillator experiment and the energy-recovery experiment in the free electron laser project. The last section reports on the accelerator test stand. An unusual and very satisfying activity for the Division was the hosting of the 1983 Particle Accelerator Conference in Santa Fe, March 21-23, 1983. The conference had the largest attendance ever, with 895 registrants, 61 invited papers, and 521 contributed papers

  6. Global change accelerates carbon assimilation by a wetland ecosystem engineer

    Science.gov (United States)

    Caplan, Joshua S.; Hager, Rachel N.; Megonigal, J. Patrick; Mozdzer, Thomas J.

    2015-11-01

    The primary productivity of coastal wetlands is changing dramatically in response to rising atmospheric carbon dioxide (CO2) concentrations, nitrogen (N) enrichment, and invasions by novel species, potentially altering their ecosystem services and resilience to sea level rise. In order to determine how these interacting global change factors will affect coastal wetland productivity, we quantified growing-season carbon assimilation (≈gross primary productivity, or GPP) and carbon retained in living plant biomass (≈net primary productivity, or NPP) of North American mid-Atlantic saltmarshes invaded by Phragmites australis (common reed) under four treatment conditions: two levels of CO2 (ambient and +300 ppm) crossed with two levels of N (0 and 25 g N added m-2 yr-1). For GPP, we combined descriptions of canopy structure and leaf-level photosynthesis in a simulation model, using empirical data from an open-top chamber field study. Under ambient CO2 and low N loading (i.e., the Control), we determined GPP to be 1.66 ± 0.05 kg C m-2 yr-1 at a typical Phragmites stand density. Individually, elevated CO2 and N enrichment increased GPP by 44 and 60%, respectively. Changes under N enrichment came largely from stimulation to carbon assimilation early and late in the growing season, while changes from CO2 came from stimulation during the early and mid-growing season. In combination, elevated CO2 and N enrichment increased GPP by 95% over the Control, yielding 3.24 ± 0.08 kg C m-2 yr-1. We used biomass data to calculate NPP, and determined that it represented 44%-60% of GPP, with global change conditions decreasing carbon retention compared to the Control. Our results indicate that Phragmites invasions in eutrophied saltmarshes are driven, in part, by extended phenology yielding 3.1× greater NPP than native marsh. Further, we can expect elevated CO2 to amplify Phragmites productivity throughout the growing season, with potential implications including accelerated spread

  7. Carbonation acceleration of calcium hydroxide nanoparticles: induced by yeast fermentation

    Science.gov (United States)

    Lopez-Arce, Paula; Zornoza-Indart, Ainara

    2015-09-01

    Carbonation of Ca(OH)2 nanoparticles and consolidation of limestone are accelerated by high humidity and a yeast fermentation system that supplies a saturated atmosphere on CO2, H2O vapor and ethanol during 28 days. Nanoparticles were analyzed by X-ray diffraction and differential thermal analyses with thermogravimetry. Spectrophotometry, scanning electron microscopy analyses, and hydric and mechanical tests were also performed in stones specimens. Samples exposed to the yeast environment achieve 100 % relative CaCO3 yield, whereas at high humidity but without the yeast and under laboratory environment, relative yields of 95 % CaCO3 and 15 % CaCO3 are, respectively, reached, with white crusts and glazing left on the stone surfaces when the nanoparticles are applied at a concentration of 25 g/l. The largest increase in the drilling resistance and surface hardness values with slight increase in the capillarity absorption and desorption coefficients and with lesser stone color changes are produced at a concentration of 5 g/l, in the yeast system environment. This especially happens in stone specimens initially with bimodal pore size distributions, more amounts of pores with diameters between 0.1 and 1 µm, higher open porosity values and faster capillary coefficients. An inexpensive and reliable method based on water and yeast-sugar solution is presented to speed up carbonation of Ca(OH)2 nanoparticles used as a consolidating product to improve the mechanical properties of decayed limestone from archaeological and architectural heritage.

  8. The accelerator driven transmutation technology - A study on the linac for proton accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bum Soo; Joh, Ki Hun; Kim, Sung Myun; Park, Heung Gyu; Park, Jong Pil; Kang, Bo Sun [Samsung Heavy Industries, Taejon (Korea)

    1999-04-01

    The purpose of this study is to investigate the manufacturing technology of proton accelerators, and to find the adequate manufacturing technique for construction of such proton accelerators. Review of manufacturing technology for RFQ has been carried out - RFQ machine of other country has been reviewed on the aspects of manufacturing, - Machining of engineering mock-up has been performed based on the designed data, - Brazing technology for RFQ, and brazing test and analysis of Copper specimen. Adequate brazing conditions for RFQ - 1st brazing (vane to section, 950 deg C), Filler metal composition: Cu-20Sn, Brazing conditions: peak temp. 950 deg C (holding time 20min, rising rate 7 deg C/min), Atmosphere: H{sub 2}. - 2nd brazing (section to section, 850 deg C or less), Filler metal: Cu-Sn4%-P7.5%-Ag6%, Brazing conditions: peak temp. 750 deg C (holding time 20min, rising rate 7 deg C/min), Atmosphere: H{sub 2}. 8 refs., (author). 31 figs., 6 tabs.

  9. Technological Development in Carbon Sequestration at Petrobras

    Energy Technology Data Exchange (ETDEWEB)

    Castello Branco, R.; Vazquez Sebastian, G.; Murce, T.; Cunha, P.; Dino, R.; Sartori Santarosa, C.

    2007-07-01

    Petrobras defined, in its mission, the intention to act in a safe and profitable way, with social and environmental responsibility. In its vision, the company decided to be an oil and energy company, taking into account climate change mitigation. These changes were partially caused, without the company's knowledge, for many years, by the burning of fossil fuels. Among many technologies available for this mitigation, carbon sequestration is the one that, in a short space of time, can avoid the collapse of earth's climate. In order to meet this carbon sequestration challenge, there has been established, at CENPES, three strategies for its technological development: (i) establishment of a Systemic Project for Carbon Sequestration within the scope of the Environmental Technology Program - PROAMB; (ii) creation of a Group of Carbon Sequestration Technologies for Climate Change Mitigation - formation of team and qualification program, which includes the realization of the International Seminar on Carbon Sequestration and Climate Change at Petrobras in October 2006; and (iii) Implementation of the Technological Network of Technologies for Climate Change Mitigation. (auth)

  10. Use of permanent magnets in accelerator technology: Present and future

    International Nuclear Information System (INIS)

    This report is a collection of viewgraphs discussing accelerator magnets. Permanent magnet systems have some generic properties that, under some circumstances, make them not only mildly preferable over electromagnets, but make it possible to do things that can not be done with any other technology. After a general discussion of these generic advantages, some specific permanent magnet systems will be described. Special emphasis will be placed on systems that have now, or are likely to have in the future, a significant impact on how some materials research is conducted. 4 refs., 33 figs

  11. Technological Learning for Carbon Capture and Sequestration Technologies

    OpenAIRE

    K. Riahi; Rubin, E.S.; Taylor, M. R.; L. Schrattenholzer; Hounshell, D.

    2004-01-01

    This paper analyzes potentials of carbon capture and sequestration technologies (CCT) in a set of long-term energy-economic-environmental scenarios based on alternative assumptions for technological progress of CCT. In order to get a reasonable guide to future technological progress in managing CO2 emissions, we review past experience in controlling sulfur dioxide (SO2) emissions from power plants. By doing so, we quantify a "learning curve" for CCT, which describes the relationship between ...

  12. Application of accelerated carbonation on MSW combustion APC residues for metal immobilization and CO2 sequestration.

    Science.gov (United States)

    Cappai, G; Cara, S; Muntoni, A; Piredda, M

    2012-03-15

    The present study focuses on the application of an aqueous phase accelerated carbonation treatment on air pollution control (APC) residues from municipal solid waste combustion, aimed at assessing its influence on the environmental behaviour of the residue under concern, as well as the potential of the process in terms of sequestration of the CO2. APC residues are considered hazardous waste and must be treated before final disposal in order to achieve the immobilization/mobilization of critical contaminants such as heavy metals as well as mobilization of soluble salts. The treatment applied proved to be effective in reducing the mobility of Pb, Zn, Cr, Cu and Mo, the optimum final pH for the carbonated APC residues being in a range of 10-10.5, whilst a mobilization effect was noticed for Sb and no effect was assessed for chlorides. The effect of carbonation treatment on the contaminant release was further evaluated by means of a sequential extraction procedure, indicating that the distribution of contaminants on water soluble, exchangeable and carbonate fraction was modified after treatment. The CO2 sequestration potential assessed for the APC residues showed that the carbonation technology could be a technically viable option in order to reduce emissions from WtE plants. PMID:21601357

  13. Accelerator technology program. Progress report, January-December 1979

    International Nuclear Information System (INIS)

    The activities of Los Alamos Scientific Laboratory's (LASL) Accelerator Technology (AT) Division during the calendar year 1979 are highlighted, with references to more detailed reports. This report is organized around the major projects of the Division, reflecting a wide variety of applications and sponsors. The first section covers the Fusion Materials Irradiation Test program, a collaborative effort with the Hanford Engineering Development Laboratory; the second section summarizes progress on the Proton Storage Ring to be built between LAMPF and the LASL Pulsed Neutron Research facility. A new project that achieved considerable momentum during the year is described next - the free-electron laser studies; the following section discusses the status of the Pion Generator for Medical Irradiation program. Next, two more new programs, the racetrack microtron being developed jointly by AT-Division and the National Bureau of Standards and the radio-frequency (rf) accelerator development for heavy ion fusion, are outlined. Development activities on a new type of high-power, high-efficiency rf amplifier called the gyrocon are then reported, and the final sections cover development of H- ion sources and injectors, and linear accelerator instrumentation and beam dynamics

  14. Accelerator technology program. Progress report, January-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, E.A.; Jameson, R.A. (comps.)

    1980-11-01

    The activities of Los Alamos Scientific Laboratory's (LASL) Accelerator Technology (AT) Division during the calendar year 1979 are highlighted, with references to more detailed reports. This report is organized around the major projects of the Division, reflecting a wide variety of applications and sponsors. The first section covers the Fusion Materials Irradiation Test program, a collaborative effort with the Hanford Engineering Development Laboratory; the second section summarizes progress on the Proton Storage Ring to be built between LAMPF and the LASL Pulsed Neutron Research facility. A new project that achieved considerable momentum during the year is described next - the free-electron laser studies; the following section discusses the status of the Pion Generator for Medical Irradiation program. Next, two more new programs, the racetrack microtron being developed jointly by AT-Division and the National Bureau of Standards and the radio-frequency (rf) accelerator development for heavy ion fusion, are outlined. Development activities on a new type of high-power, high-efficiency rf amplifier called the gyrocon are then reported, and the final sections cover development of H/sup -/ ion sources and injectors, and linear accelerator instrumentation and beam dynamics.

  15. Development of superconducting acceleration cavity technology for free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Byung Cheol; Kim, Sun Kook; Jeong, Young Uk; Cho, Sung Oh

    2000-10-01

    As a result of the cooperative research between the KAERI and Peking University, the key technologies of superconducting acceleration cavity and photoelectron gun have been developed for the application to high power free electron lasers. A 1.5-GHz, 1-cell superconducting RF cavity has been designed and fabricated by using pure Nb sheets. The unloaded Q values of the fabricated superconducting cavity has been measured to be 2x10{sup 9} at 2.5K, and 8x10{sup 9} at 1.8K. The maximum acceleration gradient achieved was 12 MeV/m at 2.5K, and 20MV/m at 1.8 K. A cryostat for the 1-cell superconducting cavity has been designed. As a source of electron beam, a DC photocathode electron gun has been designed and fabricated, which is composed of a photocathode evaporation chamber and a 100-keV acceleration chamber. The efficiency of the Cs2Te photocathode is 3% nominally at room temperature, 10% at 290 deg C. The superconducting photoelectron gun system developed has been estimated to be a good source of high-brightness electron beam for high-power free electron lasers.

  16. The story of the Tevatron accelerators: Accelerator science and technology breakthroughs, achievements and lessons

    International Nuclear Information System (INIS)

    For almost a quarter of a century, the Tevatron proton-antiproton collider was the centerpiece of the world's high energy physics program - since it began operation in December of 1985, until it was overtaken by LHC in 2011. The aim of this unique scientific instrument was to explore the elementary particle physics reactions with center of mass collision energies of up to 1.96 TeV. The initial design luminosity of the Tevatron was 1030 cm-2 s-1, however as a result of two decades of upgrades, the accelerator has been able to deliver 430 times higher luminosities to each of two high luminosity experiments, CDF and D0. The Tevatron has been shut off since September 30, 2011. The collider was arguably one of the most complex research instruments ever to reach the operation stage and is widely recognized for many technological breakthroughs and numerous physics discoveries. In this paper, we briefly present the history of the Tevatron, major advances in accelerator physics, technology implemented during the long quest for better and better performance, and the lessons learned from our experience.

  17. Carbon nanohorns allow acceleration of osteoblast differentiation via macrophage activation

    Science.gov (United States)

    Hirata, Eri; Miyako, Eijiro; Hanagata, Nobutaka; Ushijima, Natsumi; Sakaguchi, Norihito; Russier, Julie; Yudasaka, Masako; Iijima, Sumio; Bianco, Alberto; Yokoyama, Atsuro

    2016-07-01

    Carbon nanohorns (CNHs), formed by a rolled graphene structure and terminating in a cone, are promising nanomaterials for the development of a variety of biological applications. Here we demonstrate that alkaline phosphatase activity is dramatically increased by coculture of human monocyte derived macrophages (hMDMs) and human mesenchymal stem cells (hMSCs) in the presence of CNHs. CNHs were mainly localized in the lysosome of macrophages more than in hMSCs during coculturing. At the same time, the amount of Oncostatin M (OSM) in the supernatant was also increased during incubation with CNHs. Oncostatin M (OSM) from activated macrophage has been reported to induce osteoblast differentiation and matrix mineralization through STAT3. These results suggest that the macrophages engulfed CNHs and accelerated the differentiation of mesenchymal stem cells into the osteoblast via OSM release. We expect that the proof-of-concept on the osteoblast differentiation capacity by CNHs will allow future studies focused on CNHs as ideal therapeutic materials for bone regeneration.Carbon nanohorns (CNHs), formed by a rolled graphene structure and terminating in a cone, are promising nanomaterials for the development of a variety of biological applications. Here we demonstrate that alkaline phosphatase activity is dramatically increased by coculture of human monocyte derived macrophages (hMDMs) and human mesenchymal stem cells (hMSCs) in the presence of CNHs. CNHs were mainly localized in the lysosome of macrophages more than in hMSCs during coculturing. At the same time, the amount of Oncostatin M (OSM) in the supernatant was also increased during incubation with CNHs. Oncostatin M (OSM) from activated macrophage has been reported to induce osteoblast differentiation and matrix mineralization through STAT3. These results suggest that the macrophages engulfed CNHs and accelerated the differentiation of mesenchymal stem cells into the osteoblast via OSM release. We expect that the

  18. Education in a rapidly advancing technology: Accelerators and beams

    International Nuclear Information System (INIS)

    The field of accelerators and beams (A and B) is one of today's fast changing technologies. Because university faculties have not been able to keep pace with the associated advancing knowledge, universities have not been able to play their traditional role of educating the scientists and engineers needed to sustain this technology for use in science, industry, commerce, and defense. This problem for A and B is described and addressed. The solution proposed, a type of ''distance'' education, is the U.S. Particle Accelerator School (USPAS) created in the early 1980s. USPAS provides the universities with a means of serving the education needs of the institutions using A and B, primarily but not exclusively the national laboratories. The field of A and B is briefly summarized. The need for education outside the university framework, the raison d'etre for USPAS, the USPAS method, program structure, and curriculum, and particular USPAS-university connections are explained. The management of USPAS is analyzed, including its unique administrative structure, its institutional ties, and its operations, finance, marketing, and governmental relations. USPAS performance over the years is documented and a business assessment is made. Finally, there is a brief discussion of the future potential for this type of educational program, including possible extrapolation to new areas and/or different environments, in particular, its extra-government potential and its international possibilities. (c) 2000 American Association of Physics Teachers

  19. Education in a rapidly advancing technology: Accelerators and beams

    Science.gov (United States)

    Month, Mel

    2000-06-01

    The field of accelerators and beams (A&B) is one of today's fast changing technologies. Because university faculties have not been able to keep pace with the associated advancing knowledge, universities have not been able to play their traditional role of educating the scientists and engineers needed to sustain this technology for use in science, industry, commerce, and defense. This problem for A&B is described and addressed. The solution proposed, a type of "distance" education, is the U.S. Particle Accelerator School (USPAS) created in the early 1980s. USPAS provides the universities with a means of serving the education needs of the institutions using A&B, primarily but not exclusively the national laboratories. The field of A&B is briefly summarized. The need for education outside the university framework, the raison d'être for USPAS, the USPAS method, program structure, and curriculum, and particular USPAS-university connections are explained. The management of USPAS is analyzed, including its unique administrative structure, its institutional ties, and its operations, finance, marketing, and governmental relations. USPAS performance over the years is documented and a business assessment is made. Finally, there is a brief discussion of the future potential for this type of educational program, including possible extrapolation to new areas and/or different environments, in particular, its extra-government potential and its international possibilities.

  20. Accelerating Gas Adsorption on 3D Percolating Carbon Nanotubes

    Science.gov (United States)

    Li, Hui; Wen, Chenyu; Zhang, Youwei; Wu, Dongping; Zhang, Shi-Li; Qiu, Zhi-Jun

    2016-02-01

    In the field of electronic gas sensing, low-dimensional semiconductors such as single-walled carbon nanotubes (SWCNTs) can offer high detection sensitivity owing to their unprecedentedly large surface-to-volume ratio. The sensitivity and responsivity can further improve by increasing their areal density. Here, an accelerated gas adsorption is demonstrated by exploiting volumetric effects via dispersion of SWCNTs into a percolating three-dimensional (3D) network in a semiconducting polymer. The resultant semiconducting composite film is evaluated as a sensing membrane in field effect transistor (FET) sensors. In order to attain reproducible characteristics of the FET sensors, a pulsed-gate-bias measurement technique is adopted to eliminate current hysteresis and drift of sensing baseline. The rate of gas adsorption follows the Langmuir-type isotherm as a function of gas concentration and scales with film thickness. This rate is up to 5 times higher in the composite than only with an SWCNT network in the transistor channel, which in turn results in a 7-fold shorter time constant of adsorption with the composite. The description of gas adsorption developed in the present work is generic for all semiconductors and the demonstrated composite with 3D percolating SWCNTs dispersed in functional polymer represents a promising new type of material for advanced gas sensors.

  1. Computational Tools for Accelerating Carbon Capture Process Development

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David

    2013-01-01

    The goals of the work reported are: to develop new computational tools and models to enable industry to more rapidly develop and deploy new advanced energy technologies; to demonstrate the capabilities of the CCSI Toolset on non-proprietary case studies; and to deploy the CCSI Toolset to industry. Challenges of simulating carbon capture (and other) processes include: dealing with multiple scales (particle, device, and whole process scales); integration across scales; verification, validation, and uncertainty; and decision support. The tools cover: risk analysis and decision making; validated, high-fidelity CFD; high-resolution filtered sub-models; process design and optimization tools; advanced process control and dynamics; process models; basic data sub-models; and cross-cutting integration tools.

  2. Accelerating process and catalyst development in reforming reactions with high throughput technologies under industrially relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schunk, S.A.; Bollmann, G.; Froescher, A.; Kaiser, H.; Lange de Oliveira, A.; Roussiere, T.; Wasserschaff, G. [hte Aktiengesellschaft, Heidelberg (Germany); Domke, I. [BASF SE, Ludwigshafen (Germany)

    2010-12-30

    The generation of hydrogen via reforming of a variety of carbon containing feed-stocks in the presence of water is up to date one of the most versatile technologies for the production of hydrogen and syngas. Although these reforming technologies are in principle well established, understood and commercialized, there are still a number of technological challenges that are not solved up to a satisfactorily degree and there is a constant demand for appropriate answers to the challenges posed. High throughput experimentation can be a valuable tool in helping accelerate the development of suitable solutions on the catalyst and process development side. In order to be able to generate test data that are close or identical to process relevant conditions, hte has developed a new technology portfolio of test technologies named Stage-IV technology. In contrast to earlier developments which address more small scale testing on the basis of catalyst volumes of 1ml up to 10 ml under isothermal conditions, our new technology portfolio offers the advantage of test volumes at sub-pilot scale also realizing reactor dimensions close to technical applications. This does not only ensure a good mimic of the hydrodynamic conditions of the technical scale, but also allows a fingerprinting of features like temperature gradients in the catalyst bed which play a large role for catalyst performance. Apart from catalyst tests with granulates when screening for optimized catalyst compositions, the units are designed to accommodate tests with shaped catalysts. In order to demonstrate how these technologies can accelerate catalyst and process development we have chosen technically challenging application examples: (I) Pre-reforming and reforming of methane based feeds which accelerate coking and catalyst deactivation. Higher reaction pressures, high CO{sub 2} contents in the feedgas (which occur typically in sources like bio-gas or certain types of natural gas), the presence of higher alkanes

  3. Four advances in carbon-carbon materials technology

    Science.gov (United States)

    Maahs, Howard G.; Vaughn, Wallace L.; Kowbel, Witold

    1994-01-01

    Carbon-carbon composites are a specialty class of materials having many unique properties making these composites attractive for a variety of demanding engineering applications. Chief among these properties are exceptional retention of mechanical properties at temperatures as high as 4000 F, excellent creep resistance, and low density (1.6 to 1.8 g/cu cm). Although carbon-carbon composites are currently in service in a variety of applications, much development work remains to be accomplished before these materials can be considered to be fully mature, realizing their full potential. Four recent technology advances holding particular promise for overcoming current barriers to the wide-spread commercialization of carbon-carbon composites are described. These advances are: markedly improved interlaminar strengths (more than doubled) of two dimensional composites achieved by whiskerization of the fabric reinforcing plies, simultaneously improved oxidation resistance and mechanical properties achieved by the incorporation of matrix-phase oxidation inhibitors based on carborane chemistry, improved oxidation resistance achieved by compositionally graded oxidation protective coatings, and markedly reduced processing times (hours as opposed to weeks or months) accomplished through a novel process of carbon infiltration and coatings deposition based on the use of liquid-phase precursor materials.

  4. Repetitive pulse accelerator technology for light ion inertial confinement fusion

    International Nuclear Information System (INIS)

    This paper will overview the technologies being studied for a repetitively pulsed ICF accelerator. As presently conceived, power is supplied by rotating machinery providing 16 MJ in 1 ms. The generator output is transformed to 3 MV, then switched into a pulse compression system using laser triggered spark gaps. These must be synchronized to about 1 ns. Pulse compression is performed with saturable inductor switches, the output being 40 ns, 1.5 MV pulses. These are transformed to 30 MV in a self-magnetically insulated cavity adder structure. Space charge limited ion beams are drawn from anode plasmas with electron counter streaming being magnetically inhibited. The ions are ballistically focused into the entrances of guiding discharge channels for transport to the pellet. The status of component development from the prime power to the ion source will be reviewed

  5. Tourism Transport, Technology, and Carbon Dioxide Emissions

    NARCIS (Netherlands)

    Peeters, P.M.

    2010-01-01

    Technological development from horse-drawn carriages to the new Airbus A380 has led to a remarkable increase in both the capacity and speed of tourist travel. This development has an endogenous systemic cause and will continue to increase carbon dioxide emissions/energy consumption if left unchecked

  6. Accelerated Carbonate Dissolution as a CO2 Separation and Sequestration Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Caldeira, K G; Knauss, K G; Rau, G H

    2004-02-18

    We have proposed a technique that could reduce CO{sub 2} emissions from near coastal fossil-fuel power plants using existing power plant cooling water flow rates (Rau and Caldeira, 1999; Caldeira and Rau, 2000). Preliminary cost estimates are as low as $68 per tonne C sequestered, as compared to > $170 per tonne C estimated for other approaches to CO{sub 2} separation with geologic or deep-ocean storage. Engineers at McDermott Technologies, Inc., have independently estimated the cost of our proposed technique, and came to the conclusion that our cost estimates were at the high end of the likely range. Interest has been expressed in pursuing this approach further both in Norway and in Japan. We have proved the viability of our concept using (1) bench-top laboratory experiments (Figures 1 and 2), (2) computer modeling of those experiments, (3) more sophisticated cost estimates, and (4) three-dimensional computer modeling of the consequences to global ocean chemistry (Figure 3 and 4). The climate and environmental impacts of our current, carbon intensive energy usage demands that effective and practical energy alternatives and CO{sub 2} mitigation strategies be found. As part of this effort, various means of capturing and storing CO{sub 2} generated from fossil-fuel-based energy production are being investigated (e.g. [3,4]). One of the proposed methods involves a geochemistry-based capture and sequestration process [5,6] that hydrates point-source, waste CO{sub 2} with water to produce a carbonic acid solution. This in turn is reacted and neutralized with limestone, thus converting the original CO{sub 2} gas to calcium bicarbonate in solution, the overall reaction being: CO{sub 2(g)} + H{sub 2}O{sub (l)} + CaCO{sub 3(s)} {yields} Ca{sub (aq)}{sup 2+} + 2HCO{sub 3(aq)}{sup -} The dissolved calcium bicarbonate produced is then released and diluted in the ocean where it would add minimally to the large, benign pool of these ions already present in seawater. Such a

  7. Accelerated soil carbon turnover under tree plantations limits soil carbon storage

    Science.gov (United States)

    Chen, Guangshui; Yang, Yusheng; Yang, Zhijie; Xie, Jinsheng; Guo, Jianfen; Gao, Ren; Yin, Yunfeng; Robinson, David

    2016-01-01

    The replacement of native forests by tree plantations is increasingly common globally, especially in tropical and subtropical areas. Improving our understanding of the long-term effects of this replacement on soil organic carbon (SOC) remains paramount for effectively managing ecosystems to mitigate anthropogenic carbon emissions. Meta-analyses imply that native forest replacement usually reduces SOC stocks and may switch the forest from a net sink to a net source of atmospheric carbon. Using a long-term chronosequence during which areas of subtropical native forest were replaced by Chinese fir, we show by direct measurement that plantations have significantly accelerated SOC turnover compared with native forest, an effect that has persisted for almost a century. The immediate stimulation of SOC decomposition was caused by warmer soil before the closure of the plantation’s canopy. Long-term reductions in SOC mean residence times were coupled to litter inputs. Faster SOC decomposition was associated with lower soil microbial carbon use efficiency, which was due to smaller litter inputs and reduced nutrient availabilities. Our results indicate a previously unelucidated control on long-term SOC dynamics in native forests and demonstrate a potential constraint on climate mitigation when such forests are replaced by plantations.

  8. Study of Tandem Accelerator Technology and Its Prospects

    International Nuclear Information System (INIS)

    Tandem accelerator is an ion acceleration tool in which negative ions injected in the accelerator tube and stripped to become positive ions, then accelerated by electrostatic high voltage such that its energy is multiplied. In this paper, we describe the prospect of accelerator application briefly in agriculture and biotechnology, industry, health and medicine, environment fields. Technical study on tandem accelerator included SNICS and alphatross ion sources, acceleration system and stripper system. The study result for many kinds of negative ions and its current which should be injected in the accelerator tube and the output of tandem accelerator H+, and the distribution of C+, Ni+, Au+, Br+ ion on varying charge state is shown. (author)

  9. Status of Accelerator Driven Systems Research and Technology Development

    International Nuclear Information System (INIS)

    One of the greatest challenges for nuclear energy is how to properly manage the highly radioactive waste generated during irradiation in nuclear reactors. In order for nuclear power to exploit its full potential as a major sustainable energy source, there needs to be a safe and effective way to deal with this waste. Since 1995, several scenario studies have been conducted on different advanced nuclear fuel cycle and waste management options in various countries. Examples include the collaborative projects under “Global sustainable nuclear energy scenarios for long term development and deployment of nuclear energy” of the IAEA International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) initiative, and the scenario studies conducted under the auspices of the OECD Nuclear Energy Agency and the Euratom research project PATEROS — Partitioning and Transmutation European Roadmap for Sustainable Nuclear Energy. Some of the proposed long term nuclear fuel cycles include an innovative concept of a hybrid system for the transmutation of long lived radioisotopes. This is usually the called accelerator driven system (ADS) — or accelerator driven transmutation of waste (ATW) — and consists of a high power proton accelerator, a heavy metal spallation target that produces neutrons when bombarded by the high power beam, and a subcritical core that is neutronically coupled to the spallation target. The ADS, which has been developed in different countries for more than 40 years, is claimed to offer new prospects and advantages for the transmutation of high level radioactive waste. The ADS would convert highly radioactive material to non-radioactive material or material with a much shorter half-life. In addition, these hybrid systems can generate electricity during the conversion of transuranic waste. In 1997, under the guidance of its Technical Working Group on Fast Reactors (TWG-FR), the IAEA published IAEA-TECDOC-985, Accelerator Driven Systems: Energy

  10. Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Kovtun, Maxim, E-mail: max.kovtun@up.ac.za; Kearsley, Elsabe P., E-mail: elsabe.kearsley@up.ac.za; Shekhovtsova, Julia, E-mail: j.shekhovtsova@gmail.com

    2015-06-15

    This paper presents results of a study on chemical acceleration of a neutral granulated blast-furnace slag activated using sodium carbonate. As strength development of alkali-activated slag cements containing neutral GBFS and sodium carbonate as activator at room temperature is known to be slow, three accelerators were investigated: sodium hydroxide, ordinary Portland cement and a combination of silica fume and slaked lime. In all cements, the main hydration product is C–(A)–S–H, but its structure varies between tobermorite and riversideite depending on the accelerator used. Calcite and gaylussite are present in all systems and they were formed due to either cation exchange reaction between the slag and the activator, or carbonation. With accelerators, compressive strength up to 15 MPa can be achieved within 24 h in comparison to 2.5 MPa after 48 h for a mix without an accelerator.

  11. Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate

    International Nuclear Information System (INIS)

    This paper presents results of a study on chemical acceleration of a neutral granulated blast-furnace slag activated using sodium carbonate. As strength development of alkali-activated slag cements containing neutral GBFS and sodium carbonate as activator at room temperature is known to be slow, three accelerators were investigated: sodium hydroxide, ordinary Portland cement and a combination of silica fume and slaked lime. In all cements, the main hydration product is C–(A)–S–H, but its structure varies between tobermorite and riversideite depending on the accelerator used. Calcite and gaylussite are present in all systems and they were formed due to either cation exchange reaction between the slag and the activator, or carbonation. With accelerators, compressive strength up to 15 MPa can be achieved within 24 h in comparison to 2.5 MPa after 48 h for a mix without an accelerator

  12. Theoretical and technological building blocks for an innovation accelerator

    Science.gov (United States)

    van Harmelen, F.; Kampis, G.; Börner, K.; van den Besselaar, P.; Schultes, E.; Goble, C.; Groth, P.; Mons, B.; Anderson, S.; Decker, S.; Hayes, C.; Buecheler, T.; Helbing, D.

    2012-11-01

    Modern science is a main driver of technological innovation. The efficiency of the scientific system is of key importance to ensure the competitiveness of a nation or region. However, the scientific system that we use today was devised centuries ago and is inadequate for our current ICT-based society: the peer review system encourages conservatism, journal publications are monolithic and slow, data is often not available to other scientists, and the independent validation of results is limited. The resulting scientific process is hence slow and sloppy. Building on the Innovation Accelerator paper by Helbing and Balietti [1], this paper takes the initial global vision and reviews the theoretical and technological building blocks that can be used for implementing an innovation (in first place: science) accelerator platform driven by re-imagining the science system. The envisioned platform would rest on four pillars: (i) Redesign the incentive scheme to reduce behavior such as conservatism, herding and hyping; (ii) Advance scientific publications by breaking up the monolithic paper unit and introducing other building blocks such as data, tools, experiment workflows, resources; (iii) Use machine readable semantics for publications, debate structures, provenance etc. in order to include the computer as a partner in the scientific process, and (iv) Build an online platform for collaboration, including a network of trust and reputation among the different types of stakeholders in the scientific system: scientists, educators, funding agencies, policy makers, students and industrial innovators among others. Any such improvements to the scientific system must support the entire scientific process (unlike current tools that chop up the scientific process into disconnected pieces), must facilitate and encourage collaboration and interdisciplinarity (again unlike current tools), must facilitate the inclusion of intelligent computing in the scientific process, must facilitate

  13. Analytical Validation of Accelerator Mass Spectrometry for Pharmaceutical Development: the Measurement of Carbon-14 Isotope Ratio.

    Energy Technology Data Exchange (ETDEWEB)

    Keck, B D; Ognibene, T; Vogel, J S

    2010-02-05

    Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of {sup 14}C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of any separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of {sup 14}C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the {sup 14}C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with {sup 14}C corresponds to 30 fg

  14. Recycling technology of emitted carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Arakawa, Hironori [National Inst. of Materials and Chemical Research (NIMC), Ibaraki (Japan)

    1993-12-31

    Ways to halt global warming are being discussed worldwide. Global warming is an energy problem which is mainly attributed to the large volumes of carbon dioxide (CO{sub 2}) released into the atmosphere from the rapid increase in energy consumption since the Industrial Revolution. The basic solution to the problem, therefore, is to cut consumption of fossil fuels. To this end, it is important to promote energy conservation by improving the fuel efficiency of machines, as well as shift to energy sources that do not emit carbon dioxide and develop related technologies. If current trends in economic growth continue in the devloping world as well as the developed countries, there can be no doubt that energy consumption will increase. Therefore, alongside energy conservation and the development of alternative energies, the importance of technologies to recover and fix CO{sub 2} will increase in the fight against global warming.

  15. When to invest in carbon capture and storage technology: A mathematical model

    International Nuclear Information System (INIS)

    We present two models of the optimal investment decision in carbon capture and storage technology (CCS)—one where the carbon price is deterministic (based on the newly introduced carbon floor price in Great Britain) and one where the carbon price is stochastic (based on the ETS permit price in the rest of Europe). A novel feature of this work is that in both models investment costs are time dependent which adds an extra dimension to the decision problem. Our deterministic model allows for quite general dependence on carbon price and consideration of time to build and simple calculus techniques determine the optimal time to invest. We then analyse the effect of carbon price volatility on the optimal investment decision by solving a Bellman equation with an infinite planning horizon. We find that increasing the carbon price volatility increases the critical investment threshold and that adoption of this technology is not optimal at current prices, in agreement with other works. However reducing carbon price volatility by switching from carbon permits to taxes or by introducing a carbon floor as in Great Britain would accelerate the adoption of carbon abatement technologies such as CCS. - Highlights: • Analytic solution for the critical ETS permit price for optimal investment in CCS • Solution for the optimal time for investment in CCS in GB subject to carbon floor • Time varying investment cost included • Not optimal to invest at current ETS prices • ETS permit price volatility increases the optimal investment threshold

  16. Microfluidic technologies for accelerating the clinical translation of nanoparticles

    Science.gov (United States)

    Valencia, Pedro M.; Farokhzad, Omid C.; Karnik, Rohit; Langer, Robert

    2012-10-01

    Using nanoparticles for therapy and imaging holds tremendous promise for the treatment of major diseases such as cancer. However, their translation into the clinic has been slow because it remains difficult to produce nanoparticles that are consistent 'batch-to-batch', and in sufficient quantities for clinical research. Moreover, platforms for rapid screening of nanoparticles are still lacking. Recent microfluidic technologies can tackle some of these issues, and offer a way to accelerate the clinical translation of nanoparticles. In this Progress Article, we highlight the advances in microfluidic systems that can synthesize libraries of nanoparticles in a well-controlled, reproducible and high-throughput manner. We also discuss the use of microfluidics for rapidly evaluating nanoparticles in vitro under microenvironments that mimic the in vivo conditions. Furthermore, we highlight some systems that can manipulate small organisms, which could be used for evaluating the in vivo toxicity of nanoparticles or for drug screening. We conclude with a critical assessment of the near- and long-term impact of microfluidics in the field of nanomedicine.

  17. Modeling of a self-healing process in blast furnace slag cement exposed to accelerated carbonation

    NARCIS (Netherlands)

    Zemskov, S.V.; Ahmad, B.; Copuroglu, O.; Vermolen, F.J.

    2013-01-01

    In the current research, a mathematical model for the post-damage improvement of the carbonated blast furnace slag cement (BFSC) exposed to accelerated carbonation is constructed. The study is embedded within the framework of investigating the effect of using lightweight expanded clay aggregate, whi

  18. Carbon Dioxide Reduction Technology Trade Study

    Science.gov (United States)

    Jeng, Frank F.; Anderson, Molly S.; Abney, Morgan B.

    2011-01-01

    For long-term human missions, a closed-loop atmosphere revitalization system (ARS) is essential to minimize consumables. A carbon dioxide (CO2) reduction technology is used to reclaim oxygen (O2) from metabolic CO2 and is vital to reduce the delivery mass of metabolic O2. A key step in closing the loop for ARS will include a proper CO2 reduction subsystem that is reliable and with low equivalent system mass (ESM). Sabatier and Bosch CO2 reduction are two traditional CO2 reduction subsystems (CRS). Although a Sabatier CRS has been delivered to International Space Station (ISS) and is an important step toward closing the ISS ARS loop, it recovers only 50% of the available O2 in CO2. A Bosch CRS is able to reclaim all O2 in CO2. However, due to continuous carbon deposition on the catalyst surface, the penalties of replacing spent catalysts and reactors and crew time in a Bosch CRS are significant. Recently, technologies have been developed for recovering hydrogen (H2) from Sabatier-product methane (CH4). These include methane pyrolysis using a microwave plasma, catalytic thermal pyrolysis of CH4 and thermal pyrolysis of CH4. Further, development in Sabatier reactor designs based on microchannel and microlith technology could open up opportunities in reducing system mass and enhancing system control. Improvements in Bosch CRS conversion have also been reported. In addition, co-electrolysis of steam and CO2 is a new technology that integrates oxygen generation and CO2 reduction functions in a single system. A co-electrolysis unit followed by either a Sabatier or a carbon formation reactor based on Bosch chemistry could improve the overall competitiveness of an integrated O2 generation and CO2 reduction subsystem. This study evaluates all these CO2 reduction technologies, conducts water mass balances for required external supply of water for 1-, 5- and 10-yr missions, evaluates mass, volume, power, cooling and resupply requirements of various technologies. A system

  19. Proceeding of the Scientific Meeting and Presentation on Accelerator Technology and Its Applications

    International Nuclear Information System (INIS)

    Scientific meeting and presentation on accelerator, technology and its application is held by BATAN Yogyakarta at 8 February 2000. The purpose of the seminar is to monitor at BATAN research activity on accelerator area and is already carried out by by BATAN's researcher as well as outside BATAN. The proceeding contains research article as many as 25 topics about accelerator technology development and its application. The proceeding article is come from 21 articles from BATAN and 4 articles from outside BATAN. (PPIN)

  20. Accelerator Technology and High Energy Physic Experiments, WILGA 2012; EuCARD Sessions

    OpenAIRE

    Romaniuk, R S

    2012-01-01

    Wilga Sessions on HEP experiments, astroparticle physica and accelerator technology were organized under the umbrella of the EU FP7 Project EuCARD – European Coordination for Accelerator Research and Development. The paper is the second part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with accelerator technology and high energy physics experiments. It presents a digest of chosen technical work results shown by young researchers from different tech...

  1. Proceedings of the Scientific Meeting and Presentation on Accelerator Technology and its Applications

    International Nuclear Information System (INIS)

    Scientific Meeting and Presentation on Accelerator Technology and Its Application is held by BATAN Yogyakarta at October, 1, 2003. The purpose of the seminar is to monitor at BATAN research activity on accelerator and is already carried out by BATAN's researcher as well as outside BATAN. The proceeding contains research article as many of 36 topics about accelerator technology development and its application. The articles are indexing separately. (PPIN)

  2. Accelerator

    International Nuclear Information System (INIS)

    The invention claims equipment for stabilizing the position of the front covers of the accelerator chamber in cyclic accelerators which significantly increases accelerator reliability. For stabilizing, it uses hydraulic cushions placed between the electromagnet pole pieces and the front chamber covers. The top and the bottom cushions are hydraulically connected. The cushions are disconnected and removed from the hydraulic line using valves. (J.P.)

  3. Assessment of the adequacy of US accelerator technology for Department of Energy missions

    International Nuclear Information System (INIS)

    Accelerator technology has made enormous impact across a wide field of research, industrial, and commercial endeavor and new developments are projected to broaden this technology transfer and open up new applications not previously possible or economically attractive. At the same time, however, the broad multi-agency base of support for the development of accelerator technology has largely evaporated leaving the program with the Department of Energy (DOE) Office of Energy Research (OER) as the only major National effort not directed at specific narrow applications. In order to continue to reap the benefits and spin-offs from this area of technology, an expanded long-term funding committment is vigorously endorsed since there appear to be major payoff potential in several areas of national need. Three specific recommendations are made that would accelerate the projected benefits from accelerator technology. An expanded effort should be undertaken to develop the key technologies of high brightness, high current, large area, long life, reliable ion, electron and RF sources along with associated studies directed toward accelerator design optimization. A centralized computational facility with a dedicated staff and library of programs for simulation of accelerator phenomenology should be created similar to that for the magnetic fusion program. Advanced accelerator R and D should be funded at a steady level to support a long range accelerator applications program

  4. EuCARD 2010 Accelerator Technology in Europe

    OpenAIRE

    Romaniuk, R S

    2010-01-01

    Accelerators are basic tools of the experimental physics of elementary particles, nuclear physics, light sources of the fourth generation. They are also used in myriad other applications in research, industry and medicine. For example, there are intensely developed transmutation techniques for nuclear waste from nuclear power and atomic industries. The European Union invests in the development of accelerator infrastructures inside the framework programs to build the European Research Area. Th...

  5. FAW Technology Strategies of Low-Carbon Passenger Car

    Institute of Scientific and Technical Information of China (English)

    Li Jun

    2012-01-01

    Author analyzed the global background of low-carbon technology around the world,a technology & economy analysis model called TOS was developed in the paper,author analyzed technology paths for low-carbon Car in China based on the current technologies available and technologies to he developed in China,3 possible paths are presented based on the analysis,author also explained the FAW BlueWay technology strategies for low carbon cars both for short mid and long term objectives.Author concludes the paper with illustration of powertrain lineup for FAW BlueWay Technologies.

  6. DTU climate change technologies. Recommendations on accelerated development and deployment of climate change technologies

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Hans; Halsnaes, K. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, System Analysis Div., Roskilde (Denmark)); Nielsen, Niels Axel; Moeller, J.S.; Hansen, Jakob Fritz; Froekjaer Strand, I. (Technical Univ. of Denmark, Kgs. Lyngby (Denmark))

    2009-09-15

    During 2009, the Technical University of Denmark (DTU) has held a number of international workshops for climate change. Participants came from industry, research institutions and government. The workshops focused on sustainable energy systems and climate change adaptation. The summary of conclusions and recommendations from the workshops constitutes a comprehensive set of technology tracks and recommended actions towards accelerated development and deployment of technology within these two key areas. The workshop process has led to three main conclusions. A. Radical changes are needed to develop sustainable energy systems. B. Tools and processes that climate-proof societal planning and management are needed in order to adapt to climate change. C. Partnerships concerning innovation and deployment (research, development and deployment) are required to meet time constraints.

  7. Life Prediction on a T700 Carbon Fiber Reinforced Cylinder with Limited Accelerated Life Testing Data

    Directory of Open Access Journals (Sweden)

    Ma Xiaobing

    2015-01-01

    Full Text Available An accelerated life testing investigation was conducted on a composite cylinder that consists of aluminum alloy and T700 carbon fiber. The ultimate failure stress predictions of cylinders were obtained by the mixing rule and verified by the blasting static pressure method. Based on the stress prediction of cylinder under working conditions, the constant stress accelerated life test of the cylinder was designed. However, the failure data cannot be sufficiently obtained by the accelerated life test due to the time limitation. Therefore, most of the data presented to be high censored in high stress level and zero-failure data in low stress level. When using the traditional method for rupture life prediction, the results showed to be of lower confidence. In this study, the consistency of failure mechanism for carbon fiber and cylinder was analyzed firstly. According to the analysis result, the statistical test information of carbon fiber could be utilized for the accelerated model constitution. Then, rupture life prediction method for cylinder was proposed based on the accelerated life test data and carbon fiber test data. In this way, the life prediction accuracy of cylinder could be improved obviously, and the results showed that the accuracy of this method increased by 35%.

  8. Solidification of stainless steel slag by accelerated carbonation.

    Science.gov (United States)

    Johnson, D C; MacLeod, C L; Carey, P J; Hills, C D

    2003-06-01

    On exposure to carbon dioxide (CO2) at a pressure of 3 bars, compacts formed from pressed ground slag, and 12.5 weight percent water, were found to react with approximately 18% of their own weight of CO2. The reaction product formed was calcium carbonate causing the slag to self-cement. Unconfined compressive strengths of 9MPa were recorded in carbonated compacts whereas strengths of < 1 MPa were recorded in non-carbonated slag compacts. As molten stainless steel slag containing dicalcium silicate (C2S) cools it can undergo several phase transitions. The final transformation from the beta-polymorph to gamma-C2S is accompanied by a volume change that causes the slag to self-pulverise or 'dust'. As a consequence of this the fine grained portion of the slag contains more of this phase whilst the coarser particles of the slag contain more of the calcium magnesium silicates that contribute the bulk of the waste. The fine fraction (< 125 microm) of the slag when ground is found to react to the same extent as the ground bulk slag and produces compacts with equivalent strength. A coarser fraction (4-8 mm) when ground to a similar grading does not react as extensively and produces a weaker product. Additions of ordinary Portland cement (OPC) at 5 and 10 percent by weight did not alter the degree of reaction during carbonation of the bulk slag or ground fine fraction, however the strength of the 4-8 mm fraction was increased by this change. PMID:12868521

  9. The impact of new computer technology on accelerator control

    International Nuclear Information System (INIS)

    This paper describes some recent developments in computing and stresses their application in accelerator control systems. Among the advances that promise to have a significant impact are (1) low cost scientific workstations; (2) the use of ''windows'', pointing devices and menus in a multi-tasking operating system; (3) high resolution large-screen graphics monitors; (4) new kinds of high bandwidth local area networks. The relevant features are related to a general accelerator control system. For example, this paper examines the implications of a computing environment which permits and encourages graphical manipulation of system components, rather than traditional access through the writing of programs or ''canned'' access via touch panels

  10. Carbon nanohorns accelerate bone regeneration in rat calvarial bone defect

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Takao; Iizuka, Tadashi; Kanamori, Takeshi; Yokoyama, Atsuro [Department of Oral Functional Prosthodontics, Division of Oral Functional Science, Graduate School of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8586 (Japan); Matsumura, Sachiko; Shiba, Kiyotaka [Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, koutou-ku, Tokyo 135-8550 (Japan); Yudasaka, Masako; Iijima, Sumio, E-mail: tkasai@den.hokudai.ac.jp [Nanotube Research Center, National Institute of Advanced Industrial Science and Technology, Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565 (Japan)

    2011-02-11

    A recent study showed that carbon nanohorns (CNHs) have biocompatibility and possible medical uses such as in drug delivery systems. It was reported that some kinds of carbon nanomaterials such as carbon nanotubes were useful for bone formation. However, the effect of CNHs on bone tissue has not been clarified. The purpose of this study was to evaluate the effect of CNHs on bone regeneration and their possible application for guided bone regeneration (GBR). CNHs dispersed in ethanol were fixed on a porous polytetrafluoroethylene membrane by vacuum filtration. Cranial defects were created in rats and covered by a membrane with/without CNHs. At two weeks, bone formation under the membrane with CNHs had progressed more than under that without CNHs and numerous macrophages were observed attached to CNHs. At eight weeks, there was no significant difference in the amount of newly formed bone between the groups and the appearance of macrophages was decreased compared with that at two weeks. Newly formed bone attached to some CNHs directly. These results suggest that macrophages induced by CNHs are related to bone regeneration. In conclusion, the present study indicates that CNHs are compatible with bone tissue and effective as a material for GBR.

  11. Monitoring accelerated carbonation on standard Portland cement mortar by nonlinear resonance acoustic test

    Science.gov (United States)

    Eiras, J. N.; Kundu, T.; Popovics, J. S.; Monzó, J.; Borrachero, M. V.; Payá, J.

    2015-03-01

    Carbonation is an important deleterious process for concrete structures. Carbonation begins when carbon dioxide (CO2) present in the atmosphere reacts with portlandite producing calcium carbonate (CaCO3). In severe carbonation conditions, C-S-H gel is decomposed into silica gel (SiO2.nH2O) and CaCO3. As a result, concrete pore water pH decreases (usually below 10) and eventually steel reinforcing bars become unprotected from corrosion agents. Usually, the carbonation of the cementing matrix reduces the porosity, because CaCO3 crystals (calcite and vaterite) occupy more volume than portlandite. In this study, an accelerated carbonation-ageing process is conducted on Portland cement mortar samples with water to cement ratio of 0.5. The evolution of the carbonation process on mortar is monitored at different levels of ageing until the mortar is almost fully carbonated. A nondestructive technique based on nonlinear acoustic resonance is used to monitor the variation of the constitutive properties upon carbonation. At selected levels of ageing, the compressive strength is obtained. From fractured surfaces the depth of carbonation is determined with phenolphthalein solution. An image analysis of the fractured surfaces is used to quantify the depth of carbonation. The results from resonant acoustic tests revealed a progressive increase of stiffness and a decrease of material nonlinearity.

  12. Determination of tritium and carbon-14 in accelerator waste

    Energy Technology Data Exchange (ETDEWEB)

    Argentini, M.; Weinreich, R. [Lab. of Radio- and Environmental Chemistry, Paul Scherrer Inst., Villigen-PSI (Switzerland)

    2003-07-01

    In dismounted parts of the accelerator facilities of paul scherrer institute, tritium and {sup 14}C were determined by low-level counting after chemical separation. In graphite targets used for the production of {pi}-mesons, tritium amounts from 1.7.10{sup 8} to 6.10{sup 8} Bq/g were found; the corresponding {sup 14}C data were 6 and 9 Ci/g, respectively. In the dismantled copper beam dump of Target E, the tritium content extended up to 2.8.10{sup 6} Bq/g, but no {sup 14}C could be detected. In mechanical parts of the beam dump, consisting of iron and stainless steel, respectively, the tritium amount ranged up to 5.3.10{sup 3} Bq/g, the {sup 14}C amount from 1 to 800 Bq/g. The separation procedures are described in detail. (orig.)

  13. Report of the B-factory group: II, Accelerator technology

    Energy Technology Data Exchange (ETDEWEB)

    Siemann, R.H.; Cassel, D.G.; Feldman, G.J.; Alam, M.S.; Aleksan, R.; Atwood, W.B.; Bartelt, J.; Bisognano, J.J.; Boyce, J.R.; Cline, D.B.

    1989-01-01

    This report discusses the following topics on B-factory accelerators: Storage rings for the {Upsilon}(4S) and continuing Linear colliders for the {Upsilon}(4S) and continuum; and storage rings and linear colliders for the Z. 52 refs., 5 figs., 12 tabs.

  14. Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Yousry; /Argonne; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

    2011-04-01

    The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

  15. Accelerated carbonation test of sprayed concrete%喷射混凝土快速碳化试验研究

    Institute of Scientific and Technical Information of China (English)

    马蕊; 牛荻涛; 王家滨

    2014-01-01

    In order to investigate the carbonation resistance of sprayed concrete and the mechanical property after carbonation ,the accel-erated carbonation test was carried out.The results indicated that the carbonation resistance of sprayed concrete was superior to the normal. With the increasing of carbonation depth,compressive strength and splitting tensile strength of sprayed concrete grew rapidly.The admix-ing of steel fiber can further improve the carbonation resistance,reduce the carbonation rate,and increase the splitting tensile strength of sprayed concrete greatly.Besides,based on analyzing the effects of shotcrete technology and carbonation resistance of steel fiber admixing to sprayed concrete,a carbonation depth model for sprayed concrete was established.%通过快速碳化试验,探讨了喷射混凝土抗碳化性能和碳化后力学性能变化规律。试验结果表明:喷射混凝土较普通混凝土具有更好的抗碳化性能,其抗压强度、劈拉强度随碳化深度的增加快速提高;掺入钢纤维能进一步提高喷射混凝土碳化性能,减小碳化速率,还能显著提高喷射混凝土碳化后劈拉强度。同时,在分析钢纤维和施工方式对混凝土碳化影响的基础上,建立了喷射混凝土碳化深度模型。

  16. The R/D of high power proton accelerator technology in China

    Indian Academy of Sciences (India)

    Guan Xialing

    2002-12-01

    In China, a multipurpose verification system as a first phase of our ADS program consists of a low energy accelerator (150 MeV/3 mA proton LINAC) and a swimming pool light water subcritical reactor. In this paper the activities of HPPA technology related to ADS in China, which includes the intense proton ECR source, the RFQ accelerator and some other technology of HPPA, are described.

  17. WILGA Photonics and Web Engineering, January 2012; EuCARD Sessions on HEP and Accelerator Technology

    OpenAIRE

    Romaniuk, R S

    2012-01-01

    Wilga Sessions on HEP experiments and accelerator technology were organized under the umbrella of the EU FP7 Project EuCARD – European Coordination for Accelerator Research and Development. The paper presents a digest of chosen technical work results shown by young researchers from technical universities during the SPIE-IEEE Wilga January 2012 Symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, new technologies for photonics, sensory and nonline...

