WorldWideScience

Sample records for acc synthase expression

  1. A functional tomato ACC synthase expressed in Escherichia coli demonstrates suicidal inactivation by its substrate S-adenosylmethionine.

    Science.gov (United States)

    Li, N; Wiesman, Z; Liu, D; Mattoo, A K

    1992-07-20

    1-Aminocyclopropane-1-carboxylate (ACC) synthase is a key enzyme in the biosynthesis of the plant hormone, ethylene. We have isolated, sequenced and expressed a functional tomato (cv Pik-Red) ACC synthase gene in Escherichia coli. ACC synthase expressed in E. coli was inactivated by incubation with S-adenosylmethionine (SAM), the half-time of which was concentration dependent. Mixing the tomato fruit protein extract with the cell-free extract from transformed E. coli did not affect SAM-dependent inactivation of ACC synthase activity. Thus, single isoforms of the ACC synthase enzyme, which demonstrate the biochemical features expected of the tomato fruit enzyme, can be expressed in E. coli and their structure-function relationships investigated.

  2. ACC synthase genes are polymorphic in watermelon (Citrullus spp.) and differentially expressed in flowers and in response to auxin and gibberellin.

    Science.gov (United States)

    Salman-Minkov, Ayelet; Levi, Amnon; Wolf, Shmuel; Trebitsh, Tova

    2008-05-01

    The flowering pattern of watermelon species (Citrullus spp.) is either monoecious or andromonoecious. Ethylene is known to play a critical role in floral sex determination of cucurbit species. In contrast to its feminizing effect in cucumber and melon, in watermelon ethylene promotes male flower development. In cucumber, the rate-limiting enzyme of ethylene biosynthesis, 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS), regulates unisexual flower development. To investigate the role of ethylene in flower development, we isolated four genomic sequences of ACS from watermelon (CitACS1-4). Both CitACS1 and CitACS3 are expressed in floral tissue. CitACS1 is also expressed in vegetative tissue and it may be involved in cell growth processes. Expression of CitACS1 is up-regulated by exogenous treatment with auxin, gibberellin or ACC, the immediate precursor of ethylene. No discernible differential floral sex-dependent expression pattern was observed for this gene. The CitACS3 gene is expressed in open flowers and in young staminate floral buds (male or hermaphrodite), but not in female flowers. CitACS3 is also up-regulated by ACC, and is likely to be involved in ethylene-regulated anther development. The expression of CitACS2 was not detected in vegetative or reproductive organs but was up-regulated by auxin. CitACS4 transcript was not detected under our experimental conditions. Restriction fragment length polymorphism (RFLP) and sequence tagged site (STS) marker analyses of the CitACS genes showed polymorphism among and within the different Citrullus groups, including watermelon cultivars, Citrullus lanatus var. lanatus, the central subspecies Citrullus lanatus var. citroides, and the desert species Citrullus colocynthis (L).

  3. Accumulation of wound-inducible ACC synthase transcript in tomato fruit is inhibited by salicylic acid and polyamines.

    Science.gov (United States)

    Li, N; Parsons, B L; Liu, D R; Mattoo, A K

    1992-02-01

    Regulation of wound-inducible 1-aminocyclopropane-1-carboxylic acid (ACC) synthase expression was studied in tomato fruit (Lycopersicon esculentum cv. Pik-Red). A 70 base oligonucleotide probe homologous to published ACC synthase cDNA sequences was successfully used to identify and analyze regulation of a wound-inducible transcript. The 1.8 kb ACC synthase transcript increased upon wounding the fruit as well as during fruit ripening. Salicylic acid, an inhibitor of wound-responsive genes in tomato, inhibited the wound-induced accumulation of the ACC synthase transcript. Further, polyamines (putrescine, spermidine and spermine) that have anti-senescence properties and have been shown to inhibit the development of ACC synthase activity, inhibited the accumulation of the wound-inducible ACC synthase transcript. The inhibition by spermine was greater than that caused by putrescine or spermidine. The transcript level of a wound-repressible glycine-rich protein gene and that of the constitutively expressed rRNA were not affected as markedly by either salicylic acid or polyamines. These data suggest that salicylic acid and polyamines may specifically regulate ethylene biosynthesis at the level of ACC synthase transcript accumulation.

  4. Silencing of the ACC synthase gene ACACS2 causes delayed flowering in pineapple [Ananas comosus (L.) Merr.].

    Science.gov (United States)

    Trusov, Yuri; Botella, José Ramón

    2006-01-01

    Flowering is a crucial developmental stage in the plant life cycle. A number of different factors, from environmental to chemical, can trigger flowering. In pineapple, and other bromeliads, it has been proposed that flowering is triggered by a small burst of ethylene production in the meristem in response to environmental cues. A 1-amino-cyclopropane-1-carboxylate synthase (ACC synthase) gene has been cloned from pineapple (ACACS2), which is induced in the meristem under the same environmental conditions that induce flowering. Two transgenic pineapple lines have been produced containing co-suppression constructs designed to down-regulate the expression of the ACACS2 gene. Northern analysis revealed that the ACACS2 gene was silenced in a number of transgenic plants in both lines. Southern hybridization revealed clear differences in the methylation status of silenced versus non-silenced plants by the inability of a methylation-sensitive enzyme to digest within the ACACS2 DNA extracted from silenced plants, indicating that methylation is the cause of the observed co-suppression of the ACACS2 gene. Flowering characteristics of the transgenic plants were studied under field conditions in South East Queensland, Australia. Flowering dynamics studies revealed significant differences in flowering behaviour, with transgenic plants exhibiting silencing showing a marked delay in flowering when compared with non-silenced transgenic plants and control non-transformed plants. It is argued that the ACACS2 gene is one of the key contributors towards triggering 'natural flowering' in mature pineapples under commercial field conditions.

  5. Differential expression of two genes for 1-aminocyclopropane-1-carboxylate synthase in tomato fruits

    Energy Technology Data Exchange (ETDEWEB)

    Olson, D.C.; White, J.A.; Edelman, L.; Kende, H. (Michigan State Univ., East Lansing (United States)); Harkins, R.N. (Berlex Biosciences, Alameda, CA (United States))

    1991-06-15

    1-Aminocyclopropane-1-carboxylate synthase is the regulated enzyme in the biosynthetic pathway of the plant hormone ethylene. A full-length cDNA encoding this enzyme has been cloned from tomato fruits. The authors report here the complete nucleotide and derived amino acid sequences of a cDNA encoding a second isoform of ACC synthase from tomato fruits. The cDNAs coding for both isoforms contain highly conserved regions that are surrounded by regions of low homology, especially at the 5{prime} and 3{prime} ends. Gene-specific probes were constructed to examine the expression of transcripts encoding the two ACC synthase isoforms under two conditions of enhanced ethylene formation--namely, during fruit ripening and in response to mechanical stress (wounding). The level of mRNA encoding both isoforms, ACC synthase 1 and 2, increased during ripening. In contrast, wounding caused an increase in only the level of mRNA coding for ACC synthase 1. Blot analysis of genomic DNA digested with restriction enzymes confirmed that ACC synthase 1 and 2 are encoded by different genes.

  6. Physical mapping of three fruit ripening genes:Endopolygalacturonase,ACC oxidase and ACC synthase from apple(Malus x domestica) in an apple rootstock A106(Malus sieboldii

    Institute of Scientific and Technical Information of China (English)

    ZHUJIMEI; SEGARDINER; 等

    1995-01-01

    The apple rootstock,A106(Malus sieboldii),had 17 bivalents in pollen mother cells at meiotic metaphase 1,and 17 chromosomes in a haploid pollen cell.Karyotypes were prepared from root-tip cells with 2n=34 chromosomes,Seven out of 82 karyotypes(8.5%) showed one pari of satellites at the end of the short arm of chromosome 3.C-bands were shown on 6 pairs of chromosomes 2,4,6,8,14,and 16 near the telomeric regions of short arms.Probes for three ripening-related genes from Malus x domestica:endopolygalacturonase(EPG,0.6kb),ACC oxidase(1.2kb),and ACC synthase(2kb)were hybridized in situ to metaphase chromosomes of A106.Hybridization sites for the EPG gene were observed on the long arm of chromosome 14 in 15 out of 16 replicate spreads and proximal to the centromere of chromosomes 6 and 11.For the ACC oxidase gene,hylridization sites were observed in the telomeric region of the short arm of chromosomes 5 and 11 in 87% and 81% of 16 spreads respectively,proxiaml to the centromere of chromosome 1 in 81% of the spreads,and on the long arm of chromosome 13 in 50% of the spreads. Physical mapping of three fruit ripening genes in an apple rootstock A106.Twenty five spreads were studied for the ACC synthase gene and hybridization sites were observed in the telomeric region of the short arm of chromosome 12 in 96% of the spreads.chromosomes 9 and 10 in 76% of the spreads,and chromosome 17 in 56% of the spreads.

  7. ACC2 is expressed at high levels in human white adipose and has an isoform with a novel N-terminus [corrected].

    Directory of Open Access Journals (Sweden)

    John C Castle

    Full Text Available Acetyl-CoA carboxylases ACC1 and ACC2 catalyze the carboxylation of acetyl-CoA to malonyl-CoA, regulating fatty-acid synthesis and oxidation, and are potential targets for treatment of metabolic syndrome. Expression of ACC1 in rodent lipogenic tissues and ACC2 in rodent oxidative tissues, coupled with the predicted localization of ACC2 to the mitochondrial membrane, have suggested separate functional roles for ACC1 in lipogenesis and ACC2 in fatty acid oxidation. We find, however, that human adipose tissue, unlike rodent adipose, expresses more ACC2 mRNA relative to the oxidative tissues muscle and heart. Human adipose, along with human liver, expresses more ACC2 than ACC1. Using RT-PCR, real-time PCR, and immunoprecipitation we report a novel isoform of ACC2 (ACC2.v2 that is expressed at significant levels in human adipose. The protein generated by this isoform has enzymatic activity, is endogenously expressed in adipose, and lacks the N-terminal sequence. Both ACC2 isoforms are capable of de novo lipogenesis, suggesting that ACC2, in addition to ACC1, may play a role in lipogenesis. The results demonstrate a significant difference in ACC expression between human and rodents, which may introduce difficulties for the use of rodent models for development of ACC inhibitors.

  8. Molecular Cloning of Four Members of ACC Synthase Gene Family fromKiwifruit(Actinidia chinensis Planch.)%猕猴桃ACC合成酶基因家族四个成员的克隆

    Institute of Scientific and Technical Information of China (English)

    徐昌杰; 陈昆松; 张上隆

    2001-01-01

    Four members of 1-aminocyclopropane-1-carboxylate synthase(ACC synthase)gene family was isolated from Actinidia chinensis with the assigned names:AC-ACS1A,AC-ACS1B,AC-ACS2 and AC-ACS3 by PCR.The amino acid sequence of AC-ACS1A,AC-ACS1B and AC-ACS2 are over 76% identical to some ACC synthase from other plants,while AC-ACS3 shows only 51%~56% nucleotide or amino acid sequence homology to other known kiwifruit ACC synthase genes,and its amino acid sequence is less than 60% identical to all known plant ACC synthases.AC-ACS3 fragment is a little shorter than other kiwifruit ACC synthase genes,and does not contain MSSFGL conserved region.Therefore,it is suggested that AC-ACS3 is a novel member of ACC synthase gene family.%通过PCR方法从中华猕猴桃中分离出ACC合成酶基因家族的四个成员(AC-ACS1A、AC-ACS1B、AC-ACS2和AC-ACS3)的基因组DNA片段。AC-ACS1A、AC-ACS1B和AC-ACS2与其它植物该基因的氨基酸序列同源性最高可达76%以上, 而AC-ACS3与其它植物ACC合成酶基因的氨基酸序列同源性均低于60%,与已知的其它猕猴桃ACC合成酶基因的同源性在51%~56%之间,且不存在MSSFGL保守区,因而属于一个未见报道的新成员。

  9. Molecular cloning, expression, and stress response of the estrogen-related receptor gene (AccERR) from Apis cerana cerana

    Science.gov (United States)

    Zhang, Weixing; Zhu, Ming; Zhang, Ge; Liu, Feng; Wang, Hongfang; Guo, Xingqi; Xu, Baohua

    2016-04-01

    Estrogen-related receptor (ERR), which belongs to the nuclear receptor superfamily, has been implicated in diverse physiological processes involving the estrogen signaling pathway. However, little information is available on ERR in Apis cerana cerana. In this report, we isolated the ERR gene and investigated its involvement in antioxidant defense. Quantitative real-time polymerase chain reaction (qPCR) revealed that the highest mRNA expression occurred in eggs during different developmental stages. The expression levels of AccERR were highest in the muscle, followed by the rectum. The predicted transcription factor binding sites in the promoter of AccERR suggested that AccERR potentially functions in early development and in environmental stress responses. The expression of AccERR was induced by cold (4 °C), heat (42 °C), ultraviolet light (UV), HgCl2, and various types of pesticides (phoxim, deltamethrin, triadimefon, and cyhalothrin). Western blot was used to measure the expression levels of AccERR protein. These data suggested that AccERR might play a vital role in abiotic stress responses.

  10. Influence of Ginkgo biloba extract on the proliferation, apoptosis of ACC-2 cell and Survivin gene expression in adenoid cystic carcinoma of lacrimal gland

    Institute of Scientific and Technical Information of China (English)

    Li-Xiao Zhou; Yu Zhu

    2012-01-01

    Objective: To explore the influence of extract of Ginkgo biloba (EGB) on the proliferation, apoptosis of ACC-2 cell and Survivin gene expression in adenoid cystic carcinoma (ACC) of lacrimal gland. Methods:ACC-2 cell in human with ACC of lacrimal gland was in vitro cultured. MTT method was used for cell proliferation detection. Annexin V/PI double-staining flow cytometer was used to detect cell apoptosis and cell cycle. Survivin gene expression was analyzed by RT-PCR and Western blotting. Results: EGB had inhibitory effect on the proliferation of ACC-2 cell with significant dose-effect relationship, and there was statistical difference when compared with the control group (P<0.01). The inhibitory concentration 50 % (IC50) is 88 mg/L. The flow cytometer test indicated that EGB can gradually increase ACC-2 cell in G0-G1 stage and decrease it in G2-M and S stage. With the increase of dose, the apoptosis rate of ACC-2 cell was obviously increased (P<0.05 or P<0.01). EGB had certain inhibitory effect on Survivin gene expression of ACC-2 cell, and Survivin gene expression was decreased with the increasing of the EGB concentration (P<0.01). Conclusions:EGB can effectively inhibit Survivin gene expression of ACC-2 cell in human with ACC of lacrimal gland, induce the apoptosis of ACC-2 cell and inhibit tumor cell proliferation.

  11. [Cloning, expression and transcriptional analysis of biotin carboxyl carrier protein gene (accA) from Amycolatopsis mediterranei U32 ].

    Science.gov (United States)

    Lu, Jie; Yao, Yufeng; Jiang, Weihong; Jiao, Ruishen

    2003-02-01

    Acetyl CoA carboxylase (EC 6.4.1.2, ACC) catalyzes the ATP-dependent carboxylation of acetyl CoA to yield malonyl CoA, which is the first committed step in fatty acid synthesis. A pair of degenerate PCR primers were designed according to the conserved amino acid sequence of AccA from M. tuberculosis and S. coelicolor. The product of the PCR amplification, a DNA fragment of 250bp was used as a probe for screening the U32 genomic cosmid library and its gene, accA, coding the biotinylated protein subunit of acetyl CoA carboxylase, was successfully cloned from U32. The accA ORF encodes a 598-amino-acid protein with the calculated molecular mass of 63.7kD, with 70.1% of G + C content. A typical Streptomyces RBS sequence, AGGAGG, was found at the - 6 position upstream of the start codon GTG. Analysis of the deduced amino acid sequence showed the presence of biotin-binding site and putative ATP-bicarbonate interaction region, which suggested the U32 AccA may act as a biotin carboxylase as well as a biotin carrier protein. Gene accA was then cloned into the pET28 (b) vector and expressed solubly in E. coli BL21 (DE3) by 0.1 mmol/L IPTG induction. Western blot confirmed the covalent binding of biotin with AccA. Northern blot analyzed transcriptional regulation of accA by 5 different nitrogen sources.

  12. Clarifying the role of the rostral dmPFC/dACC in fear/anxiety: learning, appraisal or expression?

    Directory of Open Access Journals (Sweden)

    Simon Maier

    Full Text Available Recent studies have begun to carve out a specific role for the rostral part of the dorsal medial prefrontal cortex (dmPFC and adjacent dorsal anterior cingulate cortex (dACC in fear/anxiety. Within a novel general framework of dorsal mPFC/ACC areas subserving the appraisal of threat and concomitant expression of fear responses and ventral mPFC/ACC areas subserving fear regulation, the rostral dmPFC/dACC has been proposed to specifically mediate the conscious, negative appraisal of threat situations including, as an extreme variant, catastrophizing. An alternative explanation that has not been conclusively ruled out yet is that the area is involved in fear learning. We tested two different fear expression paradigms in separate fMRI studies (study 1: instructed fear, study 2: testing of Pavlovian conditioned fear with independent groups of healthy adult subjects. In both paradigms the absence of reinforcement precluded conditioning. We demonstrate significant BOLD activation of an identical rostral dmPFC/dACC area. In the Pavlovian paradigm (study 2, the area only activated robustly once prior conditioning had finished. Thus, our data argue against a role of the area in fear learning. We further replicate a repeated observation of a dissociation between peripheral-physiological fear responding and rostral dmPFC/dACC activation, strongly suggesting the area does not directly generate fear responses but rather contributes to appraisal processes. Although we succeeded in preventing extinction of conditioned responding in either paradigm, the data do not allow us to definitively exclude an involvement of the area in fear extinction learning. We discuss the broader implications of this finding for our understanding of mPFC/ACC function in fear and in negative emotion more generally.

  13. Monitoring apoptosis of TK-GFP-expressing ACC-M cells induced by ACV using FRET technique

    Science.gov (United States)

    Xiong, Tao; Zhang, Zhihong; Lin, Juqiang; Yang, Jie; Zeng, Shaoqun; Luo, Qingming

    2006-09-01

    Apoptosis is an evolutionary conserved cellular process that plays an important role during development, but it is also involved in tissue homeostasis and in many diseases. To study the characteristics of suicide gene system of the herpes simplex virus thymidine kinase (HSV-tk) gene in tumor cells and explore the apoptosis phenomena in this system and its effect on the human adenoid cystic carcinoma line ACC-M cell, we detected apoptosis of CD3- (ECFP-CRS-DsRed) and TK-GFP-expressing ACC-M (ACC-M-TK-GFP-CD3) cells induced by acyclovir (ACV) using fluorescence resonance energy transfer (FRET) technique. CD3 is a FRET-based indicator for activity of caspase-3, which is composed of an enhanced cyan fluorescent protein, a caspase-3 sensitive linker, and a red fluorescent protein from Discosoma with efficient maturation property. FRET from ECFP to DsRed could be detected in normal ACC-M-TK-GFP-CD3 cells, and the FRET efficient was remarkably decreased and then disappeared during the cells apoptosis induced by ACV. It was due to the activated caspase-3 cleaved the CD3 fusion protein. In this study, the results suggested that the AVC-induced apoptosis of ACC-M-TK-GFP-CD3 cells was through caspase-3 pathway.

  14. ACC 220 Tutorials / acc220dotcom

    OpenAIRE

    modumteja

    2015-01-01

    For more course tutorials visit www.acc220.com   ACC 220 Week 1 Checkpoint Career Opportunities ACC 220 Week 1 DQ 1 & DQ 2 ACC 220 Week 2 Checkpoint Proprietorships, Partnerships, and Corporations ACC 220 Week 2 Assignment Financial Statements ACC 220 Week 3 Checkpoint Classified Balance Sheets ACC 220 Week 3 DQ 1 and DQ 2 ACC 220 Week 4 Checkpoint Cash Management Matrix Appendix B ACC 220 Week 4 Assignment Internal Cash Control ACC 220 Wee...

  15. Dynamic 1-Aminocyclopropane-1-Carboxylate-Synthase and -Oxidase Transcript Accumulation Patterns during Pollen Tube Growth in Tobacco Styles1

    Science.gov (United States)

    Weterings, Koen; Pezzotti, Mario; Cornelissen, Marc; Mariani, Celestina

    2002-01-01

    In flowering plants, pollination of the stigma sets off a cascade of responses in the distal flower organs. Ethylene and its biosynthetic precursor 1-aminocyclopropane-1-carboxylate (ACC) play an important role in regulating these responses. Because exogenous application of ethylene or ACC does not invoke the full postpollination syndrome, the pollination signal probably consists of a more complex set of stimuli. We set out to study how and when the pollination signal moves through the style of tobacco (Nicotiana tabacum) by analyzing the expression patterns of pistil-expressed ACC-synthase and -oxidase genes. Results from this analysis showed that pollination induces high ACC-oxidase transcript levels in all cells of the transmitting tissue. ACC-synthase mRNA accumulated only in a subset of transmitting tract cells and to lower levels as compared with ACC-oxidase. More significantly, we found that although ACC-oxidase transcripts accumulate to uniform high levels, the ACC-synthase transcripts accumulate in a wave-like pattern in which the peak coincides with the front of the ingrowing pollen tube tips. This wave of ACC-synthase expression can also be induced by incongruous pollination and (partially) by wounding. This indicates that wounding-like features of pollen tube invasion might be part of the stimuli evoking the postpollination response and that these stimuli are interpreted differently by the regulatory mechanisms of the ACC-synthase and -oxidase genes. PMID:12427986

  16. Nitric oxide synthase expression and enzymatic activity in multiple sclerosis

    DEFF Research Database (Denmark)

    Broholm, H; Andersen, B; Wanscher, B

    2004-01-01

    and endothelial nitric oxide synthase (NOS)], and enzymatic NO synthase activity. MRI guided biopsies documented more active plaques than macroscopic examination, and histological examination revealed further lesions. Inducible NOS (iNOS) was the dominant IR isoform, while reactive astrocytes were the dominant i......NOS expressing cells in active lesions. NOS IR expressing cells were widely distributed in plaques, in white and gray matter that appeared normal macroscopically, and on MR. Endothelial NOS (eNOS) was highly expressed in intraparenchymal vascular endothelial cells of MS patients. A control group matched for age...

  17. Fatty Acid Synthase and Acetyl-CoA Carboxylase Are Expressed in Nodal Metastatic Melanoma But Not in Benign Intracapsular Nodal Nevi.

    Science.gov (United States)

    Saab, Jad; Santos-Zabala, Maria Laureana; Loda, Massimo; Stack, Edward C; Hollmann, Travis J

    2017-06-13

    Melanoma is a potentially lethal form of skin cancer for which the current standard therapy is complete surgical removal of the primary tumor followed by sentinel lymph node biopsy when indicated. Histologic identification of metastatic melanoma in a sentinel node has significant prognostic and therapeutic implications, routinely guiding further surgical management with regional lymphadenectomy. While melanocytes in a lymph node can be identified by routine histopathologic and immunohistochemical examination, the distinction between nodal nevus cells and melanoma can be morphologically problematic. Previous studies have shown that malignant melanoma can over-express metabolic genes such as fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC). This immunohistochemical study aims to compare the utility of FASN and ACC in differentiating sentinel lymph nodes with metastatic melanomas from those with benign nodal nevi in patients with cutaneous melanoma. Using antibodies against FASN and ACC, 13 sentinel lymph nodes from 13 patients with metastatic melanoma and 14 lymph nodes harboring benign intracapsular nevi from 14 patients with cutaneous malignant melanoma were examined. A diagnosis of nodal melanoma was based on cytologic atypia and histologic comparison with the primary melanoma. All nodal nevi were intracapsular and not trabecular. Immunohistochemistry for Melan-A, S100, human melanoma black 45 (HMB45), FASN, and ACC were performed. The percentage of melanocytes staining with HMB45, FASN, and ACC was determined and graded in 25% increments; staining intensity was graded as weak, moderate, or strong. All metastatic melanomas tested had at least 25% tumor cell staining for both FASN and ACC. Greater than 75% of the tumor cells stained with FAS in 7/13 cases and for ACC in 5/12 cases. Intensity of staining was variable; strong staining for FASN and ACC was observed in 69% and 50% of metastatic melanoma, respectively. HMB45 was negative in 40% of nodal

  18. Isolation and expression of the Pneumocystis carinii thymidylate synthase gene

    DEFF Research Database (Denmark)

    Edman, U; Edman, J C; Lundgren, B;

    1989-01-01

    The thymidylate synthase (TS) gene from Pneumocystis carinii has been isolated from complementary and genomic DNA libraries and expressed in Escherichia coli. The coding sequence of TS is 891 nucleotides, encoding a 297-amino acid protein of Mr 34,269. The deduced amino acid sequence is similar...

