WorldWideScience

Sample records for accelerate cancer research

  1. Accelerating cancer systems biology research through Semantic Web technology.

    Science.gov (United States)

    Wang, Zhihui; Sagotsky, Jonathan; Taylor, Thomas; Shironoshita, Patrick; Deisboeck, Thomas S

    2013-01-01

    Cancer systems biology is an interdisciplinary, rapidly expanding research field in which collaborations are a critical means to advance the field. Yet the prevalent database technologies often isolate data rather than making it easily accessible. The Semantic Web has the potential to help facilitate web-based collaborative cancer research by presenting data in a manner that is self-descriptive, human and machine readable, and easily sharable. We have created a semantically linked online Digital Model Repository (DMR) for storing, managing, executing, annotating, and sharing computational cancer models. Within the DMR, distributed, multidisciplinary, and inter-organizational teams can collaborate on projects, without forfeiting intellectual property. This is achieved by the introduction of a new stakeholder to the collaboration workflow, the institutional licensing officer, part of the Technology Transfer Office. Furthermore, the DMR has achieved silver level compatibility with the National Cancer Institute's caBIG, so users can interact with the DMR not only through a web browser but also through a semantically annotated and secure web service. We also discuss the technology behind the DMR leveraging the Semantic Web, ontologies, and grid computing to provide secure inter-institutional collaboration on cancer modeling projects, online grid-based execution of shared models, and the collaboration workflow protecting researchers' intellectual property. Copyright © 2012 Wiley Periodicals, Inc.

  2. High Gradient Accelerator Research

    International Nuclear Information System (INIS)

    Temkin, Richard

    2016-01-01

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  3. Illinois Accelerator Research Center

    Science.gov (United States)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 Heavy Assembly Building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft2 Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, which contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. At IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.

  4. Accelerators for atomic energy research

    International Nuclear Information System (INIS)

    Shibata, Tokushi

    1999-01-01

    The research and educational activities accomplished using accelerators for atomic energy research were studied. The studied items are research subjects, facility operation, the number of master theses and doctor theses on atomic energy research using accelerators and the future role of accelerators in atomic energy research. The strategy for promotion of the accelerator facility for atomic energy research is discussed. (author)

  5. Cancer Research

    Science.gov (United States)

    NCI is the nation's leader in cancer research. Learn more about NCI's cancer research areas, key initiatives, progress made in cancer research, and resources for researchers like research tools, specimens and data.

  6. Accelerators for cancer therapy

    International Nuclear Information System (INIS)

    Lennox, Arlene J.

    2000-01-01

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy

  7. Accelerator research studies

    International Nuclear Information System (INIS)

    1990-01-01

    This progress report for the Accelerator Research Studies program at the University of Maryland covers the second year (June 1, 1989 to May 31, 1990) of the current three-year contract period from June 1, 1988 to May 31, 1991, funded by the Department of Energy under Contract No. AC05-85ER40216. The research program is divided into three separate tasks, as follows: the study of Transport and Longitudinal Compression of Intense, High-Brightness Beams; the study of Collective Ion Acceleration by Intense Electron Beams and Pulse-Powered Plasma Focus; the study of Microwave Sources and Parameter Scaling for High-Frequency Linacs. This report consists of three sections in which the progress for each task is documented separately. An introduction and synopsis is presented at the beginning of the progress report for each task

  8. Accelerator research studies

    International Nuclear Information System (INIS)

    1993-01-01

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the second year of a three-year funding cycle. The program consists of the following three tasks: TASK A, ''Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,'' (P.I., M. Reiser); TASK B, ''Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,'' (Co-P.I.'s, W.W. Destler, M. Reiser, M.J. Rhee, and C.D. Striffler); TASK C, ''Study of a Gyroklystron High-Power Microwave Source for Linear Colliders,'' (Co-P.I.'s, V.L. Granatstein, W. Lawson, M. Reiser, and C.D. Striffler). In this report we document the progress that has been made during the past year for each of the three tasks

  9. Accelerator research studies

    International Nuclear Information System (INIS)

    1992-01-01

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the first year of a three-year funding cycle. The program consists of the following three tasks: TASK A, Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams, TASK B, Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams; TASK C, Study of a Gyroklystron High-power Microwave Source for Linear Colliders. In this report we document the progress that has been made during the past year for each of the three tasks

  10. Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Goldhagen, P.; Marino, S.A.; Randers-Pehrson, G.; Hall, E.J.

    1986-01-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which can be used to generate a variety of well-characterized radiation beams for research in radiobiology and radiological physics. It is part of the Radiological Research Laboratory (RRL), and its operation is supported as a National Facility by the US Department of Energy. RARAF is available to all potential users on an equal basis, with priorities based on the recommendations of a Scientific Advisory Committee. Facilities and services are provided to users, but the research projects themselves must be supported separately. This chapter presents a brief description of current experiments being carried out at RARAF and of the operation of the Facility from January through June, 1986. Operation of the Facility for all of 1985 was described in the 1985 Progress Report for RARAF. The experiments described here were supported by various Grants and Contracts from NIH and DOE and by the Statens Stralskyddsinstitut of Sweden

  11. Hadron accelerators in cancer therapy

    International Nuclear Information System (INIS)

    Amaldi, U.; Silari, M.

    1997-01-01

    The application of hadron accelerators (protons and light ions) in cancer therapy is discussed. After a brief introduction on the rationale for the use of heavy charged particles in radiation therapy, a discussion is given on accelerator technology and beam delivery systems. Next, existing and planned facilities are briefly reviewed. The Italian Hadrontherapy Project (the largest project of this type in Europe) is then described, with reference to both the National Centre for Oncological Hadrontherapy and the design of two types of compact proton accelerators aimed at introducing proton therapy in a large number of hospitals. Finally, the radiation protection requirements are discussed. (author)

  12. Accelerator and fusion research division

    International Nuclear Information System (INIS)

    1992-12-01

    This report contains brief discussions on research topics in the following area: Heavy-Ion Fusion Accelerator Research; Magnetic Fusion Energy; Advanced Light Source; Center for Beam Physics; Superconducting Magnets; and Bevalac Operations

  13. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Hall, E.J.; Marino, S.A.

    1990-07-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). Fifteen different experiments were run during these 12 months, approximately the same as the previous two years. Brief summaries of each experiment are included. Accelerator usage is summarized and development activities are discussed. 7 refs., 4 tabs

  14. Accelerators for research and applications

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1990-06-01

    The newest particle accelerators are almost always built for extending the frontiers of research, at the cutting edge of science and technology. Once these machines are operating and these technologies mature, new applications are always found, many of which touch our lives in profound ways. The evolution of accelerator technologies will be discussed, with descriptions of accelerator types and characteristics. The wide range of applications of accelerators will be discussed, in fields such as nuclear science, medicine, astrophysics and space-sciences, power generation, airport security, materials processing and microcircuit fabrication. 13 figs

  15. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Hall, E.J.; Marino, S.A.

    1991-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Brief summaries of research experiments are included. Accelerator usage is summarized and development activities are discussed. 8 refs., 8 tabs

  16. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Hall, E.J.

    1992-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) -- formerly the Radiological Research Laboratory (RRL) -- of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis, and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. Experiments performed from May 1991--April 1992 are described

  17. The Radiological Research Accelerator Facility

    International Nuclear Information System (INIS)

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993

  18. Advanced accelerator research and development

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    Research and development on the Positron-Electron Project (PEP), the electron rings, the superconducting accelerator (ESCAR), and the superconductivity program are reported. Efforts relating to the proposed PEP include work on: (1) the injection system; (2) the rf system; (3) the main-ring bend magnets; (4) the magnet power supplies and controls; (5) alignment; (6) radiation and shielding; (7) the vacuum system; and (8) conventional facilities (utilities, etc.). Experimental and theoretical work continued on the development of suitably intense electron rings as vehicles for the collective acceleration of ions. The most difficult problem was found to be the longitudinal (negative mass) instability. Design work was begun for ESCAR (Experimental Superconducting Accelerating Ring), a small proton synchrotron and storage ring using superconducting magnets, which should aid in the design of future large superconducting facilities. Magnet development was largely directed toward the detailed design of the dipole units. A superconducting beam transport line was installed at the Bevatron. (PMA)

  19. UCLA accelerator research and development

    International Nuclear Information System (INIS)

    Cline, D.B.

    1992-01-01

    This progress report covers work supported by the above DOE grant over the period November 1, 1991 to July 31, 1992. The work is a program of experimental and theoretical studies in advanced particle accelerator research and development for high energy physics applications. The program features research at particle beam facilities in the United States and includes research on novel high power sources, novel focussing systems (e.g. plasma lens), beam monitors, novel high brightness, high current gun systems, and novel flavor factories in particular the φ Factory

  20. Accelerator research studies. Progress report

    International Nuclear Information System (INIS)

    1984-06-01

    Progress is reported in both experimental studies as well as theoretical understanding of the beam transport problem. Major highlights are: (a) the completion of the first channel section with 12 periods and two matching solenoids, (b) measurements of beam transmission and emittance in this 12-lens channel, (c) extensive analytical and numerical studies of the beam transport problem in collaboration with GSI (W. Germany), (d) detailed measurements and calculations of beam propagation through one lens with spherical aberration and space charge, and (e) completion of the emittance grids at the Rutherford-Appleton Laboratory. Our main objectives in Task B of our research program are: (a) study of collective acceleration of positive ions from a localized plasma source by an intense relativistic electron beam (IREB), (b) external control of the IREB beam front by a slow-wave structure to achieve higher ion energies - the Beam Front Accelerator (BFA) concept, (c) study of ion and electron acceleration and other applications of a plasma focus device, and (d) theoretical studies in support of (a) and (b). Our research in these areas has been oriented towards obtaining an improved understanding of the physical processes at work in these experiments and, subsequently, achieving improved performance for specific potential applications

  1. The Radiological Research Accelerator Facility:

    International Nuclear Information System (INIS)

    Hall, E.J.; Goldhagen, P.

    1988-07-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generated a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Radiological Research Laboratory (RRL) of Columbia University, and its operation is supported as a National Facility by the U.S. Department of Energy. As such, RARAF is available to all potential users on an equal basis, and scientists outside the RRL are encouraged to submit proposals for experiments at RARAF. Facilities and services are provided to users, but the research projects themselves must be supported separately. RARAF was located at BNL from 1967 until 1980, when it was dismantled and moved to the Nevis Laboratories of Columbia University, where it was then reassembled and put back into operation. Data obtained from experiment using RARAF have been of pragmatic value to radiation protection and to neutron therapy. At a more fundamental level, the research at RARAF has provided insight into the biological action of radiation and especially its relation to energy distribution in the cell. High-LET radiations are an agent of special importance because they can cause measurable cellular effects by single particles, eliminating some of the complexities of multievent action and more clearly disclosing basic features. This applies particularly to radiation carcinogenesis. Facilities are available at RARAF for exposing objects to different radiations having a wide range of linear energy transfers (LETs)

  2. Accelerators for condensed matter research

    International Nuclear Information System (INIS)

    Williams, P.R.

    1990-01-01

    The requirement for high energy, high luminosity beams has stimulated the science and engineering of accelerators to a point where they open up opportunities for new areas of scientific application to benefit from the advances driven by particle physics. One area of great importance is the use of electron or positron storage rings as a source of intense VUV or X-ray synchrotron radiation. An accelerator application that has grown in prominence over the last 10 years has been spallation neutron sources. Neutrons offer an advantage over X-rays as a condensed matter probe because the neutron energy is usually of the same order as the room temperature thermal energy fluctuations in the sample being studied. Another area in which accelerators are playing an increasingly important role in condensed matter research concerns the use of Mu mesons, Muons, as a probe. This paper also presents a description of the ISIS Spallation Neutron Source. The design and status of the facility are described, and examples are given of its application to the study of condensed matter. (N.K.)

  3. Research needs of the new accelerator technologies

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1982-08-01

    A review is given of some of the new accelerator technologies with a special eye to the requirements which they generate for research and development. Some remarks are made concerning the organizational needs of accelerator research

  4. Types of Cancer Research

    Science.gov (United States)

    An infographic from the National Cancer Institute (NCI) describing the four broad categories of cancer research: basic research, clinical research, population-based research, and translational research.

  5. Annual report of joint research for using heavy ion accelerator for cancer therapy of the fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The heavy ion project consisted of 2 parts; clinical studies using HIMAC and joint basic researches using it. The clinical studies have been satisfactorily progressed and the number of patients treated by HIMAC reached 230 in total by the end of the fiscal year 1996. In Japan, HIMAC is the only apparatus for heavy ion acceleration. Thus, a lot of concerns from not only the medical and biological fields, but also other fundamental fields are paid to HIMAC. Further, the beam of HIMAC has been attracting international concerns, especially in the fields such as simulation of cosmic environment by heavy ion beam, dose determination using the beam, international comparison of its biological effects, etc. The operating times of HIMAC in 1996 was ca. 4800 hours in total and of those ca. 2700 hours were used for joint researches. This annual report include 12 reports of clinical research group, 4 of diagnosis one 64 of biology one and 42 of physical and engineering one. (M.N.)

  6. UCLA accelerator research ampersand development. Progress report

    International Nuclear Information System (INIS)

    1997-01-01

    This report discusses work on advanced accelerators and beam dynamics at ANL, BNL, SLAC, UCLA and Pulse Sciences Incorporated. Discussed in this report are the following concepts: Wakefield acceleration studies; plasma lens research; high gradient rf cavities and beam dynamics studies at the Brookhaven accelerator test facility; rf pulse compression development; and buncher systems for high gradient accelerator and relativistic klystron applications

  7. Health physics practices at research accelerators

    International Nuclear Information System (INIS)

    Thomas, R.H.

    1976-02-01

    A review is given of the uses of particle accelerators in health physics, the text being a short course given at the Health Physics Society Ninth Midyear Topical Symposium in February, 1976. Topics discussed include: (1) the radiation environment of high energy accelerators; (2) dosimetry at research accelerators; (3) shielding; (4) induced activity; (5) environmental impact of high energy accelerators; (6) population dose equivalent calculation; and (7) the application of the ''as low as practicable concept'' at accelerators

  8. Accelerator Center for Energy Research (ACER)

    Data.gov (United States)

    Federal Laboratory Consortium — The Accelerator Center for Energy Research (ACER) exploits radiation chemistry techniques to study chemical reactions (and other phenomena) by subjecting samples to...

  9. Heavy-ion fusion accelerator research, 1989

    International Nuclear Information System (INIS)

    1990-06-01

    This report discusses the following topics on heavy-ion fusion accelerator research: MBE-4: the induction-linac approach; transverse beam dynamics and current amplification; scaling up the results; through ILSE to a driver; ion-source and injector development; and accelerator component research and development

  10. Hadrons accelerators in the cancer therapy

    International Nuclear Information System (INIS)

    Amaldi, U.; Silari, M.

    1998-01-01

    The use of hadrons accelerators ( protons and light ions) in the cancer therapy is tackled. After shorts introductory words about the medical reasons in favour of using charged heavy particles radiotherapy, an overall idea is given on the accelerators technology and on the guiding and focusing systems. The Italian project of hadron-therapy (the most important project of this kind in Europe) is introduced, with in reference the National Oncological Center of Hadron-therapy and the plans of two kinds of compact protons accelerators in order to introduce the therapy with protons in a great number of hospitals. Finally, the needs in radiation protection are discussed. (N.C.)

  11. Heavy-Ion Fusion Accelerator Research, 1991

    International Nuclear Information System (INIS)

    1992-03-01

    This report discusses the following topics: research with multiple- beam experiment MBE-4; induction linac systems experiments; and long- range research and development of heavy-ion fusion accelerators

  12. Research on the dose of the tissues located outside the treatment field when breast cancer was irradiated by linear accelerator

    International Nuclear Information System (INIS)

    Tu Yu; Zhou Juying; Jiang Dezhi; Qin Songbing

    1999-10-01

    The purpose of study was to determine the dose of the tissues which located outside the treatment field, when breast cancer was irradiated by 9 MeV electron-beam and 6 MV-X ray after operation. A search for decreasing the dose of the tissues outside the treatment field was made. Clinically relevant treatment fields were simulated on a tissue-equivalent material phantom and subsequently irradiated with 9 MeV electron-beam and 6 MV-X ray. TLD were used to measure absorbed doses. The prescribed dose of breast cancer region was 50.0 Gy, region-lymph-nodes were 60.0 Gy, each exposure dose was 2.0 Gy. In breast cancer region, if only with 9 MeV electron-beam, the dose of the tissues located outside the treatment field were from 29.0 cGy to 295.5 cGy, when shielded with Pb lump, the doses of the tissues outside the treatment field may descended 9.4%-53.6%; if only with 6 MV-X ray, the doses of aforementioned tissues were from 32.0 cGy to 206.7 cGy, when shielded with Pb lump, the doses of the tissues outside the treatment field descended 19.7%-56.6%. In region-lymph-nodes, with 6 MV-X ray, the doses of aforementioned tissues were from 22.5 cGy to 1650.9 cGy, when shielded with Pb lump, the doses of the tissues outside the treatment field descended 19.7-65.6%. If mix-irradiation (9 MeV electron-beam vs. 6 MV-X ray 2:3) was used, the doses outside field would be lower than only used 9 MeV electron-beam or 6 MV-X ray were used

  13. Accelerator research studies. Progress report

    International Nuclear Information System (INIS)

    1983-07-01

    The major goal of this project is to study the effects that lead to emittance growth and limitation of beam current and brightness in periodic focusing systems (including linear accelerators). This problem is of great importance for all accelerator applications requiring high intensity beams with small emittance such as heavy ion fusion, spallation neutron sources and high energy physics. In the latter case, future machines must not only provide higher energies (in the range of 10 to 100 TeV), but also higher luminosities than the existing facilities. This implies considerably higher phase-space density of the particle beam produced by the injector linac, i.e., the detrimental emittance growth and concurrent beam loss observed in existing linacs must be avoided

  14. Research in accelerator physics (theory)

    International Nuclear Information System (INIS)

    Ohnuma, Shoroku.

    1993-01-01

    The authors discuss the present status, expected effort during the remainder of the project, and some of the results of their activities since the beginning of the project. Some of the areas covered are: (1) effects of helical insertial devices on beam dynamics; (2) coupling impedance of apertures in accelerator beam pipes; (3) new calculation of diffusion rate; (4) integrable polynomial factorization for symplectic map tracking; and (5) physics of magnet sorting in superconducting rings

  15. Research in accelerator physics (theory)

    International Nuclear Information System (INIS)

    Ohnuma, Shoroku.

    1991-01-01

    This report discusses the following topics: beam-beam interaction in colliders with momentum oscillation; isolated difference resonance and evolution of the particle distribution; study of magnet sorting for the SSC High Energy Booster; development of a discrete HESQ; beam dynamics in compact synchrotrons; theoretical problems in multi-stage FEL for two-beam acceleration; operation of Tevatron near integer tunes; and detailed examination of coupling impedance of various devices in storage rings; impact on beams from the insertion devices

  16. NIH/NSF accelerate biomedical research innovations

    Science.gov (United States)

    A collaboration between the National Science Foundation and the National Institutes of Health will give NIH-funded researchers training to help them evaluate their scientific discoveries for commercial potential, with the aim of accelerating biomedical in

  17. Current cancer research 1998

    Energy Technology Data Exchange (ETDEWEB)

    Stamatiadis-Smidt, H. [ed.

    1998-12-31

    Topics from the Contents: The Fight against Cancer in Germany - A Critical Review. Conditions and Structures in Research. Familial Breast Cancer - A Critical Assessment. Research without Animal Experiments. Cancer Prevention. New Approaches for Tumor Therapy. Genes, Chromosomes and Cancer. Therapy of Brain Tumors with Laser Neurosurgery. The Genome Project. (orig.)

  18. Current cancer research 1998

    International Nuclear Information System (INIS)

    Stamatiadis-Smidt, H.

    1998-01-01

    Topics from the Contents: The Fight against Cancer in Germany - A Critical Review. Conditions and Structures in Research. Familial Breast Cancer - A Critical Assessment. Research without Animal Experiments. Cancer Prevention. New Approaches for Tumor Therapy. Genes, Chromosomes and Cancer. Therapy of Brain Tumors with Laser Neurosurgery. The Genome Project. (orig.)

  19. 19 July 2013 - Chairman of the Policy Committee, European Cancer Organisation, President, European Association for Cancer Research E. Celis visiting the ATLAS experimental cavern with ATLAS Collaboration Deputy Spokesperson, B. Heinemann and signing the Guest Book with Director for Accelerators and Technology S. Myers. Life Sciences Adviser M. Dosanjh present.

    CERN Multimedia

    Anna Pantelia

    2013-01-01

    19 July 2013 - Chairman of the Policy Committee, European Cancer Organisation, President, European Association for Cancer Research E. Celis visiting the ATLAS experimental cavern with ATLAS Collaboration Deputy Spokesperson, B. Heinemann and signing the Guest Book with Director for Accelerators and Technology S. Myers. Life Sciences Adviser M. Dosanjh present.

  20. Low energy accelerators for research and applications

    International Nuclear Information System (INIS)

    Bhandari, R.K.

    2013-01-01

    Charged particle accelerators are instruments for producing a variety of radiations under controlled conditions for basic and applied research as well as applications. They have helped enormously to study the matter, atoms, nuclei, sub-nuclear particles and their constituents, forces involved in the related phenomena etc. No other man-made instrument has been so effective in such studies as the accelerator. The large accelerator constructed so far is the Large Hadron Collider (LHC) housed in a tunnel of 27 km circumference, while a small accelerator can fit inside a room. Small accelerators accelerate charged particles such as electrons, protons, deuterons, alphas and, in general ions to low energy, generally, below several MeV. These particle beams are used for studies in nuclear astrophysics, atomic physics, material science, surface physics, bio sciences etc. They are used for ion beam analysis such as RBS, PIXE, NRA, AMS, CPAA etc. More importantly, the ion beams have important industrial applications like ion implantation, surface modification, isotope production etc. while electron beams are used for material processing, material modification, sterilization, food preservation, non destructive testing etc. In this talk, role of low energy accelerators in research and industry as well as medicine will be discussed. (author)

  1. Accelerating Geothermal Research (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-05-01

    Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

  2. Accelerator research studies: Progress report, Task B

    International Nuclear Information System (INIS)

    1985-06-01

    The main objectives in Task B of the research program are summarized as follows: (1) studies of the collective acceleration of positive ions from a localized plasma source by an intense relativistic electron beam (IREB), (2) studies of ways in which external control may be achieved over the electron beam front in order to achieve higher ion energies - the Beam Front Accelerator (BFA) concept, and (3) study of electron and ion beam generation in a new kind of compact pulsed accelerator in which energy is stored inductively and switched using a plasma focus opening switch. During the past year, substantial progress was made in each of these areas. Our exploratory research on the collective acceleration of laser-produced ions has confirmed the acceleration of C, Al, and Fe ions to peak energies in excess of 10 MeV/amu. In addition, studies of the relation between collective ion acceleration and electron beam propagation in vacuum have shed new light on the experimental processes that lead to energy transfer from electrons to ions. Meanwhile, extensive progress has been made in our attempts to use analytical theory and numerical simulation to model ion acceleration in these systems. Our resultant improved understanding of the processes that limit the peak ion energy has had a profound impact on our plans for further research in this area. Studies of the Compact Pulsed Accelerator have included both ion and electron beam extraction from the device. Its potential to reduce the volume of pulse power sources by an order of magnitude has already been demonstrated, and plans are currently underway to scale the experiment up to voltages in the 1 MV range

  3. Peralta Cancer Research Institute

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The investigators in the cell biology program at PCRI have pioneered in the development of techniques for culturing human epithelial cells. The cancer diagnosis program has been concerned with researching new techniques for early diagnosis of breast cancer in women. The cancer treatment program has been concerned with applying cell biology and biochemistry advances to improve cancer management

  4. Study of the Accelerator Technology Development for Cancer Radiotherapy

    International Nuclear Information System (INIS)

    Sudjatmoko; Triyono; E-Supriyatni

    2000-01-01

    The hadronic particle beams including both protons, neutrons and charged particles have been studied for cancer therapy by a number of research centers in several countries during the past two decades. In this paper is briefly discussed concerning the accelerator type and its applications. The future trends are seen in the new technological developments like the use of proton gantries, beam scanning techniques, improved patient handling system and in the increasing precision of treatment. (author)

  5. A Variable Energy CW Compact Accelerator for Ion Cancer Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, Carol J. [Fermilab; Taylor, J. [Huddersfield U.; Edgecock, R. [Huddersfield U.; Schulte, R. [Loma Linda U.

    2016-03-10

    Cancer is the second-largest cause of death in the U.S. and approximately two-thirds of all cancer patients will receive radiation therapy with the majority of the radiation treatments performed using x-rays produced by electron linacs. Charged particle beam radiation therapy, both protons and light ions, however, offers advantageous physical-dose distributions over conventional photon radiotherapy, and, for particles heavier than protons, a significant biological advantage. Despite recognition of potential advantages, there is almost no research activity in this field in the U.S. due to the lack of clinical accelerator facilities offering light ion therapy in the States. In January, 2013, a joint DOE/NCI workshop was convened to address the challenges of light ion therapy [1], inviting more than 60 experts from diverse fields related to radiation therapy. This paper reports on the conclusions of the workshop, then translates the clinical requirements into accelerat or and beam-delivery technical specifications. A comparison of available or feasible accelerator technologies is compared, including a new concept for a compact, CW, and variable energy light ion accelerator currently under development. This new light ion accelerator is based on advances in nonscaling Fixed-Field Alternating gradient (FFAG) accelerator design. The new design concepts combine isochronous orbits with long (up to 4m) straight sections in a compact racetrack format allowing inner circulating orbits to be energy selected for low-loss, CW extraction, effectively eliminating the high-loss energy degrader in conventional CW cyclotron designs.

  6. Cancer research and radiotherapy

    International Nuclear Information System (INIS)

    Matsuzawa, Taiju

    1978-01-01

    An actual condition of cancer, and the basis and a future view of radiotherapy were described by adding generally established biological and biochemical knowledge to the author's research. It was described that the relapse of cancer after irradiation was induced from outside of cancerous mass, and the nature of relapsed cancerous cells group was also stated. The histological structure of cancer from a view of cell movement and radioresistant cancerous cells group were described. The differentiation of cancerous cells were described, and a study of inhibition of cancer by redifferentiation was considered. It is important to grasp characteristics and a limit of radiotherapy for cancer, to systematize and materialize reasonable therapy which uses drug and immunotherapy together with surgery, and to use radiotherapy reasonably together with redifferentiation therapy of cancerous cells by extracting characteristics and a limit of radiationtherapy from an actual condition of cancer. (Serizawa, K.)

  7. Research on high beam-current accelerators

    International Nuclear Information System (INIS)

    Keefe, D.

    1981-01-01

    In this review of research being undertaken at present in the US on accelerating devices and concepts of a novel nature, both non-collective systems, including high-current rf linacs and a variety of induction linacs, and also collective systems are considered. (U.K.)

  8. RF-Based Accelerators for HEDP Research

    CERN Document Server

    Staples, John W; Keller, Roderich; Ostroumov, Peter; Sessler, Andrew M

    2005-01-01

    Accelerator-driven High-Energy Density Physics experiments require typically 1 nanosecond, 1 microcoulomb pulses of mass 20 ions accelerated to several MeV to produce eV-level excitations in thin targets, the "warm dense matter" regime. Traditionally the province of induction linacs, RF-based acceleration may be a viable alternative with recent breakthroughs in accelerating structures and high-field superconducting solenoids. A reference design for an RF-based accelerator for HEDP research is presented using 15 T solenoids and multiple-gap RF structures configured with either multiple parallel beams (combined at the target) or a single beam and a small stacking ring that accumulates 1 microcoulomb of charge. In either case, the beam is ballistically compressed with an induction linac core providing the necessary energy sweep and injected into a plasma-neutralized drift compression channel resulting in a 1 mm radius beam spot 1 nanosecond long at a thin foil or low-density target.

  9. Light Ion Biomedical Research Accelerator LIBRA

    International Nuclear Information System (INIS)

    Gough, R.A.

    1987-01-01

    LIBRA is a concept to place a light-ion, charged-particle facility in a hospital environment, and to dedicate it to applications in biology and medicine. There are two aspects of the program envisaged for LIBRA: a basic research effort coupled with a program in clinical applications of accelerated charged particles. The operational environment to be provided for LIBRA is one in which both of these components can coexist and flourish, and one that will promote the transfer of technology and knowledge from one to the other. In order to further investigate the prospects for a Light Ion Biomedical Research Accelerator (LIBRA), discussions are underway with the Merritt Peralta Medical Center MPMC) in Oakland CA, and the University of California at San Francisco (UCSF). In this paper, a brief discussion of the technical requirements for such a facility is given, together with an outline of the accelerator technology required. While still in a preliminary stage, it is possible nevertheless to develop an adequate working description of the type, size, performance and cost of the accelerator facilities required to meet the preliminary goals for LIBRA

  10. The Light Ion Biomedical Research Accelerator (LIBRA)

    International Nuclear Information System (INIS)

    Gough, R.A.

    1987-03-01

    LIBRA is a concept to place a light-ion, charged-particle facility in a hospital environment, and to dedicate it to applications in biology and medicine. There are two aspects of the program envisaged for LIBRA: a basic research effort coupled with a program in clinical applications of accelerated charged particles. The operational environment to be provided for LIBRA is one in which both of these components can coexist and flourish, and one that will promote the transfer of technology and knowledge from one to the other. In order to further investigate the prospects for a Light Ion Biomedical Research Accelerator (LIBRA), discussions are underway with the Merritt Peralta Medical Center (MPMC) in Oakland, California, and the University of California at San Francisco (UCSF). In this paper, a brief discussion of the technical requirements for such a facility is given, together with an outline of the accelerator technology required. While still in a preliminary stage, it is possible nevertheless to develop an adequate working description of the type, size, performance and cost of the accelerator facilities required to meet the preliminary goals for LIBRA

  11. CARE07 Coordinated Accelerator Research in Europe

    CERN Multimedia

    2007-01-01

    Annual Meeting, at CERN, 29-31 October 2007 The CARE project started on 1st January 2004 and will end on 31st December 2008. At the end of each year, the progress and status of its activities are reported in a general meeting. This year, the meeting takes place at CERN. The CARE objective is to generate structured and integrated European cooperation in the field of accelerator research and related R&D. The programme includes the most advanced scientific and technological developments, relevant to accelerator research for particle physics. It is articulated around three Networking Activities and four Joint Activities. The Networking Activities ELAN, BENE and HHH aim to better coordinate R&D efforts at the European level and to strengthen Europe’s ability to produce intense and high-energy particle beams (electrons and positrons, muons and neutrinos, protons and ions, respectively). The Joint Activities, SRF, PHIN, HIPPI and NED, aim at technical developments on s...

  12. CARE07 Coordinated Accelerator Research in Europe

    CERN Multimedia

    2007-01-01

    Annual Meeting, at CERN, 29-31 October 2007 The CARE project started on 1st January 2004 and will end on 31st December 2008. At the end of each year, the progress and status of its activities are reported in a general meeting. This year, the meeting is taking place at CERN. The CARE objective is to generate structured and integrated European cooperation in the field of accelerator research and related R&D. The programme includes the most advanced scientific and technological developments, relevant to accelerator research for particle physics. It is articulated around three Networking Activities and four Joint Activities. The Networking Activities ELAN, BENE and HHH aim to better coordinate R&D efforts at the European level and to strengthen Europe’s ability to produce intense and high-energy particle beams (electrons and positrons, muons and neutrinos, protons and ions, respectively). The Joint Activities, SRF, PHIN, HIPPI and NED, aim at technical developments ...

  13. Construction of ion accelerator for ion-surface interaction research

    International Nuclear Information System (INIS)

    Obara, Kenziro; Ohtsuka, Hidewo; Yamada, Rayji; Abe, Tetsuya; Sone, Kazuho

    1977-09-01

    A Cockcroft-Walton type ion accelerator for ion-surface interaction research was installed at Plasma Engineering Laboratory, Division of Thermonuclear Fusion Research, JAERI, in March 1977. Its maximum accelerating voltage is 400 kV. The accelerator has some outstanding features compared with the conventional type. Described are setup of the accelerator specification of the major components, safety system and performance. (auth.)

  14. Heavy-Ion Fusion Accelerator Research, 1992

    International Nuclear Information System (INIS)

    1993-06-01

    The National Energy Strategy calls for a demonstration IFE power plant by the year 2025. The cornerstone of the plan to meet this ambitious goal is research and development for heavy-ion driver technology. A series of successes indicates that the technology being studied by the HIFAR Group -- the induction accelerator -- is a prime candidate for further technology development toward this long-range goal. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions; the understanding of the scaling laws that apply in this hitherto little-explored physics regime; and the validation of new, potentially more economical accelerator strategies. Key specific elements to be addressed include: fundamental physical limits of transverse and longitudinal beam quality; development of induction modules for accelerators, along with multiple-beam hardware, at reasonable cost; acceleration of multiple beams, merging of the beams, and amplification of current without significant dilution of beam quality; final bunching, transport, and focusing onto a small target. In 1992, the HIFAR Program was concerned principally with the next step toward a driver: the design of ILSE, the Induction Linac Systems Experiments. ILSE will address most of the remaining beam-control and beam-manipulation issues at partial driver scale. A few parameters -- most importantly, the line charge density and consequently the size of the ILSE beams -- will be at full driver scale. A theory group closely integrated with the experimental groups continues supporting present-day work and looking ahead toward larger experiments and the eventual driver. Highlights of this long-range, driver-oriented research included continued investigations of longitudinal instability and some new insights into scaled experiments with which the authors might examine hard-to-calculate beam-dynamics phenomena

  15. SINP MSU accelerator facility and applied research

    International Nuclear Information System (INIS)

    Chechenin, N.G.; Ishkhanov, B.S.; Kulikauskas, V.S.; Novikov, L.S.; Pokhil, G.P.; Romanovskii, E.A.; Shvedunov, V.I.; Spasskii, A.V.

    2004-01-01

    Full text: SINP accelerator facility includes 120 cm cyclotron, electrostatic generator with the upper voltage 3.0 MeV, electrostatic generator with the upper voltage 2.5 MeV, Cocroft -Walton generator with the upper voltage 500 keV, 150 keV accelerator for solid microparticles. A new generation of electron beam accelerators has been developed during the last decade. The SINP accelerator facility will be shortly described in the report. A wide range of basic research in nuclear and atomic physics, physics of ion-beam interactions with condensed matter is currently carried out. SINP activity in the applied research is concentrated in the following areas of materials science: - Materials diagnostics with the Rutherford backscattering techniques (RBS) and channeling of ions (RBS/C). A large number of surface ad-layers and multilayer systems for advanced micro- and nano-electronic technology have been investigated. A selected series of examples will be illustrated. - Concentration depth profiles of hydrogen by the elastic recoils detection techniques (ERD). Primarily, the hydrogen depth profiles in perspective materials for thermonuclear reactors have been investigated. - Lattice site locations of hydrogen by a combination of ERD and channeling techniques. This is a new technique which was successfully applied for investigation of hydrogen and hydrogen-defect complexes in silicon for the smart-cut technology. - Light element diagnostics by RBS and nuclear backscattering techniques (NBS). The technique is illustrated by applications for nitrogen concentration profiling in steels. Nitrogen take-up and release, nitrides precipitate formation will be illustrated. - New medium energy ion scattering (MEIS) facility and applications. Ultra-high vacuum and superior energy resolution electrostatic toroidal analyzer is designed to be applied for characterization of composition and structure of several upper atomic layers of materials

  16. Heavy accelerated nuclei in biomedical research

    International Nuclear Information System (INIS)

    Tobias, C.A.

    1987-01-01

    Accelerated atomic nuclei in physics accelerators have been used in basic biological research and in applied medical diagnostic and therapeutic studies for the past 50 years. The passage of single heavy particles through the cell nucleus is capable of producing multiple DNA double-strand scission and chromatin breaks. According to the Repair-Misrepair model, the high biological effectiveness of high-LET particles is due to misrepair and misrejoining of the breaks. The Bragg depth ionization effect allows heavy particles to deposit considerably more energy deep in tissue than at the surface, and this property has been used for great improvements in the radiation therapy of localized tumors. Recent advances in producing radioactive beams will allow verification of therapeutic administration of such beams. The radioactive beams also open a new field of Nuclear Medicine. There is increasing interest in building special biomedical light and heavy-ion accelerators. These will be used not only for therapy but also for diagnosis, for the study of radiation hazards in space flight, and for basic molecular and cellular understanding of the mechanisms of radiation effect

  17. Accelerator mass spectrometry in biomedical research

    International Nuclear Information System (INIS)

    Vogel, J.S.; Turteltaub, K.W.

    1993-01-01

    Biological effects occur in natural systems at chemical concentrations of parts per billion (1:10 9 ) or less. Affected biomolecules may be separable in only milligram or microgram quantities. Quantification at attomole sensitivity is needed to study these interactions. AMS measures isotope concentrations to parts per 10 13--15 on milligram-sized samples and is ideal for quantifying long-lived radioisotopic labels that are commonly used to trace biochemical pathways in natural systems. 14 C-AMS has now been coupled to a variety of organic separation and definition technologies. The primary research investigates pharmacokinetics and genotoxicities of toxins and drugs at very low doses. Human subject research using AMS includes nutrition, toxicity and elemental balance studies. 3 H, 41 Ca and 26 Al are also traced by AMS for fundamental biochemical kinetic research. Expansion of biomedical AMS awaits further development of biochemical and accelerator technologies designed specifically for these applications

  18. Nanotechnology in Cancer Research

    Science.gov (United States)

    The NCI Office of Cancer Nanotechnology Research has had a major impact on bringing novel nano-enabled solutions through the pre-clinical space. The strategic framework of this effort is presented here.

  19. Bioprinting for cancer research.

    Science.gov (United States)

    Knowlton, Stephanie; Onal, Sevgi; Yu, Chu Hsiang; Zhao, Jean J; Tasoglu, Savas

    2015-09-01

    Bioprinting offers the ability to create highly complex 3D architectures with living cells. This cutting-edge technique has significantly gained popularity and applicability in several fields. Bioprinting methods have been developed to effectively and rapidly pattern living cells, biological macromolecules, and biomaterials. These technologies hold great potential for applications in cancer research. Bioprinted cancer models represent a significant improvement over previous 2D models by mimicking 3D complexity and facilitating physiologically relevant cell-cell and cell-matrix interactions. Here we review bioprinting methods based on inkjet, microextrusion, and laser technologies and compare 3D cancer models with 2D cancer models. We discuss bioprinted models that mimic the tumor microenvironment, providing a platform for deeper understanding of cancer pathology, anticancer drug screening, and cancer treatment development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. CARE05 coordinated accelerator research in Europe

    CERN Multimedia

    2005-01-01

    Annual Meeting at CERN, 23-25 November 2005 CARE started on 1st January 2004 and will last for five years. At the end of each year it holds a general meeting to report on the progress and status of its activities. This year, the CARE annual meeting is taking place at CERN The objective of the CARE project is to generate structured and integrated European cooperation in the field of accelerator research and related R&D. The program includes the most advanced scientific and technological developments, relevant to accelerator research for Particle Physics. It is articulated around three Networking Activities and four Joint Activities. The Networking Activities ELAN, BENE and HHH aim to better coordinate R&D efforts at the European level and to strengthen Europe's ability to evaluate and develop methods of producing intense and high energy beams of electrons, protons, muons and neutrinos. These activities are embedded in world-wide efforts towards future e+e- linear colliders, superior neutrino beam fa...

  1. Linear Accelerator Development for Cancer Treatment at SLRI

    International Nuclear Information System (INIS)

    Juntong, N.

    2014-01-01

    Linear accelerator (linac) technology has been widely utilised for cancer treatment in hospital. This linac utilised an accelerated electron beam to create x-ray beam for radiotherapy. At Synchrotron Light Research Institute (SLRI), the idea to fabricate the prototype of medical linac with low cost for domestic use in Thailand was proposed and the budget has been granted. There are three objectives of this proposal: 1) to develop prototype of medical linac by the ability of domestic people for reducing the machine import and maintenance costs,2) to encourage researching in science and technology concerning medical application for the practical use products, and 3) to develop knowledge and expertise in accelerator and concerning technologies of medical linac. In the first phase, the electron beam energy of the prototype machine will be 6 MeV or equivalent to x-ray energy of 6 MV based on discussions with several hospitals in the country. This energy level is considered suitable for the Thais due to shapes and sizes of the bodies. A brief introduction of background, objectives, and scope of the project will be presented together with the project timeline. Progression of project activities will also be discussed.

  2. Advanced accelerator and mm-wave structure research at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Simakov, Evgenya Ivanovna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-22

    This document outlines acceleration projects and mm-wave structure research performed at LANL. The motivation for PBG research is described first, with reference to couplers for superconducting accelerators and structures for room-temperature accelerators and W-band TWTs. These topics are then taken up in greater detail: PBG structures and the MIT PBG accelerator; SRF PBG cavities at LANL; X-band PBG cavities at LANL; and W-band PBG TWT at LANL. The presentation concludes by describing other advanced accelerator projects: beam shaping with an Emittance Exchanger, diamond field emitter array cathodes, and additive manufacturing of novel accelerator structures.

  3. Recent progress on laser acceleration research

    International Nuclear Information System (INIS)

    Nakajima, Kazuhisa; Dewa, Hideki; Hosokai, Tomonao; Kanazawa, Shuhei; Kando, Masaki; Kondoh, Shuji; Kotaki, Hideyuki

    2000-01-01

    Recently there has been a tremendous experimental progress in ultrahigh field particle acceleration driven by ultraintense laser pulses in plasmas. A design of the laser wakefield accelerators aiming at GeV energy gains is discussed by presenting our recent progress on the laser wakefield acceleration experiments, the developments of high quality electron beam injectors and the capillary plasma waveguide for optical guiding of ultrashort intense laser pulses. (author)

  4. Electron accelerator technology research in food irradiation

    International Nuclear Information System (INIS)

    Jin Jianqiao; Ye Mingyang; Zhang Yue; Yang Bin; Xu Tao; Kong Xiangshan

    2014-01-01

    Electronic accelerator was applied to instead of cobalt sources for food irradiation, to keep food quality and to improve the effect of the treatment. Appropriate accelerator parameters lead to optimal technique. The irradiation effect is associated with the relationship between uniformity and irradiating speed, the effect of cargo size on radiation penetration, as well as other factors that affect the irradiation effects. Industrialization of electron accelerator irradiation will be looked to the future. (authors)

  5. Accelerators for Society - TIARA 2012 Test Infrastructure and Accelerator Research Area (in Polish)

    CERN Document Server

    Romaniuk, R S

    2013-01-01

    TIARA (Test Infrastructure and Accelerator Research Area - Preparatory Phae) is an European Collaboration of Accelerator Technology, which by running research projects, technical, networks and infrastructural has a duty to integrate the research and technical communities and infrastructures in the global scale of Europe. The Collaboration gathers all research centers with large accelerator infrastructures. Other ones, like universities, are affiliated as associate members. TIARA-PP (preparatory phase) is an European infrastructural project run by this Consortium and realized inside EU-FP7. The paper presents a general overview of TIARA activities, with an introduction containing a portrait of contemporary accelerator technology and a digest of its applications in modern society.

  6. A New Type of Accelerator for Charged Particle Cancer Therapy

    CERN Document Server

    Edgecock, Rob

    2013-01-01

    acceleration of protons and light ions for the treatment of certain cancers. They have unique features as they combine techniques from the existing types of accelerators, cyclotrons and synchrotrons, and hence look to have advantages over both for this application. However, these unique features meant that it was necessary to build one of these accelerators to show that it works and to undertake a detailed conceptual design of a medical machine. Both of these have now been done. This paper will describe the concepts of this type of accelerator, show results from the proof-of-principle machine (EMMA) and described the medical machine (PAMELA).

  7. Research of Virtual Accelerator Control System

    Institute of Scientific and Technical Information of China (English)

    DongJinmei; YuanYoujin; ZhengJianhua

    2003-01-01

    A Virtual Accelerator is a computer process which simulates behavior of beam in an accelerator and responds to the accelerator control program under development in a same way as an actual accelerator. To realize Virtual Accelerator, control system should provide the same program interface to top layer Application Control Program, it can make 'Real Accelerator' and 'Virtual Accelerator'use the same GUI, so control system should have a layer to hide hardware details, Application Control Program access control devices through logical name but not through coded hardware address. Without this layer, it is difficult to develop application program which can access both 'Virtual' and 'Real' Accelerators using same program interfaces. For this reason, we can create CSR Runtime Database which allows application program to access hardware devices and data on a simulation process in a unified way. A device 'is represented as a collection of records in CSR Runtime Database. A control program on host computer can access devices in the system only through names of record fields, called channel.

  8. Accelerating complex for basic researches in the nuclear physics

    NARCIS (Netherlands)

    Dovbnya, A.N.; Guk, I.S.; Kononenko, S.G.; Peev, F.A.; Tarasenko, A.S.; Botman, J.I.M.

    2009-01-01

    In 2003 in NSC KIPT was begun the work on development the project of accelerator, base facility IHEPNP NSC KIPT electron recirculator SALO. The accelerator will be disposed in target hall of accelerator LU 2000 complex. It is projected first of all as facility for basic researches in the field of

  9. Cancer Research UK | IDRC - International Development Research ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Cancer Research UK. Cancer Research UK. https://www.cancerresearchuk.org/. The Economics of Tobacco Control Research Initiative. The Economics of Tobacco Control Research Initiative funds innovative fiscal policy research supporting tobacco control in low and middle-income countries. View more. The Economics ...

  10. Heavy Ion Fusion Accelerator Research (HIFAR)

    International Nuclear Information System (INIS)

    1991-04-01

    This report discusses the following topics: emittance variations in current-amplifying ion induction lina; transverse emittance studies of an induction accelerator of heavy ions; drift compression experiments on MBE-4 and related emittance; low emittance uniform- density C s + sources for heavy ion fusion accelerator studies; survey of alignment of MBE-4; time-of-flight dependence on the MBE-4 quadrupole voltage; high order calculation of the multiple content of three dimensional electrostatic geometries; an induction linac injector for scaled experiments; induction accelerator test module for HIF; longitudinal instability in HIF beams; and analysis of resonant longitudinal instability in a heavy ion induction linac

  11. Relativistic klystron research for high gradient accelerators

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.

    1988-06-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron--positron colliders, compact accelerators, and FEL sources. We have attained 200MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our first klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 7 figs

  12. Accelerator and Fusion Research Division 1989 summary of activities

    International Nuclear Information System (INIS)

    1990-06-01

    This report discusses the research being conducted at Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division. The main topics covered are: heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; high-energy physics technology; and bevalac operations

  13. Accelerator and Fusion Research Division 1989 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This report discusses the research being conducted at Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division. The main topics covered are: heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; high-energy physics technology; and bevalac operations.

  14. Accelerated ion beam research at ATOMKI

    International Nuclear Information System (INIS)

    Kiss, A.Z.

    2009-01-01

    The paper summarizes the studies on accelerated ion beams at ATOMKI and their technical background, their use from chemical analysis to biological, medical, geological, archaeological applications, their advance from material science to micromachining. (TRA)

  15. Accelerator and Fusion Research Division: Summary of activities, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    This report contains a summary of activities at the Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division for the year 1986. Topics and facilities investigated in individual papers are: 1-2 GeV Synchrotron Radiation Source, the Center for X-Ray Optics, Accelerator Operations, High-Energy Physics Technology, Heavy-Ion Fusion Accelerator Research and Magnetic Fusion Energy. Six individual papers have been indexed separately

  16. Heavy-ion fusion accelerator research, 1985

    International Nuclear Information System (INIS)

    1986-10-01

    A plan for exploring the physics and technology of induction linac development is discussed which involves a series of increasingly sophisticated experiments. The first is the single-beam transport experiment, which has explored the physics of a single space-charge-dominated beam. Second is the multiple-beam experiment in which four independent beams will be transported and accelerated through a multigap accelerating structure. The single-beam transport experiment is described, and some results are given of stability studies and instrumentation studies. The design and fabrication of the multi-beam experiment are described, as well as results of a first round of experiments in which beam-current amplification was observed. Concurrent theoretical work, resulting in a variety of acce-leration schedules and sets of associated voltage waveforms required to implement the experiments, is also reported

  17. Workshop on Cancer Research

    International Nuclear Information System (INIS)

    Vermorken, A.; Durieux, L.

    1991-01-01

    On April, 22-24 April 1991, the Hungarian National Institute of Oncology and the Commission of the European Communities have organized a workshop on Cancer Research. The aim of the meeting was to provide the participants information on the ongoing research in Hungary and in Member States. The topic is of importance for Hungary and it was also considered that the meeting could contribute to identify subjects of possible collaboration between Hungarian and Member State laboratories in the case financial support would become available. Three papers about new therapies under development were presented proton therapy and Boron neutron capture therapy

  18. Heavy-ion fusion accelerator research, 1988

    International Nuclear Information System (INIS)

    1989-05-01

    This report discusses the following topics: MBE-4: The Induction-Linac Approach; Current Amplification and Acceleration Schedules; Emittance and Current Amplification; Scaling Up the Results; Progress on the Carbon-Arc Source; Injector Development; Progress Towards an ILSE Design; Beam Combination; and Focusing-System Alignment Tolerances

  19. Accelerator Fusion Research Division 1991 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    Berkner, Klaus H.

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  20. Accelerator & Fusion Research Division 1991 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  1. Accelerator ampersand Fusion Research Division 1991 summary of activities

    International Nuclear Information System (INIS)

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations

  2. Accelerator and fusion research division. 1992 Summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This report contains brief discussions on research topics in the following area: Heavy-Ion Fusion Accelerator Research; Magnetic Fusion Energy; Advanced Light Source; Center for Beam Physics; Superconducting Magnets; and Bevalac Operations.

  3. Fostering Cooperation in Cancer Research

    Science.gov (United States)

    Thursday, June 25, 2015 Memorandum of Understanding (MoU) was signed between US National Cancer Institute and three agencies of the Indian government - the Department of Biotechnology, the Indian Council of Medical Research, and the Indian National Cancer Institute, a part of the All India Institute of Medical Sciences to foster cooperation in cancer research.

  4. Accelerating drug development for neuroblastoma - New Drug Development Strategy: an Innovative Therapies for Children with Cancer, European Network for Cancer Research in Children and Adolescents and International Society of Paediatric Oncology Europe Neuroblastoma project.

    Science.gov (United States)

    Moreno, Lucas; Caron, Hubert; Geoerger, Birgit; Eggert, Angelika; Schleiermacher, Gudrun; Brock, Penelope; Valteau-Couanet, Dominique; Chesler, Louis; Schulte, Johannes H; De Preter, Katleen; Molenaar, Jan; Schramm, Alexander; Eilers, Martin; Van Maerken, Tom; Johnsen, John Inge; Garrett, Michelle; George, Sally L; Tweddle, Deborah A; Kogner, Per; Berthold, Frank; Koster, Jan; Barone, Giuseppe; Tucker, Elizabeth R; Marshall, Lynley; Herold, Ralf; Sterba, Jaroslav; Norga, Koen; Vassal, Gilles; Pearson, Andrew Dj

    2017-08-01

    Neuroblastoma, the commonest paediatric extra-cranial tumour, remains a leading cause of death from cancer in children. There is an urgent need to develop new drugs to improve cure rates and reduce long-term toxicity and to incorporate molecularly targeted therapies into treatment. Many potential drugs are becoming available, but have to be prioritised for clinical trials due to the relatively small numbers of patients. Areas covered: The current drug development model has been slow, associated with significant attrition, and few new drugs have been developed for neuroblastoma. The Neuroblastoma New Drug Development Strategy (NDDS) has: 1) established a group with expertise in drug development; 2) prioritised targets and drugs according to tumour biology (target expression, dependency, pre-clinical data; potential combinations; biomarkers), identifying as priority targets ALK, MEK, CDK4/6, MDM2, MYCN (druggable by BET bromodomain, aurora kinase, mTORC1/2) BIRC5 and checkpoint kinase 1; 3) promoted clinical trials with target-prioritised drugs. Drugs showing activity can be rapidly transitioned via parallel randomised trials into front-line studies. Expert opinion: The Neuroblastoma NDDS is based on the premise that optimal drug development is reliant on knowledge of tumour biology and prioritisation. This approach will accelerate neuroblastoma drug development and other poor prognosis childhood malignancies.

  5. Why I Do Cancer Research

    Science.gov (United States)

    World Cancer Research Day is recognized on September 24, 2017. This day presents an opportunity for all of us to remind the world of the critically important roles research and cancer researchers play in reducing the global burden of cancer. Together with ten other global partners, NCI participated in the planning and launch of this initiative, highlighting the amplified impact of international cooperation in the clinical research arena.

  6. KEK (High Energy Accelerator Research Organization) annual report, 2005

    International Nuclear Information System (INIS)

    2006-01-01

    This report summarizes research activities of KEK (High Energy Accelerator Research Organization) in the fiscal year 2005. Two years have passed since the KEK was reorganized as an inter-university research institute corporation, and KEK continue to facilitate a wide range of research programs based on high-energy accelerators for users from universities. KEK consists of two research institutes, the Institute of Particle and Nuclear Studies (IPNS) and the Institute of Materials Science (IMSS); and two laboratories, the Accelerator Laboratory and the Applied Research Laboratory. KEK has been operating four major accelerator facilities in Tsukuba: the 12 GeV Proton Synchrotron (PS), the KEK B-factory (KEKB), the Photon Factory (PF), and the Electron/Positron Injector Linac. We are now engaged in the construction of the Japan Proton Accelerator Research Complex (J-PARC) in Tokai in cooperation with the Japan Atomic Energy Agency (JAEA). The J-PARC Center was established in February 2006 to take full responsibility for the operation of J-PARC. With the progress of construction, the PS ceased operation at the end of March 2006 after a history of 26 years. The task of KEK is to play a key role in the fields of elementary particle, nuclei, materials and life science as one of leading research facilities of the world. The fiscal year 2005 activities of both KEK employees and visiting researchers yielded excellent outcomes in these research fields. (J.P.N.)