  18. DEVELOPMENT OF A COMPACT RADIOGRAPHY ACCELERATOR USING DIELECTRIC WALL ACCELERATOR TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Sampayan, S; Caporaso, G; Chen, Y; Hawkins, S; Holmes, C; Krogh, M; McCarrick, J; Nelson, S; Nunnally, W; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2005-06-02

    We are developing an inexpensive compact accelerator system primarily intended for pulsed radiography. Design characteristics are an 8 MeV endpoint energy, 2 kA beam current, a cell gradient of approximately 3 MV/m (for an overall accelerator length is 2-3 m), and <$1/Volt capital costs. Such designs have been made possible with the development of high specific energy dielectrics (>10J/cm{sup 3}), specialized transmission line designs and multi-gap laser triggered low jitter (<1 ns) gas switches. In this geometry, the pulse forming lines, switches, and insulator/beam pipe are fully integrated within each cell to form a compact, stand-alone, stackable unit. We detail our research and modeling to date, recent high voltage test results, and the integration concept of the cells into a radiographic system.

  19. Development of the Accelerator Mass Spectrometry technology at the Comenius University in Bratislava

    Science.gov (United States)

    Povinec, Pavel P.; Masarik, Jozef; Ješkovský, Miroslav; Kaizer, Jakub; Šivo, Alexander; Breier, Robert; Pánik, Ján; Staníček, Jaroslav; Richtáriková, Marta; Zahoran, Miroslav; Zeman, Jakub

    2015-10-01

    An Accelerator Mass Spectrometry (AMS) laboratory has been established at the Centre for Nuclear and Accelerator Technologies (CENTA) at the Comenius University in Bratislava comprising of a MC-SNICS ion source, 3 MV Pelletron tandem accelerator, and an analyzer of accelerated ions. The preparation of targets for 14C and 129I AMS measurements is described in detail. The development of AMS techniques for potassium, uranium and thorium analysis in radiopure materials required for ultra-low background underground experiments is briefly mentioned.

  20. Electron string ion sources for carbon ion cancer therapy accelerators

    CERN Document Server

    Boytsov, A Yu; Donets, E D; Donets, E E; Katagiri, K; Noda, K; Ponkin, D O; Ramzdorf, A Yu; Salnikov, V V; Shutov, V B

    2015-01-01

    The Electron String type of Ion Sources (ESIS) was developed, constructed and tested first in the Joint Institute for Nuclear Research. These ion sources can be the appropriate sources for production of pulsed C4+ and C6+ ion beams which can be used for cancer therapy accelerators. In fact the test ESIS Krion-6T already now at the solenoid magnetic field only 4.6 T provides more than 10^10 C4+ ions per pulse and about 5*10^9 C6+ ions per pulse. Such ion sources could be suitable for application at synchrotrons. It was also found, that Krion-6T can provide more than 10^11 C6+ ions per second at 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. As for production of 11C radioactive ion beams ESIS can be the most economic kind of ion source. To proof that the special cryogenic cell for pulse injection of gaseous species into electron string was successfully tested using the ESIS Krion-2M.

  1. Frost Induces Respiration and Accelerates Carbon Depletion in Trees

    Science.gov (United States)

    Sperling, Or; Earles, J. Mason; Secchi, Francesca; Godfrey, Jessie; Zwieniecki, Maciej A.

    2015-01-01

    Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC) availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0°C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq.) cm-3 yr-1 on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics. PMID:26629819

  2. Frost Induces Respiration and Accelerates Carbon Depletion in Trees.

    Directory of Open Access Journals (Sweden)

    Or Sperling

    Full Text Available Cellular respiration depletes stored carbohydrates during extended periods of limited photosynthesis, e.g. winter dormancy or drought. As respiration rate is largely a function of temperature, the thermal conditions during such periods may affect non-structural carbohydrate (NSC availability and, ultimately, recovery. Here, we surveyed stem responses to temperature changes in 15 woody species. For two species with divergent respirational response to frost, P. integerrima and P. trichocarpa, we also examined corresponding changes in NSC levels. Finally, we simulated respiration-induced NSC depletion using historical temperature data for the western US. We report a novel finding that tree stems significantly increase respiration in response to near freezing temperatures. We observed this excess respiration in 13 of 15 species, deviating 10% to 170% over values predicted by the Arrhenius equation. Excess respiration persisted at temperatures above 0 °C during warming and reoccurred over multiple frost-warming cycles. A large adjustment of NSCs accompanied excess respiration in P. integerrima, whereas P. trichocarpa neither excessively respired nor adjusted NSCs. Over the course of the years included in our model, frost-induced respiration accelerated stem NSC consumption by 8.4 mg (glucose eq. cm(-3 yr(-1 on average in the western US, a level of depletion that may continue to significantly affect spring NSC availability. This novel finding revises the current paradigm of low temperature respiration kinetics.

  3. Advanced metaheuristic algorithms for laser optimization in optical accelerator technologies

    Science.gov (United States)

    Tomizawa, Hiromitsu

    2011-10-01

    Lasers are among the most important experimental tools for user facilities, including synchrotron radiation and free electron lasers (FEL). In the synchrotron radiation field, lasers are widely used for experiments with Pump-Probe techniques. Especially for X-ray-FELs, lasers play important roles as seed light sources or photocathode-illuminating light sources to generate a high-brightness electron bunch. For future accelerators, laser-based techonologies such as electro-optic (EO) sampling to measure ultra-short electron bunches and optical-fiber-based femtosecond timing systems have been intensively developed in the last decade. Therefore, controls and optimizations of laser pulse characteristics are strongly required for many kinds of experiments and improvement of accelerator systems. However, people believe that lasers should be tuned and customized for each requirement manually by experts. This makes it difficult for laser systems to be part of the common accelerator infrastructure. Automatic laser tuning requires sophisticated algorithms, and the metaheuristic algorithm is one of the best solutions. The metaheuristic laser tuning system is expected to reduce the human effort and time required for laser preparations. I have shown some successful results on a metaheuristic algorithm based on a genetic algorithm to optimize spatial (transverse) laser profiles, and a hill-climbing method extended with a fuzzy set theory to choose one of the best laser alignments automatically for each machine requirement.

  4. Evaluation of some commercial grade polymers as possible dosimeters for technological irradiations in electron accelerators

    CERN Document Server

    Bryl-Sandelewska, T

    2002-01-01

    Dosimetric properties of two kinds of clear polymethylmethacrylate (PMMA)and one kind of polystyrene (PS) sheets in technological accelerator irradiations, are presented. Absorbance of the sheets and its dependence on the dose have been measured at a suitable wavelength using a UV/VIS spectrophotometer. Both kind PMMA can be used for technological dose measurements but each of them in the different range of the doses (approx 3 to approx 30 kGy and approx 30 to above 200 kGy). Heating the samples after irradiation accelerates the stabilization of the absorbance, which change slowly during the storage of the samples if not heated.Absorbance of clear PS sheets decreases very much during the storage after irradiation, and heating of the samples does not accelerate the stabilization of the value. It can be said that the Ps investigated is not suitable for technological dose measurements in accelerator i radiations.

  5. How can public policies accelerate the progress in technologies for the struggle against climate change?; Comment les politiques publiques peuvent-elles accelerer le progres sur les technologies de lutte contre le changement climatique?

    Energy Technology Data Exchange (ETDEWEB)

    Vieillefosse, A

    2008-07-01

    After having recalled the three stages of the technical progress according to Schumpeter (invention, innovation and diffusion), and the roles of R and D and learning in this process, the author briefly comments the cost evolution of different energy production technologies between 1980 and 1995, proposes a simple modelling of the learning system under the influence of public policies, and indicates the research themes by 2050. Then, she discusses the fact that the R and D level is not socially optimal, notably because of market imperfections, and also because some innovations may have applications within a time which is too long for companies. This is the reason why the State generally takes care of fundamental research. She discusses either demand-based or supply-based public policies aiming at accelerating the progress in low carbon technologies, describes the international cooperation in R and D (agreement on research on low carbon technologies, standards), and how to promote the diffusion of technology towards developing countries (problem of emission increase in these countries, technology transfer in general and within the frame of the convention on climate change, public development support and direct foreign investments)

  6. Proceedings of the 20th meeting for tandem accelerators and their associated technologies

    International Nuclear Information System (INIS)

    The 20th Meeting of Tandem Accelerators and their Associated Technologies was held from July 12 through 13, 2007 at Tokai-mura, Ibaraki-ken, under the auspices of the Nuclear Science Research Institute of Japan Atomic Energy Agency (JAEA). About one hundred and ten people participated in the meeting from thirty-three organizations; universities, research institutes and industries, which have a tandem accelerator or an electrostatic accelerator. The objective of the meeting is to contribute to research and development of accelerator technology by exchanging information on their accelerators each other. The meeting consisted of oral and poster sessions. Forty-seven presentations about present status and technical development on tandem accelerators or electrostatic accelerators and applications using these accelerators were discussed during the two days. This report summarizes the forty-five presentations including posters in the meeting. This publication is the collection of the paper presented at the title meeting. The 44 of the presented papers are indexed individually. (J.P.N.)

  7. Development of a Compact Radiography Accelerator Using Dielectric Wall Accelerator Technology

    CERN Document Server

    Sampayan, Stephen; Chen Yu Jiuan; Hawkins, Steven; Holmes, Clifford; McCarrick, James F; Nelson, Scott D; Nunnally, William; Poole, Brian R; Rhodes, Mark; Sanders, David; Sullivan, James; Wang, Lisa; Watson, James

    2005-01-01

    We are developing of a compact accelerator system primarily intended for pulsed radiography. Design characteristics are an 8 MeV endpoint energy, 2 kA beam current and a cell gradient of approximately 3 MV/m. Overall length of the device is below 3 m. Such compact designs have been made possible with the development of high specific energy dielectrics (> 10 J/cc), specialized transmission line designs and multi-gap laser-triggered low jitter (<1 ns) gas switches. In this geometry, the pulse forming lines, switches and insulator/beam pipe are fully integrated within each cell to form a compact stand-alone stackable unit. We detail our research and modeling to date, recent high voltage test results, and the integration concept of the cells into a radiographic system.

  8. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model

    International Nuclear Information System (INIS)

    The continued increase in the atmospheric concentration of carbon dioxide due to anthropogenic emissions is predicted to lead to significant changes in climate. About half of the current emissions are being absorbed by the ocean and by land ecosystems, but this absorption is sensitive to climate as well as to atmospheric carbon dioxide concentrations, creating a feedback loop. General circulation models have generally excluded the feedback between climate and the biosphere, using static vegetation distributions and CO2 concentrations from simple carbon-cycle models that do not include climate change. Here we present results from a fully coupled, three-dimensional carbon-climate model, indicating that carbon-cycle feedbacks could significantly accelerate climate change over the twenty-first century. We find that under a 'business as usual' scenario, the terrestrial biosphere acts as an overall carbon sink until about 2050, but turns into a source thereafter. By 2100, the ocean uptake rate of 5 Gt C yr-1 is balanced by the terrestrial carbon source, and atmospheric CO2 concentrations are 250 p.p.m.v. higher in our fully coupled simulation than in uncoupled carbon models, resulting in a global-mean warming of 5.5 K, as compared to 4 K without the carbon-cycle feedback. (author)

  9. A data acquisition and processing system for carbon profiling using the accelerator IBIS

    International Nuclear Information System (INIS)

    One of the uses of the accelerator IBIS is to measure the distribution of carbon in various matrices counting protons emitted from the reaction 12C(d,p)13C as a deuteron beam is scanned across the sample. A low-cost system based upon two microcomputers has now been developed to acquire and analyse the data in real time. The microcomputer method offers a number of advantages over off-line calculation and reduces demands on accelerator time and staff effort. (author)

  10. Microbially Accelerated Carbonate Mineral Precipitation as a Strategy for in Situ Carbon Sequestration and Rehabilitation of Asbestos Mine Sites.

    Science.gov (United States)

    McCutcheon, Jenine; Wilson, Siobhan A; Southam, Gordon

    2016-02-01

    A microbially accelerated process for the precipitation of carbonate minerals was implemented in a sample of serpentinite mine tailings collected from the abandoned Woodsreef Asbestos Mine in New South Wales, Australia as a strategy to sequester atmospheric CO2 while also stabilizing the tailings. Tailings were leached using sulfuric acid in reaction columns and subsequently inoculated with an alkalinity-generating cyanobacteria-dominated microbial consortium that was enriched from pit waters at the Woodsreef Mine. Leaching conditions that dissolved 14% of the magnesium from the serpentinite tailings while maintaining circumneutral pH (1800 ppm, pH 6.3) were employed in the experiment. The mineralogy, water chemistry, and microbial colonization of the columns were characterized following the experiment. Micro-X-ray diffraction was used to identify carbonate precipitates as dypingite [Mg5(CO3)4(OH)2·5H2O] and hydromagnesite [Mg5(CO3)4(OH)2·4H2O] with minor nesquehonite (MgCO3·3H2O). Scanning electron microscopy revealed that carbonate mineral precipitates form directly on the filamentous cyanobacteria. These findings demonstrate the ability of these organisms to generate localized supersaturating microenvironments of high concentrations of adsorbed magnesium and photosynthetically generated carbonate ions while also acting as nucleation sites for carbonate precipitation. This study is the first step toward implementing in situ carbon sequestration in serpentinite mine tailings via microbial carbonate precipitation reactions. PMID:26720600

  11. Experimental control of the beam properties of laser-accelerated protons and carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Munib

    2008-12-15

    The laser generation of energetic high quality beams of protons and heavier ions has opened up the door to a plethora of applications. These beams are usually generated by the interaction of a short pulse high power laser with a thin metal foil target. They could already be applied to probe transient phenomena in plasmas and to produce warm dense matter by isochoric heating. Other applications such as the production of radioisotopes and tumour radiotherapy need further research to be put into practice. To meet the requirements of each application, the properties of the laser-accelerated particle beams have to be controlled precisely. In this thesis, experimental means to control the beam properties of laser-accelerated protons and carbon ions are investigated. The production and control of proton and carbon ion beams is studied using advanced ion source designs: Experiments concerning mass-limited (i.e. small and isolated) targets are conducted. These targets have the potential to increase both the number and the energy of laser-accelerated protons. Therefore, the influence of the size of a plane foil target on proton beam properties is measured. Furthermore, carbon ion sources are investigated. Carbon ions are of particular interest in the production of warm dense matter and in cancer radiotherapy. The possibility to focus carbon ion beams is investigated and a simple method for the production of quasi-monoenergetic carbon ion beams is presented. This thesis also provides an insight into the physical processes connected to the production and the control of laser-accelerated ions. For this purpose, laser-accelerated protons are employed to probe plasma phenomena on laser-irradiated targets. Electric fields evolving on the surface of laser-irradiated metal foils and hollow metal foil cylinders are investigated. Since these fields can be used to displace, collimate or focus proton beams, understanding their temporal and spatial evolution is crucial for the design of

  12. Development of accelerator technology in Poland, Impact of European CARE and EuCARD projects

    OpenAIRE

    Romaniuk, R.

    2008-01-01

    The development of accelerator technology in Poland is strictly combined with the cooperation with specialist accelerator centers of global character, where the relevant knowledge is generated, allowing to build big and modern machines. These are relatively costly undertakings of interdisciplinary character. Most of them are financed from the local resources. Only the biggest machines are financed commonly by many nations like: LHC in CERN, ILC in Fermi Lab, E-XFEL in DESY. A similar financin...

  13. Killing effect of Chinese hamster V79 cells exposed to accelerated carbon ions and RBE determination

    Institute of Scientific and Technical Information of China (English)

    LIQiang; ZHOUGuang-Ming; 等

    2002-01-01

    Survival curves of Chinese hamster V79 cells exposed to accelerated carbon ions with linear energy transfers of 125.5,200 and 700keV/um were measured,respectively,Inactivation cross sections corresponding to the irradiation above were deduced from the V79 cell survival curves.They are 7.86±0.17,10.44±1.11 and 32.32±3.59um2 in turn.With the surviving response of V79 cells to 60Co γ-rays as a reference value,relative biological effectiveness at 10%,20%,50%and 80% survival levels were given for the accelerated carbon ions,The results showed that carbon ions with LET of 125.5keV/um had a higher value of RBE at all the four survival levels than the carbon ions with other LETs.It was prompted that the maximum value of RBE for the V79 cell surviving as the biological endpoint emerged at the LET below 200keV/um for carbon ions.

  14. Accelerating the deployment of offshore renewable energy technologies. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, Mott

    2011-02-15

    Offshore wind energy and ocean energy (i.e. wave and tidal) are at different stages of technology development and deployment, and, as such, they require different approaches for successful deployment. However, regardless of their deployment stage, these technologies may face common hurdles in their way to market competitiveness. IEA-RETD has completed a study with the overall objective to assist policy makers and project developers in a better understanding of these barriers and the specifics of offshore renewable energy and to give them practical guidelines. These include an offshore energy deployment framework, substantiated by evidence-based analyses, and recommendations for future policies design, including best practices for allocation of seafloor rights.

  15. Accelerating Industrial Adoption of Metal Additive Manufacturing Technology

    Science.gov (United States)

    Vartanian, Kenneth; McDonald, Tom

    2016-03-01

    While metal additive manufacturing (AM) technology has clear benefits, there are still factors preventing its adoption by industry. These factors include the high cost of metal AM systems, the difficulty for machinists to learn and operate metal AM machines, the long approval process for part qualification/certification, and the need for better process controls; however, the high AM system cost is the main barrier deterring adoption. In this paper, we will discuss an America Makes-funded program to reduce AM system cost by combining metal AM technology with conventional computerized numerical controlled (CNC) machine tools. Information will be provided on how an Optomec-led team retrofitted a legacy CNC vertical mill with laser engineered net shaping (LENS®—LENS is a registered trademark of Sandia National Labs) AM technology, dramatically lowering deployment cost. The upgraded system, dubbed LENS Hybrid Vertical Mill, enables metal additive and subtractive operations to be performed on the same machine tool and even on the same part. Information on the LENS Hybrid system architecture, learnings from initial system deployment and continuing development work will also be provided to help guide further development activities within the materials community.

  16. Non scaling fixed field gradient accelerator design for proton and carbon therapy

    International Nuclear Information System (INIS)

    The Fixed Field Alternating Gradient (FFAG) accelerators became again a subject of great interest in many accelerator physics applications, after more than fifty years of their first appearance. The original FFAG's are the 'scaling' design where particle orbits during acceleration scale with momentum. In Japan a number of scaling FFAG's have been built, or are under construction. The original designs are proposed and used in many applications: proton acceleration in medical field for cancer therapy, electron acceleration for the low (food radiation, electron demonstration ring) and high energies (future e-RHIC 10 GeV), acceleration of muons (the 'PRISM'-project in Japan), proton acceleration for the AGS upgrade at Brookhaven National Laboratory, etc. There are many advantages of the scaling FFAG with respect to the today common use of synchrotrons, cyclotrons, or linear accelerators-linacs: the magnetic field is fixed, possibility of high repetition rate. Disadvantages of the scaling FFAG are the large required aperture and large circumference. This is due to the scaling law between the orbit and momentum and the relatively large opposite bending field requirement. This proposed non-scaling design had been extensively investigated in many respects. A European proposal to build a non-scaling FFAG electron demonstration ring is in progress. Recent international CYCLOTRON conference had dedicated time for the update on the FFAG acceleration. The non-scaling FFAG's should dramatically reduce required aperture and circumferences. If the fixed magnetic field produces the linear gradient, there is a tune variation during fast acceleration and resonances are a crossed. The small dispersion function and strong focusing in this design reduces the aperture size for almost an order of magnitude with respect to standard scaling FFAG design. We present one of the possible applications of the non-scaling proton and carbon cancer therapy FFAG accelerator. The cancer proton therapy

  17. Acetylene-Accelerated Alcohol Catalytic CVD Growth of Vertically Aligned Single-Walled Carbon Nanotubes

    OpenAIRE

    R. Xiang; Einarsson, E.; Okawa, J.; Miyauchi, Y.; Maruyama, S.

    2008-01-01

    Addition of only 1% of acetylene into ethanol was found to enhance the growth rate of singlewalled carbon nanotubes (SWNTs) by up to ten times. Since acetylene is a byproduct of the thermal decomposition of ethanol, this suggests an alternative fast reaction pathway to the formation of SWNTs from ethanol via byproducts of decomposition. This accelerated growth, however, only occurred in the presence of ethanol, whereas pure acetylene at the same partial pressure resulted in negligible growth ...

  18. Characterization of Corrosion Products on Carbon Steel Exposed to Natural Weathering and to Accelerated Corrosion Tests

    OpenAIRE

    Renato Altobelli Antunes; Rodrigo Uchida Ichikawa; Luis Gallego Martinez; Isolda Costa

    2014-01-01

    The aim of this work was to compare the corrosion products formed on carbon steel plates submitted to atmospheric corrosion in urban and industrial atmospheres with those formed after accelerated corrosion tests. The corrosion products were characterized by X-ray diffraction, Mössbauer spectroscopy, and Raman spectroscopy. The specimens were exposed to natural weathering in both atmospheres for nine months. The morphologies of the corrosion products were evaluated using scanning electron micr...

  19. Connectivity of diagnostic technologies: improving surveillance and accelerating tuberculosis elimination

    Science.gov (United States)

    Isaacs, C.; Affolabi, D.; Alagna, R.; Brockmann, D.; de Jong, B. C.; Cambau, E.; Churchyard, G.; Cohen, T.; Delmee, M.; Delvenne, J-C.; Farhat, M.; Habib, A.; Holme, P.; Keshavjee, S.; Khan, A.; Lightfoot, P.; Moore, D.; Moreno, Y.; Mundade, Y.; Pai, M.; Patel, S.; Nyaruhirira, A. U.; Rocha, L. E. C.; Takle, J.; Trébucq, A.; Creswell, J.; Boehme, C.

    2016-01-01

    SUMMARY In regard to tuberculosis (TB) and other major global epidemics, the use of new diagnostic tests is increasing dramatically, including in resource-limited countries. Although there has never been as much digital information generated, this data source has not been exploited to its full potential. In this opinion paper, we discuss lessons learned from the global scale-up of these laboratory devices and the pathway to tapping the potential of laboratory-generated information in the field of TB by using connectivity. Responding to the demand for connectivity, innovative third-party players have proposed solutions that have been widely adopted by field users of the Xpert® MTB/RIF assay. The experience associated with the utilisation of these systems, which facilitate the monitoring of wide laboratory networks, stressed the need for a more global and comprehensive approach to diagnostic connectivity. In addition to facilitating the reporting of test results, the mobility of digital information allows the sharing of information generated in programme settings. When they become easily accessible, these data can be used to improve patient care, disease surveillance and drug discovery. They should therefore be considered as a public health good. We list several examples of concrete initiatives that should allow data sources to be combined to improve the understanding of the epidemic, support the operational response and, finally, accelerate TB elimination. With the many opportunities that the pooling of data associated with the TB epidemic can provide, pooling of this information at an international level has become an absolute priority. PMID:27393530

  20. Connectivity of diagnostic technologies: improving surveillance and accelerating tuberculosis elimination.

    Science.gov (United States)

    Andre, E; Isaacs, C; Affolabi, D; Alagna, R; Brockmann, D; de Jong, B C; Cambau, E; Churchyard, G; Cohen, T; Delmee, M; Delvenne, J-C; Farhat, M; Habib, A; Holme, P; Keshavjee, S; Khan, A; Lightfoot, P; Moore, D; Moreno, Y; Mundade, Y; Pai, M; Patel, S; Nyaruhirira, A U; Rocha, L E C; Takle, J; Trébucq, A; Creswell, J; Boehme, C

    2016-08-01

    In regard to tuberculosis (TB) and other major global epidemics, the use of new diagnostic tests is increasing dramatically, including in resource-limited countries. Although there has never been as much digital information generated, this data source has not been exploited to its full potential. In this opinion paper, we discuss lessons learned from the global scale-up of these laboratory devices and the pathway to tapping the potential of laboratory-generated information in the field of TB by using connectivity. Responding to the demand for connectivity, innovative third-party players have proposed solutions that have been widely adopted by field users of the Xpert(®) MTB/RIF assay. The experience associated with the utilisation of these systems, which facilitate the monitoring of wide laboratory networks, stressed the need for a more global and comprehensive approach to diagnostic connectivity. In addition to facilitating the reporting of test results, the mobility of digital information allows the sharing of information generated in programme settings. When they become easily accessible, these data can be used to improve patient care, disease surveillance and drug discovery. They should therefore be considered as a public health good. We list several examples of concrete initiatives that should allow data sources to be combined to improve the understanding of the epidemic, support the operational response and, finally, accelerate TB elimination. With the many opportunities that the pooling of data associated with the TB epidemic can provide, pooling of this information at an international level has become an absolute priority. PMID:27393530

  1. Application of accelerated carbonation with a combination of Na2CO3 and CO2 in cement-based solidification/stabilization of heavy metal-bearing sediment.

    Science.gov (United States)

    Chen, Quanyuan; Ke, Yujuan; Zhang, Lina; Tyrer, Mark; Hills, Colin D; Xue, Gang

    2009-07-15

    The efficient remediation of heavy metal-bearing sediment has been one of top priorities of ecosystem protection. Cement-based solidification/stabilization (s/s) is an option for reducing the mobility of heavy metals in the sediment and the subsequent hazard for human beings and animals. This work uses sodium carbonate as an internal carbon source of accelerated carbonation and gaseous CO(2) as an external carbon source to overcome deleterious effects of heavy metals on strength development and improve the effectiveness of s/s of heavy metal-bearing sediment. In addition to the compressive strength and porosity measurements, leaching tests followed the Chinese solid waste extraction procedure for leaching toxicity - sulfuric acid and nitric acid method (HJ/T299-2007), German leaching procedure (DIN38414-S4) and US toxicity characteristic leaching procedures (TCLP) have been conducted. The experimental results indicated that the solidified sediment by accelerated carbonation was capable of reaching all performance criteria for the disposal at a Portland cement dosage of 10 wt.% and a solid/water ratio of 1:1. The concentrations of mercury and other heavy metals in the leachates were below 0.10mg/L and 5mg/L, respectively, complying with Chinese regulatory level (GB5085-2007). Compared to the hydration, accelerated carbonation improved the compressive strength of the solidified sediment by more than 100% and reduced leaching concentrations of heavy metals significantly. It is considered that accelerated carbonation technology with a combination of Na(2)CO(3) and CO(2) may practically apply to cement-based s/s of heavy metal-bearing sediment. PMID:19128876

  2. Extraordinary Tools for Extraordinary Science: The Impact ofSciDAC on Accelerator Science&Technology

    Energy Technology Data Exchange (ETDEWEB)

    Ryne, Robert D.

    2006-08-10

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook''. Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now take hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects.

  3. Extraordinary Tools for Extraordinary Science: The Impact of SciDAC on Accelerator Science and Technology

    International Nuclear Information System (INIS)

    Particle accelerators are among the most complex and versatile instruments of scientific exploration. They have enabled remarkable scientific discoveries and important technological advances that span all programs within the DOE Office of Science (DOE/SC). The importance of accelerators to the DOE/SC mission is evident from an examination of the DOE document, ''Facilities for the Future of Science: A Twenty-Year Outlook''. Of the 28 facilities listed, 13 involve accelerators. Thanks to SciDAC, a powerful suite of parallel simulation tools has been developed that represent a paradigm shift in computational accelerator science. Simulations that used to take weeks or more now take hours, and simulations that were once thought impossible are now performed routinely. These codes have been applied to many important projects of DOE/SC including existing facilities (the Tevatron complex, the Relativistic Heavy Ion Collider), facilities under construction (the Large Hadron Collider, the Spallation Neutron Source, the Linac Coherent Light Source), and to future facilities (the International Linear Collider, the Rare Isotope Accelerator). The new codes have also been used to explore innovative approaches to charged particle acceleration. These approaches, based on the extremely intense fields that can be present in lasers and plasmas, may one day provide a path to the outermost reaches of the energy frontier. Furthermore, they could lead to compact, high-gradient accelerators that would have huge consequences for US science and technology, industry, and medicine. In this talk I will describe the new accelerator modeling capabilities developed under SciDAC, the essential role of multi-disciplinary collaboration with applied mathematicians, computer scientists, and other IT experts in developing these capabilities, and provide examples of how the codes have been used to support DOE/SC accelerator projects

  4. Multiple model approach to evaluation of accelerated carbonation for steelmaking slag in a slurry reactor.

    Science.gov (United States)

    Pan, Shu-Yuan; Liu, Hsing-Lu; Chang, E-E; Kim, Hyunook; Chen, Yi-Hung; Chiang, Pen-Chi

    2016-07-01

    Basic oxygen furnace slag (BOFS) exhibits highly alkaline properties due to its high calcium content, which is beneficial to carbonation reaction. In this study, accelerated carbonation of BOFS was evaluated under different reaction times, temperatures, and liquid-to-solid (L/S) ratios in a slurry reactor. CO2 mass balance within the slurry reactor was carried out to validate the technical feasibility of fixing gaseous CO2 into solid precipitates. After that, a multiple model approach, i.e., theoretical kinetics and empirical surface model, for carbonation reaction was presented to determine the maximal carbonation conversion of BOFS in a slurry reactor. On one hand, the reaction kinetics of BOFS carbonation was evaluated by the shrinking core model (SCM). Calcite (CaCO3) was identified as a reaction product through the scanning electronic microscopy and X-ray diffraction analyses, which provided the rationale of applying the SCM in this study. The rate-limiting step of carbonation was found to be ash-diffusion controlled, and the effective diffusivity for carbonation of BOFS in a slurry reactor were determined accordingly. On the other hand, the carbonation conversion of BOFS was predicted by the response surface methodology (RSM) via a nonlinear mathematical programming. According to the experimental data, the highest carbonation conversion of BOFS achieved was 57% under an L/S ratio of 20 mL g(-1), a CO2 flow rate of 0.1 L min(-1), and a pressure of 101.3 kPa at 50 °C for 120 min. Furthermore, the applications and limitations of SCM and RSM were examined and exemplified by the carbonation of steelmaking slags. PMID:27038901

  5. The Analysis of Activated Carbon Regeneration Technologies

    Institute of Scientific and Technical Information of China (English)

    姚芳

    2014-01-01

    A series of methods for activated carbon regeneration were briefly introduced.Such as thermal regeneration,chemical regeneration,biochemical regeneration,and newly supercritical fluid regeneration, electrochemical regeneration,light-catalyzed regeneration,and microwave radiation method,and the developing trend of activated carbon regeneration was predicted.

  6. Educating the next generation in the science and technology of plasmas, beams and accelerators

    Science.gov (United States)

    Barletta, Wiliam

    2007-11-01

    Accelerators are essential tools for discovery in fundamental physics, biology, and chemistry. Particle beam based instruments in medicine, industry and national security constitute a multi-billion dollar per year industry. More than 55,000 peer-reviewed papers having accelerator as a keyword are available on the Web. Yet only a handful of universities offer any formal training in accelerator science. Several reasons can be cited: 1) The science and technology of non-neutral plasmas cuts across traditional academic disciplines. 2) Electrical engineering departments have evolved toward micro- and nano-technology and computing science. 3) Nuclear physics departments have atrophied. 4) With few exceptions, interest at individual universities is not extensive enough to support a strong faculty line. The United States Particle Accelerator School (USPAS) is National Graduate Educational Program that has developed an educational paradigm that, over the past twenty-years, has granted more university credit in accelerator / beam science and technology than any university in the world. Governed and supported by a consortium of nine DOE laboratories and two NSF university laboratories, USPAS offers a responsive and balanced curriculum of science, engineering, and hands-on courses. Sessions are held twice annually, hosted by major US research universities that approve course credit, certify the USPAS faculty, and grant course credit. The USPAS paradigm is readily extensible to other rapidly developing, cross-disciplinary research areas such as high energy density physics.

  7. Simple production method for making 3 μg/cm2 cracked slacked carbon accelerator stripper foils

    International Nuclear Information System (INIS)

    A simple method for making thin 3 μg/cm2 carbon stripper foils for heavy ion bombardment and accelerator radiochronology is described along with a simple method for stripper foil thickness determination

  8. Treatment of industrial effluents using electron beam accelerator and adsorption with activated carbon: a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Sampa, M.H. de E-mail: mhosampa@ipen.br; Rela, Paulo Roberto; Las Casas, Alexandre; Nunes Mori, Manoel; Lopes Duarte, Celina

    2004-10-01

    This paper presents preliminary results of a study that compares the use of electron beam processing and activated carbon adsorption to clean up a standardized organic aqueous solution and a real industrial effluent. The electron beam treatment was performed in a batch system using the IPEN's Electron Beam Accelerators from Radiation Dynamics Inc., Dynamitron 37.5 kW. The granular activated carbon removal treatment was performed using charcoal made from wood 'pinus'. If the adequate irradiation dose is delivered to the organic pollutant, it is possible to conclude for the studied compounds that the Electron Beam Process is similar to the activated carbon process in organic removal efficiency.

  9. Natural Gas Based Electricity Production and Low Carbon Technology Options

    Science.gov (United States)

    Concerns regarding air quality, global climate change, and the national energy security impacts of the intensive use of fossil fuels and their environmental impacts in the power generation sector have raised interest in alternative low carbon electricity generation technology and...

  10. Effect of accelerated carbonation and zero valent iron on metal leaching from bottom ash.

    Science.gov (United States)

    Nilsson, M; Andreas, L; Lagerkvist, A

    2016-05-01

    About 85% of the ashes produced in Sweden originated from the incineration of municipal solid waste and biofuel. The rest comes from the thermal treatment of recycled wood, peat, charcoal and others. About 68% of all ashes annually produced in Sweden are used for constructions on landfills, mainly slopes, roads and embankments, and only 3% for construction of roads and working surfaces outside the landfills (SCB, 2013). Since waste bottom ash (BA) often has similar properties to crushed bedrock or gravel, it could be used for road constructions to a larger extent. However, the leaching of e.g. Cr, Cu, Mo, Pb and Zn can cause a threat to the surrounding environment if the material is used as it is. Carbonation is a commonly used pre-treatment method, yet it is not always sufficient. As leaching from aged ash is often controlled by adsorption to iron oxides, increasing the number of Fe oxide sorption sites can be a way to control the leaching of several critical elements. The importance of iron oxides as sorption sites for metals is known from both mineralogical studies of bottom ash and from the remediation of contaminated soil, where iron is used as an amendment. In this study, zero valent iron (Fe(0)) was added prior to accelerated carbonation in order to increase the number of adsorption sites for metals and thereby reduce leaching. Batch, column and pHstat leaching tests were performed and the leaching behaviour was evaluated with multivariate data analysis. It showed that leaching changed distinctly after the tested treatments, in particular after the combined treatment. Especially, the leaching of Cr and Cu clearly decreased as a result of accelerated carbonation. The combination of accelerated carbonation with Fe(0) addition reduced the leaching of Cr and Cu even further and reduced also the leaching of Mo, Zn, Pb and Cd compared to untreated BA. Compared with only accelerated carbonation, the Fe(0) addition significantly reduced the leaching of Cr, Cu and Mo

  11. Accelerated carbonation and leaching behavior of the slag from iron and steel making industry

    Institute of Scientific and Technical Information of China (English)

    Quanyuan Chen; D.C. Johnson; Lingyun Zhu; Menghong Yuan; C.D. Hills

    2007-01-01

    Ground granulated blast furnace slag (GGBFS) and steelmaking slag have been used as a raw material for cement production or as an aggregate to make concrete, which contribute aluminum, calcium, iron, and silicon oxides. The suitability of the slag for a particular application depends on its reactivity, cost, availability, and its influence on the properties of the resulting concrete. For the interest of durability studying of concrete in the presence of slag, the accelerated carbonation products and leaching behavior of the slag and Portland cement (PC) were studied. The experimental results confirmed that the slag was more resistant to carbonation compared to PC. The carbonation degree of GGBFS reduced by 17.74%; and the carbonation degrees of steelmaking slags reduced by 9.51%-11.94%. Carbonation neutralized the alkaline nature of the hydrated pastes and gave rise to the redox potential of the leachate slightly (30-77 mV). The carbonation also increased the release of most of the elements presented, except for calcium, to the aqueous environment. It is concluded that blend cements (PC plus slag) have economical advantages and better durability compared to PC.

  12. Accelerator Technology and High Energy Physic Experiments, WILGA 2012; EuCARD Sessions

    CERN Document Server

    Romaniuk, R S

    2012-01-01

    Wilga Sessions on HEP experiments, astroparticle physica and accelerator technology were organized under the umbrella of the EU FP7 Project EuCARD – European Coordination for Accelerator Research and Development. The paper is the second part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with accelerator technology and high energy physics experiments. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the XXXth Jubilee SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET and pi-of-the ...

  13. Accelerator Technology Program: Status report, October 1985--March 1986: Volume 1

    International Nuclear Information System (INIS)

    This report presents highlights of the major projects in the Accelerator Technology (AT) Division of the Los Alamos National Laboratory. The first section details progress associated with the accelerator test stand. Following sections cover achievements in accelerator theory and simulation, LAMPF II accomplishments, and updates on BEAR, beam dynamics, the rf laboratory, p-bar gravity experiment, University of Illinois racetrack microtron, and NBS microtron. Also included are results from the Proton Storage Ring commissioning, developments in very high microwave systems, and advances in the Fusion Materials Irradiation Test rf technology. In addition, the Phoenix Project and the Krypton Fluoride Project are discussed. The report concludes with a listing of papers published by AT-Division personnel during this reporting period. 42 figs., 5 tabs

  14. Transaction costs analysis of low-carbon technologies

    OpenAIRE

    Mundaca, Luis; Mansoz, Mathilde; Neij, Lena; Timilsina, Govinda R.

    2013-01-01

    Transaction costs (TCs) must be taken into account when assessing the performance of policy instruments that create markets for the diffusion and commercialization of low-carbon technologies (LCTs). However, there are no comprehensive studies on the development and application of transaction cost analysis to LCTs. In this meta-analysis, a wide-ranging evaluation of TCs associated with energy efficiency, renewable energy, and carbon market technologies is provided. There is a plethora of diffe...

  15. Potentiality of the composite fulleren based carbon films as the stripper foils for tandem accelerators

    CERN Document Server

    Vasin, A V; Rusavsky, A V; Totsky, Y I; Vishnevski, I N

    2001-01-01

    The problem of the radiation resistance of the carbon stripper foils is considered. The short review of the experimental data available in literature and original experimental results of the are presented. In the paper discussed is the possibility of composite fulleren based carbon films to be used for preparation of the stripper foils. Some technological methods for preparation of composite fulleren based carbon films are proposed. Raman scattering and atom force microscopy were used for investigation of the fulleren and composite films deposited by evaporation of the C sub 6 sub 0 fulleren powder.

  16. Overview of CERN Technology Transfer Strategy and Accelerator-Related Activities

    CERN Document Server

    Chesta, E; Wuensch, W; Sgobba, S; Stora, T; Chiggiato, P; Taborelli, M

    2013-01-01

    CERN, the European Organization for Nuclear Research, is actively engaged in identifying technologies developed for its accelerator complex that could be profitably used by partner research organizations or commercial companies in applications with potentially high socio-economic impact beyond pure fundamental physics research. \

  17. Interim Status of the Accelerated Site Technology Deployment Integrated Decontamination and Decommissioning Project

    Energy Technology Data Exchange (ETDEWEB)

    A. M Smith; G. E. Matthern; R. H. Meservey

    1998-11-01

    The Idaho National Engineering and Environmental Laboratory (INEEL), Fernald Environmental Management Project (FEMP), and Argonne National Laboratory - East (ANL-E) teamed to establish the Accelerated Site Technology Deployment (ASTD) Integrated Decontamination and Decommissioning (ID&D) project to increase the use of improved technologies in D&D operations. The project is making the technologies more readily available, providing training, putting the technologies to use, and spreading information about improved performance. The improved technologies are expected to reduce cost, schedule, radiation exposure, or waste volume over currently used baseline methods. They include some of the most successful technologies proven in the large-scale demonstrations and in private industry. The selected technologies are the Pipe Explorer, the GammaCam, the Decontamination Decommissioning and Remediation Optimal Planning System (DDROPS), the BROKK Demolition Robot, the Personal Ice Cooling System (PICS), the Oxy-Gasoline Torch, the Track-Mounted Shear, and the Hand-Held Shear.

  18. Carbon Dioxide Collection and Pressurization Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Reactive Innovations, LLC, proposes a Phase I SBIR program to develop a compact and lightweight electrochemical reactor to separate and pressurize carbon dioxide...

  19. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation

    International Nuclear Information System (INIS)

    Binders formed through alkali-activation of slags and fly ashes, including ‘fly ash geopolymers’, provide appealing properties as binders for low-emissions concrete production. However, the changes in pH and pore solution chemistry induced during accelerated carbonation testing provide unrealistically low predictions of in-service carbonation resistance. The aluminosilicate gel remaining in an alkali-activated slag system after accelerated carbonation is highly polymerised, consistent with a decalcification mechanism, while fly ash-based binders mainly carbonate through precipitation of alkali salts (bicarbonates at elevated CO2 concentrations, or carbonates under natural exposure) from the pore solution, with little change in the binder gel identifiable by nuclear magnetic resonance spectroscopy. In activated fly ash/slag blends, two distinct gels (C–A–S–H and N–A–S–H) are formed; under accelerated carbonation, the N–A–S–H gel behaves comparably to fly ash-based systems, while the C–A–S–H gel is decalcified similarly to alkali-activated slag. This provides new scope for durability optimisation, and for developing appropriate testing methodologies. -- Highlights: •C-A-S-H gel in alkali-activated slag decalcifies during accelerated carbonation. •Alkali-activated fly ash gel changes much less under CO2 exposure. •Blended slag-fly ash binder contains two coexisting gel types. •These two gels respond differently to carbonation. •Understanding of carbonation mechanisms is essential in developing test methods

  20. Neutron data for accelerator-driven transmutation technologies. Annual Report 2002/2003

    Energy Technology Data Exchange (ETDEWEB)

    Blomgren, J.; Hildebrand, A.; Mermod, P.; Olsson, N.; Pomp, S.; Oesterlund, M. [Uppsala Univ. (Sweden). Dept. for Neutron Research

    2003-08-01

    The project NATT, Neutron data for Accelerator-driven Transmutation Technology, is performed within the nuclear reactions group of the Department for neutron research, Uppsala university. The activities of the group is directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group has previously developed two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: Analysis and documentation has been finalized of previously performed measurements of elastic neutron scattering from carbon and lead at 96 MeV. The precision in the results surpasses all previous data by at least an order of magnitude. These measurements represent the highest energy in neutron scattering where the ground state has been resolved. The results show that all previous theory work has underestimated the probability for neutron scattering at the present energy by 0-30 %. A new method for measurements of absolute probabilities for neutron-induced nuclear reactions with experimental techniques only has been developed. Previously, only two such methods have been known. One student has reached his PhD exam. Two PhD students have been accepted. TSL has decided to build a new neutron beam facility with significantly improved performance for these, and similar, activities. A new instrument for measurements of inelastic neutron scattering has been built, tested and found to meet the specifications. This work has been performed in collaboration with two French research groups from Caen and Nantes. The instrument is intended to be used for a series of experiments during the coming years. Previous work by the group on nuclear data for assessment of electronics reliability has lead to a new industry standard in the USA.

  1. Enzyme-accelerated and structure-guided crystallization of calcium carbonate: role of the carbonic anhydrase in the homologous system.

    Science.gov (United States)

    Müller, Werner E G; Schlossmacher, Ute; Schröder, Heinz C; Lieberwirth, Ingo; Glasser, Gunnar; Korzhev, Michael; Neufurth, Meik; Wang, Xiaohong

    2014-01-01

    The calcareous spicules from sponges, e.g. from Sycon raphanus, are composed of almost pure calcium carbonate. In order to elucidate the formation of those structural skeletal elements, the function of the enzyme carbonic anhydrase (CA), isolated from this species, during the in vitro calcium carbonate-based spicule formation, was investigated. It is shown that the recombinant sponge CA substantially accelerates calcium carbonate formation in the in vitro diffusion assay. A stoichiometric calculation revealed that the turnover rate of the sponge CA during the calcification process amounts to 25 CO2s(-1) × molecule CA(-1). During this enzymatically driven process, initially pat-like particles are formed that are subsequently transformed to rhomboid/rhombohedroid crystals with a dimension of ~50 μm. The CA-catalyzed particles are smaller than those which are formed in the absence of the enzyme. The Martens hardness of the particles formed is ~4 GPa, a value which had been determined for other biogenic calcites. This conclusion is corroborated by energy-dispersive X-ray spectroscopy, which revealed that the particles synthesized are composed predominantly of the elements calcium, oxygen and carbon. Surprising was the finding, obtained by light and scanning electron microscopy, that the newly formed calcitic crystals associate with the calcareous spicules from S. raphanus in a highly ordered manner; the calcitic crystals almost perfectly arrange in an array orientation along the two opposing planes of the spicules, leaving the other two plane arrays uncovered. It is concluded that the CA is a key enzyme controlling the calcium carbonate biomineralization process, which directs the newly formed particles to existing calcareous spicular structures. It is expected that with the given tools new bioinspired materials can be fabricated. PMID:23978410

  2. A combination of Ang Ⅱ and carbon tetrachloride accelerates process of hepatic fibrosis

    Institute of Scientific and Technical Information of China (English)

    周馨; 李定国; 李宣海; 陆汉明; 张文竹

    2003-01-01

    Objective To assess whether Angiotensin Ⅱ (Ang Ⅱ) and carbon tetrachloride (CCl4) used in combination could accelerate the process of fibrosis and whether Ang Ⅱ play a role in exaggerating hepatic fibrosis in rats.Methods Ang Ⅱ was injected into the abdominal cavity of Sprague-Dawley (SD) rats together with subcutaneous injection of CCl4. Rats were killed after 14 and 28 d. Blood serum and liver specimen were collected. The extent of fibrosis in the stained liver tissue sections was determined with the KS 400 Image Analysis System. Results Rats receiving Ang Ⅱ and CCl4 for 28 d showed extensive liver fibrosis. Along with the increase of hepatic fibrosis, the serum concentration of Ang Ⅱ went up gradually. Conclusions A combination of Ang Ⅱ and CCl4 would accelerate the process of hepatic fibrosis. Ang Ⅱ probably took part in the occurrence of heparic fibrosis.

  3. Characterization of Corrosion Products on Carbon Steel Exposed to Natural Weathering and to Accelerated Corrosion Tests

    Directory of Open Access Journals (Sweden)

    Renato Altobelli Antunes

    2014-01-01

    Full Text Available The aim of this work was to compare the corrosion products formed on carbon steel plates submitted to atmospheric corrosion in urban and industrial atmospheres with those formed after accelerated corrosion tests. The corrosion products were characterized by X-ray diffraction, Mössbauer spectroscopy, and Raman spectroscopy. The specimens were exposed to natural weathering in both atmospheres for nine months. The morphologies of the corrosion products were evaluated using scanning electron microscopy. The main product found was lepidocrocite. Goethite and magnetite were also found on the corroded specimens but in lower concentrations. The results showed that the accelerated test based on the ASTM B117 procedure presented poor correlation with the atmospheric corrosion tests whereas an alternated fog/dry cycle combined with UV radiation exposure provided better correlation.

  4. Killing effect of Chinese hamster V79 cells exposed to accelerated carbon ions and RBE determination

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Survival curves of Chinese hamster V79 cells exposed to accclerated carbon ions with linear energy transfers of 125.5, 200 and 700 keV/μm were measured, respectively. Inactivation cross sections corresponding to the irradiation above were deduced from the V79 cell survival curves. They are 7.86±0.17, 10.44±1.11 and 32.32±3.58 μm2 in turn. With the surviving response of V79 cells to 60Co γ-rays as a reference value, relative biological effectiveness at 10%, 20%, 50% and 80% survival levels were given for the accelerated carbon ions. The results showed that carbon ions with LET of 125.5 keV/μm had a higher value of RBE at all the four survival levels than the carbon ions with other LETs. It was prompted that the maximum value of RBE for the V79 cell surviving as the biological endpoint emerged at the LET below 200 keV/μm for carbon ions.

  5. Key Factors Affecting a Technology Entrepreneur's Choice of Incubator or Accelerator

    Directory of Open Access Journals (Sweden)

    Diane A. Isabelle

    2013-02-01

    Full Text Available Technology entrepreneurship rarely succeeds in isolation; increasingly, it occurs in interconnected networks of business partners and other organizations. For entrepreneurs lacking access to an established business ecosystem, incubators and accelerators provide a possible support mechanism for access to partners and resources. Yet, these relatively recent approaches to supporting entrepreneurship are still evolving. Therefore, it can be challenging for entrepreneurs to assess these mechanisms and to make insightful decisions on whether or not to join an incubator or accelerator, and which incubator or accelerator best meets their needs. In this article, five key factors that entrepreneurs should take into consideration about incubators and accelerators are offered. Insights are drawn from two surveys of managers and users of incubators and accelerators. An understanding of these five key success factors (stage of venture, fit with incubator’s mission, selection and graduation policies, services provided, and network of partners and potential pitfalls will help entrepreneurs confidently enter into a relationship with an incubator or accelerator.

  6. Selected works of basic research on the physics and technology of accelerator driven clean nuclear power system

    International Nuclear Information System (INIS)

    38 theses are presented in this selected works of basic research on the physics and technology of accelerator driven clean nuclear power system. It includes reactor physics and experiment, accelerators physics and technology, nuclear physics, material research and partitioning. 13 abstracts, which has been presented on magazines home and abroad, are collected in the appendix

  7. Accelerated export of sediment and carbon from a landscape under intensive agriculture.

    Science.gov (United States)

    Glendell, M; Brazier, R E

    2014-04-01

    The export of total organic carbon (particulate and dissolved) from terrestrial to aquatic ecosystems has important implications for water quality and the global carbon cycle. However, most research to date has focused on DOC losses from either forested or peaty catchments, with only limited studies examining the controls and rates of total fluvial carbon losses from agricultural catchments, particularly during storm events. This study examined the controls and fluxes of total suspended sediment (SS), total particulate (TPC) and dissolved organic carbon (DOC) from two adjacent catchments with contrasting intensive agricultural and semi-natural land-use. Data from 35 individual storm events showed that the agricultural catchment exported significantly higher SS concentrations on a storm-by-storm basis than the semi-natural catchment, with peak discharge exerting a greater control over SS, TPC and DOC concentrations. Baseflow DOC concentrations in the agricultural catchment were significantly higher. DOC quality monitored during one simultaneous rainfall event differed between the two study catchments, with more humic, higher molecular weight compounds prevailing in the agricultural catchment and lower molecular weight compounds prevailing in the semi-natural catchment. During an eight month period for which a comparable continuous turbidity record was available, the estimated SS yields from the agricultural catchment were higher than from the semi-natural catchment. Further, the agricultural catchment exported proportionally more TPC and a comparable amount of DOC, despite a lower total soil carbon pool. These results suggest that altered hydrological and biogeochemical processes within the agricultural catchment, including accelerated soil erosion and soil organic matter turnover, contributed to an enhanced fluvial SS and carbon export. Thus, we argue that enhancing semi-natural vegetation within intensively farmed catchments could reduce sediment and carbon losses

  8. Accelerated export of sediment and carbon from a landscape under intensive agriculture.

    Science.gov (United States)

    Glendell, M; Brazier, R E

    2014-04-01

    The export of total organic carbon (particulate and dissolved) from terrestrial to aquatic ecosystems has important implications for water quality and the global carbon cycle. However, most research to date has focused on DOC losses from either forested or peaty catchments, with only limited studies examining the controls and rates of total fluvial carbon losses from agricultural catchments, particularly during storm events. This study examined the controls and fluxes of total suspended sediment (SS), total particulate (TPC) and dissolved organic carbon (DOC) from two adjacent catchments with contrasting intensive agricultural and semi-natural land-use. Data from 35 individual storm events showed that the agricultural catchment exported significantly higher SS concentrations on a storm-by-storm basis than the semi-natural catchment, with peak discharge exerting a greater control over SS, TPC and DOC concentrations. Baseflow DOC concentrations in the agricultural catchment were significantly higher. DOC quality monitored during one simultaneous rainfall event differed between the two study catchments, with more humic, higher molecular weight compounds prevailing in the agricultural catchment and lower molecular weight compounds prevailing in the semi-natural catchment. During an eight month period for which a comparable continuous turbidity record was available, the estimated SS yields from the agricultural catchment were higher than from the semi-natural catchment. Further, the agricultural catchment exported proportionally more TPC and a comparable amount of DOC, despite a lower total soil carbon pool. These results suggest that altered hydrological and biogeochemical processes within the agricultural catchment, including accelerated soil erosion and soil organic matter turnover, contributed to an enhanced fluvial SS and carbon export. Thus, we argue that enhancing semi-natural vegetation within intensively farmed catchments could reduce sediment and carbon losses

  9. Densification mechanism of chemical vapor infiltration technology for carbon/carbon composites

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian-xun; XIONG Xiang; HUANG Qi-zhong; YI Mao-zhong; HUANG Bai-yun

    2007-01-01

    Carbon/carbon composites were fabricated using pressure-gradient chemical vapor infiltration(CVI) technology with propane (C3H6) as the carbon precursor gas and nitrogen (N2) as the carrier gas. The chemical process of deposition of pyrolytic carbon was deduced by analyzing the component of molecules in gas phase and observing the microstructure of deposition carbon. The results show that the process of deposition starts from the breakdown of C-C single bond of propene (C3H6), and forms two kinds of active groups in the heterogeneous gas phase reaction. Afterwards, these active groups form many stable bigger molecules and deposit on carbon fiber surface. At the same time, hydrogen atoms of the bigger molecules absorbed on carbon fiber surface are eliminated and the solid pyrolytic carbon matrix is formed in the heterogeneous reaction process.

  10. Carbon The Future Material for Advanced Technology Applications

    CERN Document Server

    Messina, Giacomo

    2006-01-01

    Carbon-based materials and their applications constitute a burgeoning topic of scientific research among scientists and engineers attracted from diverse areas such as applied physics, materials science, biology, mechanics, electronics and engineering. Further development of current materials, advances in their applications, and discovery of new forms of carbon are the themes addressed by the frontier research in these fields. This book covers all the fundamental topics concerned with amorphous and crystalline C-based materials, such as diamond, diamond-like carbon, carbon alloys, carbon nanotubes. The goal is, by coherently progressing from growth - and characterisation techniques to technological applications for each class of material, to fashion the first comprehensive state-of-the-art review of this fast evolving field of research in carbon materials.