  19. CTP limitation increases expression of CTP synthase in Lactococcus lactis

    DEFF Research Database (Denmark)

    Jørgensen, C.M.; Hammer, Karin; Martinussen, Jan

    2003-01-01

    for regulation of the pyrG gene. It is possible to fold the pyrG leader in an alternative structure that would prevent the formation of the terminator. We suggest a model for pyrG regulation in L. lactis, and probably in other gram-positive bacteria as well, in which pyrG expression is directly dependent...... on the CTP concentration through an attenuator mechanism. At normal CTP concentrations a terminator is preferentially formed in the pyrG leader, thereby reducing expression of CTP synthase. At low CTP concentrations the RNA polymerase pauses at a stretch of C residues in the pyrG leader, thereby allowing...

  20. Dehydration induces expression of GALACTINOL SYNTHASE and RAFFINOSE SYNTHASE in seedlings of pea (Pisum sativum L.).

    Science.gov (United States)

    Lahuta, Lesław B; Pluskota, Wioletta E; Stelmaszewska, Joanna; Szablińska, Joanna

    2014-09-01

    The exposition of 7-day-old pea seedlings to dehydration induced sudden changes in the concentration of monosaccharides and sucrose in epicotyl and roots tissues. During 24h of dehydration, the concentration of glucose and, to a lesser extent, fructose in seedling tissues decreased. The accumulation of sucrose was observed in roots after 4h and in epicotyls after 8h of stress. Epicotyls and roots also began to accumulate galactinol and raffinose after 8h of stress, when small changes in the water content of tissues occurred. The accumulation of galactinol and raffinose progressed parallel to water withdrawal from tissues, but after seedling rehydration both galactosides disappeared. The synthesis of galactinol and raffinose by an early induction (during the first hour of treatment) of galactinol synthase (PsGolS) and raffinose synthase (PsRS) gene expression as well as a later increase in the activity of both enzymes was noted. Signals possibly triggering the induction of PsGolS and PsRS gene expression and accumulation of galactinol and raffinose in seedlings are discussed.

  1. Real time expression of ACC oxidase and PR-protein genes mediated by Methylobacterium spp. in tomato plants challenged with Xanthomonas campestris pv. vesicatoria.

    Science.gov (United States)

    Yim, W J; Kim, K Y; Lee, Y W; Sundaram, S P; Lee, Y; Sa, T M

    2014-07-15

    Biotic stress like pathogenic infection increases ethylene biosynthesis in plants and ethylene inhibitors are known to alleviate the severity of plant disease incidence. This study aimed to reduce the bacterial spot disease incidence in tomato plants caused by Xanthomonas campestris pv. vesicatoria (XCV) by modulating stress ethylene with 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity of Methylobacterium strains. Under greenhouse condition, Methylobacterium strains inoculated and pathogen challenged tomato plants had low ethylene emission compared to pathogen infected ones. ACC accumulation and ACC oxidase (ACO) activity with ACO related gene expression increased in XCV infected tomato plants over Methylobacterium strains inoculated plants. Among the Methylobacterium spp., CBMB12 resulted lowest ACO related gene expression (1.46 Normalized Fold Expression), whereas CBMB20 had high gene expression (3.42 Normalized Fold Expression) in pathogen challenged tomato. But a significant increase in ACO gene expression (7.09 Normalized Fold Expression) was observed in the bacterial pathogen infected plants. In contrast, Methylobacterium strains enhanced β-1,3-glucanase and phenylalanine ammonia-lyase (PAL) enzyme activities in pathogen challenged tomato plants. The respective increase in β-1,3-glucanase related gene expressions due to CBMB12, CBMB15, and CBMB20 strains were 66.3, 25.5 and 10.4% higher over pathogen infected plants. Similarly, PAL gene expression was high with 0.67 and 0.30 Normalized Fold Expression, in pathogen challenged tomato plants inoculated with CBMB12 and CBMB15 strains. The results suggest that ethylene is a crucial factor in bacterial spot disease incidence and that methylobacteria with ACC deaminase activity can reduce the disease severity with ultimate pathogenesis-related protein increase in tomato.

  2. Crystallization of recombinant 1-amino cyclo propane-1-carboxylate (Acc) oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, L.; Arni, R.K. [UNESP, Sao Jose do Rio Preto, SP (Brazil). Dept. de Fisica; Dilley, D. [Michigan State Univ., East Lansing, MI (United States). Dept. of Biophysics

    1996-12-31

    Full text. Ethylene is an important harmone in plant biology because it activates gene expression with consequences at all phases of plant growth and development spanning seed germination to fruit ripening and senesense of plant organs. In climacteric fruits, the sharp increase in ethylene production at the onset of ripening is throught to trigger the changes in colour, aroma, texture and flavour. The final step in ethylene biosynthesis is catalyzed by ACC oxidase. Biothechnological methods have been used to inhibit ethylene biosynthesis and ripening in tomato by down-regulating ACC synthase and ACC oxidase gene expression using the antisense RNA strategy. A similar goal has been achieved by overexpressing a bacterial ACC deaminase or a viral-S-adenosylmethionine hydrolase gene, which reduces the availability of the ethylene precursors., ACC and S-adenosylmethionine, respectively. C0{sub 2} at concentrations commonly found in the intracellular space of plant tissues is required to active ACC oxidase to produce ethylene and can elevate enzyme activity 20-fold in a concentration dependent manner. Consequently, the intracellular ethylene level is modulated from low inactive levels when C0{sub 2} is not limiting and this may alter gene expression. ACC oxidase undergoes catalytic inactivation as the reaction to make ethylene procedes and this too may involve CO{sub 2}. It has been suggested that CO{sub 2}acts as a modulator of ACC oxidase activity and therby helps regulate ethylene levels in the cell and thus may explain many ethylene related phenomena in plant biology. CO{sub 2} is know to affect O{sub 2} binding in hemoglobin and ribulose bisphosphate carboxylase-oxygenase (Rubisco). Catalytic inactivation is a common phenomena in enzyme turnover, ACC oxidase is a Fe{sup +2}/ascorbate requiring enzyme and this makes it a prime candidate for metal ion oxidation-based inactivation. Charentais melon with an antisense ACC oxidase cDNA. A trangenic line exhibits reduction

  3. CTP limitation increases expression of CTP synthase in Lactococcus lactis

    DEFF Research Database (Denmark)

    Jørgensen, C.M.; Hammer, Karin; Martinussen, Jan

    2003-01-01

    on the CTP concentration through an attenuator mechanism. At normal CTP concentrations a terminator is preferentially formed in the pyrG leader, thereby reducing expression of CTP synthase. At low CTP concentrations the RNA polymerase pauses at a stretch of C residues in the pyrG leader, thereby allowing......CTP synthase is encoded by the pyrG gene and catalyzes the conversion of UTP to CTP. A Lactococcus lactis pyrG mutant with a cytidine requirement was constructed, in which beta-galactosidase activity in a pyrG-lacLM transcriptional fusion was used to monitor gene expression of pyrG. A 10-fold...... decrease in the CTP pool induced by cytidine limitation was found to immediately increase expression of the L. lactis pyrG gene. The final level of expression of pyrG is 37-fold higher than the uninduced level. CTP limitation has pronounced effects on central cellular metabolism, and both RNA and protein...

  4. Effects of Compound Radix Sophorae Flavescentis injection on proliferation, apoptosis and Caspase-3 expression in adenoid cystic carcinoma ACC-2 cells%复方苦参注射液对泪腺腺样囊性癌ACC-2细胞增殖、凋亡及Caspase-3蛋白表达的影响

    Institute of Scientific and Technical Information of China (English)

    石博; 徐慧

    2012-01-01

    目的 探讨复方苦参注射液对泪腺腺样囊性癌ACC-2细胞增殖、凋亡及Caspases-3蛋白表达的影响.方法 体外培养人泪腺腺样囊性癌ACC-2细胞,应用MTT法检测细胞增殖;Annexin V/PI双染色流式细胞仪检测细胞凋亡和细胞周期;ELISA法检测Caspases-3蛋白表达.结果 复方苦参注射液对ACC-2细胞的体外增殖具有抑制作用,量效关系显著,与对照组比较有统计学差异(P<0.01),半数抑制浓度(IC50)为0.84 g/ml.经流式细胞仪检测表明,复方苦参注射液能使ACC-2细胞G0-G1期逐渐增加,G2-M期和S期逐渐减少,并且随着剂量的增加,ACC-2细胞凋亡率明显增加(P<0.05或P<0.01).复方苦参注射液能增强ACC-2细胞Caspases-3蛋白的表达(P<0.05或P<0.01),并呈剂量依赖性.结论 复方苦参注射液能有效抑制人泪腺腺样囊性癌ACC-2细胞Caspases-3蛋白表达,诱导ACC-2细胞凋亡,抑制肿瘤细胞增殖.%Objective To investigate the effects of compound Radix Sophorae Flavescentis injection on proliferation, apoptosis and Caspase-3 expression in human adenoid cystic carcinoma ACC-2 cells. Methods ACC-2 cells were cultured in vitro. MTT assay was used to measure the cell proliferative effect. The Annexin V/PI double staining analysis by flow cytometry was used to evaluate apoptotic rate and the cell cycle. The expression of Caspases-3 protein was detected by enzyme-linked immunosorbent assay ( ELISA ). Results Compound Radix Sophorae Flavescentis injection could inhibit the proliferation of ACC-2 cells in vitro,and dose-effect relationship was significant P<0. 01 ). IC50 of ACC-2 was 0. 84 g/ml. The flow cytometry test indicated, compound Radix Sophorae Flavescentis injection could make ACC-2 cells Go-G, phase gradually increasing, G2-M period and S phase reduce gradually, and with the increase of the dose, ACC-2 cell apoptosis rate increased significantly ( P<0. 05 or P<0.01 ). Compound Radix Sophorae Flavescentis injection could enhance ACC-2

  5. Monoterpene synthases from grand fir (Abies grandis). cDNA isolation, characterization, and functional expression of myrcene synthase, (-)-(4S)-limonene synthase, and (-)-(1S,5S)-pinene synthase.

    Science.gov (United States)

    Bohlmann, J; Steele, C L; Croteau, R

    1997-08-29

    Grand fir (Abies grandis) has been developed as a model system for studying defensive oleoresin formation in conifers in response to insect attack or other injury. The turpentine fraction of the oleoresin is a complex mixture of monoterpene (C10) olefins in which (-)-limonene and (-)-alpha- and (-)-beta-pinene are prominent components; (-)-limonene and (-)-pinene synthase activities are also induced upon stem wounding. A similarity based cloning strategy yielded three new cDNA species from a wounded stem cDNA library that appeared to encode three distinct monoterpene synthases. After expression in Escherichia coli and enzyme assay with geranyl diphosphate as substrate, subsequent analysis of the terpene products by chiral phase gas chromatography and mass spectrometry showed that these sequences encoded a (-)-limonene synthase, a myrcene synthase, and a (-)-pinene synthase that produces both alpha-pinene and beta-pinene. In properties and reaction stereochemistry, the recombinant enzymes resemble the corresponding native monoterpene synthases of wound-induced grand fir stem. The deduced amino acid sequences indicated the limonene synthase to be 637 residues in length (73.5 kDa), the myrcene synthase to be 627 residues in length (72.5 kDa), and the pinene synthase to be 628 residues in length (71.5 kDa); all of these monoterpene synthases appear to be translated as preproteins bearing an amino-terminal plastid targeting sequence. Sequence comparison revealed that these monoterpene synthases from grand fir resemble sesquiterpene (C15) synthases and diterpene (C20) synthases from conifers more closely than other monoterpene synthases from angiosperm species. This similarity between extant monoterpene, sesquiterpene, and diterpene synthases of gymnosperms is surprising since functional diversification of this enzyme class is assumed to have occurred over 300 million years ago. Wound-induced accumulation of transcripts for monoterpene synthases was demonstrated by RNA

  6. Expression of fatty acid synthase in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Dorn, Christoph; Riener, Marc-Oliver; Kirovski, Georgi; Saugspier, Michael; Steib, Kathrin; Weiss, Thomas S; Gäbele, Erwin; Kristiansen, Glen; Hartmann, Arndt; Hellerbrand, Claus

    2010-03-25

    Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation which starts with simple hepatic steatosis and may progress toward inflammation (nonalcoholic steatohepatitis [NASH]). Fatty acid synthase (FASN) catalyzes the last step in fatty acid biosynthesis, and thus, it is believed to be a major determinant of the maximal hepatic capacity to generate fatty acids by de novo lipogenesis. The aim of this study was to analyze the correlation between hepatic steatosis and inflammation with FASN expression. In vitro incubation of primary human hepatocytes with fatty acids dose-dependently induced cellular lipid-accumulation and FASN expression, while stimulation with TNF did not affect FASN levels. Further, hepatic FASN expression was significantly increased in vivo in a murine model of hepatic steatosis without significant inflammation but not in a murine NASH model as compared to control mice. Also, FASN expression was not increased in mice subjected to bile duct ligation, an experimental model characterized by severe hepatocellular damage and inflammation. Furthermore, FASN expression was analyzed in 102 human control or NAFLD livers applying tissue micro array technology and immunohistochemistry, and correlated significantly with the degree of hepatic steatosis, but not with inflammation or ballooning of hepatocytes. Quantification of FASN mRNA expression in human liver samples confirmed significantly higher FASN levels in hepatic steatosis but not in NASH, and expression of SREBP1, which is the main transcriptional regulator of FASN, paralleled FASN expression levels in human and experimental NAFLD. In conclusion, the transcriptional induction of FASN expression in hepatic steatosis is impaired in NASH, while hepatic inflammation in the absence of steatosis does not affect FASN expression, suggesting that FASN may serve as a new diagnostic marker or therapeutic target for the progression of NAFLD.

  7. Human leucocytes in asthenozoospermic patients: endothelial nitric oxide synthase expression.

    Science.gov (United States)

    Buldreghini, E; Hamada, A; Macrì, M L; Amoroso, S; Boscaro, M; Lenzi, A; Agarwal, A; Balercia, G

    2014-12-01

    In a basic study at the Andrology Unit, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy, we evaluated the pattern of mRNA endothelial nitric oxide synthase (eNOS) expression in human blood leucocytes isolated from normozoospermic fertile and asthenozoospermic infertile men to elucidate any pathogenic involvement in sperm cell motility. Forty infertile men with idiopathic asthenozoospermia and 45 normozoospermic fertile donors, age-matched, were included. Semen parameters were evaluated, and expression analysis of mRNA was performed in human leucocytes using reverse transcription polymerase chain reaction. Sperm volume, count, motility and morphology were determined, and eNOS expression and Western blotting analyses were performed. A positive correlation was observed between the concentrations of NO and the percentage of immotile spermatozoa. The mRNA of eNOS was more expressed in peripheral blood leucocytes isolated from asthenozoospermic infertile men versus those of fertile normozoospermic men (7.46 ± 0.38 versus 7.06 ± 0.56, P = 0.0355). A significant up-regulation of eNOS gene in peripheral blood leucocytes was 1.52-fold higher than that of fertile donors. It is concluded that eNOS expression and activity are enhanced in blood leucocytes in men with idiopathic asthenozoospermia.

  8. Nitric oxide synthase: non-canonical expression patterns

    Directory of Open Access Journals (Sweden)

    Mattila eJoshua

    2014-10-01

    Full Text Available Science can move ahead by questioning established or canonical views and, so it may be with the enzymes, nitric oxide synthases (NOS. Nitric oxide (NO is generated by NOS isoforms that are often described by their tissue-specific expression patterns. NOS1 (nNOS is abundant in neural tissue, NOS2 is upregulated in activated macrophages and known as inducible NOS (iNOS, and NOS3 (eNOS is abundant in endothelium where it regulates vascular tone. These isoforms are described as constitutive or inducible, but in this Perspective we question the broad application of these labels. Are there instances where ‘constitutive’ NOS (NOS1 and NOS3 are inducibly expressed; conversely, are there instances where NOS2 is constitutively expressed? NOS1 and NOS3 inducibility may be linked to post-translational regulation, making their actual patterns activity much more difficult to detect. Constitutive NOS2 expression has been observed several tissues, especially the human pulmonary epithelium where it may regulate airway tone. These data suggest expression of the three NOS enzymes may include non-established patterns. Such information should be useful in designing strategies to modulate these important enzymes in different disease states.

  9. Effect of tea polyphenols on ACC-M cell Fas/Fasl expression%茶多酚对ACC-M细胞株Fas、Fasl表达的影响

    Institute of Scientific and Technical Information of China (English)

    李萍; 杨志刚; 文国容; 魏丹; 宋琦

    2010-01-01

    目的 体外观察茶多酚对肺高转移性腺样囊性癌细胞株(ACC-M)生长、Fas及其配体Fasl表达的影响.方法 (1)采用MTT比色实验法观察茶多酚对ACC-M细胞增殖的影响;(2)用免疫组化(SP法)检测不同浓度茶多酚对ACC-M细胞中Fas及其配体Fasl表达的影响.结果 (1)茶多酚对ACC-M细胞增殖抑制作用明显,差异有统计学意义(P<0.05);(2)细胞免疫组化结果显示,加入不同浓度茶多酚后,Fas蛋白在ACC-M细胞中表达增高,差异有统计学意义(P<0.05),Fasl表达降低,差异有统计学意义(P<0.05),且随浓度增加更为明显.结论 茶多酚可影响ACC-M细胞中Fas、Fasl表达,茶多酚具有抑制ACC-M细胞生长的作用可能与此有关.

  10. Inducible nitric oxide synthase is expressed in synovial fluid granulocytes.

    Science.gov (United States)

    Cedergren, J; Forslund, T; Sundqvist, T; Skogh, T

    2002-10-01

    The objective of the study was to evaluate the NO-producing potential of synovial fluid (SF) cells. SF from 15 patients with arthritis was compared with blood from the same individuals and with blood from 10 healthy controls. Cellular expression of inducible nitric oxide synthase (iNOS) was analysed by flow cytometry. High-performance liquid chromatography was used to measure l-arginine and l-citrulline. Nitrite and nitrate were measured colourimetrically utilizing the Griess' reaction. Compared to whole blood granulocytes in patients with chronic arthritis, a prominent iNOS expression was observed in SF granulocytes (P < 0.001). A slight, but statistically significant, increase in iNOS expression was also recorded in lymphocytes and monocytes from SF. l-arginine was elevated in SF compared to serum (257 +/- 78 versus 176 +/- 65 micro mol/l, P = 0.008), whereas a slight increase in l-citrulline (33 +/- 11 versus 26 +/- 9 micro mol/l), did not reach statistical significance. Great variations but no significant differences were observed comparing serum and SF levels of nitrite and nitrate, respectively, although the sum of nitrite and nitrate tended to be elevated in SF (19.2 +/- 20.7 versus 8.6 +/- 6.5 micro mol/l, P = 0.054). Synovial fluid leucocytes, in particular granulocytes, express iNOS and may thus contribute to intra-articular NO production in arthritis.

  11. Influence of tea polyphenols on expression of Fas/FasL and PCNA in ACC-M%茶多酚对ACC-M细胞Fas/FasL、PCNA表达的影响

    Institute of Scientific and Technical Information of China (English)

    李萍; 杨志刚; 魏丹; 宋琦

    2010-01-01

    目的 体外观察不同浓度茶多酚对腺样囊性癌肺高转移细胞株(ACC-M)生长、Fas/FasL和增殖细胞核抗原(PCNA)表达的影响.方法 (1)不同浓度茶多酚(0.05、0.1、0.15、0.2 g/L)组处理对数期生长ACC-M细胞;(2)用MTT法观察不同浓度茶多酚对ACC-M细胞生长的影响;(3)用免疫细胞化学法检测不同浓度茶多酚对ACC-M细胞中Fas/FasL和PCNA表达的影响.结果 (1)茶多酚对ACC-M细胞生长抑制作用明显(P<0.05);(2)细胞免疫组化结果显示:与未加茶多酚相比,加入茶多酚后,在ACC-M细胞中Fas蛋白表达增高(P<0.05)、FasL和PCNA蛋白表达降低(P<0.05),且随着浓度的增加更为明显.结论 茶多酚可抑制ACC-M细胞生长,这种抑制作用可能与茶多酚促进ACC-M细胞中Fas表达和抑制FasL、PCNA表达有关.

  12. Transcriptional regulation of human thromboxane synthase gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.D.; Baek, S.J.; Fleischer, T [Univ. of Maryland Medical School, Baltimore, MD (United States)] [and others

    1994-09-01

    The human thromboxane synthase (TS) gene encodes a microsomal enzyme catalyzing the conversion of prostaglandin endoperoxide into thromboxane A{sub 2}(TxA{sub 2}), a potent inducer of vasoconstriction and platelet aggregation. A deficiency in platelet TS activity results in bleeding disorders, but the underlying molecular mechanism remains to be elucidated. Increased TxA{sub 2} has been associated with many pathophysiological conditions such as cardiovascular disease, pulmonary hypertension, pre-eclampsia, and thrombosis in sickle cell patients. Since the formation of TxA{sub 2} is dependent upon TS, the regulation of TS gene expression may presumably play a crucial role in vivo. Abrogation of the regulatory mechanism in TS gene expression might contribute, in part, to the above clinical manifestations. To gain insight into TS gene regulation, a 1.7 kb promoter of the human TS gene was cloned and sequenced. RNase protection assay and 5{prime} RACE protocols were used to map the transcription initiation site to nucleotide A, 30 bp downstream from a canonical TATA box. Several transcription factor binding sites, including AP-1, PU.1, and PEA3, were identified within this sequence. Transient expression studies in HL-60 cells transfected with constructs containing various lengths (0.2 to 5.5 kb) of the TS promoter/luciferase fusion gene indicated the presence of multiple repressor elements within the 5.5 kb TS promoter. However, a lineage-specific up-regulation of TS gene expression was observed in HL-60 cells induced by TPA to differentiate along the macrophage lineage. The increase in TS transcription was not detectable until 36 hr after addition of the inducer. These results suggest that expression of the human TS gene may be regulated by a mechanism involving repression and derepression of the TS promoter.

  13. The cardioprotective effects of thoracal epidural anestesia are induced by the expression of vascular endothelial growth factor and inducible nitric oxide synthase in cardiopulmonary bypass surgery.

    Science.gov (United States)

    Gonca, S; Kiliçkan, L; Dalçik, C; Dalçik, H; Bayindir, O

    2007-02-01

    The cardioprotective effects of thoracal epidural anesthesia (TEA) are induced by the expression of vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (i-NOS) in cardiopulmonary bypass (CPB) surgery. When general anaesthesia (GA) is combined with TEA during coronary artery bypass graft, we investigated whether TEA together with GA play a role on VEGF and i-NOS expression in human heart tissue in cardiac ischemia. Right atrial biopsy samples were taken before CPB, before aortic cross clamp (ACC) and at 15 min after ACC release (after ischemia and reperfusion). Human heart tissues were obtained from the TEA+GA and GA groups. Immunocytochemistry was performed using antibodies for VEGF and i-NOS. Both VEGF and i-NOS immunoreactivity was observed in cardiomyocytes and arteriol walls. Although VEGF and i-NOS immunoreactivity was apparent in both groups,, immunostaining intensity was greater in the TEA+GA group than the GA group. Between groups, at 4 h and at 24 h after the end of CPB, the cardiac index (CI) was significantly higher in the TEA+GA group than GA group (3.4+/-0.8 L/min/m(2) vs 2.5+/-0.8 L/min/m(2); P0.05), (2.6+/-0.8 L/min/m(2) vs 3.1+/-1.1 L/min/m(2); P>0.05) respectively. After ACC release, 11/40 (27.5%) patients in the TEA+GA group showed ventricular fibrillation (VF), atrial fibrillation or heart block versus 25/40 (62.5%) of those in the GA group. VF after ACC release in the TEA+GA group (9/20 patients, 22.5%) was significantly lower than in the GA group (21/40 patients, 52.5%); (P<0.006). Sinus rhythm after ACC release in the TEA+GA group (29/40 patients, 72.5%) was significantly higher than in the GA group (15/40 patients, 37.5%); (P<0.002). The results of the present study indicate that TEA plus GA in coronary surgery preserve cardiac function via increased expression of VEGF and i-NOS, improved hemodynamic function and reduced arrhythmias after ACC release.