  7. Research in Danish cancer rehabilitation

    DEFF Research Database (Denmark)

    Høybye, Mette Terp; Dalton, Susanne Oksbjerg; Christensen, Jane

    2008-01-01

    rate at baseline was 86% (n = 1876). Most participants were younger women with breast cancer. They were generally well educated and working. The cancer survivors reported having comprehensive social networks and being physically active. Several cancer-related symptoms were reported by women...... site, sex, age, family, working status and social position. These challenges might be addressed optimally in multi-dimensional rehabilitation programmes....... of the cancer survivors with respect to cancer site, sociodemographic variables, social network, lifestyle, self-rated health and the prevalence of cancer-related late effects. The study is part of the FOCARE research project, in which the long-term effects of the rehabilitation programme are evaluated...

  8. A facility for accelerator research and education at Fermilab

    International Nuclear Information System (INIS)

    Church, Mike; Nagaitsev, Sergei

    2009-01-01

    Fermilab is currently constructing the 'SRF Test Accelerator at the New Muon Lab' (NML). NML consists of a photo-emitted RF electron gun, followed by a bunch compressor, low energy test beamlines, SCRF accelerating structures, and high energy test beamlines. The initial primary purpose of NML will be to test superconducting RF accelerating modules for the ILC and for Fermilab's 'Project X' - a proposal for a high intensity proton source. The unique capability of NML will be to test these modules under conditions of high intensity electron beams with ILC-like beam parameters. In addition NML incorporates a photoinjector which offers significant tunability and especially the possibility to generate a bright electron beam with brightness comparable to state-of-the-art accelerators. This opens the exciting possibility of also using NML for fundamental beams research and tests of new concepts in beam manipulations and acceleration, instrumentation, and the applications of beams.

  9. Natural and accelerated bioremediation research program plan

    International Nuclear Information System (INIS)

    1995-09-01

    This draft plan describes a ten-year program to develop the scientific understanding needed to harness and develop natural and enhanced biogeochemical processes to bioremediate contaminated soils, sediments and groundwater at DOE facilities. The Office of Health and Environmental Research (OHER) developed this program plan, with advice and assistance from DOE's Office of Environmental Management (EM). The program builds on OHER's tradition of sponsoring fundamental research in the life and environmental sciences and was motivated by OHER's and Office of Energy Research's (OER's) commitment to supporting DOE's environmental management mission and the belief that bioremediation is an important part of the solution to DOE's environmental problems

  10. Natural and accelerated bioremediation research program plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This draft plan describes a ten-year program to develop the scientific understanding needed to harness and develop natural and enhanced biogeochemical processes to bioremediate contaminated soils, sediments and groundwater at DOE facilities. The Office of Health and Environmental Research (OHER) developed this program plan, with advice and assistance from DOE`s Office of Environmental Management (EM). The program builds on OHER`s tradition of sponsoring fundamental research in the life and environmental sciences and was motivated by OHER`s and Office of Energy Research`s (OER`s) commitment to supporting DOE`s environmental management mission and the belief that bioremediation is an important part of the solution to DOE`s environmental problems.

  11. Teaching and Research with Accelerators at Tarleton State University

    International Nuclear Information System (INIS)

    Marble, Daniel K.

    2009-01-01

    Tarleton State University students began performing both research and laboratory experiments using accelerators in 1998 through visitation programs at the University of North Texas, US Army Research Laboratory, and the Naval Surface Warfare Center at Carderock. In 2003, Tarleton outfitted its new science building with a 1 MV pelletron that was donated by the California Institution of Technology. The accelerator has been upgraded and supports a wide range of classes for both the Physics program and the ABET accredited Engineering Physics program as well as supplying undergraduate research opportunities on campus. A discussion of various laboratory activities and research projects performed by Tarleton students will be presented.

  12. Applied Physics Research at the Idaho Accelerator Center

    International Nuclear Information System (INIS)

    Date, D. S.; Hunt, A. W.; Chouffani, K.; Wells, D. P.

    2011-01-01

    The Idaho Accelerator Center, founded in 1996 and based at Idaho State University, supports research, education, and high technology economic development in the United States. The research center currently has eight electron linear accelerators ranging in energy from 6 to 44 MeV with the latter linear accelerator capable of picosecond pulses, a 2 MeV positive-ion Van de Graaff, a 4 MV Nec tandem Pelletron, and a pulsed-power 8 k A, 10 MeV electron induction accelerator. Current research emphases include, accelerator physics research, accelerator based medical isotope production, active interrogation techniques for homeland security and nuclear nonproliferation applications, non destructive testing and materials science studies in support of industry as well as the development of advanced nuclear fuels, pure and applied radio-biology, and medical physics. This talk will highlight three of these areas including the production of the isotopes 99 Tc and 67 Cu for medical diagnostics and therapy, as well as two new technologies currently under development for nuclear safeguards and homeland security - namely laser Compton scattering and the polarized photofission of actinides

  13. The SARAF Project - Soreq Applied Research Accelerator Facility

    International Nuclear Information System (INIS)

    Nagler, A.; Mardor, I.; Berkovits, D.; Piel, C.

    2004-01-01

    The relevance of particle accelerators to society, in the use of their primary and secondary beams for the analysis of physical, chemical and biological samples and for modification of properties of materials, is well recognized and documented. Nevertheless, apart of the construction of small accelerators for nuclear research in the 1960's and 70's, Israel has so far neglected this important and growing field. Furthermore, there is an urgent need in Israel for a state of the art research facility to attract and introduce students to current advanced physics techniques and technologies and to train the next generation of experimental scientists in various branches and disciplines. Therefore, Soreq NRC recently initiated the establishment of a new accelerator facility, named SARAF Soreq Applied Research Accelerator Facility. SARAF will be a continuous wave (CW), proton and deuteron RF superconducting linear accelerator with variable energy (5 - 40 MeV) and current (0.04 -2 mA). SARAF is designed to enable hands-on maintenance, which means that its beam loss will be below 10 -5 for the entire accelerator. These specifications will place SARAF in line with the next generation of accelerators world wide. Soreq expects that this fact will attract the Israeli and international research communities to use this facility extensively. Soreq NRC intends to use SARAF for basic, medical and biological research, and non-destructive testing (NDT). Another major activity will be the research and development of radio-isotopes production techniques. Given the availability of high current (up to 2 mA) protons and deuterons, a major activity will be research and development of high power density (up to 80 kW on a few cm 2 ) irradiation targets

  14. Accelerator-driven neutron sources for materials research

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1990-01-01

    Particle accelerators are important tools for materials research and production. Advances in high-intensity linear accelerator technology make it possible to consider enhanced neutron sources for fusion material studies or as a source of spallation neutrons. Energy variability, uniformity of target dose distribution, target bombardment from multiple directions, time-scheduled dose patterns, and other features can be provided, opening new experimental opportunities. New designs have also been used to ensure hands-on maintenance on the accelerator in these factory-type facilities. Designs suitable for proposals such as the Japanese Energy-Selective Intense Neutron Source, and the international Fusion Materials Irradiation Facility are discussed

  15. New heavy-ion-fusion accelerator research program

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1983-05-01

    This paper will briefly summarize the concepts of Heavy Ion Fusion (HIF), especially those aspects that are important to its potential for generating electrical power. It will also note highlights of the various HIF programs throughout the world. Especially significant is that the US Department of Energy (DOE) plans a program, beginning in 1984, aimed at determining the feasibility of using heavy ion accelerators as drivers for Inertial Confinement Fusion (ICF). The new program concentrates on the aspects of accelerator design that are important to ICF, and for this reason is called HIF Accelerator Research

  16. Accelerating research into the Higgs boson particle

    CERN Multimedia

    Nikolaidou, Rosy

    "The only Standard Model particle yet to be observed, the search for the Higgs Boson - the so-called 'God Particle' - demands advanced facilities and physics expertise. At the Cern laboratory in Switzerland, the ARTEMIS project is well-placed to pursue research in this area" (2 pages)

  17. Accelerator and Fusion Research Division: 1987 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1988-04-01

    An overview of the design and the initial studies for the Advanced Light Source is given. The research efforts for the Center for X-Ray Optics include x-ray imaging, multilayer mirror technology, x-ray sources and detectors, spectroscopy and scattering, and synchrotron radiation projects. The Accelerator Operations highlights include the research by users in nuclear physics, biology and medicine. The upgrade of the Bevalac is also discussed. The High Energy Physics Technology review includes the development of superconducting magnets and superconducting cables. A review of the Heavy-Ion Fusion Accelerator Research is also presented. The Magnetic Fusion Energy research included the development of ion sources, accelerators for negative ions, diagnostics, and theoretical plasma physics. (WRF)

  18. Accelerator and Fusion Research Division: 1987 summary of activities

    International Nuclear Information System (INIS)

    1988-04-01

    An overview of the design and the initial studies for the Advanced Light Source is given. The research efforts for the Center for X-Ray Optics include x-ray imaging, multilayer mirror technology, x-ray sources and detectors, spectroscopy and scattering, and synchrotron radiation projects. The Accelerator Operations highlights include the research by users in nuclear physics, biology and medicine. The upgrade of the Bevalac is also discussed. The High Energy Physics Technology review includes the development of superconducting magnets and superconducting cables. A review of the Heavy-Ion Fusion Accelerator Research is also presented. The Magnetic Fusion Energy research included the development of ion sources, accelerators for negative ions, diagnostics, and theoretical plasma physics

  19. Accelerator based research facility as an inter university centre

    International Nuclear Information System (INIS)

    Mehta, G.K.

    1995-01-01

    15 UD pelletron has been operating as a user facility from July 1991. It is being utilised by a large number of universities and other institutions for research in basic Nuclear Physics, Materials Science, Atomic Physics, Radiobiology and Radiation Chemistry. There is an on-going programme for augmenting the accelerator facilities by injecting Pelletron beams into superconducting linear accelerator modules. Superconducting niobium resonator is being developed in Argonne National Laboratory as a joint collaborative effort. All other things such as cryostats, rf instrumentation, cryogenic distribution system, computer control etc are being done indigenously. Research facilities, augmentation plans and the research being conducted by the universities in various disciplines are described. (author)

  20. Accelerator mass spectrometry researches at NIES-TERRA

    International Nuclear Information System (INIS)

    Shibata, Yasuyuki; Yoneda, Minoru; Tanaka, Atsushi; Uehiro, Takashi; Morita, Masatoshi; Uchida, Masao; Yoshinaga, Jun

    2003-01-01

    In the AMS facility at the National Institute for Environmental Studies (NIES-TERRA; Tandem accelerator for Environmental Research and Radiocarbon Analysis), several research programs have been proceeded, including a program, called GC-AMS, for the compound-specific 14 C analysis in environmental samples

  1. A study of light ion accelerators for cancer treatment

    International Nuclear Information System (INIS)

    Prelec, K.

    1997-07-01

    This review addresses several issues, such as possible advantages of light ion therapy compared to protons and conventional radiation, the complexity of such a system and its possible adaptation to a hospital environment, and the question of cost-effectiveness compared to other modalities for cancer treatment or to other life saving procedures. Characteristics and effects of different types of radiation on cells and organisms will be briefly described; this will include conventional radiation, protons and light ions. The status of proton and light ion cancer therapy will then be described, with more emphasis on the latter; on the basis of existing experience the criteria for the use of light ions will be listed and areas of possible medical applications suggested. Requirements and parameters of ion beams for cancer treatment will then be defined, including ion species, energy and intensity, as well as parameters of the beam when delivered to the target (scanning, time structure, energy spread). Possible accelerator designs for light ions will be considered, including linear accelerators, cyclotrons and synchrotrons and their basic features given; this will be followed by a review of existing and planned facilities for light ions. On the basis of these considerations a tentative design for a dedicated light ion facility will be suggested, a facility that would be hospital based, satisfying the clinical requirements, simple to operate and reliable, concluding with its cost-effectiveness in comparison with other modalities for treatment of cancer

  2. Brookhaven National Laboratory's Accelerator Test Facility: research highlights and plans

    Science.gov (United States)

    Pogorelsky, I. V.; Ben-Zvi, I.

    2014-08-01

    The Accelerator Test Facility (ATF) at Brookhaven National Laboratory has served as a user facility for accelerator science for over a quarter of a century. In fulfilling this mission, the ATF offers the unique combination of a high-brightness 80 MeV electron beam that is synchronized to a 1 TW picosecond CO2 laser. We unveil herein our plan to considerably expand the ATF's floor space with an upgrade of the electron beam's energy to 300 MeV and the CO2 laser's peak power to 100 TW. This upgrade will propel the ATF even further to the forefront of research on advanced accelerators and radiation sources, supporting the most innovative ideas in this field. We discuss emerging opportunities for scientific breakthroughs, including the following: plasma wakefield acceleration studies in research directions already active at the ATF; laser wakefield acceleration (LWFA), where the longer laser wavelengths are expected to engender a proportional increase in the beam's charge while our linac will assure, for the first time, the opportunity to undertake detailed studies of seeding and staging of the LWFA; proton acceleration to the 100-200 MeV level, which is essential for medical applications; and others.

  3. Accelerator R and D: Research for Science - Science for Society

    International Nuclear Information System (INIS)

    Holtkamp, N.R.; Biedron, S.; Milton, S.V.; Boeh, L.; Clayton, J.E.; Zdasiuk, G.; Gourlay, S.A.; Zisman, M.S.; Hamm, R.W.; Henderson, S.; Hoffstaetter, G.H.; Merminga, L.; Ozaki, S.; Pilat, F.C.; White, M.

    2012-01-01

    In September 2011 the US Senate Appropriations Committee requested a ten-year strategic plan from the Department of Energy (DOE) that would describe how accelerator R and D today could advance applications directly relevant to society. Based on the 2009 workshop 'Accelerators for America's Future' an assessment was made on how accelerator technology developed by the nation's laboratories and universities could directly translate into a competitive strength for industrial partners and a variety of government agencies in the research, defense and national security sectors. The Office of High Energy Physics, traditionally the steward for advanced accelerator R and D within DOE, commissioned a task force under its auspices to generate and compile ideas on how best to implement strategies that would help fulfill the needs of industry and other agencies, while maintaining focus on its core mission of fundamental science investigation.

  4. The CARE project - Coordinated Accelerator Research in Europe

    CERN Multimedia

    2003-01-01

    A one-day presentation of the project will take place on Monday February 10th in the CERN Council Chamber. The meeting will start a 9am and is expected to end at 4:30pm. The meeting, which is open to the whole community, will present an initiative on accelerator R&D in Europe, supported by ECFA, with the aim to bid for European Union support through the Framework 6 scheme. This initiative is coordinated by a steering group (ESGARD - European Steering Group on Accelerator Research and Development), which has been set up to coordinate European efforts on accelerator R&D and the submission of such bids. The initial bids have to be submitted by April 15th. All those interested in accelerator R&D are welcome to attend.

  5. Research project on accelerator-driven subcritical system using FFAG accelerator and Kyoto University critical assembly

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Unesaki, Hironobu; Misawa, Tsuyoshi; Tanigaki, Minoru; Mori, Yoshiharu; Shiroya, Seiji; Inoue, Makoto; Ishi, Y.; Fukumoto, Shintaro

    2005-01-01

    The KART (Kumatori Accelerator-driven Reactor Test facility) project started in Research Reactor Institute, Kyoto University in fiscal year 2002 with the grant by the Japanese Ministry of Education, Culture, Sports, Science and Technology. The purpose of this research project is to demonstrate the basis feasibility of accelerator driven system (ADS), studying the effect of incident neutron energy on the effective multiplication factor in a subcritical nuclear fuel system. For this purpose, a variable-energy FFAG (Fixed Field Alternating Gradient) accelerator complex is being constructed to be coupled with the Kyoto University Critical Assembly (KUCA). The FFAG proton accelerator complex consists of ion-beta, booster and main rings. This system aims to attain 1 μA proton beam with energy range from 20 to 150 MeV with a repetition rate of 120 Hz. The first beam from the FFAG complex is expected to be available by the end of FY 2005, and the experiment on ADS with KUCA and the FFAG complex (FFAG-KUCA experiment) will start in FY 2006. Before the FFAG-KUCA experiment starts, preliminary experiments with 14 MeV neutrons are currently being performed using a Cockcroft-Walton type accelerator coupled with the KUCA. Experimental data are analyzed using continuous energy Monte-Carlo codes MVP, MCNP and MNCP-X. (author)

  6. Accelerator and Fusion Research Division: summary of activities, 1983

    International Nuclear Information System (INIS)

    1984-08-01

    The activities described in this summary of the Accelerator and Fusion Research Division are diverse, yet united by a common theme: it is our purpose to explore technologically advanced techniques for the production, acceleration, or transport of high-energy beams. These beams may be the heavy ions of interest in nuclear science, medical research, and heavy-ion inertial-confinement fusion; they may be beams of deuterium and hydrogen atoms, used to heat and confine plasmas in magnetic fusion experiments; they may be ultrahigh-energy protons for the next high-energy hadron collider; or they may be high-brilliance, highly coherent, picosecond pulses of synchrotron radiation

  7. Accelerator ampersand Fusion Research Division: 1993 Summary of activities

    International Nuclear Information System (INIS)

    Chew, J.

    1994-04-01

    The Accelerator and Fusion Research Division (AFRD) is not only one of the largest scientific divisions at LBL, but also the one of the most diverse. Major efforts include: (1) investigations in both inertial and magnetic fusion energy; (2) operation of the Advanced Light Source, a state-of-the-art synchrotron radiation facility; (3) exploratory investigations of novel radiation sources and colliders; (4) research and development in superconducting magnets for accelerators and other scientific and industrial applications; and (5) ion beam technology development for nuclear physics and for industrial and biomedical applications. Each of these topics is discussed in detail in this book

  8. Accelerator & Fusion Research Division: 1993 Summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    Chew, J.

    1994-04-01

    The Accelerator and Fusion Research Division (AFRD) is not only one of the largest scientific divisions at LBL, but also the one of the most diverse. Major efforts include: (1) investigations in both inertial and magnetic fusion energy; (2) operation of the Advanced Light Source, a state-of-the-art synchrotron radiation facility; (3) exploratory investigations of novel radiation sources and colliders; (4) research and development in superconducting magnets for accelerators and other scientific and industrial applications; and (5) ion beam technology development for nuclear physics and for industrial and biomedical applications. Each of these topics is discussed in detail in this book.

  9. 50 Years of the Radiological Research Accelerator Facility (RARAF)

    OpenAIRE

    Marino, Stephen A.

    2017-01-01

    The Radiological Research Accelerator Facility (RARAF) is in its 50th year of operation. It was commissioned on April 1, 1967 as a collaboration between the Radiological Research Laboratory (RRL) of Columbia University, and members of the Medical Research Center of Brookhaven National Laboratory (BNL). It was initially funded as a user facility for radiobiology and radiological physics, concentrating on monoenergetic neutrons. Facilities for irradiation with MeV light charged particles were d...

  10. Concept of an accelerator-driven subcritical research reactor within the TESLA accelerator installation

    International Nuclear Information System (INIS)

    Pesic, Milan; Neskovic, Nebojsa

    2006-01-01

    Study of a small accelerator-driven subcritical research reactor in the Vinca Institute of Nuclear Sciences was initiated in 1999. The idea was to extract a beam of medium-energy protons or deuterons from the TESLA accelerator installation, and to transport and inject it into the reactor. The reactor core was to be composed of the highly enriched uranium fuel elements. The reactor was designated as ADSRR-H. Since the use of this type of fuel elements was not recommended any more, the study of a small accelerator-driven subcritical research reactor employing the low-enriched uranium fuel elements began in 2004. The reactor was designated as ADSRR-L. We compare here the results of the initial computer simulations of ADSRR-H and ADSRR-L. The results have confirmed that our concept could be the basis for designing and construction of a low neutron flux model of the proposed accelerator-driven subcritical power reactor to be moderated and cooled by lead. Our objective is to study the physics and technologies necessary to design and construct ADSRR-L. The reactor would be used for development of nuclear techniques and technologies, and for basic and applied research in neutron physics, metrology, radiation protection and radiobiology

  11. Heavy-ion fusion accelerator research in the USA

    International Nuclear Information System (INIS)

    Bangerter, R.O.; Godlove, T.D.; Herrmannsfeldt, W.B.; Keefe, D.

    1985-01-01

    In October 1983, a Heavy-Ion Fusion Accelerator Research programme (HIFAR) was established under the Office of Energy Research of the United States Department of Energy. The programme goal over the next several years is to establish a data base in accelerator physics and technology that can allow the potential of heavy ion fusion to be accurately assessed. Three new developments have taken place in the HIFAR programme. First, a decision has been made to concentrate the experimental programme on the development of multiple-beam induction linacs. Second, new beam transport experiments over a large number of quadrupole elements show that stable beam propagation occurs for significantly higher beam currents than had been believed possible a few years ago. Third, design calculations now show that a test accelerator of modest size and cost can come within a factor of three of testing almost all of the physics and technical issues appropriate to a power plant driver. (author)

  12. Research Associate | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES - Research Associate III Dr. Zbigniew Dauter is the head investigator of the Synchrotron Radiation Research Section (SRRS) of CCR’s Macromolecular Crystallography Laboratory. The Synchrotron Radiation Research Section is located at Argonne National Laboratory, Argonne, Illinois; this is the site of the largest U.S. synchrotron facility. The SRRS uses X-ray diffraction technique to solve crystal structures of various proteins and nucleic acids of biological and medical relevance. The section is also specializing in analyzing crystal structures at extremely high resolution and accuracy and in developing methods of effective diffraction data collection and in using weak anomalous dispersion effects to solve structures of macromolecules. The areas of expertise are: Structural and molecular biology Macromolecular crystallography Diffraction data collection Dr. Dauter requires research support in these areas, and the individual will engage in the purification and preparation of samples, crystallize proteins using various techniques, and derivatize them with heavy atoms/anomalous scatterers, and establish conditions for cryogenic freezing. Individual will also participate in diffraction data collection at the Advanced Photon Source. In addition, the candidate will perform spectroscopic and chromatographic analyses of protein and nucleic acid samples in the context of their purity, oligomeric state and photophysical properties.

  13. THE CARE PROJECT - Coordinated Accelerator Research in Europe

    CERN Multimedia

    2003-01-01

    A one-day presentation of the project will take place on Monday February 10th in the CERN Council Chamber. The meeting will start a 9am and is expected to end at 4:30pm. The meeting, which is open to the whole community, will present an initiative on accelerator R&D in Europe, supported by ECFA, with the aim to bid for European Union support through the Framework 6 scheme. This initiative is coordinated by a steering group (ESGARD - European Steering Group on Accelerator Research and Development), which has been set up to coordinate European efforts on accelerator R&D and the submission of such bids. The initial bids have to be submitted by April 15th. All those interested in accelerator R&D are welcome to attend. Presentation of the CARE project (Coordinated Accelerator Research in Europe) to be submitted within FP6 February 10th, at CERN in the council room Agenda Chair : C. Wyss 9:00 General presentation of FP6 and introduction of IA proposal (R. Aleksan) 9:45 Networking activities on e ...

  14. Current concepts in cancer research

    OpenAIRE

    Ivan Kok Seng Yap; Ammu Kutty Radhakrishnan; Chee Onn Leong

    2013-01-01

    Cancer research is an extremely broadtopic covering many scientific disciplines includingbiology (e.g. biochemistry and signal transduction),chemistry (e.g. drug discover and development),physics (e.g. diagnostic devices) and even computerscience (e.g. bioinformatics). Some would argue thatcancer research will continue in much the same wayas it is by adding further layers of complexity to thescientific knowledge that is already complex and almostbeyond measure. But we anticipate that cancer r...

  15. Harnessing the crowd to accelerate molecular medicine research.

    Science.gov (United States)

    Smith, Robert J; Merchant, Raina M

    2015-07-01

    Crowdsourcing presents a novel approach to solving complex problems within molecular medicine. By leveraging the expertise of fellow scientists across the globe, broadcasting to and engaging the public for idea generation, harnessing a scalable workforce for quick data management, and fundraising for research endeavors, crowdsourcing creates novel opportunities for accelerating scientific progress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Accelerating Research Innovation by Adopting the Lean Startup Paradigm

    Directory of Open Access Journals (Sweden)

    Kaisa Still

    2017-05-01

    Full Text Available Converting scientific expertise into marketable products and services is playing an increasingly important role in the launching of new ventures, the growth of existing firms, and the creation of new jobs. In this article, we explore how the lean startup paradigm, which validates the market for a product with a business model that can sustain subsequent scaling, has led to a new process model to accelerate innovation. We then apply this paradigm to the context of research at universities and other research organizations. The article is based on the assumption that the organizational context matters, and it shows how a deeper understanding of the research context could enable an acceleration of the innovation process. We complement theoretical examples with a case example from VTT Technical Research Institute of Finland. Our findings show that many of the concepts from early-acceleration phases – and the lean startup paradigm – can also be relevant in innovation discussions within the research context. However, the phase of value-proposition discovery is less adequately addressed, and that of growth discovery, with its emphasis on building on a scalable, sustainable business does not seem to be addressed with the presented innovation approaches from the research context. Hence, the entrepreneurial activities at the research context differ from those in startups and internal startups in established organizations.

  17. Advanced Accelerator Development Strategy Report: DOE Advanced Accelerator Concepts Research Roadmap Workshop

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-02-03

    Over a full two day period, February 2–3, 2016, the Office of High Energy Physics convened a workshop in Gaithersburg, MD to seek community input on development of an Advanced Accelerator Concepts (AAC) research roadmap. The workshop was in response to a recommendation by the HEPAP Accelerator R&D Subpanel [1] [2] to “convene the university and laboratory proponents of advanced acceleration concepts to develop R&D roadmaps with a series of milestones and common down selection criteria towards the goal for constructing a multi-TeV e+e– collider” (the charge to the workshop can be found in Appendix A). During the workshop, proponents of laser-driven plasma wakefield acceleration (LWFA), particle-beam-driven plasma wakefield acceleration (PWFA), and dielectric wakefield acceleration (DWFA), along with a limited number of invited university and laboratory experts, presented and critically discussed individual concept roadmaps. The roadmap workshop was preceded by several preparatory workshops. The first day of the workshop featured presentation of three initial individual roadmaps with ample time for discussion. The individual roadmaps covered a time period extending until roughly 2040, with the end date assumed to be roughly appropriate for initial operation of a multi-TeV e+e– collider. The second day of the workshop comprised talks on synergies between the roadmaps and with global efforts, potential early applications, diagnostics needs, simulation needs, and beam issues and challenges related to a collider. During the last half of the day the roadmaps were revisited but with emphasis on the next five to ten years (as specifically requested in the charge) and on common challenges. The workshop concluded with critical and unanimous endorsement of the individual roadmaps and an extended discussion on the characteristics of the common challenges. (For the agenda and list of participants see Appendix B.)

  18. Electron string ion sources for carbon ion cancer therapy accelerators

    Science.gov (United States)

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Katagiri, K.; Noda, K.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B.

    2015-08-01

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C4+ and C6+ ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 1010 C4+ ions per pulse and about 5 × 109 C6+ ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 1011 C6+ ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the 11C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C4+ ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of 11C, transporting to the tumor with the primary accelerated 11C4+ beam, this efficiency is preliminarily considered to be large enough to produce the 11C4+ beam from radioactive methane and to inject this beam into synchrotrons.

  19. Cancer Trends: Influencing Care and Research Priorities

    Science.gov (United States)

    Many of the trends being seen in cancer are changing how we view cancer and how we address it, from prompting research to identify the underlying causes of cancers increasing in incidence to informing research on treatment and prevention.

  20. Accelerator and Fusion Research Division. Annual report, October 1977--September 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-01

    Research is reported for the combined groups consisting of the Accelerator Division and the Magnetic Fusion Energy Group. Major topics reported include accelerator operations, magnetic fusion energy, and advanced accelerator development. (GHT)

  1. Senior Computational Scientist | Center for Cancer Research

    Science.gov (United States)

    The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). The Cancer & Inflammation Program (CIP),

  2. The South African National Accelerator Centre and its research programme

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Y. [Kyushu Univ., Fukuoka (Japan)

    1997-03-01

    An overview of the South African National Accelerator Centre and its research activities is given with emphasis on medium energy nuclear physics and nuclear data measurements for medical use. Also presented is a preliminary result of {sup 40}Ca(p,p`x) spectrum measurement for 392 MeV which has been carried out at RCNP, Osaka University, under the South Africa-Japan collaborative programme. (author)

  3. The research status of induced radioactivity in accelerator facilities

    International Nuclear Information System (INIS)

    Lu Feng; Deng Daping

    2005-01-01

    The hazards of subsequent-radiation produced by high-energy accelerator must be no ignore. The principle of induced radioactivity and the hazards to the people were introduced in this article. The radiation levels around the treatment head and in the air of the treatment room were discussed thor-oughly. Some effects of the induced radioactivity were also mentioned. At last, the article talks about some problems in present researches and some directions for the following study. (authors)

  4. Software Tools | Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    The CPTAC program develops new approaches to elucidate aspects of the molecular complexity of cancer made from large-scale proteogenomic datasets, and advance them toward precision medicine.  Part of the CPTAC mission is to make data and tools available and accessible to the greater research community to accelerate the discovery process.

  5. The Research of Vehicle Acceleration at Signalized Intersections

    Directory of Open Access Journals (Sweden)

    Vuk Bogdanović

    2013-02-01

    Full Text Available Vehicle acceleration is an important parameter used in planning various road elements, traffic signalization, geometric elements of an intersection, signal plans of traffic lights, etc. The knowledge of vehicle acceleration values is also necessary in using simulation softwares for more accurate analysis of the total situation at an intersection, on a road section or in a traffic network. In a lot of earlier studies, acceleration values were analysed and defined, mostly in optimal conditions for traffic functioning. However, values of almost all traffic flow parameters have been changed over time, due to changes in driving-dynamic vehicle characteristics, pneumatic tyres, material used for building road surface, etc. Besides, local environment influence and changes in drivers’ behaviour also significantly affect values of this parameter. According to HCM, it is advisable to perform local research for all values of the parameters recommended within the framework of this handbook, and to adapt their values to local conditions as well. The results of measuring the values of vehicles acceleration at signalized intersections in Novi Sad, Serbia, have been shown in this paper, using the procedure based on video recording processing.

  6. Costs of conventional radical radiotherapy versus continuous hyperfractionated accelerated radiotherapy (CHART) in the treatment of patients with head and neck cancer or carcinoma of the bronchus. Medical Research Council CHART Steering Committee.

    Science.gov (United States)

    Coyle, D; Drummond, M F

    1997-01-01

    The objective of this study was to compare the costs of treatment with continuous hyperfractionated accelerated radiotherapy (CHART) and those of conventional radiotherapy for patients with (1) head and neck cancer and (2) carcinoma of the bronchus. The study was conducted concurrently with two multicentre randomized controlled trials. Data were collected on the use of hospital and community service resources and patients' travel for treatment. Data on resource use up to 3 months after entry to the study were available for 526 head and neck patients (314 receiving CHART and 212 conventional therapy) and 284 bronchus patients (175 CHART and 109 conventional therapy). For patients with head and neck cancer, CHART cost Pounds 1092 (P hostel facilities. The results of this cost analysis will help to facilitate a decision about whether the benefits of CHART, as determined by the clinical trials, are worth the additional costs of hospital-based resource use. The collection of detailed patient-specific resource-use data from a number of centres allows the determination of ways for reducing the cost differential between therapies and making CHART a more cost effective treatment alternative.

  7. Hands-on Training Courses Using Research Reactors and Accelerators

    International Nuclear Information System (INIS)

    2014-01-01

    The enhancement of nuclear science education and training in all Member States is of interest to the IAEA since many of these countries, particularly in the developing world, are building up and expanding their scientific and technological infrastructures. Unfortunately, most of these countries still lack sufficient numbers of well-educated and qualified nuclear specialists and technologists. This may arise from, amongst other things: a lack of candidates with sufficient educational background in nuclear science who would qualify to receive specialized training; a lack of institutions available for training nuclear science specialists; a lack of lecturers in nuclear related fields; and a lack of suitable educational and teaching materials. A related concern is the potential loss of valuable knowledge accumulated over many decades due to the ageing workforce. An imperative for Member States is to develop and offer suitable graduate and postgraduate academic programmes which combine study and project work so that students can attain a prerequisite level of knowledge, abilities and skills in their chosen subject area. In nearly all academic programmes, experimental work forms an essential and integral component of study to help students develop general and subject specific skills. Experimental laboratory courses and exercises can mean practical work in a conventional laboratory or an advanced facility with an operational particle accelerator or research reactor often accompanied by computer simulations and theoretical exercises. In this context, available or newly planned research reactors and particle accelerators should be seen as extremely important and indispensable components of nuclear science and technology curricula. Research reactors can demonstrate nuclear science and technology based on nuclear fission and the interaction of neutrons and photons with matter, while particle accelerators can demonstrate nuclear science and technology based on charged particle

  8. Electron string ion sources for carbon ion cancer therapy accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Katagiri, K.; Noda, K. [National Institute of Radiological Science, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2015-08-15

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C{sup 4+} and C{sup 6+} ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 10{sup 10} C{sup 4+} ions per pulse and about 5 × 10{sup 9} C{sup 6+} ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 10{sup 11} C{sup 6+} ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the {sup 11}C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C{sup 4+} ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of {sup 11}C, transporting to the tumor with the primary accelerated {sup 11}C{sup 4+} beam, this efficiency is preliminarily considered to be large enough to produce the {sup 11}C{sup 4+} beam from radioactive methane and to inject this beam into synchrotrons.

  9. Research opportunities with compact accelerator-driven neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, I.S. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Andreani, C., E-mail: carla.andreani@uniroma2.it [Università degli Studi di Roma “Tor Vergata”, Physics Department and NAST Centre, Via della Ricerca Scientifica 1, 00133 Roma (Italy); CNR-IPCF Sezione di Messina, Messina (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma (Italy); Carpenter, J.M. [Argonne National Laboratory, Argonne, IL (United States); Festa, G., E-mail: giulia.festa@uniroma2.it [Università degli Studi di Roma “Tor Vergata”, Physics Department and NAST Centre, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma (Italy); Gorini, G. [Università degli Studi di Milano—Bicocca, Milano (Italy); Loong, C.-K. [Università degli Studi di Roma “Tor Vergata”, Centro NAST, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Senesi, R. [Università degli Studi di Roma “Tor Vergata”, Physics Department and NAST Centre, Via della Ricerca Scientifica 1, 00133 Roma (Italy); CNR-IPCF Sezione di Messina, Messina (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma (Italy)

    2016-10-13

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target–moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  10. Research opportunities with compact accelerator-driven neutron sources

    Science.gov (United States)

    Anderson, I. S.; Andreani, C.; Carpenter, J. M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.

    2016-10-01

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target-moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  11. Research opportunities with compact accelerator-driven neutron sources

    International Nuclear Information System (INIS)

    Anderson, I.S.; Andreani, C.; Carpenter, J.M.; Festa, G.; Gorini, G.; Loong, C.-K.; Senesi, R.

    2016-01-01

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target–moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  12. Introduction | Center for Cancer Research

    Science.gov (United States)

    Introduction In order to meet increasing demands from both NIH intramural and extramural communities for access to a small angle X-ray scattering (SAXS) resource, the Center for Cancer Research (CCR) under the leadership of Jeffrey Strathern and Bob Wiltrout established a partnership user program (PUP) with the Argonne National Laboratory Photon Source in October 2008.

  13. Accelerator and Fusion Research Division: 1984 summary of activities

    International Nuclear Information System (INIS)

    1985-05-01

    During fiscal 1984, major programmatic activities in AFRD continued in each of five areas: accelerator operations, highlighted by the work of nuclear science users, who produced clear evidence for the formation of compressed nuclear matter during heavy-ion collisions; high-energy physics, increasingly dominated by our participation in the design of the Superconducting Super Collider; heavy-ion fusion accelerator research, which focused on the design of a four-beam experiment as a first step toward assessing the promise of heavy-ion inertial-confinement fusion; and research at the Center for X-Ray Optics, which completed its first year of broadly based activities aimed at the exploitation of x-ray and ultraviolet radiation. At the same time, exploratory studies were under way, aimed at investigating major new programs for the division. During the past year, for example, we took a preliminary look at how we could use the Bevatron as an injector for a pair of colliding-beam rings that might provide the first glimpse of a hitherto unobserved state of matter called the quark-gluon plasma. Together with Livermore scientists, we also conducted pioneering high-gain free-electron laser (FEL) experiments and proposed a new FEL-based scheme (called the two-beam accelerator) for accelerating electrons to very high energies. And we began work on the design of the Coherent XUV Facility (CXF), an advanced electron storage ring for the production of intense coherent radiation from either undulators or free-electron lasers

  14. Present state of studies on FFAG accelerator for radiotherapy of cancer in National Institute of Radiological Sciences

    International Nuclear Information System (INIS)

    Misu, Toshiyuki

    2003-01-01

    From 2001, developmental contract studies with Ministry of Education, Culture, Sports, Science and Technology for a compact accelerator for heavy ion radiotherapy of cancer started in National Institute of Radiological Sciences (NIRS) with use of fixed field alternating gradient (FFAG) accelerator, which had been developed in High Energy Accelerator Research Organization (KEK). This paper describes the present state of those studies. Described are FFAG accelerator design for repeated acceleration for 200 Hz or more toward the carbon ion at 400 MeV/u with the range of 25 cm in water, FFAG optical systems for these purposes by linear analyses, and the present situation of the design. Technological problems yielded and future study plan are also commented. (N.I.)

  15. Physics in ;Real Life;: Accelerator-based Research with Undergraduates

    Science.gov (United States)

    Klay, J. L.

    All undergraduates in physics and astronomy should have access to significant research experiences. When given the opportunity to tackle challenging open-ended problems outside the classroom, students build their problem-solving skills in ways that better prepare them for the workplace or future research in graduate school. Accelerator-based research on fundamental nuclear and particle physics can provide a myriad of opportunities for undergraduate involvement in hardware and software development as well as ;big data; analysis. The collaborative nature of large experiments exposes students to scientists of every culture and helps them begin to build their professional network even before they graduate. This paper presents an overview of my experiences - the good, the bad, and the ugly - engaging undergraduates in particle and nuclear physics research at the CERN Large Hadron Collider and the Los Alamos Neutron Science Center.

  16. Research Associate | Center for Cancer Research

    Science.gov (United States)

    The Basic Science Program (BSP) at the Frederick National Laboratory for Cancer Research (FNLCR) pursues independent, multidisciplinary research programs in basic or applied molecular biology, immunology, retrovirology, cancer biology or human genetics. As part of the BSP, the Microbiome and Genetics Core (the Core) characterizes microbiomes by next-generation sequencing to determine their composition and variation, as influenced by immune, genetic, and host health factors. The Core provides support across a spectrum of processes, from nucleic acid isolation through bioinformatics and statistical analysis. KEY ROLES/RESPONSIBILITIES The Research Associate II will provide support in the areas of automated isolation, preparation, PCR and sequencing of DNA on next generation platforms (Illumina MiSeq and NextSeq). An opportunity exists to join the Core’s team of highly trained experimentalists and bioinformaticians working to characterize microbiome samples. The following represent requirements of the position: A minimum of five (5) years related of biomedical experience. Experience with high-throughput nucleic acid (DNA/RNA) extraction. Experience in performing PCR amplification (including quantitative real-time PCR). Experience or familiarity with robotic liquid handling protocols (especially on the Eppendorf epMotion 5073 or 5075 platforms). Experience in operating and maintaining benchtop Illumina sequencers (MiSeq and NextSeq). Ability to evaluate experimental quality and to troubleshoot molecular biology protocols. Experience with sample tracking, inventory management and biobanking. Ability to operate and communicate effectively in a team-oriented work environment.

  17. Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC) Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Watson, D.B.

    2002-02-28

    The Environmental Sciences Division at Oak Ridge National Laboratory has established a Field Research Center (FRC) to support the Natural and Accelerated Bioremediation Research (NABIR) Program on the U.S. Department of Energy (DOE) Oak Ridge Reservation in Oak Ridge, Tennessee for the DOE Headquarters Office of Biological and Environmental Research within the Office of Science.

  18. Accelerated Hyperfractionated Radiotherapy for Locally Advanced Uterine Cervix Cancers

    International Nuclear Information System (INIS)

    Seo, Young Seok; Cho, Chul Koo; Yoo, Seong Yul

    2008-01-01

    To assess the efficacy of the use of accelerated hyperfractionated radiotherapy (AHRT) for locally advanced uterine cervix cancers. Between May 2000 and September 2002, 179 patients were identified with FIGO stage IIB, IIIB, and IVA cancers. Of the 179 patients, 45 patients were treated with AHRT (AHRT group) and 134 patients were treated with conventional radiotherapy (CRT group), respectively. Patients undergoing the AHRT regimen received a dose of 30 Gy in 20 fractions (1.5 Gyx2 fractions/day) to the whole pelvis. Subsequently, with a midline block, we administered a parametrial boost with a dose of 20 Gy using 2 Gy fractions. Patients also received two courses of low-dose-rate brachytherapy, up to a total dose of 85∼90 Gy to point A. In the CRT group of patients, the total dose to point A was 85∼90 Gy. The overall treatment duration was a median of 37 and 66 days for patients that received AHRT and CRT, respectively. Statistical analysis was calculated by use of the Kaplan-Meier method, the log-rank test, and Chi-squared test. For patients that received cisplatin-based concurrent chemotherapy and radiotherapy, the local control rate at 5 years was 100% and 79.2% for the AHRT and CRT group of patients, respectively (p=0.028). The 5-year survival rate for patients with a stage IIB bulky tumor was 82.6% and 62.1% for the AHRT group and CRT group, respectively (p=0.040). There was no statistically significant difference for severe late toxicity between the two groups (p=0.561). In this study, we observed that treatment with AHRT with concurrent chemotherapy allows a significant advantage of local control and survival for locally advanced uterine cervix cancers

  19. MYRRHA: a multipurpose accelerator driven system for research and development

    International Nuclear Information System (INIS)

    Benoit, Ph.; Ait Abderrahim, H.; Kupschus, P.; Malambu, E.; Tichelen, K. van; Arien, B.; Vermeersch, F.; Jongen, Y.; Vandeplassche, D.; Ternier, S.

    2001-01-01

    SCK-CEN, the Belgian Nuclear Research Centre, and IBA s.a., Ion Beam Application, a world leader in accelerator technology, want to fulfil a prominent role in the Accelerator Driven Systems field and are designing an ADS prototype, the MYRRHA Project, and conducting an associated R and D programme. The partners are foreseeing MYRRHA as a first step towards the European ADS-Demo facility. The project focuses primarily on ADS related research, i.e. structural materials and nuclear fuel research, liquid metals and associated aspects, sub-critical reactor physics and subsequently on applications such as waste transmutation, radioisotope production and safety research on sub-critical systems. In this respect, the MYRRHA system should become a new major research infrastructure for the European partners presently involved in the ADS Demo development, supporting and enabling the international R and D programs. Ion Beam Applications, the Belgium world leader in particle accelerators, had joined the MYRRHA Project to perform the accelerator development. Currently the study and preliminary conceptual design of the MYRRHA system is going on and an intensive R and D programme is conducted to assess the most risky points of the present design. This study will define the final choice of the characteristics of the facility depending on the selected fields of application to be achieved. The MYRRHA concept, as it is today, is based on the coupling of an upgraded commercial proton accelerator with a spallation target surrounded by a subcritical neutron-multiplying medium. Its design is determined by the versatility m applications that should be made possible. Further technical and/or strategic developments of the project might change the concept. A cyclotron, based on positive ion acceleration technology brings the protons up to an energy level of 350 MeV. The nominal current is 5 mA of protons. The spallation target system consists in a circuit with, at the upper part, a free

  20. The Design of HVAC System in the Conventional Facility of Proton Accelerator Research Center

    International Nuclear Information System (INIS)

    Jeon, G. P.; Kim, J. Y.; Choi, B. H.

    2007-01-01

    The HVAC systems for conventional facility of Proton Accelerator Research Center consist of 3 systems : accelerator building HVAC system, beam application building HVAC system and miscellaneous HVAC system. We designed accelerator building HVAC system and beam application research area HVAC system in the conventional facilities of Proton Accelerator research center. Accelerator building HVAC system is divided into accelerator tunnel area, klystron area, klystron gallery area, accelerator assembly area. Also, Beam application research area HVAC system is divided into those of beam experimental hall, accelerator control area, beam application research area and Ion beam application building. In this paper, We described system design requirements and explained system configuration for each systems. We presented operation scenario of HVAC system in the Conventional Facility of Proton Accelerator Research Center

  1. Status and future directions for advanced accelerator research - conventional and non-conventional collider concepts

    International Nuclear Information System (INIS)

    Siemann, R.H.

    1997-01-01

    The relationship between advanced accelerator research and future directions for particle physics is discussed. Comments are made about accelerator research trends in hadron colliders, muon colliders, and e + 3 - linear colliders

  2. Heavy-ion accelerator research for inertial fusion

    International Nuclear Information System (INIS)

    1987-08-01

    Thermonuclear fusion offers a most attractive long-term solution to the problem of future energy supplies: The fuel is virtually inexhaustible and the fusion reaction is notably free of long-lived radioactive by-products. Also, because the fuel is in the form of a plasma, there is no solid fuel core that could melt down. The DOE supports two major fusion research programs to exploit these virtues, one based on magnetic confinement and a second on inertial confinement. One part of the program aimed at inertial fusion is known as Heavy Ion Fusion Accelerator Research, or HIFAR. In this booklet, the aim is to place this effort in the context of fusion research generally, to review the brief history of heavy-ion fusion, and to describe the current status of the HIFAR program

  3. High intensity linear accelerator development topics for panel discussion on ''Nuclear Energy Research and Accelerators: Future Prospects''

    International Nuclear Information System (INIS)

    Jameson, R.A.

    1989-01-01

    Two companion papers at this meeting have introduced the subject of high intensity linacs for materials research and for radioactive waste transmutation; Prof. Kaneko's paper ''Intense Proton Accelerator,'' and my paper ''Accelerator-Based Intense Neutron Source for Materials R ampersand D.'' I will expand on those remarks to briefly outline some of the extensive work that has been done at Los Alamos toward those two application areas, plus a third --- the production of tritium in an accelerator-based facility (APT--Accelerator Production of Tritium). 1 ref., 11 figs

  4. Experimental research on electromagnetic radiation in inductive energy storage accelerator

    International Nuclear Information System (INIS)

    Zhong Jianzhong; Liu Lie; Li Limin; Wen Jianchun

    2008-01-01

    There exists strong electromagnetic radiation in inductive energy storage accelerators. In can destroy a measuring device at a distance. By repeated experiments, we found that it is a wide-spectrum electromagnetic wave with a main frequency of 75 MHz. The effector such as coaxial transmission line is effected strongly in short distance. The current in the coaxial transmission line can be measured in Rogowski coils. The strength of field in it is about 500 V/m and the peak current is 217 mA. The radiation source may be LC oscillating or electric exploding opening switch. Through the experimental research, we think it probably may be caused by the LC oscillating in the circuit when the switches conduct. And its strength is correlated to current change ratio. The change rate in secondary circuit is stronger than in primary circuit. So the radiation generated in secondary circuit is stronger than in primary circuit. It may be a reference for further research in inductive energy storage accelerators and shielding electromagnetic disturbing. (authors)

  5. The CARE project (Coordinated Accelerator Research in Europe)

    International Nuclear Information System (INIS)

    Napoly, Olivier

    2006-01-01

    CARE, an ambitious and coordinated project of accelerator research and developments oriented towards High Energy Physics projects, has been launched in January 2004 by the main European laboratories and the European Commission with the 6th Framework Programme. This project aims at improving existing infrastructures dedicated to future projects such as linear colliders, upgrades of hadron colliders and high intensity proton drivers An important part of this programme is devoted to advancing the performance of the superconducting technology, both in the fields of RF cavities for electron and proton acceleration and of high field magnets, as well as to developing high intensity electron and proton injectors. We describe the plans of the four main Joint Research Activities and report on the results and progress obtained so far. The CARE project also includes three adjacent Networking Activities whose main goal is to organize a forum of discussions and to provide the strategic plans in the fields of the Linear Collider, intense Neutrino Beams, and future Hadron Colliders

  6. Accelerating Translational Research through Open Science: The Neuro Experiment.

    Science.gov (United States)

    Gold, E Richard

    2016-12-01

    Translational research is often afflicted by a fundamental problem: a limited understanding of disease mechanisms prevents effective targeting of new treatments. Seeking to accelerate research advances and reimagine its role in the community, the Montreal Neurological Institute (Neuro) announced in the spring of 2016 that it is launching a five-year experiment during which it will adopt Open Science-open data, open materials, and no patenting-across the institution. The experiment seeks to examine two hypotheses. The first is whether the Neuro's Open Science initiative will attract new private partners. The second hypothesis is that the Neuro's institution-based approach will draw companies to the Montreal region, where the Neuro is based, leading to the creation of a local knowledge hub. This article explores why these hypotheses are likely to be true and describes the Neuro's approach to exploring them.

  7. Accelerating Translational Research through Open Science: The Neuro Experiment.

    Directory of Open Access Journals (Sweden)

    E Richard Gold

    2016-12-01

    Full Text Available Translational research is often afflicted by a fundamental problem: a limited understanding of disease mechanisms prevents effective targeting of new treatments. Seeking to accelerate research advances and reimagine its role in the community, the Montreal Neurological Institute (Neuro announced in the spring of 2016 that it is launching a five-year experiment during which it will adopt Open Science-open data, open materials, and no patenting-across the institution. The experiment seeks to examine two hypotheses. The first is whether the Neuro's Open Science initiative will attract new private partners. The second hypothesis is that the Neuro's institution-based approach will draw companies to the Montreal region, where the Neuro is based, leading to the creation of a local knowledge hub. This article explores why these hypotheses are likely to be true and describes the Neuro's approach to exploring them.

  8. Ascribing emotion to reasonable use in accelerated cancer services.

    Science.gov (United States)

    Obling, Anne Roelsgaard

    2013-01-01

    A recurrent theme in medical sociology has been the juxtaposition of emotion with scientific rationality in the delivery of health care services. However, apart from addressing this juxtaposition very little is said about the complex intertwinement of "emotional" and "rational" practices which makes up professionals' own day-to-day work experiences - and how these experiences are influenced by present ways of organising health care. This paper aims to explore the ways that hospital doctors relate emotions to their understanding of professional medical work and how they respond to recent organisational changes within the field. Drawing upon a small series of semi-structured interviews (n = 14) with doctors from a public teaching hospital in Denmark, the paper adopts a constructivist framework to analyse personal biographies of health professionals' working lives. The doctors represented rich accounts of professional medical work, which includes an understanding of what a doctor should feel and how he/she should make him/herself emotionally available to others. However, the impetus for making this appearance was not left unaffected by recent new public management reforms and attempts to accelerate the delivery of services. The organisation of cancer services into a work system, which consists of a set of tasks broken down into narrow jobs, underestimates the emotional components of patient-doctor encounters. This makes the creation and maintenance of a genuine patient-doctor relationship difficult and the result is feelings of a failed encounter on behalf of the doctor. The paper suggests that recent rearrangements of cancer services complicate doctors' ability to incorporate emotion into a stream of medical care in a "rational" way. This is shown to challenge their professional ethos and the forms emotional engagement takes in medical practice.

  9. Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer.

    Science.gov (United States)

    Sunamura, Makoto; Duda, Dan G; Ghattas, Maivel H; Lozonschi, Lucian; Motoi, Fuyuhiko; Yamauchi, Jun-Ichiro; Matsuno, Seiki; Shibahara, Shigeki; Abraham, Nader G

    2003-01-01

    Angiogenesis is necessary for the continued growth of solid tumors, invasion and metastasis. Several studies clearly showed that heme oxygenase-1 (HO-1) plays an important role in angiogenesis. In this study, we used the vital microscope system, transparent skinfold model, lung colonization model and transduced pancreatic cancer cell line (Panc-1)/human heme oxygenase-1 (hHO-1) cells, to precisely analyze, for the first time, the effect of hHO-1 gene on tumor growth, angiogenesis and metastasis. Our results revealed that HO-1 stimulates angiogenesis of pancreatic carcinoma in severe combined immune deficient mice. Overexpression of human hHO-1 after its retroviral transfer into Panc-1 cells did not interfere with tumor growth in vitro. While in vivo the development of tumors was accelerated upon transfection with hHO-1. On the other hand, inhibition of heme oxygenase (HO) activity by stannous mesoporphyrin was able transiently to delay tumor growth in a dose dependent manner. Tumor angiogenesis was markedly increased in Panc-1/hHO-1 compared to mock transfected and wild type. Lectin staining and Ki-67 proliferation index confirmed these results. In addition hHO-1 stimulated in vitro tumor angiogenesis and increased endothelial cell survival. In a lung colonization model, overexpression of hHO-1 increased the occurrence of metastasis, while inhibition of HO activity by stannous mesoporphyrin completely inhibited the occurrence of metastasis. In conclusion, overexpression of HO-1 genes potentiates pancreatic cancer aggressiveness, by increasing tumor growth, angiogenesis and metastasis and that the inhibition of the HO system may be of useful benefit for the future treatment of the disease.