  11. Accelerated ageing of an EAF black slag by carbonation and percolation for long-term behaviour assessment.

    Science.gov (United States)

    Gurtubay, L; Gallastegui, G; Elias, A; Rojo, N; Barona, A

    2014-07-01

    The efficient reuse of industrial by-products, such as the electric arc furnace (EAF) black slag, is still hindered by concern over their long-term behaviour in outdoor environments. The aim of this study was to develop an accelerated ageing method to simulate the long-term natural carbonation of EAF slag exposed to the elements. The degree of carbonation achieved in a freshly produced slag after accelerated ageing and in a slag used on a fifteen-year-old unpaved road was very similar. The influence of particle size on accelerated carbonation was assessed, with it being concluded that the slag sample with a particle size bigger than 5-6 mm underwent slight carbonation over time when it was exposed to CO2. The accelerated ageing procedure based on percolating a previously carbonated water solution through the slag column allowed gradual leaching with simulated acid rain, as well as providing information about the gradual and total chemical release from the slag. Three classification groups were established according to the release rate of the determined elements. The joint use of the accelerated carbonation method and the percolation test is proposed as a useful tool for environmental risk assessment concerning the long-term air exposure of EAF black slag.

  12. Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed

    International Nuclear Information System (INIS)

    Highlights: ► The carbonation conversion in a RPB was higher than that in traditional reactors. ► The optimum conditions were operated at 750 rpm and 65 °C for 30 min. ► The product on BOF slag was identified as crystallized calcite based on SEM and XRD. ► The diffusivity ranged from 10−7 to 10−6 cm2 s−1 based on the shrinking core model. - Abstract: Carbon dioxide (CO2) sequestration using the accelerated carbonation of basic oxygen furnace (BOF) slag in a high-gravity rotating packed bed (RPB) under various operational conditions was investigated. The effects of reaction time, reaction temperature, rotation speed and slurry flow rate on the CO2 sequestration process were evaluated. The samples of reacted slurry were analyzed quantitatively using thermogravimetric analysis (TGA) and atomic absorption spectrometry (AAS) and qualitatively using X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), and transmission electron microscopy (TEM). The sequestration experiments were performed at a liquid-to-solid ratio of 20:1 with a flow rate of 2.5 L min−1 of a pure CO2 stream under atmospheric temperature and pressure. The results show that a maximum conversion of BOF slag was 93.5% at a reaction time of 30 min and a rotation speed of 750 rpm at 65 °C. The experimental data were utilized to determine the rate-limiting mechanism based on the shrinking core model (SCM), which was validated by the observations of SEM and TEM. Accelerated carbonation in a RPB was confirmed to be a viable method due to its higher mass-transfer rate.

  13. Advanced technology for functionalization of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Lingjie Meng; Chuanlong Fu; Qinghua Lu

    2009-01-01

    Functionalization of carbon nanotubes (CNTs) has attracted considerable interest in the fields of physics, chemistry, material science and biology. The functionalized CNTs exhibit improved properties enabling facile fabrication of novel nanomaterials and nanodevices. Most of the functionalization approaches developed at present could be categorized into the covalent attachment of functional groups and the non-covalent adsorption of various functional molecules onto the surface of CNTs. This review highlights recent development and our work in functionalization of carbon nanotubes, leading to bio-compatible CNTs, fluorescent CNTs and transition metal func-tionalizcd CNTs. These novel methods possess advantages such as simplified technical procedures and reduced cost of novel nanoma-terials and nanodcvices fabrication.

  14. Carbon Footprint - Application in Graphic Art Technology

    Directory of Open Access Journals (Sweden)

    Ivana Bolanča Mirković

    2010-01-01

    Full Text Available The need for more sustainable products and processes has triggered the develop-ment of a large number of environmental assessment tools. These tools measure environmental performance and identify improvement potentials from the envi-ronmental point of view. The life cycle assessment (lca methods take into ac-count all effects on the environment, direct and indirect resource inputs and/or emissions during the whole life cycle of products. The carbon footprint is a sub-set of data covered by life cycle assessment.The aim of this paper is to describe the potential environmental impacts (green-house gases, carbon footprint of printed paper and new media.

  15. Carbon capture and storage as a corporate technology strategy challenge

    International Nuclear Information System (INIS)

    Latest estimates suggest that widespread deployment of carbon capture and storage (CCS) could account for up to one-fifth of the needed global reduction in CO2 emissions by 2050. Governments are attempting to stimulate investments in CCS technology both directly through subsidizing demonstration projects, and indirectly through developing price incentives in carbon markets. Yet, corporate decision-makers are finding CCS investments challenging. Common explanations for delay in corporate CCS investments include operational concerns such as the high cost of capture technologies, technological uncertainties in integrated CCS systems and underdeveloped regulatory and liability regimes. In this paper, we place corporate CCS adoption decisions within a technology strategy perspective. We diagnose four underlying characteristics of the strategic CCS technology adoption decision that present unusual challenges for decision-makers: such investments are precautionary, sustaining, cumulative and situated. Understanding CCS as a corporate technology strategy challenge can help us move beyond the usual list of operational barriers to CCS and make public policy recommendations to help overcome them. - Research highlights: → Presents a corporate technology strategy perspective on carbon capture and storage (CCS). → CCS technology is precautionary, sustaining, cumulative and situated. → Decision-makers need to look beyond cost and risk as barriers to investment in CCS.

  16. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    Science.gov (United States)

    Todd, Alan M. M.; Paulson, C. C.; Peacock, M. A.; Reusch, M. F.

    1995-09-01

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G. H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.

  17. WILGA Photonics and Web Engineering, January 2012; EuCARD Sessions on HEP and Accelerator Technology

    CERN Document Server

    Romaniuk, R S

    2012-01-01

    Wilga Sessions on HEP experiments and accelerator technology were organized under the umbrella of the EU FP7 Project EuCARD – European Coordination for Accelerator Research and Development. The paper presents a digest of chosen technical work results shown by young researchers from technical universities during the SPIE-IEEE Wilga January 2012 Symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, new technologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET and pi-of-the sky experiments development. The symposium held two times a year is a summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP st...

  18. Technological acceleration and organizational transformations in the upstream oil and gas industry

    International Nuclear Information System (INIS)

    The upstream oil and gas industry experienced a dramatic technological acceleration in the early 1970's. The relationships between the agents in this industry have themselves undergone deep changes since that date. This thesis shows that a tight link exists between the technological acceleration and the organizational transformations in the upstream oil and gas industry. In a first part, it focuses on the economic theory's developments concerning industrial organization. In a second part, it applies these developments to three types of relations: those between the owner-states of hydrocarbon resources and the international petroleum companies; those between the international petroleum companies and their subcontractors; and finally those between the international petroleum companies themselves. (author)

  19. Improved technology for manufacture of carbon electrodes

    Indian Academy of Sciences (India)

    A Platon; A Dumbrava; N Iutes-Petrescu; Luzia Simionescu

    2000-02-01

    Current industrial carbon electrodes are typically manufactured by blending petroleum coke particles (the filler) with molten coal tar pitch (the binder) and extruding the resultant mix to form the `green electrode’. This is then baked under controlled conditions. In case of usage as anodes in steel electric furnaces (or as other carbon and graphite products), the electrodes could undergo further processing like pitch impregnation or graphitization. During heat treatment, some of the organics are destructively distilled, vaporized or decomposed, resulting in carbon deposition in the electrode. As the vaporized materials exit the body of the electrode they cause porosity in the walls, which results in reduction in density, current carrying capacity and flexural strength. The paper presents investigations to improve some physico-chemical characteristics of these electrodes (such as coefficient of thermal expansion, mechanical strengths, density, pore volume, porosity etc.), obtained in different manufacture steps, by addition of varieties of coal tar pitch. These include attempts to improve the chemical compatibility of the coke-pitch system in the mixture and establish the method and the point of introduction of additive, the concentration required and appropriate analytical control during the entire manufacture. Methods of analysis used include thermogravimetry and porosimetry. The microstructure of the electrodes is investigated through a wide range and the data obtained include pore size and pore volume distribution, surface area, porosity, particle size distribution and type of pores. The overall results clearly indicate better characteristics and performance for electrodes with additives as against electrodes without them, such as lower porosity, lower thermal expansion coefficients and greater mechanical strength. These data are analyzed with respect to the process step and electrode type.

  20. Acceleration of carbon-13 spin-lattice relaxation times in amino acids by electrolytes

    Institute of Scientific and Technical Information of China (English)

    Tian Jinping; Yin Yingwu

    2004-01-01

    A series of amino acids and carboxylic acids were determined by 13C NMR spectroscopy.The results showed that addition of 3M MgCl2 led to the 13C NMR integral area of samples being well proportional to number of carbon atoms that produce the particular signal with reliability over 95%. Measurements of 13C spin-lattice relaxation times (T1's) are reported for a number of amino acids. T1's of all the carbons in amino acids generally tend to decrease with the increase of the concentration of electrolytes, and the presence of magnesium slats is of significant. Carboxylic carbons in amino acids are the most sensitive "acceptor" of the 13C spin-lattice relaxation accelerating effects in electrolytes, and the 13C spin-lattice relaxation accelerating ability of electrolytes is Mg(ClO4)2 >MgCl2 >CaCl2 >NaCl >KCl >LiClO4 >NaOH. In general, T1's of C1 carbons in nonpolar a-amino acids are higher than those in polar and basic a-amino acids both in aqueous and 3M MgCl2 medium. In aliphatic straight-chain amino acids, a-, a-, a-, ai- and a- amino acids, T1's of C1 carbons tend to reduce with the increase of inserted carbon numbers between amino and carboxylic groups compared with Gly. T1's can be decreased even more when amino acids are mixed in 3M MgCl2, but T1's of carbons in amino acids decrease slightly with increase of the concentration of amino acids in 3M MgCl2. The mechanisms of the observed phenomena are discussed in terms of intermolecular interaction and paramagnetic impurity in electrolytes, large contributions of intermolecular interaction which is enhanced in electrolytes concentrate on the incoming "unsaturation" of the primary solvation shell of cations with the increase of electrolytes concentration and complexes formation of amino acids with metal ions. In electrolytes, amino acids are "anchored" to cations and molecule tumbling is slowed down, molecular rigidity is increased and molecular size is "enlarged", all of these are helpful to accelerate

  1. Development of Wind-and-React Bi-2212 Accelerator Magnet Technology

    OpenAIRE

    Godeke, A; Cheng, D.; Dietderich, D. R.; English, C.D.; Felice, H.; Hannaford, C.R.; Prestemon, S. O.; Sabbi, G.; Scanlan, R.M.; Hikichi, Y.; Nishioka, J; Hasegawa, T.

    2008-01-01

    We report on the progress in our R&D program, targeted to develop the technology for the application of Bi2Sr2CaCu2Ox (Bi-2212) in accelerator magnets. The program uses subscale coils, wound from insulated cables, to study suitable materials, heat treatment homogeneity, stability, and effects ofmagnetic field and thermal and electro-magnetic loads. We have addressed material and reaction related issues and report onthe fabrication, heat treatment, and analysis of subscale Bi-2212 coils. ...

  2. Basis and objectives of the Los Alamos accelerator driven transmutation technology project

    International Nuclear Information System (INIS)

    The paper describes a new accelerator-based nuclear technology developed at Los Alamos National Laboratory which offers total destruction of the weapons Plutonium inventory, a solution to the commercial nuclear waste problem which greatly reduces or eliminates the requirement for geologic waste storage, and a system which generates potentially unlimited energy from Thorium fuel while destroying its own waste and operating in a new regime of nuclear safety

  3. Basis and objectives of the Los Alamos Accelerator-Driven Transmutation Technology Project

    International Nuclear Information System (INIS)

    The Accelerator-Driven Transmutation Technology (ADTT) Project carries three approaches for dealing with waste from the defense and commercial nuclear energy enterprise. First, the problem of excess weapons plutonium in the US and Russia originating both from stockpile reductions and from defense production site clean-up is one of significant current and long-term concern. The ADTT technology offers the possibility of almost complete destruction of this plutonium by fission. The technology might be particularly effective for destruction of the low quality plutonium from defense site clean-up since the system does not require the fabrication of the waste into fuel assemblies, does not require reprocessing and refabrication, and can tolerate a high level of impurities in the feed stream. Second, the ADTT system also can destroy the plutonium, other higher actinide, and long-lived fission product from commercial nuclear waste which now can only be dealt with by geologic storage. And finally, and probably most importantly the system can be used for the production of virtually unlimited electric power from thorium with concurrent destruction of its long-lived waste components so that geologic containment for them is not required. In addition plutonium is not a significant byproduct of the power generation so that non-proliferation concerns about nuclear power are almost completely eliminated. All of the ADTT systems operate with an accelerator supplementing the neutrons which in reactors are provided only by the fission process, and therefore the system can be designed to eliminate the possibility for a runaway chain reaction. The means for integration of the accelerator into nuclear power technology in order to make these benefits possible is described including estimates of accelerator operating parameters required for the three objectives

  4. Annotated bibliography of Accelerator Technology Division research and development, 1978-1985

    International Nuclear Information System (INIS)

    A bibliography is presented of unclassified published and in-house technical material written by members of the Accelerator Technology Division, Los Alamos National Laboratory, since its inception in January, 1978. The author and subject concordances in this report provide cross-reference to detailed citations kept in a computer database and a microfilm file of the documents. The citations include an abstract and other notes, and can be searched for key words and phrases

  5. Carbon black dispersion pre-plating technology for printed wire board manufacturing. Final technology evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    Folsom, D.W.; Gavaskar, A.R.; Jones, J.A.; Olfenbuttel, R.F.

    1993-10-01

    The project compared chemical use, waste generation, cost, and product quality between electroless copper and carbon-black-based preplating technologies at the printed wire board (PWB) manufacturing facility of McCurdy Circuits in Orange, CA. The carbon-black based preplating technology evaluated is used as an alternative process for electroless copper (EC) plating of through-holes before electrolytic copper plating. The specific process used at McCurdy is the BlackHole (BH) technology process, which uses a dispersion of carbon black in an aqueous solution to provide a conductive surface for subsequent electrolytic copper plating. The carbon-black dispersion technology provided effective waste reduction and long-term cost savings. The economic analysis determined that the new process was cost efficient because chemical use was reduced and the process proved more efficient; the payback period was less than 4 yrs.

  6. Technology Roadmap: Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    As long as fossil fuels and carbon-intensive industries play dominant roles in our economies, carbon capture and storage (CCS) will remain a critical greenhouse gas reduction solution. This CCS roadmap aims at assisting governments and industry in integrating CCS in their emissions reduction strategies and in creating the conditions for scaled-up deployment of all three components of the CCS chain: CO2 capture, transport and storage. To get us onto the right pathway, this roadmap highlights seven key actions needed in the next seven years to create a solid foundation for deployment of CCS starting by 2020. IEA analysis shows that CCS is an integral part of any lowest-cost mitigation scenario where long-term global average temperature increases are limited to significantly less than 4 °C, particularly for 2 °C scenarios (2DS). In the 2DS, CCS is widely deployed in both power generation and industrial applications. The total CO2 capture and storage rate must grow from the tens of megatonnes of CO2 captured in 2013 to thousands of megatonnes of CO2 in 2050 in order to address the emissions reduction challenge. A total cumulative mass of approximately 120 GtCO2 would need to be captured and stored between 2015 and 2050, across all regions of the globe.

  7. X-ray generation experiment in STF accelerator on quantum beam technology program

    International Nuclear Information System (INIS)

    To obtain high brightness quasi-monochromatic X-ray via Inverse Compton Scattering, highly intensified laser beam is designed and implemented in a new beam line of KEK Superconducting RF Test Facility (STF) accelerator, under the program of 'Quantum Beam Technology Program'. The STF accelerator is a superconducting Linac using ILC technology, operated with a 5 Hz repetition, 1 ms electron bunch train, and 40 MeV beam energy. The intensified laser beam was generated by a 4-mirror optical cavity with beam-synchronized burst-amplified laser input. The high brightness X-ray is generated by the collision between incoming electron beam and stored laser beam in the 4-mirror cavity. The 4-mirror optical cavity technology has been selected for their stable laser storage with long mirror distance, where electron beam is coming in and out for head-on collision between them. On this report, STF accelerator construction including collision laser system, and also collision results are described. (author)

  8. Development of internal reforming carbonate fuel cell stack technology

    Energy Technology Data Exchange (ETDEWEB)

    Farooque, M.

    1990-10-01

    Activities under this contract focused on the development of a coal-fueled carbonate fuel cell system design and the stack technology consistent with the system design. The overall contract effort was divided into three phases. The first phase, completed in January 1988, provided carbonate fuel cell component scale-up from the 1ft{sup 2} size to the commercial 4ft{sup 2} size. The second phase of the program provided the coal-fueled carbonate fuel cell system (CGCFC) conceptual design and carried out initial research and development needs of the CGCFC system. The final phase of the program emphasized stack height scale-up and improvement of stack life. The results of the second and third phases are included in this report. Program activities under Phase 2 and 3 were designed to address several key development areas to prepare the carbonate fuel cell system, particularly the coal-fueled CFC power plant, for commercialization in late 1990's. The issues addressed include: Coal-Gas Related Considerations; Cell and Stack Technology Improvement; Carbonate Fuel Cell Stack Design Development; Stack Tests for Design Verification; Full-Size Stack Design; Test Facility Development; Carbonate Fuel Cell Stack Cost Assessment; and Coal-Fueled Carbonate Fuel Cell System Design. All the major program objectives in each of the topical areas were successfully achieved. This report is organized along the above-mentioned topical areas. Each topical area has been processed separately for inclusion on the data base.

  9. Technologies for improved soil carbon management and environmental quality

    Energy Technology Data Exchange (ETDEWEB)

    Reicosky, D.C. [USDA-Agricultural Research Service, Morris, MN (United States)

    1997-12-31

    The objective of this paper is to create an environmental awareness of and to provide insight into the future balance of environment and economic issues in developing new technologies that benefit the farmer, the public, and agricultural product sales. Agricultural impacts of tillage-induced CO{sub 2} losses are addressed along with new and existing technologies to minimize tillage-induced flow of CO{sub 2} to the atmosphere, Emphasis is placed on the carbon cycle and the cost of environmental damage to illustrate the need for improved technologies leading to reduced environmental impacts by business ventures. New technologies and concepts related to methods of tillage and stover management for carbon sequestration with the agricultural production systems are presented. 16 refs., 3 figs.

  10. Effect of accelerated carbonation on AOD stainless steel slag for its valorisation as a CO2-sequestering construction material

    OpenAIRE

    Salman, Muhammad Salman; Cizer, Özlem; Pontikes, Yiannis; Santos, Rafael; Vandewalle, Lucie; Blanpain, Bart; Van Balen, Koen

    2014-01-01

    Non-stabilized Argon Oxygen Decarburisation (AODNS) slag in powdered form was examined for its carbon dioxide sequestration capacity and for its potential utilization in the fabrication of high value building materials. The curing of the sample was carried out in two accelerated carbonation environments: i) in a carbonation chamber, maintained at atmospheric pressure, 22 °C, 5 vol.% CO2 and 80% RH; and ii) in a carbonation reactor, where the CO2 partial pressure (pCO2) and temperature could b...

  11. The Machine Protection System for the Fermilab Accelerator Science and Technology Facility

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jinyuan [Fermilab; Warner, Arden [Fermilab; Liu, Ning [Fermilab; Neswold, Richard [Fermilab; Carmichael, Linden [Fermilab

    2015-11-15

    The Machine Protection System (MPS) for the Fermilab Accelerator Science and Technology Facility (FAST) has been implemented and tested. The system receives signals from several subsystems and devices which conveys the relevant status needed to the safely operate the accelerator. Logic decisions are made based on these inputs and some predefined user settings which in turn controls the gate signal to the laser of the photo injector. The inputs of the system have a wide variety of signal types, encoding methods and urgencies for which the system is designed to accommodate. The MPS receives fast shutdown (FSD) signals generated by the beam loss system and inhibits the beam or reduces the beam intensity within a macropulse when the beam losses at several places along the accelerator beam line are higher than acceptable values. TTL or relay contact signals from the vacuum system, toroids, magnet systems etc., are chosen with polarities that ensure safe operation of the accelerator from unintended events such as cable disconnection in the harsh industrial environment of the experimental hall. A RS422 serial communication scheme is used to interface the operation permit generator module and a large number of movable devices each reporting multi-bit status. The system also supports operations at user defined lower beam levels for system conunissioning. The machine protection system is implemented with two commercially available off-the-shelf VMEbus based modules with on board FPGA devices. The system is monitored and controlled via the VMEbus by a single board CPU

  12. Technology Roadmaps: Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Carbon capture and storage (CCS) is an important part of the lowest-cost greenhouse gas (GHG) mitigation portfolio. IEA analysis suggests that without CCS, overall costs to reduce emissions to 2005 levels by 2050 increase by 70%. This roadmap includes an ambitious CCS growth path in order to achieve this GHG mitigation potential, envisioning 100 projects globally by 2020 and over 3000 projects by 2050. This roadmap's level of project development requires an additional investment of over USD 2.5-3 trillion from 2010 to 2050, which is about 6% of the overall investment needed to achieve a 50% reduction in GHG emissions by 2050. OECD governments will need to increase funding for CCS demonstration projects to an average annual level of USD 3.5 to 4 billion (bn) from 2010 to 2020. In addition, mechanisms need to be established to incentivise commercialisation beyond 2020 in the form of mandates, GHG reduction incentives, tax rebates or other financing mechanisms.

  13. DOE's Innovative Treatment Remediation Demonstration Program accelerating the implementation of innovative technologies

    International Nuclear Information System (INIS)

    A program to help accelerate the adoption and implementation of new and innovative remediation technologies has been initiated by the Department of Energy's (DOE) Environmental Restoration Program Office (EM40). Developed as a Public-Private Partnership program in cooperation with the US Environmental Protection Agency's (EPA) Technology Innovation Office (TIO) and coordinated by Sandia National Laboratories, the Innovative Treatment Remediation Demonstration (ITRD) Program attempts to reduce many of the classic barriers to the use of new technologies by involving government, industry, and regulatory agencies in the assessment, implementation, and validation of innovative technologies. In this program, DOE facilities work cooperatively with EPA, industry, national laboratories, and state and federal regulatory agencies to establish remediation demonstrations using applicable innovative technologies at their sites. Selected innovative technologies are used to remediate small, one to two acre, sites to generate the full-scale and real-world operating, treatment performance, and cost data needed to validate these technologies and gain acceptance by industry and regulatory agencies, thus accelerating their use nationwide. Each ITRD project developed at a DOE site is designed to address a typical soil or groundwater contamination issue facing both DOE and industry. This includes sites with volatile organic compound (VOC), semi-VOC, heavy metal, explosive residue, and complex or multiple constituent contamination. Projects are presently underway at three DOE facilities, while additional projects are under consideration for initiation in FY96 at several additional DOE sites. A brief overview of the ITRD Program, program plans, and the status and progress of existing ITRD projects are reviewed in this paper

  14. Climate-change effects on soils: Accelerated weathering, soil carbon and elemental cycling

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla

    2015-04-01

    Climate change [i.e., high atmospheric carbon dioxide (CO2) concentrations (≥400 ppm); increasing air temperatures (2-4°C or greater); significant and/or abrupt changes in daily, seasonal, and inter-annual temperature; changes in the wet/dry cycles; intensive rainfall and/or heavy storms; extended periods of drought; extreme frost; heat waves and increased fire frequency] is and will significantly affect soil properties and fertility, water resources, food quantity and quality, and environmental quality. Biotic processes that consume atmospheric CO2, and create organic carbon (C) that is either reprocessed to CO2 or stored in soils are the subject of active current investigations, with great concern over the influence of climate change. In addition, abiotic C cycling and its influence on the inorganic C pool in soils is a fundamental global process in which acidic atmospheric CO2 participates in the weathering of carbonate and silicate minerals, ultimately delivering bicarbonate and Ca2+ or other cations that precipitate in the form of carbonates in soils or are transported to the rivers, lakes, and oceans. Soil responses to climate change will be complex, and there are many uncertainties and unresolved issues. The objective of the review is to initiate and further stimulate a discussion about some important and challenging aspects of climate-change effects on soils, such as accelerated weathering of soil minerals and resulting C and elemental fluxes in and out of soils, soil/geo-engineering methods used to increase C sequestration in soils, soil organic matter (SOM) protection, transformation and mineralization, and SOM temperature sensitivity. This review reports recent discoveries, identifies key research needs, and highlights opportunities offered by the climate-change effects on soils.

  15. Corrosion behavior of modified nano carbon black/epoxy coating in accelerated conditions

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • By using SDS as a surfactant, nano particles of CB were uniformly dispersed. • CB nanoparticle in the epoxy coating improved the corrosion resistance of the coating. • By addition of CB nanoparticles to the epoxy diffusion ions and water became limited. • The dominance of barrier mechanism was proved by calculation of the diffusion coefficients. - Abstract: The electrochemical behavior and anticorrosion properties of modified carbon black (CB) nanoparticles in epoxy coatings were investigated in accelerated conditions. Nanoparticles of CB were modified by sodium dodecyl sulfate (SDS) as surfactant. Dispersion of nanoparticles into epoxy was confirmed by Transmission Electron Microscopy (TEM). The accelerated condition was prepared at 65 °C. CB nanoparticles improved corrosion resistance of the epoxy coating. The optimum concentration of CB in the epoxy coating was 0.75 wt%. Results showed that the CB hinder the corrosion due to its barrier properties. CB can decrease the diffusion coefficient of water in the coating with filling the micropores

  16. Corrosion behavior of modified nano carbon black/epoxy coating in accelerated conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi-Kahrizsangi, Ahmad; Shariatpanahi, Homeira, E-mail: shariatpanahih@ripi.ir; Neshati, Jaber; Akbarinezhad, Esmaeil

    2015-03-15

    Graphical abstract: - Highlights: • By using SDS as a surfactant, nano particles of CB were uniformly dispersed. • CB nanoparticle in the epoxy coating improved the corrosion resistance of the coating. • By addition of CB nanoparticles to the epoxy diffusion ions and water became limited. • The dominance of barrier mechanism was proved by calculation of the diffusion coefficients. - Abstract: The electrochemical behavior and anticorrosion properties of modified carbon black (CB) nanoparticles in epoxy coatings were investigated in accelerated conditions. Nanoparticles of CB were modified by sodium dodecyl sulfate (SDS) as surfactant. Dispersion of nanoparticles into epoxy was confirmed by Transmission Electron Microscopy (TEM). The accelerated condition was prepared at 65 °C. CB nanoparticles improved corrosion resistance of the epoxy coating. The optimum concentration of CB in the epoxy coating was 0.75 wt%. Results showed that the CB hinder the corrosion due to its barrier properties. CB can decrease the diffusion coefficient of water in the coating with filling the micropores.

  17. Development of accelerator technology in Poland, Impact of European CARE and EuCARD projects

    CERN Document Server

    Romaniuk, R

    2008-01-01

    The development of accelerator technology in Poland is strictly combined with the cooperation with specialist accelerator centers of global character, where the relevant knowledge is generated, allowing to build big and modern machines. These are relatively costly undertakings of interdisciplinary character. Most of them are financed from the local resources. Only the biggest machines are financed commonly by many nations like: LHC in CERN, ILC in Fermi Lab, E-XFEL in DESY. A similar financing solution has to be implemented in Poland, where a scientific and political campaign is underway on behalf of building two big machines, a Polish Synchrotron in Kraków and a Polish FEL in Świerk. Around these two projects, there are realized a dozen or so smaller ones.

  18. A review of mineral carbonation technologies to sequester CO2.

    Science.gov (United States)

    Sanna, A; Uibu, M; Caramanna, G; Kuusik, R; Maroto-Valer, M M

    2014-12-01

    Carbon dioxide (CO2) capture and sequestration includes a portfolio of technologies that can potentially sequester billions of tonnes of CO2 per year. Mineral carbonation (MC) is emerging as a potential CCS technology solution to sequester CO2 from smaller/medium emitters, where geological sequestration is not a viable option. In MC processes, CO2 is chemically reacted with calcium- and/or magnesium-containing materials to form stable carbonates. This work investigates the current advancement in the proposed MC technologies and the role they can play in decreasing the overall cost of this CO2 sequestration route. In situ mineral carbonation is a very promising option in terms of resources available and enhanced security, but the technology is still in its infancy and transport and storage costs are still higher than geological storage in sedimentary basins ($17 instead of $8 per tCO2). Ex situ mineral carbonation has been demonstrated on pilot and demonstration scales. However, its application is currently limited by its high costs, which range from $50 to $300 per tCO2 sequestered. Energy use, the reaction rate and material handling are the key factors hindering the success of this technology. The value of the products seems central to render MC economically viable in the same way as conventional CCS seems profitable only when combined with EOR. Large scale projects such as the Skyonic process can help in reducing the knowledge gaps on MC fundamentals and provide accurate costing and data on processes integration and comparison. The literature to date indicates that in the coming decades MC can play an important role in decarbonising the power and industrial sector. PMID:24983767

  19. Geo-Spatial Technologies for Carbon Sequestration Monitoring and Management

    Directory of Open Access Journals (Sweden)

    V. Jeyanny

    2011-01-01

    Full Text Available Problem statement: Globally, the quantification of Carbon Sequestration (CS potential of various ecosystems is a challenge. There is an urgent need for technologies that can quantify CS potential cost-efficiently in a repeated and organized manner. Approach: Remote Sensing (RS and Geographic Information System (GIS have great potential in current estimation, future prediction and management of carbon sequestration potential in terrestrial ecosystems. This review discusses the current utilization of RS and GIS technologies in CS management in various sectors. Results: Deployment of RS and GIS for CS sequestration improves accuracy, reduces costs, increases productivity, and provides current observations from a regional scale. Conclusion: This review demonstrates the synergistic role of RS and GIS technologies in improving CS management.

  20. An Accelerated Test Method of Simultaneous Carbonation and Chloride Ion Ingress: Durability of Silica Fume Concrete in Severe Environments

    OpenAIRE

    Ghahari, S. A.; Ramezanianpour, A. M.; Ramezanianpour, A. A.; Esmaeili, M

    2016-01-01

    The effects of simultaneous carbonation and chloride ion attack on mechanical characteristics and durability of concrete containing silica fume have been investigated through an accelerated test method. Specimens containing different amounts of silica fume were maintained in an apparatus in which carbon dioxide pressure and concentration and relative humidity were kept constant, and wetting and drying cycles in saline water were applied. Surface resistivity, sorptivity, CO2 consumption, and c...

  1. Endogenous Technological Progress with Uncertainty and Carbon Abatement Polices

    Energy Technology Data Exchange (ETDEWEB)

    Cho, G.L. [Korea Energy Economics Institute, Euiwang (Korea)

    2001-11-01

    Most greenhouse gas abatement policy models tend to neglect a potentially important element that is relevant to the induced technology changes(ITC). These models that incorporate technological change treat such a change as autonomous, that is, unaffected by changes in prices brought about by policy reforms. However, climate change policies can create economic incentives to engage in more extensive R and D oriented toward the discovery of new production techniques that mitigate a reliance on convectional fuels, ultimately resulting in impacts on the policies themselves. In order to investigate the significance of induced technology for the attractiveness of abatement policies, this study develop the multi-sectoral dynamic CGE model by incorporating two characteristics of technological progress: the endogenous growth model with externality of technology in Romer (1986) and Lucas(1988) and the technological changes resulting from profit maximizing investment in R and D in Rebelo(1991) and Jones and Manuelli(1990). Furthermore, technological progress is affected by not only the economical factors but also the political and institutional system that cannot be captured in this model. This study considers such uncertainty in the technological progress as technology shock as in RBC school. This study shows that the presence of ITC implies lower costs of achieving a given abatement target in terms of the reduction cost per ton of carbon and GDP losses. The presence of ITC reduces the GDP losses by 0.9%p{approx}1.5%p compared with the absence of the ITC. As the abatement target is substantially high, R and D is reduced significantly even in the presence of ITC. Therefore, it is necessary to seriously consider the tax recycling for enhancing R and D investment, which minimizes the GDP losses. The reduction cost is highly sensitive to the uncertainty in technological progress. The technology shock leads the reduction cost to widely vary, in terms of standard deviation, 3

  2. A Study on Accelerated Thermal Aging of High Modulus Carbon/Epoxy Composite Material

    Directory of Open Access Journals (Sweden)

    Ju Min Kyung

    2015-01-01

    Full Text Available Composite materials have been used increasingly for various space applications due to the favorable characteristic of high modulus to density ratio and potential for near-zero coefficient of thermal expansion. In composite system, depending on the orientation of fibers, strength and stiffness can be changed so that the optimum structure can be accomplished. This is because the coefficient of thermal expansion (CTE of carbon fibers is negative. For spacecraft and orbiting space structure, which are thermally cycled by moving through the earth' shadow for at least 5 years, it is necessary to investigate the change of properties of the material over time. In this study, thermal aging of epoxy matrix/high modulus carbon fiber composite materials are accelerated to predict the long term creep property. Specimens are tested at various temperatures of 100~140°C with dynamic mechanical analysis to obtain creep compliances that are functions of time and temperature. Using Time Temperature Superposition method, creep compliance curves at each temperature are shifted to the reference temperature by shift factor and a master curve is generated at the reference temperature. This information is useful to predict the long term thermal aging of high modulus composite material for spacecraft application.

  3. Carbon Capture in the Cement Industry: Technologies, Progress, and Retrofitting.

    Science.gov (United States)

    Hills, Thomas; Leeson, Duncan; Florin, Nicholas; Fennell, Paul

    2016-01-01

    Several different carbon-capture technologies have been proposed for use in the cement industry. This paper reviews their attributes, the progress that has been made toward their commercialization, and the major challenges facing their retrofitting to existing cement plants. A technology readiness level (TRL) scale for carbon capture in the cement industry is developed. For application at cement plants, partial oxy-fuel combustion, amine scrubbing, and calcium looping are the most developed (TRL 6 being the pilot system demonstrated in relevant environment), followed by direct capture (TRL 4-5 being the component and system validation at lab-scale in a relevant environment) and full oxy-fuel combustion (TRL 4 being the component and system validation at lab-scale in a lab environment). Our review suggests that advancing to TRL 7 (demonstration in plant environment) seems to be a challenge for the industry, representing a major step up from TRL 6. The important attributes that a cement plant must have to be "carbon-capture ready" for each capture technology selection is evaluated. Common requirements are space around the preheater and precalciner section, access to CO2 transport infrastructure, and a retrofittable preheater tower. Evidence from the electricity generation sector suggests that carbon capture readiness is not always cost-effective. The similar durations of cement-plant renovation and capture-plant construction suggests that synchronizing these two actions may save considerable time and money. PMID:26630247

  4. Carbon Capture in the Cement Industry: Technologies, Progress, and Retrofitting.

    Science.gov (United States)

    Hills, Thomas; Leeson, Duncan; Florin, Nicholas; Fennell, Paul

    2016-01-01

    Several different carbon-capture technologies have been proposed for use in the cement industry. This paper reviews their attributes, the progress that has been made toward their commercialization, and the major challenges facing their retrofitting to existing cement plants. A technology readiness level (TRL) scale for carbon capture in the cement industry is developed. For application at cement plants, partial oxy-fuel combustion, amine scrubbing, and calcium looping are the most developed (TRL 6 being the pilot system demonstrated in relevant environment), followed by direct capture (TRL 4-5 being the component and system validation at lab-scale in a relevant environment) and full oxy-fuel combustion (TRL 4 being the component and system validation at lab-scale in a lab environment). Our review suggests that advancing to TRL 7 (demonstration in plant environment) seems to be a challenge for the industry, representing a major step up from TRL 6. The important attributes that a cement plant must have to be "carbon-capture ready" for each capture technology selection is evaluated. Common requirements are space around the preheater and precalciner section, access to CO2 transport infrastructure, and a retrofittable preheater tower. Evidence from the electricity generation sector suggests that carbon capture readiness is not always cost-effective. The similar durations of cement-plant renovation and capture-plant construction suggests that synchronizing these two actions may save considerable time and money.

  5. Simulation of Cascaded Longitudinal-Space-Charge Amplifier at the Fermilab Accelerator Science & Technology (Fast) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [Northern Illinois U.; Piot, P. [Northern Illinois U.

    2015-12-01

    Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.

  6. Accelerator laboratories: development centers for experimental physics and technology in Mexico

    International Nuclear Information System (INIS)

    Three years ago in this Nuclear Center the author and Professor Graef expounded the inception and development of experimental physics and new techniques centered about laboratories and equipped in our country with positive ion accelerators. Extracted here is the information on the laboratories that have allowed professional training as well as the furtherance of scientific productivity in each group. An additional proposal as to how the technical groups knowledgeable in advanced technology might contribute significantly to adequate preparation of youth at the intermediate level able to generate innocuous micro industries in their own neighbourhood. (Author). 5 refs, 2 figs, 2 tabs

  7. Critical Metals in Strategic Low-carbon Energy Technologies

    Science.gov (United States)

    Moss, R. L.

    2012-04-01

    Due to the rapid growth in demand for certain materials, compounded by political risks associated with the geographical concentration of the supply of them, shortages of materials could be a potential bottleneck to the deployment of low-carbon energy technologies. Consequently, an assessment has been carried out to ascertain whether such shortages could jeopardise the objectives of the EU's Strategic Energy Technology Plan (SET-Plan), especially in the six low-carbon energy technologies of SET-Plan, namely: nuclear, solar, wind, bioenergy, carbon capture and storage (CCS) and electricity grids. The assessment identified 14 metals for which the deployment of the six technologies will require 1% or more (and in some cases, much more) of current world supply per annum between 2020 and 2030. Following a more critical examination, based on the likelihood of rapid future global demand growth, limitations to expanding supply in the short to medium term, and the concentration of supply and political risks associated with key suppliers, 5 of the 14 metals were pinpointed to be at high risk, namely: the rare earth metals neodymium and dysprosium (for wind technology), and the by-products (from the processing of other metals) indium, tellurium and gallium (for photovoltaic technologies). In addition, the work has explored potential mitigation strategies, ranging from expanding European output, increasing recycling and reuse to reducing waste and finding substitutes for these metals in their main applications. Furthermore, recommendations are provided which include closely working with the EU's Raw Materials Initiative; supporting efforts to ensure reliable supply of ore concentrates at competitive prices; promoting R&D and demonstration projects on new lower cost separation processes; and promoting the further development of recycling technologies and increasing end-of-life collection

  8. Reducing Students' Carbon Footprints Using Personal Carbon Footprint Management System Based on Environmental Behavioural Theory and Persuasive Technology

    Science.gov (United States)

    Lin, Shyh-ming

    2016-01-01

    This study applied environmental behavioural theories to develop a personal carbon footprint management system and used persuasive technology to implement it. The system serves as an educational system to improve the determinants of students' low-carbon behaviours, to promote low-carbon concepts and to facilitate their carbon management. To assess…

  9. Evaluating the development of carbon capture and storage technologies in the United States

    International Nuclear Information System (INIS)

    Carbon capture and storage (CCS) is seen as an important solution to solve the twin challenge of reducing GHG emissions, while utilizing fossil fuel reserves to meet future energy requirements. In this study an innovation systems perspective is applied to review the development of CCS technologies in the US between 2000 and 2009 and to come up with policy recommendations for technology managers that wish to accelerate the deployment of CCS. The analysis describes the successful built-up of an innovation system around CCS and pinpoints the key determinants for this achievement. However, the evaluation of the system's performance also indicates that America's leading role in the development of CCS should not be taken for granted. It shows that the large CCS R and D networks, as well as the extensive CCS knowledge base, which have been accumulated over the past decade, have not yet been valorized by entrepreneurs to explore the market for integrated CCS concepts linked to power generation. Therefore, it is argued that the build-up of the innovation system has entered a critical phase that is decisive for a further thriving development of CCS technologies in the US. This study provides a clear understanding of the current barriers to the technology's future deployment and outlines a policy strategy that (1) stimulates technological learning; (2) facilitates collaboration and coordination in CCS actor networks; (3) creates financial and market incentives for the technology; and (4) provides supportive regulation and sound communication on CCS. (author)

  10. Pyrochemical separations technologies envisioned for the U.S. accelerator transmutation of waste system

    International Nuclear Information System (INIS)

    A program has been initiated for the purpose of developing the chemical separations technologies necessary to support a large Accelerator Transmutation of Waste (ATW) system capable of dealing with the projected inventory of spent fuel from the commercial nuclear power stations in the United States. The baseline process selected combines aqueous and pyrochemical processes to enable the efficient separation of uranium, technetium, iodine, and the transuranic elements from LWR spent fuel. The diversity of processing methods was chosen for both technical and economic factors. A six-year technology evaluation and development program is foreseen, by the end of which an informed decision can be made on proceeding with demonstration of the ATW system

  11. Biased HiPIMS technology for superconducting rf accelerating cavities coating

    CERN Document Server

    G. Rosaz, G.; Sonato, D.; Calatroni, S.; Ehiasarian, A.; Junginger, T.; Taborelli, M.

    2016-01-01

    In the last few years the interest of the thin film science and technology community on High Impulse Power Magnetron Sputtering (HIPIMS) coatings has steadily increased. HIPIMS literature shows that better thin film morphology, denser and smoother films can be achieved when compared with standard dc Magnetron Sputtering (dcMS) coating technology. Furthermore the capability of HIPIMS to produce a high quantity of ionized species can allow conformal coatings also for complex geometries. CERN already studied the possibility to use such a coating method for SRF accelerating cavities. Results are promising but not better from a RF point of view than dcMS coatings. Thanks to these results the next step is to go towards a biased HiPIMS approach. However the geometry of the cavities leads to complex changes in the coating setup in order to apply a bias voltage. Coating system tweaking and first superconducting properties of biased samples are presented.

  12. Surveying and optical tooling technologies combined to align a skewed beamline at the LAMPF accelerator

    International Nuclear Information System (INIS)

    Optical Tooling evolved from traditional surveying, and both technologies are sometimes used interchangeably in large industrial installations, since the instruments and their specialized adapters and supports complement each other well. A unique marriage of both technologies was accomplished in a novel application at LAMPF, the Los Alamos Meson Physics Facility. LAMPF consists of a linear accelerator with multiple target systems, one of which had to be altered to accommodate a new beamline for a neutrino experiment. The new line was to be installed into a crowded beam tunnel and had to be skewed and tilted in compound angles to avoid existing equipment. In this paper we describe how Optical Tooling was used in conjunction with simple alignment and reference fixtures to set fiducials on the magnets and other mechanical components of the beamline, and how theodolites and sight levels were then adapted to align these components along the calculated skew planes. Design tolerances are compared with measured alignment results

  13. Fabrication Technologies of the High Gradient Accelerator Structures at 100MV/m Range

    CERN Document Server

    Wang, Juwen; Van Pelt, John; Yoneda, Charles; Gudkov, D; Riddone, Germana; Higo, Toshiyasu; Takatomi, Toshikazu

    2010-01-01

    A CERN-SLAC-KEK collaboration on high gradient X-band structure research has been established in order to demonstrate the feasibility of the CLIC baseline design for the main linac stably operating at more than 100 MV/m loaded accelerating gradient. Several prototype CLIC structures were successfully fabricated and high power tested. They operated at 105 MV/m with a breakdown rate that meets the CLIC linear collider specifications of <5×10-7/pulse/m. This paper summarizes the fabrication technologies including the mechanical design, precision machining, chemical cleaning, diffusion bonding as well as vacuum baking and all related assembly technologies. Also, the tolerances control, tuning and RF characterization will be discussed

  14. Fabrication Technologies of the High Gradient Accelerator Structures at 100MV/M Range

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Juwen; /SLAC; Lewandowski, James; /SLAC; Van Pelt, John; /SLAC; Yoneda, Charles; /SLAC; Gudkov, Boris; /CERN; Riddone, Germana; /CERN; Higo, Toshiyasu; /KEK, Tsukuba; Takatomi, Toshikazu; /KEK, Tsukuba

    2012-07-03

    A CERN-SLAC-KEK collaboration on high gradient X-band structure research has been established in order to demonstrate the feasibility of the CLIC baseline design for the main linac stably operating at more than 100 MV/m loaded accelerating gradient. Several prototype CLIC structures were successfully fabricated and high power tested. They operated at 105 MV/m with a breakdown rate that meets the CLIC linear collider specifications of < 5 x 10{sup -7}/pulse/m. This paper summarizes the fabrication technologies including the mechanical design, precision machining, chemical cleaning, diffusion bonding as well as vacuum baking and all related assembly technologies. Also, the tolerances control, tuning and RF characterization will be discussed.

  15. Needs and emerging opportunities of electron beam accelerators on radiation processing technology for industrial and environmental applications in South America

    International Nuclear Information System (INIS)

    The radiation processing technology for industrial and environmental applications has been developed and used worldwide. In South America there are 17 industrial electron beam accelerators with energy from 200 keV to 10 MeV, operating in private companies and governmental institutions to enhance the physical and chemical properties of materials. However, there are more than 1400 high-current electron beam accelerators in commercial use throughout the world. The major end-use markets for these EB units are R and D, wire and electric cables, heat shrinkable tubes and films, foams, tires and components, semiconductors and multilayer packages. In addition, the Brazilian Technical Association for Radiation Curing was foundered in 1993. The knowledge on EB technology has been sharing with the associated industries and partners in Brazil, since that time. In 2006, an agreement with RadTech International North America and this Brazilian association promotes the RadTech South America, which has its headquarters in IPEN-CNEN/SP. Nowadays, the emerging opportunities in South America are paints, adhesives and coatings cure; disinfestations of seeds; films and multilayer packages irradiation for low-energy EBA (150 - 300 keV). For mid-energy EBA (300 keV-5 MeV), they are flue gas treatment (SO2 and NOX removal); composite materials and carbon fibers irradiation; irradiated grafting ion-exchange membranes for fuel cells application; natural polymers irradiation and biodegradable blends production. For high-energy EBA (5-10 MeV), they are sterilization of medical, pharmaceutical and biological products; gemstone enhancement; treatment of industrial and domestic effluents and sludge; preservation and disinfestations of foods and agricultural products; sugarcane bagasse irradiation as pretreatment to produce ethanol biofuel; decontamination of pesticide packing; soil remediation; organic compounds removal from wastewater; treatment of effluent from petroleum production units and

  16. Technology Roadmaps: Carbon Capture and Storage in Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    A new technology roadmap on Carbon Capture and Storage in Industrial Applications, released today in Beijing, shows that carbon capture and storage (CCS) has the potential to reduce CO2 emissions from industrial applications by 4 gigatonnes in 2050. Such an amount is equal to roughly one-tenth of the total emission cuts needed from the energy sector by the middle of the century. This requires a rapid deployment of CCS technologies in various industrial sectors, and across both OECD and non-OECD countries. The roadmap, a joint report from the International Energy Agency (IEA) and the United Nations Industrial Development Organization (UNIDO), says that over 1800 industrial-scale projects are required over the next 40 years.

  17. Possibilities and Challenges designing low-carbon-energy technologies

    DEFF Research Database (Denmark)

    Bjarklev, Araceli

    study object and discusses the question: What are the main possibilities and challenges when designing low-carbon illumination technologies? To answer this question, we use a systemic approach including environmental, economic, energy and political issues using relevant concepts from the Ecological......Though there is broad consensus that one of the solutions to the current environmental challenge will be based on the use of low-carbon technologies, and even though there is a big potential to turn to a more sustainable design and innovation, there are several elements that need to be taken into...... account to be able to achieve efficient reductions of energy and CO2 emissions and at the same time design a product attractive for the consumer, in terms of price, level of service and aesthetical demands, to ensure its strategic implementation. This paper takes the Danish office lighting sector as a...

  18. I-NET: interactive neuro-educational technology to accelerate skill learning.

    Science.gov (United States)

    Raphael, Giby; Berka, Chris; Popovic, Djordje; Chung, Gregory K W K; Nagashima, Sam O; Behneman, Adrienne; Davis, Gene; Johnson, Robin

    2009-01-01

    The learning of a novel task currently rely heavily on conventional classroom instruction with qualitative assessment and observation. Introduction of individualized tutorials with integrated neuroscience-based evaluation techniques could significantly accelerate skill acquisition and provide quantitative evidence of successful training. We have created a suite of adaptive and interactive neuro-educational technologies (I-NET) to increase the pace and efficiency of skill learning. It covers four major themes: 1) Integration of brain monitoring into paced instructional tutorials, 2) Identifying psychophysiological characteristics of expertise using a model population, 3) Developing sensor-based feedback to accelerate novice-to-expert transition, 4) Identifying neurocognitive factors that are predictive of skill acquisition to allow early triage and interventions. We selected rifle marksmanship training as the field of application. Rifle marksmanship is a core skill for the Army and Marine Corps and it involves a combination of classroom instructional learning and field practice involving instantiation of a well-defined set of sensory, motor and cognitive skills. The instrumentation that incorporates the I-NET technologies is called the Adaptive Peak Performance Trainer (APPT). Preliminary analysis of pilot study data for performance data from a novice population that used this device revealed an improved learning trajectory. PMID:19963623

  19. Nanosecond pulse-width electron diode based on dielectric wall accelerator technology

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Quantang, E-mail: zhaoquantang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Z.M.; Yuan, P.; Cao, S.C.; Shen, X.K.; Jing, Y. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yu, C.S. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Z.P.; Liu, M.; Xiao, R.Q. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zong, Y.; Wang, Y.R. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, H.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2013-11-21

    An electron diode using a short section of dielectric wall accelerator (DWA) has been under development at the Institute of Modern Physics (IMP), Chinese Academy of Sciences. Tests have been carried out with spark gap switches triggered by lasers. The stack voltage efficiency of a four-layer of Blumleins reached about 60–70% with gas filled spark gap switching. The generated pulse voltage of peak amplitude of 23 kV and pulse width of 5 ns is used to extract and accelerate an electron beam of 320 mA, measured by a fast current transformer. A nanosecond pulse width electron diode was achieved successfully. Furthermore, the principle of a DWA is well proven and the development details and discussions are presented in this article. -- Highlights: •The key technology of DWA, including switches and pulse forming lines were studied. •The SiC PCSS obtained from Shanghai Institute were tested. •Two layers ZIP lines (new structure) and four layers Blumlein lines were studied with laser triggered spark gap switches. •A nanosecond pulse-width electron diode based on DWA technologies is achieved and studied experimentally. •The principle of DWA is also proved by the diode.

  20. Accelerator Science and Technology Breakthroughs, Achievements and Lessons from the Tevatron

    CERN Document Server

    Shiltsev, Vladimir

    2011-01-01

    For almost a quarter of a century, the Tevatron proton-antiproton collider was the centerpiece of the world's high energy physics program - beginning operation in December of 1985 until it was overtaken by LHC in 2011. The aim of this unique scientific instrument was to explore the elementary particle physics reactions with center of mass collision energies of up to 1.96 TeV. The initial design luminosity of the Tevatron was 1030cm-2s-1, however as a result of two decades of upgrades, the accelerator has been able to deliver 430 times higher luminosities to each of two high luminosity experiments, CDF and D0. The Tevatron will be shut off September 30, 2011. The collider was arguably one of the most complex research instruments ever to reach the operation stage and is widely recognized for many technological breakthroughs and numerous physics discoveries. In this John Adams lecture, I briefly present the history of the Tevatron, major advances in accelerator physics, and technology implemented during the long...

  1. Risk-Based Comparison of Carbon Capture Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Engel, David W.; Dalton, Angela C.; Dale, Crystal; Jones, Edward

    2013-05-01

    In this paper, we describe an integrated probabilistic risk assessment methodological framework and a decision-support tool suite for implementing systematic comparisons of competing carbon capture technologies. Culminating from a collaborative effort among national laboratories under the Carbon Capture Simulation Initiative (CCSI), the risk assessment framework and the decision-support tool suite encapsulate three interconnected probabilistic modeling and simulation components. The technology readiness level (TRL) assessment component identifies specific scientific and engineering targets required by each readiness level and applies probabilistic estimation techniques to calculate the likelihood of graded as well as nonlinear advancement in technology maturity. The technical risk assessment component focuses on identifying and quantifying risk contributors, especially stochastic distributions for significant risk contributors, performing scenario-based risk analysis, and integrating with carbon capture process model simulations and optimization. The financial risk component estimates the long-term return on investment based on energy retail pricing, production cost, operating and power replacement cost, plan construction and retrofit expenses, and potential tax relief, expressed probabilistically as the net present value distributions over various forecast horizons.

  2. Economic innovation and efficiency gains as the driving force for accelerating carbon dioxide emissions

    Science.gov (United States)

    Garrett, T. J.