  14. Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis.

    Science.gov (United States)

    Li, Guojing; Meng, Xiangzong; Wang, Ruigang; Mao, Guohong; Han, Ling; Liu, Yidong; Zhang, Shuqun

    2012-06-01

    Plants under pathogen attack produce high levels of ethylene, which plays important roles in plant immunity. Previously, we reported the involvement of ACS2 and ACS6, two Type I ACS isoforms, in Botrytis cinerea-induced ethylene biosynthesis and their regulation at the protein stability level by MPK3 and MPK6, two Arabidopsis pathogen-responsive mitogen-activated protein kinases (MAPKs). The residual ethylene induction in the acs2/acs6 double mutant suggests the involvement of additional ACS isoforms. It is also known that a subset of ACS genes, including ACS6, is transcriptionally induced in plants under stress or pathogen attack. However, the importance of ACS gene activation and the regulatory mechanism(s) are not clear. In this report, we demonstrate using genetic analysis that ACS7 and ACS11, two Type III ACS isoforms, and ACS8, a Type II ACS isoform, also contribute to the B. cinerea-induced ethylene production. In addition to post-translational regulation, transcriptional activation of the ACS genes also plays a critical role in sustaining high levels of ethylene induction. Interestingly, MPK3 and MPK6 not only control the stability of ACS2 and ACS6 proteins via direct protein phosphorylation but also regulate the expression of ACS2 and ACS6 genes. WRKY33, another MPK3/MPK6 substrate, is involved in the MPK3/MPK6-induced ACS2/ACS6 gene expression based on genetic analyses. Furthermore, chromatin-immunoprecipitation assay reveals the direct binding of WRKY33 to the W-boxes in the promoters of ACS2 and ACS6 genes in vivo, suggesting that WRKY33 is directly involved in the activation of ACS2 and ACS6 expression downstream of MPK3/MPK6 cascade in response to pathogen invasion. Regulation of ACS activity by MPK3/MPK6 at both transcriptional and protein stability levels plays a key role in determining the kinetics and magnitude of ethylene induction.

  15. Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Guojing Li

    2012-06-01

    Full Text Available Plants under pathogen attack produce high levels of ethylene, which plays important roles in plant immunity. Previously, we reported the involvement of ACS2 and ACS6, two Type I ACS isoforms, in Botrytis cinerea-induced ethylene biosynthesis and their regulation at the protein stability level by MPK3 and MPK6, two Arabidopsis pathogen-responsive mitogen-activated protein kinases (MAPKs. The residual ethylene induction in the acs2/acs6 double mutant suggests the involvement of additional ACS isoforms. It is also known that a subset of ACS genes, including ACS6, is transcriptionally induced in plants under stress or pathogen attack. However, the importance of ACS gene activation and the regulatory mechanism(s are not clear. In this report, we demonstrate using genetic analysis that ACS7 and ACS11, two Type III ACS isoforms, and ACS8, a Type II ACS isoform, also contribute to the B. cinerea-induced ethylene production. In addition to post-translational regulation, transcriptional activation of the ACS genes also plays a critical role in sustaining high levels of ethylene induction. Interestingly, MPK3 and MPK6 not only control the stability of ACS2 and ACS6 proteins via direct protein phosphorylation but also regulate the expression of ACS2 and ACS6 genes. WRKY33, another MPK3/MPK6 substrate, is involved in the MPK3/MPK6-induced ACS2/ACS6 gene expression based on genetic analyses. Furthermore, chromatin-immunoprecipitation assay reveals the direct binding of WRKY33 to the W-boxes in the promoters of ACS2 and ACS6 genes in vivo, suggesting that WRKY33 is directly involved in the activation of ACS2 and ACS6 expression downstream of MPK3/MPK6 cascade in response to pathogen invasion. Regulation of ACS activity by MPK3/MPK6 at both transcriptional and protein stability levels plays a key role in determining the kinetics and magnitude of ethylene induction.

  16. Expression and regulation of endothelial nitric oxide synthase.

    Science.gov (United States)

    Sase, K; Michel, T

    1997-01-01

    Endothelium-derived nitric oxide (NO) is a key determinant of blood pressure homeostasis and platelet aggregation and is synthesized by the endothelial isoform of nitric oxide synthase (eNOS). In the vascular wall, eNOS is activated by diverse cell-surface receptors and by increases in blood flow, and the consequent generation of NO leads to vascular smooth-muscle relaxation. Endothelium-dependent vasorelaxation is deranged in a variety of disease states, including hypertension, diabetes, and atherosclerosis, but the roles of eNOS in endothelial dysfunction remain to be clearly defined. The past several years have witnessed important advances in understanding the molecular and cellular biology of eNOS regulation. In endothelial cells, eNOS undergoes a complex series of covalent modifications, including myristoylation, palmitoylation, and phosphorylation. Palmitoylation of eNOS dynamically targets the enzyme to distinct domains of the endothelial plasma membrane termed caveolae; caveolae may serve as sites for the sequestration of signal-transducing proteins and are themselves subject to dynamic regulation by ligands and lipids. Originally thought to be expressed only in endothelial cells, eNOS is now known to be expressed in a variety of tissues, including blood platelets, cardiac myocytes, and brain hippocampus. Paradigms established in endothelial cells for the molecular regulation and subcellular targeting of eNOS are being extended to the investigation of eNOS expressed in nonendothelial tissues. This review summarizes recent advances in understanding the molecular regulation of eNOS and the other NOS isoforms and identifies important parallels between eNOS and other cell-signaling molecules. © 1997, Elsevier Science Inc. (Trends Cardiovasc Med 1997;7:28-37).

  17. Molecular cloning and functional expression of geranylgeranyl pyrophosphate synthase from Coleus forskohlii Briq

    Directory of Open Access Journals (Sweden)

    Kawamukai Makoto

    2004-11-01

    Full Text Available Abstract Background Isopentenyl diphosphate (IPP, a common biosynthetic precursor to the labdane diterpene forskolin, has been biosynthesised via a non-mevalonate pathway. Geranylgeranyl diphosphate (GGPP synthase is an important branch point enzyme in terpenoid biosynthesis. Therefore, GGPP synthase is thought to be a key enzyme in biosynthesis of forskolin. Herein we report the first confirmation of the GGPP synthase gene in Coleus forskohlii Briq. Results The open reading frame for full-length GGPP synthase encodes a protein of 359 amino acids, in which 1,077 nucleotides long with calculated molecular mass of 39.3 kDa. Alignments of C. forskohlii GGPP synthase amino acid sequences revealed high homologies with other plant GGPP synthases. Several highly conserved regions, including two aspartate-rich motifs were identified. Transient expression of the N-terminal region of C. forskohlii GGPP synthase-GFP fusion protein in tobacco cells demonstrated subcellular localization in the chloroplast. Carotenoid production was observed in Escherichia coli harboring pACCAR25ΔcrtE from Erwinia uredovora and plasmid carrying C. forskohlii GGPP synthase. These results suggested that cDNA encoded functional GGPP synthase. Furthermore, C. forskohlii GGPP synthase expression was strong in leaves, decreased in stems and very little expression was observed in roots. Conclusion This investigation proposed that forskolin was synthesised via a non-mevalonate pathway. GGPP synthase is thought to be involved in the biosynthesis of forskolin, which is primarily synthesised in the leaves and subsequently accumulates in the stems and roots.

  18. ACC 230 UOP TUTORIAL / Uoptutorial

    OpenAIRE

    Justin Bieber

    2015-01-01

    For more course tutorials visit www.uoptutorial.com   ACC 230 Week 1 Checkpoint Financial Statements ACC 230 Week 1 DQ 1 and DQ 2 ACC 230 Week 2 CheckPoint Differentiating Depreciation Methods ACC 230 Week 2 Assignment Lucent Technologies Case ACC 230 Week 3 CheckPoint Preparing an Income Statement ACC 230 Week 3 DQ 1 and DQ 2 ACC 230 Week 4 CheckPoint Analyzing an Income Statement ACC 230 Week 4 Assignment Web Sites Search ACC 230 Week 5 Chec...

  19. Bcl-2 expression significantly correlates with thymidylate synthase expression in colorectal cancer patients

    Institute of Scientific and Technical Information of China (English)

    Riyad Bendardaf; Raija Ristamaki; Kari Syrjanen; Seppo Pyrhonen

    2008-01-01

    AIM: To examine the expression of thymidylate synthase (TS) and oncoprotein Bcl-2 in advanced colorectal cancer (CRC) patients, and to determine their mutual relationship, association to therapeutic response and impact on disease outcome. METHODS: Tumor samples from 67 patients with CRC, who were treated at advanced stage with either irinotecan alone or in combination with 5-fluorouracil/ leucovorin, were analyzed for expression of TS and BCl-2 using immunohistochemistry. RESULTS: A significant linear correlation between lower expression levels of Bcl-2 and lower levels of TS expression was found (P=0.033). Patients with high levels of both TS and Bcl-2 expression had a significantly longer disease-free survival (DFS) (42.6 mo vs 5.4 mo, n=25) than those with low TS/Bcl-2 index (P=0.001). Tumors with low levels of both TS and Bcl-2 were associated with a longer survival with metastasis (WMS) interval in the whole patients group (η = 67, P = 0.035). TS/Bcl-2 index was not significantly related to disease-specific survival. CONCLUSION: The present data suggest that CRC patients with low TS/Bcl-2 demonstrate a significantly shorter DFS and longer WMS. 2008 The WJG Press. All dghts reserved,Key words: Thymidylate synthase, Bcl-2; Colorectal cancer; Disease-free survival; Survival with metastaseis Peer reviewers: Shu Zheng, Professor, Scientific Director of Cancer Institute, Zhejiang University, Secondary AffiliatedHospital, Zhejiang University, 88# Jiefang Road, Hangzhou 310009, Zhejiang Province, China; Lars A Pahlman, Professor,Department of Surgery, Colorcctal Unit, University Hospital,SE 751 85, Uppsala, Sweden; Damian Casadesus, MD, PhD,Calixto Garcia University Hospital, J and University, Vedado,Havana City, Cuba Bendardaf R, Ristamaki R, Syrjanen K, Pyrhonen S. Bcl-2 expression significantly correlates with thymidylate synthase expression in coiorectal cancer patients. World J Gastroenterol.

  20. Expression of genes responsible for ethylene production and wilting are differently regulated in carnation (Dianthus caryophyllus L.) petals.

    Science.gov (United States)

    Kosugi; Shibuya; Tsuruno; Iwazaki; Mochizuki; Yoshioka; Hashiba; Satoh

    2000-09-01

    Carnation petals exhibit autocatalytic ethylene production and wilting during senescence. The autocatalytic ethylene production is caused by the expression of 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase genes, whereas the wilting of petals is related to the expression of the cysteine proteinase (CPase) gene. So far, it has been believed that the ethylene production and wilting are regulated in concert in senescing carnation petals, since the two events occurred closely in parallel with time. In the present study, we investigated the expression of these genes in petals of a transgenic carnation harboring a sense ACC oxidase transgene and in petals of carnation flowers treated with 1,1-dimethyl-4-(phenylsulfonyl)semicarbazide (DPSS). In petals of the transgenic carnation flowers, treatment with exogenous ethylene caused accumulation of the transcript for CPase and in-rolling (wilting), whereas it caused no or little accumulation of the transcripts for ACC oxidase and ACC synthase and negligible ethylene production. In petals of the flowers treated with DPSS, the transcripts for ACC synthase and ACC oxidase were accumulated, but no significant change in the level of the transcript for CPase was observed. These results suggest that the expression of ACC synthase and ACC oxidase genes, which leads to ethylene production, is differentially regulated from the expression of CPase, which leads to wilting, in carnation petals.

  1. Heterologous co-expression of accA, fabD, and thioesterase genes for improving long-chain fatty acid production in Pseudomonas aeruginosa and Escherichia coli.

    Science.gov (United States)

    Lee, Sunhee; Jeon, Eunyoung; Jung, Yeontae; Lee, Jinwon

    2012-05-01

    The goal of the present study was to increase the content of intracellular long-chain fatty acids in two bacterial strains, Pseudomonas aeruginosa PA14 and Escherichia coli K-12 MG1655, by co-overexpressing essential enzymes that are involved in the fatty acid synthesis metabolic pathway. Recently, microbial fatty acids and their derivatives have been receiving increasing attention as an alternative source of fuel. By introducing two genes (accA and fabD) of P. aeruginosa into the two bacterial strains and by co-expressing with them the fatty acyl-acyl carrier protein thioesterase gene of Streptococcus pyogenes (strain MGAS10270), we have engineered recombinant strains that are efficient producers of long-chain fatty acids (C16 and C18). The recombinant strains exhibit a 1.3-1.7-fold increase in the production of long-chain fatty acids over the wild-type strains. To enhance the production of total long-chain fatty acids, we researched the carbon sources for optimized culture conditions and results were used for post-culture incubation period. E. coli SGJS17 (containing the accA, fabD, and thioesterase genes) produced the highest content of intracellular total fatty acids; in particular, the unsaturated fatty acid content was about 20-fold higher than that in the wild-type E. coli.

  2. Expression, crystallization and structure elucidation of γ-terpinene synthase from Thymus vulgaris.

    Science.gov (United States)

    Rudolph, Kristin; Parthier, Christoph; Egerer-Sieber, Claudia; Geiger, Daniel; Muller, Yves A; Kreis, Wolfgang; Müller-Uri, Frieder

    2016-01-01

    The biosynthesis of γ-terpinene, a precursor of the phenolic isomers thymol and carvacrol found in the essential oil from Thymus sp., is attributed to the activitiy of γ-terpinene synthase (TPS). Purified γ-terpinene synthase from T. vulgaris (TvTPS), the Thymus species that is the most widely spread and of the greatest economical importance, is able to catalyze the enzymatic conversion of geranyl diphosphate (GPP) to γ-terpinene. The crystal structure of recombinantly expressed and purified TvTPS is reported at 1.65 Å resolution, confirming the dimeric structure of the enzyme. The putative active site of TvTPS is deduced from its pronounced structural similarity to enzymes from other species of the Lamiaceae family involved in terpenoid biosynthesis: to (+)-bornyl diphosphate synthase and 1,8-cineole synthase from Salvia sp. and to (4S)-limonene synthase from Mentha spicata.

  3. Expression and activity of inducible nitric oxide synthase and endothelial nitric oxide synthase correlate with ethanol-induced liver injury

    Institute of Scientific and Technical Information of China (English)

    Guang-Jin Yuan; Xiao-Rong Zhou; Zuo-Jiong Gong; Pin Zhang; Xiao-Mei Sun; Shi-Hua Zheng

    2006-01-01

    AIM: To study the expression and activity of inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) in rats with ethanol-induced liver injury and their relation with liver damage, activation of nuclear factor-KB (NF-кB) and tumor necrosis factor-α (TNF-α)expression in the liver.METHODS: Female Sprague-Dawley rats were given fish oil (0.5 mL) along with ethanol or isocaloric dextrose daily via gastrogavage for 4 or 6 wk. Liver injury was assessed using serum alanine aminotransferase (ALT)activity and pathological analysis. Liver malondialdehyde (MDA), nitric oxide contents, iNOS and eNOS activity were determined. NF-KB p65, iNOS, eNOS and TNF-αprotein or mRNA expression in the liver were detected by immunohistochemistry or reverse transcriptase-polymerase chain reaction (RT-PCR).RESULTS: Chronic ethanol gavage for 4 wk caused steatosis, inflammation and necrosis in the liver, and elevated serum ALT activity. Prolonged ethanol administration (6 wk) enhanced the liver damage. These responses were accompanied with increased lipid peroxidation, NO contents, iNOS activity and reduced eNOS activity. NF-кB p65, iNOS and TNF-α protein or mRNA expression were markedly induced after chronic ethanol gavage, whereas eNOS mRNA expression remained unchanged. The enhanced iNOS activity and expression were positively correlated with the liver damage, especially the necro-inflammation, activation of NF-кB, and TNF-α mRNA expression.CONCLUSION: iNOS expression and activity are induced in the liver after chronic ethanol exposure in rats, which are correlated with the liver damage, especially the necro-inflammation, activation of NF-KB and TNF-αexpression. eNOS activity is reduced, but its mRNA expression is not affected.

  4. Cloning and expression pattern of chitin synthase (CHS) gene in ...

    African Journals Online (AJOL)

    USER

    2010-08-16

    Aug 16, 2010 ... African Journal of Biotechnology Vol. 9(33), pp. 5297-5308, 16 ... Chitin synthase (CHS) plays an important role in biosynthesis of chitin .... strand cDNA Synthesis kit, 5'/3' RACE kit and pMD18-T vector were purchased from ...

  5. Deletion of the carboxyl-terminal region of 1-aminocyclopropane-1-carboxylic acid synthase, a key protein in the biosynthesis of ethylene, results in catalytically hyperactive, monomeric enzyme.

    Science.gov (United States)

    Li, N; Mattoo, A K

    1994-03-04

    1-Aminocyclopropane-1-carboxylic acid (ACC) synthase is a key enzyme regulating biosynthesis of the plant hormone ethylene. The expression of an enzymatically active, wound-inducible tomato (Lycopersicon esculentum L. cv Pik-Red) ACC synthase (485 amino acids long) in a heterologous Escherichia coli system allowed us to study the importance of hypervariable COOH terminus in enzymatic activity and protein conformation. We constructed several deletion mutants of the gene, expressed these in E. coli, purified the protein products to apparent homogeneity, and analyzed both conformation and enzyme kinetic parameters of the wild-type and truncated ACC syntheses. Deletion of the COOH terminus through Arg429 results in complete inactivation of the enzyme. Deletion of 46-52 amino acids from the COOH terminus results in an enzyme that has nine times higher affinity for the substrate S-adenosylmethionine than the wild-type enzyme. The highly efficient, truncated ACC synthase was found to be a monomer of 52 +/- 1.8 kDa as determined by gel filtration, whereas the wild-type ACC synthase, analyzed under similar conditions, is a dimer. These results demonstrate that the non-conserved COOH terminus of ACC synthase affects its enzymatic function as well as dimerization.

  6. Sucrose Synthase Expression during Cold Acclimation in Wheat 1

    Science.gov (United States)

    Crespi, Martin D.; Zabaleta, Eduardo J.; Pontis, Horacio G.; Salerno, Graciela L.

    1991-01-01

    When wheat (Triticum aestivum) seedlings are exposed to a cold temperature (2-4°C) above 0°C, sucrose accumulates and sucrose synthase activity increases. The effect of a cold period on the level of sucrose synthase (SS) was investigated. Using antibodies against wheat germ SS, Western blots studies showed that the amount of the SS peptide increased during 14 days in the cold, when plants were moved from 23°C to 4°C. The level of SS diminished when plants were moved back to 23°C. Northern blots of poly(A)+ RNA, confirmed a five- to sixfold induction of SS in wheat leaves during cold acclimation. These results indicate that SS is involved in the plant response to a chilling stress. ImagesFigure 1Figure 2Figure 3 PMID:16668270

  7. Reduced Expression of Lipoic Acid Synthase Accelerates Diabetic Nephropathy

    OpenAIRE

    Yi, Xianwen; Xu, Longquan; Hiller, Sylvia; Kim, Hyung-Suk; Nickeleit, Volker; James, Leighton R; Maeda, Nobuyo

    2011-01-01

    Oxidative stress contributes to the pathogenesis of diabetic nephropathy. In mitochondria, lipoic acid synthase produces α-lipoic acid, an antioxidant and an essential cofactor in α-ketoacid dehydrogenase complexes, which participate in glucose oxidation and ATP generation. Administration of lipoic acid abrogates diabetic nephropathy in animal models, but whether lower production of endogenous lipoic acid promotes diabetic nephropathy is unknown. Here, we crossed mice heterozygous for lipoic ...

  8. Ethylene biosynthesis genes are differentially expressed during carnation (Dianthus caryophyllus L.) flower senescence.

    NARCIS (Netherlands)

    ten Have, A.; Woltering, E.J.

    1997-01-01

    Ethylene production and expression patterns of an 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (CARAO1) and of two ACC synthase (EC 4.4.1.14) genes (CARACC3 and CARAS1) were studied in floral organs of cut carnation flowers (Dianthus caryophyllus L.) cv. White Sim. During the vase life and af

  9. Heterologous expression of pentalenene synthase (PSS) from Streptomyces UC5319 in Xanthophyllomyces dendrorhous

    NARCIS (Netherlands)

    Melillo, Elena; Muntendam, Remco; Quax, Wim J.; Kayser, Oliver

    2012-01-01

    For the first time, the pentalenene synthase (PSS) gene from Streptomyces UC5319 was expressed in Xanthophyllomyces dendrorhous, a native producer of astaxanthin. For the expression of the gene and the concurrent knock out of the native crtE or crtYB genes, two new vectors were engineered and used f

  10. Aspirin inhibits interleukin 1-induced prostaglandin H synthase expression in cultured endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, K.K.; Sanduja, R.; Tsai, A.L.; Ferhanoglu, B.; Loose-Mitchell, D.S. (Univ. of Texas Medical School, Houston (United States))

    1991-03-15

    Prostaglandin H (PGH) synthase is a key enzyme in the biosynthesis of prostaglandins, thromboxane, and prostacyclin. In cultured human umbilical vein endothelial cells, interleukin 1 (IL-1) is known to induce the synthesis of this enzyme, thereby raising the level of PGH synthase protein severalfold over the basal level. Pretreatment with aspirin at low concentrations inhibited more than 60% of the enzyme mass and also the cyclooxygenase activity in IL-1-induced cells with only minimal effects on the basal level of the synthase enzyme in cells without IL-1. Sodium salicylate exhibited a similar inhibitory action whereas indomethacin had no apparent effect. Similarly low levels of aspirin inhibited the increased L-({sup 35}S)methionine incorporation into PGH synthase that was induced by IL0-1 and also suppressed expression of the 2.7-kilobase PGH synthase mRNA. These results suggest that in cultured endothelial cells a potent inhibition of eicosanoid biosynthetic capacity can be effected by aspirin or salicylate at the level of PGH synthase gene expression. The aspirin effect may well be due to degradation of salicylate.

  11. Seasonal influence on gene expression of monoterpene synthases in Salvia officinalis (Lamiaceae).

    Science.gov (United States)

    Grausgruber-Gröger, Sabine; Schmiderer, Corinna; Steinborn, Ralf; Novak, Johannes

    2012-03-01

    Garden sage (Salvia officinalis L., Lamiaceae) is one of the most important medicinal and aromatic plants and possesses antioxidant, antimicrobial, spasmolytic, astringent, antihidrotic and specific sensorial properties. The essential oil of the plant, formed mainly in very young leaves, is in part responsible for these activities. It is mainly composed of the monoterpenes 1,8-cineole, α- and β-thujone and camphor synthesized by the 1,8-cineole synthase, the (+)-sabinene synthase and the (+)-bornyl diphosphate synthase, respectively, and is produced and stored in epidermal glands. In this study, the seasonal influence on the formation of the main monoterpenes in young, still expanding leaves of field-grown sage plants was studied in two cultivars at the level of mRNA expression, analyzed by qRT-PCR, and at the level of end-products, analyzed by gas chromatography. All monoterpene synthases and monoterpenes were significantly influenced by cultivar and season. 1,8-Cineole synthase and its end product 1,8-cineole remained constant until August and then decreased slightly. The thujones increased steadily during the vegetative period. The transcript level of their corresponding terpene synthase, however, showed its maximum in the middle of the vegetative period and declined afterwards. Camphor remained constant until August and then declined, exactly correlated with the mRNA level of the corresponding terpene synthase. In summary, terpene synthase mRNA expression and respective end product levels were concordant in the case of 1,8-cineole (r=0.51 and 0.67 for the two cultivars, respectively; p<0.05) and camphor (r=0.75 and 0.82; p<0.05) indicating basically transcriptional control, but discordant for α-/β-thujone (r=-0.05 and 0.42; p=0.87 and 0.13, respectively).