  10. Prostate Cancer Stem-Like Cells | Center for Cancer Research

    Science.gov (United States)

    Prostate cancer is the third leading cause of cancer-related death among men, killing an estimated 27,000 men each year in the United States. Men with advanced prostate cancer often become resistant to conventional therapies. Many researchers speculate that the emergence of resistance is due to the presence of cancer stem cells, which are believed to be a small subpopulation

  11. Accelerated fractionation radiotherapy for advanced haed and neck cancer

    International Nuclear Information System (INIS)

    Lamb, D.S.; Spry, N.A.; Gray, A.J.; Johnson, A.D.; Alexander, S.R.; Dally, M.J.

    1990-01-01

    Between 1981 and 1986, 89 patients with advanced head and neck squamous cancer were treated with a continuous accelerated fractionation radiotherapy (AFRT) regimen. Three fractions of 1.80 Gy, 4 h apart, were given on three treatment days per week, and the tumour dose was taken to 59.40 Gy in 33 fractions in 24-25 days. Acute mucosal reactions were generally quite severe, but a split was avoided by providing the patient with intensive support, often as an in-patient, until the reactions settled. Late radiation effects have been comparable to those obtained with conventional fractionation. The probability of local-regional control was 47% at 3 years for 69 previously untreated patients, whereas it was only 12% at one year for 20 patients treated for recurrence after radical surgery. Fifty-eight previously untreated patients with tumours arising in the upper aero-digestive tract were analysed in greated detail. The probability of local-regional control at 3 years was 78% for 17 Stage III patients and 15% for 31 Stage IV patients. This schedule of continuous AFRT is feasible and merits further investigation. (author). 31 refs.; 4 figs.; 6 tabs

  12. Accelerator driven radiation clean nuclear power system conceptual research symposium

    International Nuclear Information System (INIS)

    Zhao Zhixiang

    2000-06-01

    The R and D of ADS (Accelerators Driven Subcritical System) in China introduced. 31 theses are presented. It includes the basic principle of ADS, accelerators, sub-critical reactors, neutron physics, nuclear data, partitioning and transmutation

  13. Techniques in cancer research: a laboratory manual

    International Nuclear Information System (INIS)

    Deo, M.G.; Seshadri, R.; Mulherkar, R.; Mukhopadhyaya, R.

    1995-01-01

    Cancer Research Institute (CRI) works on all facets of cancer using the latest biomedical tools. For this purpose, it has established modern laboratories in different branches of cancer biology such as cell and molecular biology, biochemistry, immunology, chemical and viral oncogenesis, genetics of cancer including genetic engineering, tissue culture, cancer chemotherapy, neurooncology and comparative oncology. This manual describes the protocols used in these laboratories. There is also a chapter on handling and care of laboratory animals, an essential component of any modern cancer biology laboratory. It is hoped that the manual will be useful to biomedical laboratories, specially those interested in cancer research. refs., tabs., figs

  14. Double-negative metamaterial research for accelerator applications

    International Nuclear Information System (INIS)

    Antipov, S.; Spentzouris, L.; Gai, W.; Liu, W.; Power, J.G.

    2007-01-01

    Material properties are central to the design of particle accelerators. One area of advanced accelerator research is to investigate novel materials and structures and their potential use in extending capabilities of accelerator components. Within the past decade a new type of artificially constructed material having the unique property of simultaneously negative permittivity and permeability has been realized, and is under intense investigation, primarily by the optical physics and microwave engineering communities [C.M. Soukoulis, Science 315 (2007) 47; D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Science 305 (2004) 788; J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett. 76 (1996) 4773]. Although they are typically constructed of arrays of discrete cells, as long as the condition that the wavelength of applied radiation is significantly greater than the cell dimensions is met, the material mimics a continuous medium and can be described with the bulk properties of permittivity, ε, and permeability, μ. When the permittivity and permeability are simultaneously negative in some frequency range, the metamaterial is called double negative (DNM) or left-handed (LHM) and has unusual properties, such as a negative index of refraction. An investigation of these materials in the context of accelerators is being carried out by IIT and the Argonne Wakefield Accelerator Facility [S. Antipov, W. Liu, W. Gai, J. Power, L. Spentzouris, AIP Conf. Proc. 877 (2006); S. Antipov, W. Liu, J. Power, L. Spentzouris, Design, Fabrication, and Testing of Left-Handed Metamaterial, Wakefield Notes at Argonne Wakefield Accelerator, ]. Waveguides loaded with metamaterials are of interest because the DNM can change the dispersion relation of the waveguide significantly. For example, slow backward waves can be produced in a DNM-loaded waveguide without having corrugations. This article begins with a brief introduction of known design principles for realizing a DNM [J.B. Pendry, A

  15. Immunotherapy: A breakthrough in cancer research

    Directory of Open Access Journals (Sweden)

    Editorial Office

    2016-12-01

    a mixed population. The clinical benefit of the fixed dose of pembrolizumab in the first and second line treatment of recurrent/metastatic head and neck cancer is being evaluated head-to-head with standard of care chemotherapy in phase 3 trials around the world, including Asia Pacific.” Meanwhile, another research paper on immunotherapy presented at the ESMO Asia 2016 was by Dr. Herbert Loong, Clinical Assistant Professor at the Department of Clinical Oncology of the Chinese University of Hong Kong, who discussed about the cost-effectiveness of immunotherapy with pembrolizumab for advanced melanoma patients in Hong Kong. Dr. Loong said, “We have determined that whilst pembrolizumab is expensive, the increase in quality adjusted life years (QALYs compared with standard cytotoxic chemotherapy, and even so with ipilimumab, qualifies it as a cost-effective approach.” Commenting on the results of the research by Dr. Loong and his colleagues, Dr. Mark Tang – a senior consultant dermatologist said, “Given the high costs of these new treatment options, cost effectiveness studies such as this one are timely and useful as further evidence for the use of pembrolizumab in the treatment of advanced melanoma. This is particularly important in an Asian context where, although rare, acral melanoma has unfortunately been known to present late advanced disease.” Taking all these exciting discoveries into account, a good number of studies have repeatedly shown that progress in cancer immunotherapy has accelerated and resulted in the development of several effective and promising therapies for multiple forms of cancer. At this critical juncture, oncological organizations such as ESMO provide an important knowledge transfer platform for the sharing of expertise and interaction between regional and international experts in the area of onco-immunology. Moving forward, immunotherapy and targeted medicine are expected to remain in the spotlight and will be an indispensable

  16. Accelerators

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    The talk summarizes the principles of particle acceleration and addresses problems related to storage rings like LEP and LHC. Special emphasis will be given to orbit stability, long term stability of the particle motion, collective effects and synchrotron radiation.

  17. Nutrition and Cancer Prevention Research Practicum | Division of Cancer Prevention

    Science.gov (United States)

    The Nutritional Science Research Group in the Division of Cancer Prevention at the National Cancer Institute, National Institutes of Health and the Department of Nutrition at the Clinical Center, National Institutes of Health are offering a one week educational opportunity in "Nutrition and Cancer Prevention Research" for individuals with a sustained commitment to nutrition

  18. MYRRHA: a multipurpose accelerator driven system for research and development

    International Nuclear Information System (INIS)

    Tichelen Van, K.; Malambu, E.; Benoit, Ph.; Kupschus, P.; Ait Abderrahim, H.; Vandeplassche, D.; Ternier, S.; Jongen, Y.

    2001-01-01

    The development of a new nuclear installation that is able to fulfil the economical, social, environmental and technological demands, is a cornerstone for the future provision of sustainable energy. Accelerator Driven Systems (ADS) can pave the way for a more environmentally safe and acceptable nuclear energy production. Fundamental and applied R and D are crucial in the development of ADS technologies and demand the availability of appropriate prototype installations. In answer to this need and in order to update its current irradiation potential, the Belgian Nuclear Research Centre (SCK·CEN), in partnership with Ion Beam Applications s. a. (IBA), is launching the MYRRHA project. It is focussed on the design, development and realisation of a modular and flexible irradiation facility based on the ADS concept. This paper describes the concept, the applications foreseen in the MYRRHA installation and the accompanying design activities currently being performed at SCK·CEN and IBA. (authors)

  19. MYRRHA: A multipurpose accelerator driven system for research and development

    International Nuclear Information System (INIS)

    Van Tichelen, K.; Malambu, E.; Benoit, Ph.; Kupschus, P.; Ait Abderrahim, H.

    2000-01-01

    The development of a new nuclear installation that is able to fulfil the economical, social, environmental and technological demands, is of first importance for the future of sustainable energy provision. Accelerator Driven Systems can pave the way for a more environ- mentally safe and acceptable nuclear energy production. Fundamental and applied R and D are crucial in the development of ADS technologies and demand the availability of appropriate prototype installations. In answer to this need and in order to update its current irradiation potential, the Belgian Nuclear Research Centre (SCK.CEN) has launched the Myrrha project. It is focussed on the design, development and realisation of a modular and flexible irradiation facility based on ADS. This paper describes the concept, the applications fore- seen in the Myrrha installation and the accompanying design activities currently being performed at SCK.CEN. (authors)

  20. Accelerator and Fusion Research Division annual report, fiscal year 1980, October 1979-September 1980

    International Nuclear Information System (INIS)

    1981-03-01

    Research during October 1979 to September 1980 is summarized. Areas covered include: accelerator operations; positron-electron project; stochastic beam cooling; high-field superconducting magnets; accelerator theory; neutral beam sources; and heavy ion fusion

  1. Accelerating Corporate Research in the Development, Application and Deployment of Human Language Technologies

    National Research Council Canada - National Science Library

    Ferrucci, David; Lally, Adam

    2003-01-01

    ... accelerate scientific advance. Furthermore, the ability to reuse and combine results through a common architecture and a robust software framework would accelerate the transfer of research results in HLT into IBM's product platforms...

  2. American Institute for Cancer Research

    Science.gov (United States)

    ... Phytochemicals in your food Red and processed meat Sugar and cancer risk Alcohol and cancer risk Physical Activity Are ... Updates: Diabetes Rates are High and Rising, That Links with Cancer Apples and Oranges, What Americans are Eating and ...

  3. Dr. Ted Trimble: Why I Do Cancer Research

    Science.gov (United States)

    In a video, Dr. Ted Trimble talks about the importance of cancer research. World Cancer Research Day commemorates the important role research and cancer researchers play in reducing the global burden of cancer.

  4. Project of compact accelerator for cancer proton therapy

    International Nuclear Information System (INIS)

    Picardi, L.; Ronsivalle, C.; Vignati, A.

    1995-04-01

    The status of the sub-projetc 'Compact Accelerator' in the framework of the Hadrontherapy Project leaded by Prof. Amaldi is described. Emphasis is given to the reasons of the use of protons for radiotherapy applications, to the results of the preliminary design studies of four types of accelerators as possible radiotherapy dedicated 'Compact Accelerator' and to the scenario of the fonts of financial resources

  5. Ion Beam Facilities at the National Centre for Accelerator based Research using a 3 MV Pelletron Accelerator

    Science.gov (United States)

    Trivedi, T.; Patel, Shiv P.; Chandra, P.; Bajpai, P. K.

    A 3.0 MV (Pelletron 9 SDH 4, NEC, USA) low energy ion accelerator has been recently installed as the National Centre for Accelerator based Research (NCAR) at the Department of Pure & Applied Physics, Guru Ghasidas Vishwavidyalaya, Bilaspur, India. The facility is aimed to carried out interdisciplinary researches using ion beams with high current TORVIS (for H, He ions) and SNICS (for heavy ions) ion sources. The facility includes two dedicated beam lines, one for ion beam analysis (IBA) and other for ion implantation/ irradiation corresponding to switching magnet at +20 and -10 degree, respectively. Ions with 60 kV energy are injected into the accelerator tank where after stripping positively charged ions are accelerated up to 29 MeV for Au. The installed ion beam analysis techniques include RBS, PIXE, ERDA and channelling.

  6. CCR Magazines | Center for Cancer Research

    Science.gov (United States)

    The Center for Cancer Research (CCR) has two magazines, MILESTONES and LANDMARKS, that highlight our annual advances and top contributions to the understanding, detection, treatment and prevention of cancer over the years.

  7. NIH Research Leads to Cervical Cancer Vaccine

    Science.gov (United States)

    ... Issues Sexually Transmitted Diseases NIH Research Leads to Cervical Cancer Vaccine Past Issues / Fall 2008 Table of Contents ... in women, the cause of the majority of cervical cancers. Photo courtesy of Judy Folkenberg, NLM Writer By ...

  8. Pushing the accelerator - speeding up drug research with accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Garner, R.C. E-mail: colin.garner@cbams.co.uk; Leong, D

    2000-10-01

    Accelerator mass spectrometry (AMS) is the most sensitive analytical method yet developed for elemental isotope analysis and has a broad range of applications. The measurement of {sup 14}C is of most interest to biomedical researchers but few studies have been reported using AMS in drug discovery and development. For biomedical use, {sup 14}C is incorporated into organic molecules by either radiosynthesis or biosynthetically and the isotope is used as a surrogate for the distribution of the radiolabelled molecule either in animal or human studies. The majority of users of {sup 14}C quantitate the radioactivity using decay counting usually with a liquid scintillation counter (LSC). Our Centre over the past 12 months has been evaluating and validating the use of AMS as an alternative detection method. In vitro spiking studies of human plasma with {sup 14}C-Fluconazole, a prescription antifungal drug has demonstrated an excellent correlation between AMS and LSC (correlation coefficient 0.999). Human Phase I clinical studies have been conducted with radioactive doses ranging from 120 Bq (7000 dpm) to 11 kBq (300 nCi) to provide mass balance, plasma concentration and radioactive metabolite profiling data. Limits of detection of 0.00022 Bq {sup 14}C-labelled drug/ml plasma have been accurately quantitated in a plasma background of 0.0078 Bq/ml (0.013 dpm/ml in a plasma background of 0.47 dpm/ml or 2.72 pMC in a background of 90.19 pMC)

  9. Biological and medical research with accelerated heavy ions at the Bevalac, 1974--1977

    International Nuclear Information System (INIS)

    Elam, S.

    1977-04-01

    The Bevalac, a versatile high-energy heavy-ion accelerator complex, has been in operation for less than two years. A major purpose for which the Bevalac was constructed was to explore the possibility of heavy-ion teams for therapy for certain forms of cancer. Significant progress has been made in this direction. The National Cancer Institute has recognized the advantages that these and other accelerated particles offer, and heavy ions have been included in a long-term plan for particle therapy that will assess by means of controlled therapeutic tests the value of various modalities. Since accelerated heavy ions became available, the possibility of other contributions, not planned, became apparent. We are developig a new diagnostic method known as heavy-ion radiography that has greatly increased sensitivity for soft-tissue detail and that may become a powerful tool for localizing early tumors and metastases. We have discovered that radioactive beams are formed from fragmentation of stable deflected beams. Use of these autoradioactive beams is just beginning; however, we know that these beams will be helpful in localizing the region in the body where therapy is being delivered. In addition, it has been demonstrated that instant implantation of the radioactive beam allows direct measurements of blood perfusion rates in inaccessible parts of the body, and such a technique may become a new tool for the study of fast hot atom reactions in biochemistry, tracer biology and nuclear medicine. The Bevalac will also be useful for the continuation of previously developed methods for the control of acromegaly, Cushing's disease and, on a research basis, advanced diabetes mellitus with vascular disease. The ability to make small bloodless lesions in the brain and elsewhere with heavy-ion beams has great potential for nervous-system studies and perhaps later for radioneurosurgery

  10. Basic research on cancer related to radiation associated medical researches

    International Nuclear Information System (INIS)

    Lee, Jong In; Hwang, Dae Yong; Bang, Ho Yoon

    2000-12-01

    Basic Research on Cancer related to Radiation Associated Medical Researches including 1. Establishment of animal model of colorectal cancer liver metastasis and measurement of angiogenesis, 2. Tissue expression of Tie-1 and Tie-2 in human colorectal cancer, 3. Enhancement of G2/Mphase Cell Fraction by Adenovirus-mediated p53 Gene Transfer in Ovarian Cancer Cell Lines, 4. Clinical Characteristics of the patients with Non-B Non-C Hepatocellular Carcinoma and Frequency of HBV, HCV and TTV Viremia in these Patients, 5. Significance of serum iron and ferritin in patients with stomach cancer, 6. Telomerase assay for early detection of lung cancer, 7. Study on the Usefulness of Aldehyde dehydrogenase-2 Genotyping for Risk Group of Alcohol-related Cancer Screening, 8. Gene therapy using hepatoma specific promoter, 9. Study on the Influence of DNA repair gene, XRCC1 Genotypes on the Risk of Head and Neck Cancer were performed

  11. Basic research on cancer related to radiation associated medical researches

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong In; Hwang, Dae Yong; Bang, Ho Yoon [and others

    2000-12-01

    Basic Research on Cancer related to Radiation Associated Medical Researches including 1. Establishment of animal model of colorectal cancer liver metastasis and measurement of angiogenesis, 2. Tissue expression of Tie-1 and Tie-2 in human colorectal cancer, 3. Enhancement of G2/Mphase Cell Fraction by Adenovirus-mediated p53 Gene Transfer in Ovarian Cancer Cell Lines, 4. Clinical Characteristics of the patients with Non-B Non-C Hepatocellular Carcinoma and Frequency of HBV, HCV and TTV Viremia in these Patients, 5. Significance of serum iron and ferritin in patients with stomach cancer, 6. Telomerase assay for early detection of lung cancer, 7. Study on the Usefulness of Aldehyde dehydrogenase-2 Genotyping for Risk Group of Alcohol-related Cancer Screening, 8. Gene therapy using hepatoma specific promoter, 9. Study on the Influence of DNA repair gene, XRCC1 Genotypes on the Risk of Head and Neck Cancer were performed.

  12. Current cancer research. Reports from the German Cancer Research Center 1998

    International Nuclear Information System (INIS)

    1998-01-01

    Topics from the Contents: The Fight against Cancer in Germany - A Critical Review. Conditions and Structures in Research. Familial Breast Cancer - A Critical Assessment. Research without Animal Experiments. Cancer Prevention. New Approaches for Tumor Therapy. Genes, Chromosomes and Cancer. Therapy of Brain Tumors with Laser Neurosurgery. The Genome Project. (orig.) [de

  13. Biopsychosocial Research Training in Breast Cancer

    National Research Council Canada - National Science Library

    Antoni, Michael

    1998-01-01

    .... Three others successfully defended their Master's theses. Training throughout YR 4 was closely coordinated with ongoing ACS-funded and NCI-funded biopsychosocial breast cancer research projects...

  14. Lysyl oxidase in cancer research

    DEFF Research Database (Denmark)

    Perryman, Lara; Erler, Janine Terra

    2014-01-01

    Metastasis is the main reason for cancer-associated deaths and therapies are desperately needed to target the progression of cancer. Lysyl oxidase (LOX) plays a pivotal role in cancer progression, including metastasis, and is therefore is an attractive therapeutic target. In this review we...

  15. Darmstadt Linear Accelerator (DALINAC) Research Laboratory. Status report - July 1988

    International Nuclear Information System (INIS)

    Anon.

    1988-07-01

    The status of the DALINAC project is reviewed. The accelerator and the experimental facilities are described, and a free-electron laser project is considered. Furthermore, experiments on inelastic electron scattering on nuclei and atomic systems are listed. (HSI)

  16. Neural computation and particle accelerators research, technology and applications

    CERN Document Server

    D'Arras, Horace

    2010-01-01

    This book discusses neural computation, a network or circuit of biological neurons and relatedly, particle accelerators, a scientific instrument which accelerates charged particles such as protons, electrons and deuterons. Accelerators have a very broad range of applications in many industrial fields, from high energy physics to medical isotope production. Nuclear technology is one of the fields discussed in this book. The development that has been reached by particle accelerators in energy and particle intensity has opened the possibility to a wide number of new applications in nuclear technology. This book reviews the applications in the nuclear energy field and the design features of high power neutron sources are explained. Surface treatments of niobium flat samples and superconducting radio frequency cavities by a new technique called gas cluster ion beam are also studied in detail, as well as the process of electropolishing. Furthermore, magnetic devises such as solenoids, dipoles and undulators, which ...

  17. Cancer Biotechnology | Center for Cancer Research

    Science.gov (United States)

    Biotechnology advances continue to underscore the need to educate NCI fellows in new methodologies. The Cancer Biotechnology course will be held on the NCI-Frederick campus on January 29, 2016 (Bldg. 549, Main Auditorium) and the course will be repeated on the Bethesda campus on February 9, 2016 (Natcher Balcony C). The latest advances in DNA, protein and image analysis will

  18. The Soreq Applied Research Accelerator Facility (SARAF): Overview, research programs and future plans

    Science.gov (United States)

    Mardor, Israel; Aviv, Ofer; Avrigeanu, Marilena; Berkovits, Dan; Dahan, Adi; Dickel, Timo; Eliyahu, Ilan; Gai, Moshe; Gavish-Segev, Inbal; Halfon, Shlomi; Hass, Michael; Hirsh, Tsviki; Kaiser, Boaz; Kijel, Daniel; Kreisel, Arik; Mishnayot, Yonatan; Mukul, Ish; Ohayon, Ben; Paul, Michael; Perry, Amichay; Rahangdale, Hitesh; Rodnizki, Jacob; Ron, Guy; Sasson-Zukran, Revital; Shor, Asher; Silverman, Ido; Tessler, Moshe; Vaintraub, Sergey; Weissman, Leo

    2018-05-01

    The Soreq Applied Research Accelerator Facility (SARAF) is under construction in the Soreq Nuclear Research Center at Yavne, Israel. When completed at the beginning of the next decade, SARAF will be a user facility for basic and applied nuclear physics, based on a 40 MeV, 5 mA CW proton/deuteron superconducting linear accelerator. Phase I of SARAF (SARAF-I, 4 MeV, 2 mA CW protons, 5 MeV 1 mA CW deuterons) is already in operation, generating scientific results in several fields of interest. The main ongoing program at SARAF-I is the production of 30 keV neutrons and measurement of Maxwellian Averaged Cross Sections (MACS), important for the astrophysical s-process. The world leading Maxwellian epithermal neutron yield at SARAF-I (5 × 10^{10} epithermal neutrons/s), generated by a novel Liquid-Lithium Target (LiLiT), enables improved precision of known MACSs, and new measurements of low-abundance and radioactive isotopes. Research plans for SARAF-II span several disciplines: precision studies of beyond-Standard-Model effects by trapping light exotic radioisotopes, such as 6He, 8Li and 18, 19, 23Ne, in unprecedented amounts (including meaningful studies already at SARAF-I); extended nuclear astrophysics research with higher energy neutrons, including generation and studies of exotic neutron-rich isotopes relevant to the rapid (r-) process; nuclear structure of exotic isotopes; high energy neutron cross sections for basic nuclear physics and material science research, including neutron induced radiation damage; neutron based imaging and therapy; and novel radiopharmaceuticals development and production. In this paper we present a technical overview of SARAF-I and II, including a description of the accelerator and its irradiation targets; a survey of existing research programs at SARAF-I; and the research potential at the completed facility (SARAF-II).

  19. Setting Research Priorities for Kidney Cancer.

    Science.gov (United States)

    Jones, Jennifer M; Bhatt, Jaimin; Avery, Jonathan; Laupacis, Andreas; Cowan, Katherine; Basappa, Naveen S; Basiuk, Joan; Canil, Christina; Al-Asaaed, Sohaib; Heng, Daniel Y C; Wood, Lori; Stacey, Dawn; Kollmannsberger, Christian; Jewett, Michael A S

    2017-12-01

    Defining disease-specific research priorities in cancer can facilitate better allocation of limited resources. Involving patients and caregivers as well as expert clinicians in this process is of value. We undertook this approach for kidney cancer as an example. The Kidney Cancer Research Network of Canada sponsored a collaborative consensus-based priority-setting partnership that identified ten research priorities in the management of kidney cancer. These are discussed in the context of current initiatives and gaps in knowledge. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  20. Big Data and Comparative Effectiveness Research in Radiation Oncology: Synergy and Accelerated Discovery

    Science.gov (United States)

    Trifiletti, Daniel M.; Showalter, Timothy N.

    2015-01-01

    Several advances in large data set collection and processing have the potential to provide a wave of new insights and improvements in the use of radiation therapy for cancer treatment. The era of electronic health records, genomics, and improving information technology resources creates the opportunity to leverage these developments to create a learning healthcare system that can rapidly deliver informative clinical evidence. By merging concepts from comparative effectiveness research with the tools and analytic approaches of “big data,” it is hoped that this union will accelerate discovery, improve evidence for decision making, and increase the availability of highly relevant, personalized information. This combination offers the potential to provide data and analysis that can be leveraged for ultra-personalized medicine and high-quality, cutting-edge radiation therapy. PMID:26697409

  1. Annual report of Department of Research Reactors and Tandem Accelerator, JFY2006. Operation, utilization and technical development of JRR-3, JRR-4, NSRR and Tandem Accelerator

    International Nuclear Information System (INIS)

    2007-12-01

    The Department of Research Reactors and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor-3), JRR-4 (Japan Research Reactor-4) and NSRR (Nuclear Safety Research Reactor) and Tandem Accelerator. The following services and technical developments were achieved in Japanese Fiscal Year 2006: 1) JRR-3 was operated for 181 days in 7 cycles and JRR-4 for 149 days in 37 cycles to provide neutrons for research and development of in-house and outside users. 2) JRR-3 and JRR-4 were utilized through deliberate coordination as follows, a) Neutron irradiations of 628 materials, for neutron transmutation doping of silicon etc. b) Capsule irradiations of 3,067 samples, for neutron activation analyses etc. c) Neutron beam experiments of 6,338 cases x days. 3) Concerning to the 10 times increasing plan of cold neutron beams from JRR-3, a pressure resistant test model of the high-performance neutron moderator vessel which had been designed to increase cold neutrons twice as much as the present one was fabricated. Various developments for upgrading cold neutron guide tubes with super mirrors were in progress. 4) Boron neutron capture therapy was carried out 34 times using JRR-4. Improved neutron collimators were built to fit well to any irregular outline for cancer around the neck. 5) NSRR carried out 4 times of pulse irradiations of high burn-up MOX fuels and 9 times of un-irradiated fuels to contribute to fuel safety researches. 6) The Tandem Accelerator was operated for 201 days to contribute to the researches of nuclear physics and solid state physics with high energy heavy ions. The new utilization program of sharing beam times with outside users was performed by carrying out 45 days. The beam intensity increasing program with a high performance ion source, in place of the compact one which has been working in the high voltage terminal, has made great progress. (author)

  2. Laboratory Animal Technician | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused

  3. Communications Specialist | Center for Cancer Research

    Science.gov (United States)

    Be part of our mission to support research against cancer. We have an exciting opportunity for a talented communicator to join our team and be part of the effort to find cures for cancer. We are looking for a creative, team-oriented communications professional, with strong writing skills to publicize our research advances, employment and training opportunities and clinical

  4. Radiological Research Accelerator Facility. Progress report, April 1-November 30, 1986

    International Nuclear Information System (INIS)

    1986-07-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology and radiological physics. The experiments run at RARAF are described, and center on neutron dosimetry, mutagenesis, and neutron-induced oncogenic transformations as well as survival of exposed cells. Accelerator utilization, operation, and development of facilities are reviewed

  5. Essay: Robert H. Siemann As Leader of the Advanced Accelerator Research Department

    Energy Technology Data Exchange (ETDEWEB)

    Colby, Eric R.; Hogan, Mark J.; /SLAC

    2011-11-14

    Robert H. Siemann originally conceived of the Advanced Accelerator Research Department (AARD) as an academic, experimental group dedicated to probing the technical limitations of accelerators while providing excellent educational opportunities for young scientists. The early years of the Accelerator Research Department B, as it was then known, were dedicated to a wealth of mostly student-led experiments to examine the promise of advanced accelerator techniques. High-gradient techniques including millimeter-wave rf acceleration, beam-driven plasma acceleration, and direct laser acceleration were pursued, including tests of materials under rf pulsed heating and short-pulse laser radiation, to establish the ultimate limitations on gradient. As the department and program grew, so did the motivation to found an accelerator research center that brought experimentalists together in a test facility environment to conduct a broad range of experiments. The Final Focus Test Beam and later the Next Linear Collider Test Accelerator provided unique experimental facilities for AARD staff and collaborators to carry out advanced accelerator experiments. Throughout the evolution of this dynamic program, Bob maintained a department atmosphere and culture more reminiscent of a university research group than a national laboratory department. His exceptional ability to balance multiple roles as scientist, professor, and administrator enabled the creation and preservation of an environment that fostered technical innovation and scholarship.

  6. Essay: Robert H. Siemann As Leader of the Advanced Accelerator Research Department

    International Nuclear Information System (INIS)

    Colby, Eric R.; Hogan, Mark J.

    2008-01-01

    Robert H. Siemann originally conceived of the Advanced Accelerator Research Department (AARD) as an academic, experimental group dedicated to probing the technical limitations of accelerators while providing excellent educational opportunities for young scientists. The early years of the Accelerator Research Department B, as it was then known, were dedicated to a wealth of mostly student-led experiments to examine the promise of advanced accelerator techniques. High-gradient techniques including millimeter-wave rf acceleration, beam-driven plasma acceleration, and direct laser acceleration were pursued, including tests of materials under rf pulsed heating and short-pulse laser radiation, to establish the ultimate limitations on gradient. As the department and program grew, so did the motivation to found an accelerator research center that brought experimentalists together in a test facility environment to conduct a broad range of experiments. The Final Focus Test Beam and later the Next Linear Collider Test Accelerator provided unique experimental facilities for AARD staff and collaborators to carry out advanced accelerator experiments. Throughout the evolution of this dynamic program, Bob maintained a department atmosphere and culture more reminiscent of a university research group than a national laboratory department. His exceptional ability to balance multiple roles as scientist, professor, and administrator enabled the creation and preservation of an environment that fostered technical innovation and scholarship.

  7. Research on GPU acceleration for Monte Carlo criticality calculation

    International Nuclear Information System (INIS)

    Xu, Q.; Yu, G.; Wang, K.

    2013-01-01

    The Monte Carlo (MC) neutron transport method can be naturally parallelized by multi-core architectures due to the dependency between particles during the simulation. The GPU+CPU heterogeneous parallel mode has become an increasingly popular way of parallelism in the field of scientific supercomputing. Thus, this work focuses on the GPU acceleration method for the Monte Carlo criticality simulation, as well as the computational efficiency that GPUs can bring. The 'neutron transport step' is introduced to increase the GPU thread occupancy. In order to test the sensitivity of the MC code's complexity, a 1D one-group code and a 3D multi-group general purpose code are respectively transplanted to GPUs, and the acceleration effects are compared. The result of numerical experiments shows considerable acceleration effect of the 'neutron transport step' strategy. However, the performance comparison between the 1D code and the 3D code indicates the poor scalability of MC codes on GPUs. (authors)

  8. ACCELERATED ONSET OF RETINAL TOXICITY FROM HYDROXYCHLOROQUINE USE WITH CONCOMITANT BREAST CANCER THERAPY.

    Science.gov (United States)

    Sharma, Aman; Maiz, Alejandra M; Tucker, William R; Cukras, Catherine

    2018-05-16

    To report a case of accelerated retinal toxicity due to hydroxychloroquine (HCQ) use for treatment of Sjögren syndrome in a patient treated with concomitant chemotherapy for breast cancer. Observational case report. A 56-year-old white woman using 400 mg HCQ (7.1 mg/kg real body weight) daily for a total of 2 years and 10 months for treatment of Sjögren syndrome with concomitant use of docetaxel and cyclophosphamide therapy (21-day cycle, 4 cycles) followed by anastrozole for breast cancer, presented with visual complaints and findings of severe HCQ toxicity. Concomitant breast cancer therapy may have a synergistic effect with HCQ leading to accelerated retinal toxicity. As such potential acceleration is poorly understood, patients on HCQ who are treated with concomitant chemotherapy should be considered for more frequent retinal screenings to maximize safety and preservation of vision.

  9. Possibilities of basic and applied researches using low energy ion beams accelerators

    International Nuclear Information System (INIS)

    Morales, Roberto

    1996-01-01

    Full text: The availability of ion sources that allow to accelerate heavy and light ions, and the new compact accelerators have opened interesting possibilities for using in basic and applied research, Some of the research lines such as material, environmental, archaeology, bio-medicine are shown

  10. Annual report of Department of Research Reactor and Tandem Accelerator, JFY2007. Operation, utilization and technical development of JRR-3, JRR-4, NSRR and tandem accelerator

    International Nuclear Information System (INIS)

    Miyazaki, Osamu; Awa, Yasuaki; Isaka, Koji; Kutsukake, Kenichi; Komeda, Masao; Shibata, Ko; Hiyama, Kazuhisa; Suzuki, Mayu; Sone, Takuya; Ohuchi, Tomoaki; Terakado, Yuichi; Sataka, Masao

    2009-06-01

    The Department of Research Reactors and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3(Japan Research Reactor-3), JRR-4(Japan Research Reactor-4), NSRR(Nuclear Safety Research Reactor) and Tandem Accelerator. This annual report describes a summary of activities of services and technical developments carried out in the period between April 1, 2007 and March 31, 2008. The activities were categorized into five service/development fields: (1) Operation and maintenance of research reactors and tandem accelerator. (2) Utilization of research reactors and tandem accelerator. (3) Upgrading of utilization techniques of research reactors and tandem accelerator. (4) Safety administration for research reactors and tandem accelerator. (5) International cooperation. Also contained are lists of publications, meetings, granted permissions on lows and regulations concerning atomic energy, commendation, plans and outcomes in service and technical developments and so on. (author)

  11. Annual report of Department of Research Reactor and Tandem Accelerator, JFY2010. Operation, utilization and technical development of JRR-3, JRR-4, NSRR and Tandem Accelerator

    International Nuclear Information System (INIS)

    Ishii, Tetsuro; Nakamura, Kiyoshi; Kawamata, Satoshi; Yamada, Yusuke; Kawashima, Kazuhiro; Asozu, Takuhiro; Nakamura, Takemi; Arai, Masaji; Yoshinari, Shuji; Sataka, Masao

    2012-03-01

    The Department of Research Reactors and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3(Japan Research Reactor No.3), JRR-4(Japan Research Reactor No.4), NSRR(Nuclear Safety Research Reactor) and Tandem Accelerator. This annual report describes a summary of activities of services and technical developments carried out in the period between April 1, 2010 and March 31, 2011. The activities were categorized into five service/development fields: (1) Operation and maintenance of research reactors and tandem accelerator, (2) Utilization of research reactors and tandem accelerator, (3) Upgrading of utilization techniques of research reactors and tandem accelerator, (4) Safety administration for research reactors and tandem accelerator, (5) International cooperation. Also contained are lists of publications, meetings, granted permissions on lows and regulations concerning atomic energy, commendation, outcomes in service and technical developments and so on. (author)

  12. Cancer Genetics and Signaling | Center for Cancer Research

    Science.gov (United States)

    The Cancer, Genetics, and Signaling (CGS) Group at the National Cancer Institute at Frederick  offers a competitive postdoctoral training and mentoring program focusing on molecular and genetic aspects of cancer. The CGS Fellows Program is designed to attract and train exceptional postdoctoral fellows interested in pursuing independent research career tracks. CGS Fellows participate in a structured mentoring program designed for scientific and career development and transition to independent positions.

  13. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, April 1, 1990--September 30, 1990

    International Nuclear Information System (INIS)

    1990-12-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, induction acceleration, is being studied at the Lawrence Berkeley Laboratory and at the Lawrence Livermore National Laboratory. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies to cut costs. Key elements to be addressed include: (1) beam quality limits set by transverse and longitudinal beam physics; (2) development of induction accelerating modules, and multiple-beam hardware, at affordable costs; (3) acceleration of multiple beams with current amplification without significant dilution of the optical quality of the beams; (4) final bunching, transport, and accurate focusing on a small target

  14. Researching the experience of kidney cancer patients.

    Science.gov (United States)

    Taylor, K

    2002-09-01

    The author's personal experience as a kidney cancer patient, researcher and founder of a kidney cancer support group forms the basis for consideration of the challenges involved in researching patients' experiences. The researcher needs to understand the variability of those experiences in both clinical and psychological-emotional terms, and in relation to the personal, familial and social contexts of the patient. It is also essential to define the purpose of the research and to show how an understanding of personal experiences of cancer can be used to enhance the quality of care for cancer patients. The research encounter with a patient is also in some respects a therapeutic encounter requiring a considerable degree of sensitivity on the part of the researcher. The person-centred approach of Carl Rogers is of value in supporting such an encounter.

  15. Quality Control Specialist | Center for Cancer Research

    Science.gov (United States)

    Within the Leidos Biomedical Research Inc.’s Clinical Research Directorate, the Clinical Monitoring Research Program (CMRP) provides high-quality comprehensive and strategic operational support to the high-profile domestic and international clinical research initiatives of the National Cancer Institute (NCI), National Institute of Allergy and Infectious Diseases (NIAID),

  16. Research Areas: Causes of Cancer

    Science.gov (United States)

    Understanding the exposures and risk factors that cause cancer, as well as the genetic abnormalities associated with the disease, has helped us to reduce certain exposures and to ameliorate their harmful effects.

  17. NCI Cancer Research Data Ecosystem

    Science.gov (United States)

    An infographic explaining NCI’s present and future efforts to promote a culture of sharing data—clinical, genomic, proteomic, imaging, patient histories, and outcomes data—among stakeholders to impact cancer care.

  18. Database application research in real-time data access of accelerator control system

    International Nuclear Information System (INIS)

    Chen Guanghua; Chen Jianfeng; Wan Tianmin

    2012-01-01

    The control system of Shanghai Synchrotron Radiation Facility (SSRF) is a large-scale distributed real-time control system, It involves many types and large amounts of real-time data access during the operating. Database system has wide application prospects in the large-scale accelerator control system. It is the future development direction of the accelerator control system, to replace the differently dedicated data structures with the mature standardized database system. This article discusses the application feasibility of database system in accelerators based on the database interface technology, real-time data access testing, and system optimization research and to establish the foundation of the wide scale application of database system in the SSRF accelerator control system. Based on the database interface technology, real-time data access testing and system optimization research, this article will introduce the application feasibility of database system in accelerators, and lay the foundation of database system application in the SSRF accelerator control system. (authors)

  19. Retractions in cancer research: a systematic survey

    OpenAIRE

    Bozzo, Anthony; Bali, Kamal; Evaniew, Nathan; Ghert, Michelle

    2017-01-01

    Background The annual number of retracted publications in the scientific literature is rapidly increasing. The objective of this study was to determine the frequency and reason for retraction of cancer publications and to determine how journals in the cancer field handle retracted articles. Methods We searched three online databases (MEDLINE, Embase, The Cochrane Library) from database inception until 2015 for retracted journal publications related to cancer research. For each article, the re...

  20. Summer Student Breast Cancer Research Training Program

    Science.gov (United States)

    2006-05-01

    kinase inhibition on ERK activity in breast cancer cells, the role of the calpain proteolytic pathway in breast cancer-induced cachexia , and the...research training; breast cancer; fatty acids and prevention; nutrition and prevention; alternative prevention 16. SECURITY CLASSIFICATION OF...growth. In in vivo experiments, mice were fed diets that were rich in either omega-3 (fish oil) or omega-6 (corn oil) fatty acids. Three weeks after

  1. Prostate Cancer Research Training Program

    Science.gov (United States)

    2017-09-01

    pathways underlying pathological cell proliferation in the setting of cancer. Current efforts are focused on selecting RNA aptamers to antigens...of restaurants ranging from fast food to fine dining. Application to the Program - Application forms, distributed with this brochure...pathological cell proliferation in the setting of cancer. Current efforts are focused on selecting RNA aptamers to antigens expressed on the surface of target

  2. Accelerated Deformable Registration of Repetitive MRI during Radiotherapy in Cervical Cancer

    DEFF Research Database (Denmark)

    Noe, Karsten Østergaard; Tanderup, Kari; Kiritsis, Christian

    2006-01-01

    Tumour regression and organ deformations during radiotherapy (RT) of cervical cancer represent major challenges regarding accurate conformation and calculation of dose when using image-guided adaptive radiotherapy. Deformable registration algorithms are able to handle organ deformations, which can...... be useful with advanced tools such as auto segmentation of organs and dynamic adaptation of radiotherapy. The aim of this study was to accelerate and validate deformable registration in MRI-based image-guided radiotherapy of cervical cancer.    ...

  3. Research activities related to accelerator-based transmutation at PSI

    International Nuclear Information System (INIS)

    Wydler, P.

    1993-01-01

    Transmutation of actinides and fission products using reactors and other types of nuclear systems may play a role in future waste management schemes. Possible advantages of separation and transmutation are: volume reductions, the re-use of materials, the avoidance of a cumulative risk, and limiting the duration of the risk. With its experience in reactor physics, accelerator-based physics, and the development of the SINQ spallation neutron source, PSI is in a good position to perform basic theoretical and experimental studies relating to the accelerator-based transmutation of actinides. Theoretical studies at PSI have been concentrated, so far, on systems in which protons are used directly to transmute actinides. With such systems and appropriate recycling schemes, the studies showed that considerable reduction factors for long-term toxicity can be obtained. With the aim of solving some specific data and method problems related to these types of systems, a programme of differential and integral measurements at the PSI ring accelerator has been initiated. In a first phase of this programme, thin samples of actinides will be irradiated with 590 MeV protons, using an existing irradiation facility. The generated spallation and fission products will be analysed using different experimental techniques, and the results will be compared with theoretical predictions based on high-energy nucleon-meson transport calculations. The principal motivation for these experiments is to resolve discrepancies observed between calculations based on different high-energy fission models. In a second phase of the programme, it is proposed to study the neutronic behaviour of multiplying target-blanket assemblies with the help of zero-power experiments set up at a separate, dedicated beam line of the accelerator. (author) 3 figs., 2 tabs., 8 refs

  4. Staff Clinician | Center for Cancer Research

    Science.gov (United States)

    The Neuro-Oncology Branch (NOB), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH) is seeking staff clinicians to provide high-quality patient care for individuals with primary central nervous system (CNS) malignancies.  The NOB is comprised of a multidisciplinary team of physicians, healthcare providers, and scientists who

  5. Researchers studying alternative to bladder removal for bladder cancer patients | Center for Cancer Research

    Science.gov (United States)

    A new phase I clinical trial conducted by researchers at the Center for Cancer Research (CCR) is evaluating the safety and tolerability, or the degree to which any side effects can be tolerated by patients, of a two-drug combination as a potential alternative to bladder removal for bladder cancer patients. The trial targets patients with non-muscle invasive bladder cancer (NMIBC) whose cancers have stopped responding to traditional therapies. Read more...

  6. CRISPR/Cas9 for cancer research and therapy.

    Science.gov (United States)

    Zhan, Tianzuo; Rindtorff, Niklas; Betge, Johannes; Ebert, Matthias P; Boutros, Michael

    2018-04-16

    CRISPR/Cas9 has become a powerful method for making changes to the genome of many organisms. First discovered in bacteria as part of an adaptive immune system, CRISPR/Cas9 and modified versions have found a widespread use to engineer genomes and to activate or to repress the expression of genes. As such, CRISPR/Cas9 promises to accelerate cancer research by providing an efficient technology to dissect mechanisms of tumorigenesis, identify targets for drug development, and possibly arm cells for cell-based therapies. Here, we review current applications of the CRISPR/Cas9 technology for cancer research and therapy. We describe novel Cas9 variants and how they are used in functional genomics to discover novel cancer-specific vulnerabilities. Furthermore, we highlight the impact of CRISPR/Cas9 in generating organoid and mouse models of cancer. Finally, we provide an overview of the first clinical trials that apply CRISPR/Cas9 as a therapeutic approach against cancer. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Tai Ji Quan for the aging cancer survivor: Mitigating the accelerated development of disability, falls, and cardiovascular disease from cancer treatment

    Directory of Open Access Journals (Sweden)

    Kerri M. Winters-Stone

    2014-03-01

    Full Text Available Currently there are more than 13.7 million cancer survivors living in the U.S., and that figure is projected to increase by 31% in the next decade, adding another 4 million cancer survivors into the healthcare system. Cancer is largely a disease of aging, and the aging of the population will sharply raise the proportion of older cancer survivors, many of whom will be long-term survivors (5+ years post diagnosis. This review will address the potential utility of exercise to address three health problems that are of particular concern for the aging cancer survivor and the healthcare system, i.e., disability, falls, and cardiovascular disease, because the development of these age-related problems may be accelerated by cancer treatment. While there are many different modes of exercise that each produce specific adaptations, Tai Ji Quan may be a particularly suitable strategy to mitigate the development of age- and cancer-treatment-related problems. Based on studies in older adults without cancer, Tai Ji Quan produces musculoskeletal and cardiometabolic adaptations and is more easily performed by older adults due to its low energy cost and slower movement patterns. Since cancer survivors are mostly older, inactive, and often physically limited by the lingering side effects of treatment, they need to engage in safe, practical, and effective modes of exercise. The dearth of published controlled trials examining the efficacy of Tai Ji Quan to mitigate cancer-treatment-related musculoskeletal and cardiovascular side effects points to ample research opportunities to explore the application of this non-Western exercise modality to improve long-term outcomes for aging cancer survivors.

  8. STAT3 activation in monocytes accelerates liver cancer progression

    International Nuclear Information System (INIS)

    Wu, Wen-Yong; Li, Jun; Wu, Zheng-Sheng; Zhang, Chang-Le; Meng, Xiang-Ling

    2011-01-01

    Signal transducer and activator of transcription 3 (STAT3) is an important transcription factor ubiquitously expressed in different cell types. STAT3 plays an essential role in cell survival, proliferation, and differentiation. Aberrantly hyper-activated STAT3 signaling in cancer cells and in the tumor microenvironment has been detected in a wide variety of human cancers and is considered an important factor for cancer initiation, development, and progression. However, the role of STAT3 activation in monocytes in the development of HCC has not been well understood. Immunohistochemical analysis of phosphorylated STAT3 was performed on tissue microarray from HCC patients. Using a co-culture system in vivo, HCC cell growth was determined by the MTT assay. In vivo experiments were conducted with mice given diethylinitrosamine (DEN), which induces HCC was used to investigate the role of STAT3 expression in monocytes on tumor growth. Real-time PCR was used to determine the expression of cell proliferation and cell arrest associated genes in the tumor and nontumor tissue from liver. Phosphorylated STAT3 was found in human hepatocellular carcinoma tissue samples and was expressed in tumor cells and also in monocytes. Phosphorylated STAT3 expression in monocyte was significantly correlated to advanced clinical stage of HCC and a poor prognosis. Using a co-culture system in vivo, monocytes promoted HCC cell growth via the IL-6/STAT3 signaling pathway. The STAT3 inhibitor, NSC 74859, significantly suppressed tumor growth in vivo in mice with diethylinitrosamine (DEN)-induced HCC. In this animal model, blockade of STAT3 with NSC 74859 induced tumor cell apoptosis, while inhibiting both tumor cells and monocytes proliferation. Furthermore, NSC 74859 treatment suppressed cancer associated inflammation in DEN-induce HCC. Our data suggest constitutively activated STAT3 monocytes promote liver tumorigenesis in clinical patients and animal experiments. Thus, STAT3 in tumor

  9. Effluent Monitoring System Design for the Proton Accelerator Research Center of PEFP

    International Nuclear Information System (INIS)

    Kim, Jun Yeon; Mun, Kyeong Jun; Cho, Jang Hyung; Jo, Jeong Hee

    2010-01-01

    Since host site host site was selected Gyeong-ju city in January, 2006. we need design revision of Proton Accelerator research center to reflect on host site characteristics and several conditions. Also the IAC recommended maximization of space utilization and construction cost saving. After GA(General Arrangement) is made a decision, it is necessary to evaluate the radiation analysis of every controlled area in the proton accelerator research center such as accelerator tunnel, Klystron gallery, beam experimental hall, target rooms and ion beam application building to keep dose rate below the ALARA(As Low As Reasonably achievable) objective. Our staff has reviewed and made a shielding design of them. In this paper, According to accelerator operation mode and access conditions based on radiation analysis and shielding design, we made the exhaust system configuration of controlled area in the proton accelerator research center. Also, we installed radiation monitor and set its alarm value for each radiation area

  10. Flow Cytometry Technician | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES The Flow Cytometry Core (Flow Core) of the Cancer and Inflammation Program (CIP) is a service core which supports the research efforts of the CCR by providing expertise in the field of flow cytometry (using analyzers and sorters) with the goal of gaining a more thorough understanding of the biology of cancer and cancer cells. The Flow Core provides service to 12-15 CIP laboratories and more than 22 non-CIP laboratories. Flow core staff provide technical advice on the experimental design of applications, which include immunological phenotyping, cell function assays, and cell cycle analysis. Work is performed per customer requirements, and no independent research is involved. The Flow Cytometry Technician will be responsible for: Monitor performance of and maintain high dimensional flow cytometer analyzers and cell sorters Operate high dimensional flow cytometer analyzers and cell sorters Monitoring lab supply levels and order lab supplies, perform various record keeping responsibilities Assist in the training of scientific end users on the use of flow cytometry in their research, as well as how to operate and troubleshoot the bench-top analyzer instruments Experience with sterile technique and tissue culture

  11. Location | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    The Frederick National Laboratory for Cancer Research campus is located 50 miles northwest of Washington, D.C., and 50 miles west of Baltimore, Maryland, in Frederick, Maryland. Satellite locations include leased and government facilities extending s

  12. DCB - Cancer Immunology, Hematology, and Etiology Research

    Science.gov (United States)

    Part of NCI’s Division of Cancer Biology’s research portfolio, studies supported include the characterization of basic mechanisms relevant to anti-tumor immune responses and hematologic malignancies.

  13. Accelerator and Fusion Research Division. Annual report, October 1978-September 1979

    International Nuclear Information System (INIS)

    1980-03-01

    Topics covered include: Super HILAC and Bevalac operations; high intensity uranium beams line item; advanced high charge state ion source; 184-inch synchrocyclotron; VENUS project; positron-electron project; high field superconducting accelerator magnets; beam cooling; accelerator theory; induction linac drivers; RF linacs and storage rings; theory; neutral beam systems development; experimental atomic physics; neutral beam plasma research; plasma theory; and the Tormac project

  14. TH-AB-BRB-00: Research Opportunities with Digital Linear Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    CA183390, NIH R01CA188300, Varian Medical Systems V. Yu, Varian Medical Systems, AAPM Summer Undergraduate Fellowship, NSF graduate fellowship S. Nill, Elekta AB. Cancer Research UK under Programme C33589/A19727, NIHR Biomedical Research Centre at The Royal Marsden and The Institute of Cancer Research.

  15. TH-AB-BRB-00: Research Opportunities with Digital Linear Accelerators

    International Nuclear Information System (INIS)

    2016-01-01

    CA183390, NIH R01CA188300, Varian Medical Systems V. Yu, Varian Medical Systems, AAPM Summer Undergraduate Fellowship, NSF graduate fellowship S. Nill, Elekta AB. Cancer Research UK under Programme C33589/A19727, NIHR Biomedical Research Centre at The Royal Marsden and The Institute of Cancer Research.

  16. Inverse free electron laser beat-wave accelerator research

    International Nuclear Information System (INIS)

    Marshall, T.C.; Bhattacharjee, A.

    1993-09-01

    A calculation on the stabilization of the sideband instability in the free electron laser (FEL) and inverse FEL (IFEL) was completed. The issue arises in connection with the use of a tapered (''variable-parameter'') undulator of extended length, such as might be used in an ''enhanced efficiency'' traveling-wave FEL or an IFEL accelerator. In addition, the FEL facility at Columbia was configured as a traveling wave amplifier for a 10-kW signal from a 24-GHz magnetron. The space charge field in the bunches of the FEL was measured. Completed work has been published

  17. Heavy ion fusion accelerator research in the US

    International Nuclear Information System (INIS)

    Bangerter, R.O.; Godlove, T.F.; Herrmannsfeldt, W.B.; Keefe, D.