    2012-12-01

    It is normally assumed that gains in energy efficiency are one of the best routes that society has available to it for stabilizing future carbon dioxide emissions. For a given degree of economic productivity less energy is consumed and a smaller quantity of fossil fuels is required. While certainly this observation is true in the instant, it ignores feedbacks in the economic system such that efficiency gains ultimately lead to greater energy consumption: taken as a global whole, they permit civilization to accelerate its expansion into the energy reserves that sustain it. Here this argument is formalized from a general thermodynamic perspective. The core result is that there exists a fixed, time-independent link between a very general representation of global inflation-adjusted economic wealth (units currency) and civilization's total capacity to consume power (units energy per time). Based on 40 years of available statistics covering more than a tripling of global GDP and a doubling of wealth, this constant has a value of 7.1 +/- 0.01 Watts per one thousand 2005 US dollars. Essentially, wealth is power. Civilization grows by dissipating power in order to sustain all its current activities and to incorporate more raw material into its existing structure. Growth of its structure is related to economic production, so more energy efficient economic production facilitates growth. Growth is into the reserves that sustain civilization, in which case there is a positive feedback in the economic system whereby energy efficiency gains ultimately "backfire" if their intended purpose is to reduce energy consumption and carbon dioxide emissions. The analogy that can be made is to a growing child: a healthy child who efficiently incorporates food into her structure grows quickly and is able to consume more in following years. Economically, an argument is made that, for a range of reasons, there are good reasons to refer to efficiency gains as economic "innovation", both for

  3. Investigation of the potential of coal combustion fly ash for mineral sequestration of CO2 by accelerated carbonation

    International Nuclear Information System (INIS)

    Mineral carbonation of alkaline waste materials is being studied extensively for its potential as a way of reducing the increased level of CO2 in the atmosphere. Carbonation converts CO2 into minerals which are stable over geological time scales. This process occurs naturally but slowly, and needs to be accelerated to offset the present rate of emissions from power plants and other emission sources. The present study attempts to identify the potential of coal fly ash as a source for carbon storage (sequestration) through ex-situ accelerated mineral carbonation. In the study, two operational parameters that could affect the reaction process were tested to investigate their effect on mineralization. Coal fly ash was mixed with water to different water-to-solid ratios and samples were carbonated in a pressure vessel at different initial CO2 pressures. Temperature was kept constant at 40 °C. According to the results, one ton of Hazelwood fly ash could sequester 7.66 kg of CO2. The pressure of CO2 inside the vessel has an effect on the rate of CO2 uptake and the water-to-solid ratio affects the weight gain after the carbonation of fly ash. The results confirm the possibility of the manipulation of process parameters in enhancing the carbonation reaction. - Highlights: ► Mineral sequestration CO2 by of coal fly ash is a slow process under ambient conditions. ► It can be accelerated by manipulating the process parameters inside a reactor. ► Initial CO2 pressure and water to solid mixing ratio inside the reactor are two of those operational parameters. ► According to the test results higher CO2 initial pressure gives higher on rates of CO2 sequestration. ► Water to fly ash mixing ratio effect on amount of CO2 sequestered into fly ash

  4. Low Secondary Electron Yield Carbon Coatings for Electron Cloud Mitigation in Modern Particle Accelerators

    CERN Document Server

    Yin Vallgren, Christina; Taborelli, Mauro

    2011-01-01

    In order to upgrade the Large Hadron Collider (LHC) performance to be oriented towards higher energies and higher intensities in the future, a series of improvements of the existing LHC injectors is planned to take place over the next few years. Electron cloud effects are expected to be enhanced and play a central role in limiting the performance of the machines of the CERN complex. Electron cloud phenomena in beam pipes are based on electron multiplication and can be sufficiently suppressed if the Secondary Electron Yield (SEY) of the surface of the beam pipes is lower than unity. The goal of this work is to find and study a thin film coating with reliably low initial Secondary Electron Yield (SEY), which does not require bake-out or conditioning in situ with photons, is robust again air exposure and can easily be applied in the beam pipes of accelerators. In this work, amorphous carbon (a-C) thin films have been prepared by DC magnetron sputtering for electron cloud mitigation and antimultipactor applicatio...

  5. Increases in dissolved organic carbon accelerate loss of toxic Al in Adirondack lakes recovering from acidification

    Science.gov (United States)

    Lawrence, Gregory B.; Dukett, James E; Houck, Nathan; Snyder, Phillip; Capone, Susan B.

    2013-01-01

    Increasing pH and decreasing Al in surface waters recovering from acidification have been accompanied by increasing concentrations of dissolved organic carbon (DOC) and associated organic acids that partially offset pH increases and complicate assessments of recovery from acidification. To better understand the processes of recovery, monthly chemistry from 42 lakes in the Adirondack region, NY, collected from 1994 to 2011, were used to (1) evaluate long-term changes in DOC and associated strongly acidic organic acids and (2) use the base-cation surplus (BCS) as a chemical index to assess the effects of increasing DOC concentrations on the Al chemistry of these lakes. Over the study period, the BCS increased (p organic complexation of Al resulted in a decrease in the IMAl fraction of total monomeric Al from 57% in 1994 to 23% in 2011. Increasing DOC concentrations have accelerated recovery in terms of decreasing toxic Al beyond that directly accomplished by reducing atmospheric deposition of strong mineral acids.

  6. Low Secondary Electron Yield Carbon Coatings for Electron-cloud Mitigation in Modern Particle Accelerators

    CERN Document Server

    Yin Vallgren, Christina; Calatroni, Sergio; Chiggiato, Paolo; Costa Pinto, Pedro; Marques, Hugo; Neupert, Holger; Taborelli, Mauro; Vollenberg, Wilhelmus; Wevers, Ivo; Yaqub, Kashif

    2010-01-01

    Electron-cloud is one of the main limitations for particle accelerators with positively charged beams of high intensity and short bunch spacing, as the SPS at CERN. The Secondary Electron Yield (SEY) of the inner surface of the vacuum chamber is the main parameter governing the phenomenon. The effect could be eliminated by coating the vacuum chambers with a material of low SEY, which does not require bake-out and is robust against air exposure. For such a purpose amorphous carbon (a-C) coatings were produced by magnetron sputtering of graphite targets. They exhibit maximum SEY between 0.95 and 1.05 after air transfer to the measuring instrument. After 1 month of air exposure the SEY rises by 10 - 20 % of the initial values. Storage in desiccator or by packaging in Al foil makes this increase negligible. The coatings have a similar X-ray photoelectron spectroscopy (XPS) C1s spectrum for a large set of deposition parameters and exhibit an enlarged linewidth compared to HOPG graphite. The static outgassing witho...

  7. The present status of carbon 14 analysis and projects for beryllium 10 analysis at the Tandetron 1 accelerator, Nagoya University

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Toshio; Oda, Hirotaka; Ikeda, Akiko; Niu, Etsuko [Nagoya Univ. (Japan)

    2001-02-01

    The operation experience in 1999 of the Tandetron accelerator age estimation system, Nagoya University, is reported, after the overview and the history of the accelerator is briefly described. Total number of carbon 14 environmental samples analyzed was 8567. The project of introducing new HVEE Tandetron for C-14 analysis, and modifying the present GIC Tandetron for Be-10 analysis is presented. Ion source shall be replaced, and the heavy ion detector shall be installed. Projected geological and archaeological studies using Be-10 are enumerated. (A. Yamamoto)

  8. Amine reclaiming technologies in post-combustion carbon dioxide capture.

    Science.gov (United States)

    Wang, Tielin; Hovland, Jon; Jens, Klaus J

    2015-01-01

    Amine scrubbing is the most developed technology for carbon dioxide (CO2) capture. Degradation of amine solvents due to the presence of high levels of oxygen and other impurities in flue gas causes increasing costs and deterioration in long term performance, and therefore purification of the solvents is needed to overcome these problems. This review presents the reclaiming of amine solvents used for post combustion CO2 capture (PCC). Thermal reclaiming, ion exchange, and electrodialysis, although principally developed for sour gas sweetening, have also been tested for CO2 capture from flue gas. The three technologies all have their strengths and weaknesses, and further development is needed to reduce energy usage and costs. An expected future trend for amine reclamation is to focus on process integration of the current reclaiming technologies into the PCC process in order to drive down costs.

  9. Amine reclaiming technologies in post-combustion carbon dioxide capture

    Institute of Scientific and Technical Information of China (English)

    Tielin Wang; Jon Hovland; KlauS J.Jens

    2015-01-01

    Amine scrubbing is the most developed technology for carbon dioxide (CO2) capture.Degradation of amine solvents due to the presence of high levels of oxygen and other impurities in flue gas causes increasing costs and deterioration in long term performance,and therefore purification of the solvents is needed to overcome these problems.This review presents the reclaiming of amine solvents used for post combustion CO2 capture (PCC).Thermal reclaiming,ion exchange,and electrodialysis,although principally developed for sour gas sweetening,have also been tested for CO2 capture from flue gas.The three technologies all have their strengths and weaknesses,and further development is needed to reduce energy usage and costs.An expected future trend for amine reclamation is to focus on process integration of the current reclaiming technologies into the PCC process in order to drive down costs.

  10. Evaluation of High Energy Nuclear Data of Importance for Use in Accelerator and Space Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Ouk

    2005-10-15

    New evaluation were performed for neutron- and proton-induced reactions for energies up to 250 400 MeV on C-12, N-14, O-16, Al-27, Si-28, Ca-40, Ar-40, Fe-54,58, Ni-64, Cu-63,65, Zr-90, Pb-208, Th-232, U-233,234,236, and Cm-243246. The evaluated results are then applied to the accelerator and space technology. A set of optical model parameters were optimized by searching a number of adjustable coefficients with the Simulated Annealing(SA) method for the spherical nuclei. A parameterization of the empirical formula was proposed to describe the proton-nucleus non-elastic cross sections of high-priority elements for space shielding purpose for proton energies from reaction threshold up to 400 MeV, which was then implemented into the fast scoping space shielding code CHARGE, based on the results of the optical model analysis utilizing up-to-date measurements. For proton energies up to 400 MeV covering most of the incident spectrum for trapped protons and solar energetic particle events, energy-angle spectra of secondary neutrons produced from the proton-induced neutron production reaction were prepared. The evaluated cross section set was applied to the thick target yield (TTY) and promp radiation benchmarks for the accelerator shielding. As for the assessment of the radiological impact of the accelerator to the environment, relevant nuclear reaction cross sections for the activation of the air were recommended among the author's evaluations and existing library based on the available measurements.

  11. Ultracompact Accelerator Technology for a Next-Generation Gamma-Ray Source

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, R A; Albert, F; Anderson, S G; Gibson, D J; Wu, S S; Hartemann, F V; Barty, C J

    2012-05-14

    This presentation reported on the technology choices and progress manufacturing and testing the injector and accelerator of the 250 MeV ultra-compact Compton Scattering gamma-ray Source under development at LLNL for homeland security applications. This paper summarizes the status of various facets of current accelerator activities at LLNL. The major components for the X-band test station have been designed, fabricated, and await installation. The XL-4 klystron has been delivered, and will shortly be dressed and installed in the ScandiNova modulator. High power testing of the klystron into RF loads will follow, including adjustment of the modulator for the klystron load as necessary. Assembly of RF transport, test station supports, and accelerator components will follow. Commissioning will focus on processing the RF gun to full operating power, which corresponds to 200 MV/m peak electric field on the cathode surface. Single bunch benchmarking of the Mark 1 design will provide confidence that this first structure operates as designed, and will serve as a solid starting point for subsequent changes, such as a removable photocathode, and the use of various cathode materials for enhanced quantum efficiency. Charge scaling experiments will follow, partly to confirm predictions, as well as to identify important causes of emittance growth, and their scaling with charge. Multi-bunch operation will conclude testing of the Mark 1 RF gun, and allow verification of code predictions, direct measurement of bunch-to-bunch effects, and initial implementation compensation mechanisms. Modeling will continue and focus on supporting the commissioning and experimental program, as well as seeking to improve all facets of linac produced Compton gamma-rays.

  12. Evaluation of High Energy Nuclear Data of Importance for Use in Accelerator and Space Technology

    International Nuclear Information System (INIS)

    New evaluation were performed for neutron- and proton-induced reactions for energies up to 250 400 MeV on C-12, N-14, O-16, Al-27, Si-28, Ca-40, Ar-40, Fe-54,58, Ni-64, Cu-63,65, Zr-90, Pb-208, Th-232, U-233,234,236, and Cm-243246. The evaluated results are then applied to the accelerator and space technology. A set of optical model parameters were optimized by searching a number of adjustable coefficients with the Simulated Annealing(SA) method for the spherical nuclei. A parameterization of the empirical formula was proposed to describe the proton-nucleus non-elastic cross sections of high-priority elements for space shielding purpose for proton energies from reaction threshold up to 400 MeV, which was then implemented into the fast scoping space shielding code CHARGE, based on the results of the optical model analysis utilizing up-to-date measurements. For proton energies up to 400 MeV covering most of the incident spectrum for trapped protons and solar energetic particle events, energy-angle spectra of secondary neutrons produced from the proton-induced neutron production reaction were prepared. The evaluated cross section set was applied to the thick target yield (TTY) and promp radiation benchmarks for the accelerator shielding. As for the assessment of the radiological impact of the accelerator to the environment, relevant nuclear reaction cross sections for the activation of the air were recommended among the author's evaluations and existing library based on the available measurements

  13. Policy and innovation in low-carbon energy technologies

    Science.gov (United States)

    Nemet, Gregory Frank

    Reducing greenhouse gas (GhG) emissions by several gigatons of CO 2-equivalents per year, while affordably meeting the world's growing demand for energy, will require the deployment of tens of terawatts of low-carbon energy production and end-use technologies over the next several decades. But improvements are needed because existing technologies are expensive, limited in availability, or not sufficiently reliable for deployment at that scale. At the same time, the presence of multiple market failures implies that private actors will under-invest in climate-related innovation without government intervention. To help resolve this impasse, policy makers will need to select from a vast set of policy instruments that may stimulate innovation in, and adoption of, these technologies. In this thesis, four studies are used to contribute to understanding the characteristics of the innovation process---and its interactions with policy---for low-carbon energy technologies. These include analyses of: (1) the trends and future prospects for U.S. energy R&D investment, (2) the effectiveness of demand-pull for wind power in California, (3) the sources of cost reductions in photovoltaics (PV), and (4) the effect of widespread deployment of PV on the earth's albedo. When considering these studies together, the uncertainty in expectations about future policies that increases the risk for investments in innovation emerges as a central problem. As observed in multiple instances in this thesis, the lags between investments in innovation and the payoffs for private actors can last several years. These distant payoffs rely heavily on the status of future government policies because externalities are pervasive for the development of climate-relevant technologies. When expectations about the future level---or existence---of these policy instruments are uncertain, then firms discount the value of these future policies and under-invest in innovation. The diffusion of institutional innovation

  14. Incentives for early adoption of carbon capture technology

    International Nuclear Information System (INIS)

    We analyze a policy proposal for regulating the next generation of baseload electricity generation facilities in the United States. The cornerstone of this regulation is a (hypothetical) EPA mandate for an emission standard of 80 kg of CO2 per MWh of electricity generated. The mandate would go into effect at the end of 2027 for all power generating facilities that come into operation after 2017. Fossil-fuel power plants could meet the standard by capturing between 80 and 90% of their current CO2 emissions. While the initial cost of complying with this standard is relatively high for first-of-a-kind facilities, learning effects are projected to reduce this cost substantially by the end of 2027, provided new facilities consistently adopt carbon capture technology in the intervening years. We identify a combination of investment- and production tax credits that provide the required incentives for new facilities to be willing to comply with the standard ahead of the mandate. Due to the anticipated learning effects, the incremental cost associated with the stricter emission limit is projected to about 1.2¢ per kWh of electricity in the long run. - Highlights: • Study the cost effects of a CO2 emission standard for natural gas power plants. • The standard requires the deployment of carbon capture technology. • Future compliance costs are reduced through learning effects. • Identify tax incentives that induce early technology adoption. • Early adoption results in relatively modest electricity cost increases

  15. Positioning infrastructure and technologies for low-carbon urbanization

    Science.gov (United States)

    Chester, Mikhail V.; Sperling, Josh; Stokes, Eleanor; Allenby, Braden; Kockelman, Kara; Kennedy, Christopher; Baker, Lawrence A.; Keirstead, James; Hendrickson, Chris T.

    2014-10-01

    The expected urbanization of the planet in the coming century coupled with aging infrastructure in developed regions, increasing complexity of man-made systems, and pressing climate change impacts have created opportunities for reassessing the role of infrastructure and technologies in cities and how they contribute to greenhouse gas (GHG) emissions. Modern urbanization is predicated on complex, increasingly coupled infrastructure systems, and energy use continues to be largely met from fossil fuels. Until energy infrastructures evolve away from carbon-based fuels, GHG emissions are critically tied to the urbanization process. Further complicating the challenge of decoupling urban growth from GHG emissions are lock-in effects and interdependencies. This paper synthesizes state-of-the-art thinking for transportation, fuels, buildings, water, electricity, and waste systems and finds that GHG emissions assessments tend to view these systems as static and isolated from social and institutional systems. Despite significant understanding of methods and technologies for reducing infrastructure-related GHG emissions, physical, institutional, and cultural constraints continue to work against us, pointing to knowledge gaps that must be addressed. This paper identifies three challenge themes to improve our understanding of the role of infrastructure and technologies in urbanization processes and position these increasingly complex systems for low-carbon growth. The challenges emphasize how we can reimagine the role of infrastructure in the future and how people, institutions, and ecological systems interface with infrastructure.

  16. Free standing diamond-like carbon thin films by PLD for laser based electrons/protons acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Thema, F.T.; Beukes, P.; Ngom, B.D. [UNESCO Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, 7129, PO Box722, Western Cape Province (South Africa); Manikandan, E., E-mail: mani@tlabs.ac.za [UNESCO Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, 7129, PO Box722, Western Cape Province (South Africa); Central Research Laboratory, Sree Balaji Medical College & Hospital (SBMCH), Chrompet, Bharath University, Chennai, 600044 (India); Maaza, M., E-mail: maaza@tlabs.ac.za [UNESCO Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, 7129, PO Box722, Western Cape Province (South Africa)

    2015-11-05

    This study we reports for the first time on the synthesis and optical characteristics of free standing diamond-like carbon (DLC) deposited by pulsed laser deposition (PLD) onto graphene buffer layers for ultrahigh intensity laser based electron/proton acceleration applications. The fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations indicate that the suitability of such free standing DLC thin-films within the laser window and long wave infrared (LWIR) spectral range and hence their appropriateness for the targeted applications. - Highlights: • We report for the first time synthesis of free standing diamond-like carbon. • Pulsed laser deposition onto graphene buffer layers. • Fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations. • Ultrahigh intensity laser based electron/proton acceleration applications. • This material's suitable for the laser window and long wave infrared (LWIR) spectral range.

  17. Free standing diamond-like carbon thin films by PLD for laser based electrons/protons acceleration

    International Nuclear Information System (INIS)

    This study we reports for the first time on the synthesis and optical characteristics of free standing diamond-like carbon (DLC) deposited by pulsed laser deposition (PLD) onto graphene buffer layers for ultrahigh intensity laser based electron/proton acceleration applications. The fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations indicate that the suitability of such free standing DLC thin-films within the laser window and long wave infrared (LWIR) spectral range and hence their appropriateness for the targeted applications. - Highlights: • We report for the first time synthesis of free standing diamond-like carbon. • Pulsed laser deposition onto graphene buffer layers. • Fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations. • Ultrahigh intensity laser based electron/proton acceleration applications. • This material's suitable for the laser window and long wave infrared (LWIR) spectral range

  18. Accelerating the transfer and diffusion of energy saving technologies steel sector experience-Lessons learned

    International Nuclear Information System (INIS)

    It is imperative to tackle the issue globally mobilizing all available policies and measures. One of the important ones among them is technology transfer and diffusion. By utilizing international co-operation, industry can promote such measures in two ways: through government policy and through industry's own voluntary initiative. Needless to say, various government policies and measures play essential role. By the same token, industry initiative can complement them. There is much literature documenting the former. On the contrary there are few on the latter. This paper sheds light on the latter. The purpose of this paper is to explore the effectiveness of global voluntary sectoral approach for technology diffusion and transfer based on steel sector experience. The goal is to contribute toward building a worldwide low-carbon society by manufacturing goods with less energy through international cooperation of each sector. The authors believe that the voluntary sectoral approach is an effective method with political and practical feasibilities, and hope to see the continued growth of more initiatives based on this approach. - Highlights: → There exist huge reduction potentials in steel industries globally. → Technology transfer and diffusion are keys to achieve reductions. → Main barriers are economic, technological and policy-related. → Case studies in overcoming barriers are discussed. → In steel industry, a voluntary sectoral approach has shown to be effective.

  19. Accelerating the commercialization of university technologies for military healthcare applications: the role of the proof of concept process

    Science.gov (United States)

    Ochoa, Rosibel; DeLong, Hal; Kenyon, Jessica; Wilson, Eli

    2011-06-01

    The von Liebig Center for Entrepreneurism and Technology Advancement at UC San Diego (vonliebig.ucsd.edu) is focused on accelerating technology transfer and commercialization through programs and education on entrepreneurism. Technology Acceleration Projects (TAPs) that offer pre-venture grants and extensive mentoring on technology commercialization are a key component of its model which has been developed over the past ten years with the support of a grant from the von Liebig Foundation. In 2010, the von Liebig Entrepreneurism Center partnered with the U.S. Army Telemedicine and Advanced Technology Research Center (TATRC), to develop a regional model of Technology Acceleration Program initially focused on military research to be deployed across the nation to increase awareness of military medical needs and to accelerate the commercialization of novel technologies to treat the patient. Participants to these challenges are multi-disciplinary teams of graduate students and faculty in engineering, medicine and business representing universities and research institutes in a region, selected via a competitive process, who receive commercialization assistance and funding grants to support translation of their research discoveries into products or services. To validate this model, a pilot program focused on commercialization of wireless healthcare technologies targeting campuses in Southern California has been conducted with the additional support of Qualcomm, Inc. Three projects representing three different universities in Southern California were selected out of forty five applications from ten different universities and research institutes. Over the next twelve months, these teams will conduct proof of concept studies, technology development and preliminary market research to determine the commercial feasibility of their technologies. This first regional program will help build the needed tools and processes to adapt and replicate this model across other regions in the

  20. Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: Performance evaluation and reaction kinetics.

    Science.gov (United States)

    Chang, E-E; Pan, Shu-Yuan; Yang, Liuhanzi; Chen, Yi-Hung; Kim, Hyunook; Chiang, Pen-Chi

    2015-09-01

    Accelerated carbonation of alkaline wastes including municipal solid waste incinerator bottom ash (MSWI-BA) and the cold-rolling wastewater (CRW) was investigated for carbon dioxide (CO2) fixation under different operating conditions, i.e., reaction time, CO2 concentration, liquid-to-solid ratio, particle size, and CO2 flow rate. The MSWI-BA before and after carbonation process were analyzed by the thermogravimetry and differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The MSWI-BA exhibits a high carbonation conversion of 90.7%, corresponding to a CO2 fixation capacity of 102g perkg of ash. Meanwhile, the carbonation kinetics was evaluated by the shrinking core model. In addition, the effect of different operating parameters on carbonation conversion of MSWI-BA was statistically evaluated by response surface methodology (RSM) using experimental data to predict the maximum carbonation conversion. Furthermore, the amount of CO2 reduction and energy consumption for operating the proposed process in refuse incinerator were estimated. Capsule abstract: CO2 fixation process by alkaline wastes including bottom ash and cold-rolling wastewater was developed, which should be a viable method due to high conversion.

  1. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    accelerator programs. Microsoft runs accelerators in seven different countries. Accelerators have grown out of the infancy stage and are now an accepted approach to develop new ventures based on cutting-edge technology like the internet of things, mobile technology, big data and virtual reality. It is also...... with the traditional audit and legal universes and industries are examples of emerging potentials both from a research and business point of view to exploit and explore further. The accelerator approach may therefore be an Idea Watch to consider, no matter which industry you are in, because in essence accelerators...

  2. Using Advanced Mixed Waste Treatment Technology To Meet Accelerated Cleanup Program Milestones

    International Nuclear Information System (INIS)

    Some DOE Complex facilities are entering the late stages of facility closure. As waste management operations are completed at these sites, remaining inventories of legacy mixed wastes must be finally disposed. These wastes have unique physical, chemical and radiological properties that have made their management troublesome, and hence why they have remained on site until this late stage of closure. Some of these wastes have had no approved or practical treatment alternative until just recently. Results are provided from using advanced mixed waste treatment technology to perform two treatment campaigns on these legacy wastes. Combinations of macro-encapsulation, vacuum thermal desorption (VTD), and chemical stabilization, with off-site incineration of the organic condensate, provided a complete solution to the problem wastes. One program included approximately 1,900 drums of material from the Fernald Environmental Management Project. Another included approximately 1,200 drums of material from the Accelerated Cleanup Program at the Oak Ridge Reservation. Both of these campaigns were conducted under tight time schedules and demanding specifications, and were performed in a matter of only a few months each. Coordinated rapid waste shipment, flexible permitting and waste acceptance criteria, adequate waste receiving and storage capacity, versatile feed preparation and sorting capability, robust treatment technology with a broad feed specification, and highly reliable operations were all valuable components to successful accomplishment of the project requirements. Descriptions of the waste are provided; material that was difficult or impossible to treat in earlier phases of site closure. These problem wastes included: 1) the combination of special nuclear materials mixed with high organic chemical content and/or mercury, 2) high toxic metal content mixed with high organic chemical content, and 3) very high organic chemical content mixed with debris, solids and sludge

  3. Testing a Regenerative Carbon Dioxide and Moisture Removal Technology

    Science.gov (United States)

    Barta, Daniel J.; Button, Amy; Sweterlitsch, Jeffrey; Curley, Suzanne

    The National Aeronautics and Space Administration supported the development of a new vacuum-desorbed regenerative carbon dioxide and humidity control technology for use in short duration human spacecraft. The technology was baselined for use in the Orion Crew Exploration Vehicle's Environmental Control and Life Support System (ECLSS). Termed the Carbon Diox-ide And Moisture Removal Amine Swing-bed (CAMRAS), the unit was developed by Hamilton Sundstrand and has undergone extensive testing at Johnson Space Center. The tests were per-formed to evaluate performance characteristics under range of operating conditions and human loads expected in future spacecraft applications, as part of maturation to increase its readiness for flight. Early tests, conducted at nominal atmospheric pressure, used human metabolic sim-ulators to generate loads, with later tests making us of human test subjects. During these tests many different test cases were performed, involving from 1 to 6 test subjects, with different activity profiles (sleep, nominal and exercise). These tests were conducted within the airlock portion of a human rated test chamber sized to simulate the Orion cabin free air volume. More recently, a test was completed that integrated the CAMRAS with a simulated suit loop using prototype umbilicals and was conducted at reduced atmospheric pressure and elevated oxygen levels. This paper will describe the facilities and procedures used to conduct these and future tests, and provide a summary of findings.

  4. AIP conference on accelerator driven transmutation technologies and applications, Las Vegas, Nevada, July 25-29, 1994

    International Nuclear Information System (INIS)

    This conference was the first to bring together US and foreign researchers to define Accelerator Driven Transmutation Technology (ADTT) concepts in several important national and international application areas - nuclear waste transmutation, minimizing of world plutonium inventories, and long-term energy production. The conference covered a number of diverse technological areas - accelerators, target/blankets, separations, materials - that make up ADTT systems. The meeting provided one of the first opportunities for specialists in these technologies to meet together and learn about system requirements, components, and interface issues. It was also an opportunity to formulate plans for future developments in ADTT. During the conference over one hundred technical presentations were made describing ADTT system and technology concepts as well as the impact of ADTT on issues related to global plutonium management and the high-level nuclear waste problem areas. Separate abstracts have been entered into the database for articles from this report

  5. Carbon capture and sequestration (CCS) technological innovation system in China: Structure, function evaluation and policy implication

    International Nuclear Information System (INIS)

    Carbon capture and sequestration (CCS) can be an important technology option for China in addressing global climate change and developing clean energy technologies. Promoted by international climate conventions and supported by government research and development programs, an increasing number of CCS pilot and demonstration projects have been launched in China. In this study, we analyze the structure of China’s CCS effort from a technological innovation system (TIS) perspective. Within this system, key socio-political components, including institutions, actor-networks, and technology development, are examined to evaluate the state of the innovation system. The study assessed the perceived capacity of seven functional areas of the CCS innovation system through a survey of key CCS actors and stakeholders. The findings suggest that China’s CCS innovation system has a strong functional capacity for knowledge and technology development. It is significantly weaker in the innovative functions of knowledge diffusion, market formation, facilitating entrepreneurs and new entrants into the CCS market. Based on the evaluation of China’s technological innovation system to develop CCS, the article articulates specific public policies to formulate a more robust innovation system to traverse the “valley of death” from research and development to commercial deployment and accelerate energy innovation in China. - Highlights: ► We analyze and evaluate China’s CCS innovation system from TIS perspective. ► Strong and systematic CCS innovation system structure has come into being in China. ► The system has acquired high knowledge development and accumulation. ► Weak innovation functions are identified: market creation, guidance, etc. ► Public policies are needed to improve the innovation system performance.

  6. Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: Performance evaluation and reaction kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Chang, E-E [Department of Biochemistry, Taipei Medical University, 250 Wu-Hsing Street, Taipei City, Taiwan 110, Taiwan, ROC (China); Pan, Shu-Yuan [Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei City, Taiwan 10673, Taiwan, ROC (China); Yang, Liuhanzi [School of Environment, Tsinghua University, Haidin District, Beijing 100084 (China); Chen, Yi-Hung [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei City, Taiwan 10608, Taiwan, ROC (China); Kim, Hyunook [Department of Energy and Environmental System Engineering, University of Seoul (Korea, Republic of); Chiang, Pen-Chi, E-mail: pcchiang@ntu.edu.tw [Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei City, Taiwan 10673, Taiwan, ROC (China)

    2015-09-15

    Highlights: • Carbonation was performed using CO{sub 2}, wastewater and bottom ash in a slurry reactor. • A maximum capture capacity of 102 g CO{sub 2} per kg BA was achieved at mild conditions. • A maximum carbonation conversion of MSWI-BA was predicted to be 95% by RSM. • The CO{sub 2} emission from Bali incinerator could be expected to reduce by 6480 ton/y. • The process energy consumption per ton CO{sub 2} captured was estimated to be 180 kW h. - Abstract: Accelerated carbonation of alkaline wastes including municipal solid waste incinerator bottom ash (MSWI-BA) and the cold-rolling wastewater (CRW) was investigated for carbon dioxide (CO{sub 2}) fixation under different operating conditions, i.e., reaction time, CO{sub 2} concentration, liquid-to-solid ratio, particle size, and CO{sub 2} flow rate. The MSWI-BA before and after carbonation process were analyzed by the thermogravimetry and differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The MSWI-BA exhibits a high carbonation conversion of 90.7%, corresponding to a CO{sub 2} fixation capacity of 102 g per kg of ash. Meanwhile, the carbonation kinetics was evaluated by the shrinking core model. In addition, the effect of different operating parameters on carbonation conversion of MSWI-BA was statistically evaluated by response surface methodology (RSM) using experimental data to predict the maximum carbonation conversion. Furthermore, the amount of CO{sub 2} reduction and energy consumption for operating the proposed process in refuse incinerator were estimated. Capsule abstract: CO{sub 2} fixation process by alkaline wastes including bottom ash and cold-rolling wastewater was developed, which should be a viable method due to high conversion.

  7. Technology Roadmap: Low-Carbon Technology for the Indian Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    The Indian cement industry is one of the most efficient in the world. Its efforts to reduce its carbon footprint by adopting the best available technologies and environmental practices are reflected in the achievement of reducing total CO2 emissions to an industrial average of 0.719 tCO2/t cement in 2010 from a substantially higher level of 1.12 tCO2/t cement in 1996. However, because the manufacturing process relies on the burning of limestone, it still produced 137 MtCO2 in 2010 – approximately 7% of India’s total man-made CO2 emissions. Yet opportunity for improvement exists, particularly in relation to five key levers that can contribute to emissions reductions: alternative fuel and raw materials; energy efficiency; clinker substitution; waste heat recovery and newer technologies. This roadmap sets out one pathway by which the Indian cement industry can reach its targets to improve energy efficiency and reduce CO2 emissions by 2050, thereby laying the foundation for low-carbon growth in the years beyond. The Technology Roadmap: Low-Carbon Technology for the Indian Cement Industry builds on the global IEA technology roadmap for the cement sector developed by the IEA and the World Business Council for Sustainable Development’s Cement Sustainability Initiative. It outlines a possible transition path for the Indian cement industry to reduce its direct CO2 emissions intensity to 0.35 tCO2/t cement and support the global goal of halving CO2 emissions by 2050.

  8. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching

    OpenAIRE

    Santos, Rafael; Mertens, Gilles; Salman, Muhammad; Cizer, Özlem; Gerven, Tom Van

    2013-01-01

    This study compared the performance of four different approaches for stabilization of regulated heavy metal and metalloid leaching from municipal solid waste incineration bottom ash (MSWI-BA): (i) short term (three months) heap ageing, (ii) heat treatment, (iii) accelerated moist carbonation, and (iv) accelerated pressurized slurry carbonation. Two distinct types of MSWI-BA were tested in this study: one originating from a moving-grate furnace incineration operation treating exclusively house...

  9. Radiosensitivity of pimonidazole-unlabelled intratumour quiescent cell population to γ-rays, accelerated carbon ion beams and boron neutron capture reaction.

    OpenAIRE

    Masunaga, S; Sakurai, Y.; Tanaka, H.; Hirayama, R; Matsumoto, Y; Uzawa, A; Suzuki, M.; Kondo, N; Narabayashi, M.; Maruhashi, A; Ono, K.

    2013-01-01

    [Objectives] To detect the radiosensitivity of intratumour quiescent (Q) cells unlabelled with pimonidazole to accelerated carbon ion beams and the boron neutron capture reaction (BNCR). [Methods] EL4 tumour-bearing C57BL/J mice received 5-bromo-2′-deoxyuridine (BrdU) continuously to label all intratumour proliferating (P) cells. After the administration of pimonidazole, tumours were irradiated with γ-rays, accelerated carbon ion beams or reactor neutron beams with the prior administration of...

  10. AN INTEGRATED MODELING FRAMEWORK FOR CARBON MANAGEMENT TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Anand B. Rao; Edward S. Rubin; Michael B. Berkenpas

    2004-03-01

    CO{sub 2} capture and storage (CCS) is gaining widespread interest as a potential method to control greenhouse gas emissions from fossil fuel sources, especially electric power plants. Commercial applications of CO{sub 2} separation and capture technologies are found in a number of industrial process operations worldwide. Many of these capture technologies also are applicable to fossil fuel power plants, although applications to large-scale power generation remain to be demonstrated. This report describes the development of a generalized modeling framework to assess alternative CO{sub 2} capture and storage options in the context of multi-pollutant control requirements for fossil fuel power plants. The focus of the report is on post-combustion CO{sub 2} capture using amine-based absorption systems at pulverized coal-fired plants, which are the most prevalent technology used for power generation today. The modeling framework builds on the previously developed Integrated Environmental Control Model (IECM). The expanded version with carbon sequestration is designated as IECM-cs. The expanded modeling capability also includes natural gas combined cycle (NGCC) power plants and integrated coal gasification combined cycle (IGCC) systems as well as pulverized coal (PC) plants. This report presents details of the performance and cost models developed for an amine-based CO{sub 2} capture system, representing the baseline of current commercial technology. The key uncertainties and variability in process design, performance and cost parameters which influence the overall cost of carbon mitigation also are characterized. The new performance and cost models for CO{sub 2} capture systems have been integrated into the IECM-cs, along with models to estimate CO{sub 2} transport and storage costs. The CO{sub 2} control system also interacts with other emission control technologies such as flue gas desulfurization (FGD) systems for SO{sub 2} control. The integrated model is applied to

  11. Desalination of Saline and Brackish Waters using Carbon Aerogel Technology

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Massoudinejad

    2012-10-01

    Full Text Available Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 Background and Objectives: The increasing demand for drinking water has led scientists to the use of saline waters, but existing desalinating processes are very expensive. carbon aerogel is a type of organic aerogel that is suitable for desalination owing to its unique porous structure. Low potential of fouling and deposits, very low wastewater production, electrostatic regeneration of aerogels and, in turn, no need to acid consumption, and lower power consumption are some of this technology benefits.Materials and Method: In this experimental- analytical study, the purpose was survey of saline and brackish water desalination using carbon aerogel technology and its comparison with electrolysis.The community studied was synthetic salt water samples, using of TDS and EC indicators. The minimum synthetic samples were 243. In this regard, after polymerization of Resorsinol and Formaldehyde compounds under ambient pressure conditions and then its pyrolysis, we fabricated plates of carbon aerogel.Result: With manufacturing in the pilot-scale, the effect of different parameters, including input salt concentration, current, water flow, distance of between electrodes and pH, on NaCl sorption amount of carbon aerogel electrodes were studied. Generally, adsorption amount increased with increasing of current and NaCl concentration and decreased with increasing of distance electrodes, flow and pH.  Results: Fabricating reactor at pilot-scale, we studied the effect of different parameters, including input salt concentration, current, water flow, intra-distance of electrodes, and pH on the NaCl sorption using carbon aerogel electrodes. Generally, adsorption capacity increased with increasing of current and NaCl concentration in the inlet flow, and it decreased with increasing intra-distance of electrodes, flow, and pH.Conclusion: Under the most optimal

  12. Taking Control of Castleman Disease: Leveraging Precision Medicine Technologies to Accelerate Rare Disease Research.

    Science.gov (United States)

    Newman, Samantha Kass; Jayanthan, Raj K; Mitchell, Grant W; Carreras Tartak, Jossie A; Croglio, Michael P; Suarez, Alexander; Liu, Amy Y; Razzo, Beatrice M; Oyeniran, Enny; Ruth, Jason R; Fajgenbaum, David C

    2015-12-01

    Castleman disease (CD) is a rare and heterogeneous disorder characterized by lymphadenopathy that may occur in a single lymph node (unicentric) or multiple lymph nodes (multicentric), the latter typically occurring secondary to excessive proinflammatory hypercytokinemia. While a cohort of multicentric Castleman disease (MCD) cases are caused by Human Herpes Virus-8 (HHV-8), the etiology of HHV-8 negative, idiopathic MCD (iMCD), remains unknown. Breakthroughs in "omics" technologies that have facilitated the development of precision medicine hold promise for elucidating disease pathogenesis and identifying novel therapies for iMCD. However, in order to leverage precision medicine approaches in rare diseases like CD, stakeholders need to overcome several challenges. To address these challenges, the Castleman Disease Collaborative Network (CDCN) was founded in 2012. In the past 3 years, the CDCN has worked to transform the understanding of the pathogenesis of CD, funded and initiated genomics and proteomics research, and united international experts in a collaborative effort to accelerate progress for CD patients. The CDCN's collaborative structure leverages the tools of precision medicine and serves as a model for both scientific discovery and advancing patient care.

  13. Neutron data for accelerator-driven transmutation technologies. Annual Report 2003/2004

    International Nuclear Information System (INIS)

    The project NATT, Neutron data for Accelerator-driven Transmutation Technology, is performed within the nuclear reactions group of the Dept. of Neutron Research, Uppsala univ. The activities of the group are directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group has previously developed two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: Analysis and documentation has been finalized of previously performed measurements of elastic neutron scattering from hydrogen at 96 MeV. The results corroborate the normalization of previously obtained data at TSL, which have been under debate. This is of importance since this reaction serves as reference for many other measurements. Compelling evidence of the existence of three-body forces in nuclei has been obtained. Within the project, one PhD exam and one licentiate exam has been awarded. One PhD exam and one licentiate exam has been awarded for work closely related to the project. A new neutron beam facility with significantly improved performance has been built and commissioned at TSL

  14. Neutron data for accelerator-driven transmutation technologies. Annual Report 2003/2004

    Energy Technology Data Exchange (ETDEWEB)

    Blomgren, J.; Hildebrand, A.; Nilsson, L.; Mermod, P.; Olsson, N.; Pomp, S.; Oesterlund, M. [Uppsala Univ. (Sweden). Dept. for Neutron Research

    2004-08-01

    The project NATT, Neutron data for Accelerator-driven Transmutation Technology, is performed within the nuclear reactions group of the Dept. of Neutron Research, Uppsala univ. The activities of the group are directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group has previously developed two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: Analysis and documentation has been finalized of previously performed measurements of elastic neutron scattering from hydrogen at 96 MeV. The results corroborate the normalization of previously obtained data at TSL, which have been under debate. This is of importance since this reaction serves as reference for many other measurements. Compelling evidence of the existence of three-body forces in nuclei has been obtained. Within the project, one PhD exam and one licentiate exam has been awarded. One PhD exam and one licentiate exam has been awarded for work closely related to the project. A new neutron beam facility with significantly improved performance has been built and commissioned at TSL.

  15. Barriers and possibilities for low-carbon-energy consuming technologies

    DEFF Research Database (Denmark)

    Bjarklev, Araceli

    by 77% from 2006 to 2030. These are some of the facts that set a big question mark on how the CO2 emission goals can ever been achieved for 2020 even talking of a modest reduction of 20%. These growing tendencies still take place despite the emergence of countless numbers of energy saving devises...... consensus that one of the solutions to the current environmental challenge will be based on low-carbon-technologies, there are many issues that set a barrier for its adequate development and still many actors in these sectors are sceptical about the possibilities. Illumination is a very interesting sector...... their ecological footprint. The discussion is supported by using relevant elements of the cradle-to-grave, eco-design and environmental-innovation theories. It is based on active participation in interdisciplinary projects and face-to-face in-depth interviews with relevant actors along the entire Danish...

  16. Assessment of technologies to meet a low carbon fuel standard.

    Science.gov (United States)

    Yeh, Sonia; Lutsey, Nicholas P; Parker, Nathan C

    2009-09-15

    California's low carbon fuel standard (LCFS) was designed to incentivize a diverse array of available strategies for reducing transportation greenhouse gas (GHG) emissions. It provides strong incentives for fuels with lower GHG emissions, while explicitly requiring a 10% reduction in California's transportation fuel GHG intensity by 2020. This paper investigates the potential for cost-effective GHG reductions from electrification and expanded use of biofuels. The analysis indicates that fuel providers could meetthe standard using a portfolio approach that employs both biofuels and electricity, which would reduce the risks and uncertainties associated with the progress of cellulosic and battery technologies, feedstock prices, land availability, and the sustainability of the various compliance approaches. Our analysis is based on the details of California's development of an LCFS; however, this research approach could be generalizable to a national U.S. standard and to similar programs in Europe and Canada. PMID:19806719

  17. Scenarios of technology adoption towards low-carbon cities

    International Nuclear Information System (INIS)

    Technological change has often been presented as a readily accepted means by which long-term greenhouse gas (GHG) emission reductions can be achieved. Cities are the future centers of economic growth, with the global population becoming predominantly urban; hence, increases or reductions of GHG emissions are tied to their energy strategies. This research examines the likelihood of a developed world city (the Greater Toronto Area) achieving an 80% reduction in GHG emissions through policy-enabled technological change. Emissions are examined from 3 major sources: light duty passenger vehicles, residential buildings and commercial/institutional buildings. Logistic diffusion curves are applied for the adoption of alternative vehicle technologies, building retrofits and high performance new building construction. This research devises high, low and business-as-usual estimates of future technological adoption and finds that even aggressive scenarios are not sufficient to achieve an 80% reduction in GHG emissions by 2050. This further highlights the challenges faced in maintaining a relatively stable climate. Urban policy makers must consider that the longer the lag before this transition occurs, the greater the share of GHG emissions mitigation that must addressed through behavioural change in order to meet the 2050 target, which likely poses greater political challenges. - Highlights: • Explores policy options in a city targeting an 80% GHG emission reduction target by 2050. • Aggressive building code changes will have minimal impact on GHG mitigation. • Support of low-carbon electricity for the majority of generation necessary by 2050. • Internal combustion engine use must be mostly eliminated from the vehicle stock. • Policies supporting elimination of physical exchange space should be promoted

  18. UK carbon reduction potential from technologies in the transport sector

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-11

    Reducing CO{sub 2} emissions from UK transport is likely to require a combination of measures, including increased energy efficiency, new technology introduction, and fuel switching. Apart from demand-side management, the most important technologies can be divided into (a) vehicles and (b) fuels. Key vehicle technologies are: battery electric vehicles, for niche markets including urban journeys hybrid-electric vehicles, replacing conventional gasoline and diesel vehicles fuel cell vehicles, potentially able to replace all conventional vehicles; Different fuels can be used in these different vehicles: electricity will be required for battery vehicles, and for some hybrids, known as plug-in hybrids; biofuels can be introduced either as blends in current fuels, and used in current vehicles and hybrids, or potentially at levels of 100% with some engine modifications; hydrogen is probably required for fuel cell vehicles, and could be also used in internal combustion engines. Each of these technologies and fuels faces technical, cost and policy challenges before it can compete commercially. However, these do not appear insurmountable. Each also offers benefits other than simply possible reductions in CO{sub 2} emissions from transport. In the near term, hybrid vehicles and biofuels are expected to be the main contributors to reductions in emissions. The environmental impact of biofuels is complex and care should be taken in evaluating and monitoring their real-world effects, especially if either raw materials or finished fuels are imported. In the longer term, but only if technical development is successful, fuel cell vehicles using hydrogen offer the potential for major emissions reductions. Indicative figures, and ranges, of costs of carbon reduction from different fuels and routes are given. (UK)

  19. An Accelerated Test Method of Simultaneous Carbonation and Chloride Ion Ingress: Durability of Silica Fume Concrete in Severe Environments

    Directory of Open Access Journals (Sweden)

    S. A. Ghahari

    2016-01-01

    Full Text Available The effects of simultaneous carbonation and chloride ion attack on mechanical characteristics and durability of concrete containing silica fume have been investigated through an accelerated test method. Specimens containing different amounts of silica fume were maintained in an apparatus in which carbon dioxide pressure and concentration and relative humidity were kept constant, and wetting and drying cycles in saline water were applied. Surface resistivity, sorptivity, CO2 consumption, and carbonation and chloride ion ingress depths measurements were taken. Phase change due to carbonation and chloride ion attack was monitored by XRD analysis, and microstructures and interfacial transition zones were studied by implementing SEM as well as mercury intrusion porosimetry. It was expected to have a synergistic effect in the tidal zone where simultaneous carbonation and chloride ion attack happen. However, the observed reduced surface resistivity, compared to specimens maintained in CO2 gas, could be due to the moisture that is available near the surface, hindering CO2 from penetrating into the pores of the specimens. Moreover, the porosity analysis of the specimens showed that the sample containing silica fume cured in the tidal zone had 50.1% less total porosity than the plain cement paste cured in the same condition.

  20. EVALUATION OF SUPERCRITICAL CARBON DIOXIDE TECHNOLOGY TO REDUCE SOLVENT IN SPRAY COATING APPLICATIONS

    Science.gov (United States)

    This evaluation, part of the Pollution Prevention Clean Technology Demonstration (CTD) Program, addresses the product quality, waste reduction, and economic issues of spray paint application using supercritical carbon dioxide (CO2). Anion Carbide has developed this technology and...

  1. Carbon Capture and Storage (CCS) Technologies and Economic Investment Opportunities in the UK

    OpenAIRE

    CHEVALLIER, Julien

    2010-01-01

    This article reviews the role played by carbon and capture (CCS) technologies in order to facilitate the transition to low-carbon emitting technologies in the medium term. More precisely, we address the following central questions: how will the development of CCS technologies impact energy policies in order to yield to sustainable energy solutions? At what costs will pollution reductions be achieved? And most importantly, which CCS technologies will turn out to offer the most effective and ef...

  2. Societal acceptance of carbon capture and storage technologies

    International Nuclear Information System (INIS)

    For the actual implementation of carbon capture and storage (CCS) technologies, societal support is a crucial precondition. This paper describes an extensive study on the acceptance of CCS by stakeholders in the Netherlands and explores one of the determining factors in the acceptance of CCS by the lay public, i.e. the way the Dutch press perceives and portrays CCS. The stakeholder analysis shows that there is a positive attitude towards CCS by industry, government, and environmental NGOs, provided that the conditions they pose on the deployment of CCS are met. The content analysis of Dutch news articles conveys that the media portrayal of CCS is - to a certain extent - a balanced reflection of the way CCS is perceived by the stakeholders. Both analyses show that the concerns about CCS have not overshadowed the main promise that CCS is part of the solution to climate change. However, the current negative aspects of CCS as raised by different stakeholders and the media will remain if no action is taken. Therefore, the conditions posed on the use of CCS, as well as the actions required to meet these conditions, could function as a proxy for the 'societal voice', articulating the most important issues concerning the future acceptance of CCS technology. (author)

  3. Application of carbon isotope analyses in food technology

    International Nuclear Information System (INIS)

    The vast economic size of the food market offers great temptations for the production and sale of fraudulent products, adulterated products and synthetic products that are labeled as natural ones. Conventional techniques of chemical analyses have served the food industry well for many years but are limited in their ability to detect certain types of fraudulent or mislabelled products. The aversion to added sugar and the demand for 'all natural' food products among consumers has led to a great deal of mislabelling on the part of food processors in order to achieve greater economic gain. The nature of deceptions detectable by carbon Stable Isotope Ratio Analysis (SIRA) in food technology falls into three broad categories. The most common is the adulteration of an expensive natural product, such as apple juice, with a much cheaper natural product such as cane sugar or high fructose corn syrup (HFCS). The second is outright falsification of a food. An example is maple syrup produced by simple addition of maple flavoring to a sugar syrup or HFCS. The third general category is the sale of synthetic materials as natural ones or the addition of synthetic materials to natural ones in order to increase the volume of the product. The procedure for using carbon SIRA in monitoring food products involves two stages. It must first be established that the product to be analyzed, or some specific component of it, has a particular isotopic composition that can be distinguished from that of the materials that might be used to adulterate it. Potential adulterating components are then analyzed to establish their isotopic identity. The carbon SIRA method cannot, in general, be used to establish purity unequivocally but it can be used to establish impurity or adulteration with a high degree of success. The overall process of carbon SIRA consists of three stages: selection of the sample or the isolation of the particular compound to be analyzed, conversion of this compound into CO2 gas

  4. Designing and Demonstrating a Master Student Project to Explore Carbon Dioxide Capture Technology

    Science.gov (United States)

    Asherman, Florine; Cabot, Gilles; Crua, Cyril; Estel, Lionel; Gagnepain, Charlotte; Lecerf, Thibault; Ledoux, Alain; Leveneur, Sebastien; Lucereau, Marie; Maucorps, Sarah; Ragot, Melanie; Syrykh, Julie; Vige, Manon

    2016-01-01

    The rise in carbon dioxide (CO[subscript 2]) concentration in the Earth's atmosphere, and the associated strengthening of the greenhouse effect, requires the development of low carbon technologies. New carbon capture processes are being developed to remove CO[subscript 2] that would otherwise be emitted from industrial processes and fossil fuel…

  5. A new type of accelerator power supply based on voltage-type space vector PWM rectification technology

    Science.gov (United States)

    Wu, Fengjun; Gao, Daqing; Shi, Chunfeng; Huang, Yuzhen; Cui, Yuan; Yan, Hongbin; Zhang, Huajian; Wang, Bin; Li, Xiaohui

    2016-08-01

    To solve the problems such as low input power factor, a large number of AC current harmonics and instable DC bus voltage due to the diode or thyristor rectifier used in an accelerator power supply, particularly in the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), we designed and built up a new type of accelerator power supply prototype base on voltage-type space vector PWM (SVPWM) rectification technology. All the control strategies are developed in TMS320C28346, which is a digital signal processor from TI. The experimental results indicate that an accelerator power supply with a SVPWM rectifier can solve the problems above well, and the output performance such as stability, tracking error and ripple current meet the requirements of the design. The achievement of prototype confirms that applying voltage-type SVPWM rectification technology in an accelerator power supply is feasible; and it provides a good reference for design and build of this new type of power supply.

  6. Towards a novel laser-driven method of exotic nuclei extraction-acceleration for fundamental physics and technology

    CERN Document Server

    Nishiuchi, Mamiko; Nishio, Katsuhisa; Orlandi, Riccard; Sako, Hiroyuki; Pikuz, Tatiana A; Faenov, Anatory Ya; Esirkepov, Timur Zh; Pirozhkov, Alexander S; Matsukawa, Kenya; Sagisaka, Akito; Ogura, Koichi; Kanasaki, Masato; Kiriyama, Hiromitsu; Fukuda, Yuji; Koura, Hiroyuki; Kando, Masaki; Yamauchi, Tomoya; Watanabe, Yukinobu; Bulanov, Sergei V; Kondo, Kiminori; Imai, Kenichi; Nagamiya, Shoji

    2014-01-01

    The measurement of properties of exotic nuclei, essential for fundamental nuclear physics, now confronts a formidable challenge for contemporary radiofrequency accelerator technology. A promising option can be found in the combination of state-of-the-art high-intensity short pulse laser system and nuclear measurement techniques. We propose a novel Laser-driven Exotic Nuclei extraction-acceleration method (LENex): a femtosecond petawatt laser, irradiating a target bombarded by an external ion beam, extracts from the target and accelerates to few GeV highly-charged nuclear reaction products. Here a proof-of-principle experiment of LENex is presented: a few hundred-terawatt laser focused onto an aluminum foil, with a small amount of iron simulating nuclear reaction products, extracts almost fully stripped iron nuclei and accelerate them up to 0.9 GeV. Our experiments and numerical simulations show that short-lived, heavy exotic nuclei, with a much larger charge-to-mass ratio than in conventional technology, can ...

  7. High energy physics advisory panel's composite subpanel for the assessment of the status of accelerator physics and technology

    International Nuclear Information System (INIS)

    In November 1994, Dr. Martha Krebs, Director of the US Department of Energy (DOE) Office of Energy Research (OER), initiated a broad assessment of the current status and promise of the field of accelerator physics and technology with respect to five OER programs -- High Energy Physics, Nuclear Physics, Basic Energy Sciences, Fusion Energy, and Health and Environmental Research. Dr. Krebs asked the High Energy Physics Advisory Panel (HEPAP) to establish a composite subpanel with representation from the five OER advisory committees and with a balance of membership drawn broadly from both the accelerator community and from those scientific disciplines associated with the OER programs. The Subpanel was also charged to provide recommendations and guidance on appropriate future research and development needs, management issues, and funding requirements. The Subpanel finds that accelerator science and technology is a vital and intellectually exciting field. It has provided essential capabilities for the DOE/OER research programs with an enormous impact on the nation's scientific research, and it has significantly enhanced the nation's biomedical and industrial capabilities. Further progress in this field promises to open new possibilities for the scientific goals of the OER programs and to further benefit the nation. Sustained support of forefront accelerator research and development by the DOE's OER programs and the DOE's predecessor agencies has been responsible for much of this impact on research. This report documents these contributions to the DOE energy research mission and to the nation

  8. High energy physics advisory panel`s composite subpanel for the assessment of the status of accelerator physics and technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    In November 1994, Dr. Martha Krebs, Director of the US Department of Energy (DOE) Office of Energy Research (OER), initiated a broad assessment of the current status and promise of the field of accelerator physics and technology with respect to five OER programs -- High Energy Physics, Nuclear Physics, Basic Energy Sciences, Fusion Energy, and Health and Environmental Research. Dr. Krebs asked the High Energy Physics Advisory Panel (HEPAP) to establish a composite subpanel with representation from the five OER advisory committees and with a balance of membership drawn broadly from both the accelerator community and from those scientific disciplines associated with the OER programs. The Subpanel was also charged to provide recommendations and guidance on appropriate future research and development needs, management issues, and funding requirements. The Subpanel finds that accelerator science and technology is a vital and intellectually exciting field. It has provided essential capabilities for the DOE/OER research programs with an enormous impact on the nation`s scientific research, and it has significantly enhanced the nation`s biomedical and industrial capabilities. Further progress in this field promises to open new possibilities for the scientific goals of the OER programs and to further benefit the nation. Sustained support of forefront accelerator research and development by the DOE`s OER programs and the DOE`s predecessor agencies has been responsible for much of this impact on research. This report documents these contributions to the DOE energy research mission and to the nation.