  12. Cloning and Differential Expression of a 1-Aminocyclopropane-1-Carboxylate Synthase cDNA from Peach%桃ACC合酶基因的分离及其差异表达

    Institute of Scientific and Technical Information of China (English)

    金勇丰; 朱立成; 张耀洲; 张上隆

    2002-01-01

    The ACC synthase is the key enzyme in ethylene biosynthesis and fruit ripening. To study the mechanism of ACC synthase in peach (Prunus persica (L.) Batsch) fruit ripening, we cloned a full-length cDNA of ACC synthase pacs from peach using 5′/3′ RACE PCR. The nucleic acid sequence of pacs was 1 848 bp, containing 177 bp of 5′untranslated sequence, 1 449 bp of an open reading frame, and 219 bp of 3′untranslated sequence (excluding the stop codon TAA). The pacs open reading frame encoded a 483-amino acid polypeptide with a predicted size of 54 kD and a calculated PI of 6.43. The deduced protein from ACC synthase cDNA pacs had 65%, 70%, 75%, and 90% homology with the other deduced proteins from tomato (S19677), plum (AB031026), papaya (U68216) and apple (AB034993), which contained the active site of ACC synthase SLSKDMGFPGFR conserved among these plant ACC synthases. RNA-based PCR amplification combined with hybridization analysis with pacs and another ACC synthase cDNA pacs12 (AF467782) cloned by us before as probes, indicated that expression patterns of both clones were very similar. mRNAs of both clones expressed in the alabastrum and petal, and were induced after ethylene treatment. Wounding and IAA treatments could induce ACC synthase expression of both clones in the leaves. However, the wounding treatment of leaves has induced more abundant pacs ACC synthase expression than that of pacs12. Pacs mRNA expressed in both green mature and ripening fruit, while pacs12 mRNA was little or undetectable in green mature fruit, but apparent in ripening fruit. Both clone mRNAs accumulated more in leaves (following wounding and IAA treatments) and flowers than in fruits.%利用5′/3′RACE PCR技术,从桃(Prunus persica (L.) Batsch)果实中克隆了植物乙烯生物合成的关键酶--ACC合酶的全长cDNA pacs,对pacs基因进行全序列测定表明,该基因全长1 848个碱基,编码区为1 449个碱基,5′端有177个碱基的非编码区序列,3

  13. Effect of aging on expression of nitric oxide synthase I and activity of nitric oxide synthase in rat penis

    Institute of Scientific and Technical Information of China (English)

    Jun-PingSHI; Yong-MeiZHAO; Yu-TongSONG

    2003-01-01

    Aim: To investigate the effect of aging on the expression of nitric oxide synthase I (NOS I) and the activity of NOS in rat penis. Methods: Sixty male rats from 3 age groups (adult, old and senescent) were investigated.The expression of NOS I protein and mRNA in rat penis were detected by Western blot and RT-PCR respectively and the NOS activity, with ultraviolet spectrophotometry. Results: In the old and senescent group, NOS I protein expression was significantly decreased as compared with the adult. NOS I mRNA expression was well correlated with the protein expression. NOS activity was not statistically different between the adult and old groups, but it was significantly reduced in the senescent compared with the adult group (P<0.01). Conclusion: The aging-induced decreases in NOS I expression and NOS activity may be one of the main mechanisms leading to erectile dysfunctionin the senescent rats. ( Asian J Androl 2003 Jun; 5: 117-120)

  14. 六味地黄丸影响2型糖尿病大鼠肝脏SREBP-1和ACC 表达的实验研究%The effect of Liuwei Dihuang pills on the expression of SREBP and ACC genes in the liver of type 2 diabetic rats

    Institute of Scientific and Technical Information of China (English)

    杜华; 薛耀明; 朱波; 钱毅

    2013-01-01

    目的:观察六味地黄丸对2 型糖尿病大鼠肝脏脂代谢调控相关基因固醇调节元件结合蛋白(SREBP)和乙酰辅酶A 羧化酶(ACC)表达的影响.方法:以LETO 鼠为正常组,糖尿病大鼠模型OLETF 鼠分为不加药的对照组以及加药的干预组,制作病理切片观察各组肝脏组织形态学改变,RT-PCR 检测SREBP-1、ACC 在各组大鼠肝脏组织中的表达情况.结果:与对照组相比,干预组大鼠肝脏细胞索结构完整,仅见轻度肝细胞脂肪变性.RT-PCR 检测显示SREBP-1 在正常组表达稳定,而在对照组和干预组的表达均随周龄增加而增加(P < 0.01),但干预组SREBP-1 的表达显著低于对照组(P < 0.01).ACC 在对照组中的表达亦随周龄增加而明显增加,但其在正常组及干预组中的表达要显著低于对照组(P < 0.01).结论:六味地黄丸能降低糖尿病大鼠模型肝脏中SREBP mRNA 和ACC mRNA 的表达,可能通过减轻脂肪变性,改善糖尿病肝脏的脂代谢紊乱.%Objective To study the effect of Liuwei Dihuang pills on the expression of SREBP and ACC in the liver of type 2 diabetic rats. Method Long Evans Tokushima Otsuka (LETO) rats served as an animal model of normal rat, and Otsuka Long-Evans Tokushima Fatty (OLETF) rats were established as an animal model of type II diabetic rats. OLETF rats were divided into two subgroups : an intervention group taking Liuwei Dihuang pills and a control group which were not to receive any medication. Each group was assessed the morphological changes and detected SREBP-1 and ACC expressions in the liver tissue by RT-PCR. Results For the structural integrity of the liver cell, mild steatosis was found in the intervention group. RT-PCR analysis indicated that the expression of SREBP in the normal group was stable, whereas increased with weeks of age in the control group and intervention group (P < 0.01). Moreover, the expression of SREBP in the intervention group was significantly lower than

  15. Expression of cystathionine beta-synthase and histopathological observations in placentas of patients with Down syndrome.

    Science.gov (United States)

    Pinilla, J Martínez; Ayala-Ramírez, P; García-Robles, R; Olaya-C, M; Bermúdez, M

    2015-01-01

    Down syndrome is the most frequent aneuploidy in live births, with an overall frequency of 1/600-700 births. The overexpression of cystathionine β-synthase is thought to participate in the presentation of some phenotypes observed in Down syndrome. The aim of this study was to compare the expression levels of cystathionine β-synthase and histopathological observations from placentas of infants with Down syndrome and healthy newborns. Six placentas of fetuses/infants with Down syndrome and sixteen placentas of healthy fetuses were studied. Cystathionine β-synthase mRNA and protein expression were performed by real-time PCR and immunohistochemistry, respectively. We observed an increase in cystathionine β-synthase mRNA expression (p = 0.0465) and protein levels (p = 0.009) in placentas of fetus/infants with Down syndrome compared with controls. Significantly more circinate edges (p = 0.0007) and trophoblast inclusions (p = 0.0037) were observed in the group with Down syndrome compared with control group. The results demonstrate overexpression of cystathionine β-synthase mRNA and protein in placentas of fetuses/infants with trisomy 21. Further histological abnormalities were found in placentas of patients with Down syndrome, suggesting an alteration in the development of placenta.

  16. Expression of prostaglandin synthases (pgds and pges) during zebrafish gonadal differentiation

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Nielsen, John E; Nielsen, Betina Frydenlund;

    2010-01-01

    The present study aimed at elucidating whether the expression pattern of the membrane bound form of prostaglandin E2 synthase (pges) and especially the lipocalin-type prostaglandin D2 synthase (pgds) indicates involvement in gonadal sex differentiation in zebrafish as has previously been found....... In this study, a sexually dimorphic expression of pgds was found in gonads of adult zebrafish with expression in testis but not in ovaries. To determine whether the sex-specific expression pattern of pgds was present in gonads of juvenile zebrafish and therefore could be an early marker of sex in zebrafish, we...... microdissected gonads from four randomly selected individual zebrafish for every second day in the period 2-20 days post hatch (dph) and 0-1 dph. The temporal expression of pgds and pges was investigated in the microdissected gonads, however, no differential expression that could indicate sex-specific difference...

  17. EXPRESSION OF THE GEOSMIN SYNTHASE GENE IN THE CYANOBACTERIUM ANABAENA CIRCINALIS AWQC318(1).

    Science.gov (United States)

    Giglio, Steven; Saint, Christopher P; Monis, Paul T

    2011-12-01

    The occurrence of taste and odor episodes attributed to geosmin continues to trouble water utilities worldwide, and only recently have advances been made in our fundamental understanding of the biochemical and genetic mechanisms responsible for the production of geosmin in microorganisms. For the first time, we have examined the expression of the geosmin synthase gene and corresponding geosmin production by Anabaena circinalis Rabenh. ex Bornet et Flahault AWQC318 under conditions of continuous light illumination and the removal of light as a stimulus and demonstrate that the expression of geosmin synthase appears to be constitutive under these conditions. The decrease in geosmin synthase transcription post maximum cell numbers and stationary phase suggests that a decrease in isoprenoid synthesis may occur before a decrease in the transcription of ribosomal units as the process of cell death is initiated.

  18. Novel terpenes generated by heterologous expression of bacterial terpene synthase genes in an engineered Streptomyces host.

    Science.gov (United States)

    Yamada, Yuuki; Arima, Shiho; Nagamitsu, Tohru; Johmoto, Kohei; Uekusa, Hidehiro; Eguchi, Tadashi; Shin-ya, Kazuo; Cane, David E; Ikeda, Haruo

    2015-06-01

    Mining of bacterial genome data has revealed numerous presumptive terpene synthases. Heterologous expression of several putative terpene synthase genes in an engineered Streptomyces host has revealed 13 newly discovered terpenes whose GC-MS and NMR data did not match with any known compounds in spectroscopic databases. Each of the genes encoding the corresponding terpene synthases were silent in their parent microorganisms. Heterologous expression and detailed NMR spectroscopic analysis allowed assignment of the structures of 13 new cyclic terpenes. Among these newly identified compounds, two were found to be linear triquinane sesquiterpenes that have never previously been isolated from bacteria or any other source. The remaining 11 new compounds were shown to be diterpene hydrocarbons and alcohol, including hydropyrene (1), hydropyrenol (2), tsukubadiene (11) and odyverdienes A (12) and B (13) each displaying a novel diterpene skeleton that had not previously been reported.

  19. Fatty acid synthase expression in osteosarcoma and its correlation with pulmonary metastasis

    OpenAIRE

    Liu, Zhi Li; Wang, Gao; Peng, Ai Fen; LUO, QING FENG; Zhou, Yang; Huang, Shan Hu

    2012-01-01

    Previous experimental evidence has suggested that fatty acid synthase (FASN) may be involved in cancer metastasis. However, its role has been poorly evaluated in osteosarcoma. The aim of this study was to investigate the correlation of FASN expression with pulmonary metastasis and the correlation of FASN expression with the Ki-67 antigen, a proliferation marker, in patients with osteosarcoma of the extremities. The expression of FASN protein and Ki-67 was detected by immunohistochemistry of b...

  20. Application of a Colorimetric Assay to Identify Putative Ribofuranosylaminobenzene 5'-Phosphate Synthase Genes Expressed with Activity in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Bechard Matthew E.

    2003-01-01

    Full Text Available Tetrahydromethanopterin (H4MPT is a tetrahydrofolate analog originally discovered in methanogenic archaea, but later found in other archaea and bacteria. The extent to which H4MPT occurs among living organisms is unknown. The key enzyme which distinguishes the biosynthetic pathways of H4MPT and tetrahydrofolate is ribofuranosylaminobenzene 5'-phosphate synthase (RFAP synthase. Given the importance of RFAP synthase in H4MPT biosynthesis, the identification of putative RFAP synthase genes and measurement of RFAP synthase activity would provide an indication of the presence of H4MPT in untested microorganisms. Investigation of putative archaeal RFAP synthase genes has been hampered by the tendency of the resulting proteins to form inactive inclusion bodies in Escherichia coli. The current work describes a colorimetric assay for measuring RFAP synthase activity, and two modified procedures for expressing recombinant RFAP synthase genes to produce soluble, active enzyme. By lowering the incubation temperature during expression, RFAP synthase from Archaeoglobus fulgidus was produced in E. coli and purified to homogeneity. The production of active RFAP synthase from Methanothermobacter thermautotrophicus was achieved by coexpression of the gene MTH0830 with a molecular chaperone. This is the first direct biochemical identification of a methanogen gene that codes for an active RFAP synthase.

  1. Expression of prostaglandin synthases (pgds and pges) duringzebrafishgonadal differentiation

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Nielsen, John E.; Nielsen, Betina F.;

    2010-01-01

    The present study aimed at elucidating whether the expression pattern of the membrane bound form of prostaglandin E-2 synthase (pges) and especially the lipocalin-type prostaglandin D-2 synthase (pgds) indicates involvement in gonadal sex differentiation in zebrafish as has previously been found...... in other species In mice and chicken, the lipocalin-type Pgds is specifically expressed in pre-Sertoli cells just after Sty and Sox9 and is involved in masculinisation of the developing testis. Furthermore, Pges are implicated in female reproduction including follicular development and ovulation...... In this study, a sexually dimorphic expression of pgds was found in gonads of adult zebrafish with expression in testis but not in ovaries. To determine whether the sex-specific expression pattern of pgds was present in gonads of juvenile zebrafish and therefore could be an early marker of sex in zebrafish, we...

  2. Constitutive expression of inducible nitric oxide synthase in the normal human colonic epithelium

    DEFF Research Database (Denmark)

    Perner, A; Andresen, L; Normark, M

    2002-01-01

    Inducible nitric oxide synthase (iNOS) in the human colon is considered expressed only in inflammatory states such as ulcerative or collagenous colitis. As subtle iNOS labelling was previously observed in some colonic mucosal biopsies from a heterogeneous group of controls with non-inflamed bowel...

  3. Constitutive expression of inducible nitric oxide synthase in the normal human colonic epithelium

    DEFF Research Database (Denmark)

    Perner, A; Andresen, Lars; Normark, M;

    2002-01-01

    Inducible nitric oxide synthase (iNOS) in the human colon is considered expressed only in inflammatory states such as ulcerative or collagenous colitis. As subtle iNOS labelling was previously observed in some colonic mucosal biopsies from a heterogeneous group of controls with non-inflamed bowel...

  4. Expression pattern of the coparyl diphosphate synthase gene in developing rice anthers.

    Science.gov (United States)

    Fukuda, Ari; Nemoto, Keisuke; Chono, Makiko; Yamaguchi, Shinjiro; Nakajima, Masatoshi; Yamagishi, Junko; Maekawa, Masahiko; Yamaguchi, Isomaro

    2004-08-01

    Rice anthers contain high concentrations of gibberellins A(4) and A(7). To understand their physiological roles, we examined the site of their biosynthesis by analyzing the expression pattern of a gene (OsCPS) encoding coparyl diphosphate synthase in developing rice flowers. Expression was apparent in the anthers 1-2 days before flowering, and CPS mRNA accumulated in the maturing pollen.

  5. POTATO GRANULE-BOUND STARCH SYNTHASE PROMOTER-CONTROLLED GUS EXPRESSION - REGULATION OF EXPRESSION AFTER TRANSIENT AND STABLE TRANSFORMATION

    NARCIS (Netherlands)

    VANDERSTEEGE, G; NIEBOER, M; SWAVING, J; TEMPELAAR, MJ

    1992-01-01

    Chimaeric genes of promoter sequences from the potato gene encoding granule-bound starch synthase (GBSS) and the beta-glucuronidase (GUS) reporter gene were used to study GBSS expression and regulation. Analysis of stable transformants revealed that a GBSS promoter sequence of 0.4 kb was sufficient

  6. Allotopic Expression of a Gene Encoding FLAG Tagged-subunit 8 of Yeast Mitochondrial ATP Synthase

    Directory of Open Access Journals (Sweden)

    I MADE ARTIKA

    2006-03-01

    Full Text Available Subunit 8 of yeast mitochondrial ATP synthase is a polypeptide of 48 amino acids encoded by the mitochondrial ATP8 gene. A nuclear version of subunit 8 gene has been designed to encode FLAG tagged-subunit 8 fused with a mitochondrial signal peptide. The gene has been cloned into a yeast expression vector and then expressed in a yeast strain lacking endogenous subunit 8. Results showed that the gene was successfully expressed and the synthesized FLAG tagged-subunit 8 protein was imported into mitochondria. Following import, the FLAG tagged-subunit 8 protein assembled into functional mitochondrial ATP synthase complex. Furthermore, the subunit 8 protein could be detected using anti-FLAG tag monoclonal antibody.

  7. Ischemic postconditioning enhances glycogen synthase kinase-3β expression and alleviates cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Bo Zhao; Wenwei Gao; Jiabao Hou; Yang Wu; Zhongyuan Xia

    2012-01-01

    The present study established global brain ischemia using the four-vessel occlusion method.Following three rounds of reperfusion for 30 seconds,and occlusion for 10 seconds,followed by reperfusion for 48 hours,infarct area,the number of TUNEL-positive cells and Bcl-2 expression were significantly reduced.However,glycogen synthase kinase-3β activity,cortical Bax and caspase-3 expression significantly increased,similar to results following ischemic postconditioning.Our results indicated that ischemic postconditioning may enhance glycogen synthase kinase-3β activity,a downstream molecule of the phosphatase and tensin homolog deleted on chromosome 10/phosphatidylinositol 3-kinase/protein kinase B signaling pathway,which reduces caspase-3 expression to protect the brain against ischemic injury.

  8. Effects of icariin on erectile function and expression of nitric oxide synthase isoforms in castrated rats

    Institute of Scientific and Technical Information of China (English)

    Wu-Jiang Liu; Zhong-Cheng Xin; Hua Xin; Yi-Ming Yuan; Long Tian; Ying-Lu Guo

    2005-01-01

    Aim: To investigate the effect of icariin on erectile function and the expression of nitric oxide synthase (NOS)isoforms in castrated rats. Methods: Thirty-two adult male Wistar rats were randomly divided into one sham-operated group (A) and three castrated groups (B, C and D). One week after surgery, rats were treated with normal week after treatment, the erectile function of the rats was assessed by measuring intracavernosal pressure (ICP)during electrostimulation of the cavernosal nerve. The serum testosterone (ST) levels, the percent of smooth muscle (PSM) in trabecular tissue, and the expression of mRNA and proteins of neuronal nitric oxide synthase (nNOS),inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS) and phosphodiesterase V (PDE5) in corpus cavernosum (CC) were also evaluated. Results: ICP, PSM, ST and the expression of nNOS, iNOS, eNOS and PDE5 were significantly decreased in group B compared with those in group A (P < 0.01). However, ICP, PSM and the expression of nNOS and iNOS were increased in groups C and D compared with those in group B (P < 0.05).Changes in ST and the expression of eNOS and PDE5 were not significant (P > 0.05) in groups C and D compared with those in group B. Conclusion: Oral treatment with icariin (> 98.6 % purity) for 4 weeks potentially improves erectile function. This effect is correlated with an increase in PSM and the expression of certain NOS in the CC of castrated rats. These results suggest that icariin may have a therapeutic effect on erectile dysfunction.

  9. Increased nitric oxide release and expression of endothelial and inducible nitric oxide synthases in mildly changed porcine mitral valve leaflets

    DEFF Research Database (Denmark)

    Moesgaard, Sophia G; Olsen, Lisbeth H; Viuff, Birgitte M

    2007-01-01

    BACKGROUND AND AIM OF THE STUDY: Little is known of the local role of nitric oxide (NO) in heart valves in relation to heart valve diseases. The study aim was to examine NO release and the expression of both endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) in re...

  10. Increased nitric oxide release and expression of endothelial and inducible nitric oxide synthases in mildly changed porcine mitral valve leaflets

    DEFF Research Database (Denmark)

    Moesgaard, Sophia Gry; Olsen, Lisbeth Høier; Viuff, Birgitte;

    2007-01-01

    Background and aim of the study: Little is known of the local role of nitric oxide (NO) in heart valves in relation to heart valve diseases. The study aim was to examine NO release and the expression of both endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (i...

  11. Expression of nitric oxide synthase in human gastric carcinoma and its relation to p53, PCNA

    Institute of Scientific and Technical Information of China (English)

    Yong-Zhong Wang; You-Qing Cao; Jian-Nong Wu; Miao Chen; Xiao-Ying Cha

    2005-01-01

    AIM: To investigate the expression of NOS in gastric carcinoma, and to explore the relationship between the expression of nitric oxide synthases (NOS) and p53, PCNA,pathological features and clinical staging of gastric cancer.METHODS: The activity of NOS protein was investigated in 85 samples of human gastric carcinoma and 25 samples of normal gastric mucosal tissue by biochemical assay. We then examined the expression of NOS, p53, PCNA in 85 samples of human gastric cancer was examined by immunohistochemistry, and NOS mRNA expression in 85 gastric cancer tissue specimens by in situ hybridization.RESULTS: Biochemical assay showed that the activity of NOS was significantly higher in gastric carcinoma than in normal gastric mucosal tissues (t = 0.4161, P<0.01).Immunohistochemistry revealed that endothelial nitric oxide synthase (eNOS) expressed in all samples of normal gastric mucosa, but only 6 cases of 85 gastric cancer specimens showed weak positive immunohistochemical reactions to eNOS (20%). Inducible nitric oxide synthase (iNOS) was expressed strongly in human gastric carcinoma (81.2%). In situ hybridization analysis showed that iNOS mRNA expression was significantly stronger than eNOS mRNA expression in gastric cancer tissue (x2 = 10.23, P<0.01). The expression of iNOS in gastric cancer was associated with differentiation, clinical stages or lymph node metastases (r= 0.3426, P<0.05). However,iNOS expression did not correlate with histological classifications and morphological types. The expression of iNOS was significantly correlated with p53 or PCNA expression (r = 0.3612, P<0.05). The expression of neuronal nitric oxide synthase (nNOS) was not examined by immunohistochemistry and in situ hybridization in gastric cancer specimens and normal gastric mucosa.CONCLUSION: In human gastric cancer, there is an enhanced expression of iNOS, but not of eNOS. NOS promotes the proliferation of tumor cells and plays an important role in gastric cancer spread

  12. Human uroporphyrinogen-III synthase: genomic organization, alternative promoters, and erythroid-specific expression.

    Science.gov (United States)

    Aizencang, G; Solis, C; Bishop, D F; Warner, C; Desnick, R J

    2000-12-01

    Uroporphyrinogen-III (URO) synthase is the heme biosynthetic enzyme defective in congenital erythropoietic porphyria. The approximately 34-kb human URO-synthase gene (UROS) was isolated, and its organization and tissue-specific expression were determined. The gene had two promoters that generated housekeeping and erythroid-specific transcripts with unique 5'-untranslated sequences (exons 1 and 2A) followed by nine common coding exons (2B to 10). Expression arrays revealed that the housekeeping transcript was present in all tissues, while the erythroid transcript was only in erythropoietic tissues. The housekeeping promoter lacked TATA and SP1 sites, consistent with the observed low level expression in most cells, whereas the erythroid promoter contained GATA1 and NF-E2 sites for erythroid specificity. Luciferase reporter assays demonstrated that the housekeeping promoter was active in both erythroid K562 and HeLa cells, while the erythroid promoter was active only in erythroid cells and its activity was increased during hemin-induced erythroid differentiation. Thus, human URO-synthase expression is regulated during erythropoiesis by an erythroid-specific alternative promoter.