    1984-09-01

    Three new development have taken place in the HIFAR program. First, a decision has been made to concentrate the experimental program on the development of multiple-beam induction linacs. Second, new beam transport experiments over a large number of quadrupole elements show that stable beam propagation occurs for significantly higher beam currents than had been believed possible a few years ago. Third, design calculations now show that a test accelerator of modest size and cost can come within a factor of three of testing almost all of the physics and technical issues appropriate to a power-plant driver

  18. Statistical Tutorial | Center for Cancer Research

    Science.gov (United States)

    Recent advances in cancer biology have resulted in the need for increased statistical analysis of research data.  ST is designed as a follow up to Statistical Analysis of Research Data (SARD) held in April 2018.  The tutorial will apply the general principles of statistical analysis of research data including descriptive statistics, z- and t-tests of means and mean

  19. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, April 1--September 30, 1988

    International Nuclear Information System (INIS)

    1988-12-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, the induction linac, has been studied at the Lawrence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies, to cut costs. Key elements to be addressed include: beam quality limits set by transverse and longitudinal beam physics; development of induction accelerating modules, and multiple-beam hardware, at affordable costs; acceleration of multiple beams with current amplification --both new features in a linac -- without significant dilution of the optical quality of the beams; final bunching, transport, and accurate focusing on a small target

  20. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, October 1, 1987--March 31, 1988

    International Nuclear Information System (INIS)

    1988-06-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, the induction linac, has been studied at Lawrence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies, to cut costs. Key elements to be addressed include: beam quality limits set by transverse and longitudinal beam physics; development of induction accelerating modules, and multiple-beam hardware, at affordable costs; acceleration of multiple beams with current amplification -- both new features in a linac -- without significant dilution of the optical quality of beams; and final bunching, transport, and accurate focusing on a small target

  1. CCR Interns | Center for Cancer Research

    Science.gov (United States)

    The Cancer Research Interns (CRI) Summer Program was inaugurated in 2004 to provide an open door for students looking for an initial training opportunity. The goal is to enhance diversity within the CCR (Center for Cancer Research) training program and we have placed 338 students from 2004 to 2017, in labs and branches across the division.  The CCR and the Center for Cancer Training’s Office of Training and Education provide stipend support, some Service & Supply funds, and travel support for those students who meet the financial eligibility criteria (

  2. Experimental research of double-pulse linear induction electron accelerator

    International Nuclear Information System (INIS)

    Liao Shuqing; Cheng Cheng; Zheng Shuxin; Tang Chuanxiang; Lin Yuzheng; Jing Xiaobing; Mu Fan; Pan Haifeng

    2009-01-01

    The Mini-LIA is a double-pulse linear induction electron accelerator with megahertz repetition rates, which consists of a double-pulse power system, a thermal cathode electron gun, two induction cells, beam transportation systems and diagnosis systems, etc. Experiments of the Mini-LIA have been conducted. The double-pulse high voltage was obtained with several hundred nanosecond pulse intervals (i. e. megahertz repetition rate) and each pulse had an 80 kV amplitude with a FWHM of 80 ns. In the gap of the induction cell, the double-pulse accelerating electric field was measured via E-field probes, and the double-pulse electron beam with a current about 1.1 A has been obtained at the Mini-LIA exit. These experimental results show that the double-pulse high voltage with megahertz repetition rates can be generated by an insulation and junction system. And they also indicate that the induction cell with metglas as the ferromagnetic material and the LaB 6 thermal cathode electron gun suit the double-pulse operation with megahertz repetition rates. (authors)

  3. Electron Microscopist | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Cancer Research Technology Program (CRTP) develops and implements emerging technology, cancer biology expertise and research capabilities to accomplish NCI research objectives. The CRTP is an outward-facing, multi-disciplinary hub purposed to enable the external cancer research community and provides dedicated support to NCI’s intramural Center for Cancer Research (CCR). The dedicated units provide electron microscopy, protein characterization, protein expression, optical microscopy and genetics. These research efforts are an integral part of CCR at the Frederick National Laboratory for Cancer Research (FNLCR). CRTP scientists also work collaboratively with intramural NCI investigators to provide research technologies and expertise. KEY ROLES/RESPONSIBILITIES - THIS POSITION IS CONTINGENT UPON FUNDING APPROVAL The Electron Microscopist will: Operate ultramicrotomes (Leica) and other instrumentation related to the preparation of embedded samples for EM (TEM and SEM) Operate TEM microscopes, (specifically Hitachi, FEI T20 and FEI T12) as well as SEM microscopes (Hitachi); task will include loading samples, screening, and performing data collection for a variety of samples: from cells to proteins Manage maintenance for the TEM and SEM microscopes Provide technical advice to investigators on sample preparation and data collection

  4. Technical development of high intensity proton accelerators in Japan Atomic Energy Research Institute (JAERI)

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu

    1995-01-01

    Science and Technology Agency decided 'Options making extra gains of actinides and fission products (OMEGA)' and to promote the related researches. Also in JAERI, the research on the group separation method for separating transuranic elements, strontium and cesium from high level radioactive wastes has been carried out since the beginning of 1970s. Also the concept of the fast reactors using minor actinide mixture fuel is being established, and the accelerator annihilation treatment utilizing the nuclear spallation reaction by high energy protons has been examined. In this report, from the viewpoint of the application of accelerators to atomic energy field, the annihilation treatment method by the nuclear spallation reaction utilizing high intensity proton accelerators, the plan of the various engineering utilization of proton beam, and the development of accelerators in JAERI are described. The way of thinking on the annihilation treatment of radioactive waste, the system using fast neutrons, the way of thinking on the development of high intensity proton accelerator technology, the steps of the development, the research and development for constructing the basic technology accelerator, 2 MeV beam acceleration test, the basic technology accelerator utilization facility and so on are reported. (K.I.)

  5. Radiation related basic cancer research

    International Nuclear Information System (INIS)

    Lee, Seung Hoon; Yoo, Young Do; Hong, Seok Il

    2000-04-01

    We studied the mechanism of radiation-induced apoptosis, the factors involved signaling, and the establishment of radiation-resistant cell lines in this study. During the TGF beta-stimulated epithelial mesenchymal transition(EMT), actin rearrangement occurred first and fibronectin matrix assembly followed. These two events were considered independent since cytochalasin-D did not inhibit TGF stimulated matrix assembly and fibronectin supplementation did not induce EMT. During EMT, alpha 5 beta 1 integrin and alpha v integrin have increased but MMP activation was not accompanied, which suggest that induction of extracellular matrix and activation of integrins may be main contributor for the EMT. Serum depriving induced apoptosis of HUVECs was prevented by vascular endothelial growth factor(VEGF) and PMA. The apoptosis prevention by VEGF and PMA were conformed by DNA fragmentation assay. The p53 expression level was down regulated by VEGF and PMA compared with serum deprived HUVECs. However, VEGF and PMA induces c-Myc expression level on these cells. We made the 5 radiation-resistant clones from breast, lung and cervical cancer cells. More than 70%, 100% and 50% increased resistance was detected in breast cancer cells, lung cancer cells, and cervical cells, respectively. We carried out differential display-PCR to clone the radiation-resistant genes. 9 out of 10 genes were analyzed their sequence

  6. Radiation related basic cancer research

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Hoon; Yoo, Young Do; Hong, Seok Il [and others

    2000-04-01

    We studied the mechanism of radiation-induced apoptosis, the factors involved signaling, and the establishment of radiation-resistant cell lines in this study. During the TGF beta-stimulated epithelial mesenchymal transition(EMT), actin rearrangement occurred first and fibronectin matrix assembly followed. These two events were considered independent since cytochalasin-D did not inhibit TGF stimulated matrix assembly and fibronectin supplementation did not induce EMT. During EMT, alpha 5 beta 1 integrin and alpha v integrin have increased but MMP activation was not accompanied, which suggest that induction of extracellular matrix and activation of integrins may be main contributor for the EMT. Serum depriving induced apoptosis of HUVECs was prevented by vascular endothelial growth factor(VEGF) and PMA. The apoptosis prevention by VEGF and PMA were conformed by DNA fragmentation assay. The p53 expression level was down regulated by VEGF and PMA compared with serum deprived HUVECs. However, VEGF and PMA induces c-Myc expression level on these cells. We made the 5 radiation-resistant clones from breast, lung and cervical cancer cells. More than 70%, 100% and 50% increased resistance was detected in breast cancer cells, lung cancer cells, and cervical cells, respectively. We carried out differential display-PCR to clone the radiation-resistant genes. 9 out of 10 genes were analyzed their sequence.

  7. EuCARD2: enhanced accelerator research and development in Europe

    Science.gov (United States)

    Romaniuk, Ryszard S.

    2013-10-01

    Accelerator science and technology is one of a key enablers of the developments in the particle physic, photon physics and also applications in medicine and industry. EuCARD2 is an European research project which will be realized during 2013-2017 inside the EC FP7 framework. The project concerns the development and coordination of European Accelerator Research and Development. The project is particularly important, to a number of domestic laboratories, due to some plans to build large accelerator infrastructure in Poland. Large accelerator infrastructure of fundamental and applied research character stimulates around it the development and industrial applications as well as biomedical of advanced accelerators, material research and engineering, cryo-technology, mechatronics, robotics, and in particular electronics - like networked measurement and control systems, sensors, computer systems, automation and control systems. The paper presents a digest of the European project EuCARD2 which is Enhanced European Coordination for Accelerator Research and Development. The paper presents a digest of the research results and assumptions in the domain of accelerator science and technology in Europe, shown during the final fourth annual meeting of the EuCARD - European Coordination of Accelerator R&D, and the kick-off meeting of the EuCARD2. There are debated a few basic groups of accelerator systems components like: measurement - control networks of large geometrical extent, multichannel systems for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution, high field magnets, superconducting cavities, novel beam collimators, etc. The paper bases on the following materials: Internet and Intranet documents combined with EuCARD2, Description of Work FP7 EuCARD-2 DoW-312453, 2013-02-13, and discussions and preparatory materials worked on by Eucard-2 initiators.

  8. Cancer research priorities and gaps in Iran: the influence of cancer burden on cancer research outputs between 1997 and 2014.

    Science.gov (United States)

    Majidi, A; Salimzadeh, H; Beiki, O; Delavari, F; Majidi, S; Delavari, A; Malekzadeh, R

    2017-03-01

    As a developing country, Iran is experiencing the increasing burden of cancers, which are currently the third leading cause of mortality in Iran. This study aims to demonstrate that cancer research in Iran concentrates on the cancer research priorities based on the global burden of disease (GBD) reports. Descriptive evaluation of all cancers disability-adjusted life years (DALYs) was performed using GBD data. Also a comprehensive search was conducted using cancer-associated keywords to obtain all cancer-related publications from Iran, indexed in Web of Science. Multiple regression analysis and correlation coefficients (R 2 ) were used to evaluate the possible associations between cancer research publications and GBD. During 1996-2014, the majority of cancer-related publications in Iran focused on breast cancer, leukaemia and stomach cancer, respectively. This study found hypothetical correlations between cancer publications in Iran in line with the burden of cancer as reported by GBD. Particularly, correlations between years lived with disability (YLD) and cancer-related publications were more obvious. This study introduces a new outline in setting cancer research priorities in the region. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  9. Application of accelerated failure time models for breast cancer patients' survival in Kurdistan Province of Iran.

    Science.gov (United States)

    Karimi, Asrin; Delpisheh, Ali; Sayehmiri, Kourosh

    2016-01-01

    Breast cancer is the most common cancer and the second common cause of cancer-induced mortalities in Iranian women. There has been a rapid development in hazard models and survival analysis in the last decade. The aim of this study was to evaluate the prognostic factors of overall survival (OS) in breast cancer patients using accelerated failure time models (AFT). This was a retrospective-analytic cohort study. About 313 women with a pathologically proven diagnosis of breast cancer who had been treated during a 7-year period (since January 2006 until March 2014) in Sanandaj City, Kurdistan Province of Iran were recruited. Performance among AFT was assessed using the goodness of fit methods. Discrimination among the exponential, Weibull, generalized gamma, log-logistic, and log-normal distributions was done using Akaik information criteria and maximum likelihood. The 5 years OS was 75% (95% CI = 74.57-75.43). The main results in terms of survival were found for the different categories of the clinical stage covariate, tumor metastasis, and relapse of cancer. Survival time in breast cancer patients without tumor metastasis and relapse were 4, 2-fold longer than other patients with metastasis and relapse, respectively. One of the most important undermining prognostic factors in breast cancer is metastasis; hence, knowledge of the mechanisms of metastasis is necessary to prevent it so occurrence and treatment of metastatic breast cancer and ultimately extend the lifetime of patients.

  10. A comparison of robotic arm versus gantry linear accelerator stereotactic body radiation therapy for prostate cancer.

    Science.gov (United States)

    Avkshtol, Vladimir; Dong, Yanqun; Hayes, Shelly B; Hallman, Mark A; Price, Robert A; Sobczak, Mark L; Horwitz, Eric M; Zaorsky, Nicholas G

    2016-01-01

    Prostate cancer is the most prevalent cancer diagnosed in men in the United States besides skin cancer. Stereotactic body radiation therapy (SBRT; 6-15 Gy per fraction, up to 45 minutes per fraction, delivered in five fractions or less, over the course of approximately 2 weeks) is emerging as a popular treatment option for prostate cancer. The American Society for Radiation Oncology now recognizes SBRT for select low- and intermediate-risk prostate cancer patients. SBRT grew from the notion that high doses of radiation typical of brachytherapy could be delivered noninvasively using modern external-beam radiation therapy planning and delivery methods. SBRT is most commonly delivered using either a traditional gantry-mounted linear accelerator or a robotic arm-mounted linear accelerator. In this systematic review article, we compare and contrast the current clinical evidence supporting a gantry vs robotic arm SBRT for prostate cancer. The data for SBRT show encouraging and comparable results in terms of freedom from biochemical failure (>90% for low and intermediate risk at 5-7 years) and acute and late toxicity (6 MV). Finally, SBRT (particularly on a gantry) may also be more cost-effective than conventionally fractionated external-beam radiation therapy. Randomized controlled trials of SBRT using both technologies are underway.

  11. Graduate education and research in the ERA of large accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Perl, M.L.

    1988-04-01

    Questions and concerns of the experimental particle physics community are addressed in these categories: quality of research, independence, creativity, evaluation and recognition, and value in graduate education. (LEW)

  12. Graduate education and research in the ERA of large accelerators

    International Nuclear Information System (INIS)

    Perl, M.L.

    1988-04-01

    Questions and concerns of the experimental particle physics community are addressed in these categories: quality of research, independence, creativity, evaluation and recognition, and value in graduate education

  13. Antiproton radiation found effective in cancer research

    CERN Multimedia

    2003-01-01

    "An international collaboration of scientists has completed the first ever antiproton beam experiments designed to reveal the biological effectiveness of antiproton radiation in terminating cells used for cancer research...PBar Labs assembled the collaboration at CERN (European Organization for Nuclear Research in Geneva) to perform the measurements" (1 page).

  14. Applications of accelerator mass spectrometry for pharmacological and toxicological research.

    Science.gov (United States)

    Brown, Karen; Tompkins, Elaine M; White, Ian N H

    2006-01-01

    The technique of accelerator mass spectrometry (AMS), known for radiocarbon dating of archeological specimens, has revolutionized high-sensitivity isotope detection in pharmacology and toxicology by allowing the direct determination of the amount of isotope in a sample rather than measuring its decay. It can quantify many isotopes, including 26Al, 14C, 41Ca, and 3H with detection down to attomole (10(-18)) amounts. Pharmacokinetic data in humans have been achieved with ultra-low levels of radiolabel. One of the most exciting biomedical applications of AMS with 14C-labeled potential carcinogens is the detection of modified proteins or DNA in tissues. The relationship between low-level exposure and covalent binding of genotoxic chemicals has been compared in rodents and humans. Such compounds include heterocyclic amines, benzene, and tamoxifen. Other applications range from measuring the absorption of 26Al to monitoring 41Ca turnover in bone. In epoxy-embedded tissue sections, high-resolution imaging of 14C label in cells is possible. The uses of AMS are becoming more widespread with the availability of instrumentation dedicated to the analysis of biomedical samples. Copyright 2005 Wiley Periodicals, Inc.

  15. Electron accelerators for research at the frontiers of nuclear physics

    International Nuclear Information System (INIS)

    Grunder, H.A.; Hartline, B.K.; Corneliussen, S.T.

    1986-01-01

    Electron accelerators for the frontiers of nuclear physics must provide high duty factor (>80%) for coincidence measurements; few-hundred-MeV through few-GeV energy for work in the nucleonic, hadronic, and confinement regimes; energy resolution of ∼10 -4 ; and high current (≥ 100 μA). To fulfill these requirements new machines and upgrades of existing ones are being planned or constructed. Representative microtron-based facilities are the upgrade of MAMI at the University of Mainz (West Germany), the proposed two-stage cascaded microtron at the University of Illinois (USA), and the three-stage Troitsk ''polytron'' (USSR). Representative projects to add pulse stretcher rings to existing linacs are the upgrades at MIT-Bates (USA) and at NIKHEF-K (Netherlands). Recent advances in superconducting rf technology, especially in cavity design and fabrication, have made large superconducting cw linacs become feasible. Recirculating superconducting cw linacs are under construction at the University of Darmstadt (West Germany) and at CEBAF (USA), and a proposal is being developed at Saclay (France). 31 refs

  16. Accelerating String Set Matching in FPGA Hardware for Bioinformatics Research

    Directory of Open Access Journals (Sweden)

    Burgess Shane C

    2008-04-01

    Full Text Available Abstract Background This paper describes techniques for accelerating the performance of the string set matching problem with particular emphasis on applications in computational proteomics. The process of matching peptide sequences against a genome translated in six reading frames is part of a proteogenomic mapping pipeline that is used as a case-study. The Aho-Corasick algorithm is adapted for execution in field programmable gate array (FPGA devices in a manner that optimizes space and performance. In this approach, the traditional Aho-Corasick finite state machine (FSM is split into smaller FSMs, operating in parallel, each of which matches up to 20 peptides in the input translated genome. Each of the smaller FSMs is further divided into five simpler FSMs such that each simple FSM operates on a single bit position in the input (five bits are sufficient for representing all amino acids and special symbols in protein sequences. Results This bit-split organization of the Aho-Corasick implementation enables efficient utilization of the limited random access memory (RAM resources available in typical FPGAs. The use of on-chip RAM as opposed to FPGA logic resources for FSM implementation also enables rapid reconfiguration of the FPGA without the place and routing delays associated with complex digital designs. Conclusion Experimental results show storage efficiencies of over 80% for several data sets. Furthermore, the FPGA implementation executing at 100 MHz is nearly 20 times faster than an implementation of the traditional Aho-Corasick algorithm executing on a 2.67 GHz workstation.

  17. NASA's Spaceflight Visual Impairment and Intracranial Hypertension Research Plan: An accelerated Research Collaboration

    Science.gov (United States)

    Otto, Christian; Fogarty, J.; Grounds, D.; Davis, J.

    2010-01-01

    To date six long duration astronauts have experienced in flight visual changes and post flight signs of optic disc edema, globe flattening, choroidal folds, hyperoptic shifts and or raised intracranial pressure. In some cases the changes were transient while in others they are persistent with varying degrees of visual impairment. Given that all astronauts exposed to microgravity experience a cephalad fluid shift, and that both symptomatic and asymptomatic patients have exhibited optic nerve sheath edema on MRI, there is a high probability that all astronauts develop in-flight idiopathic intracranial hypertension to some degree. Those who are susceptible, have an increased likelihood of developing treatment resistant papilledema resulting in visual impairment and possible long-term vision loss. Such an acquired disability would have a profound mission impact and would be detrimental to the long term health of the astronaut. The visual impairment and increased intracranial pressure phenomenon appears to have multiple contributing factors. Consequently, the working "physiological fault bush" with elevated intracranial pressure at its center, is divided into ocular effects, and CNS and other effects. Some of these variables have been documented and or measured through operational data gathering, while others are unknown, undocumented and or hypothetical. Both the complexity of the problem and the urgency to find a solution require that a unique, non-traditional research model be employed such as the Accelerated Research Collaboration(TM) (ARC) model that has been pioneered by the Myelin Repair Foundation. In the ARC model a single entity facilitates and manages all aspects of the basic, translational, and clinical research, providing expert oversight for both scientific and managerial efforts. The result is a comprehensive research plan executed by a multidisciplinary team and the elimination of stove-piped research. The ARC model emphasizes efficient and effective

  18. The role of organizational affiliations and research networks in the diffusion of breast cancer treatment innovation.

    Science.gov (United States)

    Carpenter, William R; Reeder-Hayes, Katherine; Bainbridge, John; Meyer, Anne-Marie; Amos, Keith D; Weiner, Bryan J; Godley, Paul A

    2011-02-01

    The National Institutes of Health (NIH) sees provider-based research networks and other organizational linkages between academic researchers and community practitioners as promising vehicles for accelerating the translation of research into practice. This study examines whether organizational research affiliations and teaching affiliations are associated with accelerated diffusion of sentinel lymph node biopsy (SLNB), an innovation in the treatment of early-stage breast cancer. Surveillance Epidemiology and End Results-Medicare data were used to examine the diffusion of SLNB for treatment of early-stage breast cancer among women aged 65 years and older diagnosed between 2000 and 2002, shortly after Medicare approved and began reimbursing for the procedure. In this population, patients treated at an organization affiliated with a research network--the American College of Surgeons Oncology Group (ACOSOG) or other National Cancer Institute (NCI) cooperative groups--were more likely to receive the innovative treatment (SLNB) than patients treated at unaffiliated organizations (odds ratio: 2.70, 95% confidence interval: 1.77-4.12; odds ratio: 1.84, 95% confidence interval: 1.26-2.69, respectively). Neither hospital teaching status nor surgical volume was significantly associated with differences in SLNB use. Patients who receive cancer treatment at organizations affiliated with cancer research networks have an enhanced probability of receiving SLNB, an innovative procedure that offers the promise of improved patient outcomes. Study findings support the NIH Roadmap and programs such as the NCI's Community Clinical Oncology Program, as they seek to accelerate the translation of research into practice by simultaneously accelerating and broadening cancer research in the community.

  19. Graduate Student Program in Materials and Engineering Research and Development for Future Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Spentzouris, Linda [Illinois Inst. of Technology, Chicago, IL (United States)

    2016-07-07

    The objective of the proposal was to develop graduate student training in materials and engineering research relevant to the development of particle accelerators. Many components used in today's accelerators or storage rings are at the limit of performance. The path forward in many cases requires the development of new materials or fabrication techniques, or a novel engineering approach. Often, accelerator-based laboratories find it difficult to get top-level engineers or materials experts with the motivation to work on these problems. The three years of funding provided by this grant was used to support development of accelerator components through a multidisciplinary approach that cut across the disciplinary boundaries of accelerator physics, materials science, and surface chemistry. The following results were achieved: (1) significant scientific results on fabrication of novel photocathodes, (2) application of surface science and superconducting materials expertise to accelerator problems through faculty involvement, (3) development of instrumentation for fabrication and characterization of materials for accelerator components, (4) student involvement with problems at the interface of material science and accelerator physics.

  20. International Szent-Györgyi Prize for Progress in Cancer Research: basic and translational research recognition : Mary-Claire King received the 2016 Prize for her pioneering research that demonstrated the first evidence of genetic predisposition to breast cancer.

    Science.gov (United States)

    Hartmann, Hali; Zhao, Jie; Ba, Sujuan

    2017-11-21

    The Szent-Györgyi Prize for Progress in Cancer Research is a prestigious scientific award sponsored by the National Foundation for Cancer Research (NFCR)-a leading cancer research charitable organization in the United States that supports innovative cancer research globally with the ultimate goal to cure cancer. The coveted Szent-Györgyi Prize annually honors a scientist whose seminal discovery or body of work has resulted in, or led toward, notable contributions to cancer prevention, diagnosis, or treatment; and the discovery has had a high direct impact of saving people's lives. In addition, the prize promotes public awareness of the importance of basic cancer research and encourages the sustained investment needed to accelerate the translation of these research discoveries into new cancer treatments. In 2016, NFCR's Szent-Györgyi Prize Selection Committee was unanimous in its decision to recognize an icon in human disease genetics, Dr. Mary-Claire King, for her pioneering research that demonstrated the first evidence of genetic predisposition to breast cancer. Her proof of existence of BRCA1 gene and its location has made genetic screening for breast and ovarian cancers possible, saving lives of many people who are at high risk with inherited BRCA1 mutations.

  1. Cancer Research in the Arab World

    Science.gov (United States)

    Hamadeh, Randah R.; Borgan, Saif M.; Sibai, Abla M.

    2017-01-01

    This review aimed to examine trends in cancer research in the Arab world and identify existing research gaps. A search of the MEDLINE® database (National Library of Medicine, Bethesda, Maryland, USA) was undertaken for all cancer-related publications published between January 2000 and December 2013 from seven countries, including Bahrain, Kuwait, Iraq, Lebanon, Morocco, Palestine and Sudan. A total of 1,773 articles were identified, with a significant increase in yearly publications over time (P social and structural determinants of health (27.1%), followed by behavioural risk factors (14.1%), particularly tobacco use. Overall, more cancer research is needed in the Arab world, particularly analytical studies with high-quality evidence and those focusing on older age groups and associations with physical activity and diet. PMID:28690885

  2. Automation of Technology for Cancer Research.

    Science.gov (United States)

    van der Ent, Wietske; Veneman, Wouter J; Groenewoud, Arwin; Chen, Lanpeng; Tulotta, Claudia; Hogendoorn, Pancras C W; Spaink, Herman P; Snaar-Jagalska, B Ewa

    2016-01-01

    Zebrafish embryos can be obtained for research purposes in large numbers at low cost and embryos develop externally in limited space, making them highly suitable for high-throughput cancer studies and drug screens. Non-invasive live imaging of various processes within the larvae is possible due to their transparency during development, and a multitude of available fluorescent transgenic reporter lines.To perform high-throughput studies, handling large amounts of embryos and larvae is required. With such high number of individuals, even minute tasks may become time-consuming and arduous. In this chapter, an overview is given of the developments in the automation of various steps of large scale zebrafish cancer research for discovering important cancer pathways and drugs for the treatment of human disease. The focus lies on various tools developed for cancer cell implantation, embryo handling and sorting, microfluidic systems for imaging and drug treatment, and image acquisition and analysis. Examples will be given of employment of these technologies within the fields of toxicology research and cancer research.

  3. International topical meeting on nuclear research applications and utilization of accelerators. Book of abstracts

    International Nuclear Information System (INIS)

    2009-01-01

    Applications of particle accelerators cover a number of areas, from strategic and applied research, safety and security, environmental applications, materials research and analytical sciences, to radioisotope production and radiation processing. Accelerator based techniques and pulsed neutron sources are expected to lead to new initiatives in materials research of relevance for both the nuclear and non-nuclear fields. Material science studies with the use of accelerators, neutron beams and other nuclear analytical methods are relevant to the development of advanced reactors, nuclear fuel cycle needs and fusion research. In this regard, a better understanding of the irradiation effects in materials for energy and non-energy applications is needed, and is reflected in accelerator techniques for modification and analysis of materials for nuclear technologies. Accelerator applications for innovative nuclear systems aiming at rad-waste transmutation (e.g., accelerator driven systems) are being pursued in many countries. Research and development using accelerators involves a broad spectrum of skills to build a cadre of trained experts in nuclear techniques in IAEA Member States, and to generate knowledge for innovative methodologies and tools. The present conference is also being held in cooperation with the American Nuclear Society (ANS), which successfully organized the series of accelerator applications conferences known as AccApp. The ANS series of topical meetings has provided a forum for the global exchange of scientific and technical knowledge on a wide variety of related topics since the first AccApp took place in 1997 in Albuquerque, USA. The last conference which was held in 2007 in Pocatello, USA, was jointly organized by the ANS and the IAEA. The main objectives of the conference are to promote exchange of information among IAEA Member States representatives/delegates and to discuss new trends in accelerator applications including nuclear materials research

  4. Beam stability of cyclotron accelerator for therapy at National Cancer Center Hospital East

    International Nuclear Information System (INIS)

    Nishio, T.; Ogino, T.; Shinbo, M.; Ikeda, H.; Tachikawa, T.; Kumata, Y.

    2000-01-01

    In 1997, the proton-treatment facility that has the therapeutic AVF cyclotron accelerator (C235), is constructed at National Cancer Center Hospital East. The facility has 3-irradiation ports (rooms) that are 2-rotationg gantry ports and 1-horizontal fixed port. The C235 can accelerate proton to 235 MeV with the beam intensity of 300 nA. The external diameter is a very compact with about 4 m. The radio frequency is 106 MHz, the accelerating voltage is about 60 kV, and the harmonic number is 4. A beam stability of the C235 has an important relation with the uniformity of an irradiation field and is a very difficulty. The measured result indicated that the incident beam position must be into the 0.5-mmφ circle. (author)

  5. An outline of research facilities of high intensity proton accelerator

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi

    1995-01-01

    A plan called PROTON ENGINEERING CENTER has been proposed in JAERI. The center is a complex composed of research facilities and a beam shape and storage ring based on a proton linac with an energy of 1.5 GeV and an average current of 10 mA. The research facilities planned are OMEGA·Nuclear Energy Development Facility, Neutron Facility for Material Irradiation, Nuclear Data Experiment Facility, Neutron Factory, Meson Factory, spallation Radioisotope Beam Facility, and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutrons, π-mesons, muons, and unstable isotopes originated from the protons are available for promoting the innovative research of nuclear energy and basic science and technology. (author)

  6. Prostate Cancer Research Trial Helps John Spencer Treat His Cancer | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... of this page please turn Javascript on. Feature: Prostate Cancer Prostate Cancer Research Trial Helps John Spencer Treat His Cancer ... because of timely detection and treatment of his prostate cancer. He participated in an NIH-sponsored clinical trial. ...

  7. Shielding considerations for an electron linear accelerator complex for high energy physics and photonics research

    International Nuclear Information System (INIS)

    Holmes, J.A.; Huntzinger, C.J.

    1987-01-01

    Radiation shielding considerations for a major high-energy physics and photonics research complex which comprise a 50 MeV electron linear accelerator injector, a 1.0 GeV electron linear accelerator and a 1.3 GeV storage ring are discussed. The facilities will be unique because of the close proximity of personnel to the accelerator beam lines, the need to adapt existing facilities and shielding materials and the application of strict ALARA dose guidelines while providing maximum access and flexibility during a phased construction program

  8. Funding Research Through the Online Partnership to Accelerate Research (OnPAR

    Directory of Open Access Journals (Sweden)

    Martin A. Dueñas, MPA

    2016-10-01

    Full Text Available OnPAR—the Online Partnership to Accelerate Research—seeks to provide a second opportunity for funding of high-quality, unfunded applications originally submitted to the National Institutes of Health and other national and international funding agencies. OnPAR will match applicable, unfunded applications with the research priorities of nongovernment organizations such as private biomedical foundations, pharmaceutical companies, venture capital funds, and other private funds. Funding organization members will review and make final funding decisions through a simple, 2-step process whereby applicants can submit public abstracts directly to OnPAR. If a member requests additional information, then, by invitation only, an applicant can submit their original unfunded application and their peer review summary statement. Advancing research discovery and drug development to improve clinical outcomes for patients afflicted with or at risk for disease is the primary goal of OnPAR. OnPAR invites the scientific community to fully participate in this new funding paradigm by submitting their National Institutes of Health public abstracts so that funding members can review and potentially support these high-quality, unfunded applications.

  9. Research on accelerator-driven transmutation and studies of experimental facilities

    Energy Technology Data Exchange (ETDEWEB)

    Takizuka, Takakazu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    JAERI is carrying out R and Ds on accelerator-driven transmutation systems under the national OMEGA Program that aims at development of the technology to improve efficiency and safety in the final disposal of radioactive waste. Research facilities for accelerator-driven transmutation experiments are proposed to construct within the framework of the planned JAERI Neutron Science Project. This paper describes the features of the proposed accelerator-driven transmutation systems and their technical issues to be solved. A research facility plan under examination is presented. The plan is divided in two phases. In the second phase, technical feasibility of accelerator-driven systems will be demonstrated with a 30-60 MW experimental integrated system and with a 7 MW high-power target facility. (author)

  10. Architecture and Civil Design Status of the Proton Accelerator Research Center in PEFP

    International Nuclear Information System (INIS)

    Nam, J. M.; Kim, J. Y.; Mun, K. J.; Jeon, G. P.; Cho, J. S.; Lee, S. K.; Min, Y. S.; Joo, H. G.

    2009-01-01

    PEFP (Proton Engineering Frontier Project) is scheduled to administrate the conventional facilities design with Gyeongju and complement its unfit points. When construction work starts according to the construction schedule, a field work office will be installed to supervise the Proton Accelerator Conventional Facilities Construction. In this paper, we describe the geological investigation procedure for the construction of the proton accelerator conventional facilities of PEFP. By the geological investigation, data for the reasonable and economic construction work, such as stratum structure and geotechnical characteristics. In Site Plot Plan for PEFP, we classified center as 2 groups such as main facilities and support facilities. We also designed access road of the Proton Accelerator Research Center of PEFP. In architectural design for PEFP, we described the design procedure of the buildings and landscape architectures of the Proton Accelerator Research Center

  11. Accelerators: Sparking Innovation and Transdisciplinary Team Science in Disparities Research

    Directory of Open Access Journals (Sweden)

    Carol R. Horowitz

    2017-02-01

    Full Text Available Development and implementation of effective, sustainable, and scalable interventions that advance equity could be propelled by innovative and inclusive partnerships. Readied catalytic frameworks that foster communication, collaboration, a shared vision, and transformative translational research across scientific and non-scientific divides are needed to foster rapid generation of novel solutions to address and ultimately eliminate disparities. To achieve this, we transformed and expanded a community-academic board into a translational science board with members from public, academic and private sectors. Rooted in team science, diverse board experts formed topic-specific “accelerators”, tasked with collaborating to rapidly generate new ideas, questions, approaches, and projects comprising patients, advocates, clinicians, researchers, funders, public health and industry leaders. We began with four accelerators—digital health, big data, genomics and environmental health—and were rapidly able to respond to funding opportunities, transform new ideas into clinical and community programs, generate new, accessible, actionable data, and more efficiently and effectively conduct research. This innovative model has the power to maximize research quality and efficiency, improve patient care and engagement, optimize data democratization and dissemination among target populations, contribute to policy, and lead to systems changes needed to address the root causes of disparities.

  12. Accelerators: Sparking Innovation and Transdisciplinary Team Science in Disparities Research

    Science.gov (United States)

    Horowitz, Carol R.; Shameer, Khader; Gabrilove, Janice; Atreja, Ashish; Shepard, Peggy; Goytia, Crispin N.; Smith, Geoffrey W.; Dudley, Joel; Manning, Rachel; Bickell, Nina A.; Galvez, Maida P.

    2017-01-01

    Development and implementation of effective, sustainable, and scalable interventions that advance equity could be propelled by innovative and inclusive partnerships. Readied catalytic frameworks that foster communication, collaboration, a shared vision, and transformative translational research across scientific and non-scientific divides are needed to foster rapid generation of novel solutions to address and ultimately eliminate disparities. To achieve this, we transformed and expanded a community-academic board into a translational science board with members from public, academic and private sectors. Rooted in team science, diverse board experts formed topic-specific “accelerators”, tasked with collaborating to rapidly generate new ideas, questions, approaches, and projects comprising patients, advocates, clinicians, researchers, funders, public health and industry leaders. We began with four accelerators—digital health, big data, genomics and environmental health—and were rapidly able to respond to funding opportunities, transform new ideas into clinical and community programs, generate new, accessible, actionable data, and more efficiently and effectively conduct research. This innovative model has the power to maximize research quality and efficiency, improve patient care and engagement, optimize data democratization and dissemination among target populations, contribute to policy, and lead to systems changes needed to address the root causes of disparities. PMID:28241508

  13. Hadron cancer therapy complex using nonscaling fixed field alternating gradient accelerator and gantry design

    Directory of Open Access Journals (Sweden)

    E. Keil

    2007-05-01

    Full Text Available Nonscaling fixed field alternating gradient (FFAG rings for cancer hadron therapy offer reduced physical aperture and large dynamic aperture as compared to scaling FFAGs. The variation of tune with energy implies the crossing of resonances during acceleration. Our design avoids intrinsic resonances, although imperfection resonances must be crossed. We consider a system of three nonscaling FFAG rings for cancer therapy with 250 MeV protons and 400   MeV/u carbon ions. Hadrons are accelerated in a common radio frequency quadrupole and linear accelerator, and injected into the FFAG rings at v/c=0.1294. H^{+}/C^{6+} ions are accelerated in the two smaller/larger rings to 31 and 250  MeV/68.8 and 400   MeV/u kinetic energy, respectively. The lattices consist of doublet cells with a straight section for rf cavities. The gantry with triplet cells accepts the whole required momentum range at fixed field. This unique design uses either high-temperature superconductors or superconducting magnets reducing gantry magnet size and weight. Elements with a variable field at the beginning and at the end set the extracted beam at the correct position for a range of energies.

  14. Nebraska Prostate Cancer Research Program

    Science.gov (United States)

    2015-10-01

    STUDENT ENGAGEMENT Welcome 2 UNMC 3 Omaha 4 Arrival 5-6 Living 7 Events 8...Graduates 9-11 Channing Bunch, M.B.A Director of Recruitment and Student Engagement channing.bunch...Program, Eppley Institute, Office of Research and Development, and Recruitment and Student Engagement Responses to Nebraska Prostate

  15. The radiological research accelerator facility: Progress report for the period December 1, 1986-November 30, 1987

    International Nuclear Information System (INIS)

    1987-04-01

    Experiments performed at the Radiological Research Accelerator Facility (RARAF) during the period of July 1986 through April 1987 are listed, as well as experiments run prior to that period and expected to eventually resume. The experiments run since July 1, 1986 or expected to run before November 30, 1987 are briefly described. Accelerator use and operation is summarized, as well as facilities development and activities of the Scientific Advisory Committee

  16. Research on cw electron accelerators using room-temperature rf structures: Annual report

    International Nuclear Information System (INIS)

    1986-01-01

    This joint NBS-Los Alamos project of ''Research on CW Electron Accelerators Using Room-Temperature RF Structures'' began seven years ago with the goal of developing a technology base for cw electron accelerators. In this report we describe our progress during FY 1986 and present our plans for completion of the project. First, however, it is appropriate to review the past contributions of the project, describe its status, and indicate its future benefits

  17. High Energy Accelerator Research Organization (KEK) Archives Office

    International Nuclear Information System (INIS)

    Sekimoto, Michiko

    2011-01-01

    At KEK, there is a section named Archives Office since 2004. The mission of the Office is for collecting and preserving, as research materials and official documents which are understood to be important from historical point of view. The Office was originally proposed by the former Director General, Hirotaka Sugawara based on his experiences as the manager of the KEK laboratory. In this article, we sketch the activity of the Office. (author)

  18. Analysis of conditions to safety and radiological protection of Brazilian research particle accelerators facilities

    International Nuclear Information System (INIS)

    Lourenco, Manuel Jacinto Martins

    2010-01-01

    Eleven institutions of education and research in Brazil use particle accelerators, which fulfill different functions and activities. Currently, these institutions employ a total of fifteen accelerators. In this paper, the object of study is the radiological protection of occupationally exposed individuals, the general public and the radiation safety of particle accelerators. Research facilities with accelerators are classified in categories I and II according to the International Atomic Energy Agency or groups IX and X in accordance with the Brazilian National Commission of Nuclear Energy. Of the 15 accelerators in use for research in Brazil, four belong to category I or group X and eleven belong to category II or group IX. The methodology presented and developed in this work was made through the inspection and assessment of safety and radiological protection of thirteen particle accelerators facilities, and its main purpose was to promote safer use of this practice by following established guidelines for safety and radiological protection. The results presented in this work showed the need to create a program, in our country, for the control of safety and radiological protection of this ionizing radiation practice. (author)

  19. Nebraska Prostate Cancer Research Program

    Science.gov (United States)

    2014-07-01

    chemotherapy can cure the disease, in many cases it will spread and kill the patient. Better basic scientific understanding of this disease is needed...Dixon Patent Development at UNEMED 10:30 T. Wasmoen Vaccine Research/Development at Intervet/Schering- Plough July 19 UNMC...cytokines and has been shown to inhibit the secretion of TNF-α by activated macrophages and thereby reduce the tumor killing activity of macrophages

  20. Accelerator-driven nuclear synergetic systems-an overview of the research activities in Sweden

    International Nuclear Information System (INIS)

    Conde, H.; Baecklin, A.; Carius, S.

    1995-01-01

    The rapid development of the accelerator technology which enables the construction of reliable and very intense neutron sources has initiated a growing interest for accelerator driven transmutation systems in Sweden. After the Specialist Meeting on Accelerator-Driven Transmutation Technology for Radwaste and other Applications on 24-28 June 1991 at Saltsjoebaden, Sweden, the research activities oriented towards accelerator-driven systems have been started at several research centers in Sweden. Also the governmental agencies responsible for the spent fuel policy showed a positive attitude to these activities through a limited financial support, particularly for studies of the safety aspects of these systems. Also the nuclear power industry and utilities show a positive interest in the research on these concepts. The present paper presents an overview of the Swedish research activities on accelerator-driven systems and the proposed future coordination, organizations and prospects for this research in the context of the national nuclear energy and spent fuel policy. The Swedish perspective for international cooperation is also described

  1. Accelerator-driven nuclear synergetic systems-an overview of the research activities in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Conde, H.; Baecklin, A.; Carius, S. [Uppsala Univ. (Sweden)] [and others

    1995-10-01

    The rapid development of the accelerator technology which enables the construction of reliable and very intense neutron sources has initiated a growing interest for accelerator driven transmutation systems in Sweden. After the Specialist Meeting on Accelerator-Driven Transmutation Technology for Radwaste and other Applications on 24-28 June 1991 at Saltsjoebaden, Sweden, the research activities oriented towards accelerator-driven systems have been started at several research centers in Sweden. Also the governmental agencies responsible for the spent fuel policy showed a positive attitude to these activities through a limited financial support, particularly for studies of the safety aspects of these systems. Also the nuclear power industry and utilities show a positive interest in the research on these concepts. The present paper presents an overview of the Swedish research activities on accelerator-driven systems and the proposed future coordination, organizations and prospects for this research in the context of the national nuclear energy and spent fuel policy. The Swedish perspective for international cooperation is also described.

  2. Institutional shared resources and translational cancer research

    Directory of Open Access Journals (Sweden)

    De Paoli Paolo

    2009-06-01

    Full Text Available Abstract The development and maintenance of adequate shared infrastructures is considered a major goal for academic centers promoting translational research programs. Among infrastructures favoring translational research, centralized facilities characterized by shared, multidisciplinary use of expensive laboratory instrumentation, or by complex computer hardware and software and/or by high professional skills are necessary to maintain or improve institutional scientific competitiveness. The success or failure of a shared resource program also depends on the choice of appropriate institutional policies and requires an effective institutional governance regarding decisions on staffing, existence and composition of advisory committees, policies and of defined mechanisms of reporting, budgeting and financial support of each resource. Shared Resources represent a widely diffused model to sustain cancer research; in fact, web sites from an impressive number of research Institutes and Universities in the U.S. contain pages dedicated to the SR that have been established in each Center, making a complete view of the situation impossible. However, a nation-wide overview of how Cancer Centers develop SR programs is available on the web site for NCI-designated Cancer Centers in the U.S., while in Europe, information is available for individual Cancer centers. This article will briefly summarize the institutional policies, the organizational needs, the characteristics, scientific aims, and future developments of SRs necessary to develop effective translational research programs in oncology. In fact, the physical build-up of SRs per se is not sufficient for the successful translation of biomedical research. Appropriate policies to improve the academic culture in collaboration, the availability of educational programs for translational investigators, the existence of administrative facilitations for translational research and an efficient organization

  3. Institutional shared resources and translational cancer research.

    Science.gov (United States)

    De Paoli, Paolo

    2009-06-29

    The development and maintenance of adequate shared infrastructures is considered a major goal for academic centers promoting translational research programs. Among infrastructures favoring translational research, centralized facilities characterized by shared, multidisciplinary use of expensive laboratory instrumentation, or by complex computer hardware and software and/or by high professional skills are necessary to maintain or improve institutional scientific competitiveness. The success or failure of a shared resource program also depends on the choice of appropriate institutional policies and requires an effective institutional governance regarding decisions on staffing, existence and composition of advisory committees, policies and of defined mechanisms of reporting, budgeting and financial support of each resource. Shared Resources represent a widely diffused model to sustain cancer research; in fact, web sites from an impressive number of research Institutes and Universities in the U.S. contain pages dedicated to the SR that have been established in each Center, making a complete view of the situation impossible. However, a nation-wide overview of how Cancer Centers develop SR programs is available on the web site for NCI-designated Cancer Centers in the U.S., while in Europe, information is available for individual Cancer centers. This article will briefly summarize the institutional policies, the organizational needs, the characteristics, scientific aims, and future developments of SRs necessary to develop effective translational research programs in oncology.In fact, the physical build-up of SRs per se is not sufficient for the successful translation of biomedical research. Appropriate policies to improve the academic culture in collaboration, the availability of educational programs for translational investigators, the existence of administrative facilitations for translational research and an efficient organization supporting clinical trial recruitment

  4. Neutron physics and nuclear data measurements with accelerators and research reactors

    International Nuclear Information System (INIS)

    1985-08-01

    The report contains a collection of lectures devoted to the latest theoretical and experimental developments in the field of fast neutron measurements and in the studies of neutron interactions with nuclei. The possibilities offered by particle accelerators and research reactors for research and technological applications in these fields are pointed out

  5. Neutron physics and nuclear data measurements with accelerators and research reactors

    International Nuclear Information System (INIS)

    1988-08-01

    The report contains a collection of lectures devoted to the latest theoretical and experimental developments in the field of fast neutron physics and nuclear data measurements. The possibilities offered by particle accelerators and research reactors for research and technological applications in these fields are pointed out. Refs, figs and tabs

  6. Present status of tandem accelerator in Japan Atomic Energy Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tadashi; Kanda, Susumu; Takeuchi, Suehiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-12-01

    The tandem accelerator in Japan Atomic Energy Research Institute was made by NEC in USA. Since it is the accelerator of turning-up structure, it has large magnet at the high voltage terminal, and supplies electric power by driving a generator with large diameter shaft. The control is carried out by CAMUCK, and the electronic circuit is protected from the surging arising due to discharge. Since the experiment on full scale was begun, 14 years have elapsed, and at present, it became a very stable accelerator. As to the operation mode, the acceleration voltage is limited to below 17 MV. The operation voltage and the state of operation are shown. Recently, the troubles of chains originating in oil have occurred. The adjustment of the tandem accelerator requires more than one month. The adjustment is mainly related to the chains and shafts, and this is explained. The ion source used for the tandem accelerator at present is the negative ion source made by NEC. The installation of an ECR ion source is planned. The utilization of the tandem accelerator system is reported. (K.I.)

  7. Impact of proteomics on bladder cancer research

    DEFF Research Database (Denmark)

    Celis, Julio E; Gromova, Irina; Moreira, José Manuel Alfonso

    2004-01-01

    Detecting bladder cancer at an early stage and predicting how a tumor will behave and act in response to therapy, as well as the identification of new targets for therapeutic intervention, are among the main areas of research that will benefit from the current explosion in the number of powerful ...

  8. Postdoctoral Fellow | Center for Cancer Research

    Science.gov (United States)

    Dr. St. Croix’s laboratory at the Mouse Cancer Genetics Program (MCGP), National Cancer Institute, USA has an open postdoctoral position. We seek a highly motivated, creative and bright individual to participate in a collaborative project that involves the targeting of tumor-associated stroma using T-cells engineered to express chimeric antigen receptors (CARs). The laboratory focuses on the characterization and exploitation of molecules associated with tumor angiogenesis. The successful candidate would be involved in developing, producing and characterizing new therapeutic antibodies and CARs that recognize cancer cells or its associated stroma, and preclinical testing of these agents using mouse tumor models. The tumor angiogenesis lab is located at the National Cancer Institute in Frederick with access to state-of-the-art facilities for antibody engineering, genomic analysis, pathology, and small animal imaging, among others. Detailed information about Dr. St. Croix’s research and publications can be accessed at https://ccr.cancer.gov/Mouse-Cancer-Genetics-Program/brad-st-croix.

  9. Testicular Cancer Survivorship: Research Strategies and Recommendations

    Science.gov (United States)

    Beard, Clair; Allan, James M.; Dahl, Alv A.; Feldman, Darren R.; Oldenburg, Jan; Daugaard, Gedske; Kelly, Jennifer L.; Dolan, M. Eileen; Hannigan, Robyn; Constine, Louis S.; Oeffinger, Kevin C.; Okunieff, Paul; Armstrong, Greg; Wiljer, David; Miller, Robert C.; Gietema, Jourik A.; van Leeuwen, Flora E.; Williams, Jacqueline P.; Nichols, Craig R.; Einhorn, Lawrence H.; Fossa, Sophie D.

    2010-01-01

    Testicular cancer represents the most curable solid tumor, with a 10-year survival rate of more than 95%. Given the young average age at diagnosis, it is estimated that effective treatment approaches, in particular, platinum-based chemotherapy, have resulted in an average gain of several decades of life. This success, however, is offset by the emergence of considerable long-term morbidity, including second malignant neoplasms, cardiovascular disease, neurotoxicity, nephrotoxicity, pulmonary toxicity, hypogonadism, decreased fertility, and psychosocial problems. Data on underlying genetic or molecular factors that might identify those patients at highest risk for late sequelae are sparse. Genome-wide association studies and other translational molecular approaches now provide opportunities to identify testicular cancer survivors at greatest risk for therapy-related complications to develop evidence-based long-term follow-up guidelines and interventional strategies. We review research priorities identified during an international workshop devoted to testicular cancer survivors. Recommendations include 1) institution of lifelong follow-up of testicular cancer survivors within a large cohort setting to ascertain risks of emerging toxicities and the evolution of known late sequelae, 2) development of comprehensive risk prediction models that include treatment factors and genetic modifiers of late sequelae, 3) elucidation of the effect(s) of decades-long exposure to low serum levels of platinum, 4) assessment of the overall burden of medical and psychosocial morbidity, and 5) the eventual formulation of evidence-based long-term follow-up guidelines and interventions. Just as testicular cancer once served as the paradigm of a curable malignancy, comprehensive follow-up studies of testicular cancer survivors can pioneer new methodologies in survivorship research for all adult-onset cancer. PMID:20585105

  10. Research and development activities around the EUROTRANS accelerator for ADS applications

    International Nuclear Information System (INIS)

    Biarrotte, J. L.; Mueller, A. C.

    2007-01-01

    An Accelerator Driven System (ADS) for transmutation of nuclear waste typically requires a 600 MeV - 1 GeV accelerator delivering a proton flux of a few mAs for demonstrators, and of a few tens of mAs for large industrial systems. Such a machine belongs to the category of the high power proton accelerators, with an additional requirement for exceptional 'reliability': because of the induced thermal stress to the subcritical core, the number of unwanted 'beam-trips' should not exceed a few per year, a specification that is several orders of magnitude above usual performance. This paper briefly describes the reference solution adopted for such a machine, based on a linear superconducting accelerator, and presents the status of the Research and Development performed in this context. This work is performed within the 6th Framework Program EC project 'EUROTRANS' (EC Contract No: FI6W 516520, 'EUROTRANS')

  11. Annual Report of the Tandem Accelerator Center, Nuclear and Solid State Research Project, University of Tsukuba

    International Nuclear Information System (INIS)

    1978-01-01

    In 1977, 12 UD Pelletron tandem accelerator has been operated by the University's researchers and engineers. Except for the tank opening for regular inspection we met twice the troubles which forced to change the accelerating tube. The experiences teach us that it needs about 20 days to finish the conditioning after changing the accelerating tube. A sputter ion source of new version is now being installed on the top floor. Two devices for the detection of X-rays were tested. An apparatus for bombardment of samples in air for biological and medical sciences has been successfully used. The subjects of researches on nuclear physics cover the light-ion reactions, heavy-ion reactions and nuclear spectroscopy. A special emphasis has been put on the measurements on vector- and tensor-analyzing powers in the light-ion reactions, because of a higher efficiency of the polarized ion source. Elaborate works on the heavy-ion reactions including the angular correlation patterns and excitation functions have been made in parallel. Papers of these works are now being prepared, a few having been published already. Moreover, in the University of Tsukuba, a new research system, called Special Research Project on Nuclear and Solid State Sciences Using Accelerated Beams (Nuclear and Solid State Research Project) started in 1978 and will continue for five years. In this research project, researchers from various Institutes in the University of Tsukuba, as well as visiting researchers from other institutions in Japan and from abroad, participate. Using a variety of accelerated beams, i.e. of heavy, light and polarized beams, this research project aims mainly at the high excitation, short life, transient and inhomogeneous states both in nuclear and extra-nuclear world. It covers both fundamental research in nuclear, atomic and solid state sciences as well as their application in various fields. (J.P.N.)

  12. Postdoctoral Fellow | Center for Cancer Research

    Science.gov (United States)

    Highly motivated postdoctoral fellows sought to work on tumor immunology with a strong background in biology preferentially cellular immunology. The tumor immunology group in the laboratory is exploring mechanisms of improving vaccines and immunotherapy for cancer, especially by discovering new principles to enhance and steer T cell immune responses. The group is focusing on negative immunoregulatory mechanisms used for immune evasion by cancer cells. The postdoctoral fellow will work on a project to understand the negative regulatory mechanisms of tumor immunity especially the mechanisms initiated by NKT cells. Group members also have an opportunity to gain knowledge of HIV/mucosal immunology by interacting with the HIV research group in the lab.

  13. Prostate Cancer: Improving the Flow of Research.

    Science.gov (United States)

    Lawton, Colleen A F

    2018-04-01

    Prostate cancer is the most common nonskin cancer diagnosed in U.S. men and kills over 27 000 men annually. Thus, improving the outcomes for patients diagnosed with this disease is imperative. There has been a considerable amount of research done over the past several decades resulting in more cures than ever, but the death rate is still unacceptable. This oration addresses the progress that we have made over the past several decades and outlines the work yet to be done, as well as some processes to make that work happen. © RSNA, 2018.