  9. Carbon dioxide capturing technologies: a review focusing on metal organic framework materials (MOFs).

    Science.gov (United States)

    Sabouni, Rana; Kazemian, Hossein; Rohani, Sohrab

    2014-04-01

    In this study, a relevant literature has been reviewed focusing on the carbon dioxide capture technologies in general, such as amine-based absorption as conventional carbon dioxide capturing technology, aqueous ammonia-based absorption, membranes, and adsorption material (e.g., zeolites, and activated carbons). In more details, metal organic frameworks (MOFs) as new emerging technologies for carbon dioxide adsorption are discussed. The MOFs section is intended to provide a comprehensive overview of MOFs including material characteristics and synthesis, structural features, CO2 adsorption capacity, heat of adsorption and selectivity of CO2. PMID:24338107

  10. Ocean acidification accelerates net calcium carbonate loss in a coral rubble community

    Science.gov (United States)

    Stubler, Amber D.; Peterson, Bradley J.

    2016-09-01

    Coral rubble communities are an important yet often overlooked component of a healthy reef ecosystem. The organisms inhabiting reef rubble are primarily bioeroders that contribute to the breakdown and dissolution of carbonate material. While the effects of ocean acidification on calcifying communities have been well studied, there are few studies investigating the response of bioeroding communities to future changes in pH and calcium carbonate saturation state. Using a flow-through pH-stat system, coral rubble pieces with a naturally occurring suite of organisms, along with bleached control rubble pieces, were subjected to three different levels of acidification over an 8-week period. Rates of net carbonate loss in bleached control rubble doubled in the acidification treatments (0.02 vs. 0.04% CaCO3 d-1 in ambient vs. moderate and high acidification), and living rubble communities experienced significantly increased rates of net carbonate loss from ambient to high acidification conditions (0.06 vs. 0.10% CaCO3 d-1, respectively). Although more experimentation is necessary to understand the long-term response and succession of coral rubble communities under projected conditions, these results suggest that rates of carbonate loss will increase in coral rubble as pH and calcium carbonate saturation states are reduced. This study demonstrates a need to thoroughly investigate the contribution of coral rubble to the overall carbonate budget, reef resilience, recovery, and function under future conditions.

  11. Information technology for studying carbon sink in stemwood of forest ecosystems

    OpenAIRE

    Tokar, O.; Lesiv, M.; Korol, M.

    2014-01-01

    An information technology for calculation of carbon ink in stemwood of forest ecosystems on a territorial basis is developed. This information technology involves interpretation of input data of statistical inventory of forest stands using electronic maps of forestry, formation of databases and processing the data by applying a special algorithm for calculating the carbon sink in stemwood and presenting the results in a form of thematic maps. The estimation of the carbon sink in stemwood is ...

  12. 16 October 2012 - Norwegian University of Science and Technology Rector Digernes in the ATLAS visitor centre with Senior Norwegian S. Stapnes and J. Vigen; signing the guest book with Director for Accelerators and Technology S. Myers.

    CERN Document Server

    Jacques Fichet

    2012-01-01

    16 October 2012 - Norwegian University of Science and Technology Rector Digernes in the ATLAS visitor centre with Senior Norwegian S. Stapnes and J. Vigen; signing the guest book with Director for Accelerators and Technology S. Myers.

  13. Institute a modest carbon tax to reduce carbon emissions, finance clean energy technology development, cut taxes, and reduce the deficit

    Energy Technology Data Exchange (ETDEWEB)

    Muro, Mark; Rothwell, Jonathan

    2012-11-15

    The nation should institute a modest carbon tax in order to help clean up the economy and stabilize the nation’s finances. Specifically, Congress and the president should implement a $20 per ton, steadily increasing carbon excise fee that would discourage carbon dioxide emissions while shifting taxation onto pollution, financing energy efficiency (EE) and clean technology development, and providing opportunities to cut taxes or reduce the deficit. The net effect of these policies would be to curb harmful carbon emissions, improve the nation’s balance sheet, and stimulate job-creation and economic renewal.

  14. Low-carbon scenario and technologies in modern city --Case study of Shenyang%Low-carbon scenario and technologies in modern city --Case study of Shenyang

    Institute of Scientific and Technical Information of China (English)

    Liu Zhu; Geng Yong; Xue Bing; Dong Huijuan

    2011-01-01

    From a multi-dimensional perspective of economic development, carbon dioxide and industrial pollutant emission and resource consumption in the case study of Shenyang, this paper analyzes the resource consumption and environmental impact in the process of urban economic development and low-carbon transition and evaluates the emission reduction potential and scenario of various technologies. The results show that city plays a key role in global low-carbon economic construction, and it is pointed out that emission reduction technology in urban scale can reduce total amount of carbon emission to substantial extent. From the aspect of future development, the input of technology and economic growth pattern should be strengthened so as to realize economic development as well as the total amount reduction of pollutant emission.

  15. Accelerator system of neutron spallation source for nuclear energy technology development

    International Nuclear Information System (INIS)

    High intensity proton accelerators are at present and developed for applications in neutron spallation sources. The advantages of this source are better safety factor, easy in controlling and spent fuel free. A study of conceptual design of required accelerator system has been carried out. Considering the required proton beam and feasibility in the development stages, a stepped linac system is an adequate choice for now

  16. Carbon Nanotubes Technology for Removal of Arsenic from Water

    Directory of Open Access Journals (Sweden)

    Ali Naghizadeh

    2012-08-01

    Full Text Available Please cite this article as: Naghizadeh A, Yari AR, Tashauoei HR, Mahdavi M, Derakhshani E, Rahimi R, Bahmani P. Carbon nanotubes technology for removal of arsenic from water. Arch Hyg Sci 2012;1(1:6-11. Aims of the Study: This study was aimed to investigate the adsorption mechanism of the arsenic removal from water by using carbon nanotubes in continuous adsorption column. Materials & Methods: Independent variables including carbon nanotubes dosage, contact time and breakthrough point were carried out to determine the influence of these parameters on the adsorption capacity of the arsenic from water. Results: Adsorption capacities of single wall and multiwall carbon nanotubes were about 148 mg/g and 95 mg/g respectively. The experimental data were analyzed using Langmuir and Freundlich isotherm models and equilibrium data indicate the best fit obtained with Langmuir isotherm model. Conclusions: Carbon nanotubes can be considered as a promising adsorbent for the removal of arsenic from large volume of aqueous solutions. References: 1. Lomaquahu ES, Smith AH. Feasibility of new epidemiology studies on arsenic exposures at low levels. AWWA Inorganic Contaminants Workshop. San Antonio; 1998. 2. Burkel RS, Stoll RC. Naturally occurring arsenic in sandstone aquifer water supply wells of North Eastern Wisconsin. Ground Water Monit Remediat 1999;19(2:114-21. 3. Mondal P, Majumder CB, Mohanty B. Laboratory based approaches for arsenic remediation from contaminated water: recent developments. J Hazard Mater 2006;137(1: 464-79. 4. Meenakshi RCM. Arsenic removal from water: a review. Asian J Water Environ Pollut 2006;3(1:133-9. 5. Wickramasinghe SR, Binbing H, Zimbron J, Shen Z, Karim MN. Arsenic removal by coagulation and filtration: comparison of ground waters from United States and Bangladesh. Desalination 2004;169:231-44. 6. Hossain MF. Arsenic contamination in Bangladesh-an overview. Agric Ecosyst Environ 2006;113(1-4:1-16. 7. USEPA, Arsenic. Final

  17. Analysis of low-carbon industrial symbiosis technology for carbon mitigation in a Chinese iron/steel industrial park: A case study with carbon flow analysis

    International Nuclear Information System (INIS)

    CO2 mitigation strategies in industrial parks are a significant component of the Chinese climate change mitigation policy, and industrial symbiosis can provide specific CO2 mitigation opportunity. Technology is important to support symbiosis, but few studies in China have focused on this topic at the industrial park level. This research presented a case study in a national iron and steel industrial park in China. Focus was given onto carbon mitigation through industrial symbiosis technology using substance flow analysis (SFA). Three typical iron and steel industry technologies, including coke dry quenching (CDQ), combined cycle power plant (CCPP), and CO2 capture by slag carbonization (CCSC) were evaluated with SFA. Technology assessment was further conducted in terms of carbon mitigation potential and unit reduction cost. Compared with the Business as usual (BAU) scenario, application with CDQ, CCPP, and CCSC reduced the net carbon emissions by 56.18, 134.43, and 222.89 kg CO2 per ton crude steel inside the industrial parks, respectively, including both direct and indirect emissions. Economic assessment revealed that the unit costs for the three technologies were also high, thereby necessitating national financial support. Finally, relevant policy suggestions and future concerns were proposed and discussed. - Highlights: • A typical carbon mitigation case study on China iron/steel industrial park. • Using carbon SFA to investigate mitigation effects of industrial symbiosis technology. • CCPP greatly reduced the indirect carbon emission embodied in power purchase. • CCSC reduced the carbon emission by distributing fixed carbon into by-product. • Specific low carbon-tech promotion policies fit to China was discussed and proposed

  18. Use of accelerated helium-3 ions for determining oxygen and carbon impurities in some pure materials

    Science.gov (United States)

    Aleksandrova, G. I.; Borisov, G. I.; Demidov, A. M.; Zakharov, Y. A.; Sukhov, G. V.; Shmanenkova, G. I.; Shchelkova, V. P.

    1978-01-01

    Methods are developed for the determination of O impurity in Be and Si carbide and concurrent determination of C and O impurities in Si and W by irradiation with accelerated He-3 ions and subsequent activity measurements of C-11 and F-18 formed from C and O with the aid of a gamma-gamma coincidence spectrometer. Techniques for determining O in Ge and Ga arsenide with radiochemical separation of F-18 are also described.

  19. Tailoring hierarchically porous graphene architecture by carbon nanotube to accelerate extracellular electron transfer of anodic biofilm in microbial fuel cells

    Science.gov (United States)

    Zou, Long; Qiao, Yan; Wu, Xiao-Shuai; Li, Chang Ming

    2016-10-01

    To overcoming their respective shortcomings of graphene and carbon nanotube, a hierarchically porous multi-walled carbon nanotube@reduced graphene oxide (MWCNT@rGO) hybrid is fabricated through a versatile and scalable solvent method, in which the architecture is tailored by inserting MWCNTs as scaffolds into the rGO skeleton. An appropriate amount of inserted 1-D MWCNTs not only effectively prevent the aggregation of rGO sheets but also act as bridges to increase multidirectional connections between 2-D rGO sheets, resulting in a 3-D hierarchically porous structure with large surface area and excellent biocompatibility for rich bacterial biofilm and high electron transfer rate. The MWCNT@rGO1:2/biofilm anode delivers a maximum power density of 789 mW m-2 in Shewanella putrefaciens CN32 microbial fuel cells, which is much higher than that of individual MWCNT and rGO, in particular, 6-folder higher than that of conventional carbon cloth. The great enhancement is ascribed to a synergistic effect of the integrated biofilm and hierarchically porous structure of MWCNT@rGO1:2/biofilm anode, in which the biofilm provides a large amount of bacterial cells to raise the concentration of local electron shuttles for accelerating the direct electrochemistry on the 3-D hierarchically porous structured anodes.

  20. Accelerating the spin-up of the coupled carbon and nitrogen cycle model in CLM4

    Directory of Open Access Journals (Sweden)

    Y. Fang

    2014-12-01

    Full Text Available The commonly adopted biogeochemistry spin-up process in earth system model is to run the model for hundreds to thousands of years subject to periodic atmospheric forcing to reach dynamic steady state of the carbon-nitrogen (CN models. A variety of approaches have been proposed to reduce the computation time of the spin-up process. Significant improvement in computational efficiency has been made recently. However, a long simulation time is still required to reach the common convergence criteria of the coupled carbon/nitrogen model. A gradient projection method was proposed and used to further reduce the computation time after examining the trend of the dominant carbon pools. The Community Land Model version 4 (CLM4 with carbon and nitrogen component was used in this study. From point scale simulations we found that the method can reduce the computation time by 20–69% compared to the fastest approach in the literature. We also found that the cyclic stability of total carbon for some cases differs from that of the periodic atmospheric forcing, and some cases even showed instability. Close examination showed that one case has a carbon periodicity much longer than that of the atmospheric forcing due to the annual fire disturbance that is longer than half a year. The rest was caused by the instability of water table calculation in the hydrology model of CLM4. The instability issue is resolved after we replaced the hydrology scheme in CLM4 with a low model for variably saturated porous media.

  1. Highly accelerated cardiovascular MR imaging using many channel technology: concepts and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Niendorf, Thoralf [RWTH Aachen, University Hospital, Department of Diagnostic Radiology, Aachen (Germany); Sodickson, Daniel K. [New York University School of Medicine, Department of Radiology, Center for Biomedical Imaging, New York, NY (United States)

    2008-01-15

    Cardiovascular magnetic resonance imaging (CVMRI) is of proven clinical value in the non-invasive imaging of cardiovascular diseases. CVMRI requires rapid image acquisition, but acquisition speed is fundamentally limited in conventional MRI. Parallel imaging provides a means for increasing acquisition speed and efficiency. However, signal-to-noise (SNR) limitations and the limited number of receiver channels available on most MR systems have in the past imposed practical constraints, which dictated the use of moderate accelerations in CVMRI. High levels of acceleration, which were unattainable previously, have become possible with many-receiver MR systems and many-element, cardiac-optimized RF-coil arrays. The resulting imaging speed improvements can be exploited in a number of ways, ranging from enhancement of spatial and temporal resolution to efficient whole heart coverage to streamlining of CVMRI work flow. In this review, examples of these strategies are provided, following an outline of the fundamentals of the highly accelerated imaging approaches employed in CVMRI. Topics discussed include basic principles of parallel imaging; key requirements for MR systems and RF-coil design; practical considerations of SNR management, supported by multi-dimensional accelerations, 3D noise averaging and high field imaging; highly accelerated clinical state-of-the art cardiovascular imaging applications spanning the range from SNR-rich to SNR-limited; and current trends and future directions. (orig.)

  2. Technology and Components of Accelerator-driven Systems. Second International Workshop Proceedings, Nantes, France, 21-23 May 2013

    International Nuclear Information System (INIS)

    The accelerator-driven system (ADS) is a potential transmutation system option as part of partitioning and transmutation strategies for radioactive waste in advanced nuclear fuel cycles. Following the success of the workshop series on the utilisation and reliability of the High Power Proton Accelerators (HPPA), the scope of this new workshop series on Technology and Components of Accelerator-driven Systems has been extended to cover subcritical systems as well as the use of neutron sources. The workshop organised by the OECD Nuclear Energy Agency provided experts with a forum to present and discuss state-of-the-art developments in the field of ADS and neutron sources. A total of 40 papers were presented during the oral and poster sessions. Four technical sessions were organised addressing ADS experiments and test facilities, accelerators, simulation, safety, data, neutron sources that were opportunity to present the status of projects like the MYRRHA facility, the MEGAPIE target, FREYA and GUINEVERE experiments, the KIPT neutron source, and the FAIR linac. These proceedings include all the papers presented at the workshop

  3. Technology evaluation of man-rated acceleration test equipment for vestibular research

    Science.gov (United States)

    Taback, I.; Kenimer, R. L.; Butterfield, A. J.

    1983-01-01

    The considerations for eliminating acceleration noise cues in horizontal, linear, cyclic-motion sleds intended for both ground and shuttle-flight applications are addressed. the principal concerns are the acceleration transients associated with change in direction-of-motion for the carriage. The study presents a design limit for acceleration cues or transients based upon published measurements for thresholds of human perception to linear cyclic motion. The sources and levels for motion transients are presented based upon measurements obtained from existing sled systems. The approaches to a noise-free system recommends the use of air bearings for the carriage support and moving-coil linear induction motors operating at low frequency as the drive system. Metal belts running on air bearing pulleys provide an alternate approach to the driving system. The appendix presents a discussion of alternate testing techniques intended to provide preliminary type data by means of pendulums, linear motion devices and commercial air bearing tables.

  4. Carbon-14 ages of Antarctic meteorites with accelerator and small-volume counting techniques

    International Nuclear Information System (INIS)

    C-14 measurements were made on six Yamato and Victoria Land meteorites using tandem accelerator mass spectroscopy. The studies brought to 27 the number of Antarctic meteorites that have been examined for terrestrial aging. Details of the spectroscopic method are provided, along with the results in combinations with the data from the other 21 meteorites. It is found that the Yamato meteorites are younger than those found at Allan Hills, implying that two mechanisms may exist for the abundant Antarctic meteorites: exposure where falling due to a paucity of ice, and transport and exposure by sublimating ice

  5. Some problems on a local shield calculation of technological installations with electron accelerators

    International Nuclear Information System (INIS)

    Calculation results are presented of biological protection of radiation units with electron accelerators. The calculation has been performed with competitive line method for a linear isotron source of braking radiation. Ferrum with atomic number 26 has been used as a target material. For this type of accelerator the following calculation technique has been adopted: protection thickness has been selected with respect to some particular material. Then a spacing has been calculated between the source and the external side for which a braking radiation dosage rate upon the protection surface has been maximum permissible

  6. Focus on low carbon technologies. The positive solution

    Energy Technology Data Exchange (ETDEWEB)

    Omer, Abdeen Mustafa [17 Juniper Court, Forest Road West, Nottingham NG7 4EU (United Kingdom)

    2008-12-15

    The use of renewable energy sources is a fundamental factor for a possible energy policy in the future. Taking into account the sustainable character of the majority of renewable energy technologies, they are able to preserve resources and to provide security, diversity of energy supply and services, virtually without environmental impact. This paper outlines possible energy savings and better performance achieved by different solar passive strategies (skylights, roof monitors and clerestory roof windows) and element arrangements across the roof in zones of cold to temperate climates. The aim of this work is to find possible design strategies, and to find solutions to provide thermal and luminous comfort in spaces of intermittent use and a poor aspect or orientation. In regions where heating is important during winter months, the use of top-light solar passive strategies for spaces without an equator-facing facade can efficiently reduce energy consumption for heating, lighting and ventilation. Passive solar systems for space heating and cooling, as well as passive cooling techniques when used in combination with conventional systems for heating, cooling, ventilation and lighting, can significantly contribute to the energy saving in the buildings sector, and the thermal behaviour of the dependent on the alternatives and interventions made on the building's shell. Exploitation of renewable energy in buildings and agricultural greenhouses can significantly contribute to energy saving. Promoting innovative renewable applications and reinforcing renewable energy market will contribute to preservation of the ecosystem by reducing emissions at local and global levels and will contribute to the amelioration of environmental conditions by replacing conventional resources with renewable sources that produce no air pollution or greenhouse gases and coexist comfortably with existing urban, agricultural and tourist land uses. As concerns society, development of the

  7. PREFACE: International Symposium on Vacuum Science & Technology and its Application for Accelerators (IVS 2012)

    Science.gov (United States)

    Pandit, V. S.; Pal, Gautam

    2012-11-01

    The Indian Vacuum Society (IVS) was established in 1970 to promote vacuum science and technology in academic, industrial and R&D institutions in India. IVS is a member society of the International Union for Vacuum Science, Technique and Applications (IUVSTA). It has organized International and national symposia, short term courses and workshops on different aspects of Vacuum Science and Technology at regular intervals. So far 27 National symposia, 4 International Symposia and 47 courses have been organized at various locations in India. There has been an active participation from R&D establishments, universities and Indian industries during all these events. In view of the current global situation and emerging trends in vacuum technology, the executive committee of the IVS suggested to us that we organize an International Symposium at the Variable Energy Cyclotron Centre, Kolkata from 15-17 February 2012. At the Variable Energy Cyclotron Centre we have a large number of high vacuum systems used in the K130 Cyclotron and K500 Superconducting Cyclotron. Also a large cryogenic system using LHe plant is in operation for cryopanels and a superconducting magnet for K-500 Cyclotron. The main areas covered at the symposium were the production and measurement of vacuums, leak detection, design and development of large vacuum systems, vacuum metallurgy, vacuum materials and the application of high vacuums in cyclotrons, LINACS and other accelerators. This symposium provided an opportunity for interaction between active researchers and technologists and allowed them to review the current situation, report recent experimental results, share the available expertise and consider the future R&D efforts needed in this area. Keeping the industrial significance of vacuum technology in mind, an exhibition of the vacuum related equipment, accessories, products etc by various suppliers and manufactures was organized alongside the symposium. Participation by a large number of exhibitors

  8. EuCARD and CARE - development of accelerator technology in Poland

    OpenAIRE

    Romaniuk, Ryszard

    2009-01-01

    EuCARD (2009-1013) and CARE (2004-2008) are examples of big European R&D projects for building integrated accelerator infrastructures in Europe. Several research teams from a number of European countries are participating in this consolidated effort. Here we summarize the tasks done by some teams from Poland on a more general background.

  9. Accelerating the commercialization on new technologies. [free market operation of federal alternate energy sources programs

    Science.gov (United States)

    Kuehn, T. J.; Nawrocki, P. M.

    1978-01-01

    It is suggested that federal programs for hastening the adoption of alternative energy sources must operate within the free market structure. Five phases of the free market commercialization process are described. Federal role possibilities include information dissemination and funding to stimulate private sector activities within these five phases, and federally sponsored procedures for accelerating commercialization of solar thermal small power systems are considered.

  10. Treatment of industrial effluents using electron beam accelerator and adsorption with activated carbon. A comparative study

    International Nuclear Information System (INIS)

    Several methods are used In the pollutant removal from Industrial and domestic wastewater. However when the degradation of toxic organic pollutants, mainly the recalcitrant is objectified, the conventional treatments usually do not meet the desirable performance in the elimination or decrease the impact when the effluent are released to the environment what takes to the research of alternative methods that seek the improvement of the efficiency of the wastewater treatment systems jointly employees or separately. This work presents a study of degradation/removal of pollutants organic compounds comparing two methods using radiation from industrial electron beam and granular activated carbon (GAC). The removal efficiency of the pollutants was evaluated and it was verified that the efficiency of adsorption with activated carbon is similar to the radiation method. The obtained results allowed to evaluated the relative costs of these methods. (author)

  11. Surface coatings on carbon steel for prevention of flow accelerated corrosion under two phase flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hee-Sang; Kim, Kyung Mo; Hur, Do Haeng [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Seung Hyun; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    Since the occurrence of a Surry-2 pipe rupture accident, a lot of effort has been made to prevent FAC of carbon steel piping. Some of the chemicals were suggested as a corrosion inhibitor. A platinum decoration was applied as another prevention strategy of carbon steel thinning. The severe FAC-damaged carbon steel pipings were replaced by tolerant materials such as SA335 Gr.P22. However, some components such as the piping materials between moisture separator and turbine have still suffered from the FAC degradation. This work provides a coating method to prevent the FAC degradation of the SA106 Gr.B, which is a piping material between moisture separator and high-pressure turbine, under two-phase flow. We suggested the coating materials to prevent FAC of SA106Gr.B under two-phase water-vapor flow. The FAC resistance of SA106Gr.B was improved with 5 times by electroless-deposited Ni-P protective layer. Other coating materials also enhanced the tolerance up to 5 times for the FAC in a condition of 150 .deg. C and 3.8 bar at 9.5 compared to non-coated SA106Gr.B.

  12. Low carbon thermal technologies in an ageing society – What are the issues?

    International Nuclear Information System (INIS)

    This paper is a commentary on the theme of this special issue, low carbon thermal technologies and older age, and the Conditioning Demand project. Drawing on the project findings, I discuss some key aspects of ageing that are relevant to the roll-out of low carbon technologies in domestic settings in ageing, developed societies. These include biological, cognitive, institutional and social dimensions. I conclude with some suggestions for ways of working to maximise the potential benefits of low carbon thermal technologies for older people. -- Highlights: •The specific needs of older people must be considered in low carbon transitions. •The vulnerability discourse however dominates in a way which is unhelpful. •Some physiological aspects of ageing affect person-technology fit. •Cultural aspects influence the success of integration of LCTs into domestic settings. •More inclusive design is needed if older people are to benefit from LCTs

  13. Accelerated carbonation of steel slags using CO2 diluted sources: CO2 uptakes and energy requirements

    OpenAIRE

    Renato eBaciocchi; Giulia eCosta; Alessandra ePolettini; Raffaella ePomi; Alessio eStramazzo; Daniela eZingaretti

    2016-01-01

    This work presents the results of carbonation experiments performed on Basic Oxygen Furnace (BOF) steel slag samples employing gas mixtures containing 40 and 10% CO2 vol. simulating the gaseous effluents of gasification and combustion processes respectively, as well as 100% CO2 for comparison purposes. Two routes were tested, the slurry phase (L/S=5 l/kg, T=100 °C and Ptot=10 bar) and the thin film (L/S =0.3-0.4 l/kg, T=50 °C and Ptot=7-10 bar) routes. For each one, the CO2 uptake achieved as...

  14. Considerations in forecasting the demand for carbon sequestration and biotic storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    Trexler, M.C. [Trexler and Associates, Inc., Portland, OR (United States)

    1997-12-31

    The Intergovernmental Panel on Climate Change (IPCC) has identified forestry and other land-use based mitigation measures as possible sources and sinks of greenhouse gases. An overview of sequestration and biotic storage is presented, and the potential impacts of the use of carbon sequestration as a mitigation technology are briefly noted. Carbon sequestration is also compare to other mitigation technologies. Biotic mitigation technologies are concluded to be a legitimate and potentially important part of greenhouse gas mitigation due to their relatively low costs, ancillary benefits, and climate impact. However, not all biotic mitigation techniques perfectly match the idealized definition of a mitigation measure, and policies are becoming increasingly biased against biotic technologies.

  15. Nanosecond pulse-width electron diode based on dielectric wall accelerator technology

    Science.gov (United States)

    Zhao, Quantang; Zhang, Z. M.; Yuan, P.; Cao, S. C.; Shen, X. K.; Jing, Y.; Yu, C. S.; Li, Z. P.; Liu, M.; Xiao, R. Q.; Zong, Y.; Wang, Y. R.; Zhao, H. W.

    2013-11-01

    An electron diode using a short section of dielectric wall accelerator (DWA) has been under development at the Institute of Modern Physics (IMP), Chinese Academy of Sciences. Tests have been carried out with spark gap switches triggered by lasers. The stack voltage efficiency of a four-layer of Blumleins reached about 60-70% with gas filled spark gap switching. The generated pulse voltage of peak amplitude of 23 kV and pulse width of 5 ns is used to extract and accelerate an electron beam of 320 mA, measured by a fast current transformer. A nanosecond pulse width electron diode was achieved successfully. Furthermore, the principle of a DWA is well proven and the development details and discussions are presented in this article.

  16. Policies to Accelerate Fuel, Technology andBehavioural Change in Transport - Results and Success of the Austrian Climate: Active Mobile Programme after the First Seven Years

    International Nuclear Information System (INIS)

    There is plenty of concepts and strategies on almost all administrative levels to reduce carbon emissions and boost energy efficiency in transport. But it usually takes a long time to adapt national and regional legislation to these strategies with considerable loss of valuable time. Furthermore some of the defined measures will never find the necessary ''political will'' for implementation. To bridge this gap Austria's Environmental ministry supported by the Austrian Energy Agency, got into action 2005 and set up an action programme, condensing all so called ''soft'' and ''voluntary'' measures in transport (''mobility management''), that do not necessarily need to wait for legislation or specific administrative framework conditions. In its comprehensive approach - not only transport is targeted, but also buildings, renewables and energy saving - and also in its effects regarding the reduction of GHG emissions, Climate:active and especially climate:active mobile seems to be one-of-a-kind in Europe. Climate-active mobile set-up: free-of-charge consulting programmes addressing specific target groups (companies, cites andmunicipalities, real estate developers, schools andyouth, tourism); a financial support programme with 51 Mio Euro since 2007 for mobility management measures, fleet conversions to low-carbon technologies, work travel plans etc.; an EcoDriving training programme with up to now 20,000 trainees and educating all novice drivers in Austria in a smart driving style; a broad awareness raising campaign; about 2,900 klima:aktiv mobil partners among the target groups implementing sustainable transport measures and therewith reduces more than 530,000 tons of CO2 emissions every year, created or saved 4300 ''green jobs'' in transport and induced ''green'' investments by companies and administrations 7 to 8 times higher as the funding. Climate-active mobile is one of the main drivers in Austria to accelerate fuel, technology andbehavioural change in transport and

  17. Carbon capture from coal fired power plant using pressurized fluid bed technology

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Dennis; Christensen, Tor

    2010-09-15

    This presentation will discuss the use of a pressurized fluid bed boiler system and specialized carbon capture system to burn coal and generagte clean electricity. The paper will present the existing boiler and carbon capture technology and present economics, thermal performance and emissions reduction for a 100Mw module.

  18. SET-Plan - Scientific Assessment in Support of the Materials Roadmap Enabling Low Carbon Energy Technologies - Fossil Fuel Energies Sector, Including Carbon Capture and Storage

    OpenAIRE

    GOMEZ-BRICEÑO Dolores; Jong, Martin; DRAGE Trevor; Falzetti, Marco; Hedin, Niklas; Snijkers, Frans

    2011-01-01

    This document is part of a series of Scientific Assessment reports that underpin the Materials Roadmap enabling Low Carbon Energy Technologies. This report deals with the Fossil Fuel Energies Sector, including Carbon Capture and Storage.

  19. Preparation of self-supporting diamond-like carbon nanofoils with thickness less than 5 nm for laser-driven ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Ma Wenjun [Faculty for Physics, LMU Munich, Am Coulombwall 1, D-85748 Garching (Germany); Max-Planck-Institute for Quantumoptics, Hans-Kopfermann-Str. 1, 85748 Garching (Germany); Liechtenstein, V.Kh. [RRC Kurchatov Institute, 123182 Moscow (Russian Federation); Szerypo, J. [Faculty for Physics, LMU Munich, Am Coulombwall 1, D-85748 Garching (Germany); Maier-Leibnitz Laboratory (MLL), D-85748 Garching (Germany); Jung, D. [Faculty for Physics, LMU Munich, Am Coulombwall 1, D-85748 Garching (Germany); Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hilz, P. [Faculty for Physics, LMU Munich, Am Coulombwall 1, D-85748 Garching (Germany); Hegelich, B.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Maier, H.J. [Faculty for Physics, LMU Munich, Am Coulombwall 1, D-85748 Garching (Germany); Maier-Leibnitz Laboratory (MLL), D-85748 Garching (Germany); Schreiber, J. [Max-Planck-Institute for Quantumoptics, Hans-Kopfermann-Str. 1, 85748 Garching (Germany); Habs, D., E-mail: Dietrich.Habs@Physik.Uni-Muenchen.de [Faculty for Physics, LMU Munich, Am Coulombwall 1, D-85748 Garching (Germany); Max-Planck-Institute for Quantumoptics, Hans-Kopfermann-Str. 1, 85748 Garching (Germany)

    2011-11-01

    Ultrathin (<5 nm) self-supporting diamond-like carbon (DLC) foils are prepared by filtered cathodic vacuum arc (FCVA) deposition method as targets for laser-driven ion acceleration. The thickness and the morphology of these foils are characterized by atomic force microscope (AFM) and scanning electron microscope (SEM).

  20. How to trigger low carbon technologies by EU targets for 2030? An assessment of technology needs

    Energy Technology Data Exchange (ETDEWEB)

    Groenenberg, H.; Van Breevoort, P.; Janeiro, L.; Winkel, T.

    2013-04-15

    The current EU framework for energy and climate policies up to 2020 consists of three headline targets: 20% reduction of GHG emissions compared to 2005, a 20% share of renewable energy in final energy consumption, and 20% primary energy savings compared to baseline developments. While progress on these 2020 targets is mixed, discussions in the EU about climate and energy policies and targets for the period after 2020 have started. Given the long cycles associated to energy and climate investments, agreement on a clear longer-term policy framework is critical to improve visibility for investors and avoid lock-in effects in inefficient or polluting technologies. Therefore, the European Commission published a Communication on 6 June 2012 on the need for a long term policy framework for renewable energy, and a Green Paper on the 2030 climate and energy policy framework on 27 March 2013. Against this background, the Dutch Ministries of Infrastructure and Environment and the Ministry of Economic Affairs requested PBL to create input for the European debate on climate targets and policies until and beyond 2030. Ecofys supported PBL by addressing the following two questions: (1) What steps are needed for selected key technology groups to achieve long term GHG emission reductions and what climate and energy policies are likely to trigger these steps?; and (2) What are the pros and cons of a 2030 policy framework with (a) a GHG reduction target only, and (b) targets for GHG reduction, renewable energy, and energy efficiency? The focus of the first question was on four technology groups, namely (1) energy efficiency in the built environment, notably for heat; (2) solar PV and wind energy; (3) advanced biofuels; (4) CO2 carbon capture and storage (CCS). An analysis of the steps needed for the deployment of the full GHG mitigation potential of the discussed technology groups shows that this will largely depend on the adoption of a wide range of policy instruments by EU Member

  1. A cost-effective and versatile technology for regenerating activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, H. [Waste Min, Inc., Croton, MA (United States)

    1996-12-31

    Adsorption by activated carbon is a mainstream technology for the removal of soluble chemicals from waters and wastewaters, as well as for the removal of organics from vapor streams. Activated carbon basically acts like a sponge - accumulating the chemical species removed from the liquid or vapor stream. When the capacity of the carbon is reached, the spent carbon must be replaced or regenerated to restore its ability to adsorb. The current commercial regeneration options for spent carbon have significant shortcomings. Regeneration by steaming or low temperature heating removes low boiling organic compounds from vapor-phase carbon, but is not efficient removing less volatile compounds and does not regenerate liquid-phase activated carbons. High temperature thermal regeneration methods are expensive to build and operate, have high energy requirements, destroy the adsorbed compounds, and gradually destroy the carbon itself. An alternative technology that avoids the shortcomings of current methods is regeneration of spent activated carbon by extraction with organic solvents. The process uses an organic solvent to dissolve adsorbed material out of the internal pores of the activated carbon. Subsequently, the residual solvent is removed, typically by steaming, then the solvent is recovered and recycled. Cost-wise, solvent regeneration of activated carbon is substantially less expensive than thermal methods. The solvent regeneration technology works for virtually all adsorption applications where thermal regeneration is currently utilized. Capacity-wise, solvent regeneration restores 70% to 90% of the adsorption capacity of virgin activated carbon - while recovering the adsorbates intact and without deteriorating the activated carbon. 3 refs., 2 figs.

  2. Flow accelerated corrosion of carbon steel feeder pipes from Indian reactors

    International Nuclear Information System (INIS)

    En-masse feeder replacement was done at RAPS-2 after occurrence of a pinhole leak in B12 (S) outlet feeder elbow. Some of the feeders, removed after a service of 15.67 EFPY were received for detailed investigation. Ultrasonic thickness measurement of the feeders was carried out to ascertain the loss in wall thickness due to Flow Accelerated Corrosion (FAC) and marking the region of interest from outside. Surface morphology of inner surface of a number of feeder samples were carried out by SEM near the HAZ and adjoining area. Maximum FAC had occurred in the heat-affected zone of the weld in 32 NB elbows. Weld was affected to a lower extent than the parent metal due to higher chromium content. IGSCC cracks were also observed in parent metal portion of the middle elbow in 32 NB outlet feeder pipe due to bending residual stresses. There are two life limiting reasons to curtail the useful life in the reactors namely FAC and IGSCC. The problem of FAC can be reduced by increasing chromium content and reducing the flow velocity by opting for higher diameter feeder pipes. The welding defects and residual stresses in HAZ and surrounding areas are detrimental for FAC and IGSCC in the elbow region. This paper presents some of the microstructural observations and findings on FAC to explain the mechanism of degradation of feeders. (author)

  3. Flow accelerated corrosion of carbon steel feeder pipes from pressurized heavy water reactors

    International Nuclear Information System (INIS)

    Detailed investigation of a number of feeder pipes received from Rajasthan Atomic Power Station Unit 2 (RAPS no. 2) after en-masse feeder pipe replacement after 15.67 Effective Full Power Years (EFPYs) was carried out. Investigations included ultrasonic thickness measurement by ultrasonic testing, optical microscopy, scanning electron microscopy, chemical analysis and X-ray Diffraction (XRD). Results showed that maximum thickness reduction of the feeder had occurred downstream and close to the weld in 32 NB (1.25″/32.75 mm ID) elbows. Rate of Flow Accelerated Corrosion (FAC) was measured to be higher in the lower diameter feeder pipes due to high flow velocity and turbulence. Weld regions had thinned to a lower extent than the parent material due to higher chromium content in the weld. A weld protrusion has been shown to add to the thinning due to FAC and lead to faster thinning rate at localized regions. Surface morphology of inner surface of feeder had shown different size scallop pattern over the weld and parent material. Inter-granular cracks were also observed along the weld fusion line and in the parent material in 32 NB outlet feeder elbow.

  4. Accelerated weathering of carbonate rocks following the 2010 forest wildfire on Mt. Carmel, Israel

    Science.gov (United States)

    Shtober-Zisu, Nurit; Tessler, Naama; Tsatskin, Alexander; Greenbaum, Noam

    2015-04-01

    Massive destruction of carbonate rocks occurred on the slopes of Mt. Carmel, during the severe forest fire in 2010. The bedrock surfaces exhibited extensive exfoliation into flakes and spalls covering up to 80%-100% of the exposed rocks; detached boulders were totally fractured or disintegrated. The fire affected six carbonate units -- various types of chalk, limestone, and dolomite. The burned flakes show a consistent tendency towards flatness, in all lithologies, as 85%-95% of the flakes were detached in the form of blades, plates, and slabs. The effects of the fire depend to a large extent on the rocks' physical properties and vary with lithology: the most severe response was found in the chalk formations which are covered by calcrete (Nari crusts). These rocks reacted by extreme exfoliation, at an average depth of 7.7 to 9.6 cm and a maximum depth of 20 cm. The flakes formed in chalk were thicker, longer, and wider than those of limestone or dolomite formations. Moreover, the chalk outcrops were exfoliated in a laminar structure, one above the other, to a depth of 10 cm and more. Their shape also tended to be blockier or rod-like. In contrast, the limestone flakes were the thinnest, with 99% of them shaped like blades and plates. Scorched and blackened faces under the upper layer of spalls provided strong evidence that chalk breakdown took place at an early stage of the fire. The extreme response of the chalks can be explained by the laminar structure of the Nari, which served as planes of weakness for the rock destruction. Three years after the fire, the rocks continue to exfoliate and break down internally. As the harder surface of the Nari was removed, the more brittle underlying chalk is exposed to erosion. If fires can obliterate boulders in a single wildfire event, it follows that wildfires may serve as limiting agents in the geomorphic evolution of slopes. However, it is difficult to estimate the frequency of high-intensity fires in the Carmel region

  5. ECOLOGICAL, ECONOMIC AND SOCIAL ISSUES OF IMPLEMENTING CARBON DIOXIDE SEQUESTRATION TECHNOLOGIES IN THE OIL AND GAS INDUSTRY IN RUSSIA

    OpenAIRE

    Alexey Cherepovitsyn; Alina Ilinova

    2016-01-01

    The objective of this paper is to define the main approaches to the implementation of carbon dioxide sequestration technologies in the oil and gas industry in Russia, and also to identify ecological, economic and social issues of their usage. Promotion of the technology of carbon dioxide (CO2) sequestration by means of capturing and injecting it into underground reservoirs is a promising mechanism of reducing carbon dioxide concentration. Carbon capture and storage (CCS) technologies might be...

  6. Soil carbon sequestration and biochar as negative emission technologies.

    Science.gov (United States)

    Smith, Pete

    2016-03-01

    Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr(-1) ) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization. PMID:26732128

  7. Accelerated Carbonation of Steel Slags Using CO2 Diluted Sources: CO2 Uptakes and Energy Requirements

    OpenAIRE

    Baciocchi, Renato; Costa, Giulia; Polettini, Alessandra; Pomi, Raffaella; Stramazzo, Alessio; Zingaretti, Daniela

    2016-01-01

    This work presents the results of carbonation experiments performed on Basic Oxygen Furnace (BOF) steel slag samples employing gas mixtures containing 40 and 10% CO2 vol. simulating the gaseous effluents of gasification and combustion processes respectively, as well as 100% CO2 for comparison purposes. Two routes were tested, the slurry-phase (L/S = 5 l/kg, T = 100°C and Ptot = 10 bar) and the thin-film (L/S = 0.3–0.4 l kg, T = 50°C and Ptot = 7–10 bar) routes. For each one, the CO2 uptake ac...

  8. Assessment of Carbon Tetrachloride Groundwater Transport in Support of the Hanford Carbon Tetrachloride Innovative Technology Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Murray, Christopher J.; Cole, Charles R.; Cameron, Richard J.; Johnson, Michael D.; Skeen, Rodney S.; Johnson, Christian D.

    2001-07-13

    Groundwater modeling was performed in support of the Hanford Carbon Tetrachloride Innovative Treatment Remediation Demonstration (ITRD) Program. The ITRD program is facilitated by Sandia National Laboratory for the Department of Energy Office of Science and Technology. This report was prepared to document the results of the modeling effort and facilitate discussion of characterization and remediation options for the carbon tetrachloride plume among the ITRD participants. As a first step toward implementation of innovative technologies for remediation of the carbon tetrachloride (CT) plume underlying the 200-West Area, this modeling was performed to provide an indication of the potential impact of the CT source on the compliance boundary approximately 5000 m distant. The primary results of the modeling bracket the amount of CT source that will most likely result in compliance/non-compliance at the boundary and the relative influence of the various modeling parameters.

  9. Accelerated carbonation of steel slags using CO2 diluted sources: CO2 uptakes and energy requirements

    Directory of Open Access Journals (Sweden)

    Renato eBaciocchi

    2016-01-01

    Full Text Available This work presents the results of carbonation experiments performed on Basic Oxygen Furnace (BOF steel slag samples employing gas mixtures containing 40 and 10% CO2 vol. simulating the gaseous effluents of gasification and combustion processes respectively, as well as 100% CO2 for comparison purposes. Two routes were tested, the slurry phase (L/S=5 l/kg, T=100 °C and Ptot=10 bar and the thin film (L/S =0.3-0.4 l/kg, T=50 °C and Ptot=7-10 bar routes. For each one, the CO2 uptake achieved as a function of the reaction time was analyzed and on this basis the energy requirements associated to each carbonation route and gas mixture composition were estimated considering to store the CO2 emissions of a medium size natural gas fired power plant (20 MW. For the slurry phase route, maximum CO2 uptakes ranged from around 8% at 10% CO2, to 21.1% (BOF-a and 29.2% (BOF-b at 40% CO2 and 32.5% (BOF-a and 40.3% (BOF-b at 100% CO2. For the thin film route, maximum uptakes of 13% (BOF-c and 19.5% (BOF-d at 40% CO2, and 17.8% (BOF-c and 20.2% (BOF-d at 100% were attained. The energy requirements of the two analyzed process routes appeared to depend chiefly on the CO2 uptake of the slag. For both process route, the minimum overall energy requirements were found for the tests with 40% CO2 flows (i.e. 1400-1600 MJ/t CO2 for the slurry phase and 2220-2550 MJ/t CO2 for the thin film route.

  10. Carbon nanotube-coating accelerated cell adhesion and proliferation on poly (L-lactide)

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Eri, E-mail: erieri@den.hokudai.ac.jp [Graduate School of Dental Medicine, Hokkaido University, Sapporo (Japan); Akasaka, Tsukasa [Graduate School of Dental Medicine, Hokkaido University, Sapporo (Japan); Uo, Motohiro [Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo (Japan); Takita, Hiroko; Watari, Fumio; Yokoyama, Atsuro [Graduate School of Dental Medicine, Hokkaido University, Sapporo (Japan)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer The surface of a polylactic acid (PLLA) was coated multiwalled carbon nanotubes (MWCNTs). Black-Right-Pointing-Pointer MWCNT-coated PLLA showed remarkable higher wettability than uncoated PLLA. Black-Right-Pointing-Pointer More Human osteosarcoma cell line (Saos2) adhered on the CNT-coated than those on uncoated PLLA at 2 h after seeding. Black-Right-Pointing-Pointer MWCNT-coating on PLLA improved the surface wettability and initial cell attachment at early stage. - Abstract: The surface of a polylactic acid (PLLA) was coated multiwalled carbon nanotubes (MWCNTs) in order to improve the surface properties. In addition, its surface characteristics and cell culturing properties were examined. Whole surface of PLLA was homogeneously covered by MWCNTs maintained a unique tubular structure. MWCNT-coated PLLA showed remarkable higher wettability than uncoated PLLA. Human osteosarcoma cell line (Saos2) adhered well on the CNT-coated PLLA whereas there are few cells attached on the uncoated PLLA at 2 h after seeding. The number of the cells on uncoated PLLA was still smaller than on the MWCNT-coated PLLA at 1 and 3 days. Moreover, The DNA content in the cells attached to the MWCNT-coated PLLA was significantly higher than that on the uncoated PLLA (p < 0.05) at 1 and 3 days. There was no significant difference between the scaffolds for ALP activity normalized by DNA content at both term (p > 0.1). Therefore MWCNT-coating on PLLA improved the surface wettability and initial cell attachment at early stage.

  11. Optimal Strategies for Low Carbon Supply Chain with Strategic Customer Behavior and Green Technology Investment

    Directory of Open Access Journals (Sweden)

    Wen Jiang

    2016-01-01

    Full Text Available Climate change is mainly caused by excessive emissions of carbon dioxide and other greenhouse gases. In order to reduce carbon emissions, cap and trade policy is implemented by governments in many countries, which has significant impacts on the decisions of companies at all levels of the low carbon supply chain. This paper investigates the decision-making and coordination of a low carbon supply chain consisting of a low carbon manufacturer who produces one product and is allowed to invest in green technology to reduce carbon emissions in production and a retailer who faces stochastic demands formed by homogeneous strategic customers. We investigate the optimal production, pricing, carbon trading, and green technology investment strategies of the low carbon supply chain in centralized (including Rational Expected Equilibrium scenario and quantity commitment scenario and decentralized settings. It is demonstrated that quantity commitment strategy can improve the profit of the low carbon supply chain with strategic customer behavior. We also show that the performance of decentralized supply chain is lower than that of quantity commitment scenario. We prove that the low carbon supply chain cannot be coordinated by revenue sharing contract but by revenue sharing-cost sharing contract.

  12. Energy technologies evaluated against climate targets using a cost and carbon trade-off curve.

    Science.gov (United States)

    Trancik, Jessika E; Cross-Call, Daniel

    2013-06-18

    Over the next few decades, severe cuts in emissions from energy will be required to meet global climate-change mitigation goals. These emission reductions imply a major shift toward low-carbon energy technologies, and the economic cost and technical feasibility of mitigation are therefore highly dependent upon the future performance of energy technologies. However, existing models do not readily translate into quantitative targets against which we can judge the dynamic performance of technologies. Here, we present a simple, new model for evaluating energy-supply technologies and their improvement trajectories against climate-change mitigation goals. We define a target for technology performance in terms of the carbon intensity of energy, consistent with emission reduction goals, and show how the target depends upon energy demand levels. Because the cost of energy determines the level of adoption, we then compare supply technologies to one another and to this target based on their position on a cost and carbon trade-off curve and how the position changes over time. Applying the model to U.S. electricity, we show that the target for carbon intensity will approach zero by midcentury for commonly cited emission reduction goals, even under a high demand-side efficiency scenario. For Chinese electricity, the carbon intensity target is relaxed and less certain because of lesser emission reductions and greater variability in energy demand projections. Examining a century-long database on changes in the cost-carbon space, we find that the magnitude of changes in cost and carbon intensity that are required to meet future performance targets is not unprecedented, providing some evidence that these targets are within engineering reach. The cost and carbon trade-off curve can be used to evaluate the dynamic performance of existing and new technologies against climate-change mitigation goals. PMID:23560987

  13. Accelerated life tests of specimen heat pipe from Communication Technology Satellite (CTS) project

    Science.gov (United States)

    Tower, L. K.; Kaufman, W. B.

    1977-01-01

    A gas-loaded variable conductance heat pipe of stainless steel with methanol working fluid identical to one now on the CTS satellite was life tested in the laboratory at accelerated conditions for 14 200 hours, equivalent to about 70 000 hours at flight conditions. The noncondensible gas inventory increased about 20 percent over the original charge. The observed gas increase is estimated to increase operating temperature by about 2.2 C, insufficient to harm the electronic gear cooled by the heat pipes in the satellite. Tests of maximum heat input against evaporator elevation agree well with the manufacturer's predictions.

  14. Prospective Environmental Impacts of Selected Low-Carbon Electricity Technologies

    OpenAIRE

    Bouman, Evert A.

    2015-01-01

    Abstract: As one of the main contributors to greenhouse gas (GHG) emissions, the global electricity production sector faces the challenge of mitigating its emissions by transitioning towards cleaner production technologies. In light of this transition, it has been shown that even though renewable energy technologies have clear benefits over fossil generation technologies, there are trade-offs from an environmental and material perspective (Hertwich et al. 2015; Singh et al. 201...

  15. Soil carbon sequestration and biochar as negative emission technologies.

    Science.gov (United States)

    Smith, Pete

    2016-03-01

    Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr(-1) ) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization.

  16. Accelerating the Pace of Change in Energy Technologies Through an Integrated Federal Energy Policy

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-11-01

    In this report, the President’s Council of Advisors on Science and Technology (PCAST) calls for the development of a coordinated government-wide Federal energy policy. This will be a major undertaking, given the large number of Federal policies that affect the development, implementation, and use of energy technologies. For that reason, we recommend that the Administration initiate a process analogous to the Quadrennial Defense Review undertaken every four years by the Department of Defense

  17. Algal-based CO2 Sequestration Technology and Global Scenario of Carbon Credit Market: A Review

    Directory of Open Access Journals (Sweden)

    Shailendra Kumar Singh

    2016-08-01

    Full Text Available The objective of this paper is to provide an overview of the global and national scenario of Carbon credit. This paper will also discuss the advantages of the algae-based carbon capture technology in growing carbon credit market. Carbon Dioxide (CO2, the most important greenhouse gas produced by combustion of fuels, has become a cause of global panic as its concentration in the Earth’s atmosphere has been rising alarmingly. However, it is now turning into a product that helps people, countries, consultants, traders, corporations and even farmers earn billion of rupees. A carbon credit is a generic term for any tradable certificate or permit representing the right to emit one tone of CO2 or CO2 equivalent (CO2-e. Businesses can exchange, buy or sell carbon credits in the international markets at the prevailing market price. India and China are likely to emerge as biggest seller and Europe is going to be biggest buyers of carbon credits. Using algae for reduction the CO2 concentration in the atmosphere is known as algae-based carbon capture technology. This new technology has attracted companies that need inexpensive CO2 sequestration solutions. Algae farming emerge as the best CO2 sequestration technique in comparison with other methods.

  18. [Effects of ginkgo diterpene lactones meglumine injection's activated carbon adsorption technology on officinal components].

    Science.gov (United States)

    Zhou, En-li; Wang, Ren-jie; Li, Miao; Wang, Wei; Xu, Dian-hong; Hu, Yang; Wang, Zhen-zhong; Bi, Yu-an; Xiao, Wei

    2015-10-01

    With the diversion rate of ginkgolide A, B, K as comprehensive evaluation indexes, the amount of activated carbon, ad- sorption time, mix rate, and adsorption temperature were selected as factors, orthogonal design which based on the evaluation method of information entropy was used to optimize activated carbon adsorption technology of ginkgo diterpene lactones meglumine injection. Opti- mized adsorption conditions were as follows: adsorbed 30 min with 0.2% activated carbon in 25 °C, 40 r ·min⁻¹, validation test re- sult display. The optimum extraction condition was stable and feasible, it will provide a basis for ginkgo diterpene lactone meglumine injection' activated carbon adsorption process.

  19. Design tools for a DNA-guided self-assembling carbon nanotube technology

    Science.gov (United States)

    Dwyer, C.; Johri, V.; Cheung, M.; Patwardhan, J.; Lebeck, A.; Sorin, D.

    2004-09-01

    The shift in technology away from silicon complementary metal-oxide semiconductors (CMOS) to novel nanoscale technologies requires new design tools. In this paper, we explore one particular nanotechnology: carbon nanotube transistors that are self-assembled into circuits by using DNA. We develop design tools and demonstrate how to use them to develop circuitry based on this nanotechnology.

  20. Accelerators for Cancer Therapy

    Science.gov (United States)

    Lennox, Arlene J.