  13. Altered expression of the caffeine synthase gene in a naturally caffeine-free mutant of Coffea arabica

    Directory of Open Access Journals (Sweden)

    Mirian Perez Maluf

    2009-01-01

    Full Text Available In this work, we studied the biosynthesis of caffeine by examining the expression of genes involved in this biosynthetic pathway in coffee fruits containing normal or low levels of this substance. The amplification of gene-specific transcripts during fruit development revealed that low-caffeine fruits had a lower expression of the theobromine synthase and caffeine synthase genes and also contained an extra transcript of the caffeine synthase gene. This extra transcript contained only part of exon 1 and all of exon 3. The sequence of the mutant caffeine synthase gene revealed the substitution of isoleucine for valine in the enzyme active site that probably interfered with enzymatic activity. These findings indicate that the absence of caffeine in these mutants probably resulted from a combination of transcriptional regulation and the presence of mutations in the caffeine synthase amino acid sequence.

  14. Identification and characterization of a full-length cDNA encoding for an auxin-induced 1-aminocyclopropane-1-carboxylate synthase from etiolated mung bean hypocotyl segments and expression of its mRNA in response to indole-3-acetic acid.

    Science.gov (United States)

    Botella, J R; Arteca, J M; Schlagnhaufer, C D; Arteca, R N; Phillips, A T

    1992-11-01

    1-Aminocyclopropane-1-carboxylate (ACC) synthase (EC 4.4.1.14) is the key regulatory enzyme in the ethylene biosynthetic pathway. The identification and characterization of a full-length cDNA (pAIM-1) 1941 bp in length for indole-3-acetic acid (IAA)-induced ACC synthase is described in this paper. The pAIM-1 clone has an 87 bp leader and a 402 bp trailing sequence. The open reading frame is 1452 bp long encoding for a 54.6 kDa polypeptide (484 amino acids) which has a calculated isoelectric point of 6.0. In vitro transcription and translation experiments support the calculated molecular weight and show that the enzyme does not undergo processing. Eleven of the twelve amino acid residues which are conserved in aminotransferases are found in pAIM-1. The sequence for pMAC-1 which is one of the 5 genes we have identified in mung bean is contained in pAIM-1. pAIM-1 shares between 52 to 65% homology with previously reported sequences for ACC synthase at the protein level. There is little detectable pAIM-1 message found in untreated mung bean tissues; however, expression is apparent within 30 min following the addition of 10 microM IAA reaching a peak after approximately 5 h with a slight decrease in message after 12 h. These changes in message correlate with changes in ACC levels found in these tissues following treatment with 10 microM IAA.

  15. Function and expression study uncovered hepatocyte plasma membrane ecto-ATP synthase as a novel player in liver regeneration.

    Science.gov (United States)

    Taurino, Federica; Giannoccaro, Caterina; Sardanelli, Anna Maria; Cavallo, Alessandro; De Luca, Elisa; Santacroce, Salvatore; Papa, Sergio; Zanotti, Franco; Gnoni, Antonio

    2016-08-15

    ATP synthase, canonically mitochondrially located, is reported to be ectopically expressed on the plasma membrane outer face of several cell types. We analysed, for the first time, the expression and catalytic activities of the ecto- and mitochondrial ATP synthase during liver regeneration. Liver regeneration was induced in rats by two-thirds partial hepatectomy. The protein level and the ATP synthase and/or hydrolase activities of the hepatocyte ecto- and mitochondrial ATP synthase were analysed on freshly isolated hepatocytes and mitochondria from control, sham-operated and partial hepatectomized rats. During the priming phase of liver regeneration, 3 h after partial hepatectomy, liver mitochondria showed a marked lowering of the ATP synthase protein level that was reflected in the impairment of both ATP synthesis and hydrolysis. The ecto-ATP synthase level, in 3 h partial hepatectomized hepatocytes, was decreased similarly to the level of the mitochondrial ATP synthase, associated with a lowering of the ecto-ATP hydrolase activity coupled to proton influx. Noteworthily, the ecto-ATP synthase activity coupled to proton efflux was completely inhibited in 3 h partial hepatectomized hepatocytes, even in the presence of a marked intracellular acidification that would sustain it as in control and sham-operated hepatocytes. At the end of the liver regeneration, 7 days after partial hepatectomy, the level and the catalytic activities of the ecto- and mitochondrial ATP synthase reached the control and sham-operated values. The specific modulation of hepatocyte ecto-ATP synthase catalytic activities during liver regeneration priming phase may modulate the extracellular ADP/ATP levels and/or proton influx/efflux trafficking, making hepatocyte ecto-ATP synthase a candidate for a novel player in the liver regeneration process. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  16. Gibberellin overproduction promotes sucrose synthase expression and secondary cell wall deposition in cotton fibers.

    Directory of Open Access Journals (Sweden)

    Wen-Qin Bai

    Full Text Available Bioactive gibberellins (GAs comprise an important class of natural plant growth regulators and play essential roles in cotton fiber development. To date, the molecular base of GAs' functions in fiber development is largely unclear. To address this question, the endogenous bioactive GA levels in cotton developing fibers were elevated by specifically up-regulating GA 20-oxidase and suppressing GA 2-oxidase via transgenic methods. Higher GA levels in transgenic cotton fibers significantly increased micronaire values, 1000-fiber weight, cell wall thickness and cellulose contents of mature fibers. Quantitative RT-PCR and biochemical analysis revealed that the transcription of sucrose synthase gene GhSusA1 and sucrose synthase activities were significantly enhanced in GA overproducing transgenic fibers, compared to the wild-type cotton. In addition, exogenous application of bioactive GA could promote GhSusA1 expression in cultured fibers, as well as in cotton hypocotyls. Our results suggested that bioactive GAs promoted secondary cell wall deposition in cotton fibers by enhancing sucrose synthase expression.

  17. Regulation of galactan synthase expression to modify galactan content in plants

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-08-22

    The disclosure provides methods of engineering plants to modulate galactan content. Specifically, the disclosure provides methods for engineering a plant to increase the galactan content in a plant tissue by inducing expression of beta-1,4-galactan synthase (GALS), modulated by a heterologous promoter. Further disclosed are the methods of modulating expression level of GALS under the regulation of a transcription factor, as well as overexpression of UDP-galactose epimerse in the same plant tissue. Tissue specific promoters and transcription factors can be used in the methods are also provided.

  18. Expression in E. coli and characterization of the catalytic domain of Botrytis cinerea chitin synthase

    Directory of Open Access Journals (Sweden)

    Piffeteau Annie

    2010-11-01

    Full Text Available Abstract Background Chitin synthase 3a (CHS3a from Botrytis cinerea (Bc catalyses the multiple transfer of N-acetylglucosamine (GlcNAc residues to the growing chitin chain. Chitin, a β-1,4 linked GlcNAc homopolymer, is an essential cell wall component of filamentous fungi. Chitin synthase, processive membranous protein, has been recognized as a promising target for new antifungicides. Enzymatic characterizations of chitin synthases have been limited, mainly because purity and amounts of integral enzyme obtained after purification procedures have not been sufficient. Findings We undertook the preparation of two BcCHS3a fragment proteins, containing only the central domain and devoid of the N-terminal and transmembrane C-terminal regions. The central domain of CHS3a, named SGC (Spsa GntI Core, is conserved in all UDP-glycosyltransferases and it is believed to contain the active site of the enzyme. CHS3a-SGC protein was totally expressed as inclusion bodies in Escherichia coli. We performed recombinant CHS3a-SGC purification in denaturing conditions, followed by a refolding step. Although circular dichroism spectra clearly exhibited secondary structures of renatured CHS3a-SGC, no chitin synthase activity was detected. Nevertheless CHS3a-SGC proteins show specific binding for the substrate UDP-GlcNAc with a dissociation constant similar to the Michaelis constant and a major contribution of the uracil moiety for recognition was confirmed. Conclusions Milligram-scale quantities of CHS3a-SGC protein with native-like properties such as specific substrate UDP-GlcNAc binding could be easily obtained. These results are encouraging for subsequent heterologous expression of full-length CHS3a.

  19. Expression of microsomal prostaglandin e synthase-1 in fibroblasts of rabbit alkali-burned corneas.

    Science.gov (United States)

    Kawamura, Aruha; Tatsuguchi, Atsushi; Ishizaki, Masamichi; Takahashi, Hiroshi; Fukuda, Yuh

    2008-12-01

    Prostaglandin E2 is related to wound healing. Three different prostaglandin E synthases have been identified: microsomal prostaglandin E synthase (mPGES)-1, mPGES-2, and cytosolic prostaglandin E synthase. This study examined mPGES-1 expression in the cornea during the reparative process that occurs after an alkali burn. mPGES-1 messenger RNA (mRNA) and protein expression levels were examined by reverse transcription-polymerase chain reaction and Western blot analysis. Localization of mPGES-1 mRNA was examined by in situ hybridization. Using immunostaining, the localization of mPGES-1, cyclooxygenase (COX)-2, and alpha-smooth muscle actin (alpha-SMA) protein was studied. Although mPGES-1 mRNA is expressed in normal cornea, after a corneal injury, a progressive increase of mPGES-1 mRNA occurs. In this study, 2-6 weeks after injury, mPGES-1 mRNA was detected in the stromal spindle cells. Western blot analysis also showed that mPGES-1 protein expression was observed in normal cornea, with an increase noted from 2 to 4 weeks after corneal injury. mPGES-1 immunoreactivity was negative in normal cornea; however, starting at 2 weeks after injury, positive staining of the stromal spindle cells was noted. Although COX-2 and alpha-SMA immunoreactivities were negative in the stroma of normal cornea, after injury, staining was observed in the stromal spindle cells. alpha-SMA-positive cells and myofibroblasts express mPGES-1 mRNA and protein, and in addition, mPGES-1 colocalized with COX-2, suggesting that myofibroblasts synthesize prostaglandin E2 and may act on and accelerate corneal wound healing.

  20. Function of resveratrol de- rived from transgenic plant expressing resveratrol synthase gene

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Two genes from grapevine coding for resveratrol synthase, named RS1 and RS2, were cloned by RT-PCR. An Escherichia coli expression vector was constructed by insertion of RS1 into pBV221. A specific protein with the same molecular weight (42 ku) as the resveratrol synthase was expressed and used to prepare the rabbit antiserum. A plant expression vector was constructed by inserting the RS1 gene into pBin438 downstream of the doubled CaMV 35S promoter and TMV-W fragment. PCR-positive transgenic tobacco plants were obtained after transformation with Agrobacterium tumefaciens LBA4404 harboring the plant expression vector. Southern blot analysis demonstrated that the foreign gene was integrated into the tobacco genome. The results of RT-PCR and Western blot indicated that the RS1 gene was transcribed and expressed. Formation of resvera-trol in transgenic tobacco was further determined by thin-layer chromatography of silica gel and HPLC. Increased accumulation of human breast adenocarcinoma cells in G0 and G1 phases of cell cycle was observed in cells treated with resveratrol purified from transgenic tobacco as compared to the untreated cells.

  1. 2-Methyl-3-buten-2-ol (MBO) synthase expression in Nostoc punctiforme leads to over production of phytols.

    Science.gov (United States)

    Gupta, Dinesh; Ip, Tina; Summers, Michael L; Basu, Chhandak

    2015-01-01

    Phytol is a diterpene alcohol of medicinal importance and it also has potential to be used as biofuel. We found over production of phytol in Nostoc punctiforme by expressing a 2-Methyl-3-buten-2-ol (MBO) synthase gene. MBO synthase catalyzes the conversion of dimethylallyl pyrophosphate (DMAPP) into MBO, a volatile hemiterpene alcohol, in Pinus sabiniana. The result of enhanced phytol production in N. punctiforme, instead of MBO, could be explained by one of the 2 models: either the presence of a native prenyltransferase enzyme with a broad substrate specificity, or appropriation of a MBO synthase metabolic intermediate by a native geranyl diphosphate (GDP) synthase. In this work, an expression vector with an indigenous petE promoter for gene expression in the cyanobacterium N. punctiforme was constructed and MBO synthase gene expression was successfully shown using reverse transcriptase (RT)-PCR and SDS-PAGE. Gas chromatography--mass spectrophotometry (GC-MS) was performed to confirm phytol production from the transgenic N. punctiforme strains. We conclude that the expression of MBO synthase in N. punctiforme leads to overproduction of an economically important compound, phytol. This study provides insights about metabolic channeling of isoprenoids in cyanobacteria and also illustrates the challenges of bioengineering non-native hosts to produce economically important compounds.

  2. Tracking sesamin synthase gene expression through seed maturity in wild and cultivated sesame species--a domestication footprint.

    Science.gov (United States)

    Pathak, N; Bhaduri, A; Bhat, K V; Rai, A K

    2015-09-01

    Sesamin and sesamolin are the major oil-soluble lignans present in sesame seed, having a wide range of biological functions beneficial to human health. Understanding sesame domestication history using sesamin synthase gene expression could enable delineation of the sesame putative progenitor. This report examined the functional expression of sesamin synthase (CYP81Q1) during capsule maturation (0-40 days after flowering) in three wild Sesamum species and four sesame cultivars. Among the cultivated accessions, only S. indicum (CO-1) exhibited transcript abundance of sesamin synthase along with high sesamin content similar to S. malabaricum, while the other cultivated sesame showed low expression. The sesamin synthase expression analysis, coupled with quantification of sesamin level, indicates that sesamin synthase was not positively favoured during domestication. The sesamin synthase expression pattern and lignan content, along with phylogenetic analysis suggested a close relationship of cultivated sesame and the wild species S. malabaricum. The high genetic identity between the two species S. indicum and S. malabaricum points towards the role of the putative progenitor S. malabaricum in sesame breeding programmes to broaden the genetic base of sesame cultivars. This study emphasises the need to investigate intraspecific and interspecific variation in the primary, secondary and tertiary gene pools to develop superior sesame genotypes. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Cloning, expression, purification and bioinformatic analysis of 2-methylcitrate synthase from Mycobacterium tuberculosis

    Institute of Scientific and Technical Information of China (English)

    Kandasamy Eniyan; Urmi Bajpai

    2015-01-01

    Objective:To clone, express and purify2-methylcitrate synthase(Rv1131) gene of Mycobacterium tuberculosis(M. tuberculosis) and to study its structural characteristics using various bioinformatics tools.Methods:Rv1131 gene was amplified by polymerase chain reaction usingM. tuberculosisH37Rv genomicDNA and cloned into pGEM-T easy vector and sequenced. The gene was sub-cloned in pET28c vector, expressed inEscherichia coliBL21(E. coliBL21) (DE3) cells and the recombinant protein was identified byWestern blotting.The protein was purified usingNickel affinity chromatography and the structural characteristics like sub-cellular localization, presence of transmembrane helices and secondary structure of the protein were predicted by bioinformatics tools.Tertiary structure of the protein and phylogenetic analysis was also established byin silico analysis.Results:The expression of the recombinant protein (Rv1131) was confirmed by western blotting using anti-HIS antibodies and the protein was purified from the soluble fraction.In silicoanalysis showed that the protein contains no signal peptide and transmembrane helices.Active site prediction showed that the protein has histidine and aspartic acid residues at242,281 &332 positions respectively.Phylogenetic analysis showed 100% homology withmajor mycobacterial species.Secondary structure predicts2-methylcitrate synthase contain51.9% alpha-helix,8.7% extended strand and39.4% random coils.Tertiary structure of the protein was also established.Conclusions:The enzyme2-methylcitrate synthase from M. tuberculosisH37Rv has been successfully expressed and purified.The purified protein will further be utilized to develop assay methods for screening new inhibitors.

  4. Transcription factors that directly regulate the expression of CSLA9 encoding mannan synthase in Arabidopsis thaliana.

    Science.gov (United States)

    Kim, Won-Chan; Reca, Ida-Barbara; Kim, Yongsig; Park, Sunchung; Thomashow, Michael F; Keegstra, Kenneth; Han, Kyung-Hwan

    2014-03-01

    Mannans are hemicellulosic polysaccharides that have a structural role and serve as storage reserves during plant growth and development. Previous studies led to the conclusion that mannan synthase enzymes in several plant species are encoded by members of the cellulose synthase-like A (CSLA) gene family. Arabidopsis has nine members of the CSLA gene family. Earlier work has shown that CSLA9 is responsible for the majority of glucomannan synthesis in both primary and secondary cell walls of Arabidopsis inflorescence stems. Little is known about how expression of the CLSA9 gene is regulated. Sequence analysis of the CSLA9 promoter region revealed the presence of multiple copies of a cis-regulatory motif (M46RE) recognized by transcription factor MYB46, leading to the hypothesis that MYB46 (At5g12870) is a direct regulator of the mannan synthase CLSA9. We obtained several lines of experimental evidence in support of this hypothesis. First, the expression of CSLA9 was substantially upregulated by MYB46 overexpression. Second, electrophoretic mobility shift assay (EMSA) was used to demonstrate the direct binding of MYB46 to the promoter of CSLA9 in vitro. This interaction was further confirmed in vivo by a chromatin immunoprecipitation assay. Finally, over-expression of MYB46 resulted in a significant increase in mannan content. Considering the multifaceted nature of MYB46-mediated transcriptional regulation of secondary wall biosynthesis, we reasoned that additional transcription factors are involved in the CSLA9 regulation. This hypothesis was tested by carrying out yeast-one hybrid screening, which identified ANAC041 and bZIP1 as direct regulators of CSLA9. Transcriptional activation assays and EMSA were used to confirm the yeast-one hybrid results. Taken together, we report that transcription factors ANAC041, bZIP1 and MYB46 directly regulate the expression of CSLA9.

  5. Specificity of Ocimum basilicum geraniol synthase modified by its expression in different heterologous systems.

    Science.gov (United States)

    Fischer, Marc J C; Meyer, Sophie; Claudel, Patricia; Perrin, Mireille; Ginglinger, Jean François; Gertz, Claude; Masson, Jean E; Werck-Reinhardt, Danièle; Hugueney, Philippe; Karst, Francis

    2013-01-10

    Numerous aromatic plant species produce high levels of monoterpenols, using geranyl diphosphate (GPP) as a precursor. Sweet basil (Ocimum basilicum) geraniol synthase (GES) was used to evaluate the monoterpenol profiles arising from heterologous expressions in various plant models. Grapevine (Vitis vinifera) calli were transformed using Agrobacterium tumefasciens and the plants were regenerated. Thale cress (Arabidopsis thaliana) was transformed using the floral dip method. Tobacco (Nicotiana benthamiana) leaves were agro-infiltrated for transient expression. Although, as expected, geraniol was the main product detected in the leaves, different minor products were observed in these plants (V. vinifera: citronellol and nerol; N. benthamiana: linalool and nerol; A. thaliana: none). O. basilicum GES expression was also carried out with microbial system yeasts (Saccharomyces cerevisiae) and Escherichia coli. These results suggest that the functional properties of a monoterpenol synthase depend not only on the enzyme's amino-acidic sequence, but also on the cellular background. They also suggest that some plant species or microbial expression systems could induce the simultaneous formation of several carbocations, and could thus have a natural tendency to produce a wider spectrum of monoterpenols.

  6. Cloning, Expression and Identification of a New Trehalose Synthase Gene from Thermobifida fusca Genome

    Institute of Scientific and Technical Information of China (English)

    Yu-Tuo WEI; Ri-Bo HUANG; Qi-Xia ZHU; Zhao-Fei LUO; Fu-Shen LU; Fa-Zhong CHEN; Qing-Yan WANG; Kun HUANG; Jian-Zhong MENG; Rong WANG

    2004-01-01

    A new open reading frame in Thermobifida fusca sequenced genome was identified to encode a new trehalose synthase, annotated as "glycosidase" in the GenBank database, by bioinformatics searching and experimental validation. The gene had a length of 1830 bp with about 65% GC content and encoded for a new trehalose synthase with 610 amino acids and deduced molecular weight of 66 kD. The high GC content seemed not to affect its good expression in E. coli BL21 in which the target protein could account for as high as 15% of the total cell proteins. The recombinant enzyme showed its optimal activities at 25 ℃ and pH 6.5 when it converted substrate maltose into trehalose. However it would divert a high proportion of its substrate into glucose when the temperature was increased to 37 ℃, or when the enzyme concentration was high Its activity was not inhibited by 5 mM heavy metals such as Cu2+, Mn2+, and Zn2+ but affected by high concentration of glucose. Blasting against the database indicated that amino acid sequence of this protein had maximal 69% homology with the known trehalose synthases, and two highly conserved segments of the protein sequence were identified and their possible linkage with functions was discussed.

  7. Differential expression of biphenyl synthase gene family members in fire-blight-infected apple 'Holsteiner Cox'.

    Science.gov (United States)

    Chizzali, Cornelia; Gaid, Mariam M; Belkheir, Asma K; Hänsch, Robert; Richter, Klaus; Flachowsky, Henryk; Peil, Andreas; Hanke, Magda-Viola; Liu, Benye; Beerhues, Ludger

    2012-02-01

    Fire blight, caused by the bacterium Erwinia amylovora, is a devastating disease of apple (Malus × domestica). The phytoalexins of apple are biphenyls and dibenzofurans, whose carbon skeleton is formed by biphenyl synthase (BIS), a type III polyketide synthase. In the recently published genome sequence of apple 'Golden Delicious', nine BIS genes and four BIS gene fragments were detected. The nine genes fall into four subfamilies, referred to as MdBIS1 to MdBIS4. In a phylogenetic tree, the BIS amino acid sequences from apple and Sorbus aucuparia formed an individual cluster within the clade of the functionally diverse type III polyketide synthases. cDNAs encoding MdBIS1 to MdBIS4 were cloned from fire-blight-infected shoots of apple 'Holsteiner Cox,' heterologously expressed in Escherichia coli, and functionally analyzed. Benzoyl-coenzyme A and salicoyl-coenzyme A were the preferred starter substrates. In response to inoculation with E. amylovora, the BIS3 gene was expressed in stems of cv Holsteiner Cox, with highest transcript levels in the transition zone between necrotic and healthy tissues. The transition zone was the accumulation site of biphenyl and dibenzofuran phytoalexins. Leaves contained transcripts for BIS2 but failed to form immunodetectable amounts of BIS protein. In cell cultures of apple 'Cox Orange,' expression of the BIS1 to BIS3 genes was observed after the addition of an autoclaved E. amylovora suspension. Using immunofluorescence localization under a confocal laser-scanning microscope, the BIS3 protein in the transition zone of stems was detected in the parenchyma of the bark. Dot-shaped immunofluorescence was confined to the junctions between neighboring cortical parenchyma cells.

  8. Regulation of Expression of GLT1, the Gene Encoding Glutamate Synthase in Saccharomyces cerevisiae

    OpenAIRE

    Valenzuela, Lourdes; Ballario, Paola; Aranda, Cristina; Filetici, Patrizia; González, Alicia

    1998-01-01

    Saccharomyces cerevisiae glutamate synthase (GOGAT) is an oligomeric enzyme composed of three 199-kDa identical subunits encoded by GLT1. In this work, we analyzed GLT1 transcriptional regulation. GLT1-lacZ fusions were prepared and GLT1 expression was determined in a GDH1 wild-type strain and in a gdh1 mutant derivative grown in the presence of various nitrogen sources. Null mutants impaired in GCN4, GLN3, GAT1/NIL1, or UGA43/DAL80 were transformed with a GLT1-lacZ fusion to determine whethe...