  14. Annual report of Department of Research Reactor and Tandem Accelerator, JFY2011. Operation, utilization and technical development of JRR-3, JRR-4, NSRR and tandem accelerator

    International Nuclear Information System (INIS)

    Ishii, Tetsuro; Nakamura, Kiyoshi; Kawamata, Satoshi; Ishikuro, Yasuhiro; Kawashima, Kazuhito; Kabumoto, Hiroshi; Nakamura, Takemi; Tamura, Itaru; Kawasaki, Sayuri; Sataka, Masao

    2013-03-01

    The Department of Research Reactors and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3(Japan Research Reactor No.3), JRR-4(Japan Research Reactor No.4), NSRR(Nuclear Safety Research Reactor) and Tandem Accelerator. This annual report describes a summary of activities of services and technical developments carried out in the period between April 1, 2011 and March 31, 2012. The activities were categorized into six service/development fields: (1) Recovery from the Great East Japan Earthquake, (2) Operation and maintenance of research reactors and tandem accelerator, (3) Utilization of research reactors and tandem accelerator, (4) Upgrading of utilization techniques of research reactors and tandem accelerator, (5) Safety administration for research reactors and tandem accelerator, (6) International cooperation. Also contained are lists of publications, meetings, granted permissions on lows and regulations concerning atomic energy, number of staff members dispatched to Fukushima for the technical assistance, commendation, outcomes in service and technical developments and so on. (author)

  15. Study of mechanism of cancer caused by carcinogenic substances with accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Jiang Shan; He Ming; Wu Shaoyong; You Qubo; Xu Guoji; Wang Qien; Liu Shijie

    2001-01-01

    Full text: It is reported that most of the cancerous patients were caused by cancerogenic substances. The research in recent years shows that carcinogenesis is related with Ca in the cells. In normal cells, the level of free Ca 2+ is very stable, the Ca 2+ as messenger plays an important role to keep normal function of cells. However, the level of free Ca 2+ in cells increases when the cells are exposed to cancerogenic substances such as cigarette smoking solution and chrysotile. But where do the increased Ca 2+ come from? There are three possibilities: 1) from outside of cell membrane; 2) from inside of nucleus; or 3) from both outside and inside of cells. By using external cultivation of cells 41 Ca as tracer and accelerator mass spectrometry (AMS) as measurement method, we investigate the origin of the increased Ca 2+ when the cells are exposed to cigarette smoking solution or chrysoltile is being undertaken. Several results as below have been gotten. 1. 41 Ca synthesis. A high purification of isotope of 40 Ca (99.95%) in form of CaO was irradiated by thermal neutron with a heavy water reactor at the China Institute of Atomic Energy (CIAE). The irradiation time and neutron flux were 988h and 4.9x10 13 , respectively. A 41 Ca/ 40 Ca ratio of 7x10 -5 was obtained. The conversion efficiency of Ca metal to CaH 2 was 80% to 90%. 2. CaH 2 sample preparation. There are two steps for CaH 2 sample preparation in AMS measurement. In the first step, CaO is reduced to metallic calcium via vacuum distillation and in the second, the CaO is converted into a hybrid. 3. 41 Ca AMS measurement. The first 41 Ca AMS measurement was performed with Hl-13 tandem AMS system in the CIAE. By using a 41 Ca blank sample, 30 nA of CaH 3 - ions from ion source can be obtained. Ions were accelerated with a terminal voltage of 7.8 and Ca 8+ (E=69.7 MeV) ions were selected. From the measurement, a 41 Ca/ 40 Ca ratio of about 10 -14 was deduced. (author)

  16. Statistical Analysis of Research Data | Center for Cancer Research

    Science.gov (United States)

    Recent advances in cancer biology have resulted in the need for increased statistical analysis of research data. The Statistical Analysis of Research Data (SARD) course will be held on April 5-6, 2018 from 9 a.m.-5 p.m. at the National Institutes of Health's Natcher Conference Center, Balcony C on the Bethesda Campus. SARD is designed to provide an overview on the general principles of statistical analysis of research data.  The first day will feature univariate data analysis, including descriptive statistics, probability distributions, one- and two-sample inferential statistics.

  17. Ethical aspect of the clinical research. Informed consent in the clinical research for heavy ion radiotherapy of cancer

    International Nuclear Information System (INIS)

    Murata, Hajime

    2003-01-01

    The research center for heavy ion therapy of cancer was decided to be built in 1984 as a part of the national 10-year anticancer campaign, and construction of Heavy Ion Medical Accelerator in Chiba (HIMAC) was completed at the National Institute of Radiological Sciences in 1993. The HIMAC is the first heavy ion accelerator for only medical use in the world, and the clinical research of cancer radiotherapy was begun in 1994 using carbon ion generated by HIMAC. The purposes of the clinical research are to evaluate the safety and usefulness of carbon ion for cancer treatment, and to establish carbon ion therapy as a new and valuable tool for cancer therapy. Therefore, to obtain exact data in ethical aspect as well as scientific aspect of the clinical research, many special committees have been organized like as the committees of protocol planning for each organ, clinical study groups for each organ, evaluating committee of clinical data, and the ethical committee. Each clinical research is performed according to the research protocol of each organ, in which study purpose, rationale, patient condition, end-point of the study, adverse reaction are described. The document of informed consent (IC) contains study purpose, patient condition, method, predicted effect and demerit, protection of privacy, etc.. IC to each patient is done precisely by the doctor, and the freely-given IC of the patient is obtained. After the IC was completed, judgement of propriety for carbon ion therapy is done by the ethical committee for IC of each patient. Since 1994 carbon ion therapy has been performed over 1300 patients with cancer in various organs, and its safety and usefulness for cancer treatment has been clarified gradually. The carbon ion therapy is thought to be a new and promising tool for cancer treatment near future. (authors)

  18. Accelerator-based research facility of UGC as an inter-university centre

    International Nuclear Information System (INIS)

    Mehta, G.K.

    1994-01-01

    A 15-UD Pelletron has been operating as a users facility from July 1991. It is being utilised by a large number of universities and other institutions for research in basic nuclear physics, materials science, atomic physics, radiobiology and radiation chemistry. There is an on-going programme for augmenting the accelerator facilities by injecting Pelletron beams into superconducting linear accelerator modules. Superconducting niobium resonators are being developed at Argonne National Laboratory as a joint collaborative effort. All other things such as cryostat, rf-instrumentation, cryogene distribution system, computer control etc. are being done indigenously. Research possibilities are described. (author). 6 refs., 4 figs

  19. Engineering research and development for the Elise Heavy Ion Induction Accelerator

    International Nuclear Information System (INIS)

    Reginato, L.; Peters, C.

    1995-08-01

    The Fusion Energy Research engineering team has been conducting Research and Development Associated with the Construction (RDAC) of the Elise accelerator since the approval of Key Decision one (KD1 is start of construction). The engineering design effort has worked in close cooperation with the physics design staff to achieve all parameters of the Elise accelerator. The design included the 2 MV injector, matching section, combiner, induction cells, electric/magnetic quadrupoles, alignment system and controls. All major designs and some hardware testing will be discussed

  20. Engineering research and development for the Elise heavy ion induction accelerator

    International Nuclear Information System (INIS)

    Reginato, L.; Peters, C.

    1996-01-01

    The fusion energy research engineering team has been conducting research and development associated with the construction of the Elise accelerator since the approval of key decision 1 (this is the start of construction). The engineering design effort has worked in close cooperation with the physics design staff to achieve all parameters of the Elise accelerator. The design included the 2 MV injector, matching section, combiner, induction cells, electric-magnetic quadrupoles, alignment system and controls. All major designs and some hardware testing will be discussed. (orig.)

  1. In silico cancer research towards 3R.

    Science.gov (United States)

    Jean-Quartier, Claire; Jeanquartier, Fleur; Jurisica, Igor; Holzinger, Andreas

    2018-04-12

    Improving our understanding of cancer and other complex diseases requires integrating diverse data sets and algorithms. Intertwining in vivo and in vitro data and in silico models are paramount to overcome intrinsic difficulties given by data complexity. Importantly, this approach also helps to uncover underlying molecular mechanisms. Over the years, research has introduced multiple biochemical and computational methods to study the disease, many of which require animal experiments. However, modeling systems and the comparison of cellular processes in both eukaryotes and prokaryotes help to understand specific aspects of uncontrolled cell growth, eventually leading to improved planning of future experiments. According to the principles for humane techniques milestones in alternative animal testing involve in vitro methods such as cell-based models and microfluidic chips, as well as clinical tests of microdosing and imaging. Up-to-date, the range of alternative methods has expanded towards computational approaches, based on the use of information from past in vitro and in vivo experiments. In fact, in silico techniques are often underrated but can be vital to understanding fundamental processes in cancer. They can rival accuracy of biological assays, and they can provide essential focus and direction to reduce experimental cost. We give an overview on in vivo, in vitro and in silico methods used in cancer research. Common models as cell-lines, xenografts, or genetically modified rodents reflect relevant pathological processes to a different degree, but can not replicate the full spectrum of human disease. There is an increasing importance of computational biology, advancing from the task of assisting biological analysis with network biology approaches as the basis for understanding a cell's functional organization up to model building for predictive systems. Underlining and extending the in silico approach with respect to the 3Rs for replacement, reduction and

  2. Applications of genetic programming in cancer research.

    Science.gov (United States)

    Worzel, William P; Yu, Jianjun; Almal, Arpit A; Chinnaiyan, Arul M

    2009-02-01

    The theory of Darwinian evolution is the fundamental keystones of modern biology. Late in the last century, computer scientists began adapting its principles, in particular natural selection, to complex computational challenges, leading to the emergence of evolutionary algorithms. The conceptual model of selective pressure and recombination in evolutionary algorithms allow scientists to efficiently search high dimensional space for solutions to complex problems. In the last decade, genetic programming has been developed and extensively applied for analysis of molecular data to classify cancer subtypes and characterize the mechanisms of cancer pathogenesis and development. This article reviews current successes using genetic programming and discusses its potential impact in cancer research and treatment in the near future.

  3. Translating basic research in cancer patient care

    Directory of Open Access Journals (Sweden)

    Marcello Maugeri-Saccà

    2011-01-01

    Full Text Available With the advent of molecular targeted therapies and the development of high-throughput biotechnologies, it has become evident that progress in cancer research is largely due to the creation of multidisciplinary teams able to plan clinical trials supported by appropriate molecular hypotheses. These efforts have culminated in the identification and validation of biomarkers predictive of response, as well as in the generation of more accurate prognostic tools. The identification of cancer stem cells has provided further insights into mechanisms of cancer, and many studies have tried to translate this biological notion into prognostic and predictive information. In this regard, new agents targeting key stemness-related pathways have entered the clinical development, and preliminary data suggested an encouraging antitumor activity.

  4. Research on Fast Track Surgery Application in Lung Cancer Surgery

    Directory of Open Access Journals (Sweden)

    Kaiyun YANG

    2010-02-01

    Full Text Available Background and objective Fast track surgery (FTS is a systematical method to accelerate the recovery of surgical patients by reducing the physical and mental trauma stress of them. The research is to investigate the feasibility of FTS application in lung cancer surgery. Methods A total of 80 cases of lung cancer patients with single leaf lobotomy resection were randomized into two groups. While the experimental group was treated with the conception of FTS, and the control group was treated with the traditional methods. The incident rate of post-operation pain degrees, telecasts, pleural effusion, the post-operation time stay in hospital time and the total cost during hospitalization in two groups were compared respectively. Results In FTS group: the VAS score of post-operation pain at 1 h, 6 h, 12 h, 24 h and 48 h all significantly decreased compared to the traditional therapy group. The incidence rate of telecast was 10.53%. The incidence rate of pleural effusion was 26.31%. The length of stay after operation was (4±1 d and the total cost was RMB 15 600±7 600. In the control group, the above values were 77.78%, 33.33%, 22.22%, (9±1 d, RMB 23 600±5 400, respectively. The post operation pain (VAS method of FTS group was remarkablely below the control group. There has significant difference of the incident rate of telecasts, stay time in hospital and the total cast in two groups (P < 0.05. No significant difference was observed in the incident rate of pleural effusion. Conclusion The new methods of FTS can apparently accelerates recovery after lung cancer resection, reduces complications, shorten timestay in hospital and cut down the total cost.

  5. Electron Microscopy-Data Analysis Specialist | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Cancer Research Technology Program (CRTP) develops and implements emerging technology, cancer biology expertise and research capabilities to accomplish NCI research objectives.  The CRTP is an outward-facing, multi-disciplinary hub purposed to enable the external cancer research community and provides dedicated support to NCI’s intramural Center for

  6. Application of Metabolomics in Thyroid Cancer Research

    Directory of Open Access Journals (Sweden)

    Anna Wojakowska

    2015-01-01

    Full Text Available Thyroid cancer is the most common endocrine malignancy with four major types distinguished on the basis of histopathological features: papillary, follicular, medullary, and anaplastic. Classification of thyroid cancer is the primary step in the assessment of prognosis and selection of the treatment. However, in some cases, cytological and histological patterns are inconclusive; hence, classification based on histopathology could be supported by molecular biomarkers, including markers identified with the use of high-throughput “omics” techniques. Beside genomics, transcriptomics, and proteomics, metabolomic approach emerges as the most downstream attitude reflecting phenotypic changes and alterations in pathophysiological states of biological systems. Metabolomics using mass spectrometry and magnetic resonance spectroscopy techniques allows qualitative and quantitative profiling of small molecules present in biological systems. This approach can be applied to reveal metabolic differences between different types of thyroid cancer and to identify new potential candidates for molecular biomarkers. In this review, we consider current results concerning application of metabolomics in the field of thyroid cancer research. Recent studies show that metabolomics can provide significant information about the discrimination between different types of thyroid lesions. In the near future, one could expect a further progress in thyroid cancer metabolomics leading to development of molecular markers and improvement of the tumor types classification and diagnosis.

  7. Heavy Ion Fusion Accelerator Research (HIFAR) half-year report, October 1, 1988--March 31, 1989

    International Nuclear Information System (INIS)

    1989-06-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, the induction linac, has been studied at the Lawrence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies, to cut costs. Key elements to be addressed include: beam quality limits set by transverse and longitudinal beam physics; development of induction accelerating modules, and multiple-beam hardware, at affordable costs; acceleration of multiple beams with current amplification --both new features in a linac -- without significant dilution of the optical quality of the beams; and final bunching, transport, and accurate focusing on a small target

  8. Non-oncogenic Acute Viral Infections Disrupt Anti-cancer Responses and Lead to Accelerated Cancer-Specific Host Death

    Directory of Open Access Journals (Sweden)

    Frederick J. Kohlhapp

    2016-10-01

    Full Text Available In light of increased cancer prevalence and cancer-specific deaths in patients with infections, we investigated whether infections alter anti-tumor immune responses. We report that acute influenza infection of the lung promotes distal melanoma growth in the dermis and leads to accelerated cancer-specific host death. Furthermore, we show that during influenza infection, anti-melanoma CD8+ T cells are shunted from the tumor to the infection site, where they express high levels of the inhibitory receptor programmed cell death protein 1 (PD-1. Immunotherapy to block PD-1 reverses this loss of anti-tumor CD8+ T cells from the tumor and decreases infection-induced tumor growth. Our findings show that acute non-oncogenic infection can promote cancer growth, raising concerns regarding acute viral illness sequelae. They also suggest an unexpected role for PD-1 blockade in cancer immunotherapy and provide insight into the immune response when faced with concomitant challenges.

  9. The radiological research accelerator facility. Progress report, December 1, 1995--November 30, 1996

    International Nuclear Information System (INIS)

    Hall, E.J.; Marino, S.A.

    1996-08-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory (RRL) - of Columbia University, and its operation is supported as a National Facility by the U.S. Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. RARAF was conceived in the mid-1960s by Drs. Victor P. Bond of Brookhaven National Laboratory (BNL) and Harald H. Rossi of Columbia University as a research resource dedicated to radiobiology and radiological physics and was officially established on January 1, 1967. The RARAF Van de Graaff accelerator originally served as the injector for the Cosmotron, a 2-GeV accelerator operated at BNL in the 1950s and early 1960s. The immediate aim was to provide a source of monoenergetic neutrons for studies in radiation biology, dosimetry, and microdosimetry. In other major projects the energetic ions produced were utilized directly. RARAF was located at BNL from 1967 until 1980, when it was dismantled and moved to the Nevis Laboratories of Columbia University, where it was then reassembled and returned to operation. This report contains the following information on RARAF: RARAF user's guide; scientific advisory committee; research using RARAF; accelerator utilization and operation; and development of the facilities

  10. Accelerator research on MBE-4, an experimental multi-beam induction linac

    International Nuclear Information System (INIS)

    Meuth, H.; Fessenden, T.J.; Keefe, D.; Warwick, A.I.

    1988-06-01

    The multiple beam accelerator MBE-4 is a device for research toward a heavy ion driver for inertial confinement fusion, based on the induction linac concept. Its main goal is proof of the principle of current amplification by acceleration and controlled self-similar beam pulse compression. Into the 16-m long device four beams, each with an initial current of 10 mA are injected from a Marx-driven diode at 200 keV. The current amplification is up to nine-fold, with a final beam energy of about 800 keV in the middle of the bunch. Now that all the apparatus' accelerator sections have been completed, installed and aligned, and its unaccelerated transport properties have been studied, our experimental research has reached the crucial phase of implementing appropriate accelerator schedules that approximate self-similar current-pulse compression. These schedules are established through a close interplay of computations using a one-dimensional simulation code and a manual empirical tuning procedure. In a first approach, with a rather vigorous schedule that uses most of the accelerator modules to their voltage limits, we have determined the limits of our capability for controlled pulse compression, mainly due to waveform shaping of the driving pulse-forming networks. We shall report on these results. In the future, we will also aim for gentler schedules that would model more closely an inertial confinement fusion scenario. 8 refs., 11 figs., 1 tab

  11. Circulating Microvesicles from Pancreatic Cancer Accelerate the Migration and Proliferation of PANC-1 Cells.

    Science.gov (United States)

    An, Mingrui; Zhu, Jianhui; Wu, Jing; Cuneo, Kyle C; Lubman, David M

    2018-04-06

    Circulating microvesicles are able to mediate long-distance cell-cell communications. It is essential to understand how microvesicles from pancreatic cancer act on other cells in the body. In this work, serum-derived microvesicles were isolated from 10 patients with locally advanced pancreatic cancer and healthy controls. Using Cell Transwell and WST-1 reagents, we found that microvesicles from pancreatic cancer accelerated migration and proliferation of PANC-1 cells. Meanwhile, the proliferation of these cancer-microvesicle-treated cells (CMTCs) was affected less by 10 μM of gemcitabine relative to healthy microvesicle-treated cells (HMTCs). Next, we optimized the filter-aided sample preparation method to increase the recovery of protein samples and then applied it to the quantification of the proteome of CMTCs and HMTCs. The peptides were labeled and analyzed by liquid chromatography-tandem mass spectrometry. In total, 4102 proteins were identified, where 35 proteins were up-regulated with 27 down-regulated in CMTCs. We verified the quantitative results of three key proteins CD44, PPP2R1A, and TP53 by Western blot. The Ingenuity Pathway Analysis revealed pathways that cancer microvesicles might participate in to promote cell migration and proliferation. These findings may provide novel clues of treatment for tumorigenesis and metastasis.

  12. Antibody Characterization Lab | Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    The Antibody Characterization Lab (ACL), an intramural reference laboratory located at the Frederick National Laboratory for Cancer Research in Frederick, Maryland, thoroughly characterizes monoclonal antibodies or other renewable affinity binding reagents for use in cancer related research.

  13. A Seat at the Table: Culturally based cancer research

    Science.gov (United States)

    NCI supports research to address cancer disparities among American Indian and Alaska Native populations. In this video, two researchers advocate for more culturally sensitive practices to help people who are most disproportionately affected by cancer disparities.

  14. Accelerator research studies: Technical progress report, June 1, 1988--May 31, 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This report discusses research progress in the following general topics: Study of transport and longitudinal compression of intense, high-brightness beams; study of collective ion acceleration by intense electron beams and pulse powered plasma focus; and study of microwave sources and parameter scaling for high-frequency electron-positron supercollider linacs

  15. The accelerators of the Joint Institute for Nuclear Research at Dubna

    International Nuclear Information System (INIS)

    Kuehn, B.

    1981-01-01

    History, state-of-the-art, and the planned development of the high-energy and heavy-ion accelerators at the Joint Institute for Nuclear Research at Dubna are reviewed. Data on the particle beams available at present and in the future are given. (author)

  16. Brilliant research perspectives DESY's accelerator "PETRA" to become a most brilliant light source

    CERN Multimedia

    2003-01-01

    From 2007 onwards, the PETRA accelerator at the Helmholtz research center DESY will be converted into the most brilliant storage-ring-based X-ray source worldwide. Current plans envision 13 to 15 experimental stations, which will be equipped with so-called undulators: long magnet arrangements delivering X-ray radiation with especially high brilliance (1 page).

  17. The Experimental Stand for Research of Wakefield Method of Charged Particles Acceleration

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Onishchenko, I.N.; Onishchenko, N.I.; Sotnikov, G.V.; Uskov, V.V.

    2006-01-01

    The experimental installation and diagnostic equipment with motivation to use for various researches of wakefield method of charged particles acceleration both in plasma and in dielectric structure has been described. The main parameters of a sequence of short relativistic electron bunch and values of physical characteristics of slow-down structures have been presented

  18. Basic and technical research on lung cancer

    International Nuclear Information System (INIS)

    Miyamoto, Tadaaki

    2004-01-01

    In association with clinical study of carbon beam therapy for lung cancer, the basic research for lung cancer and the patients with this disease has been carried out for the past 10 years. With regard to lung damage by the carbon beams, firstly pulmonary function was measured and analyzed for the patients with stage I non-small cell lung cancer. Force expiratory volume in 1 second (FVE 1.0) and TLC (total lung capacity) was found to be reduced significantly at 6 and 12 months after therapy but the reduction rate was a little, which can support the safety of this treatment modality. Secondly, the regional lung damage by the beams was investigated by using correct fusion of CT images with carbon beam dose distribution, diagnostic follow-up CT images and blood flow and ventilation spect images. It demonstrated the graded decrease blood flow by dose and the compensatory increase of blood flow in the adjacent lobe of lung unexposed to irradiation. On the other hand, the biological study of carbon beam effects on lung cancer cells and tumors line was conducted. Firstly, by using 7 or 4 human lung cancer cell line, the radiosensitivity of carbon beams was compared with that of photons by different histological patterns. It was found that there was no essential difference in the sensitivity pattern for lung cancer histology between the carbon beams and photons though the former doubled the later in power. Secondly, by using IA cell lines among them, the dynamic of clonogenic cells (clonogen) in a nude tumor and the changes in its morphology following irradiation was investigated, clarifying that the clonogen proliferating under anoxic or hypoxic conditions played a pivotal role for tumor regrowth and stemmed from the different clone which had been genetically selected and developed under these conditions. The finding of clonogen becomes one of the evidence supporting the superiority of a single-dose radiotherapy to fractionated radiotherapy. (author)

  19. Frederick W. Alt received the 2015 Szent-Györgi Prize for Progress in Cancer Research.

    Science.gov (United States)

    Scully, Peter; Zhao, Jie; Ba, Sujuan

    2016-02-03

    The Szent-Györgyi Prize for Progress in Cancer Research is a prestigious scientific award established by the National Foundation for Cancer Research (NFCR)--a leading cancer research charitable organization in the United States that is committed to supporting scientific research and public education relating to the prevention, early diagnosis, better treatments, and ultimately, a cure for cancer. Each year, the Szent-Györgyi Prize honors an outstanding researcher, nominated by colleagues or peers, who has contributed outstanding, significant research to the fight against cancer, and whose accomplishments have helped improve treatment options for cancer patients. The Prize also promotes public awareness of the importance of basic cancer research and encourages the sustained investment needed to accelerate the translation of these research discoveries into new cancer treatments. This report highlights the pioneering work led by the 2015 Prize winner, Dr. Frederick Alt. Dr. Alt's work in the area of cancer genetics over four decades has helped to shape the very roots of modern cancer research. His work continues to profoundly impact the approaches that doctors around the globe use to diagnose and treat cancer. In particular, his seminal discoveries of gene amplification and his pioneering work on molecular mechanisms of DNA damage repair have helped to usher in the era of genetically targeted therapy and personalized medicine.

  20. Hardware dependencies of GPU-accelerated beamformer performances for microwave breast cancer detection

    Directory of Open Access Journals (Sweden)

    Salomon Christoph J.

    2016-09-01

    Full Text Available UWB microwave imaging has proven to be a promising technique for early-stage breast cancer detection. The extensive image reconstruction time can be accelerated by parallelizing the execution of the underlying beamforming algorithms. However, the efficiency of the parallelization will most likely depend on the grade of parallelism of the imaging algorithm and of the utilized hardware. This paper investigates the dependencies of two different beamforming algorithms on multiple hardware specification of several graphics boards. The parallel implementation is realized by using NVIDIA’s CUDA. Three conclusions are drawn about the behavior of the parallel implementation and how to efficiently use the accessible hardware.

  1. Potential clinical impact of laser-accelerated beams in cancer ion therapy

    Energy Technology Data Exchange (ETDEWEB)

    Obcemea, Ceferino

    2016-09-01

    In this article, I present three advantages of plasma-accelerated ion beams for cancer therapy. I discuss how: 1. low-emittance and well-collimated beams are advantageous in proximal normal tissue-sparing; 2. highly-peaked quasi-monoenergetic beams are ideal for fast energy selection and switching in Pencil Beam Scanning (PBS) as a treatment delivery; 3. high fluence and ultra-short pulse delivery produce collective excitations in the medium and enhance the stopping power. This in turn produces denser ionization track signatures (spurs, blobs, etc.) in target tumors, higher linear energy transfer, higher Bragg peak, and higher radiobiological effectiveness at the micro-level.

  2. Translational Partnership Development Lead | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Frederick National Laboratory for Cancer Research (FNLCR) is a Federally Funded Research and Development Center operated by Leidos Biomedical Research, Inc on behalf of the National Cancer Institute (NCI). The staff of FNLCR support the NCI’s mission in the fight against cancer and HIV/AIDS. Currently we are seeking a Translational Partnership Development Lead (TPDL) who will work closely with the Office of Translational Resources (OTR) within the Office of the Director (OD) of NCI’s Center for Cancer Research (CCR) to facilitate the successful translation of CCR’s basic and preclinical research advances into new therapeutics and diagnostics. The TPDL with be strategically aligned within FNLCR’s Partnership Development Office (PDO), to maximally leverage the critical mass of expertise available within the PDO. CCR comprises the basic and clinical components of the NCI’s Intramural Research Program (IRP) and consists of ~230 basic and clinical Investigators located at either the NIH main campus in Bethesda or the NCI-Frederick campus. CCR Investigators are focused primarily on cancer and HIV/AIDS, with special emphasis on the most challenging and important high-risk/high-reward problems driving the fields. (See https://ccr.cancer.gov for a full delineation of CCR Investigators and their research activities.) The process of developing research findings into new clinical applications is high risk, complex, variable, and requires multiple areas of expertise seldom available within the confines of a single Investigator’s laboratory. To accelerate this process, OTR serves as a unifying force within CCR for all aspects of translational activities required to achieve success and maintain timely progress. A key aspect of OTR’s function is to develop and strengthen essential communications and collaborations within NIH, with extramural partners and with industry to bring together experts in chemistry, human subjects research

  3. Multiple purpose research complex on the basis of electron accelerators and terahertz free electron laser

    International Nuclear Information System (INIS)

    Kulipanov, G.N.

    2009-01-01

    In this report the basic positioning parameters of multiple purpose research complex are presented, the list of potential experiments and technological uses on the example of results received in the multiuser center of G.I. Budker Institut of nuclear physics Siberian department of the Russian Academy of Sciences is discussed. This research complex is directed on work in the big universities and nano technology centers. Electron accelerators is intended for development of electron-beam technologies different material modification, for production of nano powder, nano materials and solution of ecological tasks. In this work the project of multiple purpose research complex on the basis of new generation electron accelerator Il-14 and workable terahertz free electron laser is suggested. Terahertz free electron laser will be used for researches in the sphere of physics and chemistry, biology and medicine, nanotechnology engineering and different methods of nanodiagnostics.

  4. Nuclear safeguards research with the LASL 3. 75-MV Van de Graaff accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Krick, M.S.; Evans, A.E.

    1976-01-01

    The continued use of the Los Alamos Scientific Laboratory (LASL) 3.75-MV Van de Graaff accelerator for the nondestructive assay of nuclear material in support of nuclear safeguards is reviewed. A brief description of the accelerator facility and the small-sample assay station (SSAS) is provided. Factors affecting high-accuracy assay of small samples are outlined. Examples are provided for the assay of uranium--thorium mixtures, low-level uranium samples, and high-temperature gas-cooled reactor (HTGR) fuel rods. Research on delayed-neutron energy spectra, radiation damage to /sup 3/He proportional counters, and /sup 4/He gas scintillators is summarized.

  5. Annual report of the Tandem Accelerator Center, Nuclear and Solid State Research Project, University of Tsukuba

    International Nuclear Information System (INIS)

    1979-01-01

    During the academic year of 1978 to 1979, the 12 UD pelletron tandem accelerator has operated successfully. Ion species used were polarized p, polarized d, α(from the polarized ion source), p, d, 16 O and 18 O (from the direct extraction ion source), and C, O, Cu and Au (from the sputtering ion source). Improvements were made in the detector and data acquisition system. The data handling system 'SHINE' was completed and is in full operation. Research works are reported in individual summaries under the following chapters: accelerator and beam transport system, general equipments nuclear physics, atomic and solid-state physics, and biological and medical science and others. (Mori, K.)

  6. Translational Partnership Development Lead | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Frederick National Laboratory for Cancer Research (FNLCR) is a Federally Funded Research and Development Center operated by Leidos Biomedical Research, Inc on behalf of the National Cancer Institute (NCI). The staff of FNLCR support the NCI’s mission in the fight against cancer and HIV/AIDS. Currently we are seeking a Translational Partnership

  7. Resolving key heavy-ion fusion target issues with relativistic heavy-ion research accelerators

    International Nuclear Information System (INIS)

    Arnold, R.C.

    1988-01-01

    Heavy-ion accelerators designed for relativistic nuclear research experiments can also be adapted for target research in heavy-ion driver inertial fusion. Needle-shaped plasmas can be created that are adequate for studying basic properties of matter at high energy density. Although the ion range is very long, the specific deposited power nevertheless increases with kinetic energy, as the focus spot can be made smaller and more ions can be accumulated in larger rings

  8. Priority research areas to accelerate the development of practical ultraconductive copper conductors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dominic F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burwell, Malcolm [International Copper Association, Washington, DC (United States); Stillman, H. [International Copper Association, Washington, DC (United States)

    2015-09-01

    This report documents the findings at an Ultraconductive Copper Strategy Meeting held on March 11, 2015 in Washington DC. The aim of this meeting was to bring together researchers of ultraconductive copper in the U.S. to identify and prioritize critical non-proprietary research activities that will enhance the understanding in the material and accelerate its development into practical conductors. Every effort has been made to ensure that the discussion and findings are accurately reported in this document.

  9. Monte Carlo Analysis of the Accelerator-Driven System at Kyoto University Research Reactor Institute

    Directory of Open Access Journals (Sweden)

    Wonkyeong Kim

    2016-04-01

    Full Text Available An accelerator-driven system consists of a subcritical reactor and a controllable external neutron source. The reactor in an accelerator-driven system can sustain fission reactions in a subcritical state using an external neutron source, which is an intrinsic safety feature of the system. The system can provide efficient transmutations of nuclear wastes such as minor actinides and long-lived fission products and generate electricity. Recently at Kyoto University Research Reactor Institute (KURRI; Kyoto, Japan, a series of reactor physics experiments was conducted with the Kyoto University Critical Assembly and a Cockcroft–Walton type accelerator, which generates the external neutron source by deuterium–tritium reactions. In this paper, neutronic analyses of a series of experiments have been re-estimated by using the latest Monte Carlo code and nuclear data libraries. This feasibility study is presented through the comparison of Monte Carlo simulation results with measurements.

  10. Monte Carlo analysis of the accelerator-driven system at Kyoto University Research Reactor Institute

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Kyeong; Lee, Deok Jung [Nuclear Engineering Division, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Lee, Hyun Chul [VHTR Technology Development Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Pyeon, Cheol Ho [Nuclear Engineering Science Division, Kyoto University Research Reactor Institute, Osaka (Japan); Shin, Ho Cheol [Core and Fuel Analysis Group, Korea Hydro and Nuclear Power Central Research Institute, Daejeon (Korea, Republic of)

    2016-04-15

    An accelerator-driven system consists of a subcritical reactor and a controllable external neutron source. The reactor in an accelerator-driven system can sustain fission reactions in a subcritical state using an external neutron source, which is an intrinsic safety feature of the system. The system can provide efficient transmutations of nuclear wastes such as minor actinides and long-lived fission products and generate electricity. Recently at Kyoto University Research Reactor Institute (KURRI; Kyoto, Japan), a series of reactor physics experiments was conducted with the Kyoto University Critical Assembly and a Cockcroft-Walton type accelerator, which generates the external neutron source by deuterium-tritium reactions. In this paper, neutronic analyses of a series of experiments have been re-estimated by using the latest Monte Carlo code and nuclear data libraries. This feasibility study is presented through the comparison of Monte Carlo simulation results with measurements.

  11. Research programme for the 660 MeV proton accelerator driven MOX-plutonium subcritical assembly

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Buttsev, V.S.; Buttseva, G.L.; Dudarev, S.Yu.; Polanski, A.; Puzynin, I.V.; Sissakyan, A.N.

    2000-01-01

    The paper presents a research programme of the Experimental Accelerator Driven System (ADS), which employs a subcritical assembly and a 660 MeV proton accelerator operating at the Laboratory of Nuclear Problems of the JINR, Dubna. MOX fuel (25% PuO 2 + 75% UO 2 ) designed for the BN-600 reactor use will be adopted for the core of the assembly. The present conceptual design of the experimental subcritical assembly is based on a core of a nominal unit capacity of 15 kW (thermal). This corresponds to the multiplication coefficient k eff = 0.945, energetic gain G=30 and the accelerator beam power 0.5 kW

  12. Quantitative Image Informatics for Cancer Research (QIICR) | Informatics Technology for Cancer Research (ITCR)

    Science.gov (United States)

    Imaging has enormous untapped potential to improve cancer research through software to extract and process morphometric and functional biomarkers. In the era of non-cytotoxic treatment agents, multi- modality image-guided ablative therapies and rapidly evolving computational resources, quantitative imaging software can be transformative in enabling minimally invasive, objective and reproducible evaluation of cancer treatment response. Post-processing algorithms are integral to high-throughput analysis and fine- grained differentiation of multiple molecular targets.

  13. Evidence and research in rectal cancer

    International Nuclear Information System (INIS)

    Valentini, Vincenzo; Beets-Tan, Regina; Borras, Josep M.; Krivokapic, Zoran; Leer, Jan Willem; Pahlman, Lars; Roedel, Claus; Schmoll, Hans Joachim; Scott, Nigel; Velde, Cornelius Van de; Verfaillie, Christine

    2008-01-01

    The main evidences of epidemiology, diagnostic imaging, pathology, surgery, radiotherapy, chemotherapy and follow-up are reviewed to optimize the routine treatment of rectal cancer according to a multidisciplinary approach. This paper reports on the knowledge shared between different specialists involved in the design and management of the multidisciplinary ESTRO Teaching Course on Rectal Cancer. The scenario of ongoing research is also addressed. In this time of changing treatments, it clearly appears that a common standard for large heterogeneous patient groups have to be substituted by more individualised therapies based on clinical-pathological features and very soon on molecular and genetic markers. Only trained multidisciplinary teams can face this new challenge and tailor the treatments according to the best scientific evidence for each patient

  14. Accelerating knowledge to action: the pan-Canadian cancer control strategy.

    Science.gov (United States)

    Fairclough, L; Hill, J; Bryant, H; Kitchen-Clarke, L

    2012-04-01

    In 2006, the federal government committed funding of $250 million over 5 years for the Canadian Partnership Against Cancer Corporation to begin implementation of the Canadian Strategy for Cancer Control (CSCC). The Partnership was established as a not-for-profit corporation designed to work actively with a broad range of stakeholders and organizations that had been engaged in the development of the CSCC and with the public more broadly. A policy experiment unto itself, the Partnership was the first disease-based organization funded at the federal level outside of government. It was charged with a mandate to enable transfer of knowledge and to catalyze coordinated and accelerated action across the country to reduce the burden of cancer. Implementation has involved establishing shared goals, objectives, and plans with participating partners. Knowledge management-incorporating pan-Canadian approaches to the identification of content, processes, technology, and culture change-was used to enable that work across the federated health care delivery system. Evaluation of the organization through independent review, the ability to achieve initiative-level targets by 2012, and progress measured using indicators of system performance was used to examine the effectiveness of the strategy and approach overall. Evaluation findings support the conclusions that Canada has made progress in achieving immediate outcomes (achievable in 25 years) impact on cancer. The mechanism of funding the Partnership to develop collaboration among stakeholders in cancer control to achieve coordinated action has been possible and has been enabled through the Partnership's knowledge-to-action mandate. Opportunities are available to further engage and clarify the roles of stakeholders in action, to clearly define outcomes, and to further quantify the economic benefits that have resulted from a coordinated approach. With the ongoing funding commitment to support coordinated action within a federated

  15. Original Research Cervical cancer in southern Malawi: A ...

    African Journals Online (AJOL)

    by the fact that many cancers may go unrecorded and that ... International Agency for Research on Cancer's (IARC) ... All patients with a new diagnosis of cervical cancer presenting to QECH between ..... A specialist cervical cancer nurse could be appointed to ... Zuma, T., et al., The role of traditional health practitioners in.

  16. Discontinuous Schedule of Bevacizumab in Colorectal Cancer Induces Accelerated Tumor Growth and Phenotypic Changes

    Directory of Open Access Journals (Sweden)

    Selma Becherirat

    2018-04-01

    Full Text Available Antiangiogenics administration in colorectal cancer patients seemed promising therapeutic approach. Inspite of early encouraging results, it however gave only modest clinical benefits. When AAG was administered with discontinuous schedule, the disease showed acceleration in certain cases. Though resistance to AAG has been extensively studied, it is not documented for discontinuous schedules. To simulate clinical situations, we subjected a patient-derived CRC subcutaneous xenograft in mice to three different protocols: 1 AAG (bevacizumab treatment for 30 days (group A (group B was the control, 2 bevacizumab treatment for 50 days (group C and bevacizumab for 30 days and 20 without treatment (group D, and 3 bevacizumab treatment for 70 days (group E and 70 days treatment with a drug-break period between day 30 and 50 (group F. The tumor growth was monitored, and at sacrifice, the vascularity of tumors was measured and the proangiogenic factors quantified. Tumor phenotype was studied by quantifying cancer stem cells. Interrupting bevacizumab during treatment accelerated tumor growth and revascularization. A significant increase of proangiogenic factors was observed when therapy was stopped. On withdrawal of bevacizumab, as also after the drug-break period, the plasmatic VEGF increased significantly. Similarly, a notable increase of CSCs after the withdrawal and drug-break period of bevacizumab was observed (P<.01. The present study indicates that bevacizumab treatment needs to be maintained because discontinuous schedules tend to trigger tumor regrowth, and increase tumor resistance and CSC heterogeneity.

  17. A Milestone in Cancer Research and Treatment in India

    Science.gov (United States)

    Tata Memorial Center is celebrating 75 years of leadership service towards cancer control and research in India. In honor of this anniversary, TMC is hosting A Conference of New Ideas in Cancer – Challenging Dogmas on February 26-28th, 2016 as part of its platinum jubilee events. CGH Director, Dr. Ted Trimble, will give a plenary talk: "Thinking Outside the Box in Cancer Research - Perspectives from the US NCI” in the session titled: Future of Cancer Research: US and European perspectives.

  18. Selected works of basic research on the physics and technology of accelerator driven clean nuclear power system

    International Nuclear Information System (INIS)

    Zhao Zhixiang

    2002-01-01

    38 theses are presented in this selected works of basic research on the physics and technology of accelerator driven clean nuclear power system. It includes reactor physics and experiment, accelerators physics and technology, nuclear physics, material research and partitioning. 13 abstracts, which has been presented on magazines home and abroad, are collected in the appendix

  19. Current status of neutron scattering research and accelerator technology in Indonesia

    International Nuclear Information System (INIS)

    Ridwan; Ikram, Abarul; Wuryanto

    2001-01-01

    The neutron beam generated from steady state reactor 30 MW RSG-GAS are used mainly for neutron scattering studies and isotope production. There are seven neutron scattering facilities under responsible and operated by Research and Development Center for Materials Science and Technology of National Nuclear Energy Agency (Batan) of Indonesia. In this report, current conditions of the facilities namely, DN1-M, HRPD, FCD/TD, SANS, HRSANS, TAS and NRF and research activities will be described. Also, a part of research activities by using accelerator technology at Batan-Yogyakarta will be reviewed. (author)

  20. Summer Student Breast Cancer Research Training Program

    National Research Council Canada - National Science Library

    Zaloga, Gary P

    2005-01-01

    ... projects addressed the effects of omega-3 lipids upon breast cancer cells. 0mega-3 lipids were found to decrease breast cancer-induced muscle cell proteolysis and to induce apoptosis in cancer cells...

  1. ACCELERATED REGIMENS OF ADJUVANT RADIOTHERAPY IN THE TREATMENT OF BREAST CANCER

    Directory of Open Access Journals (Sweden)

    G. V. Afonin

    2017-01-01

    Full Text Available Treatment of breast cancer (BC is a complex multidisciplinary problem. Often, radiation therapy is an obligatory component of treatment of breast cancer patients. Numerous large randomized trials have proved the efficacy of adjuvant radiotherapy in both the standard fractionation regimen in a single focal dose of 2 Gy to a total focal dose of 50 Gy for 25 fractions and in modes of hypofractionation using radiation exposure at a larger daily dose with a reduction in the total treatment time. The presented review summarizes the data of the largest studies on the modes of hypofractionation of postoperative radiotherapy for breast cancer. Most of the studies comparing the standard mode of fractionation of postoperative radiotherapy with the modes of hypofractionation showed comparable results for the main oncological parameters with similar tolerability, frequency of complications and good cosmetic results. It also shows the economic feasibility of applying accelerated regimes in everyday practice. Despite the fact that radiotherapy in the mode of hypofractionation has already become the standard of treatment and is recommended for use by the largest European and American cancer associations, indications for its conduct, the criteria for selection in the studies and the range of recommended single focal doses differ. The obtained results do not give an opportunity to confidently judge the advantage of one or another regime. It is necessary to determine the factors of a favorable and unfavorable prognosis, to clarify the indications for the use of various radiotherapy techniques. Therefore, questions about the optimal mode of hypo-fractionation of adjuvant radiotherapy, the timing of its initiation and the criteria for selecting patients for this type of therapy as part of the comprehensive treatment of breast cancer have not yet been fully resolved. Also open is the choice of optimal single and total doses of radiation, its combination with drug

  2. Research on cw electron accelerators using room-temperature rf structures. Annual report

    International Nuclear Information System (INIS)

    1985-01-01

    Highlights reported include: measurement of the 100 keV chopped beam emittance, completion of installation of the entire 5 MeV injector linac system with all rf power and drive, extensive field mapping of one end magnet, completion of construction of the 12 MeV linac for the racetrack microtron (RTM), installation of most of the control system, and first acceleration of beam to 5 MeV. Plans for completion of the project are discussed. When the RTM is operating, it is expected to have many unique performance characteristics, including the cw nature of the beam, high current, easily variable energy over a wide range, excellent emittance, and small energy spread. Plans for future uses in the areas of nuclear physics, dosimetry research and standards, accelerator development, and free electron laser research are discussed. 19 refs

  3. The Radiological Research Accelerator Facility. Progress report, December 1, 1993--November 30, 1994

    International Nuclear Information System (INIS)

    Hall, E.J.; Marino, S.A.

    1994-04-01

    This document begins with a general description of the facility to include historical and up-to-date aspects of design and operation. A user's guide and a review of research using the facility follows. Next the accelerator utilization and operation and the development of the facilities is given. Personnel currently working at the facility are listed. Lastly, recent publications and literature cited are presented

  4. Survey of physics research with a high duty cycle electron accelerator

    International Nuclear Information System (INIS)

    Bartholomew, G.A.; Earle, E.D.; Knowles, J.W.; Lone, M.A.

    1981-02-01

    The opportunities for nuclear physics research afforded by a CW electron linac with nominal energy 100 MeV and beam current >= 100 μA equipped with a bremsstrahlung monochromator and reaction product coincidence facilities are outlined. It is proposed that a program toward realization of an accelerator meeting these requirements and with provision for eventual extension to higher energies be undertaken at the Chalk River Nuclear Laboratories. (author)

  5. Research Summaries: The 11th Biennial Rivkin Center Ovarian Cancer Research Symposium.

    Science.gov (United States)

    Armstrong, Deborah K

    2017-11-01

    In September 2016, the 11th biennial ovarian cancer research symposium was presented by the Rivkin Center for Ovarian Cancer and the American Association for Cancer Research. The 2016 symposium focused on 4 broad areas of research: Mechanisms of Initiation and Progression of Ovarian Cancer, Tumor Microenvironment and Models of Ovarian Cancer, Detection and Prevention of Ovarian Cancer, and Novel Therapeutics for Ovarian Cancer. The presentations and abstracts from each of these areas are reviewed in this supplement to the International Journal of Gynecologic Oncology.

  6. Published Research - NCI Alliance for Nanotechnology in Cancer

    Science.gov (United States)

    The NCI Alliance for Nanotechnology in Cancer has published much exciting and impactful research over the years. Find here a list of all of these listed in PubMed and others across the field of Cancer Nanotechnology.

  7. Training Program in Biostatistics for Breast Cancer Research

    National Research Council Canada - National Science Library

    Little, Roderick

    1998-01-01

    The current training program terminates in the summer of 1998. We had originally planned to develop a training program in biostatistics for cancer research for submission to the National Cancer Institute (Task 9...

  8. Present status of tandem accelerator research facility (MALT) in University of Tokyo

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Koichi; Hatori, Satoshi; Nakano, Chuichiro; Sunohara, Yoko [Tokyo Univ. (Japan). Research Center for Nuclear Science and Technology

    1996-12-01

    The tandem accelerator in University of Tokyo, which was renewed from 1991 to March, 1994 started the joint utilization within the University since April, 1995 after about one year of the period of adjustment. The time of operation exceeding 3500 hours in one year was recorded. This facility is that for carrying out the minute analysis such as AMS, PIXE, NRA and others and the research of atomic and molecular physics, and called microanalysis laboratory-tandem accelerator (MALT). Support has been done by placing emphasis on the development of AMS measurement which enables the microanalysis of {sup 14}C,{sup 10}Be and {sup 26}Al, but the accuracy of {sup 14}C AMS did not attain the practical level. {sup 10}Be and {sup 26}Al AMS reached almost the practical level, and the measurement of actual samples has been carried out. The state of operation and utilization of the MALT is reported. As to the recent troubles and the countermeasures in the MALT, the voltage instability of the accelerator, the unstable ion source support mechanism and the poor transmissivity of beam in the accelerator are described. (K.I.)

  9. Accelerated fractionation in cancers of the esophagus: a multivariate analysis on 102 patients

    International Nuclear Information System (INIS)

    Girinsky, T.; Marsiglia, H.; Auperin, A.

    1995-01-01

    Purpose: Clinical outcome of cancer of the esophagus treated with conventional fractionated radiotherapy is dismal. Locoregional recurrences remain a major unresolved issue. Although data are scarce, potential doubling times of the squamous cell carcinoma of the esophagus appear to be generally rather short. Accelerated fractionation was used to shorten the conventional overall treatment time by two and half weeks (38% reduction of the treatment time) to counteract possible tumor cell repopulation. Materials and Methods: 102 patients with cancer of the esophagus not submitted to surgery for medical reasons or because of extensive disease. (locoregional or metastases) were entered in the study between 1986 and 1993. There were 27T1, 36T2 and 39T3 tumors, 10% of which were already metastatic. 89% of the patients had a squamous cell carcinoma and 11% an adenocarcinoma. Loss of weight about superior or equal to 10% occurred in 39% of the patients. In 63% of the cases neoadjuvant chemotherapy was given prior to radiation treatment. Radiation treatment delivered a mean dose of 66 Gy (SE=6.4), median dose of 65 Gy. The mean overall treatment time was 32.6 days (SE=6.2), median 31 days. A concomitant boost was used during the basic wide field irradiation to accelerate treatment. Results: Acute toxicity was mainly esophageal. Esophagitis grade III was observed in 17% of the patients and lasted 2 to 3 weeks. Radiation treatment was temporarily stopped in 8% of the patients due to esophagitis and was usually resumed a week later. Previous chemotherapy did not seem to significantly increase the occurrence of esophagitis. Of 82 evaluable patients, 56% had complete tumor regression 2 to 4 months after radiation treatment. There was no strict correlation between response after chemotherapy and the subsequent response after radiotherapy. The actuarial 3-year cause specific survival rates for T1, T2, T3 are 34%, 18.5% and 5% respectively. The actuarial 3-year local control rates

  10. Accelerated fractionation in cancers of the esophagus: a multivariate analysis on 102 patients

    Energy Technology Data Exchange (ETDEWEB)

    Girinsky, T; Marsiglia, H; Auperin, A

    1995-07-01

    Purpose: Clinical outcome of cancer of the esophagus treated with conventional fractionated radiotherapy is dismal. Locoregional recurrences remain a major unresolved issue. Although data are scarce, potential doubling times of the squamous cell carcinoma of the esophagus appear to be generally rather short. Accelerated fractionation was used to shorten the conventional overall treatment time by two and half weeks (38% reduction of the treatment time) to counteract possible tumor cell repopulation. Materials and Methods: 102 patients with cancer of the esophagus not submitted to surgery for medical reasons or because of extensive disease. (locoregional or metastases) were entered in the study between 1986 and 1993. There were 27T1, 36T2 and 39T3 tumors, 10% of which were already metastatic. 89% of the patients had a squamous cell carcinoma and 11% an adenocarcinoma. Loss of weight about superior or equal to 10% occurred in 39% of the patients. In 63% of the cases neoadjuvant chemotherapy was given prior to radiation treatment. Radiation treatment delivered a mean dose of 66 Gy (SE=6.4), median dose of 65 Gy. The mean overall treatment time was 32.6 days (SE=6.2), median 31 days. A concomitant boost was used during the basic wide field irradiation to accelerate treatment. Results: Acute toxicity was mainly esophageal. Esophagitis grade III was observed in 17% of the patients and lasted 2 to 3 weeks. Radiation treatment was temporarily stopped in 8% of the patients due to esophagitis and was usually resumed a week later. Previous chemotherapy did not seem to significantly increase the occurrence of esophagitis. Of 82 evaluable patients, 56% had complete tumor regression 2 to 4 months after radiation treatment. There was no strict correlation between response after chemotherapy and the subsequent response after radiotherapy. The actuarial 3-year cause specific survival rates for T1, T2, T3 are 34%, 18.5% and 5% respectively. The actuarial 3-year local control rates

  11. The future workforce in cancer prevention: advancing discovery, research, and technology.

    Science.gov (United States)

    Newhauser, Wayne D; Scheurer, Michael E; Faupel-Badger, Jessica M; Clague, Jessica; Weitzel, Jeffrey; Woods, Kendra V

    2012-05-01

    As part of a 2-day conference on October 15 and 16, 2009, a nine-member task force composed of scientists, clinicians, educators, administrators, and students from across the USA was formed to discuss research, discovery, and technology obstacles to progress in cancer prevention and control, specifically those related to the cancer prevention workforce. This article summarizes the task force's findings on the current state of the cancer prevention workforce in this area and its needs for the future. The task force identified two types of barriers impeding the current cancer prevention workforce in research, discovery, and technology from reaching its fullest potential: (1) limited cross-disciplinary research opportunities with underutilization of some disciplines is hampering discovery and research in cancer prevention, and (2) new research avenues are not being investigated because technology development and implementation are lagging. Examples of impediments and desired outcomes are provided in each of these areas. Recommended solutions to these problems are based on the goals of enhancing the current cancer prevention workforce and accelerating the pace of discovery and clinical translation.