    2000-05-30

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

  1. A low carbon industrial revolution? Insights and challenges from past technological and economic transformations

    International Nuclear Information System (INIS)

    Recent efforts to promote a transition to a low carbon economy have been influenced by suggestions that a low carbon transition offers challenges and might yield economic benefits comparable to those of the previous industrial revolutions. This paper examines these arguments and the challenges facing a low carbon transition, by drawing on recent thinking on the technological, economic and institutional factors that enabled and sustained the first (British) industrial revolution, and the role of ‘general purpose technologies’ in stimulating and sustaining this and subsequent industrial transformation processes that have contributed to significant macroeconomic gains. These revolutions involved profound, long drawn-out changes in economy, technology and society; and although their energy transitions led to long-run economic benefits, they took many decades to develop. To reap significant long-run economic benefits from a low carbon transition sooner rather than later would require systemic efforts and incentives for low carbon innovation and substitution of high-carbon technologies. We conclude that while achieving a low carbon transition may require societal changes on a scale comparable with those of previous industrial revolutions, this transition does not yet resemble previous industrial revolutions. A successful low carbon transition would, however, amount to a different kind of industrial revolution. - Highlights: ► Investigates lessons for a low carbon transition from past industrial revolutions. ► Explores the implications of ‘general purpose technologies’ and their properties. ► Examines analysis of ‘long waves’ of technological progress and diffusion. ► Draws insights for low carbon transitions and policy.

  2. Techno-economic and environmental analysis of low carbon energy technologies: Indian perspective

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Vijay Prakash; Kumar, Rahul; Kumar, Manish; Deswal, Surinder; Chandna, Pankaj

    2010-09-15

    In this paper, techno-economic and an environmental investigation and analysis of Low Carbon Technologies (LCTs) has been presented, with special emphasis on India. The paper identify, analyze and recommend, on the basis of available and collected / collated information and data, the promising and potential low carbon energy technology options suited to Indian conditions for grid connected power generation. The evaluation criteria adopted include - emission reduction potential, technological feasibility, and economic viability; and on its basis recommend a detailed action plan and strategy for guiding future research and development with a more focused approach considering current Indian policy framework.

  3. Low carbon Finland 2050. VTT clean energy technology strategies for society

    Energy Technology Data Exchange (ETDEWEB)

    Koljonen, T.; Simila, L.; Sipila, K. [and others

    2012-11-15

    The Low Carbon Finland 2050 project by VTT Technical Research Centre of Finland aims to assess the technological opportunities and challenges involved in reducing Finland's greenhouse gas emissions. A target for reduction is set as at least 80% from the 1990 level by 2050 as part of an international effort, which requires strong RD and D in clean energy technologies. Key findings of the project are presented in this publication, which aims to stimulate enlightening and multidisciplinary discussions on low-carbon futures for Finland. The project gathered together VTT's technology experts in clean energy production, smart energy infrastructures, transport, buildings, and industrial systems as well as experts in energy system modelling and foresight. VTT's leading edge 'Low Carbon and Smart Energy' enables new solutions with a demonstration that is the first of its kind in Finland, and the introduction of new energy technology onto national and global markets. (orig.)

  4. Multi-cavity complex controller with vector simulator for TESLA technology linear accelerator

    Science.gov (United States)

    Czarski, Tomasz; Pozniak, Krzysztof T.; Romaniuk, Ryszard S.; Szewinski, Jaroslaw

    2008-01-01

    A digital control, as the main part of the Low Level RF system, for superconducting cavities of a linear accelerator is presented. The FPGA based controller, supported by MATLAB system, was developed to investigate a novel firmware implementation. The complex control algorithm based on the non-linear system identification is the proposal verified by the preliminary experimental results. The general idea is implemented as the Multi-Cavity Complex Controller (MCC) and is still under development. The FPGA based controller executes procedure according to the prearranged control tables: Feed-Forward, Set-Point and Corrector unit, to fulfill the required cavity performance: driving in the resonance during filling and field stabilization for the flattop range. Adaptive control algorithm is applied for the feed-forward and feedback modes. The vector Simulator table has been introduced for an efficient verification of the FPGA controller structure. Experimental results of the internal simulation, are presented for a cavity representative condition.

  5. IAEA workshop on 'Technology and applications of accelerator driven systems (ADS)'. Working material

    International Nuclear Information System (INIS)

    The objective of this workshop was to familiarize the students with the status of the R and D activities in the areas of: General Concept and System Studies, Accelerator, Target, Sub-Critical Core, Fuel Development, Fuel Cycle Studies. Participants were given a review of ADS designs presently under consideration. Participants studied the theoretical foundation of ADS design work, identified the most problematic areas as well as the limitations of the simulation methods. Based on the discussion of the impact of the present uncertainties on the performance of the ADS, the needs for data and methods development and validation work were identified. Eighteen participants from 13 different countries namely (Argentina, Brazil, Bulgaria, Belarus, Croatia, India, Indonesia, Iran, Kazakhstan, Russian Federation, Sudan, Slovakia and Turkey) took part in the Workshop

  6. Engaging the public with low-carbon energy technologies: Results from a Scottish large group process

    International Nuclear Information System (INIS)

    This paper presents the results of a large group process conducted in Edinburgh, Scotland investigating public perceptions of climate change and low-carbon energy technologies, specifically carbon dioxide capture and storage (CCS). The quantitative and qualitative results reported show that the participants were broadly supportive of efforts to reduce carbon dioxide emissions, and that there is an expressed preference for renewable energy technologies to be employed to achieve this. CCS was considered in detail during the research due to its climate mitigation potential; results show that the workshop participants were cautious about its deployment. The paper discusses a number of interrelated factors which appear to influence perceptions of CCS; factors such as the perceived costs and benefits of the technology, and people's personal values and trust in others all impacted upon participants’ attitudes towards the technology. The paper thus argues for the need to provide the public with broad-based, balanced and trustworthy information when discussing CCS, and to take seriously the full range of factors that influence public perceptions of low-carbon technologies. - Highlights: • We report the results of a Scottish large group workshop on energy technologies. • There is strong public support for renewable energy and mixed opinions towards CCS. • The workshop was successful in initiating discussion around climate change and energy technologies. • Issues of trust, uncertainty, costs, benefits, values and emotions all inform public perceptions. • Need to take seriously the full range of factors that inform perceptions

  7. Status of molten carbonate fuel cell technology development

    Science.gov (United States)

    Parsons, E. L., Jr.; Williams, M. C.; George, T. J.

    The MCFC technology has been identified by the DOE as a promising product for commercialization. Development of the MCFC technology supports the National Energy Strategy. Review of the status of the MCFC technology indicates that the MCFC technology developers are making rapid and significant progress. Manufacturing facility development and extensive testing is occurring. Improvements in performance (power density), lower costs, improved packaging, and scale up to full height are planned. MCFC developers need to continue to be responsive to end-users in potential markets. It will be market demands for the correct product definition which will ultimately determine the character of MCFC power plants. There is a need for continued MCFC product improvement and multiple product development tests.

  8. Quick Preparation of Moisture-Saturated Carbon Fiber-Reinforced Plastics and Their Accelerated Ageing Tests Using Heat and Moisture

    Directory of Open Access Journals (Sweden)

    Masao Kunioka

    2016-06-01

    Full Text Available A quick method involving the control of heat and water vapor pressure for preparing moisture-saturated carbon fiber-reinforced plastics (CFRP, 8 unidirectional prepreg layers, 1.5 mm thickness, epoxy resin has been developed. The moisture-saturated CFRP sample was obtained at 120 °C and 0.2 MPa water vapor in 72 h by this method using a sterilizer (autoclave. The bending strength and viscoelastic properties measured by a dynamic mechanical analysis (DMA remained unchanged during repetitive saturation and drying steps. No degradation and molecular structural change occurred. Furthermore an accelerated ageing test with two ageing factors, i.e., heat and moisture was developed and performed at 140–160 °C and 0.36–0.62 MPa water vapor pressure by using a sealed pressure-proof stainless steel vessel (autoclave. The bending strength of the sample decreased from 1107 to 319 MPa at 160 °C and 0.63 MPa water vapor pressure in 9 days. Degraded samples were analyzed by DMA. The degree of degradation for samples was analyzed by DMA. CFRP and degraded CFRP samples were analyzed by using a surface and interfacial cutting analysis system (SAICAS and an electron probe micro-analyzer (EPMA equipped in a scanning electron microscope.

  9. Accelerated OH(-) transport in activated carbon air cathode by modification of quaternary ammonium for microbial fuel cells.

    Science.gov (United States)

    Wang, Xin; Feng, Cuijuan; Ding, Ning; Zhang, Qingrui; Li, Nan; Li, Xiaojing; Zhang, Yueyong; Zhou, Qixing

    2014-04-01

    Activated carbon (AC) is a promising catalyst for the air cathode of microbial fuel cells (MFCs) because of its high performance and low cost. To increase the performance of AC air cathodes, the acceleration of OH(-) transport is one of the most important methods, but it has not been widely investigated. Here we added quaternary ammonium to ACs by in situ anchoring of a quaternary ammonium/epoxide-reacting compound (QAE) or ex situ mixing with anion exchange resins in order to modify ACs from not only the external surface but also inside the pores. In 50 mM phosphate buffer solution (PBS), the in situ anchoring of QAE was a more effective way to increase the power. The highest power density of 2781 ± 36 mW/m(2), which is 10% higher than that of the control, was obtained using QAE-anchored AC cathodes. When the medium was switched to an unbuffered NaCl solution, the increase in maximum power density (885 ± 25 mW/m(2)) was in accordance with the anion exchange capacity (0.219 mmol/g). The highest power density of the anion exchange resin-mixed air cathode was 51% higher than that of the control, indicating that anion exchange is urgently needed in real wastewaters. Excess anchoring of QAE blocked both the mesopores and micropores, causing the power output to be inhibited. PMID:24597673

  10. Radio frequency for particle accelerators: evolution and anatomy of a technology

    CERN Document Server

    Vretenar, M

    2011-01-01

    This introductory lecture outlines the impressive progress of radio frequency technology, from the first table-top equipment to the present gigantic installations. The outcome of 83 years of evolution is subsequently submitted to an anatomical analysis, which allows identifying the main components of a modern RF system and their interrelations.

  11. An accelerated technique for a ceramic-pressed-to-metal restoration with CAD/CAM technology.

    Science.gov (United States)

    Lee, Ju-Hyoung

    2014-11-01

    The conventional fabrication of metal ceramic restorations depends on an experienced dental technician and requires a long processing time. However, complete-contour digital waxing and digital cutback with computer-aided design and computer-aided manufacturing (CAD/CAM) technology can overcome these disadvantages and provide a correct metal framework design and space for the ceramic material. PMID:24952883

  12. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Patrick Gonzalez; Sandra Brown; Jenny Henman; Zoe Kant; Sarah Woodhouse Murdock; Neil Sampson; Gilberto Tiepolo; Tim Pearson; Sarah Walker; Miguel Calmon

    2006-01-01

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st , 2005 and June 30th, 2005. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  13. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Patrick Gonzalez; Sandra Brown; Sarah Woodhouse Murdock; Jenny Henman; Zoe Kant; Gilberto Tiepolo; Tim Pearson; Neil Sampson; Miguel Calmon

    2005-10-01

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st , 2005 and June 30th, 2005. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  14. When should green technology support policies supplement the carbon price? The case of the electricity sector

    International Nuclear Information System (INIS)

    This thesis contributes to the literature on optimal policy choice. It studies the use of policy combinations to mitigate greenhouse gases emissions from electricity production. One finding applies to cases where uncertainty is such that the risk of a nil carbon price cannot be excluded. A cap on emissions alone may then not trigger enough abatements, justifying the addition of e.g. a renewable subsidy. When considering a transition toward a carbon free electricity sector, capital accumulation causes complex dynamic effects to happen. We find that decisions taken by comparing the leveled costs of abatement technologies, even including carbon costs, would favor intermediate technologies (e.g. gas plants) to the detriment of more-expensive but lower-carbon technologies (renewable power), leading to a suboptimal investment schedule. This thesis also studies the effects of marginal policy changes in a mix comprising the main French instruments. We find that surprisingly, adding a tariff for renewables financed by a tax on electricity consumption to a cap on emissions and a subsidy for energy efficiency will reduce the consumer electricity price when the non-renewable production is fixed and does not depend on the carbon price. The assessment of the French climate policies in the electricity sector shows that overlapping policies for mitigation may be justified by multiple carbon price failures, even if the ideal long-term policy mix depends on the carbon price trajectory. (author)

  15. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Sandra Brown; Patrick Gonzalez; Brent Sohngen; Neil Sampson; Mark Anderson; Miguel Calmon; Sean Grimland; Ellen Hawes; Zoe Kant; Dan Morse; Sarah Woodhouse Murdock; Arlene Olivero; Tim Pearson; Sarah Walker; Jon Winsten; Chris Zganjar

    2006-09-30

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st and July 30th 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  16. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Sandra Brown; Patrick Gonzalez; Brent Sohngen; Neil Sampson; Mark Anderson; Miguel Calmon; Sean Grimland; Zoe Kant; Dan Morse; Sarah Woodhouse Murdock; Arlene Olivero; Tim Pearson; Sarah Walker; Jon Winsten; Chris Zganjar

    2007-03-31

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between January 1st and March 31st 2007. The specific tasks discussed include: Task 1--carbon inventory advancements; Task 2--emerging technologies for remote sensing of terrestrial carbon; Task 3--baseline method development; Task 4--third-party technical advisory panel meetings; Task 5--new project feasibility studies; and Task 6--development of new project software screening tool.

  17. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Sandra Brown; Patrick Gonzalez; Brent Sohngen; Neil Sampson; Mark Anderson; Miguel Calmon; Sean Grimland; Zoe Kant; Dan Morse; Sarah Woodhouse Murdock; Arlene Olivero; Tim Pearson; Sarah Walker; Jon Winsten; Chris Zganjar

    2006-12-31

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between October 1st and December 31st 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  18. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Patrick Gonzalez; Sandra Brown; Jenny Henman; Sarah Woodhouse Murdock; Neil Sampson; Tim Pearson; Sarah Walker; Zoe Kant; Miguel Calmon

    2006-04-01

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between January 1st and March 31st 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  19. Effect of Cr content, hardness and micro structure on flow-accelerated corrosion in carbon steel pipes. Examination of replaced carbon steel pipes

    International Nuclear Information System (INIS)

    68 replaced carbon steel piping in secondary system of pressurized water reactor (PWR) has been investigated by visual examination for checking thinning conditions. It is well known that the flow-accelerated corrosion (FAC) was inhibited by traces of Cr in steel. Therefore, the chemical compositions of those steels have been measured. In addition, the micro structure and hardness of those steels have been investigated. And the relationship between those material variables and FAC rate was considered. As the results, (1) The Cr contents in those steels were below 0.1 wt% except one sample. Minute quantities of chromium increase the resistance against FAC. But the water velocity was thought to be the dominant factor rather than chemical composition in steel, at least such as below 0.1%Cr. (2) Hardness of all piping has been satisfied the specifications of each materials. The hardness of steels was not correlated with wall thinning rate. (3) The micro structure was also not correlated with FAC rate. (author)

  20. STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH

    Energy Technology Data Exchange (ETDEWEB)

    Robert Hurt; Eric Suuberg; John Veranth; Xu Chen

    2003-05-20

    The overall objective of the present project is to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific research issues to be addressed include: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity; and (3) the kinetics and mechanism of ash ozonation. This data will provide scientific and engineering support of the ongoing process development activities. During this fourth project period we completed the characterization of ozone-treated carbon surfaces and wrote a comprehensive report on the mechanism through which ozone suppresses the adsorption of concrete surfactants.

  1. Prospects in using carbon-carbon composite materials based on viscose carbon fibers for the space technology needs

    International Nuclear Information System (INIS)

    Due to the unique combination of low density, high mechanical strength under elevated temperatures, high resistance to thermal shock loads and ablation resistance, carbon-carbon composite materials (CCCM) are widely used for manufacturing of highly thermally loaded structural components. The important scientific and technical difficulty is to increase and stabilize CCCM properties, reduce cost and leads to searching for new raw materials and engineering solutions. The article describes the prospects of replacing carbon fiber fills based on PAN-precursors which are traditionally used for producing CCCM by carbon fillers on the basis of viscose raw material; shows the advantages of using viscose-based carbon fibers when forming products of complex shape as well as the possibility of obtaining products with high functional characteristics. The creation of CCCM of layered reinforcement structure, in which carbon fabric layers interleave with layers of discontinuous carbon fibers, enabled to increase the overall density of carbon composites, to ensure sufficiently high level of mechanical characteristics and resistance to ablation

  2. Informed public preferences for electricity portfolios with CCS and other low-carbon technologies.

    Science.gov (United States)

    Fleishman, Lauren A; De Bruin, Wändi Bruine; Morgan, M Granger

    2010-09-01

    Public perceptions of carbon capture and sequestration (CCS) and other low-carbon electricity-generating technologies may affect the feasibility of their widespread deployment. We asked a diverse sample of 60 participants recruited from community groups in Pittsburgh, Pennsylvania to rank 10 technologies (e.g., coal with CCS, natural gas, nuclear, various renewables, and energy efficiency), and seven realistic low-carbon portfolios composed of these technologies, after receiving comprehensive and carefully balanced materials that explained the costs and benefits of each technology. Rankings were obtained in small group settings as well as individually before and after the group discussions. The ranking exercise asked participants to assume that the U.S. Congress had mandated a reduction in carbon dioxide emissions from power plants to be built in the future. Overall, rankings suggest that participants favored energy efficiency, followed by nuclear power, integrated gasification combined-cycle coal with CCS and wind. The most preferred portfolio also included these technologies. We find that these informed members of the general public preferred diverse portfolios that contained CCS and nuclear over alternatives once they fully understood the benefits, cost, and limitations of each. The materials and approach developed for this study may also have value in educating members of the general public about the challenges of achieving a low-carbon energy future. PMID:20561264

  3. STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH; SEMIANNUAL

    International Nuclear Information System (INIS)

    The overall objective of the present project is to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific research issues to be addressed include: the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; the effect of various low-NOx firing modes on ash properties and adsorptivity; and the kinetics and mechanism of ash ozonation. This data will provide scientific and engineering support of the ongoing process development activities. This first project period, experiments were carried out to better understand the fundamental nature of the ozonation effect on ash. Carbon surfaces were characterized by surfactant adsorption, and by X-ray Photoelectron Spectroscopy before and after oxidation, both by air at 440 C and by ozone at room temperature. The results strongly suggest that the beneficial effect of ozonation is in large part due to chemical modification of the carbon surfaces

  4. Accelerator-based electron beam technologies for modification of bipolar semiconductor devices

    Science.gov (United States)

    Pavlov, Y. S.; Surma, A. M.; Lagov, P. B.; Fomenko, Y. L.; Geifman, E. M.

    2016-09-01

    Radiation processing technologies for static and dynamic parameters modification of silicon bipolar semiconductor devices implemented. Devices of different classes with wide range of operating currents (from a few mA to tens kA) and voltages (from a few volts to 8 kV) were processed in large scale including power diodes and thyristors, high-frequency bipolar and IGBT transistors, fast recovery diodes, pulsed switching diodes, precise temperature- compensated Zener diodes (in general more than fifty 50 device types), produced by different enterprises. The necessary changes in electrical parameters and characteristics of devices caused by formation in the device structures of electrically active and stable in the operating temperature range sub-nanoscale recombination centres. Technologies implemented in the air with high efficiency and controllability, and are an alternative to diffusion doping of Au or Pt, γ-ray, proton and low-Z ion irradiation.

  5. A Comparative Study of In-Gel Digestions Using Microwave and Pressure-Accelerated Technologies

    OpenAIRE

    Alvarado, Rudy; Tran, Diana; Ching, Bonnie; Phinney, Brett S.

    2010-01-01

    One of the most popular methods to prepare tryptic peptides for bottom-up proteomic analysis is in-gel digestion. To date, there have been few studies comparing various digestion methods. In this study, we compare the efficiency of several popular in-gel digestion methods, along with new technologies that may improve digestion efficiency, using a human epidermoid carcinoma cell lysate protein standard. The efficiency of each protocol was based on the average number of proteins identified and ...

  6. Development of accelerated dewatering technology for managing oil sands fine fluid tailings

    Energy Technology Data Exchange (ETDEWEB)

    Lahaie, R. [Syncrude Canada Ltd., Fort McMurray, AB (Canada); Seto, J.T.C. [BGC Engineering Inc., Edmonton, AB (Canada); Chapman, D. [O' Kane Consultants Inc., Saskatoon, SK (Canada); Carrier, W.D. III [Argila Enterprises Inc., Lakeland, FL (United States)

    2010-07-01

    This article discussed an accelerated dewatering technique being applied and tested for managing fine fluid tailings produced from oil sands mining. The process involved rim ditching and a decant system to promote the drainage of surface waters and enhance the drying and densification of mature fine tailings (MFT). To field test the procedure, a deposit containing 60,000 cubic metres of in-line flocculated MFT was constructed and instrumented to monitor consolidation and dewatering response of the MFT deposit over time. Ten months after being filled, the deposit had settled about 1.2 metres, which corresponds to a 19 percent reduction in volume relative to initial filling. The field test will continue for several more years, during which time the deposit will continue to be monitored and sampled. The Florida phosphate industry has used rim ditching for over 20 years, but the process had never before been applied to oil sand tailings. The paper discussed the particular consolidation behaviour of MFT, the rim ditch concept, the layout of the containment pit and instrumentation, the pit filling procedure, and post-filling observations. 6 refs., 12 figs.

  7. Accelerator operations

    International Nuclear Information System (INIS)

    This section is concerned with the operation of both the tandem-linac system and the Dynamitron, two accelerators that are used for entirely different research. Developmental activities associated with the tandem and the Dynamitron are also treated here, but developmental activities associated with the superconducting linac are covered separately because this work is a program of technology development in its own right

  8. Worldwide Innovations in the Development of Carbon Capture Technologies and the Utilization of CO2

    OpenAIRE

    Markewitz, P.; Kuckshinrichs, W.; Leitner, W.; Linssen, J.; Zapp, P.; Bongartz, R. (Roswitha); Schreiber, A.; Müller, T. (Tessa)

    2012-01-01

    While Carbon Capture and Storage (CCS) technologies are being developed with the focus of capturing and storing CO2 in huge quantities, new methods for the chemical exploitation of carbon dioxide (CCU) are being developed in parallel. The intensified chemical or physical utilization of CO2 is targeted at generating value from a limited part of the CO2 stream and developing better and more efficient chemical processes with reduced CO2 footprint. Here, we compare the status of the three main li...

  9. The investments in renewable energy sources: do low carbon economies better invest in green technologies?

    OpenAIRE

    Antonio Angelo Romano; Giuseppe Scandurra (eds.)

    2011-01-01

    The aim of this study is to analyse the driving of investment in renewable energy sources in low carbon and high carbon economies. To address these issues, a dynamic panel analysis of the renewable investment in a sample of 29 countries was proposed. Results demonstrate that the dynamic of investments in renewable sources is similar in the two panels, and depends by nuclear power generation, GDP and technological efficiency. Results show that countries try to reduce their environmental footpr...

  10. A MERGE model with endogenous technological change and the cost of carbon stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Kypreos, Socrates [Laboratory of Energy Systems Analysis, The Energy Departments, Energy Economics Group, Paul Scherrer Institute, CH-5232, Villigen PSI (Switzerland)

    2007-11-15

    Two stylized backstop systems with endogenous technological learning (ETL) are introduced in the ''model for evaluating regional and global effects'' (MERGE): one for the electric and the other for the non-electric markets. Then the model is applied to analyze the impacts of ETL on carbon-mitigation policy, contrasting the resulting impacts with the situation without ETL. We model research and development (R and D) spending and learning subsidies for the demonstration and deployment stage as control variables, and we investigate the ability of this extra spending to create path-dependent experience and knowledge to aid in the implementation of carbon-free technologies. Based on model estimations and sensitivity analyses, we conclude that increased commitments for the development of new technologies to advance along their learning curves has a potential for substantial reductions in the cost of mitigating climate change and thereby helping to reach safe concentrations of carbon in the atmosphere. (author)

  11. Comparison of CO2 capture by ex-situ accelerated carbonation and in in-situ naturally weathered coal fly ash.

    Science.gov (United States)

    Muriithi, Grace N; Petrik, Leslie F; Fatoba, Olanrewaju; Gitari, Wilson M; Doucet, Frédéric J; Nel, Jaco; Nyale, Sammy M; Chuks, Paul E

    2013-09-30

    Natural weathering at coal power plants ash dams occurs via processes such as carbonation, dissolution, co-precipitation and fluid transport mechanisms which are responsible for the long-term chemical, physical and geochemical changes in the ash. Very little information is available on the natural carbon capture potential of wet or dry ash dams. This study investigated the extent of carbon capture in a wet-dumped ash dam and the mineralogical changes promoting CO2 capture, comparing this natural phenomenon with accelerated ex-situ mineral carbonation of fresh fly ash (FA). Significant levels of trace elements of Sr, Ba and Zr were present in both fresh and weathered ash. However Nb, Y, Sr, Th and Ba were found to be enriched in weathered ash compared to fresh ash. Mineralogically, fresh ash is made up of quartz, mullite, hematite, magnetite and lime while weathered and carbonated ashes contained additional phases such as calcite and aragonite. Up to 6.5 wt % CO2 was captured by the fresh FA with a 60% conversion of calcium to CaCO3 via accelerated carbonation (carried out at 2 h, 4Mpa, 90 °C, bulk ash and a S/L ratio of 1). On the other hand 6.8 wt % CO2 was found to have been captured by natural carbonation over a period of 20 years of wet disposed ash. Thus natural carbonation in the ash dumps is significant and may be effective in capturing CO2.

  12. Laser ultrasound technology for fault detection on carbon fiber composites

    Science.gov (United States)

    Seyrkammer, Robert; Reitinger, Bernhard; Grün, Hubert; Sekelja, Jakov; Burgholzer, Peter

    2014-05-01

    The marching in of carbon fiber reinforced polymers (CFRPs) to mass production in the aeronautic and automotive industry requires reliable quality assurance methods. Laser ultrasound (LUS) is a promising nondestructive testing technique for sample inspection. The benefits compared to conventional ultrasound (US) testing are couplant free measurements and an easy access to complex shapes due to remote optical excitation and detection. Here the potential of LUS is present on composite test panels with relevant testing scenarios for industry. The results are evaluated in comparison to conventional ultrasound used in the aeronautic industry.

  13. Low-carbon innovation and technology transfer in latecomer countries

    DEFF Research Database (Denmark)

    Lema, Rasmus; Lema, Adrian

    2016-01-01

    This paper examines the organizational arrangements for technology supply in solar photovoltaic projects in the Clean Development Mechanism (CDM). It shows that while lower middle-income countries typically import solar PV equipment into CDM projects, China, India and Thailand have begun to use n...

  14. Accelerated technology development by the use of critical point imaging SEM

    Science.gov (United States)

    Sanchez, Dominique; Hinschberger, Benôit; Bouckou, Loemba; Moreau, Olivier; Parisi, Paolo

    2015-03-01

    In order to optimize the time to market of the newest technology nodes and maximize their profitability, advanced semiconductor manufacturers need to adapt their yield enhancement strategies to their current development stage. During very early development, gross Defectivity at some critical process steps often makes it impractical to use broadband plasma or laser scanning micro-defect patterned wafer inspection techniques: such sensitive defect inspections capture a large number of defects, producing wafer defect maps so heavily populated that even wafer level signature are difficult to visualize.

  15. Carbon honeycomb grids for advanced lead-acid batteries. Part III: Technology scale-up

    Science.gov (United States)

    Kirchev, A.; Serra, L.; Dumenil, S.; Brichard, G.; Alias, M.; Jammet, B.; Vinit, L.

    2015-12-01

    The carbon honeycomb grid technology employs new carbon/carbon composites with ordered 3D structure instead of the classic lead-acid battery current collectors. The technology is laboratory scaled up from small size grids corresponding to electrodes with a capacity of 3 Ah to current collectors suitable for assembly of lead-acid batteries covering the majority of the typical lead-acid battery applications. Two series of 150 grids each (one positive and one negative) are manufactured using low-cost lab-scale equipment. They are further subjected to pasting with active materials and the resulting battery plates are assembled in 12 V AGM-VLRA battery mono-blocks for laboratory testing and outdoor demonstration in electric scooter replacing its original VRLAB pack. The obtained results demonstrate that the technology can replace successfully the state of the art negative grids with considerable benefits. The use of the carbon honeycomb grids as positive plate current collectors is limited by the anodic corrosion of the entire structure attacking both the carbon/carbon composite part and the electroplated lead-tin alloy coating.

  16. Workshop on CEBAF [Continuous Electron Beam Accelerator Facility] spectrometer magnet design and technology: Proceedings

    International Nuclear Information System (INIS)

    The planned experimental program at CEBAF includes high-resolution, large acceptance spectrometers and a large toroidal magnetic, detector. In order to take full advantage of the high quality beam characteristics, the performances required will make these devices quite unique instruments compared to existing facilities in the same energy range. Preliminary designs have shown that such performances can be reached, but key questions concerning design concepts and most appropriate and cost-effective technologies had to be answered before going further with the designs. It was the purpose of the Workshop on CEBAF Spectrometer Magnet Design and Technology, organized by the CEBAF Research and Engineering Divisions, to provide the most complete information about the state-of-the-art tools and techniques in magnet design and construction and to discuss the ones most appropriate to the CEBAF spectrometers. In addition, it is expected that this Workshop will be the staring point for further interactions and collaborations between international magnet experts and the CEBAF staff, during the whole process of designing and building the spectrometers

  17. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Sandra Brown; Patrick Gonzalez; Zoe Kant; Gilberto Tiepolo; Wilber Sabido; Ellen Hawes; Jenny Henman; Miguel Calmon; Michael Ebinger

    2004-07-10

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas impacts. The research described in this report occurred between July 1, 2002 and June 30, 2003. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: remote sensing for carbon analysis; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  18. ACCELERATING CLOSURE AT DOE SITES WITH EM'S SCIENCE AND TECHNOLOGY PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.S.; Toussaint, Craig R., Ph.D.; Gardner, E.J.

    2003-02-27

    Technical support is important for all U.S. Department of Energy (DOE) facilities facing difficult technical issues, aggressive remediation schedules, and tight budgets. It is especially vital for closure sites, which typically are smaller and have fewer resources available to apply to remediation activities. In many cases, closure sites and other small sites no longer have staff with the expertise required to overcome technical barriers on their own. As closure deadlines approach, special technical expertise is needed to identify, evaluate, and implement new and innovative approaches that will result in significant cost and schedule improvement for the waste disposition pathway. Site ''problem holders'' must have access to world-class scientific and engineering expertise from DOE national laboratories and research facilities, private industry, and universities to address immediate critical problems. In order to have confidence in the feasibility and results of innovative approaches, site contractors need to have the benefit of the valuable experiences of technicians who have faced similar problems and found solutions. The DOE Environmental Management (EM) Science and Technology (S&T) program recognizes the need of the closure sites to solve problems aggressively and is highly responsive to this need. Technical support from the S&T program can take many forms, such as providing expertise, reviewing the baseline, addressing a specific technical problem, evaluating commercially available technologies, or co-funding a high-risk alternative. This paper describes the approach by which closure sites are quickly and easily able to obtain technical support from the S&T program and provides examples of successfully completed and ongoing technical solutions activities.

  19. Preparation of a technology development roadmap for the Accelerator Transmutation of Waste (ATW) System : report of the ATW separations technologies and waste forms technical working group

    International Nuclear Information System (INIS)

    In response to a Congressional mandate to prepare a roadmap for the development of Accelerator Transmutation of Waste (ATW) technology, a Technical Working Group comprised of members from various DOE laboratories was convened in March 1999 for the purpose of preparing that part of the technology development roadmap dealing with the separation of certain radionuclides for transmutation and the disposal of residual radioactive wastes from these partitioning operations. The Technical Working Group for ATW Separations Technologies and Waste Forms completed its work in June 1999, having carefully considered the technology options available. A baseline process flowsheet and backup process were identified for initial emphasis in a future research, development and demonstration program. The baseline process combines aqueous and pyrochemical processes to permit the efficient separation of the uranium, technetium, iodine and transuranic elements from the light water reactor (LWR) fuel in the head-end step. The backup process is an all- pyrochemical system. In conjunction with the aqueous process, the baseline flowsheet includes a pyrochemical process to prepare the transuranic material for fabrication of the ATW fuel assemblies. For the internal ATW fuel cycle the baseline process specifies another pyrochemical process to extract the transuranic elements, Tc and 1 from the ATW fuel. Fission products not separated for transmutation and trace amounts of actinide elements would be directed to two high-level waste forms, one a zirconium-based alloy and the other a glass/sodalite composite. Baseline cost and schedule estimates are provided for a RD and D program that would provide a full-scale demonstration of the complete separations and waste production flowsheet within 20 years

  20. Preparation of a technology development roadmap for the Accelerator Transmutation of Waste (ATW) System : report of the ATW separations technologies and waste forms technical working group.

    Energy Technology Data Exchange (ETDEWEB)

    Collins, E.; Duguid, J.; Henry, R.; Karell, E.; Laidler, J.; McDeavitt, S.; Thompson, M.; Toth, M.; Williamson, M.; Willit, J.

    1999-08-12

    In response to a Congressional mandate to prepare a roadmap for the development of Accelerator Transmutation of Waste (ATW) technology, a Technical Working Group comprised of members from various DOE laboratories was convened in March 1999 for the purpose of preparing that part of the technology development roadmap dealing with the separation of certain radionuclides for transmutation and the disposal of residual radioactive wastes from these partitioning operations. The Technical Working Group for ATW Separations Technologies and Waste Forms completed its work in June 1999, having carefully considered the technology options available. A baseline process flowsheet and backup process were identified for initial emphasis in a future research, development and demonstration program. The baseline process combines aqueous and pyrochemical processes to permit the efficient separation of the uranium, technetium, iodine and transuranic elements from the light water reactor (LWR) fuel in the head-end step. The backup process is an all- pyrochemical system. In conjunction with the aqueous process, the baseline flowsheet includes a pyrochemical process to prepare the transuranic material for fabrication of the ATW fuel assemblies. For the internal ATW fuel cycle the baseline process specifies another pyrochemical process to extract the transuranic elements, Tc and 1 from the ATW fuel. Fission products not separated for transmutation and trace amounts of actinide elements would be directed to two high-level waste forms, one a zirconium-based alloy and the other a glass/sodalite composite. Baseline cost and schedule estimates are provided for a RD&D program that would provide a full-scale demonstration of the complete separations and waste production flowsheet within 20 years.

  1. Conceptual design of an integrated technology model for carbon policy assessment.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Dimotakes, Paul E. (NASA Jet Propulsion Laboratory, Pasadena, CA)

    2011-01-01

    This report describes the conceptual design of a technology choice model for understanding strategies to reduce carbon intensity in the electricity sector. The report considers the major modeling issues affecting technology policy assessment and defines an implementable model construct. Further, the report delineates the basis causal structure of such a model and attempts to establish the technical/algorithmic viability of pursuing model development along with the associated analyses.

  2. Inducing the international diffusion of carbon capture and storage technologies in the power sector

    OpenAIRE

    Vallentin, Daniel

    2007-01-01

    Although CO2 capture and storage(CCS) technologies are heatedly debated, many politicians and energy producers consider them to be a possible technical option to mitigate carbon dioxide from large-point sources. Hence, both national and international decision-makers devote a growing amount of capacities and financial resources to CCS in order to develop and demonstrate the technology and enable ist broad diffusion.The presented report concentrates on the influence of policy incentives on CCS ...

  3. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    Energy Technology Data Exchange (ETDEWEB)

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  4. The Effect of Government Actions on Environmental Technology Innovation: Applications to the Integrated Assessment of Carbon Sequestration Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E. S.; Hounshell, D. A.; Yeh, S.; Taylor, M.; Schrattenholzer, L.; Riahi, K.; Barreto, L.; Rao, S.

    2004-01-15

    This project seeks to improve the ability of integrated assessment models (IA) to incorporate changes in technology, especially environmental technologies, cost and performance over time. In this report, we present results of research that examines past experience in controlling other major power plant emissions that might serve as a reasonable guide to future rates of technological progress in carbon capture and sequestration (CCS) systems. In particular, we focus on U.S. and worldwide experience with sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) control technologies over the past 30 years, and derive empirical learning rates for these technologies. The patterns of technology innovation are captured by our analysis of patent activities and trends of cost reduction over time. Overall, we found learning rates of 11% for the capital costs of flue gas desulfurization (FGD) system for SO{sub 2} control, and 13% for selective catalytic reduction (SCR) systems for NO{sub x} control. We explore the key factors responsible for the observed trends, especially the development of regulatory policies for SO{sub 2} and NO{sub x} control, and their implications for environmental control technology innovation.

  5. Technologies of image guidance and the development of advanced linear accelerator systems for radiotherapy.

    Science.gov (United States)

    Wu, Vincent W C; Law, Maria Y Y; Star-Lack, Josh; Cheung, Fion W K; Ling, C Clifton

    2011-01-01

    As advanced radiotherapy approaches for targeting the tumor and sparing the normal tissues have been developed, the image guidance of therapy has become essential to directing and confirming treatment accuracy. To approach these goals, image guidance devices now include kV on-board imagers, kV/MV cone-beam CT systems, CT-on-rails, and mobile and in-room radiographic/fluoroscopic systems. Nonionizing sources, such as ultrasound and optical systems, and electromagnetic devices have been introduced to monitor or track the patient and/or tumor positions during treatment. In addition, devices have been designed specifically for monitoring and/or controlling respiratory motion. Optimally, image-guided radiation therapy systems should possess 3 essential elements: (1) 3D imaging of soft tissues and tumors, (2) efficient acquisition and comparison of the 3D images, and (3) an efficacious process for clinically meaningful intervention. Understanding and using these tools effectively is central to current radiotherapy practice. The implementation and integration of these devices continue to carry practical challenges, which emphasize the need for further development of the technologies and their clinical applications.

  6. Applications of the Strategic Defense Initiative's compact accelerators

    Science.gov (United States)

    Montanarelli, Nick; Lynch, Ted

    1991-12-01

    The Strategic Defense Initiative's (SDI) investment in particle accelerator technology for its directed energy weapons program has produced breakthroughs in the size and power of new accelerators. These accelerators, in turn, have produced spinoffs in several areas: the radio frequency quadrupole linear accelerator (RFQ linac) was recently incorporated into the design of a cancer therapy unit at the Loma Linda University Medical Center, an SDI-sponsored compact induction linear accelerator may replace Cobalt-60 radiation and hazardous ethylene-oxide as a method for sterilizing medical products, and other SDIO-funded accelerators may be used to produce the radioactive isotopes oxygen-15, nitrogen-13, carbon-11, and fluorine-18 for positron emission tomography (PET). Other applications of these accelerators include bomb detection, non-destructive inspection, decomposing toxic substances in contaminated ground water, and eliminating nuclear waste.

  7. Applications of the Strategic Defense Initiative's compact accelerators

    Science.gov (United States)

    Montanarelli, Nick; Lynch, Ted

    1991-01-01

    The Strategic Defense Initiative's (SDI) investment in particle accelerator technology for its directed energy weapons program has produced breakthroughs in the size and power of new accelerators. These accelerators, in turn, have produced spinoffs in several areas: the radio frequency quadrupole linear accelerator (RFQ linac) was recently incorporated into the design of a cancer therapy unit at the Loma Linda University Medical Center, an SDI-sponsored compact induction linear accelerator may replace Cobalt-60 radiation and hazardous ethylene-oxide as a method for sterilizing medical products, and other SDIO-funded accelerators may be used to produce the radioactive isotopes oxygen-15, nitrogen-13, carbon-11, and fluorine-18 for positron emission tomography (PET). Other applications of these accelerators include bomb detection, non-destructive inspection, decomposing toxic substances in contaminated ground water, and eliminating nuclear waste.

  8. Technological acceleration and organizational transformations in the upstream oil and gas industry; Acceleration technologique et transformations organisationnelles dans l'industrie d'exploration-production d'hydrocarbures

    Energy Technology Data Exchange (ETDEWEB)

    Isabelle, M

    2000-12-15

    The upstream oil and gas industry experienced a dramatic technological acceleration in the early 1970's. The relationships between the agents in this industry have themselves undergone deep changes since that date. This thesis shows that a tight link exists between the technological acceleration and the organizational transformations in the upstream oil and gas industry. In a first part, it focuses on the economic theory's developments concerning industrial organization. In a second part, it applies these developments to three types of relations: those between the owner-states of hydrocarbon resources and the international petroleum companies; those between the international petroleum companies and their subcontractors; and finally those between the international petroleum companies themselves. (author)

  9. Technology roadmap study on carbon capture, utilization and storage in China

    International Nuclear Information System (INIS)

    Carbon capture, utilization and storage (CCUS) technology will likely become an important approach to reduce carbon dioxide (CO2) emissions and optimize the structure of energy consumption in China in the future. In order to provide guidance and recommendations for CCUS Research, Development and Demonstration in China, a high level stakeholder workshop was held in Chongqing in June 2011 to develop a technology roadmap for the development of CCUS technology. This roadmap outlines the overall vision to provide technically viable and economically affordable technological options to combat climate change and facilitate socio-economic development in China. Based on this vision, milestone goals from 2010 to 2030 are set out in accordance with the technology development environment and current status in China. This study identifies the critical technologies in capture, transport, utilization and storage of CO2 and proposes technical priorities in the different stages of each technical aspect by evaluating indices such as the objective contribution rate and technical maturity, and gives recommendations on deployment of full-chain CCUS demonstration projects. Policies which would support CCUS are also suggested in this study. - Highlights: • A technology roadmap for CCUS development in China from 2010 to 2030 is presented. • Sound data and analysis in combination with expert workshops are used. • Critical technologies in CCUS are identified. • Priority actions of all stages are identified and proposed. • Guidance and recommendations for CCUS RD and D are provided

  10. STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH

    Energy Technology Data Exchange (ETDEWEB)

    Robert Hurt; Eric Suuberg; John Veranth; Xu Chen; Indrek Kulaots

    2004-02-13

    The overall objective of the present project was to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific issues addressed included: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity based on pilot-plant studies; and (3) the kinetics and mechanism of ash ozonation. This laboratory data has provided scientific and engineering support and underpinning for parallel process development activities. The development work on the ash ozonation process has now transitioned into a scale-up and commercialization project involving a multi-industry team and scheduled to begin in 2004. This report describes and documents the laboratory and pilot-scale work in the above three areas done at Brown University and the University of Utah during this three-year project.

  11. Accelerating innovation with prize rewards: History and typology of technology prizes and a new contest design for innovation in African agriculture

    OpenAIRE

    Masters, William A.; Delbecq, Benoit

    2008-01-01

    "This paper describes how governments and philanthropic donors could drive innovation through a new kind of technology contest. We begin by reviewing the history of technology prizes, which operate alongside private intellectual property rights and public R&D to accelerate and guide productivity growth towards otherwise-neglected social goals. Proportional “prize rewards” would modify the traditional winner-take-all approach, by dividing available funds among multiple winners in proportion to...

  12. The Case of the Missing Productivity Growth: Or, Does Information technology explain why productivity accelerated in the United States but not the United Kingdom?

    OpenAIRE

    Susanto Basu; Fernald, John G.; Nicholas Oulton; Sylaja Srinivasan

    2003-01-01

    Solow's paradox has disappeared in the United States but remains alive and well in the United Kingdom. In particular, the U.K. experienced an information and communications technology (ICT) investment boom in the 1990s in parallel with the U.S., but measured total factor productivity has decelerated rather than accelerated in recent years. We ask whether ICT can explain the divergent TFP performance in the two countries. Stories of ICT as a 'general purpose technology' suggest that measured T...

  13. THE APPLICATION AND DEVELOPMENT OF APPROPRIATE TOOLS AND TECHNOLOGIES FOR COST-EFFECTIVE CARBON SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Sandra Brown; Ellen Hawes; Zoe Kant; Miguel Calmon; Gilberto Tiepolo

    2002-09-01

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research projects is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas impacts. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: advanced videography testing; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  14. APPLICATION AND DEVELOPMENT OF APPROPRIATE TOOLS AND TECHNOLOGIES FOR COST-EFFECTIVE CARBON

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Sandra Brown; Ellen Hawes; Zoe Kant; Miguel Calmon; Patrick Gonzalez; Brad Kreps; Gilberto Tiepolo

    2003-09-01

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas impacts. The research described in this report occurred between July 1, 2002 and June 30, 2003. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: advanced videography testing; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  15. Barriers to the Transfer of Low-carbon Electricity Generation Technologies in Four Latin American Countries

    DEFF Research Database (Denmark)

    Desgain, Denis DR; Haselip, James Arthur

    2015-01-01

    -carbon energy technologies. While many electricity markets in Latin America were liberalized during the 1990s and 2000s, such market-driven reform policies were far from uniform and in reality there exist a diversity of governance frameworks for national electricity markets, exemplified here by Argentina, Cuba...

  16. Evaluating the development of carbon capture and storage technologies in the United States

    NARCIS (Netherlands)

    Alphen, K. van; Noothout, P.M.; Hekkert, M.P.; Turkenburg, W.C.

    2010-01-01

    Carbon capture and storage (CCS) is seen as an important solution to solve the twin challenge of reducing GHG emissions, while utilizing fossil fuel reserves to meet future energy requirements. In this study an innovation systems perspective is applied to review the development of CCS technologies i

  17. Hydrothermal carbonization as innovative technology in sustainable sanitation in Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Ariane [Engineers Without Boarders (Germany), Berlin (DE). Project ' ' Carbonization as Sanitation' ' (CaSa)

    2011-07-01

    The need for sustainable systems is apparent as climate change and other adverse anthropogenic activities continue to negatively affect the soil fertility in Africa. One of the indicators of the loss of soil fertility is the continuous decrease in soil organic matter, which is the major building block of a fertile soil. This is mainly attributed to the inappropriate practice of human-beings of taking more substances from the ecosystem than the amount replaced. As the soil fertility is increasingly lost, food insecurity, due to dropped productivity of the soil, is becoming a critical issue in many areas of Africa, Tanzania is not any different in this respect. On the other hand, most people in rural areas of Africa still lack possibilities to cover their daily energy needs in a more sustainable way and many people mainly rely on firewood. This, in turn, has an adverse impact on the climate and the soil, causing a local viscous circle of poor soil and productivity conditions. Moreover, the sanitation coverage of those areas is very low and there is a need for appropriate sanitation systems. Therefore, the aim of this project is, to conduct research on the possibility of establishing a self-sustaining system for the rural areas of Kagera, Tanzania, to address the three basic issues: sanitation, energy supply and soil fertility. The system consists of a small-scale biogas digester, a urine diverting dehydrating toilet (UDDT) and an adaptive hydrothermal carbonization (HTC) unit. Biogas is produced from crop residues and other domestic organic waste. The fermentation residues and the dehydrated fecal matter from the UDDT is then treated with HTC. The carbonised and sanitized residue is then applied as soil amendment to improve the soil fertility as manifested by the Terra Preta in the Amazon. This holistic approach is a new development in ecological sanitation. Therefore, a comprehensive sustainability assessment including environmental, economic and socio

  18. The Low Carbonization Usage Technologies of Coal%煤碳的低碳化利用技术

    Institute of Scientific and Technical Information of China (English)

    姚伟; 任世营

    2012-01-01

    The low carbonization technologies such as efficient combustion, advanced coal chemical indus- try and carbon capture and storage are introduced. These provide the ways to develop the low carboniza-tion usage technologies of high- carbon energy and realize the low-carbon economy.%介绍了煤炭高效燃烧、新型煤化工及碳的捕捉和封存等相关的低碳化技术,为发展高碳能源低碳化利用技术、实现低碳经济提供了方向。

  19. TeV/m Nano-Accelerator: Current Status of CNT-Channeling Acceleration Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Min [Northern Illinois U.; Lumpkin, Alex H. [Fermilab; Thangaraj, Jayakar Charles [Fermilab; Thurman-Keup, Randy Michael [Fermilab; Shiltsev, Vladimir D. [Fermilab

    2014-09-17

    Crystal channeling technology has offered various opportunities in the accelerator community with a viability of ultrahigh gradient (TV/m) acceleration for future HEP collider. The major challenge of channeling acceleration is that ultimate acceleration gradients might require a high power driver in the hard x-ray regime (~ 40 keV). This x-ray energy exceeds those for x-rays as of today, although x-ray lasers can efficiently excite solid plasma and accelerate particles inside a crystal channel. Moreover, only disposable crystal accelerators are possible at such high externally excited fields which would exceed the ionization thresholds destroying the atomic structure, so acceleration will take place only in a short time before full dissociation of the lattice. Carbon-based nanostructures have great potential with a wide range of flexibility and superior physical strength, which can be applied to channeling acceleration. This paper presents a beam- driven channeling acceleration concept with CNTs and discusses feasible experiments with the Advanced Superconducting Test Accelerator (ASTA) in Fermilab.

  20. Strategy for promoting low-carbon technology transfer to developing countries: The case of CCS

    International Nuclear Information System (INIS)

    Carbon Capture and Storage (CCS) is the critical enabling technology that would reduce CO2 emissions significantly while also allowing fossil fuels to meet the world's pressing energy needs. The International Energy Agency analysis shows that although the developed world must lead the CCS effort in the next decade, there is an urgent need to spread CCS to the developing world. Given technologies for reducing GHG emissions originate mainly in developed countries, technology transfer, as an important feature emphasized by both the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol, therefore has a key role to play in bridging a gap between developed and developing countries. The main objective of this paper is to explore potential policies and schemes promoting the transfer of CCS technologies to developing countries. First, it reviews the global CCS status, analyzes the significant gap of CCS in developed and developing countries, and investigates stakeholder perceptions of diffusing CCS to China, which is a major developing country and a significant potential candidate for large-scale CCS deployment; then the authors make an attempt to understand technology transfer including its benefits, barriers, and definition. The UNFCCC explicitly commits the developed (Annex I) countries to provide financial and technical support to developing countries under favorable terms. The authors argue that the ultimate goal of technology transfer should not only be limited to apply CCS in developing countries, but also to enhance their endogenous capabilities, which will enable future innovation and ensure long-term adoption of low-carbon technologies. As a result, the authors propose a four-pronged approach to the transfer of CCS technologies, which involves physical transfer of explicit technologies, a financial mechanism, endogenous capacity building, and a monitoring mechanism. Concrete enhanced actions to promote CCS technology transfer are

  1. 碳纤维布加固施工技术%Carbon Fiber Reinforcement Construction Technology

    Institute of Scientific and Technical Information of China (English)

    刘家宽

    2013-01-01

    Carbon fiber reinforcement technology not only can improve the shear and bending capability of the structure, and also its construction is simple and convenient. This paper, combined with engineering examples, describes construction process of reinforcing concrete beams by carbon fiber reinforcement technology and quality control technology.%碳纤维布加固技术,不但能提高结构的抗剪、抗弯能力,而且施工简单、方便。本文结合工程实例,叙述碳纤维布加固混凝土梁柱的施工工艺流程和质量控制等方面的施工技术。

  2. ACCELERATED SITE TECHNOLOGY DEPLOYMENT COST AND PERFORMANCE REPORT COMPARABILITY OF ISOCS INSTRUMENT IN RADIONUCLIDE CHARACTERICATION AT BROOKHAVEN NATIONAL LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    KALB,P.; LUCKETT,L.; MILLER,K.; GOGOLAK,C.; MILIAN,L.

    2001-03-01

    This report describes a DOE Accelerated Site Technology Deployment project being conducted at Brookhaven National Laboratory to deploy innovative, radiological, in situ analytical techniques. The technologies are being deployed in support of efforts to characterize the Brookhaven Graphite Research Reactor (BGRR) facility, which is currently undergoing decontamination and decommissioning. This report focuses on the deployment of the Canberra Industries In Situ Object Counting System (ISOCS) and assesses its data comparability to baseline methods of sampling and laboratory analysis. The battery-operated, field deployable gamma spectrometer provides traditional spectra of counts as a function of gamma energy. The spectra are then converted to radionuclide concentration by applying innovative efficiency calculations using monte carlo statistical methods and pre-defined geometry templates in the analysis software. Measurement of gamma emitting radionuclides has been accomplished during characterization of several BGRR components including the Pile Fan Sump, Above Ground Ducts, contaminated cooling fans, and graphite pile internals. Cs-137 is the predominant gamma-emitting radionuclide identified, with smaller quantities of Co-60 and Am-241 detected. The Project used the Multi-Agency Radiation Survey and Site Investigation Manual guidance and the Data Quality Objectives process to provide direction for survey planning and data quality assessment. Analytical results have been used to calculate data quality indicators (DQI) for the ISOCS measurements. Among the DQIs assessed in the report are sensitivity, accuracy, precision, bias, and minimum detectable concentration. The assessment of the in situ data quality using the DQIs demonstrates that the ISOCS data quality can be comparable to definitive level laboratory analysis when the field instrument is supported by an appropriate Quality Assurance Project Plan. A discussion of the results obtained by ISOCS analysis of

  3. Using co-metabolism to accelerate synthetic starch wastewater degradation and nutrient recovery in photosynthetic bacterial wastewater treatment technology.

    Science.gov (United States)

    Lu, Haifeng; Zhang, Guangming; Lu, Yufeng; Zhang, Yuanhui; Li, Baoming; Cao, Wei

    2016-01-01

    Starch wastewater is a type of nutrient-rich wastewater that contains numerous macromolecular polysaccharides. Using photosynthetic bacteria (PSB) to treat starch wastewater can reduce pollutants and enhance useful biomass production. However, PSB cannot directly degrade macromolecular polysaccharides, which weakens the starch degradation effect. Therefore, co-metabolism with primary substances was employed in PSB wastewater treatment to promote starch degradation. The results indicated that co-metabolism is a highly effective method in synthetic starch degradation by PSB. When malic acid was used as the optimal primary substrate, the chemical oxygen demand, total sugar, macromolecules removal and biomass yield were considerably higher than when primary substances were not used, respectively. Malic acid was the primary substrate that played a highly important role in starch degradation. It promoted the alpha-amylase activity to 46.8 U and the PSB activity, which induced the degradation of macromolecules. The products in the wastewater were ethanol, acetic acid and propionic acid. Ethanol was the primary product throughout the degradation process. The introduction of co-metabolism with malic acid to treat wastewater can accelerate macromolecules degradation and bioresource production and weaken the acidification effect. This method provides another pathway for bioresource recovery from wastewater. This approach is a sustainable and environmentally friendly wastewater treatment technology.