  9. Pulmonary expression of nitric oxide synthase isoforms in sheep with smoke inhalation and burn injury.

    Science.gov (United States)

    Cox, Robert A; Jacob, Sam; Oliveras, Gloria; Murakami, Kazunori; Enkhbaatar, Perenlei; Traber, Lillian; Schmalstieg, Frank C; Herndon, David N; Traber, Daniel L; Hawkins, Hal K

    2009-03-01

    Previous studies have indicated increased plasma levels of inducible nitric oxide synthase in lung. This study further examines the pulmonary expression of nitric oxide synthase (NOS) isoforms in an ovine model of acute lung injury induced by smoke inhalation and burn injury (S+B injury). Female range bred sheep (4 per group) were sacrificed at 4, 8, 12, 24, and 48 hours after injury and immunohistochemistry was performed in tissues for various NOS isoforms. The study indicates that in uninjured sheep lung, endothelial (eNOS) is constitutively expressed in the endothelial cells associated with the airways and parenchyma, and in macrophages. Similarly, neuronal (nNOS) is constitutively present in the mucous cells of the epithelium and in neurons of airway ganglia. In uninjured lung, inducible (iNOS) was present in bronchial secretory cells and macrophages. In tissue after S+B injury, new expression of iNOS was evident in bronchial ciliated cells, basal cells, and mucus gland cells. In the parenchyma, a slight increase in iNOS immunostaining was seen in type I cells at 12 and 24 hours after injury only. Virtually no change in eNOS or nNOS was seen after injury.

  10. Cloning and expression of sesquiterpene synthase genes from lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Bennett, Mark H; Mansfield, John W; Lewis, Mervyn J; Beale, Michael H

    2002-06-01

    Sesquiterpenoid lactones (SLs) from lettuce (Lactuca sativa L.) include constitutive components of latex such as lactucin and the induced phytoalexin, lettucenin A. A redundant primer strategy was used to recover two full length cDNA clones (LTC1 and LTC2) encoding sesquiterpene synthases from a cDNA library derived from seedlings with the red spot disorder, which accumulate phytoalexins. Recombinant enzymes produced from LTC1 and LTC2 in Escherichia coli catalysed the cyclisation of farnesyl diphosphate to germacrene A, potentially an early step in the biosynthesis of SLs. RT-PCR analysis showed LTC1 and LTC2 were expressed constitutively in roots, hypocotyls and true leaves but not in cotyledons. Expression in cotyledons was induced by challenge with the downy mildew pathogen Bremia lactucae in the disease resistant cultivar Diana. Southern hybridisation experiments showed that LTC1 and LTC2 were not part of a multigene family. The germacrene A synthases provide targets for modified expression to generate beneficial modifications to the SL profile in lettuce.

  11. Microsatellite instability in colorectal cancer and association with thymidylate synthase and dihydropyrimidine dehydrogenase expression

    DEFF Research Database (Denmark)

    Jensen, Søren A; Vainer, Ben; Kruhøffer, Mogens;

    2009-01-01

    unclarified. The association of MSI and MMR status with outcome and with thymidylate synthase (TS) and dihydropyrimidine dehydrogenase (DPD) expression in colorectal cancer were evaluated. METHODS: MSI in five reference loci, MMR enzymes (hMSH2, hMSH6, hMLH1 and hPMS2), thymidylate synthase (TS......) and dihydropyrimidine dehydrogenase (DPD) expression were assessed in paraffin embedded tumor specimens, and associated with outcome in 340 consecutive patients completely resected for colorectal cancer stages II-IV and subsequently receiving adjuvant 5-fluorouracil therapy. RESULTS: MSI was found in 43 (13.8%) tumors...... ratio (HR) = 0.3; 95% CI: 0.2-0.7; P = 0.0007) and death (HR = 0.4; 95% CI: 0.2-0.9; P = 0.02) independently of the TS and DPD expressions. A direct relationship between MSI and TS intensity (P = 0.001) was found, while there was no significant association with DPD intensity (P = 0.1). CONCLUSION...

  12. Expression of the inducible nitric oxide synthase gene in diaphragm and skeletal muscle.

    Science.gov (United States)

    Thompson, M; Becker, L; Bryant, D; Williams, G; Levin, D; Margraf, L; Giroir, B P

    1996-12-01

    Nitric oxide (NO) is a pluripotent molecule that can be secreted by skeletal muscle through the activity of the neuronal constitutive isoform of NO synthase. To determine whether skeletal muscle and diaphragm might also express the macrophage-inducible form of NO synthase (iNOS) during provocative states, we examined tissue from mice at serial times after intravenous administration of Escherichia coli endotoxin. In these studies, iNOS mRNA was strongly expressed in the diaphragm and skeletal muscle of mice 4 h after intravenous endotoxin and was significantly diminished by 8 h after challenge. Induction of iNOS mRNA was followed by expression of iNOS immunoreactive protein on Western immunoblots. Increased iNOS activity was demonstrated by conversion of arginine to citrulline. Immunochemical analysis of diaphragmatic explants exposed to endotoxin in vitro revealed specific iNOS staining in myocytes, in addition to macrophages and endothelium. These results may be important in understanding the pathogenesis of respiratory pump failure during septic shock, as well as skeletal muscle injury during inflammation or metabolic stress.

  13. Heterologous expression of pentalenene synthase (PSS) from Streptomyces UC5319 in Xanthophyllomyces dendrorhous.

    Science.gov (United States)

    Melillo, Elena; Muntendam, Remco; Quax, Wim J; Kayser, Oliver

    2012-10-31

    For the first time, the pentalenene synthase (PSS) gene from Streptomyces UC5319 was expressed in Xanthophyllomyces dendrorhous, a native producer of astaxanthin. For the expression of the gene and the concurrent knock out of the native crtE or crtYB genes, two new vectors were engineered and used for the transformation of the wild-type strain of X. dendrorhous. The transformations resulted in white colonies, showing a complete shutdown of the carotenoid production. Furthermore, an additional vector was constructed for the insertion of the PSS gene in the rDNA of the yeast. All the mutant strains produce the sesquiterpene pentalenene and show no difference in growth when compared to the wild-type strain. In this report, we demonstrate that X. dendrorhous is a suitable host for the expression of heterologous terpene cyclases and for the production of foreign terpene compounds.

  14. Insect attack and wounding induce traumatic resin duct development and gene expression of (-)-pinene synthase in Sitka spruce.

    Science.gov (United States)

    McKay, S Ashley Byun; Hunter, William L; Godard, Kimberley-Ann; Wang, Shawn X; Martin, Diane M; Bohlmann, Jörg; Plant, Aine L

    2003-09-01

    Conifers possess inducible terpenoid defense systems. These systems are associated with the formation of traumatic resin ducts (TRD) and are underpinned by enhanced gene expression and activity of terpene synthases (TPS), enzymes responsible for oleoresin formation. We first determined that Sitka spruce (Picea sitchensis [Bong.] Carriere) had the capacity for TRD formation by mechanically wounding representative trees. We then proceeded to investigate whether the white pine weevil (Pissodes strobi Peck.), a stem-boring insect, can influence the expression of genes encoding monoterpene synthases (mono-tps) in Sitka spruce. We went on to compare this response with the effects of a simulated insect attack by drill wounding. A significant increase in mono-tps transcript level was observed in the leaders of lateral branches of weevil-attacked and mechanically wounded trees. In this study, weevils induced a more rapid enhancement of mono-tps gene expression. A full-length Sitka spruce mono-tps cDNA (PsTPS2) was isolated, expressed in Escherichia coli, and functionally identified as (-)-pinene synthase. The recombinant (-)-pinene synthase catalyzes the formation of (-)-alpha-pinene and (-)-beta-pinene, both of which are known constituents of stem oleoresin in Sitka spruce and increase in abundance after weevil attack. These data suggest that increased (-)-pinene synthase gene expression is an important element of the direct defense system deployed in Sitka spruce after insect attack.

  15. Prostacyclin synthase expression and epigenetic regulation in nonsmall cell lung cancer.

    LENUS (Irish Health Repository)

    Cathcart, Mary-Clare

    2012-02-01

    BACKGROUND: Prostacyclin synthase (PGIS) metabolizes prostaglandin H(2), into prostacyclin. This study aimed to determine the expression profile of PGIS in nonsmall cell lung cancer (NSCLC) and examine potential mechanisms involved in PGIS regulation. METHODS: PGIS expression was examined in human NSCLC and matched controls by reverse transcriptase polymerase chain reaction (RT-PCR), Western analysis, and immunohistochemistry. A 204-patient NSCLC tissue microarray was stained for PGIS and cyclooxygenase 2 (COX2) expression. Staining intensity was correlated with clinical parameters. Epigenetic mechanisms underpinning PGIS promoter expression were examined using RT-PCR, methylation-specific PCR, and chromatin immunoprecipitation analysis. RESULTS: PGIS expression was reduced\\/absent in human NSCLC protein samples (P < .0001), but not mRNA relative to matched controls. PGIS tissue expression was higher in squamous cell carcinoma (P = .004) and in male patients (P < .05). No significant correlation of PGIS or COX2 expression with overall patient survival was observed, although COX2 was prognostic for short-term (2-year) survival (P < .001). PGIS mRNA expression was regulated by DNA CpG methylation and histone acetylation in NSCLC cell lines, with chromatin remodeling taking place directly at the PGIS gene. PGIS mRNA expression was increased by both demethylation agents and histone deacetylase inhibitors. Protein levels were unaffected by demethylation agents, whereas PGIS protein stability was negatively affected by histone deacetylase inhibitors. CONCLUSIONS: PGIS protein expression is reduced in NSCLC, and does not correlate with overall patient survival. PGIS expression is regulated through epigenetic mechanisms. Differences in expression patterns between mRNA and protein levels suggest that PGIS expression and protein stability are regulated post-translationally. PGIS protein stability may have an important therapeutic role in NSCLC.

  16. Cloning, expression, crystallization and preliminary X-ray data analysis of norcoclaurine synthase from Thalictrum flavum

    Energy Technology Data Exchange (ETDEWEB)

    Pasquo, Alessandra [ENEA Casaccia Research Centre, Dipartimento BIOTEC, Sezione Genetica e Genomica Vegetale, PO Box 2400, I-00100 Rome (Italy); Bonamore, Alessandra; Franceschini, Stefano; Macone, Alberto; Boffi, Alberto; Ilari, Andrea, E-mail: andrea.ilari@uniroma1.it [Istituto di Biologia e Patologia Molecolari, CNR (IBPM) and Department Of Biochemical Sciences, University of Roma ‘La Sapienza’, Piazza Aldo Moro 5, 00179 Roma (Italy); ENEA Casaccia Research Centre, Dipartimento BIOTEC, Sezione Genetica e Genomica Vegetale, PO Box 2400, I-00100 Rome (Italy)

    2008-04-01

    The cloning, expression, crystallization and preliminary X-ray data analysis of norcoclaurine synthase from T. flavum, a protein which catalyzes the first committed step in the biosynthesis of benzylisoquinoline alkaloids, are reported. Norcoclaurine synthase (NCS) catalyzes the condensation of 3,4-dihydroxyphenylethylamine (dopamine) and 4-hydroxyphenylacetaldehyde (4-HPAA) as the first committed step in the biosynthesis of benzylisoquinoline alkaloids in plants. The protein was cloned, expressed and purified. Crystals were obtained at 294 K by the hanging-drop vapour-diffusion method using ammonium sulfate and sodium chloride as precipitant agents and diffract to better than 3.0 Å resolution using a synchrotron-radiation source. The crystals belong to the trigonal space group P3{sub 1}21, with unit-cell parameters a = b = 86.31, c = 118.36 Å. A selenomethionine derivative was overexpressed, purified and crystallized in the same space group. A complete MAD data set was collected at 2.7 Å resolution. The model is under construction.

  17. Microsatellite instability in colorectal cancer and association with thymidylate synthase and dihydropyrimidine dehydrogenase expression

    Directory of Open Access Journals (Sweden)

    Kruhøffer Mogens

    2009-01-01

    Full Text Available Abstract Background Microsatellite instability (MSI refers to mutations in short motifs of tandemly repeated nucleotides resulting from replication errors and deficient mismatch repair (MMR. Colorectal cancer with MSI has characteristic biology and chemosensitivity, however the molecular basis remains unclarified. The association of MSI and MMR status with outcome and with thymidylate synthase (TS and dihydropyrimidine dehydrogenase (DPD expression in colorectal cancer were evaluated. Methods MSI in five reference loci, MMR enzymes (hMSH2, hMSH6, hMLH1 and hPMS2, thymidylate synthase (TS and dihydropyrimidine dehydrogenase (DPD expression were assessed in paraffin embedded tumor specimens, and associated with outcome in 340 consecutive patients completely resected for colorectal cancer stages II-IV and subsequently receiving adjuvant 5-fluorouracil therapy. Results MSI was found in 43 (13.8% tumors. Absence of repair protein expression was assessed in 52 (17.0% tumors, which had primarily lost hMLH1 in 39 (12.7%, hMSH2 in 5 (1.6%, and hMSH6 in 8 (2.6% tumors. In multivariate analysis MSI (instable compared to MSS (stable tumors were significantly associated with lower risk of recurrence (hazard ratio (HR = 0.3; 95% CI: 0.2–0.7; P = 0.0007 and death (HR = 0.4; 95% CI: 0.2–0.9; P = 0.02 independently of the TS and DPD expressions. A direct relationship between MSI and TS intensity (P = 0.001 was found, while there was no significant association with DPD intensity (P = 0.1. Conclusion The favourable outcome of MSI colorectal carcinomas is ascribed mainly to the tumor biology and to a lesser extent to antitumor response to 5-fluorouracil therapy. There is no evidence that differential TS or DPD expression may account for these outcome characteristics.

  18. Enhanced arsenic accumulation by engineered yeast cells expressing Arabidopsis thaliana phytochelatin synthase.

    Science.gov (United States)

    Singh, Shailendra; Lee, Wonkyu; Dasilva, Nancy A; Mulchandani, Ashok; Chen, Wilfred

    2008-02-01

    Phytochelatins (PCs) are naturally occurring peptides with high-binding capabilities for a wide range of heavy metals including arsenic (As). PCs are enzymatically synthesized by phytochelatin synthases and contain a (gamma-Glu-Cys)(n) moiety terminated by a Gly residue that makes them relatively proteolysis resistant. In this study, PCs were introduced by expressing Arabidopsis thaliana Phytochelatin Synthase (AtPCS) in the yeast Saccharomyces cerevisiae for enhanced As accumulation and removal. PCs production in yeast resulted in six times higher As accumulation as compared to the control strain under a wide range of As concentrations. For the high-arsenic concentration, PCs production led to a substantial decrease in levels of PC precursors such as glutathione (GSH) and gamma-glutamyl cysteine (gamma-EC). The levels of As(III) accumulation were found to be similar between AtPCS-expressing wild type strain and AtPCS-expressing acr3Delta strain lacking the arsenic efflux system, suggesting that the arsenic uptake may become limiting. This is further supported by the roughly 1:3 stoichiometric ratio between arsenic and PC2 (n = 2) level (comparing with a theoretical value of 1:2), indicating an excess availability of PCs inside the cells. However, at lower As(III) concentration, PC production became limiting and an additive effect on arsenic accumulation was observed for strain lacking the efflux system. More importantly, even resting cells expressing AtPCS pre-cultured in Zn(2+) enriched media showed PCs production and two times higher arsenic removal than the control strain. These results open up the possibility of using cells expressing AtPCS as an inexpensive sorbent for the removal of toxic arsenic.

  19. Recombinant expression of a functional myo-inositol-1-phosphate synthase (MIPS) in Mycobacterium smegmatis.

    Science.gov (United States)

    Huang, Xinyi; Hernick, Marcy

    2015-10-01

    Myo-inositol-1-phosphate synthase (MIPS, E.C. 5.5.1.4) catalyzes the first step in inositol production-the conversion of glucose-6-phosphate (Glc-6P) to myo-inositol-1-phosphate. While the three dimensional structure of MIPS from Mycobacterium tuberculosis has been solved, biochemical studies examining the in vitro activity have not been reported to date. Herein we report the in vitro activity of mycobacterial MIPS expressed in E. coli and Mycobacterium smegmatis. Recombinant expression in E. coli yields a soluble protein capable of binding the NAD(+) cofactor; however, it has no significant activity with the Glc-6P substrate. In contrast, recombinant expression in M. smegmatis mc(2)4517 yields a functionally active protein. Examination of structural data suggests that MtMIPS expressed in E. coli adopts a fold that is missing a key helix containing two critical (conserved) Lys side chains, which likely explains the inability of the E. coli expressed protein to bind and turnover the Glc-6P substrate. Recombinant expression in M. smegmatis may yield a protein that adopts a fold in which this key helix is formed enabling proper positioning of important side chains, thereby allowing for Glc-6P substrate binding and turnover. Detailed mechanistic studies may be feasible following optimization of the recombinant MIPS expression protocol in M. smegmatis.

  20. Differential expression of apoptosis related proteins and nitric oxide synthases in Epstein Barr associated gastric carcinomas

    Institute of Scientific and Technical Information of China (English)

    Maria D Begnami; Andre L Montagnini; Andre L Vettore; Sueli Nonogaki; Mariana Brait; Alex Y Simoes-Sato; Andrea Q A Seixas; Fernando A Soares

    2006-01-01

    AIM: To determine the incidence of Epstein Barr virus associated gastric carcinoma (GC) in Brazil and compare the expressions of apoptosis related proteins and nitric oxide synthases between EBV positive and negative gastric carcinoma.METHODS: In situ hybridization of EBV-encoded small RNA-1 (EBER-1) and PCR was performed to identify the presence of EBV in GCs. Immunohistochemistry was used to identify expressions of bcl-2, bcl-xl, bak,bax, p53, NOS-1, NOS-2, and NOS-3 proteins in 25 EBV positive GCs and in 103 EBV negative GCS.RESULTS: 12% of the cases of GC (25/208) showed EBER-1 and EBNA-1 expression. The cases were preferentially of diffuse type with intense lymphoid infiltrate in the stroma. EBV associated GCs showed higher expression of bcl-2 protein and lower expression of bak protein than in EBV negative GCs. Indeed,expressions of NOS-1 and NOS-3 were frequently observed in EBV associated GCs.CONCLUSION: Our data suggest that EBV infection may protect tumor cells from apoptosis, giving them the capacity for permanent cell cycling and proliferation.In addition, EBV positive GCs show high expression of constitutive NOS that could influence tumor progression and aggressiveness.

  1. Dynamic modulation of thymidylate synthase gene expression and fluorouracil sensitivity in human colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Kentaro Wakasa

    Full Text Available Biomarkers have revolutionized cancer chemotherapy. However, many biomarker candidates are still in debate. In addition to clinical studies, a priori experimental approaches are needed. Thymidylate synthase (TS expression is a long-standing candidate as a biomarker for 5-fluorouracil (5-FU treatment of cancer patients. Using the Tet-OFF system and a human colorectal cancer cell line, DLD-1, we first constructed an in vitro system in which TS expression is dynamically controllable. Quantitative assays have elucidated that TS expression in the transformant was widely modulated, and that the dynamic range covered 15-fold of the basal level. 5-FU sensitivity of the transformant cells significantly increased in response to downregulated TS expression, although being not examined in the full dynamic range because of the doxycycline toxicity. Intriguingly, our in vitro data suggest that there is a linear relationship between TS expression and the 5-FU sensitivity in cells. Data obtained in a mouse model using transformant xenografts were highly parallel to those obtained in vitro. Thus, our in vitro and in vivo observations suggest that TS expression is a determinant of 5-FU sensitivity in cells, at least in this specific genetic background, and, therefore, support the possibility of TS expression as a biomarker for 5-FU-based cancer chemotherapy.

  2. Gene expression of inducible nitric oxide synthase in injured spinal cord tissue

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate gene expression of inducible nitric oxide synthase (iNOS) in injured spinal cord tissue of rats.Methods: Thirty-six adult Sprague-Dawley rats were divided randomly into six groups: a normal group and five injury groups, six animals in each group. Animals in the injury groups were killed at 2, 6, 12, 24, 48 hours after injury, respectively. A compression injury model of spinal cord was established according to Nystrom B et al, and gene expression of iNOS in spinal cord tissue was examined by means of reverse transcription polymerase chain reaction (RT-PCR).Results: Gene expression of iNOS was not detectable in normal spinal cord tissue but was seen in the injury groups. The expression was gradually up-regulated, reaching the maximum at 24 hours. The expression at 48hours began to decrease but was still significantly higher than that at 2 hours.Conclusions: iNOS is not involved in the normal physiological activities of spinal cord. Expression of iNOS is up-regulated in spinal cord tissue in response to injury and the up-regulation exists mainly in the late stage after injury. Over-expression of iNOS may contribute to the late injury of spinal cord.

  3. Production of Nitric Oxide and Expression of Inducible Nitric Oxide Synthase in Ovarian Cystic Tumors

    Directory of Open Access Journals (Sweden)

    Rosekeila Simões Nomelini

    2008-01-01

    Full Text Available Tumor sections from nonneoplastic (n=15, benign (n=28, and malignant ovarian tumors (n=20 were obtained from 63 women. Immunohistochemistry of the tumor sections demonstrated that inducible nitric oxide synthase (iNOS expression was increased in ovarian cancer samples compared to nonneoplastic or benign tumor samples. Using the Griess method, nitric oxide (NO metabolite levels were also found to be elevated in malignant tumor samples compared to benign tumor samples (P80 μM were more frequent than NO levels <80 μM, and iNOS expression in well-differentiated carcinomas was greater than in moderately/poorly differentiated carcinomas (P<.05. These data suggest an important role for NO in ovarian carcinogenesis.

  4. Immunohistochemical analysis of thymidylate synthase expression in gastric carcinoma: correlation with clinicopathological parameters and survival.

    Science.gov (United States)

    Rogoza-Mateja, Wiesława; Domagala, Pawel; Kaczmarczyk, Mariusz; Mieżyńska-Kurtycz, Joanna; Ławniczak, Małgorzata; Sulżyc-Bielicka, Violetta; Bielicki, Dariusz; Karpińska-Kaczmarczyk, Katarzyna; Domagala, Wenancjusz

    2017-02-01

    The correlation of thymidylate synthase (TS) expression in gastric cancers with tumor histology and prognostic or predictive information remains unclear. Most studies have involved Asian populations, with few conducted in European cohorts. Moreover, all published studies analyze TS expression using semi-quantitative methods. This retrospective study evaluated the association of TS expression in tumor cells with gastric carcinoma histological type, with selected clinicopathological parameters, and with the prognosis of patients who underwent surgical treatment. TS expression was detected using immunochemistry and objectively assessed by computerized image analysis of tumor cells in 100 gastric cancers. We found that high TS expression was significantly more common in intestinal than in diffuse type of gastric cancer according to Lauren classification (P=0.0003); in type I carcinomas compared to type IV according to Goseki classification (P=0.002); and in gastric cancers in men than women (P=0.04). Low TS expression was found more often in carcinomas in the middle and lower third of the stomach than in cancers in the upper third of the stomach (P=0.009 and P=0.001, respectively). In the subgroup of 25 patients without lymph node metastases (stage I+II), high TS expression was associated with better DFS (83% for high TS expression versus 38,5% for low TS expression, P=0.03). The results (1) indicate significant correlation between the Lauren and Goseki histopathological classifications of gastric cancer and TS expression in tumor cells, (2) suggest that high TS expression may be a positive prognostic marker with regard to DFS in patients with gastric cancer without involvement of regional lymph nodes who underwent radical surgical treatment and were not treated with preoperative chemotherapy. Prognostic results need confirmation in larger cohorts.

  5. Effects of niacin on nitric oxide synthase expression in rat lungs exposed to silica

    Institute of Scientific and Technical Information of China (English)

    WANG Shixin; DU Haike; ZHANG Xizhen; CAI Shaoxi; FAN Huaquan; WANG Chang'en

    2004-01-01

    The aim of this study was to evaluate the effects of niacin in diet on the expression of nitric oxide synthase (NOS) in rat lungs of the animal model of silicosis established by direct tracheal instillation of silica particles into rat lungs surgically. The niacin concentration in serum was analyzed by high performance liquid chromatography (HPLC). The expression of inducible nitric oxide synthase (iNOS) protein in paraffin-embedded lung sections was determined by streptavidin/peroxidase (SP) staining. Quantitative analysis by Image-Pro Plus was also performed on the expression of iNOS. The results showed that niacin concentration in serum of the niacin-treated rats was significantly higher than that in the control and silica-treated rats. After 7 days of silica instillation, iNOS integrated optical density (IOD) in rat lungs and total NOS and iNOS activities in bronchoalveolar lavage fluid (BALF) in silica-treated rats rose by 273420.75, 2.61 units/mL and 1.89 units/mL respectively, when compared with those in the control rats. Niacin treatment significantly reduced silica-induced iNOS IOD in rat lung tissues and total NOS and iNOS activities in BALF supernatant by 248292.35, 1.50 units/mL and 0.91 units/mL, respectively, as compared with those in silica-treated rats. Therefore, niacin can effectively attenuate the pathological expression of NOS in rat lung tissues induced by silica particles.