  12. Gaps in nutritional research among older adults with cancer

    Science.gov (United States)

    Presley, Carolyn J.; Dotan, Efrat; Soto-Perez-de-Celis, Enrique; Jatoi, Aminah; Mohile, Supriya G.; Won, Elizabeth; Alibhai, Shabbir; Kilari, Deepak; Harrison, Robert; Klepin, Heidi D.; Wildes, Tanya M.; Mustian, Karen; Demark-Wahnefried, Wendy

    2016-01-01

    Nutritional issues among older adults with cancer are an understudied area of research despite significant prognostic implications for treatment side effects, cancer-specific mortality, and overall survival. In May of 2015, the National Cancer Institute and the National Institute on Aging co-sponsored a conference focused on future directions in geriatric oncology research. Nutritional research among older adults with cancer was highlighted as a major area of concern as most nutritional cancer research has been conducted among younger adults, with limited evidence to guide the care of nutritional issues among older adults with cancer. Cancer diagnoses among older adults are increasing, and the care of the older adult with cancer is complicated due to multimorbidity, heterogeneous functional status, polypharmacy, deficits in cognitive and mental health, and several other non-cancer factors. Due to this complexity, nutritional needs are dynamic, multifaceted, and dependent on the clinical scenario. This manuscript outlines the proceedings of this conference including knowledge gaps and recommendations for future nutritional research among older adults with cancer. Three common clinical scenarios encountered by oncologists include (1) weight loss during anti-cancer therapy, (2) malnutrition during advanced disease, and (3) obesity during survivorship. In this manuscript, we provide a brief overview of relevant cancer literature within these three areas, knowledge gaps that exist, and recommendations for future research. PMID:27197919

  13. Research of accelerator-based neutron source for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Li Changkai; Ma Yingjie; Tang Xiaobin; Xie Qin; Geng Changran; Chen Da

    2013-01-01

    Background: 7 Li (p, n) reaction of high neutron yield and low threshold energy has become one of the most important neutron generating reactions for Accelerator-based Boron Neutron Capture Therapy (BNCT). Purpose Focuses on neutron yield and spectrum characteristics of this kind of neutron generating reaction which serves as an accelerator-based neutron source and moderates the high energy neutron beams to meet BNCT requirements. Methods: The yield and energy spectrum of neutrons generated by accelerator-based 7 Li(p, n) reaction with incident proton energy from 1.9 MeV to 3.0 MeV are researched using the Monte Carlo code-MCNPX2.5.0. And the energy and angular distribution of differential neutron yield by 2.5-MeV incident proton are also given in this part. In the following part, the character of epithermal neutron beam generated by 2.5-MeV incident protons is moderated by a new-designed moderator. Results: Energy spectra of neutrons generated by accelerator-based 7 Li(p, n) reaction with incident proton energy from 1.9 MeV to 3.0 MeV are got through the simulation and calculation. The best moderator thickness is got through comparison. Conclusions: Neutron beam produced by accelerator-based 7 Li(p, n) reaction, with the bombarding beam of 10 mA and the energy of 2.5 MeV, can meet the requirement of BNCT well after being moderated. (authors)

  14. Radiological Research Accelerator Facility. Progress report, April 1, 1984-March 31, 1985

    International Nuclear Information System (INIS)

    Rossi, H.H.

    1985-01-01

    The aim of the Radiological Research Accelerator Facility (RARAF) was to provide a source of monoenergetic neutrons for studies in radiation biology, dosimetry and microdosimetry. The research has provided insight into the biological action of radiation and its relation to energy distribution in the cell as described by the theory of dual radiation action. This status report on the facility includes descriptions of the capabilities and layout, staffing, radiation safety, and a chronological account of the development and use of the facilities. 5 references, 2 figures

  15. Accelerator research studies. Final report, June 1, 1991 - May 31, 1994

    International Nuclear Information System (INIS)

    1994-01-01

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy is currently in the third year of its three-year funding cycle. The program consists of the following three tasks: Task A -- Study of the transport and longitudinal compression of intense, high-brightness beams; Task B -- Study of high-brightness beam generation in pseudospark devices; Task C -- Study of a gyroklystron high-power microwave source for linear colliders. The research for each task is detailed in this report

  16. Erbb2 up-regulation of ADAM12 expression accelerates skin cancer progression.

    Science.gov (United States)

    Rao, Velidi H; Vogel, Kristen; Yanagida, Jodi K; Marwaha, Nitin; Kandel, Amrit; Trempus, Carol; Repertinger, Susan K; Hansen, Laura A

    2015-10-01

    Solar ultraviolet (UV) radiation can cause severe damage to the skin and is the primary cause of most skin cancer. UV radiation causes DNA damage leading to mutations and also activates the Erbb2/HER2 receptor through indirect mechanisms involving reactive oxygen species. We hypothesized that Erbb2 activation accelerates the malignant progression of UV-induced skin cancer. Following the induction of benign squamous papillomas by UV exposure of v-ras(Ha) transgenic Tg.AC mice, mice were treated topically with the Erbb2 inhibitor AG825 and tumor progression monitored. AG825 treatment reduced tumor volume, increased tumor regression, and delayed the development of malignant squamous cell carcinoma (SCC). Progression to malignancy was associated with increased Erbb2 and ADAM12 (A Disintegin And Metalloproteinase 12) transcripts and protein, while inhibition of Erbb2 blocked the increase in ADAM12 message upon malignant progression. Similarly, human SCC and SCC cell lines had increased ADAM12 protein and transcripts when compared to normal controls. To determine whether Erbb2 up-regulation of ADAM12 contributed to malignant progression of skin cancer, Erbb2 expression was modulated in cultured SCC cells using forced over-expression or siRNA targeting, demonstrating up-regulation of ADAM12 by Erbb2. Furthermore, ADAM12 transfection or siRNA targeting revealed that ADAM12 increased both the migration and invasion of cutaneous SCC cells. Collectively, these results suggest Erbb2 up-regulation of ADAM12 as a novel mechanism contributing to the malignant progression of UV-induced skin cancer. Inhibition of Erbb2/HER2 reduced tumor burden, increased tumor regression, and delayed the progression of benign skin tumors to malignant SCC in UV-exposed mice. Inhibition of Erbb2 suppressed the increase in metalloproteinase ADAM12 expression in skin tumors, which in turn increased migration and tumor cell invasiveness. © 2014 Wiley Periodicals, Inc.

  17. COMPARISON OF CONVENTIONAL RADIATIOTHERAPY AND ACCELERATED HYPERFRACTIONATED RADIATIOTHERAPY IN CHEMORADIATION TREATMENT FOR SMALL CELL LUNG CANCER

    Directory of Open Access Journals (Sweden)

    I. A. Gulidov

    2013-01-01

    Full Text Available The 5-year treatment outcomes of 69 patients with stage IIA–IIIA locally advanced small cell lung cancer have been presented. Accelerated hyperfractionated radiotherapy was administered in the uneven daily dose fractionation (single dose of 1 + 1,5 Gy with a 5–6hour interval to a total dose of 60–70 Gy depending on the health status and lung function. The complete response was achieved in 13 (42 % patients, the median survival was 28 months and the 5-year survival rate was 26,2 %. Grade III lung and pericardium toxicities (according to RTOG toxicity scale were observed in 3,2 % and 6,5 % of patients, respectively. No grade III–IV radiation-induced blood and esophageal damages were found.

  18. Cost-benefit analysis on radiotherapy services for cancer treatment, with LINAC type equipments (linear accelerators

    Directory of Open Access Journals (Sweden)

    Luiz Alberto Blois

    2014-12-01

    Full Text Available This work consists in analyzing the economic feasibility of the investment to implement a Radiotherapy sector for radiological of cancer treatment by type linear accelerators equipments, based on the case of a public hospital in São Paulo. From technical and financial details of the project and the survey reference values for health care to their procedures, the statistical outcome of treatment on patients' life expectancy and average income indicators of the state's population, were estimated to income (private and social and expenses of this health service and other elements that make up the flow of the investment project box. From these estimates we evaluated public and private investment return, ie, if it fits only on the public sector or if private sector could also implement this projects geared exclusively to free admittance.

  19. NIST Accelerator Facilities And Programs In Support Of Industrial Radiation Research

    International Nuclear Information System (INIS)

    Bateman, F.B.; Desrosiers, M.F.; Hudson, L.T.; Coursey, B.M.; Bergstrom, P.M. Jr.; Seltzer, S.M.

    2003-01-01

    NIST's Ionizing Radiation Division maintains and operates three electron accelerators used in a number of applications including waste treatment and sterilization, radiation hardness testing, detector calibrations and materials modification studies. These facilities serve a large number of governmental, academic and industrial users as well as an active intramural research program. They include a 500 kV cascaded-rectifier accelerator, a 2.5 MV electron Van de Graaff accelerator and a 7 to 32 MeV electron linac, supplying beams ranging in energy from a few keV up to 32 MeV. In response to the recent anthrax incident, NIST along with the US Postal Service and the Armed Forces Radiobiology Research Institute (AFRRI) are working to develop protocols and testing procedures for the USPS mail sanitization program. NIST facilities and personnel are being employed in a series of quality-assurance measurements for both electron- and photon-beam sanitization. These include computational modeling, dose verification and VOC (volatile organic compounds) testing using megavoltage electron and photon sources

  20. An overview of cancer research in South African academic and ...

    African Journals Online (AJOL)

    [1] Based on the most recent. South African .... health system research, environmental and occupational ... Research activity in the five most commonly diagnosed male .... that there were no costing or costeffectiveness cancer research projects.

  1. Current cancer research. Reports from the German Cancer Research Center 1998; Krebsforschung heute. Berichte aus dem Deutschen Krebsforschungszentrum 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    Topics from the Contents: The Fight against Cancer in Germany - A Critical Review. Conditions and Structures in Research. Familial Breast Cancer - A Critical Assessment. Research without Animal Experiments. Cancer Prevention. New Approaches for Tumor Therapy. Genes, Chromosomes and Cancer. Therapy of Brain Tumors with Laser Neurosurgery. The Genome Project. (orig.) [Deutsch] Krebsbekaempfung in Deutschland - kritische Ueberlegungen. Forschungsbedingungen und -strukturen. Forschung ohne Tierversuche. Familiaerer Brustkrebs - eine Risikoabschaetzung. Krebspraevention. Neue Therapieansaetze. Laser-Neurochirurgie bei Hirntumoren. Das Genomprojekt. Gene, Chromosomen und Krebs. (orig.)

  2. Prompt nuclear analytical techniques for material research in accelerator driven transmutation technologies: Prospects and quantitative analyses

    International Nuclear Information System (INIS)

    Vacik, J.; Hnatowicz, V.; Cervena, J.; Perina, V.; Mach, R.

    1998-01-01

    Accelerator driven transmutation technology (ADTT) is a promising way toward liquidation of spent nuclear fuel, nuclear wastes and weapon grade Pu. The ADTT facility comprises a high current (proton) accelerator supplying a sub-critical reactor assembly with spallation neutrons. The reactor part is supposed to be cooled by molten fluorides or metals which serve, at the same time, as a carrier of nuclear fuel. Assumed high working temperature (400-600 C) and high radiation load in the subcritical reactor and spallation neutron source put forward the problem of optimal choice of ADTT construction materials, especially from the point of their radiation and corrosion resistance when in contact with liquid working media. The use of prompt nuclear analytical techniques in ADTT related material research is considered and examples of preliminary analytical results obtained using neutron depth profiling method are shown for illustration. (orig.)

  3. LIBO accelerates

    CERN Multimedia

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  4. The BMC Medicine breast cancer collection: an illustration of contemporary research and clinical care.

    Science.gov (United States)

    Tripathy, Debu

    2015-09-23

    The field of breast cancer had witnessed clear improvements in survival and less morbidity over the last few decades owing to earlier detection as a result of public awareness and screening, as well as treatments involving the disciplines of surgical, radiation and medical oncology along with advances in imaging and pathological diagnostics. However, in the last 5-10 years, newer assays and biological therapies have begun to cross new boundaries with higher rates of cure seen in more aggressive cancers. Even though metastatic breast cancer remains incurable, some, but not all, subsets of patients with breast cancer are living longer and more productive lives. Many challenges still remain, and the development of team science coupled with collaborative clinical research and care is expected to accelerate advances along this trajectory.

  5. Next-generation particle accelerators for frontline research and wide-ranging applications in India - how to realize them?

    International Nuclear Information System (INIS)

    Bhandari, R.K.; Roy, Amit

    2015-01-01

    Several modern accelerator facilities have been set up in India for basic and applied research during the past 5 decades. Indian scientists have been able to carry out excellent accelerator-based research at these as well as international facilities. Applications of accelerators in healthcare and industry have also grown in recent years. There is a strong realization now, at all levels, that a quantum jump needs to be given to the field of accelerator science and technology in India to fulfil the aspirations of the research community to be at par internationally in our areas of strength. Applications in industry and healthcare also have to grow substantially to benefit the common man. In this article an analysis of the methodology and logic behind the evolution of our accelerator programme has been presented. More importantly, recommendations have been given for gainfully implementing a rather ambitious programme that is proposed to be taken up in the next few decades. (author)

  6. Out-FOXing Pancreatic Cancer | Center for Cancer Research

    Science.gov (United States)

    Pancreatic cancer is one of the most lethal cancer types worldwide with increasing incidence and mortality rates in the United States. Consequently, it is projected to become the second leading cause of cancer death by 2020. Poor patient outcomes are due to a combination of diagnosis at an advanced stage and a lack of effective treatments. However, a better understanding of the molecular pathways at work in pancreatic cancers may lead to the identification of novel therapeutic targets.

  7. Customizing Therapies for Lung Cancer | Center for Cancer Research

    Science.gov (United States)

    Lung cancer is the leading cause of cancer-related death in both men and women. Although there have been modest improvements in short-term survival over the last few decades, five-year survival rates for lung cancer remain low at only 16 percent. Treatment for lung cancer depends on the stage of the disease at diagnosis, but generally consists of some combination of surgery,

  8. Patient Care Coordinator | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION Within the Leidos Biomedical Research Inc.’s Clinical Research Directorate, the Clinical Monitoring Research Program (CMRP) provides high-quality comprehensive and strategic operational support to the high-profile domestic and international clinical research initiatives of the National Cancer Institute (NCI), National Institute of Allergy and Infectious Diseases (NIAID), Clinical Center (CC), National Institute of Heart, Lung and Blood Institute (NHLBI), National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Center for Advancing Translational Sciences (NCATS), National Institute of Neurological Disorders and Stroke (NINDS), and the National Institute of Mental Health (NIMH). Since its inception in 2001, CMRP’s ability to provide rapid responses, high-quality solutions, and to recruit and retain experts with a variety of backgrounds to meet the growing research portfolios of NCI, NIAID, CC, NHLBI, NIAMS, NCATS, NINDS, and NIMH has led to the considerable expansion of the program and its repertoire of support services. CMRP’s support services are strategically aligned with the program’s mission to provide comprehensive, dedicated support to assist National Institutes of Health researchers in providing the highest quality of clinical research in compliance with applicable regulations and guidelines, maintaining data integrity, and protecting human subjects. For the scientific advancement of clinical research, CMRP services include comprehensive clinical trials, regulatory, pharmacovigilance, protocol navigation and development, and programmatic and project management support for facilitating the conduct of 400+ Phase I, II, and III domestic and international trials on a yearly basis. These trials investigate the prevention, diagnosis, treatment of, and therapies for cancer, influenza, HIV, and other infectious diseases and viruses such as hepatitis C, tuberculosis, malaria, and Ebola virus; heart, lung, and

  9. DOE Research Contributions to Radiation and Cancer Therapy

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis DOE Research Contributions to Radiation and Cancer Therapy Possible: DOE Advanced Biomedical Technology Research, page 10 Over the time span of many years, DOE's research has made many contributions to radiation and cancer therapy, including PEREGRINE and Boron Neutron

  10. Accelerated Radiation Therapy After Surgery in Treating Patients With Breast Cancer

    Science.gov (United States)

    2017-11-15

    Inflammatory Breast Cancer; Invasive Ductal Breast Carcinoma; Invasive Lobular Breast Carcinoma; Mucinous Ductal Breast Carcinoma; Papillary Ductal Breast Carcinoma; Stage II Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Tubular Ductal Breast Carcinoma

  11. Developmental Scientist | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION Within the Leidos Biomedical Research Inc.’s Clinical Research Directorate, the Clinical Monitoring Research Program (CMRP) provides high-quality comprehensive and strategic operational support to the high-profile domestic and international clinical research initiatives of the National Cancer Institute (NCI), National Institute of Allergy and Infectious Diseases (NIAID), Clinical Center (CC), National Institute of Heart, Lung and Blood Institute (NHLBI), National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Center for Advancing Translational Sciences (NCATS), National Institute of Neurological Disorders and Stroke (NINDS), and the National Institute of Mental Health (NIMH). Since its inception in 2001, CMRP’s ability to provide rapid responses, high-quality solutions, and to recruit and retain experts with a variety of backgrounds to meet the growing research portfolios of NCI, NIAID, CC, NHLBI, NIAMS, NCATS, NINDS, and NIMH has led to the considerable expansion of the program and its repertoire of support services. CMRP’s support services are strategically aligned with the program’s mission to provide comprehensive, dedicated support to assist National Institutes of Health researchers in providing the highest quality of clinical research in compliance with applicable regulations and guidelines, maintaining data integrity, and protecting human subjects. For the scientific advancement of clinical research, CMRP services include comprehensive clinical trials, regulatory, pharmacovigilance, protocol navigation and development, and programmatic and project management support for facilitating the conduct of 400+ Phase I, II, and III domestic and international trials on a yearly basis. These trials investigate the prevention, diagnosis, treatment of, and therapies for cancer, influenza, HIV, and other infectious diseases and viruses such as hepatitis C, tuberculosis, malaria, and Ebola virus; heart, lung, and

  12. Partnering Research Involving Mentoring and Education (PRIME) in Prostate Cancer

    National Research Council Canada - National Science Library

    Price, Marva M

    2006-01-01

    Partnering Research Involving Mentoring and Education in Prostate Cancer (PRIME) is a partnership between two nursing schools, Duke University School of Nursing and North Carolina Central University (NCCU...

  13. Partnering Research Involving Mentoring and Education (PRIME) in Prostate Cancer

    National Research Council Canada - National Science Library

    Price, Marva M

    2008-01-01

    Partnering Research Involving Mentoring and Education in Prostate Cancer (PRIME) was a partnership between two nursing schools, Duke University School of Nursing and North Carolina Central University (NCCU...

  14. Partnering Research Involving Mentoring and Education (PRIME) in Prostate Cancer

    National Research Council Canada - National Science Library

    Price, Marva M

    2007-01-01

    Partnering Research Involving Mentoring and Education in Prostate Cancer (PRIME) is a partnership between two nursing schools, Duke University School of Nursing and North Carolina Central University (NCCU...

  15. Laser acceleration

    Science.gov (United States)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  16. Laser acceleration

    International Nuclear Information System (INIS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-01-01

    The fundamental idea of LaserWakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wake fields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ∼ c and ultra fastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nano materials is also emerging.

  17. Translational Research 2.0: a framework for accelerating collaborative discovery.

    Science.gov (United States)

    Asakiewicz, Chris

    2014-05-01

    The world wide web has revolutionized the conduct of global, cross-disciplinary research. In the life sciences, interdisciplinary approaches to problem solving and collaboration are becoming increasingly important in facilitating knowledge discovery and integration. Web 2.0 technologies promise to have a profound impact - enabling reproducibility, aiding in discovery, and accelerating and transforming medical and healthcare research across the healthcare ecosystem. However, knowledge integration and discovery require a consistent foundation upon which to operate. A foundation should be capable of addressing some of the critical issues associated with how research is conducted within the ecosystem today and how it should be conducted for the future. This article will discuss a framework for enhancing collaborative knowledge discovery across the medical and healthcare research ecosystem. A framework that could serve as a foundation upon which ecosystem stakeholders can enhance the way data, information and knowledge is created, shared and used to accelerate the translation of knowledge from one area of the ecosystem to another.

  18. Salivary gland function of nasopharyngeal cancer patients treated by simultaneous modulated accelerated radiation therapy

    International Nuclear Information System (INIS)

    Zhang Qi; Li Huanbin; Wang Ling

    2007-01-01

    The work was to study protective effect of simultaneous modulated accelerated radiation therapy (SMART) on salivary function of nasopharyngeal cancer patients. Forty-six patients were treated by SMART with 2.5Gy/fraction at gross tumor volume to a total does of 70 Gy, and 2.0 Gy/fraction at the clinical treatment volume to a total does of 56 Gy. The SMART was practiced in step-and-shoot mode, one time a day, and five times each week. Fourteen patients were treated by conventional radiation therapy. All the patients received salivary gland function imaging for their uptake index, excretive index and excretive speed, so as to evaluate their degree of salivary function injury. Meanwhile, the dry discomfort in mouth of the patients was recorded and classified. The results showed that the functional indexes of the SMART group were significantly higher than those of the conventional radiation therapy group (P 2 =23.52, P<0.005). Therefore, SMART can play a key role in protecting salivary gland function of naso- pharyngeal cancer patients. (authors)

  19. Understanding coping with cancer: how can qualitative research help?

    Science.gov (United States)

    Chittem, Mahati

    2014-01-01

    Research in psycho-oncology investigates the psycho-social and emotional aspects of cancer and how this is related to health, well-being and overall patient care. Coping with cancer is a prime focus for researchers owing to its impact on patients' psychological processing and life in general. Research so far has focused mainly on quantitative study designs such as questionnaires to examine the coping strategies used by cancer patients. However, in order to gain a rich and deep understanding of the reasons, processes and types of strategies that patients use to deal with cancer, qualitative study designs are necessary. Few studies have used qualitative designs such as semi-structured interviews to explore coping with cancer. The current paper aims to review the suitability and benefits of using qualitative research designs to understand coping with cancer with the help of some key literature in psycho-oncology research.

  20. Application of accelerators in industry, medicine and for environmental research in Almaty Institute of Nuclear Physics

    International Nuclear Information System (INIS)

    Lyssukhin, S.N.; Arzumanov, A.A.

    2001-01-01

    cyclotron - The variable energy isochronous cyclotron in Almaty is a compact low energy cyclotron, K=50 MeV. It generates different beams of light ions: protons 6-30 MeV, deuterons 12.5-25 MeV, helium-3 ions 18.5-62 MeV, alpha particles 25-50 MeV. In the last years the accelerator is rather intensively used for radioisotope production. For this purpose the cyclotron is equipped with two target systems: High power (up to 10 kW) internal target facility intended for irradiation of the surfaces with very good heat conductivity. Normally it is thin metal layers on the copper backing; External isotope target system for irradiation by low power ion beam ( 10 n.cm -2 .s -1 at the deuteron beam current of 12 μA and energy of 25 MeV. Heavy ion electrostatic tandem - Heavy ion electrostatic tandem with accelerating voltage range of 0.2-1 MV is mainly used as analytical instrument for material characterisation. Routine IBA techniques (RBS, NRA, PIXE) were developed to meet the needs of thin film technology, ecology, composite multi-layer targets technology for radioisotope production at the cyclotron. Micro beam facility is used in radio-ecological research for investigation of elements distribution in separate 'hot' radioactive particulates. (author)

  1. Research on heightening quality of free electron laser using superconducting linear accelerator

    International Nuclear Information System (INIS)

    Minehara, Eisuke

    1996-01-01

    In this paper, the superconducting high frequency linear accelerator technology using low temperature superconductor is introduced, and its application to the heightening of quality of free electron laser is discussed. The high frequency application of superconductivity is a relatively new technology, and the first superconducting high frequency linear accelerator was made at the middle of 1960s. The invention of free electron laser and the development so far are described. In free electron laser, the variation of wavelength, high efficiency and high power output are possible as compared with conventional type lasers. The price and the size are two demerits of free electron laser that remain to the last. In Japan Atomic Energy Research Institute, the adjustment experiment is carried out for the prototype free electron laser. About this prototype, injection system, superconducting accelerator, helium refrigerator, whole solid element high frequency power source, control system, electron beam transport system, undulator system and optical resonator are described. The application of high mean power output free electron laser and its future are discussed. (K.I.)

  2. Shielding design for the target room of the proton accelerator research center

    International Nuclear Information System (INIS)

    Min, Y. S.; Lee, C. W.; Mun, K. J.; Nam, J.; Kim, J. Y.

    2010-01-01

    The Proton Engineering Frontier Project (PEFP) has been developing a 100-MeV proton linear accelerator. Also, PEFP has been designing the Proton Accelerator Research Center (PARC). In the Accelerator Tunnel and Beam Experiment Hall in PARC, 10 target rooms for the 20- and 100-MeV beamline facilities exist in the Beam Experiment Hall. For the 100-MeV target rooms during 100-MeV proton beam extraction, a number of high energy neutrons, ranging up to 100-MeV, are produced. Because of the high beam current and space limitations of each target room, the shielding design of each target room should be considered seriously. For the shielding design of the 100-MeV target rooms of the PEFP, a permanent and removable local shield structure was adopted. To optimize shielding performance, we evaluated four different shield materials (concrete, HDPE, lead, iron). From the shielding calculation results, we confirmed that the proposed shielding design made it possible to keep the dose rate below the 'as low as reasonably achievable (ALARA)' objective.

  3. Analytical researches on the accelerating structures, wakefields, and beam dynamics for future linear colliders

    International Nuclear Information System (INIS)

    Gao, J.

    1996-01-01

    The research works presented in this memoir are oriented not only to the R and D programs towards future linear colliders, but also to the pedagogic purposes. The first part of this memoir (from Chapter 2 to Chapter 9) establishes an analytical framework of the disk-loaded slow wave accelerating structures with can be served as the advanced courses for the students who have got some basic trainings in the linear accelerator theories. The analytical formulae derived in this part describe clearly the properties of the disk-loaded accelerating structures, such as group velocity, shunt impedance, coupling coefficients κ and β, loss factors, and wake fields. The second part (from Chapter 11 to Chapter 13) gives the beam dynamics simulations and the final proposal of an S-Band Superconducting Linear Collider (SSLC) which is aimed to avoid the dark current problem in TESLA project. This memoir has not included all the works conducted since April 1992, such as beam dynamics simulations for CLIC Test Facility (CFT-2) and the design of High Charge Structures (HCS) (11π/12 mode) for CFT-2, in order to make this memoir more harmonious, coherent and continuous. (author)

  4. Heavy ion fusion accelerator research (HIFAR) year-end report, April 1, 1987-September 30, 1987

    International Nuclear Information System (INIS)

    1987-12-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to access the suitabilty of heavy ion accelerators as iginiters for Inertial Confinement Fusion (ICF). A specific accerelator techonolgy, the induction linac, has been studied at the Lawerence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the vadidation of new accelerator strategies, to cut costs. The papers in this report that address these goals are: MBE-4 mechanical progress, alignment of MBE-4, a compact energy analyzer for MBE-4, Cs + injector modeling with the EGUN code, an improved emittance scanning system for HIFAR, 2-MV injector, carbon arc source development, beam combining in ILSE, emittance growth due to transverse beam combining in ILSE - particle simulation results, achromatic beam combiner for ILSE, additional elements for beam merging, quadrupole magnet design for ILSE, and waveforms and longitudinal beam-parameters for ILSE

  5. Designing Trojan Horses | Center for Cancer Research

    Science.gov (United States)

    Waging battle against cancer cells without inflicting damage on normal tissue has long been a goal for cancer treatment. A new type of drug called immunotoxins may help make this goal a reality. Much like the Greeks used a wooden horse to get soldiers inside the gates of Troy, immunotoxins use clever genetic engineering to get a lethal toxin inside cancer cells. Each

  6. A research plan based on high intensity proton accelerator Neutron Science Research Center

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu

    1997-01-01

    A plan called Neutron Science Research Center (NSRC) has been proposed in JAERI. The center is a complex composed of research facilities based on a proton linac with an energy of 1.5GeV and an average current of 10mA. The research facilities will consist of Thermal/Cold Neutron Facility, Neutron Irradiation Facility, Neutron Physics Facility, OMEGA/Nuclear Energy Facility, Spallation RI Beam Facility, Meson/Muon Facility and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beams generated from the proton beam will be utilized for innovative researches in the fields on nuclear engineering and basic sciences. (author)

  7. A research plan based on high intensity proton accelerator Neutron Science Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Motoharu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    A plan called Neutron Science Research Center (NSRC) has been proposed in JAERI. The center is a complex composed of research facilities based on a proton linac with an energy of 1.5GeV and an average current of 10mA. The research facilities will consist of Thermal/Cold Neutron Facility, Neutron Irradiation Facility, Neutron Physics Facility, OMEGA/Nuclear Energy Facility, Spallation RI Beam Facility, Meson/Muon Facility and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beams generated from the proton beam will be utilized for innovative researches in the fields on nuclear engineering and basic sciences. (author)

  8. Phase II trial of proton beam accelerated partial breast irradiation in breast cancer

    International Nuclear Information System (INIS)

    Chang, Ji Hyun; Lee, Nam Kwon; Kim, Ja Young; Kim, Yeon-Joo; Moon, Sung Ho; Kim, Tae Hyun; Kim, Joo-Young; Kim, Dae Yong; Cho, Kwan Ho; Shin, Kyung Hwan

    2013-01-01

    Background and purpose: Here, we report the results of our phase II, prospective study of proton beam accelerated partial breast irradiation (PB-APBI) in patients with breast cancer after breast conserving surgery (BCS). Materials and methods: Thirty patients diagnosed with breast cancer were treated with PB-APBI using a single-field proton beam or two fields after BCS. The treatment dose was 30 cobalt gray equivalent (CGE) in six CGE fractions delivered once daily over five consecutive working days. Results: All patients completed PB-APBI. The median follow-up time was 59 months (range: 43–70 months). Of the 30 patients, none had ipsilateral breast recurrence or regional or distant metastasis, and all were alive at the last follow-up. Physician-evaluated toxicities were mild to moderate, except in one patient who had severe wet desquamation at 2 months that was not observed beyond 6 months. Qualitative physician cosmetic assessments of good or excellent were noted in 83% and 80% of the patients at the end of PB-APBI and at 2 months, respectively, and decreased to 69% at 3 years. A good or excellent cosmetic outcome was noted in all patients treated with a two-field proton beam at any follow-up time point except for one. For all patients, the mean percentage breast retraction assessment (pBRA) value increased significantly during the follow-up period (p = 0.02); however, it did not increase in patients treated with two-field PB-APBI (p = 0.3). Conclusions: PB-APBI consisting of 30 CGE in six CGE fractions once daily for five consecutive days can be delivered with excellent disease control and tolerable skin toxicity to properly selected patients with early-stage breast cancer. Multiple-field PB-APBI may achieve a high rate of good-to-excellent cosmetic outcomes. Additional clinical trials with larger patient groups are needed

  9. PVAMU/XULA/BCM Summer Prostate Cancer Research Program

    Science.gov (United States)

    2017-10-01

    degradation of several cancer -related proteins, including the androgen receptor , which is dysregulated in certain prostate cancers . Overall, the goal of my...Behavior of Androgen Receptor Splice Variants in Androgen Dependent Prostate Cancer Cells Turner, Williamson D., Xavier University of Louisiana, Class...AWARD NUMBER: W81XWH-15-1-0677 TITLE: PVAMU/XULA/BCM Summer Prostate Cancer Research Program PRINCIPAL INVESTIGATOR: Nancy L. Weigel

  10. Magnet R and D for the US LHC Accelerator Research Program (LARP)

    International Nuclear Information System (INIS)

    Gourlay, S.A.; Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Dietderich, D.R.; Ferracin, P.; Gupta, R.; Ghosh, A.; Hafalia, A.R.; Hannaford, C.R.; Harrison, M.; Kashikhin, V.S.; Kashikhin, V.V.; Lietzke, A.F.; Mattafirri, S.; McInturff, A.D.; Nobrega, F.; Novitsky, I.; Sabbi, G.L.; Schmazle, J.; Stanek, R.; Turrioni, D.; Wanderer, P.; Yamada, R.; Zlobin, A.V.

    2006-01-01

    In 2004, the US DOE established the LHC Accelerator Research Program (LARP) with the goal of developing a technology base for future upgrades of the LHC. The focus of the magnet program, which is a collaboration of three US laboratories, BNL, FNAL and LBNL, is on development of high gradient quadrupoles using Nb 3 Sn superconductor. Other program components address issues regarding magnet design, radiation-hard materials, long magnet scale-up, quench protection, fabrication techniques and conductor and cable R and D. This paper presents an overall view of the program with emphasis on the current quadrupole project and outlines the long-term goals of the program

  11. Proceedings of the workshop on prospects for research with radioactive beams from heavy ion accelerators

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1984-04-01

    The SuperHILAC Users Executive Committee organized a workshop on Prospects for Research with Radioactive Beams from Heavy Ion Accelerators. The main purpose of the workshop was to bring together a diverse group of scientists who had already done experients with radioactive beams or were interested in their use in the future. The topics of the talks ranged from general nuclear physics, astrophysics, production of radioactive beams and high energy projectile fragmentation to biomedical applications. This publication contains the abstracts of the talks given at the workshop and copies of the viewgraphs as they were supplied to the editor

  12. Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC), Oak Ridge Tennessee

    International Nuclear Information System (INIS)

    Watson, David; Jardine, Philip; Gu, Baohua; Parker, Jack; Brandt, Craig; Holladay, Susan; Wolfe, Amy; Bogle, Mary Anna; Lowe, Kenneth; Hyder, Kirk

    2006-01-01

    The Field Research Center (FRC) in Oak Ridge (Fig. 1), Tennessee supports the U.S. Department of Energy's (DOE's) Environmental Remediation Sciences Program (ERSP) goal of understanding the complex physical, chemical, and biological properties of contaminated sites for new solutions to environmental remediation and long-term stewardship. In particular, the FRC provides the opportunity for researchers to conduct studies that promote the understanding of the processes that influence the transport and fate of subsurface contaminants, the effectiveness and long-term consequences of existing remediation options, and the development of improved remediation strategies. It offers a series of contaminated sites around the former S-3 Waste Disposal Ponds and uncontaminated sites in which investigators and students conduct field research or collect samples for laboratory analysis. FRC research also spurs the development of new and improved characterization and monitoring tools. Site specific knowledge gained from research conducted at the FRC also provides the DOE-Oak Ridge Office of Environmental Management (EM) the critical scientific knowledge needed to make cleanup decisions for the S-3 Ponds and other sites on the Oak Ridge Reservation (ORR)

  13. Towards meeting the research needs of Australian cancer consumers

    Directory of Open Access Journals (Sweden)

    Saunders Carla

    2012-12-01

    Full Text Available Abstract Background There is a growing amount of literature to support the view that active involvement in research by consumers, especially informed and networked consumers, benefits the quality and direction of research itself, the research process and, most importantly, people affected by cancer. Our exploratory project focuses on identifying their priorities and developing a process to assess the research needs of Australian cancer consumers which may be useful beyond the cancer scenario. Methods This project was consumer initiated, developed and implemented, with the assistance of a leading Australian cancer consumer advocacy group, Cancer Voices NSW (CVN. Such direct involvement is unusual and ensures that the priorities identified, and the process itself, are not influenced by other interests, regardless how well-intentioned they may be. The processes established, and data collection via a workshop, followed by a questionnaire to confirm and prioritise findings, and comparison with a similar UK exercise, are detailed in this paper. Results Needs across five topic areas reflecting cancer control domains (prevention and risk; screening and diagnosis; treatment; survivorship; and end of life were identified. Cancer consumers high priority research needs were found to be: earlier diagnosis of metastatic cancers; the extent of use of best practice palliative care guidelines; identifying barriers to cancer risk behaviour change; and environmental, nutrition and lifestyle risk factors for people with cancer. A process for identifying consumers’ research priorities was developed and applied; this may be useful for further investigation in this under-studied area. Conclusion The findings provide a model for developing a consumer derived research agenda in Australia which can be used to inform the strategic direction of cancer research. Consumers have been seeking a workable method to achieve this and have worked in collaboration with a major

  14. Accelerators and the Midwestern Universities Research Association in the 1950s

    International Nuclear Information System (INIS)

    Kerst, D.W.

    1989-01-01

    The birth of the cooperative research group, the Midwestern Universities Research Association (MURA) is documented in this article, following the promise high energy particles heralded by the invention of alternating-gradient focusing. Regular meetings were established and theoretical research work concentrated on orbits, with the help of the new digital computers. Space charge effects for charge distributions in the beam and the radio frequency ''knock out'' diagnostic technique were also studied. Experimental work on the Cosmotron confirmed the findings and also led to the discovery and use of the fixed-field alternating gradient (FFAG) magnet for direct-current operation which occupied much of MURA's future activities. FFAG accelerators with direct current ring magnets were invented with greatly increased beam intensities. These in turn made colliding beam machines possible. The MURA group later built a 50MeV electron model of a colliding-beam FFAG synchrotron, later used for beam stacking. (UK)

  15. Annual report of Department of Research Reactor and Tandem Accelerator, JFY2012. Operation, utilization and technical development of JRR-3, JRR-4, NSRR, Tandem Accelerator and RI Production Facility

    International Nuclear Information System (INIS)

    Murayama, Yoji; Ishii, Tetsuro; Nakamura, Kiyoshi; Uno, Yuki; Ishikuro, Yasuhiro; Kawashima, Kazuhito; Ishizaki, Nobuhiro; Matsumura, Taichi; Nagahori, Kazuhisa; Odauchi, Shouji; Maruo, Takeshi

    2014-03-01

    The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3(Japan Research Reactor No.3), JRR-4(Japan Research Reactor No.4), NSRR(Nuclear Safety Research Reactor), Tandem Accelerator and RI Production Facility. This annual report describes a summary of activities of services and technical developments carried out in the period between April 1, 2012 and March 31, 2013. The activities were categorized into five service/development fields: (1) Operation and maintenance of research reactors and tandem accelerator, (2) Utilization of research reactors and tandem accelerator, (3) Upgrading of utilization techniques of research reactors and tandem accelerator, (4) Safety administration for department of research reactor and tandem accelerator, (5) International cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, number of staff members dispatched to Fukushima for the technical assistance, outcomes in service and technical developments and so on. (author)

  16. A POX on Renal Cancer Cells | Center for Cancer Research

    Science.gov (United States)

    Proline oxidase, or POX, is an enzyme responsible for metabolizing the amino acid proline. POX contributes to the regulation of cell death that occurs when cellular systems malfunction, a process called apoptosis. Previous studies have determined that levels of POX are reduced in several types of human cancer. Likewise, many cancer cells become resistant to apoptosis, suggesting a link between POX and cancer cell survival.

  17. Researching experiences of cancer: the importance of methodology.

    Science.gov (United States)

    Entwistle, V; Tritter, J Q; Calnan, M

    2002-09-01

    This paper draws on contributions to and discussions at a recent MRC HSRC-sponsored workshop 'Researching users' experiences of health care: the case of cancer'. We focus on the methodological and ethical challenges that currently face researchers who use self-report methods to investigate experiences of cancer and cancer care. These challenges relate to: the theoretical and conceptual underpinnings of research; participation rates and participant profiles; data collection methods (the retrospective nature of accounts, description and measurement, and data collection as intervention); social desirability considerations; relationship considerations; the experiences of contributing to research; and the synthesis and presentation of findings. We suggest that methodological research to tackle these challenges should be integrated into substantive research projects to promote the development of a strong knowledge base about experiences of cancer and cancer care.

  18. US-LA CRN Clinical Cancer Research in Latin America

    Science.gov (United States)

    The United States – Latin America Cancer Research Network (US-LA CRN) convened its Annual Meeting, in coordination with the Ministry of Health of Chile to discuss the Network’s first multilateral clinical research study: Molecular Profiling of Breast Cancer (MPBC).

  19. Staff Scientist - RNA Bioinformatics | Center for Cancer Research

    Science.gov (United States)

    The newly established RNA Biology Laboratory (RBL) at the Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH) in Frederick, Maryland is recruiting a Staff Scientist with strong expertise in RNA bioinformatics to join the Intramural Research Program’s mission of high impact, high reward science. The RBL is the equivalent of an

  20. Senior Laboratory Animal Technician | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused

  1. Acceleration of leukocytes' epigenetic age as an early tumor and sex-specific marker of breast and colorectal cancer.

    Science.gov (United States)

    Durso, Danielle Fernandes; Bacalini, Maria Giulia; Sala, Claudia; Pirazzini, Chiara; Marasco, Elena; Bonafé, Massimiliano; do Valle, Ítalo Faria; Gentilini, Davide; Castellani, Gastone; Faria, Ana Maria Caetano; Franceschi, Claudio; Garagnani, Paolo; Nardini, Christine

    2017-04-04

    Changes in blood epigenetic age have been associated with several pathological conditions and have recently been described to anticipate cancer development. In this work, we analyze a publicly available leukocytes methylation dataset to evaluate the relation between DNA methylation age and the prospective development of specific types of cancer. We calculated DNA methylation age acceleration using five state-of-the-art estimators (three multi-site: Horvath, Hannum, Weidner; and two CpG specific: ELOV2 and FHL2) in a cohort including 845 subjects from the EPIC-Italy project and we compared 424 samples that remained cancer-free over the approximately ten years of follow-up with 235 and 166 subjects who developed breast and colorectal cancer, respectively. We show that the epigenetic age estimated from blood DNA methylation data is statistically significantly associated to future breast and male colorectal cancer development. These results are corroborated by survival analysis that shows significant association between age acceleration and cancer incidence suggesting that the chance of developing age-related diseases may be predicted by circulating epigenetic markers, with a dependence upon tumor type, sex and age estimator. These are encouraging results towards the non-invasive and perspective usage of epigenetic biomarkers.

  2. Scientist, Single Cell Analysis Facility | Center for Cancer Research

    Science.gov (United States)

    The Cancer Research Technology Program (CRTP) develops and implements emerging technology, cancer biology expertise and research capabilities to accomplish NCI research objectives.  The CRTP is an outward-facing, multi-disciplinary hub purposed to enable the external cancer research community and provides dedicated support to NCI’s intramural Center for Cancer Research (CCR).  The dedicated units provide electron microscopy, protein characterization, protein expression, optical microscopy and nextGen sequencing. These research efforts are an integral part of CCR at the Frederick National Laboratory for Cancer Research (FNLCR).  CRTP scientists also work collaboratively with intramural NCI investigators to provide research technologies and expertise. KEY ROLES AND RESPONSIBILITIES We are seeking a highly motivated Scientist II to join the newly established Single Cell Analysis Facility (SCAF) of the Center for Cancer Research (CCR) at NCI. The SCAF will house state of the art single cell sequencing technologies including 10xGenomics Chromium, BD Genomics Rhapsody, DEPPArray, and other emerging single cell technologies. The Scientist: Will interact with close to 200 laboratories within the CCR to design and carry out single cell experiments for cancer research Will work on single cell isolation/preparation from various tissues and cells and related NexGen sequencing library preparation Is expected to author publications in peer reviewed scientific journals

  3. Advanced research on separating prostate cancer stem cells

    International Nuclear Information System (INIS)

    Hao Yumei; He Xin; Song Naling

    2013-01-01

    Prostate cancer is a common malignant tumor in male urinary system,and may easily develop into the hormone refractory prostate cancer which can hardly be cured. Recent studies had found that the prostate cancer stem cells may be the source of the prostate cancer's occurrence,development, metastasis and recurrence. The therapy targeting the prostate cancer stem cells may be the effective way to cure prostate cancer. But these cells is too low to be detected. The difficulty lies in the low separation efficiency of prostate cancer stem cell, so the effectively separating prostate cancer stem cells occupied the main position for the more in-depth research of prostate cancer stem cells. This paper reviews the research progress and existing problems on the several main separating methods of prostate cancer stem cells, includes the fluorescence activated cells sorting and magnetic activated cells sorting based on prostate cancer stem cell surface markers, the side-population sorting and serum-free medium sphere forming sorting based on prostate cancer stem cell's biology. (authors)

  4. Correction of static pressure on a research aircraft in accelerated flight using differential pressure measurements

    Directory of Open Access Journals (Sweden)

    A. R. Rodi

    2012-11-01

    Full Text Available A method is described that estimates the error in the static pressure measurement on an aircraft from differential pressure measurements on the hemispherical surface of a Rosemount model 858AJ air velocity probe mounted on a boom ahead of the aircraft. The theoretical predictions for how the pressure should vary over the surface of the hemisphere, involving an unknown sensitivity parameter, leads to a set of equations that can be solved for the unknowns – angle of attack, angle of sideslip, dynamic pressure and the error in static pressure – if the sensitivity factor can be determined. The sensitivity factor was determined on the University of Wyoming King Air research aircraft by comparisons with the error measured with a carefully designed sonde towed on connecting tubing behind the aircraft – a trailing cone – and the result was shown to have a precision of about ±10 Pa over a wide range of conditions, including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, geometric altitude data from a combined Global Navigation Satellite System (GNSS and inertial measurement unit (IMU system are used to estimate acceleration effects on the error, and the algorithm is shown to predict corrections to a precision of better than ±20 Pa under those conditions. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are discussed.

  5. Annual report of the Tandem Accelerator Center, Nuclear and Solid State Research Project, University of Tsukuba

    International Nuclear Information System (INIS)

    1980-01-01

    This is the fifth annual report of the Tandem Accelerator Center, as well as the third of the Nuclear and Solid State Research Project at the University of Tsukuba. It contains the short descriptions of the activities during the period from April, 1979, to March, 1980. The 12 UD Pelletron has worked well and was utilized over 2900 hours as the time of beam on targets. The performance of the polarized ion source has been quite good, and it produced the beams of polarized protons and deuterons as well as of alpha particles. The sputter ion source (TUNIS) replaced the direct extraction duoplasmatron in most cases, and it produced the beams of isotopes of O, F, Si, Cl, Ni, Cu, etc., without gas injection. The construction of the second measuring room has been completed, and four beam courses are equipped with a general purpose scattering chamber, the devices for perturbed angular correlation, inner and outer shell ionization, and biological studies. The beam pulsing system was installed on the accelerator, and will be in operation soon. Further efforts have been made to develop detection and data processing systems. The examples of the recent researches mainly under the program of the NSSRP in various fields are enumerated. The exchange and collaboration with other institutions were active. (Kako, I.)

  6. Proton acceleration experiments and warm dense matter research using high power lasers

    Energy Technology Data Exchange (ETDEWEB)

    Roth, M; Alber, I; Guenther, M; Harres, K [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Bagnoud, V [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Brown, C R D [Plasma Physics Group, Imperial College London, SW7 2BZ (United Kingdom); Clarke, R; Heathcote, R; Li, B [STFC, Rutherford Appleton Laboratory (RAL), Chilton, Didcot, OX14 OQX (United Kingdom); Daido, H [Photo Medical Research Center, JAEA, Kizugawa-City, Kyoto 619-0215 (Japan); Fernandez, J; Flippo, K; Gaillard, S; Gauthier, C [Los Alamos National Laboratory (LANL), Los Alamos, NM 87545 (United States); Geissel, M [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Glenzer, S; Kritcher, A; Kugland, N; LePape, S [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Gregori, G, E-mail: markus.roth@physik.tu-darmstadt.d [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

    2009-12-15

    The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. In this paper we report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore, we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by x-ray Thomson scattering to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.

  7. Proton acceleration experiments and warm dense matter research using high power lasers

    International Nuclear Information System (INIS)

    Roth, M; Alber, I; Guenther, M; Harres, K; Bagnoud, V; Brown, C R D; Clarke, R; Heathcote, R; Li, B; Daido, H; Fernandez, J; Flippo, K; Gaillard, S; Gauthier, C; Geissel, M; Glenzer, S; Kritcher, A; Kugland, N; LePape, S; Gregori, G

    2009-01-01

    The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. In this paper we report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore, we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by x-ray Thomson scattering to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.

  8. Particle accelerator physics and technology for high energy density physics research

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, D.H.H.; Blazevic, A.; Rosmej, O.N.; Spiller, P.; Tahir, N.A.; Weyrich, K. [Gesellschaft fur Schwerionenforschung, GSI-Darmstadt, Plasmaphysik, Darmstadt (Germany); Hoffmann, D.H.H.; Dafni, T.; Kuster, M.; Ni, P.; Roth, M.; Udrea, S.; Varentsov, D. [Darmstadt Univ., Institut fur Kernphysik, Technische Schlobgartenstr. 9 (Germany); Jacoby, J. [Frankfurt Univ., Institut fur Angewandte Physik (Germany); Kain, V.; Schmidt, R.; Zioutas, K. [European Organization for Nuclear Research (CERN), Geneve (Switzerland); Zioutas, K. [Patras Univ., Dept. of Physics (Greece); Mintsev, V.; Fortov, V.E. [Russian Academy of Sciences, Institute of Problems of Chemical Physics, Chernogolovka (Russian Federation); Sharkov, B.Y. [Institut for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)

    2007-08-15

    Interaction phenomena of intense ion- and laser radiation with matter have a large range of application in different fields of science, extending from basic research of plasma properties to applications in energy science, especially in inertial fusion. The heavy ion synchrotron at GSI now routinely delivers intense uranium beams that deposit about 1 kJ/g of specific energy in solid matter, e.g. solid lead. Our simulations show that the new accelerator complex FAIR (Facility for Antiproton and Ion Research) at GSI as well as beams from the CERN large hadron collider (LHC) will vastly extend the accessible parameter range for high energy density states. A natural example of hot dense plasma is provided by our neighbouring star the sun, and allows a deep insight into the physics of fusion, the properties of matter at high energy density, and is moreover an excellent laboratory for astro-particle physics. As such the sun's interior plasma can even be used to probe the existence of novel particles and dark matter candidates. We present an overview on recent results and developments of dense plasma physics addressed with heavy ion and laser beams combined with accelerator- and nuclear physics technology. (authors)

  9. Neutron research and facility development at the Oak Ridge Electron Linear Accelerator 1970 to 1995

    International Nuclear Information System (INIS)

    Peelle, R.W.; Harvey, J.A.; Maienschein, F.C.; Weston, L.W.; Olsen, D.K.; Larson, D.C.; Macklin, R.L.

    1982-07-01

    This report reviews the accomplishments of the first decade of operation of the Oak Ridge Electron Linear Accelerator (ORELA) and discusses the plans for the facility in the coming decade. Motivations for scientific and applied research during the next decade are included. In addition, ORELA is compared with competing facilities, and prospects for ORELA's improvement and even replacement are reported. Development efforts for the next few years are outlined that are consistent with the anticipated research goals. Recommendations for hardware development include improving the electron injection system to give much larger short-pulse currents on a reliable basis, constructing an Electron Beam Injector Laboratory to help make this improvement possible, continuing a study of possibly replacing the electron accelerator with a proton machine, and replacing or upgrading the facility's data-acquistion and immediate-analysis computer systems. Increased operating time and more involvement of nuclear theorists are recommended, and an effective staff size for optimum use of this unique facility is discussed. A bibliography of all ORELA-related publications is included

  10. A survey of etiologic hypotheses among testicular cancer researchers

    DEFF Research Database (Denmark)

    Stang, A; Trabert, B; Rusner, C

    2015-01-01

    Basic research results can provide new ideas and hypotheses to be examined in epidemiological studies. We conducted a survey among testicular cancer researchers on hypotheses concerning the etiology of this malignancy. All researchers on the mailing list of Copenhagen Testis Cancer Workshops...... and corresponding authors of PubMed-indexed articles identified by the search term 'testicular cancer' and published within 10 years (in total 2750 recipients) were invited to respond to an e-mail-based survey. Participants of the 8th Copenhagen Testis Cancer Workshop in May 2014 were subsequently asked to rate...... that scored as most plausible. We also present plans for improving the survey that may be repeated at a next international meeting of experts in testicular cancer. Overall 52 of 99 (53%) registered participants of the 8th Copenhagen Testis Cancer Workshop submitted the plausibility rating form. Fourteen of 27...

  11. Research on trace elements in biomedicine carried out in Italy using nuclear accelerators

    International Nuclear Information System (INIS)

    Moro, R.

    1985-01-01

    The present status and perspectives of research on trace elements in biomedicine carried out at Catania, Milan, Naples and Padua-Legnaro are discussed. In these researches, nuclear techniques such as Proton Induced X-ray Emission (PIXE), Proton Nuclear Activation (PNA) and Prompt Radiation Analysis (PRA), involving the use of small accelerators, are employed as analytical methods. Different field of application such as dentistry, bone disease, pediatrics and oncology are covered by these activities. The PIXE method is employed for the analysis of serum, hair and bone. In particular, elements like zinc and selenium which play an important role in infancy and oncology, respectively, have been extensively studied. The proton activation method has been applied to investigate the ferrokinetics in plasma. The prompt radiation analysis of the reaction /sup 19/F(p,α) has been used for the determination of the fluorine depth distribution in dental enamel

  12. Cancer megafunds with in silico and in vitro validation: accelerating cancer drug discovery via financial engineering without financial crisis.

    Science.gov (United States)

    Yang, Xianjin; Debonneuil, Edouard; Zhavoronkov, Alex; Mishra, Bud

    2016-09-06

    Advances in financial engineering are radically reshaping the biomedical marketplace. For instance, new methods of pooling diversified drug development programs by placing them in a special purpose vehicle (SPV) have been proposed to create a securitized cancer megafund allowing for debt and equity participation. In this study, we perform theoretical and numerical simulations that highlight the role of empirical validation of the projects comprising a cancer megafund. We quantify the degree to which the deliberately designed structure of derivatives and investments is key to its liquidity. Research megafunds with comprehensive in silico and laboratory validation protocols and ability to issue both debt, and equity as well as hybrid financial products may enable conservative investors including pension funds and sovereign government funds to profit from unique securitization opportunities. Thus, while hedging investor's longevity risk, such well-validated megafunds will contribute to health, well being and longevity of the global population.

  13. Cancer megafunds with in silico and in vitro validation: Accelerating cancer drug discovery via financial engineering without financial crisis

    KAUST Repository

    Yang, Xianjin

    2016-06-03

    Advances in financial engineering are radically reshaping the biomedical marketplace. For instance, new methods of pooling diversified drug development programs by placing them in a special purpose vehicle (SPV) have been proposed to create a securitized cancer megafund allowing for debt and equity participation. In this study, we perform theoretical and numerical simulations that highlight the role of empirical validation of the projects comprising a cancer megafund. We quantify the degree to which the deliberately designed structure of derivatives and investments is key to its liquidity. Research megafunds with comprehensive in silico and laboratory validation protocols and ability to issue both debt, and equity as well as hybrid financial products may enable conservative investors including pension funds and sovereign government funds to profit from unique securitization opportunities. Thus, while hedging investor\\'s longevity risk, such well-validated megafunds will contribute to health, well being and longevity of the global population.