  4. Meeting the nation's environmental restoration and waste management challenges through the accelerated development of innovative technologies: A report on the DOIT initiative

    International Nuclear Information System (INIS)

    New environmental technologies are needed to meet the Nation's environmental restoration and waste management challenges. However, in the past environmental technology development and commercialization process has been hampered by the absence of critical intergovernmental linkages and broad public acceptability. If the Nation can create cooperative linkages among levels of government and stakeholders, there is a tremendous opportunity not only to accelerate the pace of site cleanups but also to capture a larger share of the growing international market for remediation and waste management technologies. Recognizing this opportunity not only to accelerate the pace of site cleanups but also to capture a larger share of the growing international market for remediation and waste management technologies. Recognizing this opportunity, western governors and the U.S. Departments of Defense, Interior, Energy, and U.S. Environmental Protection Agency have established a partnership to test ways to expedite the deployment and testing of innovative cleanup technologies. This partnership, which was formalized through the creation of the Federal Advisory Committee to Develop On-Site Innovative Technologies (the DOIT initiative), will soon test models for speeding up the deployment, testing, evaluation, and commercialization of environmental technologies at selected demonstration sites primarily in the western United States. This evaluation process will be pursued in a manner that poses no additional risks to the environment, encourages innovative public participation, and helps ensure financial feasibility, insurability, and eventual commercialization of new technologies

  5. KEKB accelerator

    International Nuclear Information System (INIS)

    KEKB, the B-Factory at High Energy Accelerator Research Organization (KEK) recently achieved the luminosity of 1 x 1034 cm-2s-1. This luminosity is two orders higher than the world's level at 1990 when the design of KEKB started. This unprecedented result was made possible by KEKB's innovative design and technology in three aspects - beam focusing optics, high current storage, and beam - beam interaction. Now KEKB is leading the luminosity frontier of the colliders in the world. (author)

  6. When to invest in carbon capture and storage technology in the presence of uncertainty: A mathematical model

    OpenAIRE

    Walsh, D. M.; O'Sullivan, K; Lee, W. T.; Devine, M.

    2013-01-01

    We present a model for determining analytically the critical threshold for investment in carbon capture and storage technology in a region where carbon costs are volatile and assuming the cost of investment decreases. We first study a deterministic model with quite general dependence on carbon price and then analyse the effect of carbon price volatility on the optimal investment decision by solving a Bellman equation with an infinite planning horizon. We find that increasing the expected carb...

  7. Cost/benefit analysis comparing ex situ treatment technologies for removing carbon tetrachloride from Hanford groundwater

    International Nuclear Information System (INIS)

    Pacific Northwest Laboratory conducted a cost/benefit and performance analysis to compare ex situ technologies that can be used to destroy the carbon tetrachloride (CCl4) in the ground water of Hanford's 200 West Area. The objective of this work was to provide a direct quantitative and qualitative comparison of competing technologies. The technologies examined included a biological system, the Thermochemical Environmental Energy System II (TEES II), and a UV/oxidation system. The factors examined included key system operation parameters, impact on inorganic contaminants in the ground water, and secondary waste production. The cost effectiveness of these destruction technologies was also compared to the cost for an air stripping/granular activated carbon (AS/GAC) system. While the AS/GAC system appeared to be more cost effective at many levels than the CCl4 destruction technologies, the secondary waste produced by this system may lead to significant cost and/or regulatory problems. The factors with the greatest influence on cost for each destruction technology are as follows: nutrient requirements for both of the biological systems, electricity requirements and the type of unit operations for the TEES II process, and electricity requirements for UV/oxidation

  8. Technology scale and supply chains in a secure, affordable and low carbon energy transition

    International Nuclear Information System (INIS)

    Highlights: • Energy systems need to decarbonise, provide security and remain affordable. • There is uncertainty over which technologies will best enable this to happen. • A strategy to deal with uncertainty is to assess a technologies ability to show resilience, flexibility and adaptability. • Scale is important and smaller scale technologies are like to display the above characteristics. • Smaller scale technologies are therefore more likely to enable a sustainable, secure, and affordable energy transition. - Abstract: This research explores the relationship between technology scale, energy security and decarbonisation within the UK energy system. There is considerable uncertainty about how best to deliver on these goals for energy policy, but a focus on supply chains and their resilience can provide useful insights into the problems uncertainty causes. Technology scale is central to this, and through an analysis of the supply chains of nuclear power and solar photovoltaics, it is suggested that smaller scale technologies are more likely to support and enable a secure, low carbon energy transition. This is because their supply chains are less complex, show more flexibility and adaptability, and can quickly respond to changes within an energy system, and as such they are more resilient than large scale technologies. These characteristics are likely to become increasingly important in a rapidly changing energy system, and prioritising those technologies that demonstrate resilience, flexibility and adaptability will better enable a transition that is rapid, sustainable, secure and affordable

  9. Applications of particle accelerators

    International Nuclear Information System (INIS)

    Particle accelerators are now widely used in a variety of applications for scientific research, applied physics, medicine, industrial processing, while possible utilisation in power engineering is envisaged. Earlier presentations of this subject, given at previous CERN Accelerator School sessions have been updated with papers contributed to the first European Conference on Accelerators in Applied Research and Technology (ECAART) held in September 1989 in Frankfurt and to the Second European Particle Accelerator Conference in Nice in June 1990. (orig.)

  10. Viability of 3 D Woven Carbon Cloth and Advanced Carbon-Carbon Ribs for Adaptive Deployable Entry Placement Technology (ADEPT) for Future NASA Missions

    Science.gov (United States)

    Venkatapathy, Ethiraj; Arnold, James O.; Peterson, K. H.; Blosser, M. L.

    2013-01-01

    This paper describes aerothermodynamic and thermal structural testing that demonstrate the viability of three dimensional woven carbon cloth and advanced carbon-carbon (ACC) ribs for use in the Adaptive Deployable Entry Placement Technology (ADEPT). ADEPT is an umbrella-like entry system that is folded for stowage in the launch vehicle's shroud and deployed prior to reaching the atmeopheric interface. A key feature of the ADEPT concept is a lower ballistic coefficient for delivery of a given payload than seen with conventional, rigid body entry systems. The benefits that accrue from the lower ballistic coefficient incllude factor-of-ten reductions of deceleration forces and entry heating. The former enables consideration of new classes of scientific instruments for solar system exploration while the latter enables the design of a more efficient thermal protection system. The carbon cloth base lined for ADEPT has a dual use in that it serves as the thermal protection system and as the "skin" that transfers aerdynamic deceleration loads to its umbrella-like substructure. Arcjet testing described in this paper was conducted for some of the higher heating conditions for a future Venus mission using the ADEPT concept, thereby showing that the carbon cloth can perform in a relevant entry environment. Recently completed the thermal structural testing of the cloth attached to a representative ACC rib design is also described. Finally, this paper describes a preliminary engineering level code, based on the arcjet data, that can be used to estimate cloth thickness for future ADEPT missions and to predict carbon cloth performance in future arcjet tests.

  11. Innovations in accelerator technology

    International Nuclear Information System (INIS)

    We review several promising directions for improvements in high energy collider performance that have been initiated and reported in scientific publications recently, namely: extraction by means of a crystal of the beam halo from high energy colliders for use in auxiliary experiments; compensation of mutual space effects of collider beams on one another; intelligent beam damping schemes and application of these to feedback systems; beam parameter diagnostics by use of low energy beam probes. To facilitate these developments an efficient software model of the collider was developed

  12. VERIFICATION OF THE EFFECT OF CONCRETE SURFACE PROTECTION ON THE PERMEABILITY OF ACID GASES USING ACCELERATED CARBONATION DEPTH TEST IN AN ATMOSPHERE OF 98% CO2

    Directory of Open Access Journals (Sweden)

    JIŘÍ NOVÁK

    2011-03-01

    Full Text Available Carbonation is one of the corrosion processes negatively influencing the properties of mature concrete. It is caused by a chemical reaction between carbon dioxide infiltrating the surface of a concrete structure and the minerals of the mastic cement. The surface of a concrete structure can be protected from the effects of atmospheric CO2 by coating with modern waterborne epoxy dispersions. Out of the four types of dispersions tested (dispersion A – CHS Epoxy 200 V 55 + hardener Telalit 180, 2 layers; dispersion B – DOW XZ 92 533 + hardener XZ 92 441.01, 2 layers; dispersion C – CHS Epoxy 200 V 55 + hardener Telalit 180, 1st layer + Epostyl 217 V, 2nd layer; dispersion D – Epostyl 217 V, 2 layers, the type A solvent-based epoxy dispersion and the type C combination of the solvent-based and the solvent-free emulsions demonstrated the highest degree of protection of cement mortar. The effect and actual protection time was evaluated by means of the „accelerated carbonation depth test in 98% CO2“.The correlation dependence found in the so-called ”accelerated test“ enables us to determine intervals of real time in the natural environment of 0.03% CO2 corresponding to the intervals of accelerated exposition in 98% CO2. It may be said that in the case of type A, type B, type C and type D coatings on higher-quality concretes, the coating would have to be renewed with an interval of maximum eight years.

  13. High power pulsed/microwave technologies for electron accelerators vis a vis 10MeV, 10kW electron LINAC for food irradiation at CAT

    International Nuclear Information System (INIS)

    Use of electron accelerators for irradiation of food items is gathering momentum in India. The various technologies for powering the electron LINAC were needed to be developed in the country due to embargo situations as well as reservations of the developers worldwide to share the information related to this development. Centre for Advanced Technology, CAT, Indore, is engaged in the development of particle accelerators for medical industrial and scientific applications. Amongst other electron accelerators developed in CAT, a 10MeV, 10kW LINAC for irradiation of food items has been commissioned and tested for full rated 10kW beam power. The high power pulsed microwave driver for the LINAC was designed, developed and commissioned with full indigenous efforts, and is right now operational at CAT. It consists of a 6MW, 25kW S-band pulsed klystron, 15MW peak power pulse modulator system for the klystron, microwave driver amplifier chain, stabilized generator, protection and control electronics, waveguide system to handle the high peak and average power, gun modulator electronics, grid electronics etc. The present paper highlights various technologies like the pulsed power systems and components, microwave circuits and systems etc. Also the performance results of the high power microwave driver for the 10MeV LINAC at CAT are discussed. Future strategies for developing the state of art technologies are highlighted. (author)

  14. Carbon capture and storage at scale. Lessons from the growth of analogous energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Varun; Thurber, Mark C. [Program on Energy and Sustainable Development, Stanford University, Stanford, 616 Serra St., Encina Hall, Room E419, CA 94305 (United States); Victor, David G. [School of International Relations and Pacific Studies, University of California, San Diego, La Jolla, CA 92093-0519 (United States)

    2010-08-15

    At present carbon capture and storage (CCS) is very expensive and its performance is highly uncertain at the scale of commercial power plants. Such challenges to deployment, though, are not new to students of technological change. Several successful technologies, including energy technologies, have faced similar challenges as CCS faces now. To draw lessons for the CCS industry from the history of other energy technologies that, as with CCS today, were risky and expensive early in their commercial development, we have analyzed the development of the US nuclear-power industry, the US SO{sub 2}-scrubber industry, and the global liquefied natural gas (LNG) industry. Through analyzing the development of the analogous industries we arrive at three principal observations. First, government played a decisive role in the development of all of these analogous technologies. Second, diffusion of these technologies beyond the early demonstration and niche projects hinged on the credibility of incentives for industry to invest in commercial-scale projects. Third, the conventional wisdom that experience with technologies inevitably reduces costs does not necessarily hold. Risky and capital-intensive technologies may be particularly vulnerable to diffusion without accompanying reductions in cost. (author)

  15. Carbon capture and storage at scale: Lessons from the growth of analogous energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Varun, E-mail: varun@stanford.ed [Program on Energy and Sustainable Development, Stanford University, Stanford, 616 Serra St., Encina Hall, Room E419, CA 94305 (United States); Victor, David G. [School of International Relations and Pacific Studies, University of California, San Diego, La Jolla, CA 92093-0519 (United States); Thurber, Mark C. [Program on Energy and Sustainable Development, Stanford University, Stanford, 616 Serra St., Encina Hall, Room E419, CA 94305 (United States)

    2010-08-15

    At present carbon capture and storage (CCS) is very expensive and its performance is highly uncertain at the scale of commercial power plants. Such challenges to deployment, though, are not new to students of technological change. Several successful technologies, including energy technologies, have faced similar challenges as CCS faces now. To draw lessons for the CCS industry from the history of other energy technologies that, as with CCS today, were risky and expensive early in their commercial development, we have analyzed the development of the US nuclear-power industry, the US SO{sub 2}-scrubber industry, and the global liquefied natural gas (LNG) industry. Through analyzing the development of the analogous industries we arrive at three principal observations. First, government played a decisive role in the development of all of these analogous technologies. Second, diffusion of these technologies beyond the early demonstration and niche projects hinged on the credibility of incentives for industry to invest in commercial-scale projects. Third, the conventional wisdom that experience with technologies inevitably reduces costs does not necessarily hold. Risky and capital-intensive technologies may be particularly vulnerable to diffusion without accompanying reductions in cost.

  16. Update of the water chemistry effect on the flow-accelerated corrosion rate of carbon steel: influence of hydrazine, boric acid, ammonia, morpholine and ethanolamine

    International Nuclear Information System (INIS)

    The influence of the water chemistry on Flow-Accelerated Corrosion (FAC) affecting carbon steel components has been studied for many years and is relatively well known and taken into account by the models. Nonetheless, experimental studies were conducted in the last few years at EDF on the CIROCO loop in order to check the influence of the water chemistry parameters (hydrazine, boric acid, ammonia, morpholine and ethanolamine) on the FAC rate of carbon steel in one phase flow conditions. The hydrazine impact on the FAC rate was shown to be minor in EDF's chemistry recommendation range, compared to other parameters' effects such as the pH effect. The presence of boric acid in the nominal secondary circuit conditions was negligible. Finally, as expected, the nature of the chemical conditioning (ammonia, morpholine or ethanolamine) did not modify the FAC rate, the influencing chemical variable being the at-temperature pH in one-phase flow conditions. (author)

  17. intensifying and reorienting transfer of low carbon technologies for climate change prevention

    International Nuclear Information System (INIS)

    The transfer of 'low carbon' technologies is crucial in order to moderate greenhouse gas (GHG) emissions by developing countries, which are set to rise significantly. Their implementation will determine the success of a global agreement on climate change in 2015, and this is the task of the Technology Mechanism, created in 2010. This policy brief sets out the principal results of a study commissioned from the Mines ParisTech Industrial Economics Centre (CERNA). The study shows that, unlike China, Mexico, South Africa and, to a lesser extent, Brazil, India is currently left out of international flows of low carbon technologies transfer - it is therefore a top priority, as is the rest of developing Asia, Africa and Eastern Europe. To intensify these transfers, ambitious greenhouse gas emissions reduction policies need to be implemented and absorptive capacities need to be created in countries that receive such technologies. In emerging countries, which possess a genuine capacity for innovation, and which are involved in international trade, the strengthening of intellectual property rights and the lowering of barriers to trade and investment are to be recommended. However, in the least developed countries, emphasis must be placed on technology absorptive capacities and in particular on the development of a qualified labour force

  18. ECOLOGICAL, ECONOMIC AND SOCIAL ISSUES OF IMPLEMENTING CARBON DIOXIDE SEQUESTRATION TECHNOLOGIES IN THE OIL AND GAS INDUSTRY IN RUSSIA

    Directory of Open Access Journals (Sweden)

    Alexey Cherepovitsyn

    2016-04-01

    Full Text Available The objective of this paper is to define the main approaches to the implementation of carbon dioxide sequestration technologies in the oil and gas industry in Russia, and also to identify ecological, economic and social issues of their usage. Promotion of the technology of carbon dioxide (CO2 sequestration by means of capturing and injecting it into underground reservoirs is a promising mechanism of reducing carbon dioxide concentration. Carbon capture and storage (CCS technologies might be used to enhance oil recovery (EOR-CO2 and production by means of oil extraction and decreasing oil viscosity. Conceptual view of the potential of EOR-СО2 technologies within the context of oil and gas industry sustainable development are presented. Incentives of the CCS projects implementation are identified. On the basis of the conducted research a number of scientific research and practical areas of the CCS technology development are presented.

  19. Carbon Footprint Analyses of Mainstream Wastewater Treatment Technologies under Different Sludge Treatment Scenarios in China

    OpenAIRE

    Chunyan Chai; Dawei Zhang; Yanling Yu; Yujie Feng; Man Sing Wong

    2015-01-01

    With rapid urbanization and infrastructure investment, wastewater treatment plants (WWTPs) in Chinese cities are putting increased pressure on energy consumption and exacerbating greenhouse gas (GHG) emissions. A carbon footprint is provided as a tool to quantify the life cycle GHG emissions and identify opportunities to reduce climate change impacts. This study examined three mainstream wastewater treatment technologies: Anaerobic–Anoxic–Oxic (A–A–O), Sequencing Batch Reactor (SBR) and Oxy...

  20. Understanding the development trends of low-carbon energy technologies: A patent analysis

    International Nuclear Information System (INIS)

    Highlights: • Governments’ strategies set important frameworks to develop and sustain low-carbon energy technologies. • Commercial activities play a key role in the low-carbon energy technologies’ development. • The number of patents that are based upon basic research is growing. - Abstract: Eco-innovations are being recognized as fundamental means to foster sustainable development, as well as to create new business opportunities. Nowadays, the eco-innovation concept is gaining ground within both academic and practitioner studies with the attempt to better understand the main dynamics underlying its nature and guide policymakers and companies in supporting its development. This paper contributes to the extant literature on eco-innovation by providing a comprehensive overview of the evolution of a specific type of eco-innovations that are playing a crucial role in the current socio-economic agenda, namely low-carbon energy technologies. Accordingly, we focus our attention on the related patenting activity of different countries and organizations over time, as well as on influencing policy initiatives and events. Hence, we collected 131,661 patents granted at the United States Patent and Trademark Office (U.S.PTO.) between 1971 and 2010, and belonging to the “Nuclear power generation”, “Alternative energy production”, and “Energy conservation” technological classes, as indicated by the International Patent Classification (IPC) Green Inventory. Our findings report the development trends of low-carbon energy technologies, as well as identify major related environmental programs, historical events, and private sector initiatives explaining those trends, hence revealing how these different circumstances have significantly influenced their development over time

  1. In situ bioremediation for the Hanford carbon tetrachloride plume. Innovative technology summary report

    International Nuclear Information System (INIS)

    The 200 Area at Hanford (also called the Central Plateau) contains approximately 817 waste sites, 44 facilities to be demolished, and billions of gallons of contaminated groundwater resulting from chemical processing plants and associated waste facilities (e.g., waste tanks). From 1955 to 1973, carbon tetrachloride, nitrate, and other materials were discharged to subsurface liquid waste disposal facilities in the 200 Area. As much as 600,000 kilograms of carbon tetrachloride may have entered the soil column and a portion of this has contaminated the underlying aquifer. In Situ Bioremediation for the Hanford Carbon Tetrachloride Plume (ISB), which is the term used in this report for an in situ treatment process using indigenous micro-organisms with a computer based Accelerated Bioremediation Design Tool (ABDT), remediates groundwater contaminated with volatile organic compounds (VOCs) and nitrates under anaerobic conditions. ISB involves the injection of nutrients into the groundwater and subsequent extraction and re-injection of the groundwater to provide nutrient distribution in the aquifer

  2. Induction linear accelerators

    Science.gov (United States)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typicallymarriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  3. CO2 sequestration using accelerated gas-solid carbonation of pre-treated EAF steel-making bag house dust.

    Science.gov (United States)

    El-Naas, Muftah H; El Gamal, Maisa; Hameedi, Suhaib; Mohamed, Abdel-Mohsen O

    2015-06-01

    Mineral CO2 sequestration is a promising process for the reduction of carbon dioxide emissions to the atmosphere. In this paper, alkaline calcium-rich dust particles collected from bag filters of electric arc furnaces (EAF) for steel making were utilized as a viable raw material for mineral CO2 sequestration. The dust particles were pre-treated through hydration, drying and screening. The pre-treated particles were then subjected to direct gas-solid carbonation reaction in a fluidized-bed reactor. The carbonated products were characterized to determine the overall sequestration capacity and the mineralogical structures. Leaching tests were also performed to measure the extracted minerals from the carbonated dust and evaluate the carbonation process on dust stabilization. The experimental results indicated that CO2 could be sequestered using the pre-treated bag house dust. The maximum sequestration of CO2 was 0.657 kg/kg of dust, based on the total calcium content. The highest degree of carbonation achieved was 42.5% and the carbonation efficiency was 69% at room temperature.

  4. Final Report on "Development and Testing of Advanced Accelerator Structures and Technologies at 11.424 GHz"

    Energy Technology Data Exchange (ETDEWEB)

    Gold, Steven H. [Naval Research Laboratory

    2013-10-13

    This is the final report on the research program ?Development and Testing of Advanced Accelerator Structures and Technologies at 11.424 GHz,? which was carried out by the Naval Research Laboratory (NRL) under Interagency Agreement DE?AI02?01ER41170 with the Department of Energy. The period covered by this report is 15 July 2010 ? 14 July 2013. The program included two principal tasks. Task 1 involved a study of the key physics issues related to the use of high gradient dielectric-loaded accelerating (DLA) structures in rf linear accelerators and was carried out in collaboration with Argonne National Laboratory (ANL) and Euclid Techlabs LLC. Task 2 involved a study of high power active microwave pulse compressors and was carried out in collaboration with Omega-P, Inc. and the Institute of Applied Physics of the Russian Academy of Sciences in Nizhny Novgorod. The studies under Task 1 were focused on rf-induced multipactor and breakdown in externally driven DLA structures at the 200-ns timescale. Suppression of multipactor and breakdown are essential to the practical application of dielectric structures in rf linear accelerators. The structures that were studied were developed by ANL and Euclid Techlabs and their performance was evaluated at high power in the X-band Magnicon Laboratory at NRL. Three structures were designed, fabricated, and tested, and the results analyzed in the first two years of the program: a clamped quartz traveling-wave (TW) structure, a externally copper-coated TW structure, and an externally copper-coated dielectric standing-wave (SW) structure. These structures showed that rf breakdown could be largely eliminated by eliminating dielectric joints in the structures, but that the multipactor loading was omnipresent. In the third year of the program, the focus of the program was on multipactor suppression using a strong applied axial magnetic field, as proposed by Chang et al. [C. Chang et al., J. Appl. Phys. 110, 063304 (2011).], and a

  5. Advanced accelerators

    International Nuclear Information System (INIS)

    This report discusses the suitability of four novel particle acceleration technologies for multi-TeV particle physics machines: laser driven linear accelerators (linac), plasma beat-wave devices, plasma wakefield devices, and switched power and cavity wakefield linacs. The report begins with the derivation of beam parameters practical for multi-TeV devices. Electromagnetic field breakdown of materials is reviewed. The two-beam accelerator scheme for using a free electron laser as the driver is discussed. The options recommended and the conclusions reached reflect the importance of cost. We recommend that more effort be invested in achieving a self-consistent range of TeV accelerator design parameters. Beat-wave devices have promise for 1-100 GeV applications and, while not directly scalable to TeV designs, the current generation of ideas are encouraging for the TeV regime. In particular, surfatrons, finite-angle optical mixing devices, plasma grating accelerator, and the Raman forward cascade schemes all deserve more complete analysis. The exploitation of standard linac geometry operated in an unconventional mode is in a phase of rapid evolution. While conceptual projects abound, there are no complete designs. We recommend that a fraction of sponsored research be devoted to this approach. Wakefield devices offer a great deal of potential; trades among their benefits and constraints are derived and discussed herein. The study of field limitation processes has received inadequate attention; this limits experiment designers. The costs of future experiments are such that investment in understanding these processes is prudent. 34 refs., 12 figs., 3 tabs

  6. Carbon Footprint Analyses of Mainstream Wastewater Treatment Technologies under Different Sludge Treatment Scenarios in China

    Directory of Open Access Journals (Sweden)

    Chunyan Chai

    2015-03-01

    Full Text Available With rapid urbanization and infrastructure investment, wastewater treatment plants (WWTPs in Chinese cities are putting increased pressure on energy consumption and exacerbating greenhouse gas (GHG emissions. A carbon footprint is provided as a tool to quantify the life cycle GHG emissions and identify opportunities to reduce climate change impacts. This study examined three mainstream wastewater treatment technologies: Anaerobic–Anoxic–Oxic (A–A–O, Sequencing Batch Reactor (SBR and Oxygen Ditch, considering four different sludge treatment alternatives for small-to-medium-sized WWTPs. Following the life cycle approach, process design data and emission factors were used by the model to calculate the carbon footprint. Results found that direct emissions of CO2 and N2O, and indirect emissions of electricity use, are significant contributors to the carbon footprint. Although sludge anaerobic digestion and biogas recovery could significantly contribute to emission reduction, it was less beneficial for Oxygen Ditch than the other two treatment technologies due to its low sludge production. The influence of choosing “high risk” or “low risk” N2O emission factors on the carbon footprint was also investigated in this study. Oxygen Ditch was assessed as “low risk” of N2O emissions while SBR was “high risk”. The carbon footprint of A–A–O with sludge anaerobic digestion and energy recovery was more resilient to changes of N2O emission factors and control of N2O emissions, though process design parameters (i.e., effluent total nitrogen (TN concentration, mixed-liquor recycle (MLR rates and solids retention time (SRT and operation conditions (i.e., nitrite concentration are critical for reducing carbon footprint of SBR. Analyses of carbon footprints suggested that aerobic treatment of sludge not only favors the generation of large amounts of CO2, but also the emissions of N2O, so the rationale of reducing aerobic treatment and

  7. In situ X-ray pair distribution function analysis of accelerated carbonation of a synthetic calcium-silicate-hydrate gel

    Energy Technology Data Exchange (ETDEWEB)

    Morandeau, Antoine E.; White, Claire E. [Princeton

    2015-04-21

    Calcium–silicate–hydrate (C–S–H) gel is the main binder component in hydrated ordinary Portland cement (OPC) paste, and is known to play a crucial role in the carbonation of cementitious materials, especially for more sustainable alternatives containing supplementary cementitious materials. However, the exact atomic structural changes that occur during carbonation of C–S–H gel remain unknown. Here, we investigate the local atomic structural changes that occur during carbonation of a synthetic calcium–silicate–hydrate gel exposed to pure CO₂ vapour, using in situ X-ray total scattering measurements and subsequent pair distribution function (PDF) analysis. By analysing both the reciprocal and real-space scattering data as the C–S–H carbonation reaction progresses, all phases present during the reaction (crystalline and non-crystalline) have been identified and quantified, with the results revealing the emergence of several polymorphs of crystalline calcium carbonate (vaterite and calcite) in addition to the decalcified C–S–H gel. Furthermore, the results point toward residual calcium being present in the amorphous decalcified gel, potentially in the form of an amorphous calcium carbonate phase. As a result of the quantification process, the reaction kinetics for the evolution of the individual phases have been obtained, revealing new information on the rate of growth/dissolution for each phase associated with C–S–H gel carbonation. Moreover, the investigation reveals that the use of real space diffraction data in the form of PDFs enables more accurate determination of the phases that develop during complex reaction processes such as C–S–H gel carbonation in comparison to the conventional reciprocal space Rietveld analysis approach.

  8. Technological, economic and financial prospects of carbon dioxide capture in the cement industry

    International Nuclear Information System (INIS)

    Cement is the second largest anthropogenic emission source, contributing approximately 7% of global CO2 emissions. Carbon dioxide capture and storage (CCS) technology is considered by the International Energy Agency (IEA) as an essential technology capable of reducing CO2 emissions in the cement sector by 56% by 2050. The study compares CO2 capture technologies for the cement manufacturing process and analyses the economic and financial issues in deploying CO2 capture in the cement industry. Post-combustion capture with chemical absorption is regarded as a proven technology to capture CO2 from the calcination process. Oxyfuel is less mature but Oxyfuel partial capture—which only recycles O2/CO2 gas in the precalciner—is estimated to be more economic than post-combustion capture. Carbonate looping technologies are not yet commercial, but they have theoretical advantages in terms of energy consumption. In contrast with coal-fired power plants, CO2 capture in the cement industry benefits from a higher concentration of CO2 in the flue gas, but the benefit is offset by higher SOx and NOx levels and the smaller scale of emissions from each plant. Concerning the prospects for financing cement plant CO2 capture, large cement manufacturers on average have a higher ROE (return on equity) and lower debt ratio, thus a higher discount rate should be considered for the cost analysis than in power plants. IEA estimates that the incremental cost for deploying CCS to decarbonise the global cement sector is in the range US$350–840 billion. The cost estimates for deploying state-of-the art post-combustion CO2 capture technologies in cement plants are above $60 to avoid each tonne of CO2 emissions. However, the expectation is that the current market can only provide a minority of financial support for CO2 capture in cement plants. Public financial support and/or CO2 utilisation will be essential to trigger large-scale CCS demonstration projects in the cement industry

  9. Interactions between biomass energy technologies and nutrient and carbon balances at the farm level

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Uffe; Molt Petersen, B. [Danish Inst. of Agricultural Science, Dept. of Agroecology, Tjele (Denmark)

    2006-08-15

    Biomass energy is by far the largest renewable energy source in the world (IEA Renewable information (www.iea.org)). Biomass utilisation is closely linked to management and sustainability issues of forestry and agriculture. Carbon is extracted from forests and agriculture to bioenergy facilities, from where it is partly or fully emitted as CO{sub 2} and thus no longer available for sustaining soil organic matter content. Nutrients are extracted as well and, depending of the conversion technology, they may be recycled to farmland or lost as gaseous emissions. Thus, we must be able to describe these effects, and to suggest strategies to alleviate adverse effects on farm sustainability and on the environment. By choosing intelligent combinations of cropping systems and energy conversion technologies, win-win solutions may be achieved. This paper illustrates, via three cases, some agricultural impacts of choice of biomass technology and describes an intriguing possibility for recycling municipal or industrial wastes through the bioenergy chain. (au)

  10. Non-invasive technology that improves cardiac function after experimental myocardial infarction: Whole Body Periodic Acceleration (pGz.

    Directory of Open Access Journals (Sweden)

    Arkady Uryash

    Full Text Available Myocardial infarction (MI may produce significant inflammatory changes and adverse ventricular remodeling leading to heart failure and premature death. Pharmacologic, stem cell transplantation, and exercise have not halted the inexorable rise in the prevalence and great economic costs of heart failure despite extensive investigations of such treatments. New therapeutic modalities are needed. Whole Body Periodic Acceleration (pGz is a non-invasive technology that increases pulsatile shear stress to the endothelium thereby producing several beneficial cardiovascular effects as demonstrated in animal models, normal humans and patients with heart disease. pGz upregulates endothelial derived nitric oxide synthase (eNOS and its phosphorylation (p-eNOS to improve myocardial function in models of myocardial stunning and preconditioning. Here we test whether pGz applied chronically after focal myocardial infarction in rats improves functional outcomes from MI. Focal MI was produced by left coronary artery ligation. One day after ligation animals were randomized to receive daily treatments of pGz for four weeks (MI-pGz or serve as controls (MI-CONT, with an additional group as non-infarction controls (Sham. Echocardiograms and invasive pressure volume loop analysis were carried out. Infarct transmurality, myocardial fibrosis, and markers of inflammatory and anti-inflammatory cytokines were determined along with protein analysis of eNOS, p-eNOS and inducible nitric oxide synthase (iNOS.At four weeks, survival was 80% in MI-pGz vs 50% in MI-CONT (p< 0.01. Ejection fraction and fractional shortening and invasive pressure volume relation indices of afterload and contractility were significantly better in MI-pGz. The latter where associated with decreased infarct transmurality and decreased fibrosis along with increased eNOS, p-eNOS. Additionally, MI-pGz had significantly lower levels of iNOS, inflammatory cytokines (IL-6, TNF-α, and higher level of anti

  11. Applications of Advanced Technology for Monitoring Forest Carbon to Support Climate Change Mitigation

    Science.gov (United States)

    Birdsey, R.; Hurtt, G. C.; Dubayah, R.; Hagen, S. C.; Vargas, R.; Nehrkorn, T.; Domke, G. M.; Houghton, R. A.

    2015-12-01

    Measurement, Reporting, and Verification (MRV) is a broad concept guiding the application of monitoring technology to the needs of countries or entities for reporting and verifying reductions in greenhouse gas emissions or increases in greenhouse gas sinks. Credibility, cost-effectiveness, and compatibility are important features of global MRV efforts that can support implementation of climate change mitigation programs such as Reducing Emissions from Deforestation and Forest Degradation and Sustainable Forest Management (REDD+). Applications of MRV technology may be tailored to individual country circumstances following guidance provided by the Intergovernmental Panel on Climate Change; hence, there is no single approach that is uniquely viable but rather a range of ways to integrate new MRV methods. MRV technology is advancing rapidly with new remote sensing and advanced measurement of atmospheric CO2, and in situ terrestrial and ocean measurements, coupled with improvements in data analysis, modeling, and assessing uncertainty. Here we briefly summarize some of the most application-ready MRV technologies being developed under NASA's Carbon Monitoring System (CMS) program, and illustrate how these technologies may be applied for monitoring forests using several case studies that span a range of scales, country circumstances, and stakeholder reporting requirements. We also include remarks about the potential role of advanced monitoring technology in the context of the global climate accord that is expected to result from the 21st session of the Conference of the Parties to the United Nations Framework Convention on Climate Change, which is expected to take place in December 2015, in Paris, France.

  12. 6. international conference on Nano-technology in Carbon: from synthesis to applications of nano-structured carbon and related materials

    International Nuclear Information System (INIS)

    This is the sixth international conference sponsored this year by the French Carbon Group (GFEC), the European Research Group on Nano-tubes GDRE 'Nano-E', in collaboration with the British Carbon Group and the 'Institut des Materiaux Jean Rouxel' (local organizer). The aim of this conference is to promote carbon science in the nano-scale as, for example, nano-structured carbons, nano-tubes, nano-wires, fullerenes, etc. This conference is designed to introduce those with an interest in materials to current research in nano-technology and to bring together research scientists working in various disciplines in the broad area of nano-structured carbons, nano-tubes and fullerene-related nano-structures. Elemental carbon is the simplest exemplar of this nano-technology based on covalent bonding, however other systems (for example containing hetero-atoms) are becoming important from a research point of view, and provide alternative nano-materials with unique properties opening a broad field of applications. Nano-technology requires an understanding of these materials on a structural and textural point of view and this will be the central theme. This year the conference will feature sessions on: S1. Control and synthesis of nano-materials 1.1 Nano-structured carbons: pyrolysis of polymers, activation, templates,... 1.2 Nano-tubes: Catalytic method, HiPCO, graphite vaporization, electrolysis,... 1.3 Fullerenes S2. Chemistry of carbon nano-materials 2.1 Purification of carbon nano-tubes 2.2 Functionalization - Self-assembling S3. Structural characterization S4. Theory and modelling S5. Relationship between structure and properties S6. Applications Water and air purification, Gas and energy storage, Composite materials, Field emission, Nano-electronics, Biotechnology,... S7. Environmental impact. Only one paper concerning carbon under irradiation has been added to the INIS database. (authors)

  13. ‘Domesticating’ low carbon thermal technologies: Diversity, multiplicity and variability in older person, off grid households

    International Nuclear Information System (INIS)

    The uptake of low carbon heating technologies forms an important part of government strategies to reduce carbon emissions. Yet our understanding of why such technologies are adopted and how they are engaged with post-adoption, particularly by older adults living in off-grid areas, is limited. Drawing on a contextualised, socio-technical approach to domestic heating, we present findings from 51 in-depth interviews with a sample of 17 older person households in the South West of England, with ages ranging from 60 to 89 years. Diverse and multiple configurations of heating devices and fuels were found that varied considerably, with some households using five different fuels. The design of the study ensured that approximately half the sample used some form of low carbon thermal technology, such as heat pumps and biomass boilers. Many factors were reported to influence the adoption of low carbon heating; environmental motives were not primary influences and the avoidance of financial risks associated with ‘peak oil’ was expressed. Low carbon thermal technologies were typically integrated into rather than replaced existing heating systems so that valued services provided by conventional technologies could be retained. Implications of the findings for policies to reduce carbon emissions, particularly in older adult, off-grid households, are discussed. - Highlights: • We interviewed 17 households with conventional/low carbon thermal technologies (LCTTs) in South West England. • Older adult, off grid households commonly use multiple, diverse and variable heating technologies and fuels. • Reducing fuel costs was a key reason for installing LCTTs. • LCTTs more commonly were integrated with, rather than replaced, conventional technologies. • Expected reductions in domestic carbon emissions due to LCTTs may not be realised

  14. Effect of Hot Coiling Under Accelerated Cooling on Development of Non-equiaxed Ferrite in Low Carbon Steel

    Science.gov (United States)

    Lanjewar, H. A.; Tripathi, Pranavkumar

    2016-06-01

    Strengthening mechanisms dominant in non-equiaxed ferrite structures are not so familiar and well measured. In present study, non-equiaxed ferritic structures were generated and perceived to be strengthened by grain/crystal refinement, presence of varying substructures, solid solution strengthening, and textural hardening. A Nb-V microalloyed steel was modeled under various accelerated cooling and coiling temperature conditions in a thermo-mechanical simulator. Decrease in coiling temperature in conjunction with accelerated cooling resulted in non-equiaxed ferrite structures with array of phase morphologies. Intermediate transformation conditions produced increase in strength concurrent with observed smallness in crystallite size and high amount of microstrain in the matrix phase indicative of high dislocation densities and crystal imperfections. Increase in strength is partially attributed to solid solution and texture hardening owing to increase in (111) pole intensity in structure.

  15. Radiative forcing associated with particulate carbon emissions resulting from the use of mercury control technology.

    Science.gov (United States)

    Lin, Guangxing; Penner, Joyce E; Clack, Herek L

    2014-09-01

    Injection of powdered activated carbon (PAC) adsorbents into the flue gas of coal fired power plants with electrostatic precipitators (ESPs) is the most mature technology to control mercury emissions for coal combustion. However, the PAC itself can penetrate ESPs to emit into the atmosphere. These emitted PACs have similar size and optical properties to submicron black carbon (BC) and thus could increase BC radiative forcing unintentionally. The present paper estimates, for the first time, the potential emission of PAC together with their climate forcing. The global average maximum potential emissions of PAC is 98.4 Gg/yr for the year 2030, arising from the assumed adoption of the maximum potential PAC injection technology, the minimum collection efficiency, and the maximum PAC injection rate. These emissions cause a global warming of 2.10 mW m(-2) at the top of atmosphere and a cooling of -2.96 mW m(-2) at the surface. This warming represents about 2% of the warming that is caused by BC from direct fossil fuel burning and 0.86% of the warming associated with CO2 emissions from coal burning in power plants. Its warming is 8 times more efficient than the emitted CO2 as measured by the 20-year-integrated radiative forcing per unit of carbon input (the 20-year Global Warming Potential). PMID:25093939

  16. Lithographically patterned thin activated carbon films as a new technology platform for on-chip devices.

    Science.gov (United States)

    Wei, Lu; Nitta, Naoki; Yushin, Gleb

    2013-08-27

    Continuous, smooth, visibly defect-free, lithographically patterned activated carbon films (ACFs) are prepared on the surface of silicon wafers. Depending on the synthesis conditions, porous ACFs can either remain attached to the initial substrate or be separated and transferred to another dense or porous substrate of interest. Tuning the activation conditions allows one to change the surface area and porosity of the produced carbon films. Here we utilize the developed thin ACF technology to produce prototypes of functional electrical double-layer capacitor devices. The synthesized thin carbon film electrodes demonstrated very high capacitance in excess of 510 F g(-1) (>390 F cm(-3)) at a slow cyclic voltammetry scan rate of 1 mV s(-1) and in excess of 325 F g(-1) (>250 F cm(-3)) in charge-discharge tests at an ultrahigh current density of 45,000 mA g(-1). Good stability was demonstrated after 10,000 galvanostatic charge-discharge cycles. The high values of the specific and volumetric capacitances of the selected ACF electrodes as well as the capacity retention at high current densities demonstrated great potential of the proposed technology for the fabrication of various on-chip devices, such as micro-electrochemical capacitors. PMID:23815346

  17. The Relationship between Low-carbon Agriculture and Agricultural Science and Technology Based on Gray Relational Theory

    Institute of Scientific and Technical Information of China (English)

    TAO Ai-xiang

    2012-01-01

    The agricultural energy consumption per unit of GDP is selected as an indicator for measuring the development level of low-carbon agriculture. Using gray relational theory, I analyze the relationship between development level of agricultural science and technology and development level of low-carbon agriculture in China. The results show that the correlation between the two is prominent; the number of agricultural science and technology talents, the number of agricultural science and technology patents, and the number of agricultural science and technology input are three major factors influencing the development of low-carbon agriculture. On this basis, I propose to take further effective measures, and put forth corresponding recommendations, in order to improve the level of agricultural science and technology.

  18. Carbon nanotube high-performance logic technology - challenges and current progress

    Science.gov (United States)

    Han, Shu-Jen

    2015-03-01

    In the last four decades, we have witnessed a tremendous information technology revolution originated from the relentless scaling of Si complementary metal-oxide semiconductor (CMOS) devices. CMOS scaling provides ever-improved transistor performance, density, power and cost, and will continue to bring new applications and functions to our daily life. However, the conventional homogeneous scaling of silicon devices has become very difficult, firstly due to the unsatisfactory electrostatic control from the gate dielectric. In addition, as we look forward to the technology nodes with sub-10 nm channel length, non-Si based channel materials will be required to provide continuous carrier velocity enhancement when the conventional strained-Si techniques run out of steam. Single-walled carbon nanotubes are promising to replace silicon as the channel material for high-performance electronics near the end of silicon scaling roadmap, with their superb electrical properties, intrinsic ultrathin body, and nearly transparent contact with certain metals. This talk discusses recent advances in modeling and experimental works that reveal the properties and potential of ultra-scaled nanotube transistors, separation and assembly techniques for forming nanotube arrays with high semiconducting nanotube purity and tight pitch separation, and engineering aspects of their implementation in integrated circuits and functional systems. A concluding discussion highlights most significant challenges from technology points of view, and provides perspectives on the future of carbon nanotube based nanoelectronics.

  19. An international partnership approach to clean energy technology innovation: Carbon capture and storage

    Science.gov (United States)

    Yang, Xiaoliang

    Is a global research partnership effective in developing, deploying, and diffusing clean energy technologies? Drawing on and extending innovation system studies, this doctoral dissertation elaborates an analytical model for a global technology learning system; examines the rationales, mechanisms, and effectiveness of the United States-- China Clean Energy Research Center Advanced Coal Technology Consortium (CERC-ACTC); and analyzes government's role in developing and implementing carbon capture and storage technologies in the United States (U.S.) and China. Studies have shown that successful technology innovation leads to economic prosperity and national competence, and prove that technology innovation does not happen in isolation but rather within interactive systems among stakeholders. However, the innovation process itself remains unclear, particularly with regard to interactive learning among and between major institutional actors, including technology developers, regulators, and financial organizations. This study seeks to advance scholarship on the interactive learning from the angle of global interactive learning. This dissertation research project seeks, as well, to inform policy-makers of how to strengthen international collaboration in clean energy technology development. The U.S.--China CERC-ACTC announced by Presidents Obama and Hu in 2009, provided a unique opportunity to close this scholarly gap. ACTC aimed to "advance the coal technology needed to safely, effectively, and efficiently utilize coal resources including the ability to capture, store, and utilize the emissions from coal use in both nations " through the joint research and development by U.S. and Chinese scientists and engineers. This dissertation project included one-year field research in the two countries, with in-depth interviews of key stakeholders, a survey of Consortium participants, analysis of available data, and site visits to collaborative research projects from 2013-2014. This

  20. Towards a novel laser-driven method of exotic nuclei extraction-acceleration for fundamental physics and technology

    Science.gov (United States)

    Nishiuchi, M.; Sakaki, H.; Esirkepov, T. Zh.; Nishio, K.; Pikuz, T. A.; Faenov, A. Ya.; Skobelev, I. Yu.; Orlandi, R.; Pirozhkov, A. S.; Sagisaka, A.; Ogura, K.; Kanasaki, M.; Kiriyama, H.; Fukuda, Y.; Koura, H.; Kando, M.; Yamauchi, T.; Watanabe, Y.; Bulanov, S. V.; Kondo, K.; Imai, K.; Nagamiya, S.

    2016-04-01

    A combination of a petawatt laser and nuclear physics techniques can crucially facilitate the measurement of exotic nuclei properties. With numerical simulations and laser-driven experiments we show prospects for the Laser-driven Exotic Nuclei extraction-acceleration method proposed in [M. Nishiuchi et al., Phys, Plasmas 22, 033107 (2015)]: a femtosecond petawatt laser, irradiating a target bombarded by an external ion beam, extracts from the target and accelerates to few GeV highly charged short-lived heavy exotic nuclei created in the target via nuclear reactions.

  1. Living with low carbon technologies: An agenda for sharing and comparing qualitative energy research

    International Nuclear Information System (INIS)

    Policies to reduce the carbon intensity of domestic living place considerable emphasis on the diffusion of low(er) carbon technologies-from microgeneration to an array of feedback and monitoring devices. These efforts presume that low carbon technologies (LCTs) will be accepted and integrated into domestic routines in the ways intended by their designers. This study contributes to an emerging qualitative energy research (QER) literature by deploying an analytical approach that explores comparison of data from two UK projects (‘Carbon, Comfort and Control’ and 'Conditioning Demand’) concerned, in broad terms, with householder-LCTs interactions — primarily associated with the production and maintenance of thermal comfort. In-depth, and in many cases repeat, interviews were conducted in a total of 18 households where devices such as heat pumps and thermal feedback lamps had recently been installed. We discuss this comparative process and how a reflexive reading of notions of (and strategies associated with) credibility, transferability, dependability and confirmablity enabled new ways of working and thinking with existing data. We conclude by highlighting the contrasts, conflicts, but also creativities raised by drawing these connections, and consider implications for methodologies associated with qualitative energy research. -- Highlights: •We develop a robust strategy for comparing data from Qualitative Energy Research (QER). •We apply principles of qualitative rigour to a reanalysis of two QER datasets. •We demonstrate how this approach can strengthen extant analyses as well as reveal new interpretive insights. •We highlight the academic and policy significance of developing comparative approaches to QER

  2. Development of molten carbonate fuel cell technology at M-C Power Corporation

    Energy Technology Data Exchange (ETDEWEB)

    Dilger, D. [M-C Power Corp., Burr Ridge, IL (United States)

    1996-04-01

    M-C Power Corporation was founded in 1987 with the mission to further develop and subsequently commercialize molten carbonate fuel cells (MCFC). The technology chosen for commercialization was initially developed by the Institute of Gas technology (IGT). At the center of this MCFC technology is the Internally Manifolded Heat EXchange (IMHEX) separator plate design. The IMHEX technology design provides several functions within one component assembly. These functions include integrating the gas manifold structure into the fuel cell stack, separating the fuel gas stream from the oxidant gas stream, providing the required electrical contact between cells to achieve desired power output, and removing excess heat generated in the electrochemical process. Development of this MCFC technology from lab-scale sizes too a commercial area size of 1m{sup 2} has focused our efforts an demonstrating feasibility and evolutionary progress. The development effort will culminate in a proof-of-concept- 250kW power plant demonstration in 1996. The remainder of our commercialization program focuses upon lowering the costs associated with the MCFC power plant system in low production volumes.

  3. Technology collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Jacob [Halliburton (Brazil)

    2011-07-01

    The aim of this paper is to present Halliburton's Brazilian technology center. Halliburton has technology centers in the United States, Saudi Arabia, India, Singapore and Brazil, all of which aim at delivering accelerated innovation in the oil sector. The technology centers engage in research and development activities with the help of various universities and in collaboration with the customer or supplier. The Halliburton Brazil technology center provides its customers with timely research and development solutions for enhancing recovery and mitigating reservoir uncertainty; they are specialized in finding solutions for pre- and post-salt carbonate drilling and in the enhancement of production from mature fields. This presentation showcased the work carried out by the Halliburton Brazil technology center to help customers develop their deepwater field activities.

  4. Effect of technology innovation and spillovers on the carbon intensity of human well-being

    OpenAIRE

    Feng, Jifang; Yuan, Jianhong

    2016-01-01

    In order to enhance sustainability, it is necessary to reduce the carbon intensity of human well-being (CIWB). In this paper, we analyze the impact of technology innovation and spillovers on CIWB using panel data of 30 provinces in China from 2005 to 2010. We find that increasing research and development (R&D) intensity and interregional R&D spillovers can decrease CIWB; R&D intensity has a nonlinear effect on CIWB without incorporating interregional R&D spillovers; economic development has p...

  5. The role of company car taxation to promote low carbon vehicle technologies

    OpenAIRE

    Potter, Stephen; Atchulo, Abukari

    2012-01-01

    This paper presents a review of the CO2 based company car taxation that has been in place in the UK since 2002. One aim of this ecotaxation reform was to promote the uptake of low carbon vehicle technologies, but in practice the tax reform led to the widespread use of diesel cars. With company cars making up 55% of new car sales, this has led to a major shift towards diesel in the UK car stock as a whole. In 2010 a modification to the company car taxation system was introduced, which prov...

  6. Arcjet Testing of Woven Carbon Cloth for Use on Adaptive Deployable Entry Placement Technology

    Science.gov (United States)

    Arnold, James O.; laub, Bernard; Chen, Yih-Kang; Prabhu, Dinesh K.; Bittner, M. E.; Venkatapathy, Ethiraj

    2013-01-01

    This paper describes arcjet testing and analysis that has successfully demonstrated the viability of three dimensional woven carbon cloth for dual use in the Adaptive Deployable Entry Placement Technology (ADEPT). ADEPT is an umbrella-like entry system that is folded for stowage in the launch vehicle s shroud and deployed in space prior to reaching the atmospheric interface. A key feature of the ADEPT concept is its lower ballistic coefficient for delivery of a given payload than those for conventional, rigid body entry systems. The benefits that accrue from the lower ballistic coefficient include factor of ten reductions of deceleration forces and entry heating. The former enables consideration of new classes of scientific instruments for solar system exploration while the latter enables the design of a more efficient thermal protection system. The carbon cloth now base lined for ADEPT has a dual use in that it serves as ADEPT s thermal protection system and as the "skin" that transfers aerodynamic deceleration loads to its umbrella-like substructure. The arcjet testing described in this paper was conducted for some of the higher heating conditions for a future Venus mission using the ADEPT concept, thereby showing that the carbon cloth can perform in a relevant entry environment. The ADEPT project considered the carbon cloth to be mission enabling and was carrying it as a major risk during Fiscal Year 2012. The testing and analysis reported here played a major role in retiring that risk and is highly significant to the success and possible adoption of ADEPT for future NASA missions. Finally, this paper also describes a preliminary engineering level code, based on the arcjet data, that can be used to estimate cloth thickness for future missions using ADEPT and to predict carbon cloth performance in future arcjet tests.

  7. March 2008 - ITER Organization Director-General K.Ikeda and Deputy Director-General N. Holtkamp, visiting the ATLAS cavern with Spokesperson P. Jenni, Accelerators Technology Department Head P. Lebrun and LHC Mangnets Group Leader L. Rossi.

    CERN Multimedia

    Claudia Marcelloni

    2008-01-01

    March 2008 - ITER Organization Director-General K.Ikeda and Deputy Director-General N. Holtkamp, visiting the ATLAS cavern with Spokesperson P. Jenni, Accelerators Technology Department Head P. Lebrun and LHC Mangnets Group Leader L. Rossi.

  8. 7 March 2013 -Stanford University Professor N. McKeown FREng, Electrical Engineering and Computer Science and B. Leslie, Creative Labs visiting CERN Control Centre and the LHC tunnel with Director for Accelerators and Technology S. Myers.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    7 March 2013 -Stanford University Professor N. McKeown FREng, Electrical Engineering and Computer Science and B. Leslie, Creative Labs visiting CERN Control Centre and the LHC tunnel with Director for Accelerators and Technology S. Myers.

  9. Application of carbon nanotube technology for removal of contaminants in drinking water: a review.

    Science.gov (United States)

    Upadhyayula, Venkata K K; Deng, Shuguang; Mitchell, Martha C; Smith, Geoffrey B

    2009-12-15

    Carbon nanotube (CNT) adsorption technology has the potential to support point of use (POU) based treatment approach for removal of bacterial pathogens, natural organic matter (NOM), and cyanobacterial toxins from water systems. Unlike many microporous adsorbents, CNTs possess fibrous shape with high aspect ratio, large accessible external surface area, and well developed mesopores, all contribute to the superior removal capacities of these macromolecular biomolecules and microorganisms. This article provides a comprehensive review on application of CNTs as adsorbent media to concentrate and remove pathogens, NOM, and cyanobacterial (microcystin derivatives) toxins from water systems. The paper also surveys on consideration of CNT based adsorption filters for removal of these contaminants from cost, operational and safety standpoint. Based on the studied literature it appears that POU based CNT technology looks promising, that can possibly avoid difficulties of treating biological contaminants in conventional water treatment plants, and thereby remove the burden of maintaining the biostability of treated water in the distribution systems.

  10. Application of carbon nanotube technology for removal of contaminants in drinking water: A review

    International Nuclear Information System (INIS)

    Carbon nanotube (CNT) adsorption technology has the potential to support point of use (POU) based treatment approach for removal of bacterial pathogens, natural organic matter (NOM), and cyanobacterial toxins from water systems. Unlike many microporous adsorbents, CNTs possess fibrous shape with high aspect ratio, large accessible external surface area, and well developed mesopores, all contribute to the superior removal capacities of these macromolecular biomolecules and microorganisms. This article provides a comprehensive review on application of CNTs as adsorbent media to concentrate and remove pathogens, NOM, and cyanobacterial (microcystin derivatives) toxins from water systems. The paper also surveys on consideration of CNT based adsorption filters for removal of these contaminants from cost, operational and safety standpoint. Based on the studied literature it appears that POU based CNT technology looks promising, that can possibly avoid difficulties of treating biological contaminants in conventional water treatment plants, and thereby remove the burden of maintaining the biostability of treated water in the distribution systems.