  6. Gene expression of two kinds of constitutive nitric oxide synthase in injured spinal cord tissue

    Institute of Scientific and Technical Information of China (English)

    刘成龙; 靳安民; 周初松; 闵少雄

    2002-01-01

    Objective: To investigate the gene expression of two kinds of constitutive nitric oxide synthase (cNOS): neuronal NOS (nNOS) and endothelial NOS (eNOS) in injured spinal cord tissue.   Methods: Thirty-six adult Sprague-Dawley rats were divided randomly into six groups: the normal group and the injury groups (2, 6, 12, 24, 48 h after injury, respectively). A compression injury model of the spinal cord was made and gene expression of nNOS and eNOS were examined by reverse transcription polymerase chain reaction (RT-PCR).   Results: The gene expression of nNOS and eNOS was detected in the normal group and they were up-regulated quickly after injury, reaching the maximum at 6 h. There was no difference between gene expression of nNOS and eNOS in the normal group, but in each injury group the gene expression of eNOS was much higher than that of nNOS.   Conclusions: Expression of constitutive NOS (cNOS) in spinal cord tissue was up-regulated after injury mainly in the early stage. cNOS as a whole offers protection in spinal cord injury, but different cNOS may play different roles.

  7. Expression of nitric oxide synthase and guanylate cyclase in the human ciliary body and trabecular meshwork

    Institute of Scientific and Technical Information of China (English)

    WU Ren-yi; MA Ning

    2012-01-01

    Background The role played by the nitric oxide (NO) signaling pathway in the aqueous humor dynamics is still unclear.This study was designed to investigate the expression and distribution of NO synthase (NOS) isoforms and guanylate cyclase (GC) in human ciliary body,trabecular meshwork and the Schlemm's canal.Methods Twelve eyes after corneal transplantation were used.Expression of three NOS isoforms (i.e.neuronal NOS (nNOS),inducible NOS (iNOS) and endothelial NOS (eNOS)) and GC were assessed in 10 eyes by immunohistochemical staining using monoclonal or polyclonal antibody of NOS and GC.Ciliary bodies were dissected free and the total proteins were extracted.Western blotting was performed to confirm the protein expression of 3 NOS isoforms and GC.Results Expression of 3 NOS isoforms and GC were observed in the ciliary epithelium,ciliary muscle,trabecular meshwork and the endothelium of the Schlemm's canal.Immunoreactivity of nNOS was detected mainly along the apical cytoplasmic junction of the non-pigmented epithelium (NPE) and pigmented epithelial (PE) cells.Protein expressions of 3 NOS isoforms and GC were confirmed in isolated human ciliary body by Western blotting.Conclusions The expression of NOS isoforms and GC in human ciliary body suggest the possible involvement of NO and cyclic guanosine monophosphate (cyclic GMP,cGMP) signaling pathway in the ciliary body,and may play a role in both processes of aqueous humor formation and drainage.

  8. Inducible nitric oxide synthase expression and cardiomyocyte dysfunction during sustained moderate ischemia in pigs.

    Science.gov (United States)

    Heinzel, Frank R; Gres, Petra; Boengler, Kerstin; Duschin, Alexej; Konietzka, Ina; Rassaf, Tienush; Snedovskaya, Julia; Meyer, Stephanie; Skyschally, Andreas; Kelm, Malte; Heusch, Gerd; Schulz, Rainer

    2008-11-07

    In acute myocardial ischemia, regional blood flow and function are proportionally reduced. With prolongation of ischemia, function further declines at unchanged blood flow. We studied the involvement of an inflammatory signal cascade in such progressive dysfunction and whether dysfunction is intrinsic to cardiomyocytes. In 10 pigs, ischemia was induced by adjusting inflow into the cannulated left anterior coronary artery to reduce coronary arterial pressure to 45 mm Hg (ISCH); 4 pigs received the inducible nitric oxide synthase (iNOS) inhibitors aminoguanidine or L-N(6)-(1-iminoethyl)-lysine during ISCH (ISCH+iNOS-Inhib); 6 pigs served as controls (SHAM). Anterior (AW) and posterior (PW) systolic wall thickening (sonomicrometry) were measured. After 6 hours, nitric oxide (NO) synthase (NOS) protein expression, NOS activity, and NO metabolites (nitrite/nitrate/nitroso species) were quantified in biopsies isolated from AW and PW. Cardiomyocyte shortening and intracellular calcium (Indo-1 acetoxymethyl ester) were measured without and with the NOS substrate L-arginine (100 micromol/L). In ISCH, AW wall thickening decreased from 42+/-4% (baseline) to 16+/-3% (6 hours). Wall thickening remained unchanged in ISCH-PW and SHAM-AW/PW. NOS2 (iNOS) protein expression and activity, but not NOS3 (endothelial NO synthase), were increased in ISCH-AW and ISCH-PW. iNOS expression correlated with increased nitrite contents. Cardiomyocyte shortening was reduced in ISCH-AW versus SHAM-AW (4.4+/-0.3% versus 5.6+/-0.3%). L-Arginine reduced cardiomyocyte shortening further in ISCH-AW (to 2.8+/-0.2%) and ISCH-PW (3.4+/-0.4% versus 5.4+/-0.4%) but not in SHAM or in ISCH+iNOS-Inhib; intracellular [Ca(2+)] remained unchanged. With L-arginine, in vitro AW cardiomyocyte shortening correlated with in vivo AW wall thickening (r=0.72). In conclusion, sustained regional ischemia induces myocardial iNOS expression in pigs, which contributes to contractile dysfunction at the cardiomyocyte level.

  9. Expression of inducible nitric oxide synthase (iNOS) in microglia of the developing quail retina.

    Science.gov (United States)

    Sierra, Ana; Navascués, Julio; Cuadros, Miguel A; Calvente, Ruth; Martín-Oliva, David; Ferrer-Martín, Rosa M; Martín-Estebané, María; Carrasco, María-Carmen; Marín-Teva, José L

    2014-01-01

    Inducible nitric oxide synthase (iNOS), which produce large amounts of nitric oxide (NO), is induced in macrophages and microglia in response to inflammatory mediators such as LPS and cytokines. Although iNOS is mainly expressed by microglia that become activated in different pathological and experimental situations, it was recently reported that undifferentiated amoeboid microglia can also express iNOS during normal development. The aim of this study was to investigate the pattern of iNOS expression in microglial cells during normal development and after their activation with LPS by using the quail retina as model. iNOS expression was analyzed by iNOS immunolabeling, western-blot, and RT-PCR. NO production was determined by using DAR-4M AM, a reliable fluorescent indicator of subcellular NO production by iNOS. Embryonic, postnatal, and adult in situ quail retinas were used to analyze the pattern of iNOS expression in microglial cells during normal development. iNOS expression and NO production in LPS-treated microglial cells were investigated by an in vitro approach based on organotypic cultures of E8 retinas, in which microglial cell behavior is similar to that of the in situ retina, as previously demonstrated in our laboratory. We show here that amoeboid microglia in the quail retina express iNOS during normal development. This expression is stronger in microglial cells migrating tangentially in the vitreal part of the retina and is downregulated, albeit maintained, when microglia differentiate and become ramified. LPS treatment of retina explants also induces changes in the morphology of amoeboid microglia compatible with their activation, increasing their lysosomal compartment and upregulating iNOS expression with a concomitant production of NO. Taken together, our findings demonstrate that immature microglial cells express iNOS during normal development, suggesting a certain degree of activation. Furthermore, LPS treatment induces overactivation of amoeboid

  10. Localization of cystathionine β synthase in mice ovaries and its expression profile during follicular development

    Institute of Scientific and Technical Information of China (English)

    LIANG Rong; YU Wei-dong; DU Jun-bao; YANG Li-jun; SHANG Mei; GUO Jing-zhu

    2006-01-01

    Background In vitro fertilization (IVF) researches have suggested that cystathionine β synthase (CBS) is involved in oocyte development. However, little is known about the regional and cellular expression patterns of CBS in the ovary. The purpose of this study was to analyze the localization of CBS in mice ovaries and to investigate the expression profile during follicular development.Methods We used in situ hybridization and immunohistochemical analysis to determine CBS expression in the ovaries of female Balb/c mice. Then the follicles were collected from F1 (C57BL × Balb/c) mice and cultured in vitro. With the method of semi-quantitative RT-PCR, we also investigated the expression profile of CBS during follicular development.Results CBS was absent in the oocytes, although it was ubiquitously expressed in the ovary with the strongest expression in follicular cells at all stages. In late antral follicles, CBS expression was markedly higher in granulosa cells located close to the antrum and in cumulus cells around the oocyte. The semi-quantitative RT-PCR showed that CBS mRNA was detected in follicles at all stages in vitro. In cumulus-oocyte complexes superovulated, CBS expression also increased rapidly.Conclusions CBS was located mainly in the follicular cells in the ovaries. The level of CBS expression is high in follicles during folliculogenesis in mice. Differences in the CBS expression profile between oocyte and follicular cells suggest a role for CBS as a mediator in interactions between oocyte and granulosa cells.

  11. Effects of Nephritis No. 3 Recipe on Nitric Oxide, Nitric Oxide Synthase Secreted by Cultured Mesangial Cells in Rats and the Gene Expression of Inducible Nitric Oxide Synthase

    Institute of Scientific and Technical Information of China (English)

    陈志强; 黄怀鹏; 黄文政; 朱小棣; 林清棋

    2003-01-01

    Objective: To explore the effect of the Nephritis No. 3 (N-3) recipe on nitric oxide (NO),nitric oxide synthase (NOS) secreted by cultured mesangial cells (MC) and its gene expression of the inducible nitric oxide synthase (iNOS). Methods: The drug (nephritis No. 3)-containing serum was prepared with serum pharmacological technique, and then was applied to react on mesangial cells cultured in fetal calf serum (FCS) and cells cultured in FCS plus lipopolysaccharide. To observe the secretion of NO and NOS and the gene expression of iNOS by means of RT-PCR. Results: Under the two kinds of culture conditions, the content of NO and NOS in the groups with drug-containing serum were higher than those without drug-containing serum (P<0.05, P<0.01), and the expression of iNOS mRNA was up-regulated too. Conclusion: The N-3 could significantly promote the secretion of NO and NOS and the mRNA expression of iNOS in rats.

  12. Influence of gibberellin and daminozide on the expression of terpene synthases and on monoterpenes in common sage (Salvia officinalis).

    Science.gov (United States)

    Schmiderer, Corinna; Grausgruber-Gröger, Sabine; Grassi, Paolo; Steinborn, Ralf; Novak, Johannes

    2010-07-01

    Common sage (Salvia officinalis L., Lamiaceae) is one of the most important medicinal and aromatic plants, with antioxidant, antimicrobial, spasmolytic, astringent, antihidrotic and specific sensorial properties. The essential oil of the plant, composed mainly of the monoterpenes 1,8-cineole, alpha-thujone, beta-thujone and camphor, is responsible for some of these effects. Gibberellins regulate diverse physiological processes in plants, such as seed germination, shoot elongation and cell division. In this study, we analyzed the effect of exogenously applied plant growth regulators, namely gibberellic acid (GA(3)) and daminozide, on leaf morphology and essential oil formation of two leaf stages during the period of leaf expansion. Essential oil content increased with increasing levels of gibberellins and decreased when gibberellin biosynthesis was blocked with daminozide. With increasing levels of gibberellins, 1,8-cineole and camphor contents increased. Daminozide blocked the accumulation of alpha- and beta-thujone. GA(3) at the highest level applied also led to a significant decrease of alpha- and beta-thujone. Monoterpene synthases are a class of enzymes responsible for the first step in monoterpene biosynthesis, competing for the same substrate geranylpyrophosphate. The levels of gene expression of the three most important monoterpene synthases in sage were investigated, 1,8-cineole synthase leading directly to 1,8-cineole, (+)-sabinene synthase responsible for the first step in the formation of alpha- and beta-thujone, and (+)-bornyl diphosphate synthase, the first step in camphor biosynthesis. The foliar application of GA(3) increased, while daminozide significantly decreased gene expression of the monoterpene synthases. The amounts of two of the end products, 1,8-cineole and camphor, were directly correlated with the levels of gene expression of the respective monoterpene synthases, indicating transcriptional control, while the formation of alpha- and beta

  13. Human platelet/erythroleukemia cell prostaglandin G/H synthase: cDNA cloning, expression, and gene chromosomal assignment

    Energy Technology Data Exchange (ETDEWEB)

    Funk, C.D.; Funk, L.B.; Kennedy, M.E.; Pong, A.S.; Fitzgerald, G.A. (Vanderbilt Univ., Nashville, TN (United States))

    1991-06-01

    Platelets metabolize arachidonic acid to thromboxane A{sub 2}, a potent platelet aggregator and vasoconstrictor compound. The first step of this transformation is catalyzed by prostaglandin (PG) G/H synthase, a target site for nonsteroidal antiinflammatory drugs. We have isolated the cDNA for both human platelet and human erythroleukemia cell PGG/H synthase using the polymerase chain reaction and conventional screening procedures. The cDNA encoding the full-length protein was expressed in COS-M6 cells. Microsomal fractions from transfected cells produced prostaglandin endoperoxide derived products which were inhibited by indomethacin and aspirin. Mutagenesis of the serine residue at position 529, the putative aspirin acetylation site, to an asparagine reduced cyclooxygenase activity to barely detectable levels, an effect observed previously with the expressed sheep vesicular gland enzyme. Platelet-derived growth factor and phorbol ester differentially regulated the expression of PGG/H synthase mRNA levels in the megakaryocytic/platelet-like HEL cell line. The PGG/H synthase gene was assigned to chromosome 9 by analysis of a human-hamster somatic hybrid DNA panel. The availability of platelet PGG/H synthase cDNA should enhance our understanding of the important structure/function domains of this protein and it gene regulation.

  14. Cloning and Expression of the PHA Synthase Gene From a Locally Isolated Chromobacterium sp. USM2

    Directory of Open Access Journals (Sweden)

    Bhubalan, K.

    2010-01-01

    Full Text Available Chromobacterium sp. USM2, a locally isolated bacterium was found to synthesize poly(3-hydroxybutyrate-co-3-hydroxyvalerate, P(3HB-co-3HV copolymer with high 3HV monomer composition. The PHA synthase gene was cloned and expressed in Cupriavidus necator PHB¯4 to investigate the possibilities of incorporating other monomer. The recombinant successfully incorporated 3-hydroxyhexanoate (3HHx monomer when fed with crude palm kernel oil (CPKO as the sole carbon source. Approximately 63 ± 2 wt% of P(3HB-co-3HHx copolymer with 4 mol% of 3HHx was synthesized from 5 g/L of oil after 48 h of cultivation. In addition, P(3HB-co-3HV-co-3HHx terpolymer with 9 mol% 3HV and 4 mol% 3HHx could be synthesized with a mixture of CPKO and sodium valerate. The presence of 3HV and 3HHx monomers in the copolymer and terpolymer was further confirmed with +H-NMR analysis. This locally isolated PHA synthase has demonstrated its ability to synthesize P(3HB-co-3HHx copolymer from a readily available and renewable carbon source; CPKO, without the addition of 3HHx precursors.

  15. Cloning, expression and functional activity of deoxyhypusine synthase from Plasmodium vivax

    Directory of Open Access Journals (Sweden)

    Nassar Marwa

    2006-10-01

    Full Text Available Abstract Background Plasmodium vivax is the most widespread human malaria parasite. However, genetic information about its pathogenesis is limited at present, due to the lack of a reproducible in vitro cultivation method. Sequencing of the Plasmodium vivax genome suggested the presence of a homolog of deoxyhypusine synthase (DHS from P. falciparum, the key regulatory enzyme in the first committed step of hypusine biosynthesis. DHS is involved in cell proliferation, and thus a valuable drug target for the human malaria parasite P. falciparum. A comparison of the enzymatic properties of the DHS enzymes between the benign and severe Plasmodium species should contribute to our understanding of the differences in pathogenicity and phylogeny of both malaria parasites. Results We describe the cloning of a 1368 bp putative deoxyhypusine synthase gene (dhs sequence from genomic DNA of P. vivax PEST strain Salvador I (Accession number AJ549098 after touchdown PCR. The corresponding protein was expressed and functionally characterized as deoxyhypusine synthase by determination of its specific activity and cross-reactivity to human DHS on a Western blot. The putative DHS protein from P. vivax displays a FASTA score of 75 relative to DHS from rodent malaria parasite, P. yoelii, and 74 relative to that from the human parasite, P. falciparum strain 3D7. The ORF encoding 456 amino acids was expressed under control of IPTG-inducible T7 promoter, and expressed as a protein of approximately 50 kDa (theoretically 52.7 kDa in E. coli BL21 DE3 cells. The N-terminal histidine-tagged protein was purified by Nickel-chelate affinity chromatography under denaturing conditions. DHS with a theoretical pI of 6.0 was present in both eluate fractions. The specific enzymatic activity of DHS was determined as 1268 U/mg protein. The inhibitor, N-guanyl-1, 7-diaminoheptane (GC7, suppressed specific activity by 36-fold. Western blot analysis performed with a polyclonal anti

  16. Increased expression of cyclooxygenase-2 and nitric oxide synthase-2 in human prostate cancer.

    Science.gov (United States)

    Uotila, P; Valve, E; Martikainen, P; Nevalainen, M; Nurmi, M; Härkönen, P

    2001-02-01

    Cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase-2 (NOS-2) each have an important role in angiogenesis. The expression of these genes was investigated in human prostate cancer by immunohistochemistry, the expression of COX-1 and COX-2 being confirmed by mRNA analysis. Prostate cancer specimens from 12 patients were compared to control prostates from 13 patients operated on for bladder carcinoma. The intensity of COX-2 and NOS-2 immunostaining was significantly stronger in prostate cancer cells than in the non-malignant glandular epithelium of the control prostates. COX-2 and NOS-2 were clearly also expressed in the lesions of prostatic intraepithelial neoplasia (PIN) in control prostates. COX-2 was detected in the muscle fibres of the hyperplastic stroma of some control prostates. No significant difference was detected in COX-1 expression between control and cancer prostates. These results indicate that the expression of COX-2 and NOS-2 is elevated in prostatic adenocarcinoma and in PIN.

  17. Inorganic polyphosphate suppresses lipopolysaccharide-induced inducible nitric oxide synthase (iNOS expression in macrophages.

    Directory of Open Access Journals (Sweden)

    Kana Harada

    Full Text Available In response to infection, macrophages produce a series of inflammatory mediators, including nitric oxide (NO, to eliminate pathogens. The production of these molecules is tightly regulated via various mechanisms, as excessive responses are often detrimental to host tissues. Here, we report that inorganic polyphosphate [poly(P], a linear polymer of orthophosphate ubiquitously found in mammalian cells, suppresses inducible nitric oxide synthase (iNOS expression induced by lipopolysaccharide (LPS, a cell wall component of Gram-negative bacteria, in mouse peritoneal macrophages. Poly(P with longer chains is more potent than those with shorter chains in suppressing LPS-induced iNOS expression. In addition, poly(P decreased LPS-induced NO release. Moreover, poly(P suppressed iNOS mRNA expression induced by LPS stimulation, thereby indicating that poly(P reduces LPS-induced iNOS expression by down-regulation at the mRNA level. In contrast, poly(P did not affect the LPS-induced release of TNF, another inflammatory mediator. Poly(P may serve as a regulatory factor of innate immunity by modulating iNOS expression in macrophages.

  18. Expression of thymidylate synthase and glutathione-stransferase π in patients with esophageal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Jun-Xing Huang; Feng-Yue Li; Wei Xiao; Zheng-Xiang Song; Rong-Yu Qian; Ping Chen; Eeva Salminen

    2009-01-01

    AIM: To investigate the expression of thymidylate synthase (TS) and glutathione-s-transferase π (GST-π) in esophageal squamous cell carcinoma and their association with the clinicopathologic characteristics. METHODS: Immunohistochemical methods were used to detect the expression of TS and GST-π in surgically resected formalin-fixed, paraffin-embedded esophageal squamous cell carcinoma (ESCC) tissue sections from 102 patients (median age, 58 years) and in 28 normal esophageal mucosa (NEM) samples. The relationship between TS and GST-π expression and clinicopathologic factors was examined. RESULTS: The expression of TS and GST-π was not statistically significantly associated with age of the patients, tumor size, lymph node metastasis, depth of invasion or tumor stage. TS staining was positive in 17.86% of normal esophageal mucosa and in 42.16% of ESCC samples (P < 0.05). The expression level of TS was not only significantly lower in well-differentiated (21.88%) than in poorly-differentiated carcinomas (51.43%, P < 0.05), but was also significantly higher in samples from male patients (46.51%) than from female patients (18.75%, P < 0.05). GST-π was positively stained in 78.57% of normal esophageal mucosa and in 53.92% of ESCC samples (P < 0.05). The expression level of GST-π was also significantly higher in welldifferentiated carcinomas (65.63%) than in poorlydifferentiated carcinomas (35.00%, P < 0.05). CONCLUSION: The expression of TS and of GST-π may be used as molecular markers for the characterization of ESCC. Poorly-differentiated cells showed increased expression of TS and reduced expression of GST-π.

  19. Unchanged gene expression of glycogen synthase in muscle from patients with NIDDM following sulphonylurea-induced improvement of glycaemic control

    DEFF Research Database (Denmark)

    Vestergaard, H; Lund, S; Bjørbaek, C

    1995-01-01

    We have previously shown that the mRNA expression of muscle glycogen synthase is decreased in non-insulin-dependent diabetic (NIDDM) patients; the objective of the present protocol was to examine whether the gene expression of muscle glycogen synthase in NIDDM is affected by chronic sulphonylurea...... treatment. Ten obese patients with NIDDM were studied before and after 8 weeks of treatment with a weight-maintaining diet in combination with the sulphonylurea gliclazide. Gliclazide treatment was associated with significant reductions in HbA1C (p=0.001) and fasting plasma glucose (p=0.005) as well...... metabolism (p=0.02) was demonstrated in teh gliclazide-treated patients when compared to pre-treatment values. In biopsies obtained from vastus lateralis muscle during insulin infusion, the half-maximal activation of glycogen synthase was achieved at a significantly lower concentration of the allosteric...

  20. Cloning and analysis of valerophenone synthase gene expressed specifically in lupulin gland of hop (Humulus lupulus L.).

    Science.gov (United States)

    Okada, Y; Ito, K

    2001-01-01

    Resin and essential oil derived from hop (Humulus lupulus L.) cones are very important compounds for beer brewing, and they specifically accumulate in the lupulin gland of hop cones. In order to identify the genes responsible for the biosynthetic pathway of these compounds and use the identified genes for hop breeding using Marker Assisted Selection and transformation techniques, genes expressed specifically in the lupulin gland were cloned and sequenced. One of them was suggested to be similar to the chalcone synthase gene from the DNA sequence. The translation product of the gene had the activity of valerophenone synthase, which catalyzes a part of the synthesis reaction of alpha-acid and beta-acid. Northern analysis showed that the valerophenone synthase gene seemed to be expressed specifically in the lupulin gland.