  14. Accelerated proliferation of non-small cell lung cancer cells after induction chemotherapy

    International Nuclear Information System (INIS)

    El Sharouni, S.Y.; Kal, H.B.

    2003-01-01

    Induction chemotherapy of non-small cell lung cancer (NSCLC) stage IIIB with gemcitabine and cisplatin for downstaging the tumour with the aim for further treatment with ionising radiation, is one of the treatments for lung cancer employed. The purpose of this study was to investigate the influence of the waiting time for radiotherapy, i.e. the interval between induction chemotherapy and radiotherapy, on the rate of tumour growth. Interval times between end of chemotherapy and day of diagnostic CT, planning CT and first day of radiotherapy were determined. Increase in tumour volume was measured for 23 patients with NSCLC by measuring the primary tumour dimensions on the diagnostic CT made after induction chemotherapy and on the CT used for radiotherapy planning. Volume doubling times were calculated from the time interval between the two CTs and ratio of the volumes on CT planning and CT diagnostic. The mean time interval between end of chemotherapy and day of diagnostic CT was 16 days, till CT planning 66 days and till first day of radiotherapy 76 (29 - 108) days. Tumour doubling times ranged from 9 to 153 days with a mean of 47 days. This is far less than the mean doubling time of NSCL in untreated patients. This study shows that time interval between chemo- and start of radiotherapy varies between 29 to 108 days. The consequence is fast tumour progression as result of accelerated proliferation: mean tumour-doubling times are decreased by a factor of 2 to 4. The gain obtained with induction chemotherapy with regard to volume reduction was practically lost in the waiting time for radiotherapy. We recommend diminishing the time interval between chemo- and radiotherapy to as short as possible

  15. Long-term results of accelerated radiation treatment for advanced head and neck cancer

    International Nuclear Information System (INIS)

    Lamb, D.S.; Morum, P.E.; Denham, J.W.; Gray, A.J.

    1998-01-01

    Background and purpose: This report presents long-term follow-up data from a prospective but unrandomized trial of a continuous 3.5-week course of accelerated radiation treatment (ART) used as primary treatment for patients with loco-regionally advanced head and neck cancer. Materials and methods: Ninety-three patients in three centres in New Zealand and Australia were treated with ART (59.40 Gy in 33 fractions over 24-25 days). Their disease originated from three anatomical regions (oral cavity, 35 patients; pharynx, 31 patients; larynx, 27 patients). Seventy-nine of these patients had stage III or IV cancers. Results: Follow-up ranged from 68 to 203 months (median 139 months). Loco-regional (LR) failure occurred in 52 patients leading to a 10-year actuarial expectation of LR control of 38%. The actuarial expectation of LR control at 10 years was highly dependent on stage and for stage III, IVA and IVB patients it was 57±8.1%, 32±1.7% and 7±0.5%, respectively. Multivariate analysis could not confirm an independent impact of primary site or histological differentiation on LR failure. Two patients died of acute toxicity of treatment and six patients developed grade 3/4 late complications affecting soft tissues only, yielding an actuarial expectation of complications of this severity at 5 years of 9%. No cases of osteoradionecrosis or myelitis were observed. Conclusion: This ART, which has proved easy to use at a number of large and small centres, has produced encouraging long-term LR control at a cost of limited soft tissue morbidity. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  16. Continuous hyperfractionated accelerated radiotherapy (chart) in localized cancer of the esophagus

    International Nuclear Information System (INIS)

    Powell, Melanie E.B.; Hoskin, Peter J.; Saunders, Michele I.; Foy, Christopher J.W.; Dische, Stanley

    1997-01-01

    Purpose: To assess the efficacy and toxicity of continuous hyperfractionated accelerated radiotherapy (CHART) in locoregional control compared with a historical group of patients treated with conventionally fractionated radical radiotherapy. Methods and Materials: Between 1985 and 1994, 54 patients with localized esophageal cancer were treated with CHART. Twenty-eight patients received CHART alone (54 Gy in 36 fractions over 12 consecutive days) and 15 were given intravenous mitomycin C and cisplatin on days 10 and 13, respectively. Eleven patients received 40.5 Gy in 27 fractions over 9 days, followed by a single high-dose-rate intraluminal brachytherapy insertion of 15 Gy at 1 cm. Results: Acute toxicity was well tolerated and dysphagia was improved in 35 patients (65%), with 28 (52%) eating a normal diet by week 12. This compares with an improvement in dysphagia score in 72% of the conventionally treated group. The median duration of relief of dysphagia was 7.8 months (range 0-41.4) in the CHART group compared with 5.5 months (range 0-48) in the controls. Strictures developed in 29 patients (61%) and 18 were confirmed on biopsy to be due to recurrent disease. Median survival was 12 months (range 0.5-112) in the CHART group and 15 months (range 3.6-56) in the control patients. Conclusion: CHART is well tolerated and achieves a high rate of local control. Palliation in the short overall treatment time of esophageal cancer is an advantage in these patients whose median survival is only 12 months

  17. International Partnerships for Clinical Cancer Research

    Science.gov (United States)

    CGH co-sponsors the 2015 International Symposium on Cancer Clinical Trials and related meetings held in partnership with the Japanese National Cancer Center (JNCC) and Embassies of France, Korea, United Kingdom (UK), and United States (US) in Tokyo on May 14 - 15, 2015.

  18. Veterinary Oncologist | Center for Cancer Research

    Science.gov (United States)

    The NCI is implementing a program intended to connect and closely coordinate the Division of Cancer Treatment and Diagnosis’ (DCTD’s) immunotherapeutics and other drug development activities with the translational oriented clinical trials of the Center for Cancer Research’s (CCR’s) Comparative Oncology Program (COP), especially the treatment of dogs with natural occurring

  19. Eliminating cancer stem cells: an interview with CCR’s Steven Hou | Center for Cancer Research

    Science.gov (United States)

    Steven Hou, Ph.D., senior investigator in the Basic Research Laboratory at the Center for Cancer Research describes his latest research that has uncovered potential ways to eliminate cancer stem cells and may offer hope to patients with reoccurring tumors.  Learn more...

  20. The John Milner Nutrition and Cancer Prevention Research Practicum | Division of Cancer Prevention

    Science.gov (United States)

    The Nutritional Science Research Group in the Division of Cancer Prevention at the National Cancer Institute, National Institutes of Health and the Department of Nutrition at the Clinical Center, National Institutes of Health, and the U.S. Department of Agriculture’s Beltsville Human Nutrition Research Center are offering a one-week educational opportunity in Nutrition and Cancer Prevention Research for individuals with a sustained commitment to nutrition and health promotion. |

  1. Research on cancer diagnosis in Malaysia: current status.

    Science.gov (United States)

    Looi, L M; Zubaidah, Z; Cheah, P L; Cheong, S K; Gudum, H R; Iekhsan, O; Ikram, S I; Jamal, R; Mak, J W; Othman, N H; Puteri, J N; Rosline, H; Sabariah, A R; Seow, H F; Sharifah, N A

    2004-06-01

    Cancer is a major morbidity and mortality concern in Malaysia. Based on National Cancer Registry data, the Malaysian population is estimated to bear a cancer burden of about 40,000 new cases per year, and a cumulative lifetime risk of about 1:4. Cancer research in Malaysia has to consider needs relevant to our population, and resources constraints. Hence, funding bodies prioritise cancers of high prevalence, unique to our community and posing specific clinical problems. Cancer diagnosis is crucial to cancer management. While cancer diagnosis research largely aims at improvements in diagnostic information towards more appropriate therapy, it also impacts upon policy development and other areas of cancer management. The scope of cancer diagnosis upon which this paper is based, and their possible impact on other R&D areas, has been broadly categorized into: (1) identification of aetiological agents and their linkages to the development of precancer and cancer (impact on policy development, cancer prevention and treatment), (2) cancer biology and pathogenesis (impact on cancer prevention, treatment strategies and product development), (3) improvements in accuracy, sensitivity and specificity in cancer detection, monitoring and classification (impact on technology development) and (4) prognostic and predictive parameters (impact on treatment strategies). This paper is based on data collected by the Working Group on Cancer Diagnosis Research for the First National Conference on Cancer Research Coordination in April 2004. Data was collated from the databases of Institutions/Universities where the authors are employed, the Ministry of Science, Technology and Innovation (MOSTI) and targeted survey feedback from key cancer researchers. Under the 7th Malaysia Plan, 76 cancer projects were funded through the Intensified Research in Priority Areas (IRPA) scheme of MOSTI, amounting to almost RM15 million of grant money. 47(61.8%) of these projects were substantially in cancer

  2. The EULAR Scleroderma Trials and Research Group (EUSTAR): an international framework for accelerating scleroderma research.

    Science.gov (United States)

    Tyndall, Alan; Ladner, Ulf M; Matucci-Cerinic, Marco

    2008-11-01

    Systemic sclerosis has a complex pathogenesis and a multifaceted clinical spectrum without a specific treatment. Under the auspices of the European League Against Rheumatism, the European League Against Rheumatism Scleroderma Trials And Research group (EUSTAR) has been founded in Europe to foster the study of systemic sclerosis with the aim of achieving equality of assessment and care of systemic sclerosis patients throughout the world according to evidence-based principles. EUSTAR created the minimal essential data set, a simple two-page form with basic demographics and mostly yes/no answers to clinical and laboratory parameters, to track patients throughout Europe. Currently, over 7000 patients are registered from 150 centres in four continents, and several articles have been published with the data generated by the minimal essential data set. A commitment of EUSTAR is also to teaching and educating, and for this reason there are two teaching courses and a third is planned for early in 2009. These courses have built international networks among young investigators improving the quality of multicentre clinical trials. EUSTAR has organized several rounds of 'teach the teachers' to further standardize the skin scoring. EUSTAR activities have extended beyond European borders, and EUSTAR now includes experts from several nations. The growth of data and biomaterial might ensure many further fruitful multicentre studies, but the financial sustainability of EUSTAR remains an issue that may jeopardize the existence of this group as well as that of other organizations in the world.

  3. Outcomes of breast cancer patients with triple negative receptor status treated with accelerated partial breast irradiation.

    Science.gov (United States)

    Wilkinson, J Ben; Reid, Robert E; Shaitelman, Simona F; Chen, Peter Y; Mitchell, Christine K; Wallace, Michelle F; Marvin, Kimberly S; Grills, Inga S; Margolis, Jeffrey M; Vicini, Frank A

    2011-11-01

    Triple negative receptor status (TNRS) of patients undergoing breast-conserving therapy treated with whole-breast irradiation has been associated with increased distant metastasis and decreased disease-free and overall survival. This paper reports the outcomes of TNRS patients treated with accelerated partial breast irradiation (APBI). We studied 455 patients who received APBI at our institution, using interstitial, intracavitary, and three-dimensional conformal radiation therapy. TNRS was assigned if a patient tested negative for all three (ER [estrogen receptor], PR [progesterone receptor], and HER2/neu) receptors. Of 202 patients with all receptor results available, 20 patients were designated TNRS, and 182 patients had at least one receptor positive (RP). We analyzed ipsilateral breast tumor recurrence (IBTR), regional nodal failure (RNF), distant metastasis (DM), and overall survival (OS). Mean follow-up was 4.1 years for the TNRS group and 5.1 years for the RP cohort (p = 0.11). TNRS patients had a higher histologic grade (59% TNRS vs. 13% RP; p 0.52). OS for the RP cohort was 93% at 5 years (p > 0.28). In our patient population, TNRS conferred a clinical outcome similar to that of patients with RP disease treated with APBI. Further investigation with larger patient populations and longer follow-up periods is warranted to confirm that APBI is a safe and effective treatment for patients with localized TNRS breast cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Outcomes of Breast Cancer Patients With Triple Negative Receptor Status Treated With Accelerated Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Wilkinson, J. Ben; Reid, Robert E.; Shaitelman, Simona F.; Chen, Peter Y.; Mitchell, Christine K.; Wallace, Michelle F.; Marvin, Kimberly S.; Grills, Inga S.; Margolis, Jeffrey M.; Vicini, Frank A.

    2011-01-01

    Purpose: Triple negative receptor status (TNRS) of patients undergoing breast-conserving therapy treated with whole-breast irradiation has been associated with increased distant metastasis and decreased disease-free and overall survival. This paper reports the outcomes of TNRS patients treated with accelerated partial breast irradiation (APBI). Methods and Materials: We studied 455 patients who received APBI at our institution, using interstitial, intracavitary, and three-dimensional conformal radiation therapy. TNRS was assigned if a patient tested negative for all three (ER [estrogen receptor], PR [progesterone receptor], and HER2/neu) receptors. Of 202 patients with all receptor results available, 20 patients were designated TNRS, and 182 patients had at least one receptor positive (RP). We analyzed ipsilateral breast tumor recurrence (IBTR), regional nodal failure (RNF), distant metastasis (DM), and overall survival (OS). Results: Mean follow-up was 4.1 years for the TNRS group and 5.1 years for the RP cohort (p = 0.11). TNRS patients had a higher histologic grade (59% TNRS vs. 13% RP; p 0.52). OS for the RP cohort was 93% at 5 years (p > 0.28). Conclusions: In our patient population, TNRS conferred a clinical outcome similar to that of patients with RP disease treated with APBI. Further investigation with larger patient populations and longer follow-up periods is warranted to confirm that APBI is a safe and effective treatment for patients with localized TNRS breast cancer.

  5. Physical properties of a linear accelerator-based stereotactic installed at national cancer institute

    International Nuclear Information System (INIS)

    Attala, E.M.; Deiab, N.A.; Elawady, R.A.

    2005-01-01

    The purpose of this paper is to present the dosimetry and mechanical accuracy of the first dedicated Siemens PRIMUS M6/6ST linear accelerator-based Stereotactic installed in National Cancer Institute for stereotactic radiosurgery and radiotherapy (SRS/SRT). The data were obtained during the installation, acceptance test procedure, and commissioning of the unit. The Primus M6/6ST has a single 6-MV beam with the same beam characteristics as that of the mother unit, the Siemens. The dosimetric data were taken using pin point ion chamber. The cone sizes vary from 12.5 to 40.0 mm diameter. The mechanical stability of the entire system was verified. The variations in isocenter position with table, gantry, and collimator rotation were found to be < 0.5 mm with a compounded accuracy of < or = 1.0 mm. The beam profiles of all cones in the x and y directions were within +/- 0.5 mm and match with the physical size of the cone. The basic dosimetry parameters such as tissue maximum ratio (TMR), off-axis ratio (OAR) and cone factor needed for patient treatment were evaluated. The mechanical and dosimetric characteristics including dose linearity of this unit are presented and found to be suitable for SRS/SRT. The difficulty in absolute dose measurement for small cone is discussed

  6. [Accelerated partial breast irradiation with multicatheters during breast conserving surgery for cancer].

    Science.gov (United States)

    Rodríguez-Spiteri Sagredo, Natalia; Martínez Regueira, Fernando; Olartecoechea Linaje, Begoña; Arredondo Chaves, Jorge; Cambeiro Vázquez, Mauricio; Pina Insausti, Luis Javier; Elizalde Pérez, Arlette; y García-Lallana, Amaya; Sola Gallego, Jose Javier

    2013-10-01

    Accelerated partial breast irradiation (APBI) with multicatheters after lumpectomy for breast cancer (BC) may be an alternative to whole breast irradiation in selected patients. The aim is to show our 5 year experience. Between June 2007 and June 2012, 87 BC patients have been evaluated for APBI. Inclusion criteria were: age over 40 years, unifocal tumour, infiltrating ductal or intraductal carcinoma, tumour size smaller than 3 cm and no lymph node involvement. Complications, cosmetic results and local and distant recurrences were evaluated. Treatment was completed in 48 patients and contraindicated in 39. The average age of treated patients was 59 years. Operating time was 123 min with 9 implanted catheters in each patient. No complications were observed during surgery or radiotherapy. Patients were discharged from hospital after 4 days. Tumour size was 11 mm. Of these, 35 were infiltrating ductal and 13 intraductal carcinomas. A total of 44 patients received adjuvant treatment. Mean follow-up was 22 months with no evidence of local or distant recurrence. The cosmetic outcome was good or excellent in 66% of cases. APBI with multicatheter placed after lumpectomy for BC is feasible and safe but requires a strict selection of patients. Copyright © 2012 AEC. Published by Elsevier Espana. All rights reserved.

  7. Research priorities in cancer cachexia: The University of Rochester Cancer Center NCI Community Oncology Research Program Research Base Symposium on Cancer Cachexia and Sarcopenia.

    Science.gov (United States)

    Dunne, Richard F; Mustian, Karen M; Garcia, Jose M; Dale, William; Hayward, Reid; Roussel, Breton; Buschmann, Mary M; Caan, Bette J; Cole, Calvin L; Fleming, Fergal J; Chakkalakal, Joe V; Linehan, David C; Hezel, Aram F; Mohile, Supriya G

    2017-12-01

    Cancer cachexia remains understudied and there are no standard treatments available despite the publication of an international consensus definition and the completion of several large phase III intervention trials in the past 6 years. In September 2015, The University of Rochester Cancer Center NCORP Research Base led a Symposium on Cancer Cachexia and Sarcopenia with goals of reviewing the state of the science, identifying knowledge gaps, and formulating research priorities in cancer cachexia through active discussion and consensus. Research priorities that emerged from the discussion included the implementation of morphometrics into clinical decision making, establishing specific diagnostic criteria for the stages of cachexia, expanding patient selection in intervention trials, identifying clinically meaningful trial endpoints, and the investigation of exercise as an intervention for cancer cachexia. Standardizing how we define and measure cancer cachexia, targeting its complex biologic mechanisms, enrolling patients early in their disease course, and evaluating exercise, either alone or in combination, were proposed as initiatives that may ultimately result in the improved design of cancer cachexia therapeutic trials.

  8. Bringing global cancer leaders together at the 4th Annual Symposium on Global Cancer Research

    Science.gov (United States)

    The Annual Symposium on Global Cancer Research held in April 2016 was developed with a special focus on innovative and low-cost technologies in global cancer control, and brought inspiring keynote speakers such as John Seffrin, Former CEO of the American Cancer Society, and Tom Bollyky, Senior Fellow for Global Health at the Council on Foreign Relations.

  9. Cancer prevention strategies: use of cancer prevention research registries.

    OpenAIRE

    Anton-Culver, H

    1995-01-01

    We present a model to plan a rational strategy for cancer prevention that has two main functions--assessment and intervention. The assessment function includes three main components: to identify populations at high cancer risk, which may be due to their ethnic group, occupational and environmental exposures, family history, cigarette smoking, or other risk factors; to assess exposure to known carcinogens through the general and occupational environments, lifestyle factors, and the home as wel...

  10. Split-course accelerated therapy in head and neck cancer: an analysis of toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Delaney, Geoffrey P; Fisher, Richard J; Smee, Robert I; Hook, Carolyn; Barton, Michael B

    1995-06-15

    Purpose: To retrospectively assess a protocol of split-course accelerated radiation therapy (SCAT) for selected head and neck cancers. Methods and Materials: SCAT consisted of 1.8 Gy per fraction administered twice daily with a minimum gap between fractions of 6 h. The treatment protocol prescribed an initial 16 fractions followed by a planned 5 to 12 day break, and then a further 20 to 22 fractions for a total dose ranging from 64.8 to 72 Gy delivered in 5 to 6 weeks. Results: Twenty-eight patients received SCAT for histologically confirmed head and neck cancer between January 1987 and August 1991. All patients were followed up until December 1, 1993. The mean potential follow-up time was 4.2 years (range: 2.9-6.2 years). All patients completed the treatment protocol. Thirteen tumors were laryngeal in origin, eight hypopharyngeal, four paranasal sinus, and three oropharyngeal. There were no Stage I, three Stage II, nine Stage III, and 12 Stage IV tumors. Four tumors were not staged (two paranasal sinus cancers and two surgical recurrences). Early and late toxicities were moderate to severe. Confluent mucositis was experienced by 27 of the 28 patients (96%). One patient required a prolonged midtreatment break of 24 days. Nine patients (32%) required narcotic analgesia for pain relief. Eleven patients (39%) required hospitalization for nasogastric feeding or pain control. The median length of hospital stay was 14 days (range 7-98 days). The actuarial rate of severe late toxicity at 3 years was 47% (standard error (SE) = 13%). A complete tumor response was achieved in 86% of patients. The actuarial local control rate at 3 years was 43% (SE = 11%) and the actuarial survival rate at 3 years was 25% (SE = 8%). Conclusion: Given the encouraging complete response rate and local control for such advanced tumors, SCAT for locoregionally advanced tumors merits further investigation. However, because of the significant late toxicity observed, the total dose, interfraction

  11. Split-course accelerated therapy in head and neck cancer: an analysis of toxicity

    International Nuclear Information System (INIS)

    Delaney, Geoffrey P.; Fisher, Richard J.; Smee, Robert I.; Hook, Carolyn; Barton, Michael B.

    1995-01-01

    Purpose: To retrospectively assess a protocol of split-course accelerated radiation therapy (SCAT) for selected head and neck cancers. Methods and Materials: SCAT consisted of 1.8 Gy per fraction administered twice daily with a minimum gap between fractions of 6 h. The treatment protocol prescribed an initial 16 fractions followed by a planned 5 to 12 day break, and then a further 20 to 22 fractions for a total dose ranging from 64.8 to 72 Gy delivered in 5 to 6 weeks. Results: Twenty-eight patients received SCAT for histologically confirmed head and neck cancer between January 1987 and August 1991. All patients were followed up until December 1, 1993. The mean potential follow-up time was 4.2 years (range: 2.9-6.2 years). All patients completed the treatment protocol. Thirteen tumors were laryngeal in origin, eight hypopharyngeal, four paranasal sinus, and three oropharyngeal. There were no Stage I, three Stage II, nine Stage III, and 12 Stage IV tumors. Four tumors were not staged (two paranasal sinus cancers and two surgical recurrences). Early and late toxicities were moderate to severe. Confluent mucositis was experienced by 27 of the 28 patients (96%). One patient required a prolonged midtreatment break of 24 days. Nine patients (32%) required narcotic analgesia for pain relief. Eleven patients (39%) required hospitalization for nasogastric feeding or pain control. The median length of hospital stay was 14 days (range 7-98 days). The actuarial rate of severe late toxicity at 3 years was 47% (standard error (SE) = 13%). A complete tumor response was achieved in 86% of patients. The actuarial local control rate at 3 years was 43% (SE = 11%) and the actuarial survival rate at 3 years was 25% (SE = 8%). Conclusion: Given the encouraging complete response rate and local control for such advanced tumors, SCAT for locoregionally advanced tumors merits further investigation. However, because of the significant late toxicity observed, the total dose, interfraction

  12. Medical research and multidisciplinary applications with laser-accelerated beams: the ELIMED netwotk at ELI-Beamlines

    Science.gov (United States)

    Tramontana, A.; Anzalone, A.; Candiano, G.; Carpinelli, M.; Cirrone, G. A. P.; Cuttone, G.; Korn, G.; Licciardello, T.; Maggiore, M.; Manti, L.; Margarone, D.; Musumarra, A.; Perozziello, F.; Pisciotta, P.; Raffaele, L.; Romano, F.; Romano, F. P.; Stancampiano, C.; Schillaci, F.; Scuderi, V.; Torrisi, L.; Tudisco, S.

    2014-04-01

    Laser accelerated proton beams represent nowadays an attractive alternative to the conventional ones and they have been proposed in different research fields. In particular, the interest has been focused in the possibility of replacing conventional accelerating machines with laser-based accelerators in order to develop a new concept of hadrontherapy facilities, which could result more compact and less expensive. With this background the ELIMED (ELIMED: ELI-Beamlines MEDical applications) research project has been launched by LNS-INFN researchers (Laboratori Nazionali del Sud-Istituto Nazionale di Fisica Nucleare, Catania, IT) and ASCR-FZU researchers (Academy of Sciences of the Czech Republic-Fyzikální ústar, Prague, Cz), within the pan-European ELI-Beamlines facility framework. Its main purposes are the demonstration of future applications in hadrontherapy of optically accelerated protons and the realization of a laser-accelerated ion transport beamline for multidisciplinary applications. Several challenges, starting from laser-target interaction and beam transport development, up to dosimetric and radiobiological issues, need to be overcome in order to reach the final goals. The design and the realization of a preliminary beam handling and dosimetric system and of an advanced spectrometer for high energy (multi-MeV) laser-accelerated ion beams will be shortly presented in this work.

  13. Annual report of the Tandem Accelerator Center, Nuclear and Solid State Research Project, University of Tsukuba

    International Nuclear Information System (INIS)

    1981-01-01

    During the academic year 1980 - 1981, the 12 UD Pelletron tandem accelerator in UTTAC has experienced several troubles. The accelerator tank had to be opened six times including the scheduled overhaul. Due to these troubles, both the beam time and the chain operation time were reduced by 20% as compared with the preceding year. However, the beam pulsing system was completed, and pulsed beam has been in use. The polarized ion source and the sputter ion source have worked well. A heavy ion booster with interdigital H-structure was designed, and has been under construction. Special efforts have been exerted on the detectors and detector systems. The examples of the achievements mainly associated with the Nuclear and Solid State Research Project are enumerated as follows. The complete experiment on d-p system provided the data on nuclear three body problem. The information about the mechanism of two-nucleon transfer reaction (p,t) was obtained. The mechanisms of (p,p) and (p,d) reactions were clarified. The experiment on the measurement of the magnetic moment of β-emitting products with polarized beam began. The properties of very highly excited states were clarified by the study of heavy ion-induced reactions. A new model for heavy ion fusion reaction was proposed. The mechanism of inner shell ionization was clarified by passing heavy ions through solids. (Kako, I.)

  14. Accelerated testing for studying pavement design and performance (FY 2003) : research summary.

    Science.gov (United States)

    2008-01-01

    The Midwest States Accelerated Pavement Testing Pooled Fund Program, financed by : the highway departments of Missouri, Iowa, Kansas and Nebraska, has supported an : accelerated pavement testing (APT) project to compare the performance of stabilized ...

  15. Accelerated testing for studying pavement design and performance (FY 2002) : research summary.

    Science.gov (United States)

    2004-01-01

    This report covers the Fiscal Year 2002 project conducted at the Accelerated Testing : Laboratory at Kansas State University. The project was selected and funded by the : Midwest States Accelerated Testing Pooled Fund Program, which includes Iowa, Ka...

  16. Present state of works on development of electron accelerators for energy consuming processes at Efremov Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A. S.; Maznev, V. P.; Ovchinnikov, V. P.; Svinin, M. P.; Tolstun, N. G. [Efremov Research Institute of Electrophysical Apparatus, Saint-Petersburg (Russian Federation)

    2011-07-01

    Necessity to decrease anthropogenic environmental pollution puts a task of development of HV accelerators for introduction of nature conservation technologies in commercial scale. High efficiency and operation reliability in a power range noticeably higher than already mastered level are required. In design of the accelerators basic units, namely, HV generators, accelerating structures, electron beam irradiation field forming systems and extraction devices solutions that demonstrated already theirs operational capacity in the machines of a lesser power may be used. From the other hand, experience gained by already full-scale built powerful installations shows that a number of problems remain unsolved that put obstacles on a way of wide implementation of exhaust gases irradiation processing. Attempts to built the accelerator meeting all requirements in a frame of specific contracts, although already shown noticeable progress in a sense of the power grow, acquiring of very valuable experience, carry some risk caused by insufficient study of the problems connected with power increasing, lack of time and means for the thorough research works. It looks reasonable to suggest creation of full-scale pilot installation with HV accelerator of required power (1 MW, for example) not bound to a specific commercial contract, where researches and studies of the accelerator main systems, theirs optimization and longevity tests can be carried out thus providing development of the accelerator into really reliable and effective tool for applying to environmental tasks.

  17. Clinical perspectives of cancer stem cell research in radiation oncology

    International Nuclear Information System (INIS)

    Bütof, Rebecca; Baumann, Michael; Dubrovska, Anna

    2013-01-01

    Radiotherapy has a proven potential to eradicate cancer stem cells which is reflected by its curative potential in many cancer types. Considerable progress has been made in identification and biological characterisation of cancer stem cells during the past years. Recent biological findings indicate significant inter- and intratumoural and functional heterogeneity of cancer stem cells and lead to more complex models which have potential implications for radiobiology and radiotherapy. Clinical evidence is emerging that biomarkers of cancer stem cells may be prognostic for the outcome of radiotherapy in some tumour entities. Perspectives of cancer stem cell based research for radiotherapy reviewed here include their radioresistance compared to the mass of non-cancer stem cells which form the bulk of all tumour cells, implications for image- and non-image based predictive bio-assays of the outcome of radiotherapy and a combination of novel systemic treatments with radiotherapy

  18. Safety and adverse events of neoadjuvant short-course hyperfractionated accelerated radiotherapy (SC-HART) for rectal cancer

    International Nuclear Information System (INIS)

    Doi, Hiroshi; Kamikonya, Norihiko; Hirota, Shozo; Beppu, Naohito; Yanagi, Hidenori

    2014-01-01

    We presented good tolerability and short-term outcomes of neoadjuvant short-course hyperfractionated accelerated radiotherapy (SC-HART; 25 Gy in 10 fractions for 5 days) combined with chemotherapy in a total of 73 patients with lower rectal cancer. Age, gender, tumor differentiation, and the type of surgery seemed to have no apparent effects on toxicity of SC-HART. SC-HART appeared to have a good feasibility for use in further clinical trials. (author)

  19. Manufacturing/Cell Therapy Specialist | Center for Cancer Research

    Science.gov (United States)

    Within the Leidos Biomedical Research Inc.’s Clinical Research Directorate, the Clinical Monitoring Research Program (CMRP) provides high-quality comprehensive and strategic operational support to the high-profile domestic and international clinical research initiatives of the National Cancer Institute (NCI), National Institute of Allergy and Infectious Diseases (NIAID),

  20. Policy challenges for cancer research: a call to arms.

    Science.gov (United States)

    Sullivan, R

    2007-01-01

    Research has delivered remarkable benefits for cancer patients and their families since James Watson and Francis Crick wrote the now immortal line, 'We wish to propose a structure for the salt of deoxyribonucleic acid' thus setting the molecular foundations for the modern era of cancer control. The pace of technological innovation from fundamental scientific discoveries to the policy impact of huge population studies has been breathtaking. One has only to contrast a paper on the treatment of solid epithelial cancers written by Henri Tagnon and colleagues in 1966 (Eur J Cancer2 51-7) with the myriad of chemotherapeutic approaches at the oncologists disposal today. Inevitably, as the tide of research has risen so it has bought the flotsam and jetsam of regulations and policies. Some have been helpful, many pointless and too many actually harmful. Naturally, some of these regulatory and general policies (by this I mean those concerned with funding, structure and organization) have been specifically targeted at cancer research, e.g. US National Cancer Act 1971, whilst others have been a product of the general regulatory environment with indirect consequences for cancer research, e.g. EU Data Protection Directive 1995. Policy issues thus cover a vast terrain criss-crossed by complex interdependencies between scientific areas, countries S&T policies and socio-political constructs. Unfortunately, there has been little attention paid to the consequences of these policy issues from which the research community has, by and large, been passenger rather than driver.Global investment in cancer research is now at unprecedented levels. The recently published report by the European Cancer Research Managers Forum has found some 14 billion euros being annually spent worldwide on cancer research (this figure includes industry but overall probably underestimates spend by at least one billion [2]). With the ageing demographics of developed countries and the catch-up effect in

  1. Chromatin Pioneers | Center for Cancer Research

    Science.gov (United States)

    Taking advantage of their ability to explore provocative ideas, NCI investigators pioneered the study of chromatin to demonstrate its functional importance and lay the groundwork for understanding its role in cancer and other diseases.

  2. Cellular Imaging | Center for Cancer Research

    Science.gov (United States)

    Innovative imaging methods developed and refined within CCR revealed atomic-level structures of biological molecules and unveiled dynamic views of a cell’s interior that are driving the design of new treatments and diagnostics for cancer.

  3. Summer Student Breast Cancer Research Training Program

    National Research Council Canada - National Science Library

    Zaloga, Gary P

    2005-01-01

    .... Methyl and ethyl forms of omega-3 lipids failed to induce apoptosis. Ganoderma lucidum, a Chinese mushroom, was found to inhibit breast cancer cell growth and decrease EGF receptor phosphorylation...

  4. Skin Cancer: NIH Research to Results

    Science.gov (United States)

    ... her skin cancer cells. Another method is to train a person's immune cells to attack the skin ... journal Pediatrics . The biggest increase was among adolescent girls, ages 15 to 19, according to the study ...

  5. Intercampus institute for research at particle accelerators. Final report, March 15, 1992 - September 30, 1995

    International Nuclear Information System (INIS)

    1997-01-01

    This is the final report to the DOE for the Intercampus Institute for Research at Particle Accelerators, or IIRPA, at least for the San Diego branch. Over the years that DOE supported IIRPA, we were told that yearly reports (and the final report) were not necessary because the previous year's summary in our annual request for funds constituted those reports. Therefore, it has taken some effort, and a corresponding long time, to put something together, after the fact. The IIRPA was born as an idea that arose during discussions at the 1974 PEP summer study, and began to be funded by DoE during the early stages of PEP detector design and construction. The intent was for the members of the Institute to be responsible for the PEP-9 Facility; all of the PEP experiments were supposed to be facilities, rather than just experimental setups for a particular group or research goal. IIRPA was approved as a Multicampus Research Unit (MRU) in 1977 by the University of California, and it was active on the UCD, UCSB and UCSD campuses for 10 years. This report concentrates on the period of time when the Directorship of IIRPA was once again at the San Diego campus, 1989 to 1995. The collection of yearly reports consisting of research in different areas of particle physics, make up this report in the appendices

  6. Biomedical text mining and its applications in cancer research.

    Science.gov (United States)

    Zhu, Fei; Patumcharoenpol, Preecha; Zhang, Cheng; Yang, Yang; Chan, Jonathan; Meechai, Asawin; Vongsangnak, Wanwipa; Shen, Bairong

    2013-04-01

    Cancer is a malignant disease that has caused millions of human deaths. Its study has a long history of well over 100years. There have been an enormous number of publications on cancer research. This integrated but unstructured biomedical text is of great value for cancer diagnostics, treatment, and prevention. The immense body and rapid growth of biomedical text on cancer has led to the appearance of a large number of text mining techniques aimed at extracting novel knowledge from scientific text. Biomedical text mining on cancer research is computationally automatic and high-throughput in nature. However, it is error-prone due to the complexity of natural language processing. In this review, we introduce the basic concepts underlying text mining and examine some frequently used algorithms, tools, and data sets, as well as assessing how much these algorithms have been utilized. We then discuss the current state-of-the-art text mining applications in cancer research and we also provide some resources for cancer text mining. With the development of systems biology, researchers tend to understand complex biomedical systems from a systems biology viewpoint. Thus, the full utilization of text mining to facilitate cancer systems biology research is fast becoming a major concern. To address this issue, we describe the general workflow of text mining in cancer systems biology and each phase of the workflow. We hope that this review can (i) provide a useful overview of the current work of this field; (ii) help researchers to choose text mining tools and datasets; and (iii) highlight how to apply text mining to assist cancer systems biology research. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Ethical, Legal, and Social Implication of Cancer Research | Resources | CDP

    Science.gov (United States)

    The Cancer Diagnosis Program strives to improve the diagnosis and assessment of cancer by effectively moving new scientific knowledge into clinical practice. This national program stimulates, coordinates and funds resources and research for the development of innovative in vitro diagnostics, novel diagnostic technologies and appropriate human specimens in order to better characterize cancers and allow improved medical decision making and evaluation of response to treatment.

  8. Accelerating Science to Action: NGOs Catalyzing Scientific Research using Philanthropic/Corporate Funding

    Science.gov (United States)

    Hamburg, S.

    2017-12-01

    While government funding of scientific research has been the bedrock of scientific advances in the US, it is seldom quick or directly responsive to societal needs. If we are to effectively respond to the increasingly urgent needs for new science to address the environmental and social challenges faced by humanity and the environment we need to deploy new scientific models to augment government-centric approaches. The Environmental Defense Fund has developed an approach that accelerates the development and uptake of new science in pursuit of science-based policy to fill the gap while government research efforts are initiated. We utilized this approach in developing the data necessary to quantify methane emissions from the oil and gas supply chain. This effort was based on five key principles: studies led by an academic researchers; deployment of multiple methods whenever possible (e.g. top-down and bottom-up); all data made public (identity but not location masked when possible); external scientific review; results released in peer-reviewed scientific journals. The research to quantify methane emissions involved > 150 scientists from 40 institutions, resulting in 35 papers published over four years. In addition to the research community companies operating along the oil and gas value chain participated by providing access to sites/vehicles and funding for a portion of the academic research. The bulk of funding came from philanthropic sources. Overall the use of this alternative research/funding model allowed for the more rapid development of a robust body of policy-relevant knowledge that addressed an issue of high societal interest/value.

  9. Overview of Heavy Ion Fusion Accelerator Research in the U. S.

    Science.gov (United States)

    Friedman, Alex

    2002-12-01

    This article provides an overview of current U.S. research on accelerators for Heavy Ion Fusion, that is, inertial fusion driven by intense beams of heavy ions with the goal of energy production. The concept, beam requirements, approach, and major issues are introduced. An overview of a number of new experiments is presented. These include: the High Current Experiment now underway at Lawrence Berkeley National Laboratory; studies of advanced injectors (and in particular an approach based on the merging of multiple beamlets), being investigated experimentally at Lawrence Livermore National Laboratory); the Neutralized (chamber) Transport Experiment being assembled at Lawrence Berkeley National Laboratory; and smaller experiments at the University of Maryland and at Princeton Plasma Physics Laboratory. The comprehensive program of beam simulations and theory is outlined. Finally, prospects and plans for further development of this promising approach to fusion energy are discussed.

  10. Research Programme for the 660 Mev Proton Accelerator Driven MOX-Plutonium Subcritical Assembly

    CERN Document Server

    Barashenkov, V S; Buttseva, G L; Dudarev, S Yu; Polanski, A; Puzynin, I V; Sissakian, A N

    2000-01-01

    The paper presents a research programme of the Experimental Acclerator Driven System (ADS), which employs a subcritical assembly and a 660 MeV proton acceletator operating at the Laboratory of Nuclear Problems of the JINR, Dubna. MOX fuel (25% PuO_2 + 75% UO_2) designed for the BN-600 reactor use will be adopted for the core of the assembly. The present conceptual design of the experimental subcritical assembly is based on a core of a nominal unit capacity of 15 kW (thermal). This corresponds to the multiplication coefficient k_eff = 0.945, energetic gain G = 30 and the accelerator beam power 0.5 kW.

  11. IAEA coordinated research project on 'analytical and experimental benchmark analyses of accelerator driven systems'

    International Nuclear Information System (INIS)

    Ait-Abderrahim, H.; Stanculescu, A.

    2006-01-01

    This paper provides the general background and the main specifications of the benchmark exercises performed within the framework of the IAEA Coordinated Research Project (CRP) on Analytical and Experimental Benchmark Analyses of Accelerator Driven Systems. The overall objective of the CRP, performed within the framework of the Technical Working Group on Fast Reactors (TWG-FR) of IAEA's Nuclear Energy Dept., is to contribute to the generic R and D efforts in various fields common to innovative fast neutron system development, i.e. heavy liquid metal thermal hydraulics, dedicated transmutation fuels and associated core designs, theoretical nuclear reaction models, measurement and evaluation of nuclear data for transmutation, and development and validation of calculational methods and codes. (authors)

  12. Regenerative medicine and responsible research and innovation: proposals for a responsible acceleration to the clinic.

    Science.gov (United States)

    Webster, Andrew

    2017-10-01

    This paper asks how regenerative medicine can be examined through the 'responsible research and innovation' (RRI) approach which has been developed over the past decade. It describes the drivers to the development of RRI, and then argues for the need to understand innovation itself through drawing on social science analysis rooted in science and technology studies. The paper then identifies a number of highly specific challenges faced by the regenerative medicine field and the implications these have for value creation. It offers a number of examples of how a combined RRI/science and technology studies perspective can identify priority areas for policy and concludes by arguing for a 'responsible acceleration', more likely to foster readiness at a time when much of the policy domain is pushing for ever-rapid access to cell therapies.

  13. Overview of heavy ion fusion accelerator research in the U.S

    International Nuclear Information System (INIS)

    Friedman, Alex

    2002-01-01

    This article provides an overview of current U.S. research on accelerators for Heavy Ion Fusion, that is, inertial fusion driven by intense beams of heavy ions with the goal of energy production. The concept, beam requirements, approach, and major issues are introduced. An overview of a number of new experiments is presented. These include: the High Current Experiment now underway at Lawrence Berkeley National Laboratory; studies of advanced injectors (and in particular an approach based on the merging of multiple beamlets), being investigated experimentally at Lawrence Livermore National Laboratory); the Neutralized (chamber) Transport Experiment being assembled at Lawrence Berkeley National Laboratory; and smaller experiments at the University of Maryland and at Princeton Plasma Physics Laboratory. The comprehensive program of beam simulations and theory is outlined. Finally, prospects and plans for further development of this promising approach to fusion energy are discussed

  14. Overview of Heavy Ion Fusion Accelerator Research in the U.S

    International Nuclear Information System (INIS)

    Friedman, A

    2002-01-01

    This article provides an overview of current U.S. research on accelerators for Heavy Ion Fusion, that is, inertial fusion driven by intense beams of heavy ions with the goal of energy production. The concept, beam requirements, approach, and major issues are introduced. An overview of a number of new experiments is presented. These include: the High Current Experiment now underway at Lawrence Berkeley National Laboratory; studies of advanced injectors (and in particular an approach based on the merging of multiple beamlets), being investigated experimentally at Lawrence Livermore National Laboratory; the Neutralized (chamber) Transport Experiment being assembled at Lawrence Berkeley National Laboratory; and smaller experiments at the University of Maryland and at Princeton Plasma Physics Laboratory. The comprehensive program of beam simulations and theory is outlined. Finally, prospects and plans for further development of this promising approach to fusion energy are discussed

  15. Can Accelerators Accelerate Learning?

    International Nuclear Information System (INIS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-01-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  16. Can Accelerators Accelerate Learning?

    Science.gov (United States)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  17. Medical uses of accelerators

    International Nuclear Information System (INIS)

    Bradbury, J.N.

    1981-01-01

    A variety of particle accelerators have either potential or already demonstrated uses in connection with medically-related research, diagnosis, and treatment. For cancer radiotherapy, nuclear particles including protons, neutrons, heavy ions, and negative pi mesons have advantages compared to conventional radiations in terms of dose localization and/or biological effectiveness. Clinical evaluations of these particles are underway at a number of institutions. Accelerator-produced radionuclides are in widespread use for research and routine diagnostic purposes. Elemental analysis techniques with charged particles and neutrons are being applied to bone, blood, and other tissues. Finally, low-dose medical imaging can be accomplished with accelerated protons and heavy ions. The status and future of these programs are discussed

  18. Research on Acceleration Compensation Strategy of Electric Vehicle Based on Fuzzy Control Theory

    Science.gov (United States)

    Zhu, Tianjun; Li, Bin; Zong, Changfu; Wei, Zhicheng

    2017-09-01

    Nowadays, the driving technology of electric vehicle is developing rapidly. There are many kinds of methods in driving performance control technology. The paper studies the acceleration performance of electric vehicle. Under the premise of energy management, an acceleration power compensation method by fuzzy control theory based on driver intention recognition is proposed, which can meet the driver’s subjective feelings better. It avoids the problem that the pedal opening and power output are single correspondence when the traditional vehicle accelerates. Through the simulation test, this method can significantly improve the performance of acceleration and output torque smoothly in non-emergency acceleration to ensure vehicle comfortable and stable.

  19. Accelerator and Fusion Research Division annual report, October 1981-September 1982. Fiscal year 1982

    International Nuclear Information System (INIS)

    Johnson, R.K.; Bouret, C.

    1983-05-01

    This report covers the activities of LBL's Accelerator and Fusion Research Division (AFRD) during 1982. In nuclear physics, the Uranium Beams Improvement Project was concluded early in the year, and experimentation to exploit the new capabilities began in earnest. Technical improvement of the Bevalac during the year centered on a heavy-ion radiofrequency quadrupole (RFQ) as part of the local injector upgrade, and we collaborated in studies of high-energy heavy-ion collision facilities. The Division continued its collaboration with Fermilab to design a beam-cooling system for the Tevatron I proton-antiprotron collider and to engineer the needed cooling components for the antiproton. The high-field magnet program set yet another record for field strength in an accelerator-type dipole magnet (9.2 T at 1.8 K). The Division developed the design for the Advanced Light Source (ALS), a 1.3-GeV electron storage ring designed explicitly (with low beam emittance and 12 long straight sections) to generate high-brilliance synchrotron light from insertion devices. The Division's Magnetic Fusion Energy group continued to support major experiments at the Princeton Plasma Physics Laboratory, the Lawrence Livermore National Laboratory (LLNL), and General Atomic Co. by developing positive-ion-based neutral-beam injectors. Progress was made toward converting our major source-test facility into a long-pulse national facility, the Neutral Beam Engineering Test Facility, which was completed on schedule and within budget in 1983. Heavy Ion Fusion research focused on planning, theoretical studies, and beam-transport experiments leading toward a High Temperature Experiment - a major test of this promising backup approach to fusion energy

  20. Neutronic Design of an Accelerator Driven Sub-Critical Research Reactor

    International Nuclear Information System (INIS)

    Pesic, M.

    2002-01-01

    Conceptual design of an accelerator driven sub-critical research reactor (ADSRR), as a new project in the Vinca Institute of Nuclear Sciences, is suggested for support to the Ministry of science, technologies and development of Republic Serbia, Yugoslavia. This paper show initial results of neutronic analyses of the proposed ADSRR carried out by Monte Carlo based MCNP and SHIELD codes. According to the proposal, the ADSRR would be constructed, in a later phase, at high-energy channel H5B of the VINCY cyclotron of the TESLA Accelerator Installation, that is under completion in the Vinca Institute. The fuel elements of 80%-enriched uranium dioxide dispersed in aluminium matrix, available in the Vinca Institute, are proposed for the ADSRR core design. The HEU fuel elements are placed in aluminium tubes filled by the 'primary moderator' - light water. These 'fuel tubes' are placed in a square lattice within lead matrix in a stainless steel tank. The lead is used as a 'secondary moderator' in the core and as the axial and radial reflector. Such design of the ADSRR shows that this small low neutron flux system can be used as an experimental 'demonstration' ADS with some neutron characteristics similar to proposed well-known lead moderated and cooled power sub-critical ADS with intermediate or fast neutron spectrum. The proposed experimental ADSRR, beside usage as a valuable research machine in reactor and neutron physics, will contribute to following and developing new nuclear technologies in the country, useful for eventual nuclear power option and nuclear waste incineration in future. (author)

  1. Prospective, longitudinal electroglottographic study of voice recovery following accelerated hypofractionated radiotherapy for T1/T2 larynx cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kazi, Rehan [Head and Neck Unit, Royal Marsden Hospital, London (United Kingdom); Institute of Cancer Research, Cancer Research UK Centre for Cell and Molecular Biology, London (United Kingdom); Venkitaraman, Ramachandran; Johnson, Catherine; Prasad, Vyas; Clarke, Peter; Newbold, Kate; Rhys-Evans, Peter; Nutting, Christopher [Head and Neck Unit, Royal Marsden Hospital, London (United Kingdom); Harrington, Kevin [Head and Neck Unit, Royal Marsden Hospital, London (United Kingdom); Institute of Cancer Research, Cancer Research UK Centre for Cell and Molecular Biology, London (United Kingdom)], E-mail: kevinh@icr.ac.uk

    2008-05-15

    Background and purpose: To measure voice outcomes following accelerated hypofractionated radiotherapy for larynx cancer. Materials and methods: Twenty-five patients with T1/T2 glottic cancer underwent serial electroglottographic and acoustic analysis (sustained vowel/i/ and connected speech) before radiotherapy and 1, 6 and 12 months post-treatment. Twenty-five normal subjects served as a reference control population. Results: Pre-treatment measures were significantly worse for larynx cancer patients. Median jitter (0.23% vs 0.97%, p = 0.001) and shimmer (0.62 dB vs 0.98 dB, p = 0.05) and differences in data ranges reflected greater frequency and amplitude perturbation in the larynx cancer patients. Pre-treatment Mean Phonation Time (MPT) was significantly reduced (21 s vs 14.8 s, p = 0.002) in larynx cancer patients. There was a trend towards improvement of jitter, shimmer and normalized noise energy at 12 months post-treatment. MPT improved but remained significantly worse than for normal subjects (21 s vs 16.4 s, p = 0.013). Average fundamental frequency resembled normal subjects, including improvement of the measured range (91.4-244.6 Hz in controls vs 100-201 Hz in post-treatment larynx cancer patients). Conclusions: This non-invasive technique effectively measures post-treatment vocal function in larynx cancer patients. This study demonstrated improvement of many key parameters that influence voice function over 12 months after radiotherapy.

  2. Accelerating cancer therapy development: the importance of combination strategies and collaboration. Summary of an Institute of Medicine workshop.

    Science.gov (United States)

    LoRusso, Patricia M; Canetta, Renzo; Wagner, John A; Balogh, Erin P; Nass, Sharyl J; Boerner, Scott A; Hohneker, John

    2012-11-15

    Cancer cells contain multiple genetic changes in cell signaling pathways that drive abnormal cell survival, proliferation, invasion, and metastasis. Unfortunately, patients treated with single agents inhibiting only one of these pathways--even if showing an initial response--often develop resistance with subsequent relapse or progression of their cancer, typically via the activation of an alternative uninhibited pathway. Combination therapies offer the potential for inhibiting multiple targets and pathways simultaneously to more effectively kill cancer cells and prevent or delay the emergence of drug resistance. However, there are many unique challenges to developing combination therapies, including devising and applying appropriate preclinical tests and clinical trial designs, prioritizing which combination therapies to test, avoiding overlapping toxicity of multiple agents, and overcoming legal, cultural, and regulatory barriers that impede collaboration among multiple companies, organizations, and/or institutions. More effective strategies to efficiently develop combination cancer therapies are urgently needed. Thus, the Institute of Medicine's National Cancer Policy Forum recently convened a workshop with the goal of identifying barriers that may be impeding the development of combination investigational cancer therapies, as well as potential solutions to overcome those barriers, improve collaboration, and ultimately accelerate the development of promising combinations of investigational cancer therapies. ©2012 AACR.

  3. Prospective, longitudinal electroglottographic study of voice recovery following accelerated hypofractionated radiotherapy for T1/T2 larynx cancer

    International Nuclear Information System (INIS)

    Kazi, Rehan; Venkitaraman, Ramachandran; Johnson, Catherine; Prasad, Vyas; Clarke, Peter; Newbold, Kate; Rhys-Evans, Peter; Nutting, Christopher; Harrington, Kevin

    2008-01-01

    Background and purpose: To measure voice outcomes following accelerated hypofractionated radiotherapy for larynx cancer. Materials and methods: Twenty-five patients with T1/T2 glottic cancer underwent serial electroglottographic and acoustic analysis (sustained vowel/i/ and connected speech) before radiotherapy and 1, 6 and 12 months post-treatment. Twenty-five normal subjects served as a reference control population. Results: Pre-treatment measures were significantly worse for larynx cancer patients. Median jitter (0.23% vs 0.97%, p = 0.001) and shimmer (0.62 dB vs 0.98 dB, p = 0.05) and differences in data ranges reflected greater frequency and amplitude perturbation in the larynx cancer patients. Pre-treatment Mean Phonation Time (MPT) was significantly reduced (21 s vs 14.8 s, p = 0.002) in larynx cancer patients. There was a trend towards improvement of jitter, shimmer and normalized noise energy at 12 months post-treatment. MPT improved but remained significantly worse than for normal subjects (21 s vs 16.4 s, p = 0.013). Average fundamental frequency resembled normal subjects, including improvement of the measured range (91.4-244.6 Hz in controls vs 100-201 Hz in post-treatment larynx cancer patients). Conclusions: This non-invasive technique effectively measures post-treatment vocal function in larynx cancer patients. This study demonstrated improvement of many key parameters that influence voice function over 12 months after radiotherapy

  4. Strategic Plans to Promote Head and Neck Cancer Translational Research Within the Radiation Therapy Oncology Group: A Report From the Translational Research Program

    International Nuclear Information System (INIS)

    Chung, Christine H.; Wong, Stuart; Ang, K. Kian; Hammond, Elizabeth H.; Dicker, Adam P.; Harari, Paul M.; Le, Quynh-Thu

    2007-01-01

    Head and neck cancer is the fifth most common cancer in the United States, with an overall survival rate of approximately 40-50%. In an effort to improve patient outcomes, research efforts designed to maximize benefit and reduce toxicities of therapy are in progress. Basic research in cancer biology has accelerated this endeavor and provided preclinical data and technology to support clinically relevant advances in early detection, prognostic and predictive biomarkers. Recent completion of the Human Genome Project has promoted the rapid development of novel 'omics' technologies that allow more broad based study from a systems biology perspective. However, clinically relevant application of resultant gene signatures to clinical trials within cooperative groups has advanced slowly. In light of the large numbers of variables intrinsic to biomarker studies, validation of preliminary data for clinical implementation presents a significant challenge and may only be realized with large trials that involve significant patient numbers. The Radiation Therapy Oncology Group (RTOG) Head and Neck Cancer Translational Research Program recognizes this problem and brings together three unique features to facilitate this research: (1) availability of large numbers of clinical specimens from homogeneously treated patients through multi-institutional clinical trials; (2) a team of physicians, scientists, and staff focused on patient-oriented head-and-neck cancer research with the common goal of improving cancer care; and (3) a funding mechanism through the RTOG Seed Grant Program. In this position paper we outline strategic plans to further promote translational research within the framework of the RTOG

  5. Towards discovery-driven translational research in breast cancer

    DEFF Research Database (Denmark)

    Celis, Julio E; Moreira, José M A; Gromova, Irina

    2005-01-01

    , promise to have a major impact on the way breast cancer will be diagnosed, treated and monitored in the future. Here we present a brief report on long-term ongoing strategies at the Danish Centre for Translational Breast Cancer Research to search for markers for early detection and targets for therapeutic...