  11. Linear Accelerators

    CERN Document Server

    Vretenar, M

    2014-01-01

    The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics.

  12. Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology.

    Science.gov (United States)

    Xu, Pei; Drewes, Jörg E; Heil, Dean; Wang, Gary

    2008-05-01

    Capacitive deionization (CDI) with carbon-aerogel electrodes represents a novel process in desalination of brackish water and has merit due to its low fouling/scaling potential, ambient operational conditions, electrostatic regeneration, and low voltage requirements. The objective of this study was to investigate the viability of CDI in treating brackish produced water and recovering iodide from the water. Laboratory- and pilot-scale experiments were conducted to identify ion selectivity, key operational parameters, evaluate desalination performance, and assess the challenges for its practical applications. The performance of the CDI technology (CDT) system tested was consistent throughout the laboratory- and field-scale experiments. Deterioration of the carbon-aerogel electrodes was not observed during testing. The degree of ions adsorbed to the carbon aerogel (in mol/g aerogel) during treatment of brackish water was dependent upon initial ion concentrations in the feed water with the following selectivity I>Br>Ca>alkalinity>Mg>Na>Cl. The preferential sorption of iodide revealed merit to efficiently recover iodide from brackish water even in the presence of dominant co-ions. The research findings derived from this study identified parameters that merit further improvements regarding design and operation, including modification of pore-size distribution of aerogel, development of high capacitance and low-cost electrode materials, reducing the dead volume after regeneration and rinsing, minimizing energy consumption, and maximizing system recovery. PMID:18258278

  13. Final Technical Report: Science and technology reviews of FACE[Free Air Carbon Enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Strain, Boyd R.

    1998-03-23

    The purpose of this grant was to bring together the principals of all known facilities that had been developed, principals who had submitted proposals to develop FACE facilities, and principals who want to develop proposals for facilities. In addition, critical program personnel from potential funding agencies and a few high level science administrators were invited to observe the proceedings and to visit a working FACE facility. The objectives of this study are to conduct a three-day international meeting on scientific aspects of research with the new and developing free air carbon enrichment (FACE) technology. Immediately following the science meeting, conduct a two-day international meeting on experimental protocols to be applied in FACE research. To conduct a four day international meeting on the assessment of the responses of forest ecosystems to elevated atmospheric carbon dioxide. The three meetings supported by this grant were all highly successful meetings and resulted in the formation of an organized and identified working group with the acronym InterFACE (International Free-Air Carbon Dioxide Enrichment) working group.

  14. Development of Monitoring & Verification Technology (MVT) for Carbon Sequestration in Terrestrial Ecosystems: Instrumentation and Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Wielopolski, Lucian

    2008-09-29

    The objective of this CRADA is to further develop the Multiple Elemental Soil Analysis (MESA) system, based on inelastic neutron scattering technology that was originally developed by Dr. Lucian Wielopolski at BNL. The scope of this CRADA will center on the quantification and monitoring of non-destructive in situ carbon loading in soils to evaluate land application emission reduction activities. To accomplish this objective, the CRADA will center on three main joint activities as described below: A. To further develop and characterize a prototype, field deployable MESA system for static and scanning purposes. B. To develop applicable protocols for agricultural land applications; system validation and field sampling schemes. C. To implement field experiments for independent systems validation, verification, and acceptance by third parties for use in the market segment and commercialization. The technical approach involves a system for monitoring characteristic gamma rays emitted from carbon nuclei stimulated by inelastic neutron scattering from a carbon nucleus. The system consists of a neutron generator emitting fast, 14 MeV, neutrons, shielding materials, and a detection system with nuclear electronics for data acquisition. Following standard system calibration, the results are produced immediately at the end of the counting period.

  15. Electron accelerators for environmental protection

    International Nuclear Information System (INIS)

    The primary objective of this publication is to provide information suitable for electron accelerators implementation in facilities applying radiation technology for environmental protection. It should be noticed that radiation processing has been successfully used in the fields of crosslinking polymer curing and medical products sterilization for more than 40 years. Practical application of radiation technology today extends on SO2 and NOx removal from the flue gas (one of major power intensive radiation processing), destruction and removal of organic chemicals from water, decreasing bacteria content in the irradiated sludge and waste water. On the other hand the increased awareness of environmental pollution hazards and more stringent waste regulations in many countries may open stronger support for environmentally oriented technologies. This publication provides an evaluation of electron accelerators capabilities in respect of environmental applications where technological and economical criteria are now well defined. In order to determine the potential of electron accelerators, the literature data were examined as well visits and meetings with various accelerator manufacturers were performed by the author. Experience of the author in accelerator facilities construction and exploitation including those which were used for environmental protection are significant part of this publication. The principle of accelerator action was described in Chapter 1. Early development, accelerator classification and fields of accelerators application were included to this chapter as well. Details of accelerator construction was described in Chapter 2 to illustrate physical capability of accelerators to perform the function of ionizing radiation source. Electron beam extraction devices, under beam equipment, electron beam parameters and measuring methods were characterized in this chapter as well. Present studies of accelerator technology was described in Chapter 3, where direct

  16. Technical Progress Report on Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Patrick Gonzalez; Sandra Brown; Jenny Henman; Ben Poulter; Sarah Woodhouse Murdock; Neil Sampson; Tim Pearson; Sarah Walker; Zoe Kant; Miguel Calmon; Gilberto Tiepolo

    2006-06-30

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st and July 30th 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool. Work is being carried out in Brazil, Belize, Chile, Peru and the USA.

  17. Carbon Carbon Composites: An Overview .

    Directory of Open Access Journals (Sweden)

    G. Rohini Devi

    1993-10-01

    Full Text Available Carbon carbon composites are a new class of engineering materials that are ceramic in nature but exhibit brittle to pseudoplastic behaviour. Carbon-carbon is a unique all-carbon composite with carbon fibre embeded in carbon matrix and is known as an inverse composite. Due to their excellent thermo-structural properties, carbon-carbon composites are used in specialised application like re-entry nose-tips, leading edges, rocket nozzles, and aircraft brake discs apart from several industrial and biomedical applications. The multidirectional carbon-carbon product technology is versatile and offers design flexibility. This paper describes the multidirectional preform and carbon-carbon process technology and research and development activities within the country. Carbon-carbon product experience at DRDL has also been discussed. Development of carbon-carbon brake discs process technology using the liquid impregnation process is described. Further the test results on material characterisation, thermal, mechanical and tribological properties are presented.

  18. Direct Air Capture of CO2 - an Overview of Carbon Engineering's Technology and Pilot Plant Development

    Science.gov (United States)

    Holmes, G.; Corless, A.

    2014-12-01

    At Carbon Engineering, we are developing and commercializing technology to scrub CO2 directly from atmospheric air at industrial scale. By providing atmospheric CO2 for use in fuel production, we can enable production of transportation fuels with ultra-low carbon intensities, which command price premiums in the growing set of constrained fuels markets such as California's LCFS. We are a Calgary based startup founded in 2009 with 10 employees, and we are considered a global leader in the direct air capture (DAC) field. We will review CE's DAC technology, based on a wet-scrubbing "air contactor" which absorbs CO2 into aqueous solution, and a chemical looping "regeneration" component, which liberates pure CO2 from this aqueous solution while re-making the original absorption chemical. CE's DAC tecnology exports purified atmospheric CO2, combined with the combustion CO2 from plant energy usage, as the end product. We will also discuss CE's 2014-2015 end-to-end Pilot Demonstration Unit. This is a $7M technology demonstration plant that CE is building with the help of key industrial partners and equipment vendors. Vendor design and engineering requirements have been used to specify the pilot air contactor, pellet reactor, calciner, and slaker modules, as well as auxiliary systems. These modules will be run for several months to obtain the engineering and performance data needed for subsequent commercial plant design, as well as to test the residual integration risks associated with CE's process. By the time of the AGU conference, the pilot is expected to be in late stages of fabrication or early stages of site installation.

  19. Examining the patterns of innovation in low carbon energy science and technology: Publications and patents of Asian emerging economies

    International Nuclear Information System (INIS)

    This paper focuses on selected Asian emerging economies. The study employs publications and patents as proxies for science and technology, and its analysis is divided into three main parts: production trends, catching-up trends and patterns of convergence. The findings resulted in four salient points to be considered by policy makers: (1) ASEAN-4 lagged significantly behind the more advanced economies (Korea, Taiwan and China) even though their performance was identical in the early 1990s. China has forged ahead in terms of scientific publications and patents production, but lags behind in patents quality; (2) compared to the world average, the region as a whole has high potential to forge ahead in low carbon energy scientific production. (3) Advanced economies in Asia kicked off their low carbon energy science and technology development more from technological rather than scientific production, with no straightforward co-evolution between the two competencies. This demonstrates the need for a strong science-based technological foundation and a high level of dynamism for low carbon energy technology development; and (4) the economies demonstrated contrasting development trends in their focus between the supply and demand sides of energy technology development. The performance of the advanced economies is higher in ‘demand-side’ low carbon energy innovations

  20. Economic feasibility study to Raise the operational capacity of the Electron Beam Accelerator at the National Centre for Radiation Research and Technology, atomic Energy Authority, Egypt

    International Nuclear Information System (INIS)

    The study aims to investigate the economic feasibility to raise the operational capacity of the accelerator at the National Center for Radiation Research and Technology, Atomic Energy Authority, Egypt, through proposal of additional processing of power cables as it have 4 thousand operating hours per year of total 6 thousand hours per year. The study involved three sections; the first section included the technical aspects and marketing, the second section was concerned with financial analysis, and the third section included the national return of the project. In the first part, the electronic and technical requirements of the accelerator were studied to raise the capacity of the accelerator and to identify the time trend of demand for services in marketing. The second section included the financial feasibility of the project which was carried out through two parts; the first part deal with the analysis of costs of the project including identifying of investment, spending, labor costs, operating expenses, the annual installment of the annual depreciation expense with the total annual costs and operating costs per hour and ton. The second part was carried out to evaluated business profitability of the project, preparation of the annual cash flow, calculation of the internal rate of return, payback period of capital, and the analysis of sensitivity of the project in terms of its ability to achieve profitable business in the event of increasing costs and decreasing revenue. The third section was carried out to raise the operational capacity of the accelerator at the Egyptian Atomic Energy Authority to generate added value for national income, and to study the social rate of return for the project and examine the project's ability to provide new employment opportunities. The study showed the possibility and the importance of the project implemented at the level of private investment and national security.

  1. Advanced manufacturing technologies of large martensitic stainless steel castings with ultra low carbon and high cleanliness

    Directory of Open Access Journals (Sweden)

    Lou Yanchun

    2010-11-01

    Full Text Available The key manufacturing technologies associated with composition, microstructure, mechanical properties, casting quality and key process control for large martensitic stainless steel castings are involved in this paper. The achievements fully satisfied the technical requirements of the large 700 MW stainless steel hydraulic turbine runner for the Three Gorges Hydropower Station, and become the major technical support for the design and manufacture of the largest 700 MW hydraulic turbine generator unit in the world developed through our own efforts. The characteristics of a new high yield to tensile strength (Rp0.2/Rm ratio and high obdurability martensitic stainless steel with ultra low carbon and high cleanliness are also described. Over the next ten years, the large martensitic stainless steel castings and advanced manufacturing technologies will see a huge demand in clean energy industry such as nuclear power, hydraulic power at home and abroad. Therefore, the new high yield o tensile strength (Rp0.2/Rm ratio and high obdurability martensitic stainless steel materials, the fast and flexible manufacturing technologies of large size castings, and new environment friendly sustainable process will face new challenges and opportunities.

  2. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  3. Accelerating technology transfer from federal laboratories to the private sector by industrial R and D collaborations - A new business model

    Energy Technology Data Exchange (ETDEWEB)

    LOMBANA,CESAR A.; ROMIG JR.,ALTON D.; LINTON,JONATHAN D.; MARTINEZ,J. LEONARD

    2000-04-13

    Many important products and technologies were developed in federal laboratories and were driven initially by national needs and for federal applications. For example, the clean room technology that enhanced the growth of the semiconductor industry was developed at Sandia National Laboratories (SNL) decades ago. Similarly, advances in micro-electro-mechanical-systems (MEMS)--an important set of process technologies vital for product miniaturization--are occurring at SNL. Each of the more than 500 federal laboratories in the US, are sources of R and D that contributes to America's economic vitality, productivity growth and, technological innovation. However, only a fraction of the science and technology available at the federal laboratories is being utilized by industry. Also, federal laboratories have not been applying all the business development processes necessary to work effectively with industry in technology commercialization. This paper addresses important factors that federal laboratories, federal agencies, and industry must address to translate these under utilized technologies into profitable products in the industrial sector.

  4. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration.

    Science.gov (United States)

    Boyero, Luz; Pearson, Richard G; Gessner, Mark O; Barmuta, Leon A; Ferreira, Verónica; Graça, Manuel A S; Dudgeon, David; Boulton, Andrew J; Callisto, Marcos; Chauvet, Eric; Helson, Julie E; Bruder, Andreas; Albariño, Ricardo J; Yule, Catherine M; Arunachalam, Muthukumarasamy; Davies, Judy N; Figueroa, Ricardo; Flecker, Alexander S; Ramírez, Alonso; Death, Russell G; Iwata, Tomoya; Mathooko, Jude M; Mathuriau, Catherine; Gonçalves, José F; Moretti, Marcelo S; Jinggut, Tajang; Lamothe, Sylvain; M'Erimba, Charles; Ratnarajah, Lavenia; Schindler, Markus H; Castela, José; Buria, Leonardo M; Cornejo, Aydeé; Villanueva, Verónica D; West, Derek C

    2011-03-01

    The decomposition of plant litter is one of the most important ecosystem processes in the biosphere and is particularly sensitive to climate warming. Aquatic ecosystems are well suited to studying warming effects on decomposition because the otherwise confounding influence of moisture is constant. By using a latitudinal temperature gradient in an unprecedented global experiment in streams, we found that climate warming will likely hasten microbial litter decomposition and produce an equivalent decline in detritivore-mediated decomposition rates. As a result, overall decomposition rates should remain unchanged. Nevertheless, the process would be profoundly altered, because the shift in importance from detritivores to microbes in warm climates would likely increase CO(2) production and decrease the generation and sequestration of recalcitrant organic particles. In view of recent estimates showing that inland waters are a significant component of the global carbon cycle, this implies consequences for global biogeochemistry and a possible positive climate feedback. PMID:21299824

  5. Optimization of the accelerated curing process of concrete using a fibre Bragg grating-based control system and microwave technology

    Science.gov (United States)

    Fabian, Matthias; Jia, Yaodong; Shi, Shi; McCague, Colum; Bai, Yun; Sun, Tong; Grattan, Kenneth T. V.

    2016-05-01

    In this paper, an investigation into the suitability of using fibre Bragg gratings (FBGs) for monitoring the accelerated curing process of concrete in a microwave heating environment is presented. In this approach, the temperature data provided by the FBGs are used to regulate automatically the microwave power so that a pre-defined temperature profile is maintained to optimize the curing process, achieving early strength values comparable to those of conventional heat-curing techniques but with significantly reduced energy consumption. The immunity of the FBGs to interference from the microwave radiation used ensures stable readings in the targeted environment, unlike conventional electronic sensor probes.

  6. Emission Inventories of Carbon-containing Greenhouse Gases in and Technological Measures for Their Abatement

    Institute of Scientific and Technical Information of China (English)

    Zhuang Yahui; Zhang Hongxun; Wang Xiaoke; Li Changsheng

    2004-01-01

    The report summarizes surveys on carbon inventories and initiatives on sustainable carbon cycling taken by the Research Center for EcoEnvironmental Sciences, where the authors work/worked. The first part of the report, which appeared in the preceding issue of this journal, deals with the concept of sustainable carbon cycling, the historic evolution of carbon cycling processes in China, carbon pool enhancement, value addition,carbon sequestration and carbon balance. This very paper, as the second part of the report, covers the results of carbon dynamics modeling, emission inventories of various carbon-containing greenhouse gases and their potential abatement measures.

  7. Conductive Carbon Nanotube Inks for Use with Desktop Inkjet Printing Technology

    Science.gov (United States)

    Roberson, Luke; Williams, Martha; Tate, LaNetra; Fortier, Craig; Smith, David; Davia, Kyle; Gibson, Tracy; Snyder, Sarah

    2013-01-01

    Inkjet printing is a common commercial process. In addition to the familiar use in printing documents from computers, it is also used in some industrial applications. For example, wire manufacturers are required by law to print the wire type, gauge, and safety information on the exterior of each foot of manufactured wire, and this is typically done with inkjet or laser printers. The goal of this work was the creation of conductive inks that can be applied to a wire or flexible substrates via inkjet printing methods. The use of inkjet printing technology to print conductive inks has been in testing for several years. While researchers have been able to get the printing system to mechanically work, the application of conductive inks on substrates has not consistently produced adequate low resistances in the kilohm range. Conductive materials can be applied using a printer in single or multiple passes onto a substrate including textiles, polymer films, and paper. The conductive materials are composed of electrical conductors such as carbon nanotubes (including functionalized carbon nanotubes and metal-coated carbon nanotubes); graphene, a polycyclic aromatic hydrocarbon (e.g., pentacene and bisperipentacene); metal nanoparticles; inherently conductive polymers (ICP); and combinations thereof. Once the conductive materials are applied, the materials are dried and sintered to form adherent conductive materials on the substrate. For certain formulations, increased conductivity can be achieved by printing on substrates supported by low levels of magnetic field alignment. The adherent conductive materials can be used in applications such as damage detection, dust particle removal, smart coating systems, and flexible electronic circuitry. By applying alternating layers of different electrical conductors to form a layered composite material, a single homogeneous layer can be produced with improved electrical properties. It is believed that patterning alternate layers of

  8. Modern compact accelerators of cyclotron type for medical applications

    Science.gov (United States)

    Smirnov, V.; Vorozhtsov, S.

    2016-09-01

    Ion beam therapy and hadron therapy are types of external beam radiotherapy. Recently, the vast majority of patients have been treated with protons and carbon ions. Typically, the types of accelerators used for therapy were cyclotrons and synchrocyclotrons. It is intuitively clear that a compact facility fits best to a hospital environment intended for particle therapy and medical diagnostics. Another criterion for selection of accelerators to be mentioned in this article is application of superconducting technology to the magnetic system design of the facility. Compact isochronous cyclotrons, which accelerate protons in the energy range 9-30 MeV, have been widely used for production of radionuclides. Energy of 230 MeV has become canonical for all proton therapy accelerators. Similar application of a carbon beam requires ion energy of 430 MeV/u. Due to application of superconducting coils the magnetic field in these machines can reach 4-5 T and even 9 T in some cases. Medical cyclotrons with an ironless or nearly ironless magnetic system that have a number of advantages over the classical accelerators are in the development stage. In this work an attempt is made to describe some conceptual and technical features of modern accelerators under consideration. The emphasis is placed on the magnetic and acceleration systems along with the beam extraction unit, which are very important from the point of view of the facility compactness and compliance with the strict medical requirements.

  9. The High-Luminosity upgrade of the LHC: Physics and Technology Challenges for the Accelerator and the Experiments

    Science.gov (United States)

    Schmidt, Burkhard

    2016-04-01

    In the second phase of the LHC physics program, the accelerator will provide an additional integrated luminosity of about 2500/fb over 10 years of operation to the general purpose detectors ATLAS and CMS. This will substantially enlarge the mass reach in the search for new particles and will also greatly extend the potential to study the properties of the Higgs boson discovered at the LHC in 2012. In order to meet the experimental challenges of unprecedented pp luminosity, the experiments will need to address the aging of the present detectors and to improve the ability to isolate and precisely measure the products of the most interesting collisions. The lectures gave an overview of the physics motivation and described the conceptual designs and the expected performance of the upgrades of the four major experiments, ALICE, ATLAS, CMS and LHCb, along with the plans to develop the appropriate experimental techniques and a brief overview of the accelerator upgrade. Only some key points of the upgrade program of the four major experiments are discussed in this report; more information can be found in the references given at the end.

  10. Design and simulation of 3½-cell superconducting gun cavity and beam dynamics studies of the SASE-FEL System at the Institute of Accelerator Technologies at Ankara University

    International Nuclear Information System (INIS)

    Design and simulation of a superconducting gun cavity with 3½ cells have been studied in order to give the first push to the electron beam for the linear accelerating system at The Institute of Accelerator Technologies at Ankara University. Electrons are accelerated through the gun cavity with the help of the Radiofrequency power suppliers from cryogenic systems. Accelerating gradient should be as high as possible to accelerate electron beam inside the cavity. In this study, electron beam reaches to 9.17 MeV energy at the end of the gun cavity with the accelerating gradient; Ec=19.21 MV/m. 1.3 GHz gun cavity consists of three TESLA-like shaped cells while the special designed gun-cell includes a cathode plug. Optimized important beam parameters inside the gun cavity, average beam current 3 mA, transverse emittance 2.5 mm mrad, repetition rate 30 MHz and other parameters are obtained for the SASE-FEL System. The Superfish/Poisson program is used to design each cell of the superconducting cavity. Superconducting gun cavity and Radiofrequency properties are studied by utilizing 2D Superfish/Poisson, 3D Computer Simulation Technology Microwave Studio, and 3D Computer Simulation Technology Particle Studio. Superfish/Poisson is also used to optimize the geometry of the cavity cells to get the highest accelerating gradient. The behavior of the particles along the beamline is included in this study. ASTRA Code is used to track the particles

  11. Design and simulation of 3½-cell superconducting gun cavity and beam dynamics studies of the SASE-FEL System at the Institute of Accelerator Technologies at Ankara University

    Science.gov (United States)

    Yildiz, H. Duran; Cakir, R.; Porsuk, D.

    2015-06-01

    Design and simulation of a superconducting gun cavity with 3½ cells have been studied in order to give the first push to the electron beam for the linear accelerating system at The Institute of Accelerator Technologies at Ankara University. Electrons are accelerated through the gun cavity with the help of the Radiofrequency power suppliers from cryogenic systems. Accelerating gradient should be as high as possible to accelerate electron beam inside the cavity. In this study, electron beam reaches to 9.17 MeV energy at the end of the gun cavity with the accelerating gradient; Ec=19.21 MV/m. 1.3 GHz gun cavity consists of three TESLA-like shaped cells while the special designed gun-cell includes a cathode plug. Optimized important beam parameters inside the gun cavity, average beam current 3 mA, transverse emittance 2.5 mm mrad, repetition rate 30 MHz and other parameters are obtained for the SASE-FEL System. The Superfish/Poisson program is used to design each cell of the superconducting cavity. Superconducting gun cavity and Radiofrequency properties are studied by utilizing 2D Superfish/Poisson, 3D Computer Simulation Technology Microwave Studio, and 3D Computer Simulation Technology Particle Studio. Superfish/Poisson is also used to optimize the geometry of the cavity cells to get the highest accelerating gradient. The behavior of the particles along the beamline is included in this study. ASTRA Code is used to track the particles.

  12. Calcium and chemical looping technology for power generation and carbon dioxide (CO2) capture solid oxygen- and CO2-carriers

    CERN Document Server

    Fennell, Paul

    2015-01-01

    Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to chemical looping and combustion. Chapters review the market development, economics, and deployment of these systems, also providing detailed information on the variety of materials and processes that will help to shape the future of CO2 capture ready power plants. Reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to calcium and chemical loopingProvi

  13. Effect of powdered activated carbon technology on short-cut nitrogen removal for coal gasification wastewater.

    Science.gov (United States)

    Zhao, Qian; Han, Hongjun; Xu, Chunyan; Zhuang, Haifeng; Fang, Fang; Zhang, Linghan

    2013-08-01

    A combined process consisting of a powdered activated carbon technology (PACT) and short-cut biological nitrogen removal reactor (SBNR) was developed to enhance the removal efficiency of the total nitrogen (TN) from the effluent of an upflow anaerobic sludge bed (UASB) reactor, which was used to treat coal gasification wastewater (CGW). The SBNR performance was improved with the increasing of COD and TP removal efficiency via PACT. The average removal efficiencies of COD and TP in PACT were respectively 85.80% and 90.30%. Meanwhile, the NH3-N to NO2-N conversion rate was achieved 86.89% in SBNR and the total nitrogen (TN) removal efficiency was 75.54%. In contrast, the AOB in SBNR was significantly inhibited without PACT or with poor performance of PACT in advance, which rendered the removal of TN. Furthermore, PAC was demonstrated to remove some refractory compounds, which therefore improved the biodegradability of the coal gasification wastewater. PMID:23735800

  14. Incentives for early adoption of carbon capture technology: further considerations from a European perspective

    International Nuclear Information System (INIS)

    This note details two comments on a recent policy proposal in Comello and Reichelstein (2014) aimed at favoring the early adoption of Carbon Capture (CC) technology in the next generation of thermal-based power plants to be installed in the United States. First, we examine the implications of a worst-case scenario in which no new CC is adopted internationally beyond what is in place in 2014. Second, we show the potential, under the original proposed subsidy, for the emergence of coordination failures capable of hampering the desired early CC deployment. We propose and evaluate modified schedules of tax-credits sufficient to overcome these concerns. These additions strengthen the argument in the original article: namely, though higher incentive levels are necessary, our findings confirm that the cost of the proposed policy is not out of reach. (authors)

  15. Assessment of GHG emission reduction pathways in a society without carbon capture and nuclear technologies

    International Nuclear Information System (INIS)

    Every possible technology is pursued in order to achieve strict radiative forcing targets. Nuclear energy and Carbon Capture Storage (CCS) are regarded as important mitigation options. However, harsh criticisms have been directed at Japanese nuclear energy policy after the Fukushima nuclear accident, and the Japanese government will be required to re-evaluate not only its energy policy, but also the GHG reduction target itself. Like nuclear energy, CCS might not be regarded as a suitable option for GHG mitigation because its long-term safety has not been revealed. In this paper we analyze the energy policy response to an absence of nuclear energy and CCS, especially focusing on Japan, China and India. We find that the appropriate energy strategies against the unproven technologies differ between regions due to the uneven pre-existing nuclear energy, CCS potential and renewable energy potential, and the resource endowments and the levels of economic development. We also find that the strict mitigation target can be achieved even if nuclear energy and CCS are not available. In such a case, however, significant enhancement of renewable energy is needed, as well as particular fossil fuel alternatives based on region-specific availabilities and costs. - Highlights: ► We used a recursive-dynamic CGE model in which many advanced technologies are considered. ► We simulated radiative forcing targets assuming no availability of nuclear and CCS. ► The appropriate energy strategies against the unproven technologies differ between regions. ► The significant enhancement of renewable energy is needed, as well as particular fossil fuel alternatives.

  16. Accelerated killing of cancer cells using a multifunctional single-walled carbon nanotube-based system for targeted drug delivery in combination with photothermal therapy

    Directory of Open Access Journals (Sweden)

    Jeyamohan P

    2013-07-01

    Full Text Available Prashanti Jeyamohan, Takashi Hasumura, Yutaka Nagaoka, Yasuhiko Yoshida, Toru Maekawa, D Sakthi Kumar Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Japan Abstract: The photothermal effect of single-walled carbon nanotubes (SWCNTs in combination with the anticancer drug doxorubicin (DOX for targeting and accelerated destruction of breast cancer cells is demonstrated in this paper. A targeted drug-delivery system was developed for selective killing of breast cancer cells with polyethylene glycol biofunctionalized and DOX-loaded SWCNTs conjugated with folic acid. In our work, in vitro drug-release studies showed that the drug (DOX binds at physiological pH (pH 7.4 and is released only at a lower pH, ie, lysosomal pH (pH 4.0, which is the characteristic pH of the tumor environment. A sustained release of DOX from the SWCNTs was observed for a period of 3 days. SWCNTs have strong optical absorbance in the near-infrared (NIR region. In this special spectral window, biological systems are highly transparent. Our study reports that under laser irradiation at 800 nm, SWCNTs exhibited strong light–heat transfer characteristics. These optical properties of SWCNTs open the way for selective photothermal ablation in cancer therapy. It was also observed that internalization and uptake of folate-conjugated NTs into cancer cells was achieved by a receptor-mediated endocytosis mechanism. Results of the in vitro experiments show that laser was effective in destroying the cancer cells, while sparing the normal cells. When the above laser effect was combined with DOX-conjugated SWCNTs, we found enhanced and accelerated killing of breast cancer cells. Thus, this nanodrug-delivery system, consisting of laser, drug, and SWCNTs, looks to be a promising selective modality with high treatment efficacy and low side effects for cancer therapy. Keywords: cancer, nanotherapy, SWCNTs, targeted drug delivery

  17. Radiative Forcing associated with Particulate Carbon Emissions resulting from the Use of Mercury Control Technology

    Science.gov (United States)

    Clack, H.; Penner, J. E.; Lin, G.

    2013-12-01

    Mercury is a persistent, toxic metal that bio-accumulates within the food web and causes neurological damage and fetal defects in humans. The U.S. was the first country to regulate the leading anthropogenic source of mercury into the atmosphere: coal combustion for electric power generation. The U.S. EPA's 2005 Clean Air Mercury Rule (CAMR) was replaced and further tightened in 2012 by the Mercury and Air Toxics Standard (MATS), which required existing coal-fired utilities to reduce their mercury emissions by approximately 90% by 2015. Outside the U.S., the Governing Council of the United Nations Environment Programme (UNEP) has passed the legally binding Minamata global mercury treaty that compels its signatory countries to prevent and reduce the emission and release of mercury. The most mature technology for controlling mercury emissions from coal combustion is the injection into the flue gas of powdered activated carbon (PAC) adsorbents having chemically treated surfaces designed to rapidly oxidize and adsorb mercury. However, such PAC is known to have electrical properties that make it difficult to remove from flue gas via electrostatic precipitation, by far the most common particulate control technology used in countries such as the U.S., India, and China which rely heavily on coal for power generation. As a result, PAC used to control mercury emissions can be emitted into the atmosphere, the sub-micron fraction of which may result in unintended radiative forcing similar to black carbon (BC). Here, we estimate the potential increases in secondary BC emissions, those not produced from combustion but arising instead from the use of injected PAC for mercury emission reduction. We also calculate the radiative forcing associated with these secondary BC emissions by using a global atmospheric chemical transport model coupled with a radiative transfer model.

  18. Climate Change Mitigation Technologies: the Siemens Roadmap to Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Voges, K.

    2007-07-01

    A full range of technology options will have to be deployed until 2025 to get the global CO{sub 2} emissions on a 550 ppm stabilization track. The focus of the paper will be on Carbon Capture and Storage (CCS) as an indispensable part of a carbon constrained energy infrastructure. In CCS our main long term focus is clearly on coal based processes. For Greenfield applications Siemens is prioritizing IGCC based pre-combustion capture. Post-combustion capture is pursued for steam power plant retrofit. (a) IGCC with pre-combustion capture: A first F-class based demonstration plant could be available until 2014. The roadmap addresses gasifier scale up, hydrogen burner and turbine development and integration issues. Beyond that a bundle of further efficiency improvement measures will further enhance efficiency and economic competitiveness. (b) Post-combustion capture: The development aims at optimizing existing solvents or developing new ones and integrating the complete unit with its mass and heat interchange system into the power plant. (c) CO{sub 2} Compressors: For efficiency and operating flexibility reasons Siemens Power Generation prefers gear-type compressors instead of single shaft compressors. The improvement of maintainability and the reduced number of stages or corrosion protection are issues addressed in current R and D activities. (auth)

  19. Advanced Fuel UCO Preparation Technology for HTGR (Characteristics of Carbon Black)

    International Nuclear Information System (INIS)

    NGNP program for high specification of HTGR nuclear fuel through the GEN IV study is be progressed. Furthermore, because the NGNP program have a highly focused goal like UCO kernel, kernel fabrication and coating types varied which made selection of a US reference fabrication process. In this study, it was evaluated from the reviews on the UO2 and UCO kernel fabrication technologies and its particle characteristics. For improving the UCO qualities, first it was improved the kernel fabrication processes and carbon dispersion method also. New method for carbon dispersion in broth solution was developed, and its characteristics was evaluated from the AGR irradiation tests used the UCO kernel. In fabrication process, also process parameter variation tests in both forming and sintering steps led to an increased understanding of the acceptable ranges for process parameters and additional reduction in required operating times. Another result of this test program was to double the kernel production rate. Following the development tests, approximately 40 kg of natural uranium UCO kernels have been produced for use in coater scale up tests, and approximately 10 kg of low enriched uranium UCO kernels for use in the AGR-2 experiment

  20. Acceleration of suspending single-walled carbon nanotubes in BSA aqueous solution induced by amino acid molecules.

    Science.gov (United States)

    Kato, Haruhisa; Nakamura, Ayako; Horie, Masanori

    2015-01-01

    Single-walled carbon nanotube (SWCNT) suspensions in aqueous media were prepared using bovine serum albumin (BSA) and amino acid molecules. It was found that the amino acid molecules clearly decreased the time required for suspending the SWCNTs in BSA aqueous solutions. Dynamic light scattering measurements revealed that the particle sizes of the SWCNTs suspended in aqueous media with and without amino acid molecules were approximately the same and stable for more than one week. The zeta potential values of the BSA molecules in pure water and amino acid aqueous solutions were different, and these values were also reflected in the surface potential of colloidal SWCNT particles in the corresponding aqueous media, thus inducing different dispersibility of SWCNTs in aqueous media. Pulsed field gradient nuclear magnetic resonance measurements showed that the interactions between the SWCNTs and the amino acid molecules are weak and comprise chemical exchange interactions and not bonding interactions. Amino acid molecules play a fascinating role in the preparation of SWCNT suspensions in BSA aqueous media by increasing electrostatic repulsive interactions between SWCNT colloidal particles and consequently enhancing the dispersion ability of the BSA molecules.

  1. Cleaner fossil power generation in the 21st century: a technology strategy for carbon capture and storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-04-15

    The document describes how the research, development and demonstration (RD&D) components of the United Kingdom Government's Carbon Abatement Technologies (CATs) Strategy should be developed and extended, with particular reference to a 2020 target for carbon dioxide capture and storage (CCS) commercialisation and the 2050 UK Committee on Climate Change (CCC) dioxide target. It sets out a strategy for RD&D through the establishment of a collaborative programme linking industry, and academia, and involving different funding sources. The proposed RD& D programme has seven strategic themes: Power plant: focus on cost, increasing efficiency, biomass co-firing; Capture technologies: focus on cost, efficiency penalty, waste heat utilisation; storage: focus on security, monitoring and verification; transport: focus on logistics and transport network; whole system: focus on risks, transient capability, economics, environmental issues; advanced and novel capture technologies; and underpinning technology support. 11 refs., 10 figs., 15 tabs.

  2. Accelerator programme at CAT

    International Nuclear Information System (INIS)

    The Accelerator Programme at the Centre for Advanced Technology (CAT), Indore, has very broad based concept under which all types of accelerators are to be taken up for design and fabrication. This centre will be housing a wide variety of accelerators to serve as a common facility for the universities, national laboratories in addition to laboratories under the Department of Atomic Energy. In the first phase of the programme, a series of electron accelerators are designed and fabricated. They are synchrotron radiation sources of 450 MeV (INDUS-I) and of 2 GeV (INDUS-II), microtron upto energy of 20 MeV, linear accelerator upto 20 MeV, and DC Accelerator for industrial irradiation upto 750 KeV and 20 KW. A proton accelerator of 300 MeV with 20 MeV linac injector is also designed. CAT is also developing a strong base for support technologies like ultra high vacuum, radio frequency and microwaves, DC pulsed and superconducting magnets, power supplies and controls etc. These technologies are very useful for other industrial applications also. To develop user groups to utilise INDUS-II synchrotron radiation source, a batch production of rotating Anode X-ray generators with power supplies has been initiated. So also, the sputter ion pumps, electron guns, turbo molecular pumps are brought into batch production. (author)

  3. Neutralization of ADAM8 ameliorates liver injury and accelerates liver repair in carbon tetrachloride-induced acute liver injury.

    Science.gov (United States)

    Li, San-Qiang; Zhu, Sha; Wan, Xue-Dong; Xu, Zheng-Shun; Ma, Zhao

    2014-04-01

    Although some studies have described the function of ADAM8 (a disintegrin and metalloprotease 8) related with rheumatoid arthritis, cancer and asthma, etc., the concrete role of ADAM8 in acute liver injury is still unknown. So mice respectively received anti-ADAM8 monoclonal antibody (mAb) of 100 μg/100 μl, 200 μg/100 μl or 300 μg/100 μl in PBS or PBS pre-injection. Then acute liver injury was induced in the mice by intraperitoneal (i.p.) injection of carbon tetrachloride (CCl₄). Serum AST and ALT level, Haematoxylin-eosin (H&E) staining, the expression level of vascular endothelial growth factor (VEGF), cytochrome P450 1A2 (CYP1A2) and proliferating cell nuclear antigen (PCNA) were detected in the mice after CCl4 administration. Our results showed that anti-ADAM8 mAb pre-injection could effectively lower AST and ALT levels (P < 0.05 or P < 0.01) and reduce liver injury (P < 0.05 or P <0.01), induce the expression of VEGF, CYP1A2 and PCNA (P <0.05 or P < 0.01) in dose-dependent manner compared with the control mice which received PBS pre-injection. In summary, our study suggested that ADAM8 might promote liver injury by inhibiting the proliferation of hepatocytes, angiogenesis and affecting the metabolism function of liver during acute liver injury induced by CCl₄. Anti-ADAM8 mAb injection might be suitable as a potential method for acute liver injury therapy. PMID:24646716

  4. Plasma coating used to evaluate resistance against flow accelerated corrosion on carbon steel feeder pipe material for pressurized heavy water reactor

    International Nuclear Information System (INIS)

    A collaborative study on plasma nitriding was initiated by Water and Steam Chemistry Division, BARC Facilities, Kalpakkam, with FCIPT, a division of Institute of Plasma Research. In order to control the influence of Flow Accelerated Corrosion (FAC) on feeder pipe of PHWR reactor, coating by plasma nitriding process was carried out inside the pipe as a remedy.This is one of the methods to control the wall thickness reduction of carbon steel feeder pipe and the influence of FAC in PHWR (Pressurized heavy water reactor). Specimen of 15 mm NB Sch 80 straight pipe length of 100 mm pipe module section of low carbon steel ASTM 106 Gr. B were plasma nitrided at FCIPT, IPR for optimization of the process parameters. The wall thickness of the sample was measured axially and circumferentially by Ultrasonic thickness gauge with specific marking with templates before carrying out plasma nitriding process. During plasma nitriding the temperature was maintained at 520 °C for 24 hours. The samples after coating were checked for thickness variation by Raman spectroscopy as well as microscopy, and it was found that the coating was uniform and coating consisted of iron nitrides only. For functional test, to check the corrosion resistance, a specimen holder was designed and fabricated for the treated specimen such that it can withstand a velocity of 7 m/s. The holder was mounted in SIM loop outlet of heater. The SIM loop was maintained at 120 °C and 7 m/s for about 30 days with less than 20 ppb dissolved oxygen condition. Preliminary experiments on plasma nitriding have been carried out and checked in SIM loop in order to check the resistance to FAC under neutral pH condition. (author)

  5. Powdered Magnesium-Carbon Dioxide Rocket Combustion Technology for In Situ Mars Propulsion

    Science.gov (United States)

    Foote, J. P.; Litchford, R. J.

    2007-01-01

    Powdered magnesium (Mg) carbon dioxide (CO2) combustion is examined as a potential in situ propellant combination for Mars propulsion. Although this particular combination has relatively low performance in comparison to traditional bipropellants, it remains attractive as a potential basis for future martian mobility systems, since it could be partially or wholly manufactured from indigenous planetary resources. As a means of achieving high mobility during long-duration Mars exploration missions, the poorer performing in situ combination can, in fact, become a superior alternative to conventional storable propellants, which would need to be entirely transported from Earth. Thus, the engineering aspects of powdered metal combustion devices are discussed including transport/injection of compacted powder, ignition, combustion efficiency, combustion stability, dilution effects, lean burn limits, and slag formation issues. It is suggested that these technological issues could be effectively addressed through a multiphase research and development effort beginning with basic feasibility tests using an existing dump configured atmospheric pressure burner. Follow-on phases would involve the development and testing of a pressurized research combustor and technology demonstration tests of a prototypical rocket configuration.

  6. Industrial experience on the development of the molten carbonate fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Bosio, B.; Costamagna, P. [Ist. di Ingegneria Chimica e di Processo ``G.B. Bonino`` Univ. di Genova (Italy); Parodi, F.; Passalacqua, B. [Ansaldo Ricerche, Genova (Italy)

    1998-08-01

    The development of the molten carbonate fuel cell (MCFC) technology at Ansaldo Ricerche (ARI) is reported, starting from small scale single cells up to stacks of several kW capacity. The evolution of material and fabrication strategies as well as the progress in terms of electrical performance are described and discussed. The data reported show that the MCFC technology has been successfully tested on stacks in the kW power class, however some problems still need to be solved to improve the stack performance. In particular, better control of the start-up phase, of electrolyte migration through the manifolds and of the gas feed distribution are required, based on the latest experimental data on a 50 cell stack with cell area 0.1 m{sup 2} (cell active area 0.0702 m{sup 2}), which operated for 780 h with a maximum performance of 4 kW at 206 mA/cm{sup 2} at 50% fuel utilisation. Future development steps, which will lead to the realisation and operation of systems of several hundred kW, are presented. (orig.)

  7. Adoption of carbon dioxide efficient technologies and practices: An analysis of sector-specific convergence trends among 12 nations

    International Nuclear Information System (INIS)

    Carbon dioxide intensities in economic terms (GDP in PPP terms) in industrialized and developing countries have been shown to converge, and it has been argued that technology diffusion, leading to the use of similar technologies in all countries, is an important reason for this convergence. Indicators based on CO2 per output in PPP terms, however, give in comparison to physical indicators limited understanding of the process of technology diffusion. In order to analyze the technology diffusion hypothesis in more detail, we therefore study the trend in carbon dioxide emissions in relation to the production output in four separate sectors: iron and steel; paper, board and pulp; coal fuelled power plants; and natural gas fuelled power plants, in each of 12 countries, between 1980 and 1998. The indicators converge in each sector, indicating that across countries, technologies with more similar carbon dioxide efficiencies are used today than 25 years ago. We also find that at least some developing countries with high energy prices use more efficient technologies than industrialized countries with low energy prices

  8. Future accelerators (?)

    Energy Technology Data Exchange (ETDEWEB)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  9. Accelerators for research and applications

    International Nuclear Information System (INIS)

    The newest particle accelerators are almost always built for extending the frontiers of research, at the cutting edge of science and technology. Once these machines are operating and these technologies mature, new applications are always found, many of which touch our lives in profound ways. The evolution of accelerator technologies will be discussed, with descriptions of accelerator types and characteristics. The wide range of applications of accelerators will be discussed, in fields such as nuclear science, medicine, astrophysics and space-sciences, power generation, airport security, materials processing and microcircuit fabrication. 13 figs

  10. Demonstration project as a procedure for accelerating the application of new technology (Charpie Task Force report). Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    This report examines the issues associated with government programs proposed for the ''commercialization'' of new energy technologies; these programs are intended to hasten the pace at which target technologies are adopted by the private sector. The ''commercial demonstration'' is the principal tool used in these programs. Most previous government interventions in support of technological change have focused on R and D and left to the private sector the decision as to adoption for commercial utilization; thus there is relatively little in the way of analysis or experience which bears direct application. The analysis is divided into four sections. First, the role of R, D, and D within the structure of the national energy goals and policies is examined. The issue of ''prices versus gaps'' is described as a crucial difference of viewpoint concerning the role of the government in the future of the energy system. Second, the process of technological change as it occurs with respect to energy technologies is then examined for possible sources of misalignment of social and private incentives. The process is described as a series of investments. Third, correction of these sources of misalignment then becomes the goal of commercial demonstration programs as this goal and the means for attaining it are explored. Government-supported commercialization may be viewed as a subsidy to the introduction stage of the process; the circumstances under which such subsidies are likely to affect the success of the subsequent diffusion stage are addressed. The discussion then turns to the political, legal, and institutional problems. Finally, methods for evaluation and planning of commercial demonstration programs are analyzed. The critical areas of ignorance are highlighted and comprise a research agenda for improved analytical techniques to support decisions in this area.

  11. Overview of Carbon Capture and Storage Technology%碳捕获与封存技术综述

    Institute of Scientific and Technical Information of China (English)

    韩东升; 任吉萍; 吴干学; 郭家秀; 尹华强

    2012-01-01

    人类活动排放的二氧化碳将导致全球温度上升,从而引发各种灾难。CCS是短期内减缓全球变暖速度的重要手段。文中综述了碳捕获和碳封存的技术方法,以及CCS技术存在的问题。碳捕获分为燃烧前捕获、富氧燃烧捕获和燃烧后捕获。碳封存方式有地址封存、洋封存、矿石碳化、工业利用、生态封存等,其中地质封存是主流方式。%Carbon dioxide emissions from human activities will cause global temperatures to rise, which cause all kinds of disasters. CCS is an important technology to slow down the speed of global warming. In this paper, we introduce some technology methods on carbon capture and sequestration, and some prob- lems about CCS technology. Carbon capture includes pre-combustion capture, capture and oxyfuel combus- tion capture. The ways of carbon sequestration include address sequestration, ocean storage, mineral carbonation, industrial use and storage of ecology, geological storage is a main approach.

  12. Reduction of carbon dioxide emissions by solar water heating systems and passive technologies in social housing

    International Nuclear Information System (INIS)

    Growing global concern regarding climate change motivates technological studies to minimize environmental impacts. In this context, solar water heating (SWH) systems are notably prominent in Brazil, primarily because of the abundance of solar energy in the country. However, SWH designs have not always been perfectly developed. In most projects, the installation option of the solar system only considers the electric power economy aspects and not the particular characteristics of each climatic zone. Thus, the primary objective of this paper is to assess the potential of carbon dioxide reduction with the use of SWH in comparison with electric showers in social housing in several Brazilian climatic zones. The Brazilian government authorities have created public policies to encourage the use of these technologies primarily among the low-income population. The results of this paper indicate that hot climactic regions demonstrate a low reduction of CO2 emissions with SWH installations. Thus, solar radiation is not useful for water heating in those regions, but it does lead to a large fraction of household cooling loads, implying a demand for electrical energy for air conditioning or requiring the adoption of passive techniques to maintain indoor temperatures below threshold values. -- Graphical abstract: Display Omitted -- Highlights: •Brazil has created public policies to increase the use of solar water heating in social housing. •We have evaluated the potential for reduction of CO2 emissions installing solar water heating. •We have found that the coldest regions have the greatest potential for reducing emissions. •Passive technologies for thermal comfort in hot climate households are more useful than solar water heating systems

  13. Technical Report on Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Sandra Brown; Zoe Kant; Patrick Gonzalez

    2009-01-07

    The Nature Conservancy participated in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project was 'Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration'. The objectives of the project were to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Final Technical Report discusses the results of the six tasks that The Nature Conservancy undertook to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between July 1st 2001 and July 10th 2008. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool. The project occurred in two phases. The first was a focused exploration of specific carbon measurement and monitoring methodologies and pre-selected carbon sequestration opportunities. The second was a more systematic and comprehensive approach to compare various competing measurement and monitoring methodologies, and assessment of a variety of carbon sequestration opportunities in order to find those that are the lowest cost with the greatest combined carbon and other

  14. [Effect of accelerated heavy ions of carbon 12C, neon 20Ne and iron 56Fe on the chromosomal apparatus of human blood lymphocytes in vitro].

    Science.gov (United States)

    Repina, L A

    2011-01-01

    Cytogenetic assay of the chromosomal apparatus of human blood lymphocytes was carried out after in vitro irradiation by heavy charged particles with high LET values. Blood plasm samples enriched with lymphocytes were irradiated by accelerated ions of carbon 12C (290 MeV/nucleon and LET = 70 keV/microm), neon 20Ne (400 MeV/nucleon and LET = 70 keV/microm), and iron 56Fe (500 MeV/nucleon and LET = 200 keV/microm) in the dose range from 0.25 to 1 Gy. Rate of chromosome aberrations showed a linear dependence on doses from the densely ionizing radiations with high LET values. Frequency of dicentrics and centric rings in human lymphocytes irradiated by 12C with the energy of 290 MeV/nucleon was maximal at 1 Gy (p < 0.05) relative to the other heavy particles. It was found that relative biological effectiveness of heavy nuclei is several times higher than of 60Co gamma-radiation throughout the range of doses in this investigation.

  15. Pre-selection of technology for carbon emission reduction in Maritsa East power generation plants through post-combustion capture

    International Nuclear Information System (INIS)

    This paper presents different options for post combustion carbon capture based on amines technology. The flow sheet of typical for 'Maritsa East' plants is simulated with appropriated computation tool. The effect on the power plant economy is analyzed when amines with different regeneration energy are applied. (authors)

  16. The effects of free and bonded sulfur both in the presence and absence of vulcanization accelerators on the rheological, technological, aging, and thermal stability of asphalts

    Energy Technology Data Exchange (ETDEWEB)

    Onabajo, A.; Kopsch, H.

    1987-01-01

    Rheological and technological experiments have been carried out on sulfur-modified asphalts in the temperature range of 353 K to 453 K over a wide range of shear rates (0-4800 sec/sup -1/). The results indicated that the activation energy of the viscous flow increased with increasing amount of bonded sulfur. The irreversible shear degradation observed in sulfur-modified asphalts is caused by the high shear forces which rupture the aggregated molecules. Thermogravimetric analysis and aging experiments on asphalts and their sulfurized products, containing varying amounts of free sulfur (0-5.5 wt.-%) and vulcanization accelerators (0.5-2.5 wt.-%), have shown that mixes containing vulcanization accelerators have higher thermal stabilities and are more resistant to thermal and non-thermal aging than the unaccelerated asphalt-sulfur mixed prepared at the same or higher temperatures. The changes in the rheological and physical properties of the mixes with time is not only explained by the changes in the physical state of unreacted free sulfur, that is, from plastic to crystalline state (physical process), but also attributable to the effect of chemical reactions.

  17. Pulsed power magnet technology for laser particle acceleration and laser plasma physics - a survey of developments at Helmholtz-Zentrum Dresden-Rossendorf

    International Nuclear Information System (INIS)

    Since the mid-1950s, pulsed high-field magnets have become a common, versatile research tool with application mostly in solid state physics and material research. Recently developed pulsed power magnet technology, specifically designed to meet the demands of laser acceleration and laser plasma experiments, open up new research opportunities: We present a pulsed air core solenoid (up to 20 T) for effective collection and focusing of laser accelerated particles. It could function as a crucial part of a compact, laser-based ion source (pursued by the LIGHT collaboration) or of beam guidance systems. Furthermore, the poster shows a split pair coil, utterly compact and with optical access in between the coil pairs and on axis, to study laser-driven plasma expansion under high magnetic fields (30 T). To power such devices, portable capacitor-based pulse generators have been developed at Helmholtz-Zentrum Dresden-Rossendorf. We present first results of the functional testing of our third-generation pulse generator. Looking forward, we outline a concept for a medical gantry based on pulsed high field beam optics.

  18. Interview with Steve Myers, Director for Accelerators and Technology, December 18th, 2009, after the LHC Report

    CERN Multimedia

    CERN Video Productions

    2009-01-01

    LHC ends 2009 run on a high note Geneva, 18 December 2009. At its 153rd session today, the CERN Council heard that the Large Hadron Collider ended its first full period of operation in style on Wednesday 16 December. Collisions at 2.36TeV recorded since last weekend have set a new world record and brought to a close a successful first run for the world’s most powerful particle accelerator. The LHC has now been put into standby mode, and will restart in February 2010 following a short technical stop to prepare for higher energy collisions and the start of the main research programme. The LHC circulated its first beams of 2009 on 20 November, ushering in a remarkably rapid beam-commissioning phase. The first collisions were recorded on 23 November, and a world-record beam energy was established on 30 November. Following those milestones, a systematic phase of LHC commissioning led to an extended data-taking period to provide data for the experiments. Over the last two weeks, the six LHC experiments have recor...

  19. Development of a dedicated beam forming system for material and bioscience research with high intensity, small field electron beam of LILLYPUT 3 accelerator at Wroclaw Technology Park

    CERN Document Server

    Adrich, Przemysław; Wilk, Piotr; Chorowski, Maciej; Poliński, Jarosław; Bogdan, Piotr

    2016-01-01

    The primary use of the LILLYPUT 3 accelerator at the Nondestructive Testing Laboratory at Wroclaw Technology Park is X-ray radiography for nondestructive testing, including R&D of novel techniques for industrial and medical imaging. The scope of possible applications could be greatly extended by providing a system for irradiation with electron beam. The purpose of this work was to design such a system, especially for high dose rate, small field irradiations under cryogenic conditions for material and bioscience research. In this work, two possible solutions, based either on beam scanning or scattering and collimation, were studied and compared. It was found that under existing conditions efficiency of both systems would be comparable. The latter one was adopted due to its simplicity and much lower cost. The system design was optimized by means of detailed Monte Carlo modeling. The system is being currently fabricated at National Centre for Nuclear Research in \\'Swierk.

  20. Market-pull report. Measures on the demand side accelerate development and market introduction of energy-saving technologies. Swiss examples in the international context

    International Nuclear Information System (INIS)

    International Energy Agency (IEA) experts met in Zurich in order to further develop international projects for the coordinated procurement of energy-saving technologies. On the occasion of this meeting, Swiss specialists from business and administrative circles presented examples of how the market can be purposefully influenced by implementing measures on the demand side. In order to ensure success, it is vital that all parties concerned - from the manufacturers to the consumers - are taken into account, and that tools are applied that have been adapted to each individual market. An international coordination of activities that are aimed at bringing about a change in procurement behaviour contributes considerably to an acceleration of the various processes. For the manufacturers, most of whom are active on an international level, it becomes simpler and more worthwhile to react. This applies in particular when instruments such as quality seals (labels) and target values are applied. (author) figs., tabs