  6. Antibody Portal | Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    Central to reproducibility in biomedical research is being able to use well-characterized and defined reagents. The CPTAC Antibody Portal serves as a National Cancer Institute (NCI) community resource that provides access to a large number of standardized renewable affinity reagents (to cancer-associated targets) and accompanying characterization data.

  7. Research on Utilizing a Multivariate Feedback Algorithm to Maintain Stable Operation of Variable Energy Electron Accelerators

    International Nuclear Information System (INIS)

    Van Ausdeln, L.A.; Cordes, G.A.; Haskell, K.J.; Jones, J.L.

    2002-01-01

    Measurements performed utilizing particle accelerators rely on the stability and reproducibility of the accelerator operation, most notably for beam flux (beam current) and beam energy. This can be vital when the measurements rely on previous calibrations performed to establish a standard on which to base the end result of the measurement. The authors have designed a monitoring and control virtual instrument (VI) based on National Instruments LabVIEW TM which calls external modeling code that is written in a standard programming language. The LabVIEWTM virtual instrument allows the user to monitor multiple accelerator parameters while permitting user control of the most important four of these parameters which determine machine operation. The external modeling code, the Advanced Data Validation and Verification System (ADVVS), incorporates as a kernel the Universal Process Model (UPM) software from Triant Technologies, Inc. The kernel executes the accelerator modeling function based on previously acquired history data of the relevant parameters for accelerator operation for conditions of interest. This history data is stored as a reference set prior to subsequent operation. During accelerator operation, 11 accelerator parameters are input to ADVVS from the LabVIEW TM virtual instrument. The ADVVS uses the reference files to predict the eleven parameter values that would normally be expected for optimal accelerator operation. The set of 11 model values is the nearest model state. This multivariate modeling approach presented two principal advantages: 1. The ADVVS allowed rapid detection of anomalous accelerator behavior variant from normal accelerator behavior recorded in the reference set of the kernel. 2. The ADVVS presented a methodology to incrementally tune the accelerator back to optimal operation, thus maintaining highly stable and reproducible operation. In the future, this methodology may also be utilized to tune the accelerator initially or move

  8. Opportunities for Cancer-relevant Innovative Technologies with Transformative Potential | Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    The National Cancer Institute (NCI) is seeking input from the community on identifying priorities with regards to supporting innovative technology development for cancer-relevant research. While the NCI provides support for technology development through a variety of mechanisms, it is important to understand whether or not these are sufficient for catalyzing and supporting the development of tools with significant potential for advancing important fields of cancer research or clinical care.

  9. Patient-centered prioritization of bladder cancer research.

    Science.gov (United States)

    Smith, Angela B; Chisolm, Stephanie; Deal, Allison; Spangler, Alejandra; Quale, Diane Z; Bangs, Rick; Jones, J Michael; Gore, John L

    2018-05-04

    Patient-centered research requires the meaningful involvement of patients and caregivers throughout the research process. The objective of this study was to create a process for sustainable engagement for research prioritization within oncology. From December 2014 to 2016, a network of engaged patients for research prioritization was created in partnership with the Bladder Cancer Advocacy Network (BCAN): the BCAN Patient Survey Network (PSN). The PSN leveraged an online bladder cancer community with additional recruitment through print advertisements and social media campaigns. Prioritized research questions were developed through a modified Delphi process and were iterated through multidisciplinary working groups and a repeat survey. In year 1 of the PSN, 354 patients and caregivers responded to the research prioritization survey; the number of responses increased to 1034 in year 2. The majority of respondents had non-muscle-invasive bladder cancer (NMIBC), and the mean time since diagnosis was 5 years. Stakeholder-identified questions for noninvasive, invasive, and metastatic disease were prioritized by the PSN. Free-text questions were sorted with thematic mapping. Several questions submitted by respondents were among the prioritized research questions. A final prioritized list of research questions was disseminated to various funding agencies, and a highly ranked NMIBC research question was included as a priority area in the 2017 Patient-Centered Outcomes Research Institute announcement of pragmatic trial funding. Patient engagement is needed to identify high-priority research questions in oncology. The BCAN PSN provides a successful example of an engagement infrastructure for annual research prioritization in bladder cancer. The creation of an engagement network sets the groundwork for additional phases of engagement, including design, conduct, and dissemination. Cancer 2018. © 2018 American Cancer Society. © 2018 American Cancer Society.

  10. The John Milner Nutrition and Cancer Prevention Research Practicum | Division of Cancer Prevention

    Science.gov (United States)

    Attendee Testimonial Plenty of Food for Thought Served Up at the John Milner Nutrition and Cancer Prevention Research Practicum by Julia Tobacyk Media Folder: research_groupView the Testimonial (PDF, 790 KB) Date: March 12-16, 2018 |

  11. Adoptive Cell Therapies: One Cancer at a Time | Center for Cancer Research

    Science.gov (United States)

    After completing medical school and a general surgery residency at the University of Missouri, Kansas City, Christian Hinrichs, M.D., planned on doing cancer research at the start of his fellowship at Roswell Park Cancer Institute in 1996. However, a detour sent him into surgical oncology, and Hinrichs only returned to his research interests through a subsequent surgical

  12. Lipid Biomarkers Identified for Liver Cancer | Center for Cancer Research

    Science.gov (United States)

    Hepatocellular carcinoma (HCC) is an aggressive cancer of the liver with poor prognosis and growing incidence in developed countries. Pathology and genetic profiles of HCC are heterogeneous, suggesting that it can begin growing in different cell types. Although human tumors such as HCC have been profiled in-depth by genomics-based studies, not much is known about their overall

  13. Statistical study on cancer patients of cancer research hospital

    International Nuclear Information System (INIS)

    Shim, Yoon Sang; Choi, Soo Yong; Won, Hyuk; Kim, Kee Hwa

    1991-01-01

    The total number of malignant neoplasms included on this study 7,787 cases(10.4%) among 74,928 cases for 2 years. On sex, females with 57.6% were much more than males with 42.4%. The highest proportion of cancer 50-59 age group. The most frequent primary site among males was found to be stomach with 36.2%, followed by liver(12.3%), lung(12.2%), esophagus(15.5%) and larynx(4.9%). In females, the first order was uterine cervix with 47.3%, followed most common type of morphology of malignant neoplasms was adenocarcinoma(39.0%) in males an squamous cell carcinoma(56.2%) in females. Among the cancer patients initially diagnosed in this hospital, the proportion of malignant neoplasms by the extent of disease was 4.6% for patient with carcinoma-in-situ, 76.3% for patients with localized involvement, 11.6% for patients with regional involvement and 7.5% for patients with distant involvement. Among,the cancer patients initially treatment in this hospital, the proportion of malignant neoplasms by the method of treatment was 19.0% for surgery, 27.7 for radiotherapy and 24.2% for chemotherapy. Among the cancer patients confirmed by medical records, 11.2% was traced more than 5 years. (Author)

  14. Research Progress of Exosomes in Lung Cancer Diagnosis and Treatment

    Directory of Open Access Journals (Sweden)

    Hongbo ZOU

    2016-11-01

    Full Text Available As the leading cause of morbidity and cancer related-death worldwide, lung cancer has a serious threat to human health. Exosomes are nanoscale lipid membrane vesicles derived from multivesicles, which containing active biomolecules including proteins, lipids, nucleic acids and etc. Exosomes play important roles in lung cancer initiation and progression by promoting the formation of tumor microenvironment, enhancing tumor invasive and metastasis capability, leading to immunosuppression and resistance to chemoradiotherapy, and also have the application value in early diagnosis and treatment. This review summarizes the research progress of exosomes in tumor initiation and progression, and its roles in diagnosis and treatment of lung cancer.

  15. Kids, Adolescents, and Young Adults Cancer Study-A Methodological Approach in Cancer Epidemiology Research

    International Nuclear Information System (INIS)

    Link, N. L.; Maurer, E.; Largent, J.; Kent, E.; Sender, E.; Culver, H. A.; Morris, R. A.; Sender, E.

    2009-01-01

    Advances have been made in treatment and outcomes for pediatric cancer. However adolescents and young adults (AYAs) with cancer have not experienced similar relative improvements. We undertook a study to develop the methodology necessary for epidemiologic cancer research in these age groups. Our goal was to create the Kids, Adolescents, and Young Adults Cancer (KAYAC) project to create a resource to address research questions relevant to this population. We used a combination of clinic and population-based ascertainment to enroll 111 cases aged 0-39 for this methodology development study. The largest groups of cancer types enrolled include: breast cancer, leukemia, lymphoma, and melanoma. The overall participation rate is 69.8% and varies by age and tumor type. The study included patients, mothers, and fathers. The methods used to establish this resource are described, and the values of the resource in studies of childhood and young adult cancer are outlined.

  16. Cancer as a Social Dysfunction - Why Cancer Research Needs New Thinking.

    Science.gov (United States)

    Pienta, Kenneth J; Axelrod, Robert

    2018-05-21

    The incidence and mortality for many cancers continues to rise. As such, critical action is needed on many fronts to reshape how a society thinks, discusses, and fights cancer especially as the population grows and ages. Cancer can be described as a broken social contract which requires different conceptual frameworks such as game theory. To this end, it is our hope that this perspective will catalyze a discussion to rethink the way we approach, communicate, and fund cancer research - thinking of cancer as a broken social contract is only one example. Importantly, this endeavor will require infusion of ideas from other fields such as physics, computational medicine, complexity science, agent-based modeling, sociology, and ecology all of which have the capacity to drive new insights into cancer biology and clinical medicine. Copyright ©2018, American Association for Cancer Research.

  17. Building capacity for sustainable research programmes for cancer in Africa.

    Science.gov (United States)

    Adewole, Isaac; Martin, Damali N; Williams, Makeda J; Adebamowo, Clement; Bhatia, Kishor; Berling, Christine; Casper, Corey; Elshamy, Karima; Elzawawy, Ahmed; Lawlor, Rita T; Legood, Rosa; Mbulaiteye, Sam M; Odedina, Folakemi T; Olopade, Olufunmilayo I; Olopade, Christopher O; Parkin, Donald M; Rebbeck, Timothy R; Ross, Hana; Santini, Luiz A; Torode, Julie; Trimble, Edward L; Wild, Christopher P; Young, Annie M; Kerr, David J

    2014-05-01

    Cancer research in Africa will have a pivotal role in cancer control planning in this continent. However, environments (such as those in academic or clinical settings) with limited research infrastructure (laboratories, biorespositories, databases) coupled with inadequate funding and other resources have hampered African scientists from carrying out rigorous research. In September 2012, over 100 scientists with expertise in cancer research in Africa met in London to discuss the challenges in performing high-quality research, and to formulate the next steps for building sustainable, comprehensive and multi-disciplinary programmes relevant to Africa. This was the first meeting among five major organizations: the African Organisation for Research and Training in Africa (AORTIC), the Africa Oxford Cancer Foundation (AfrOx), and the National Cancer Institutes (NCI) of Brazil, France and the USA. This article summarizes the discussions and recommendations of this meeting, including the next steps required to create sustainable and impactful research programmes that will enable evidenced-based cancer control approaches and planning at the local, regional and national levels.

  18. Heavy ion radiation biology research facility and ongoing activities at the Inter-University Accelerator Centre, New Delhi

    International Nuclear Information System (INIS)

    Sarma, Asitikantha

    2014-01-01

    Heavy Ion Radiation Biology is an interdisciplinary science involving use of charged particle accelerator in the study of molecular biology. It is the study of the interaction of a beam of swift heavy ions with a biological system. In contrast to the sparsely ionizing photon or electron radiation, the high velocity charged heavy ions leave a track of densely populated ionization sites resulting in clustered DNA damage. The growing interest in this field encompasses the studies in gene expression, mechanisms of cell death, DNA damage and repair, signal transduction etc. induced because of this unique assault on the genetic material. IUAC radiation biology programme is focused on the in-vitro studies of different effects of heavy ion irradiation on eukaryotic cells. The facility provides a laboratory for pre and post irradiation treatment of samples. The irradiation system called ASPIRE (Automatic Sample Positioning for Irradiation in Radiation Biology Experiments) is installed at the dedicated Radiation Biology Beam line. It produces a nearly uniform flux distribution over a irradiation field of 40 mm diameter. The particle doses can be preselected and repeated within inherent statistical accuracy. The particle energy can also be measured. The facility is at present utilized by the University researchers of India. A few results obtained by the investigators would be presented. The outcome of the research in heavy ion radiation biology would be of immense use in augmenting the efficacy of Hadron therapy of cancer. The results would also contribute to the field of space radiation protection. It would also help in understanding the phenomena subsequent to complex DNA damage. (author)

  19. Global Impact | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Through its direct support of clinical research, Frederick National Laboratory activities are not limited to national programs. The labis actively involved in more than 400 domestic and international studies related to cancer; influenza, HIV, E

  20. Philanthropic partnerships and the future of cancer research.

    Science.gov (United States)

    Murciano-Goroff, Yonina R

    2015-02-01

    Complementing government and industry funding, philanthropies have made distinct contributions to altering the trajectory of cancer research, often in ways that reflect both the business training of their donors and their close ties to the lay public.

  1. Technical Service Agreement (TSA) | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Frederick National Laboratory for Cancer Research (FNLCR) scientists provide services and solutions to collaborators through the Technical Services Program, whose portfolio includes more than 200 collaborations with more than 80 partners. The Frederi

  2. TL dosimetry in the new Tandetron ion accelerator site of the National Institute of Nuclear Research (ININ)

    International Nuclear Information System (INIS)

    Valdovinos A, M.; Gonzalez M, P.R.

    2000-01-01

    The National Institute of Nuclear Research (ININ) acquired a positive ions accelerator type Tandetron 2 MV of the dutch company High Voltage Engineering, Europe B.V., which was finished its installation this year (2000) in an already existing building in the Dr. Nabor Carrillo Flores Nuclear Centre, where it was prepared for the following purposes: the accelerator will be used to realize research through X-ray emission induced by charged particles, Rutherford backscattering analysis, nuclear reaction analysis, gamma ray emission induced by charged particles, resonant dispersion analysis, elastic backward detection analysis and by particle canalization analysis. The accelerator consists of an injection system with two ion sources, ion accelerator tank with voltage in terminal at 2 MV, recovery and recirculation system of charge interchange gas, iman selector analyzer system and with high energy focussing, control system through computer and management and recovery of isolator gas system. For the realization of operation tests of this accelerator, it was had the license authorizing by the National Commission of Nuclear Safety and Safeguards (CNSNS). During the test stage Tl dosemeters were arranged in the Tandetron accelerator area, and also in direction to the beam outlet. In this work, are presented the obtained results of the measurement of radiation levels, as in the area as in the beam outlet. (Author)

  3. Dual-harmonic auto voltage control for the rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    Directory of Open Access Journals (Sweden)

    Fumihiko Tamura

    2008-07-01

    Full Text Available The dual-harmonic operation, in which the accelerating cavities are driven by the superposition of the fundamental and the second harmonic rf voltage, is useful for acceleration of the ultrahigh intensity proton beam in the rapid cycling synchrotron (RCS of Japan Proton Accelerator Research Complex (J-PARC. However, the precise and fast voltage control of the harmonics is necessary to realize the dual-harmonic acceleration. We developed the dual-harmonic auto voltage control system for the J-PARC RCS. We describe details of the design and the implementation. Various tests of the system are performed with the RCS rf system. Also, a preliminary beam test has been done. We report the test results.

  4. Clinical research on cancer treatment with combined radiotherapy and chemotherapy

    International Nuclear Information System (INIS)

    Fuwa, Nobukazu; Ito, Yoshiyuki; Kato, Eriko; Koyama, Kazuyuki; Morita, Kozo

    1993-01-01

    There are two purposes of using combined chemotherapy and radiotherapy in the treatment of cancers. One is to suppress distant metastasis, especially micrometastasis; the other is to improve localized control. As a trial of the utility of the former, systemic chemotherapy with CDDP and 5 FU was given successively with radiotherapy to treat nasopharyngeal cancer. The survival rate was significantly improved compared with historical control cases. The main reason for this effectiveness was the improvement of localized control. The suppression of distant metastasis is the subject of future research. As a trial of the utility of the latter, a super-selective intraarterial chemotherapy with CBDCA combined with radiotherapy was used to head and neck localized progressive cancers. The control of localized cancer was remarkably effective. This treatment is considered to be especially suitable for locally advanced tongue cancer and cancer of the root of the tongue. (author)

  5. Clinical application and research of tumor markers in colorectal cancer

    International Nuclear Information System (INIS)

    Chen Yumei

    2005-01-01

    Colorectal cancer is one of the most common malignant tumors. There are many tumor markers for detecting colorectal cancer, some of which have been widely used in clinical area. However, still lack an ideal tumor marker of colorectal cancer. In this review, we simply characterized some common tumor markers including carcinoembryonic antigen, CA19-9, CA50, CA242 etc and their dignostic value. And here we discussed some combined detecting procedures which improve diagnostic accuracy of colorectal cancer. In addition, with the development of the biomoleculer technique, some newly discovered tumor markers and genetic marekers have gained great progress in the research of colorectal cancer, and will become a promissing technique in the diagnosis of colorectal cancer. (authors)

  6. A comparison of cancer burden and research spending reveals discrepancies in the distribution of research funding

    Directory of Open Access Journals (Sweden)

    Carter Ashley JR

    2012-07-01

    Full Text Available Abstract Background Ideally, the distribution of research funding for different types of cancer should be equitable with respect to the societal burden each type of cancer imposes. These burdens can be estimated in a variety of ways; “Years of Life Lost” (YLL measures the severity of death in regard to the age it occurs, "Disability-Adjusted Life-Years" (DALY estimates the effects of non-lethal disabilities incurred by disease and economic metrics focus on the losses to tax revenue, productivity or direct medical expenses. We compared research funding from the National Cancer Institute (NCI to a variety of burden metrics for the most common types of cancer to identify mismatches between spending and societal burden. Methods Research funding levels were obtained from the NCI website and information for societal health and economic burdens were collected from government databases and published reports. We calculated the funding levels per unit burden for a wide range of different cancers and burden metrics and compared these values to identify discrepancies. Results Our analysis reveals a considerable mismatch between funding levels and burden. Some cancers are funded at levels far higher than their relative burden suggests (breast cancer, prostate cancer, and leukemia while other cancers appear underfunded (bladder, esophageal, liver, oral, pancreatic, stomach, and uterine cancers. Conclusions These discrepancies indicate that an improved method of health care research funding allocation should be investigated to better match funding levels to societal burden.

  7. Accelerator and Fusion Research Division annual report, October 1980-September 1981. Fiscal year, 1981

    International Nuclear Information System (INIS)

    Johnson, R.K.; Thomson, H.A.

    1982-04-01

    Major accomplishments during fiscal year 1981 are presented. During the Laboratory's 50th anniversary celebrations, AFRD and the Nuclear Science Division formally dedicated the new (third) SuperHILAC injector that adds ions as heavy as uranium to the ion repertoire at LBL's national accelerator facilities. The Bevalac's new multiparticle detectors (the Heavy Ion Spectrometer System and the GSI-LBL Plastic Ball/Plastic Wall) were completed in time to take data before the mid-year shutdown to install the new vacuum liner, which passed a milestone in-place test with flying colors in September. The Bevalac biomedical program continued patient treatment with neon beams aimed at establishing a complete data base for a dedicated biomedical accelerator, the design of which NCI funded during the year. Our program to develop alternative Isabelle superconducting dipole magnets, which DOE initiated in FY80, proved the worth of a new magnet construction technique and set a world record - 7.6 Tesla at 1.8 K - with a model magnet in our upgraded test facility. Final test results at LBL were obtained by the Magnetic Fusion Energy Group on the powerful neutral beam injectors developed for Princeton's TFTR. The devices exceeded the original design requirements, thereby completing the six-year, multi-million-dollar NBSTF effort. The group also demonstrated the feasibility of efficient negative-ion-based neutral beam plasma heating for the future by generating 1 A of negative ions at 34 kV for 7 seconds using a newly developed source. Collaborations with other research centers continued, including: (1) the design of LBL/Exxon-dedicated beam lines for the Stanford Synchrotron Radiation Laboratory; (2) beam cooling tests at Fermilab and the design of a beam cooling system for a proton-antiproton facility there; and (3) the development of a high-current betatron for possible application to a free electron laser

  8. Advancing Prostate Cancer Research by Providing Summer Research Opportunities for HBCU Students at the Cancer Center at UTHSCSA

    Science.gov (United States)

    2017-08-01

    encouraging the students to attend the American Association for Cancer Research (AACR) meeting in Chicago in April 2018. The abstracts for this...Updates: Elucidating the Effects of Obesity on Bladder Cancer Progression - completed CTRC at UTHSCSA: Genomics Shared Resource; reduced from

  9. Using Mechanical Turk for research on cancer survivors.

    Science.gov (United States)

    Arch, Joanna J; Carr, Alaina L

    2017-10-01

    The successful recruitment and study of cancer survivors within psycho-oncology research can be challenging, time-consuming, and expensive, particularly for key subgroups such as young adult cancer survivors. Online crowdsourcing platforms offer a potential solution that has not yet been investigated with regard to cancer populations. The current study assessed the presence of cancer survivors on Amazon's Mechanical Turk (MTurk) and the feasibility of using MTurk as an efficient, cost-effective, and reliable psycho-oncology recruitment and research platform. During a <4-month period, cancer survivors living in the United States were recruited on MTurk to complete two assessments, spaced 1 week apart, relating to psychosocial and cancer-related functioning. The reliability and validity of responses were investigated. Within a <4-month period, 464 self-identified cancer survivors on MTurk consented to and completed an online assessment. The vast majority (79.09%) provided reliable and valid study data according to multiple indices. The sample was highly diverse in terms of U.S. geography, socioeconomic status, and cancer type, and reflected a particularly strong presence of distressed and young adult cancer survivors (median age = 36 years). A majority of participants (58.19%) responded to a second survey sent one week later. Online crowdsourcing represents a feasible, efficient, and cost-effective recruitment and research platform for cancer survivors, particularly for young adult cancer survivors and those with significant distress. We discuss remaining challenges and future recommendations. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Testicular Cancer Survivorship : Research Strategies and Recommendations

    NARCIS (Netherlands)

    Travis, Lois B.; Beard, Clair; Allan, James M.; Dahl, Alv A.; Feldman, Darren R.; Oldenburg, Jan; Daugaard, Gedske; Kelly, Jennifer L.; Dolan, M. Eileen; Hannigan, Robyn; Constine, Louis S.; Oeffinger, Kevin C.; Okunieff, Paul; Armstrong, Greg; Wiljer, David; Miller, Robert C.; Gietema, Jourik A.; van Leeuwen, Flora E.; Williams, Jacqueline P.; Nichols, Craig R.; Einhorn, Lawrence H.; Fossa, Sophie D.

    2010-01-01

    Testicular cancer represents the most curable solid tumor, with a 10-year survival rate of more than 95%. Given the young average age at diagnosis, it is estimated that effective treatment approaches, in particular, platinum-based chemotherapy, have resulted in an average gain of several decades of

  11. Promising Tools in Prostate Cancer Research

    DEFF Research Database (Denmark)

    Bonomo, Silvia; Hansen, Cecilie H; Petrunak, Elyse M

    2016-01-01

    Cytochrome P450 17A1 (CYP17A1) is an important target in the treatment of prostate cancer because it produces androgens required for tumour growth. The FDA has approved only one CYP17A1 inhibitor, abiraterone, which contains a steroidal scaffold similar to the endogenous CYP17A1 substrates...

  12. Transgenic Rat Models for Breast Cancer Research

    Science.gov (United States)

    1996-10-01

    colleagues, Dr. Henry Pitot , an expert in hepatocarcinogenesis, and Dr. Michael Gould, an expert in breast cancer. Through our initial attempts at...974-978. 29. Dragan, Y.P. and H.C. Pitot . 1992. The role of the stages of initiation and promotion in phenotypic diversity during hepatocarcinogenesis

  13. Cancer in Africa: opportunities for collaborative research and training.

    Science.gov (United States)

    Adebamowo, C A; Akarolo-Anthony, S

    2009-06-01

    Cancer is a worldwide public health problem causing increasing morbidity and mortality, particularly in the developing world. Underlying trends are changing the pattern of cancer and this is also being influenced by the HIV/AIDS pandemic, particularly in Sub-Saharan Africa. Even though the pattern of cancer varies across Africa, there are identifiable trends. Breast and cervical cancers, and Kaposi sarcoma are the commonest cancers in women, while Kaposi sarcoma, liver and prostate cancers are the commonest in men. Cancer causes more morbidity and mortality in Africa compared to other parts of the world. Infections account for a disproportionate amount of cancers in Africa. The HIV epidemic is contributing to increased prevalence of many cancers particularly those associated with Herpes and Papilloma viruses. Tobacco use, another major carcinogen, is increasing, particularly among the young. Dietary factors, alcohol use, physical inactivity and environmental pollution are also important aetiological factors of cancer in Africa. In developing countries, poverty, limited government health budget and poor health care systems complicate cancer prevention, treatment and outcomes. Coordinated response by international agencies and NGOs is needed to help developing countries and several successful models exist. More action is also needed on ensuring safety and quality of chemotherapy and the price needs to be reduced. Responses advocated for cancer control in Africa include banning tobacco use, better regulation of alcohol sale, better environmental planning and immunization against cancer associated viruses. Training of health care workers to diagnose cancer and treat it effectively within limited budgets is needed. Research to develop these new treatments and others, particularly from natural products is urgently needed and this can be done safely within established health research ethics regulatory frameworks. Several opportunities for collaborative research and

  14. Understanding participation by African Americans in cancer genetics research.

    Science.gov (United States)

    McDonald, Jasmine A; Barg, Frances K; Weathers, Benita; Guerra, Carmen E; Troxel, Andrea B; Domchek, Susan; Bowen, Deborah; Shea, Judy A; Halbert, Chanita Hughes

    2012-01-01

    Understanding genetic factors that contribute to racial differences in cancer outcomes may reduce racial disparities in cancer morbidity and mortality. Achieving this goal will be limited by low rates of African American participation in cancer genetics research. We conducted a qualitative study with African American adults (n = 91) to understand attitudes about participating in cancer genetics research and to identify factors that are considered when making a decision about participating in this type of research. Participants would consider the potential benefits to themselves, family members, and their community when making a decision to participate in cancer genetics research. However, concerns about exploitation, distrust of researchers, and investigators' motives were also important to participation decisions. Individuals would also consider who has access to their personal information and what would happen to these data. Side effects, logistical issues, and the potential to gain knowledge about health issues were also described as important factors in decision making. African Americans may consider a number of ethical, legal, and social issues when making a decision to participate in cancer genetics research. These issues should be addressed as part of recruitment efforts.

  15. Research on the Frequency Aliasing of Resistance Acceleration Guidance for Reentry Flight

    Directory of Open Access Journals (Sweden)

    Han Pengxin

    2017-01-01

    Full Text Available According to the special response of resistance acceleration during hypersonic reentry flight, different guidance frequency will result to very different flight and control response. The analysis model for the response of resistance acceleration to the attack angle and dynamic press is put forward respectively in this paper. And the frequency aliasing phenomenon of guidance is revealed. The simulation results to the same vehicle sufficiently substantiate the frequency aliasing of resistance acceleration during reentry guidance.

  16. A Review of Lung Cancer Research in Malaysia.

    Science.gov (United States)

    Kan, C S; Chan, K M J

    2016-06-01

    Lung cancer is a major cause of mortality and morbidity in Malaysia and worldwide. This paper reviews all research and publications on lung cancer in Malaysia published between 2000-2015. 89 papers were identified, of which 64 papers were selected and reviewed on the basis of their relevance to the review. The epidemiology, risk factors, cell types, clinical presentation, diagnosis, treatment, outcomes, prevention, and the social impact of lung cancer in the country are reviewed and summarized. The clinical relevance of the studies done in the country are discussed along with recommendations for future research.

  17. Statistical study on cancer patients of cancer research hospital

    International Nuclear Information System (INIS)

    Shim, Yun Sang; Choi, Soo Yong; Kim, Ki Wha; Kang, Sung Mok

    1993-01-01

    The total number of malignant neoplasms included in this study 15,737 cases(11.8%) among 133,251 cases for 3 years. On sex, females with 52.9% were much more than males with 47.1%. The highest proportion of cancer patients by age was 33.7% in males and 28.5% in females, respectivelty for 50-59 age group. The most frequent primary site among males was found to be stomach with 35.5%, followed by liver(14.7%), lung(13.0%), esophagus(5.4%) and colon (3.2%). In females, the first order was uterine cervix with 40.6%, followed by stomach(17.2%), breast(14.4), rectum(3.7%) and lung(3.4%). The most common type of morphology of malignant neoplasms was adenocarcinoma(47.4%) in males an squamous cell carcinoma(58.0%) in females. Among the cancer patients initially diagnosed in this hospital, the proportion of malignant neoplasms by the exent of disease was 2.5% for patient with carcinoma-in-situ, 54.1% for patients with localized involvement, 13.3% for patients with regional involvement and 8.5% for patients with distant involvement. Among the cancer patients initially treatment in this hospital, the proportion of malignant neoplasms by the method of treatment was 23.6% for surgery, 25.3% for radiotherapy and 30.3% for chemotherapy. Among the cancer patients confirmed by medical records, 7.7% was traced more than 5 years. (Author)

  18. The participation of IPEN in the IAEA coordinated research projects on accelerators driven systems (ADS)

    Energy Technology Data Exchange (ETDEWEB)

    Maiorino, J.R.; Santos, A.; Carluccio, T.; Rossi, P.C.R.; Antunes, A.; Oliveira, F. de; Lee, S.M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: maiorino@ipen.br

    2007-07-01

    This paper describes the participation of the IPEN in the International Atomic Energy Agency (IAEA) Coordinated Research Projects(CRP) on Analytical and Experimental Benchmark Analysis on ADS and Low Enriched Uranium Fuel Utilization in ADS. The first CRP has as specific objective to improve the present understanding of the coupling of an external neutron source [e.g. a spallation source in the case of the accelerator driven system (ADS)] with a multiplicative sub-critical core, and the second CRP, or collaborative work, the utilization of LEU in existing or planned ADS facilities. IPEN participate in both CRP through a research contract (13388), and although there are several benchmarks defined in both CRP, presently IPEN is participating in the activities related with reactor physics benchmark of the Yalina Booster facility in Belarus, in the analytical and numerical benchmarking of methods and codes for ADS kinetics, and in the ADS target calculations. Besides, since there are plans to introduce a compact neutron generator in a sub critical core of the IPEN-MB-01 facility, a benchmark of a simulation of such project has been proposed in the LEU-ADS CRP. The paper will review the CRPs with details on the activities in which IPEN is participating. (author)

  19. The participation of IPEN in the IAEA coordinated research projects on accelerators driven systems (ADS)

    International Nuclear Information System (INIS)

    Maiorino, J.R.; Santos, A.; Carluccio, T.; Rossi, P.C.R.; Antunes, A.; Oliveira, F. de; Lee, S.M.

    2007-01-01

    This paper describes the participation of the IPEN in the International Atomic Energy Agency (IAEA) Coordinated Research Projects(CRP) on Analytical and Experimental Benchmark Analysis on ADS and Low Enriched Uranium Fuel Utilization in ADS. The first CRP has as specific objective to improve the present understanding of the coupling of an external neutron source [e.g. a spallation source in the case of the accelerator driven system (ADS)] with a multiplicative sub-critical core, and the second CRP, or collaborative work, the utilization of LEU in existing or planned ADS facilities. IPEN participate in both CRP through a research contract (13388), and although there are several benchmarks defined in both CRP, presently IPEN is participating in the activities related with reactor physics benchmark of the Yalina Booster facility in Belarus, in the analytical and numerical benchmarking of methods and codes for ADS kinetics, and in the ADS target calculations. Besides, since there are plans to introduce a compact neutron generator in a sub critical core of the IPEN-MB-01 facility, a benchmark of a simulation of such project has been proposed in the LEU-ADS CRP. The paper will review the CRPs with details on the activities in which IPEN is participating. (author)

  20. Pre-design of MYRRHA, A Multipurpose Accelerator Driven System for Research and Development

    International Nuclear Information System (INIS)

    D'hondt, P.; Abderrahim, H. Aiet; Kupschus, P.; Malambu, E.; Aoust, Th.; Benoit, Ph.; Sobolev, V.; Tichelen, K. van; Arien, B.; Vermeersch, F.; Jongen, Y.; Ternier, S.; Vandeplassche, D.

    2003-01-01

    One of the main SCKCEN research facility, namely BR2, is nowadays arriving at an age of 40 years just like the major materials testing reactors (MTR) in the world and in Europe (i.e. BR2 (B-Mol), HFR (EU-Petten), OSIRIS (F-Saclay), R2 (S-Studsvik)). The MYRRHA facility in planning has been conceived as potentially replacing BR2 and to be a fast spectrum facility complementary to the thermal spectrum RJH (Reacteur Jules Horowitz) facility, in planning in France. This situation would give Europe a full research capability in terms of nuclear R and D. Furthermore, the disposal of radioactive wastes resulting from industrial nuclear energy production has still to find a fully satisfactory solution, especially in terms of environmental and social acceptability. Scientists are looking for ways to drastically reduce (by a factor of 100 or more) the radio-toxicity of the High Level Waste (HLW) to be stored in a deep geological repository. This can be achieved via burning of minor actinides (MA) and to a less extent of long-lived fission products (LLFP) in Accelerator Driven Systems. The MYRRHA project contribution will be in helping to demonstrate the ADS concept at reasonable power level and the demonstration of the technological feasibility of MA and LLFP transmutation under real conditions

  1. Mixed-field GCR Simulations for Radiobiological Research using Ground Based Accelerators

    Science.gov (United States)

    Kim, Myung-Hee Y.; Rusek, Adam; Cucinotta, Francis

    Space radiation is comprised of a large number of particle types and energies, which have differential ionization power from high energy protons to high charge and energy (HZE) particles and secondary neutrons produced by galactic cosmic rays (GCR). Ground based accelerators such as the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) are used to simulate space radiation for radiobiology research and dosimetry, electronics parts, and shielding testing using mono-energetic beams for single ion species. As a tool to support research on new risk assessment models, we have developed a stochastic model of heavy ion beams and space radiation effects, the GCR Event-based Risk Model computer code (GERMcode). For radiobiological research on mixed-field space radiation, a new GCR simulator at NSRL is proposed. The NSRL-GCR simulator, which implements the rapid switching mode and the higher energy beam extraction to 1.5 GeV/u, can integrate multiple ions into a single simulation to create GCR Z-spectrum in major energy bins. After considering the GCR environment and energy limitations of NSRL, a GCR reference field is proposed after extensive simulation studies using the GERMcode. The GCR reference field is shown to reproduce the Z and LET spectra of GCR behind shielding within 20 percents accuracy compared to simulated full GCR environments behind shielding. A major challenge for space radiobiology research is to consider chronic GCR exposure of up to 3-years in relation to simulations with cell and animal models of human risks. We discuss possible approaches to map important biological time scales in experimental models using ground-based simulation with extended exposure of up to a few weeks and fractionation approaches at a GCR simulator.

  2. Big Data-Led Cancer Research, Application, and Insights.

    Science.gov (United States)

    Brown, James A L; Ni Chonghaile, Triona; Matchett, Kyle B; Lynam-Lennon, Niamh; Kiely, Patrick A

    2016-11-01

    Insights distilled from integrating multiple big-data or "omic" datasets have revealed functional hierarchies of molecular networks driving tumorigenesis and modifiers of treatment response. Identifying these novel key regulatory and dysregulated elements is now informing personalized medicine. Crucially, although there are many advantages to this approach, there are several key considerations to address. Here, we examine how this big data-led approach is impacting many diverse areas of cancer research, through review of the key presentations given at the Irish Association for Cancer Research Meeting and importantly how the results may be applied to positively affect patient outcomes. Cancer Res; 76(21); 6167-70. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. Accelerators for Medicine

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    This lecture will review the different applications of particle accelerators to the medical field, from cancer treatment with beams of accelerator-produced particles (photons, electrons, protons, ions and neutrons) to the generation of radioactive isotopes used in medical diagnostics, in cancer therapy and in the new domain of theragnostics. For each application will be outlined the state of the art, the potential, and the accelerator challenges to be faced to meet the increasing demand for therapeutic procedures based on accelerators.

  4. Application of accelerator mass spectrometry to environmental research, Trial of GC-AMS

    International Nuclear Information System (INIS)

    Shibata, Yasuyuki

    2003-01-01

    The accelerator analysis facility of the National Institute for Environmental Studies, which aims to develop a new device capable of measuring "1"4C age for each compound, is promoting the study to establish the GC-AMS that combines two-dimensional gas chromatograph (GC) and accelerator mass spectrometry (AMS). The on-line GC-AMS system for the metabolic measurement of "1"4C-labeled compounds for medicinal biochemical research is a system, in which a GC-separated sample is continuously converted into CO_2 in a combustion tube and introduced directly to a gas ion source to continuously measure "1"4C. In the "1"4C detection experiment, the concentration of CO_2 gas was changed using a helium introduction line and a sample injection valve, and CO_2 gas plus helium gas were introduced into the gas ion source. As a result, it was found that the online GC-AMS has feasibility and high potential capability. For off-line GC-AMS for environmental samples, after purification with preparative gas chromatography, the sample is converted to graphite in a vacuum line and applied to common AMS measurement. The authors collected Northwest Pacific Ocean bottom sediment cores, and performed the extraction and purification of fatty acids of specific stratigraphy and the "1"4C measurement of each compound. The age of the compound derived from the surface layer planktons was the result capable of indicating the sedimentary age of the stratigraphy. In addition, as an application study to explore the source of pollutants in the environment using "1"4C as a tracer representing the characteristics of each source, the authors started to conduct the research choosing atmospheric dust samples. As a starting point, the authors attempted to measure the "1"4C concentration of vehicle exhaust particles and incinerator fly ash particles respectively. There was hardly any "1"4C in vehicle exhaust particles. (A.O.)

  5. Summer Prostate Cancer Research Training Program

    Science.gov (United States)

    2017-09-01

    pathways underlying pathological cell proliferation in the setting of cancer. Current efforts are focused on selecting RNA aptamers to receptors...museums (art, natural history, and sports). In addition, there are a large number of restaurants ranging from fast food to fine dining. Application...there are a large number of restaurants ranging from fast food to fine dining. Application to the Program - Application forms, distributed with

  6. MBCP - Approach - Immunotherapy | Center for Cancer Research

    Science.gov (United States)

    Immunotherapy CCR investigators pioneered the use of the tuberculosis vaccine—Bacillus Calmette-Guerin (BCG)—in the treatment of bladder cancer. In cases where the tumor burden is not too high and direct contact can be made with the urothelium surface of the bladder, BCG application appears to elicit an immune response that attacks the tumor as well as the attenuated virus.

  7. Breast Cancer Translational Research Center of Excellence

    Science.gov (United States)

    2015-09-01

    CBCP) Breast Center is the Army-recognized and Military-recognized specialty referral center for t r i - se rv ice active duty personnel from around...development of customized treatment options in patients with HER2+ breast cancer. Objective 1 Evaluate differences in the molecular profiles of...2014CBCP & CCBB Analysis of Errors & Corrections 11/7/2014Customer Satisfaction Results Analysis 1/7/2015Audit of signed-out tissue samples in -80 freezer

  8. Understanding Cancer Prognosis

    Medline Plus

    Full Text Available ... Cancer Research Common Cancer Types Recurrent Cancer Common Cancer Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer ... Genomics Research Research on Causes of Cancer Cancer Diagnosis Research Cancer Prevention Research Screening & Early Detection Cancer ...

  9. Translating Research into Policy: Reducing Breast Cancer Disparities in Illinois

    Science.gov (United States)

    Dr. Carol Ferrans is internationally recognized for her work in disparities in health care and quality of life outcomes. She has a distinguished record of research that includes major grants funded by three institutes of the National Institutes of Health (National Cancer Institute, National Institute for Minority Health and Health Disparities, and National Institute for Nursing Research).    Dr. Ferrans’ work has been instrumental in reducing the disparity in breast cancer mortality Chicago, which at its peak was among the worst in the nation.  Efforts led by Dr. Ferrans and colleagues led directly to statewide legislation, to address the multifaceted causes of black/white disparity in deaths from breast cancer.  She was one of the founders of the Metropolitan Chicago Breast Cancer Task Force (MCBCTF), leading the team focusing on barriers to mammography screening, to identify reasons for the growing disparity in breast cancer mortality. Their findings (citing Ferrans’ research and others) and recommendations for action were translated directly into the Illinois Reducing Breast Cancer Disparities Act and two additional laws strengthening the Act.  These laws and other statewide efforts have improved access to screening and quality of mammography throughout the Illinois. In addition, Dr. Ferrans and her team identified cultural beliefs contributing to later stage diagnosis of breast cancer in African American and Latino women in Chicago, and most importantly, showed that these beliefs can be changed.  They reached more than 8,000 African American women in Chicago with a short film on DVD, which was effective in changing beliefs and promoting screening.  Her team’s published findings were cited by the American Cancer Society in their guidelines for breast cancer screening.  The Chicago black/white disparity in breast cancer deaths has decreased by 35% since the MCBCTF first released its report, according to data from the Illinois Department of Public

  10. Contributions of 3D Cell Cultures for Cancer Research.

    Science.gov (United States)

    Ravi, Maddaly; Ramesh, Aarthi; Pattabhi, Aishwarya

    2017-10-01

    Cancer cell lines have contributed immensely in understanding the complex physiology of cancers. They are excellent material for studies as they offer homogenous samples without individual variations and can be utilised with ease and flexibility. Also, the number of assays and end-points one can study is almost limitless; with the advantage of improvising, modifying or altering several variables and methods. Literally, a new dimension to cancer research has been achieved by the advent of 3Dimensional (3D) cell culture techniques. This approach increased many folds the ways in which cancer cell lines can be utilised for understanding complex cancer biology. 3D cell culture techniques are now the preferred way of using cancer cell lines to bridge the gap between the 'absolute in vitro' and 'true in vivo'. The aspects of cancer biology that 3D cell culture systems have contributed include morphology, microenvironment, gene and protein expression, invasion/migration/metastasis, angiogenesis, tumour metabolism and drug discovery, testing chemotherapeutic agents, adaptive responses and cancer stem cells. We present here, a comprehensive review on the applications of 3D cell culture systems for these aspects of cancers. J. Cell. Physiol. 232: 2679-2697, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Wnt Inactivation for Liver Cancer Therapy | Center for Cancer Research

    Science.gov (United States)

    Hepatocellular carcinoma (HCC) is the fifth most common and third most deadly type of cancer in the world. The majority of cases occur in Asia and Africa, resulting in most cases being diagnosed only at advanced stages of the disease when drug resistance is high. HCC typically follows damage to the liver such as cirrhosis, making radiation and chemotherapy a more challenging prospect. Surgery is also not a very viable option because less than one in four carcinomas can be completely removed. The limitations in these treatment modalities create the need for alternative therapeutic approaches.

  12. A Review of Barriers to Minorities' Participation in Cancer Clinical Trials: Implications for Future Cancer Research.

    Science.gov (United States)

    Salman, Ali; Nguyen, Claire; Lee, Yi-Hui; Cooksey-James, Tawna

    2016-04-01

    To enhance nurses' awareness and competencies in practice and research by reporting the common barriers to participation of minorities in cancer clinical trials and discussing facilitators and useful strategies for recruitment. Several databases were searched for articles published in peer reviewed journals. Some of the barriers to minorities' participation in clinical trials were identified within the cultural social-context of cancer patients. The involvement of community networking was suggested as the most effective strategy for the recruitment of minorities in cancer clinical trials. Using culturally sensitive approaches to enhance ethnic minorities' participation is important for advancing cancer care and eliminating health disparities. Awareness of barriers and potential facilitators to the enrollment of ethnic minority cancer patients may contribute to enhancing nurses' competencies of recruiting ethnic minorities in nursing research, playing efficient roles in cancer clinical trials team, and providing culturally competent quality care.

  13. Accelerating Digital Mental Health Research From Early Design and Creation to Successful Implementation and Sustainment.

    Science.gov (United States)

    Mohr, David C; Lyon, Aaron R; Lattie, Emily G; Reddy, Madhu; Schueller, Stephen M

    2017-05-10

    Mental health problems are common and pose a tremendous societal burden in terms of cost, morbidity, quality of life, and mortality. The great majority of people experience barriers that prevent access to treatment, aggravated by a lack of mental health specialists. Digital mental health is potentially useful in meeting the treatment needs of large numbers of people. A growing number of efficacy trials have shown strong outcomes for digital mental health treatments. Yet despite their positive findings, there are very few examples of successful implementations and many failures. Although the research-to-practice gap is not unique to digital mental health, the inclusion of technology poses unique challenges. We outline some of the reasons for this gap and propose a collection of methods that can result in sustainable digital mental health interventions. These methods draw from human-computer interaction and implementation science and are integrated into an Accelerated Creation-to-Sustainment (ACTS) model. The ACTS model uses an iterative process that includes 2 basic functions (design and evaluate) across 3 general phases (Create, Trial, and Sustain). The ultimate goal in using the ACTS model is to produce a functioning technology-enabled service (TES) that is sustainable in a real-world treatment setting. We emphasize the importance of the service component because evidence from both research and practice has suggested that human touch is a critical ingredient in the most efficacious and used digital mental health treatments. The Create phase results in at least a minimally viable TES and an implementation blueprint. The Trial phase requires evaluation of both effectiveness and implementation while allowing optimization and continuous quality improvement of the TES and implementation plan. Finally, the Sustainment phase involves the withdrawal of research or donor support, while leaving a functioning, continuously improving TES in place. The ACTS model is a step

  14. Cross-pollination of research findings, although uncommon, may accelerate discovery of human disease genes

    Directory of Open Access Journals (Sweden)

    Duda Marlena

    2012-11-01

    Full Text Available Abstract Background Technological leaps in genome sequencing have resulted in a surge in discovery of human disease genes. These discoveries have led to increased clarity on the molecular pathology of disease and have also demonstrated considerable overlap in the genetic roots of human diseases. In light of this large genetic overlap, we tested whether cross-disease research approaches lead to faster, more impactful discoveries. Methods We leveraged several gene-disease association databases to calculate a Mutual Citation Score (MCS for 10,853 pairs of genetically related diseases to measure the frequency of cross-citation between research fields. To assess the importance of cooperative research, we computed an Individual Disease Cooperation Score (ICS and the average publication rate for each disease. Results For all disease pairs with one gene in common, we found that the degree of genetic overlap was a poor predictor of cooperation (r2=0.3198 and that the vast majority of disease pairs (89.56% never cited previous discoveries of the same gene in a different disease, irrespective of the level of genetic similarity between the diseases. A fraction (0.25% of the pairs demonstrated cross-citation in greater than 5% of their published genetic discoveries and 0.037% cross-referenced discoveries more than 10% of the time. We found strong positive correlations between ICS and publication rate (r2=0.7931, and an even stronger correlation between the publication rate and the number of cross-referenced diseases (r2=0.8585. These results suggested that cross-disease research may have the potential to yield novel discoveries at a faster pace than singular disease research. Conclusions Our findings suggest that the frequency of cross-disease study is low despite the high level of genetic similarity among many human diseases, and that collaborative methods may accelerate and increase the impact of new genetic discoveries. Until we have a better

  15. Physician Assistant | Center for Cancer Research

    Science.gov (United States)

    counseling within the boundaries of his/her specialty area of education and clinical preparation (pediatrics, adults, urologic, surgical, etc.). Review assigned patient resident reports and carry and answer the resident pager. Provide coverage for the post-call resident’s patients, while working closely with the Inpatient/Fellowship staff.  Support in-patient and out-patient care of subjects enrolled in experimental protocols and clinical trials. Work as a member of a multidisciplinary clinical team to provide comprehensive care to patients in a research environment. Write prescriptions. Explain the care management/discharge plan to all members of the covering team (inpatient NPs, attendings) at signout. This position is located in Bethesda, Maryland in support of the Center for Cancer Research (CCR).

  16. Research and simulation of intense pulsed beam transfer in electrostatic accelerate tube

    International Nuclear Information System (INIS)

    Li Chaolong; Shi Haiquan; Lu Jianqin

    2012-01-01

    To study intense pulsed beam transfer in electrostatic accelerate tube, the matrix method was applied to analyze the transport matrixes in electrostatic accelerate tube of non-intense pulsed beam and intense pulsed beam, and a computer code was written for the intense pulsed beam transporting in electrostatic accelerate tube. Optimization techniques were used to attain the given optical conditions and iteration procedures were adopted to compute intense pulsed beam for obtaining self-consistent solutions in this computer code. The calculations were carried out by using ACCT, TRACE-3D and TRANSPORT for different beam currents, respectively. The simulation results show that improvement of the accelerating voltage ratio can enhance focusing power of electrostatic accelerate tube, reduce beam loss and increase the transferring efficiency. (authors)

  17. Health psychology and translational genomic research: bringing innovation to cancer-related behavioral interventions.

    Science.gov (United States)

    McBride, Colleen M; Birmingham, Wendy C; Kinney, Anita Y

    2015-01-01

    The past decade has witnessed rapid advances in human genome sequencing technology and in the understanding of the role of genetic and epigenetic alterations in cancer development. These advances have raised hopes that such knowledge could lead to improvements in behavioral risk reduction interventions, tailored screening recommendations, and treatment matching that together could accelerate the war on cancer. Despite this optimism, translation of genomic discovery for clinical and public health applications has moved relatively slowly. To date, health psychologists and the behavioral sciences generally have played a very limited role in translation research. In this report we discuss what we mean by genomic translational research and consider the social forces that have slowed translational research, including normative assumptions that translation research must occur downstream of basic science, thus relegating health psychology and other behavioral sciences to a distal role. We then outline two broad priority areas in cancer prevention, detection, and treatment where evidence will be needed to guide evaluation and implementation of personalized genomics: (a) effective communication, to broaden dissemination of genomic discovery, including patient-provider communication and familial communication, and (b) the need to improve the motivational impact of behavior change interventions, including those aimed at altering lifestyle choices and those focusing on decision making regarding targeted cancer treatments and chemopreventive adherence. We further discuss the role that health psychologists can play in interdisciplinary teams to shape translational research priorities and to evaluate the utility of emerging genomic discoveries for cancer prevention and control. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  18. Identification of the Mechanisms Underlying Antiestrogen Resistance: Breast Cancer Research Partnership between FIU-UM Braman Family Breast Cancer Institute

    National Research Council Canada - National Science Library

    Roy, Deodutta

    2008-01-01

    This research proposal has two primary objectives which are to (1) increase FIU investigators' research expertise and competitive ability to succeed as independent breast cancer researchers; and (2...

  19. Obesity-Linked Mouse Models of Liver Cancer | Center for Cancer Research

    Science.gov (United States)

    Jimmy Stauffer, Ph.D., and colleagues working with Robert  Wiltrout, Ph.D., in CCR’s Cancer and Inflammation Program, along with collaborators in the Laboratory of Human Carcinogenesis, have developed a novel mouse model that demonstrates how fat-producing phenotypes can influence the development of hepatic cancer.   The team recently reported their findings in Cancer Research.

  20. Biological and medical research with accelerated heavy ions at the Bevalac, 1974--1977. [Planning for use for radiotherapy and as radiation source for diagnostic radiography

    Energy Technology Data Exchange (ETDEWEB)

    Elam, S. (ed.)

    1977-04-01

    The Bevalac, a versatile high-energy heavy-ion accelerator complex, has been in operation for less than two years. A major purpose for which the Bevalac was constructed was to explore the possibility of heavy-ion teams for therapy for certain forms of cancer. Significant progress has been made in this direction. The National Cancer Institute has recognized the advantages that these and other accelerated particles offer, and heavy ions have been included in a long-term plan for particle therapy that will assess by means of controlled therapeutic tests the value of various modalities. Since accelerated heavy ions became available, the possibility of other contributions, not planned, became apparent. We are developig a new diagnostic method known as heavy-ion radiography that has greatly increased sensitivity for soft-tissue detail and that may become a powerful tool for localizing early tumors and metastases. We have discovered that radioactive beams are formed from fragmentation of stable deflected beams. Use of these autoradioactive beams is just beginning; however, we know that these beams will be helpful in localizing the region in the body where therapy is being delivered. In addition, it has been demonstrated that instant implantation of the radioactive beam allows direct measurements of blood perfusion rates in inaccessible parts of the body, and such a technique may become a new tool for the study of fast hot atom reactions in biochemistry, tracer biology and nuclear medicine. The Bevalac will also be useful for the continuation of previously developed methods for the control of acromegaly, Cushing's disease and, on a research basis, advanced diabetes mellitus with vascular disease. The ability to make small bloodless lesions in the brain and elsewhere with heavy-ion beams has great potential for nervous-system studies and perhaps later for radioneurosurgery.