  1. Effect of estrogen on gene expression of fatty acid synthase in periosteum

    Institute of Scientific and Technical Information of China (English)

    ZHENG Rui-min; LIN Shou-qing; LIU Yong; HUANG Man-ting; GONG Wei-yan; WU Zhi-hong

    2009-01-01

    Background Estrogen deficiency contributes to postmenopausal osteoporosis.Periosteum might be a potential target of estrogen,but the underlying mechanism at gene level is far from being elucidated.The objective of this study was to investigate the correlation between estrogen and fatty acid synthase(FAS)expression in periosteum.Methods Human periosteum cells were cultured in vitro.Expressed genes in the substrated cDNA library were verified using semi-quantitative PCR and real-time PCR.The expression of FAS in periosteum of ovarectomized(OVX)SD rats was investigated.Results FAS gene was most significantly expressed in the subtracted cDNA library of periosteal cells screened by semi-quantitative PCR.Low FAS expression was verified by real-time PCR in the estrogen exposed human periosteum rather than in the control.The estradiol levels were(20.81±12.62)pg/ml,(19.64±4.35)pg/ml and(13.47+1.84)pg/ml in the sham group,the control,and the OVX group,respectively.The estradiol levels in the OVX group was significantly lower(P=0.0386).The FAS gene expression in periosteum in the OVX group,sham group,and control group was 3.09±1.97,1.33±0.47 and 1.51±1.32,respectively.The gene expression in the OVX group was significantly higher (P=0.0372).Conclusion Estrogen modulates FAS gene expression in in vitro human perisoteum as well as in in vivo rat periosteum.

  2. Increased fatty acid synthase expression in prostate biopsy cores predicts higher Gleason score in radical prostatectomy specimen

    OpenAIRE

    HAMADA, SHINSUKE; Horiguchi, Akio; Kuroda, Kenji; Ito, Keiichi; ASANO, TOMOHIKO; Miyai, Kosuke; Iwaya, Keiichi

    2014-01-01

    Background Fatty acid synthase (FAS) is highly expressed in various types of cancer, and elevated expression of FAS has been suggested to be a predictor of tumor aggressiveness and poor prognosis. We examined whether FAS expression in prostate biopsy cores could predict the pathological characteristics of radical prostatectomy (RP) specimens. Methods Paraffin-embedded prostate biopsy cores, obtained from 102 patients who subsequently underwent RP, were immunostained with polyclonal anti-FAS a...

  3. Molecular cloning and in vitro expression of a silent phenoxazinone synthase gene from Streptomyces lividans.

    Science.gov (United States)

    Madu, A C; Jones, G H

    1989-12-14

    Phenoxazinone synthase (PHS) catalyzes a step in actinomycin D biosynthesis in Streptomyces antibioticus. Two sequences from Streptomyces lividans that hybridize to the phs gene of S. antibioticus have been cloned in Escherichia coli K-12 using the plasmid pBR322. Although there was some similarity in the restriction maps of the two cloned fragments, neither insert appeared to be a direct subset of the other nor of the S. antibioticus phs gene. In vitro expression studies, in a streptomycete coupled transcription-translation system, showed that a 3.98-kb SphI fragment encoded a PHS-related protein. These observations provide additional support for the existence of silent genes for antibiotic production in streptomycetes.

  4. Neuronal expression of glucosylceramide synthase in central nervous system regulates body weight and energy homeostasis.

    Directory of Open Access Journals (Sweden)

    Viola Nordström

    Full Text Available Hypothalamic neurons are main regulators of energy homeostasis. Neuronal function essentially depends on plasma membrane-located gangliosides. The present work demonstrates that hypothalamic integration of metabolic signals requires neuronal expression of glucosylceramide synthase (GCS; UDP-glucose:ceramide glucosyltransferase. As a major mechanism of central nervous system (CNS metabolic control, we demonstrate that GCS-derived gangliosides interacting with leptin receptors (ObR in the neuronal membrane modulate leptin-stimulated formation of signaling metabolites in hypothalamic neurons. Furthermore, ganglioside-depleted hypothalamic neurons fail to adapt their activity (c-Fos in response to alterations in peripheral energy signals. Consequently, mice with inducible forebrain neuron-specific deletion of the UDP-glucose:ceramide glucosyltransferase gene (Ugcg display obesity, hypothermia, and lower sympathetic activity. Recombinant adeno-associated virus (rAAV-mediated Ugcg delivery to the arcuate nucleus (Arc significantly ameliorated obesity, specifying gangliosides as seminal components for hypothalamic regulation of body energy homeostasis.

  5. Co-suppression in transgenic Petunia hybrida expressing chalcone synthase A (chsA)

    Institute of Scientific and Technical Information of China (English)

    李艳; 惠有为; 张仲凯; 黄兴奇; 李毅

    2001-01-01

    Chalcone synthase A is a key enzyme in the anthocyanin biosynthesis pathway. Expression of chsA gene in transgenic Petunia hybrida resulted in flower color alterations and co-suppression of transgenes and endogenous genes. We fused the β-glucuronidase (uidA) gene to the C-terminal of chsA gene, and transferred the fusion gene into Petunia hybrida via Agrobacterium tumefaciens. GUS histochemical staining analysis showed that co-suppression occurred specifically during the development of flowers and co-suppression required the mutual interaction of endogenous genes and transgenes. RNA in situ hybridization analysis suggested that co-suppression occurred in the entire plant, and RNA degradation occurred in the cytoplasm.

  6. cDNA cloning, chromosome mapping and expression characterization of human geranylgeranyl pyrophosphate synthase

    Institute of Scientific and Technical Information of China (English)

    赵勇[1; 余龙[2; 高洁[3; 付强[4; 华益民[5; 张宏来[6; 赵寿元[7

    2000-01-01

    Geranylgeranyl pyrophosphate (GGPP) mainly participates in post-translational modification for various proteins including Rho/Rac, Rap and Rab families, as well as in regulation for cell apoptosis. Geranylgeranyl pyrophosphate synthase (GGPPS), which catalyzes the condensation reaction between farnesyl diphosphate and isopentenyl diphosphate, is the key enzyme for synthesizing GGPP. We report the isolation of a gene transcript showing high homology with Drosophila GGPPS cDNA. The transcript is 1 466 bp in length and contains an intact open reading frame (ORF) ranging from nt 239 to 1 138. This ORF encodes a deduced protein of 300 residues with calculated molecular weight of 35 ku. The deduced protein shows 57.5% identity and 75% similarity with Drosophila GGPPS, and contains five characteristic domains of prenyltransferases. Northern hybridization revealed that human GGPPS was expressed highest in heart, and moderately in spleen, testis, brain, placenta, lung, liver, skeletal muscle, kidney and pancreas

  7. Elevated neuronal nitric oxide synthase expression during ageing and mitochondrial energy production.

    Science.gov (United States)

    Lam, Philip Y; Yin, Fei; Hamilton, Ryan T; Boveris, Alberto; Cadenas, Enrique

    2009-05-01

    This study evaluated the effect of ageing on brain mitochondrial function mediated through protein post-translational modifications. Neuronal nitric oxide synthase increased with age and this led to a discreet pattern of nitration of mitochondrial proteins. LC/MS/MS analyses identified the nitrated mitochondrial proteins as succinyl-CoA-transferase and F1-ATPase; the latter was nitrated at Tyr269, suggesting deficient ADP binding to the active site. Activities of succinyl-CoA-transferase, F1-ATPase and cytochrome oxidase decreased with age. The decreased activity of the latter cannot be ascribed to protein modifications and is most likely due to a decreased expression and assembly of complex IV. Mitochondrial protein post-translational modifications were associated with a moderately impaired mitochondrial function, as indicated by the decreased respiratory control ratios as a function of age and by the release of mitochondrial cytochrome c to the cytosol, thus supporting the amplification of apoptotic cascades.

  8. Cloning and expression of trehalose-6-phosphate synthase 1 from Rhizopus oryzae.

    Science.gov (United States)

    Ozer Uyar, Ebru; Yücel, Meral; Hamamcı, Haluk

    2016-05-01

    Trehalose is a reducing disaccharide acting as a protectant against environmental stresses in many organisms. In fungi, Trehalose-6-phosphate synthase 1 (TPS1) plays a key role in the biosynthesis of trehalose. In this study, a full-length cDNA from Rhizopus oryzae encoding TPS1 (designated as RoTPS1) was isolated. The RoTPS1 cDNA is composed of 2505 nucleotides and encodes a protein of 834 amino acids with a molecular mass of 97.8 kDa. The amino acid sequence of RoTPS1 has a relatively high homology with the TPS1s in several other filamentous fungi. RoTPS1 was cloned into Saccharomyces cerevisiae and secretively expressed.

  9. Molecular cloning and expression pattern of oriental river prawn (Macrobrachium nipponense) nitric oxide synthase.

    Science.gov (United States)

    Rahman, N M A; Fu, H T; Sun, S M; Qiao, H; Jin, S; Bai, H K; Zhang, W Y; Liang, G X; Gong, Y S; Xiong, Y W; Wu, Y

    2016-08-29

    Nitric oxide synthase (NOS) produces nitric oxide (NO) by catalyzing the conversion of l-arginine to l-citrulline, with the concomitant oxidation of nicotinamide adenine dinucleotide phosphate. Recently, various studies have verified the importance of NOS invertebrates and invertebrates. However, the NOS gene family in the oriental river prawn Macrobrachium nipponense is poorly understood. In this study, we cloned the full-length NOS complementary DNA from M. nipponense (MnNOS) and characterized its expression pattern in different tissues and at different developmental stages. Real-time quantitative polymerase chain reaction (RT-qPCR) showed the MnNOS gene to be expressed in all investigated tissues, with the highest levels observed in the androgenic gland (P < 0.05). Our results revealed that the MnNOS gene may play a key role in M. nipponense male sexual differentiation. Moreover, RT-qPCR revealed that MnNOS mRNA expression was significantly increased in post-larvae 10 days after metamorphosis (P < 0.05). The expression of this gene in various tissues indicates that it may perform versatile biological functions in M. nipponense.

  10. Nicotinic receptor mediates nitric oxide synthase expression in the rat gastric myenteric plexus.

    Science.gov (United States)

    Nakamura, K; Takahashi, T; Taniuchi, M; Hsu, C X; Owyang, C

    1998-04-01

    The mechanism that regulates the synthesis of nitric oxide synthase (NOS), a key enzyme responsible for NO production in the myenteric plexus, remains unknown. We investigated the roles of the vagal nerve and nicotinic synapses in the mediation of NOS synthesis in the gastric myenteric plexus in rats. Truncal vagotomy and administration of hexamethonium significantly reduced nonadrenergic, noncholinergic relaxation, the catalytic activity of NOS, the number of NOS-immunoreactive cells, and the density of NOS-immunoreactive bands and NOS mRNA bands obtained from gastric tissue. These results suggest that NOS expression in the gastric myenteric plexus is controlled by the vagal nerve and nicotinic synapses. We also investigated if stimulation of the nicotinic receptor increases neuronal NOS (nNOS) expression in cultured gastric myenteric ganglia. Incubation of cultured gastric myenteric ganglia with the nicotinic receptor agonist, 1,1-dimethyl-4-phenylpiperizinium (DMPP, 10(-10)-10(-7) M), for 24 h significantly increased the number of nNOS-immunoreactive cells and the density of immunoreactive nNOS bands and nNOS mRNA bands. nNOS mRNA expression stimulated by DMPP was antagonized by a protein kinase C antagonist, a phospholipase C inhibitor, and an intracellular Ca2+ chelator. We concluded that activation of the nicotinic receptor stimulates a Ca2+-dependent protein kinase C pathway, which in turn, upregulates nNOS mRNA expression and nNOS synthesis in the gastric myenteric plexus.

  11. Expression of monoamine transporters, nitric oxide synthase 3 and neurotrophin genes in antidepressant-stimulated astrocytes

    Directory of Open Access Journals (Sweden)

    Sarah eKittel-Schneider

    2012-04-01

    Full Text Available Background: There is increasing evidence that glial cells play a role in the pathomechanisms of mood disorders and the mode of action of antidepressant drugs. Methods: To examine whether there is a direct effect on the expression of different genes encoding proteins that have been implicated in the pathophysiology of affective disorders, primary astrocyte cell cultures from rats were treated with two different antidepressant drugs, imipramine and escitalopram, and the mRNA expression of brain derived neurotrophic factor (Bdnf, serotonin transporter (5Htt, dopamine transporter (Dat and endothelial nitric oxide synthase (Nos3 was examined. Results: Stimulation of astroglial cell culture with imipramine, a tricyclic antidepressant, lead to a significant increase of the Bdnf mRNA level whereas treatment with escitalopram did not. In contrast, 5Htt was not differentially expressed after antidepressant treatment. Finally, neither Dat nor Nos3 mRNA expression was detected in cultured astrocytes. Conclusions: These data provide further evidence for a role of astroglial cells in the molecular mechanisms of action of antidepressants.

  12. Nitric oxide synthase and heme oxygenase expressions in human liver cirrhosis

    Institute of Scientific and Technical Information of China (English)

    Beatrice J Goh; Bee Tee Tan; Wei Min Hon; Kang Hoe Lee; Hoon Eng Khoo

    2006-01-01

    AIM: Portal hypertension is a common complication of liver cirrhosis. Intrahepatic pressure can be elevated in several ways. Abnormal architecture affecting the vasculature, an increase in vasoconstrictors and increased circulation from the splanchnic viscera into the portal system may all contribute. It follows that endogenous vasodilators may be able to alleviate the hypertension. We therefore aimed to investigate the levels of endogenous vasodilators, nitric oxide (NO) and carbon monoxide (CO) through the expression of nitric oxide synthase (NOS) and heme oxygenase (HO).METHOD: Cirrhotic (n= 20) and non-cirrhotic (n = 20) livers were obtained from patients who had undergone surgery. The mRNA and protein expressions of the various isoforms of NOS and HO were examined using competitive PCR, Western Blot and immunohistochemistry.RESULTS: There was no significant change in either inducible NOS (iNOS) or neuronal NOS (nNOS) expressions while endothelial NOS (eNOS) was upregulated in cirrhotic livers. Concomitantly, caveolin-1, an established down-regulator of eNOS, was up-regulated.Inducible HO-1 and constitutive HO-2 were found to show increased expression in cirrhotic livers albeit in different localizations.CONCLUSION: The differences of NOS expression might be due to their differing roles in maintaining liver homeostasis and/or involvement in the pathology of cirrhosis. Sheer stress within the hypertensive liver may induce increased expression of eNOS. In turn, caveolin-1 is also increased. Whether this serves as a defense mechanism against further cirrhosis or is a consequence of cirrhosis, is yet unknown. The elevated expression of HO-1 and HO-2 suggest that CO may compensate in its role as a vasodilator albeit weakly. It is possible that CO and NO have parallel or coordinated functions within the liver and may work antagonistically in the pathophysiology of portal hypertension.

  13. Effects of Baicalin on Expression of Inducible Nitric Oxide Synthase in Cultured Fibroblasts Stimulated by Cytokines

    Institute of Scientific and Technical Information of China (English)

    毕新岭; 顾军; 聂本勇; 李泉; 刘辉; 米庆胜

    2004-01-01

    Objective: To investigate the effects of baicalin on expression of inducible nitric oxide synthase (iNOS) in fibroblasts and its mechanisms in treating psoriasis. Methods: Fibroblasts cultured in vitro were stimulated with tumor necrosis factor-α(TNF-α), interferon-γ (IFN-γ), interleukin-8 (IL-S) in different groups. iNOS was detected by western blot and immunocytochemistry assay, and in addition, the effects of baicalin on its expression were investigated. Results: Fibroblasts did not express iNOS without cytokine stimulation. When treated for 24 h with 1. 0× 106 U/L TNF-α, 0.2× 106U/L IFN-γ, 0.2× 106 pg/L IL-8 alone or in combinations indicated, fibroblasts produced iNOS when stimulated by TNF-α alone while neither IFN-γ nor IL-8 could induce the production of iNOS. The combination of TNF-α and IL-8 induced a strong expression of iNOS, the combined exposure of three kinds of cytokines showed an even stronger effects. The strongly stained area was in the cytoplasm near the nuclei. Expression of iNOS induced by TNF-α and IL-8 was inhibited by 50 μg/ mi of baicalin. Conclusion: Fibroblasts might express iNOS when stimulated by certain cytokines. Baicalin decreased production of nitric oxide through inhibiting the expression of iNOS, furthermore it reduced inflammation, which might be part of its mechanisms in treating psoriasis.

  14. Effects of Balcalin on Expression of Inducible Nitric Oxide Synthase In Cultured Fibroblasts Stimulated by Cytokines

    Institute of Scientific and Technical Information of China (English)

    毕新岭; 顾军; 聂本勇; 李泉; 刘辉; 米庆胜

    2004-01-01

    Objective: To investigate the effects of baicalin on expression of inducible nitric oxide synthase (iNOS) in fibroblasts and its mechanisms in treating psoriasis. Methods: Fibroblasts cultured in vitro were stimulated with tumor necrosis factor-α((TNF-α), interferon-γ(IFN-γ), interleukin-8 (IL-8) in different groups, iNOS was detected by western blot and immunocytochemistry assay, and in addition, the effects of baicalin on its expression were investigated. Results. Fibroblasts did not express iNOS without cytokine stimulation. When treated for 24 h with 1.0×106 U/L TNF-α, 0.2×106U/L IFN-γ, 0.2×106 pg/L IL-8 alone or in combinations indicated, fibroblasts produced iNOS when stimulated by TNF-α alone while neither IFN-γ nor IL-8 could induce the production of iNOS. The combination of TNF-α and IL-8 induced a strong expression of iNOS, the combined exposure of three kinds of cytokines showed an even stronger effects. The strongly stained area was in the cytoplasm near the nuclei. Expression of iNOS induced by TNF-α and IL-8 was inhibited by 50μg/ ml of baicalin. Conclusion. Fibroblasts might express iNOS when stimulated by certain cytokines. Baicalin decreased production of nitric oxide through inhibiting the expression of iNOS, furthermore it reduced inflammation, which might be part of its mechanisms in treating psoriasis.

  15. Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha x piperita, L.) that produces the aphid alarm pheromone (E)-.beta.-farnesene

    Science.gov (United States)

    Croteau, Rodney Bruce; Crock, John E.

    2005-01-25

    A cDNA encoding (E)-.beta.-farnesene synthase from peppermint (Mentha piperita) has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID NO:1) is provided which codes for the expression of (E)-.beta.-farnesene synthase (SEQ ID NO:2), from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for (E)-.beta.-farnesene synthase, or for a base sequence sufficiently complementary to at least a portion of (E)-.beta.-farnesene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (E)-.beta.-farnesene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant (E)-.beta.-famesene synthase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant (E)-.beta.-farnesene synthase may be used to obtain expression or enhanced expression of (E)-.beta.-famesene synthase in plants in order to enhance the production of (E)-.beta.-farnesene, or may be otherwise employed for the regulation or expression of (E)-.beta.-farnesene synthase, or the production of its product.

  16. Isolation and bacterial expression of a sesquiterpene synthase CDNA clone from peppermint(mentha .chi. piperita, L.) that produces the aphid alarm pheromone (E)-.beta.-farnesene

    Science.gov (United States)

    Croteau, Rodney Bruce; Wildung, Mark Raymond; Crock, John E.

    1999-01-01

    A cDNA encoding (E)-.beta.-farnesene synthase from peppermint (Mentha piperita) has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID NO:1) is provided which codes for the expression of (E)-.beta.-farnesene synthase (SEQ ID NO:2), from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for (E)-.beta.-farnesene synthase, or for a base sequence sufficiently complementary to at least a portion of (E)-.beta.-farnesene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (E)-.beta.-farnesene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant (E)-.beta.-farnesene synthase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant (E)-.beta.-farnesene synthase may be used to obtain expression or enhanced expression of (E)-.beta.-farnesene synthase in plants in order to enhance the production of (E)-.beta.-farnesene, or may be otherwise employed for the regulation or expression of (E)-.beta.-farnesene synthase, or the production of its product.

  17. Direct measurements of nitric oxide release in relation to expression of endothelial nitric oxide synthase in isolated porcine mitral valves

    DEFF Research Database (Denmark)

    Moesgaard, Sophia Gry; Olsen, Lisbeth Høier; Aasted, Bent;

    2007-01-01

    The aim of this study was to measure the direct release of nitric oxide (NO) from the porcine mitral valve using a NO microelectrode. Furthermore, the expression and localization of endothelial nitric oxide synthase (eNOS) in the mitral valve was studied using immunohistochemistry, Western blotting...

  18. Controlling Citrate Synthase Expression by CRISPR/Cas9 Genome Editing for n-Butanol Production in Escherichia coli

    DEFF Research Database (Denmark)

    Heo, Min-Ji; Jung, Hwi-Min; Um, Jaeyong

    2017-01-01

    engineered E. coli, resulting in 0.82 g/L butanol production. To increase butanol production, carbon flux from acetyl-CoA to citric acid cycle should be redirected to acetoacetyl-CoA. For this purpose, the 5′-untranslated region sequence of gltA encoding citrate synthase was designed using an expression...

  19. Regulation of RNA-dependent RNA polymerase 1 and isochorismate synthase gene expression in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lydia J R Hunter

    Full Text Available BACKGROUND: RNA-dependent RNA polymerases (RDRs function in anti-viral silencing in Arabidopsis thaliana and other plants. Salicylic acid (SA, an important defensive signal, increases RDR1 gene expression, suggesting that RDR1 contributes to SA-induced virus resistance. In Nicotiana attenuata RDR1 also regulates plant-insect interactions and is induced by another important signal, jasmonic acid (JA. Despite its importance in defense RDR1 regulation has not been investigated in detail. METHODOLOGY/PRINCIPAL FINDINGS: In Arabidopsis, SA-induced RDR1 expression was dependent on 'NON-EXPRESSER OF PATHOGENESIS-RELATED GENES 1', indicating regulation involves the same mechanism controlling many other SA- defense-related genes, including pathogenesis-related 1 (PR1. Isochorismate synthase 1 (ICS1 is required for SA biosynthesis. In defensive signal transduction RDR1 lies downstream of ICS1. However, supplying exogenous SA to ics1-mutant plants did not induce RDR1 or PR1 expression to the same extent as seen in wild type plants. Analysing ICS1 gene expression using transgenic plants expressing ICS1 promoter:reporter gene (β-glucuronidase constructs and by measuring steady-state ICS1 transcript levels showed that SA positively regulates ICS1. In contrast, ICS2, which is expressed at lower levels than ICS1, is unaffected by SA. The wound-response hormone JA affects expression of Arabidopsis RDR1 but jasmonate-induced expression is independent of CORONATINE-INSENSITIVE 1, which conditions expression of many other JA-responsive genes. Transiently increased RDR1 expression following tobacco mosaic virus inoculation was due to wounding and was not a direct effect of infection. RDR1 gene expression was induced by ethylene and by abscisic acid (an important regulator of drought resistance. However, rdr1-mutant plants showed normal responses to drought. CONCLUSIONS/SIGNIFICANCE: RDR1 is regulated by a much broader range of phytohormones than previously thought

  20. Expression patterns, activities and carbohydrate-metabolizing regulation of sucrose phosphate synthase, sucrose synthase and neutral invertase in pineapple fruit during development and ripening.

    Science.gov (United States)

    Zhang, Xiu-Mei; Wang, Wei; Du, Li-Qing; Xie, Jiang-Hui; Yao, Yan-Li; Sun, Guang-Ming

    2012-01-01

    Differences in carbohydrate contents and metabolizing-enzyme activities were monitored in apical, medial, basal and core sections of pineapple (Ananas comosus cv. Comte de paris) during fruit development and ripening. Fructose and glucose of various sections in nearly equal amounts were the predominant sugars in the fruitlets, and had obvious differences until the fruit matured. The large rise of sucrose/hexose was accompanied by dramatic changes in sucrose phosphate synthase (SPS) and sucrose synthase (SuSy) activities. By contrast, neutral invertase (NI) activity may provide a mechanism to increase fruit sink strength by increasing hexose concentrations. Furthermore, two cDNAs of Ac-sps (accession no. GQ996582) and Ac-ni (accession no. GQ996581) were first isolated from pineapple fruits utilizing conserved amino-acid sequences. Homology alignment reveals that the amino acid sequences contain some conserved function domains. Transcription expression analysis of Ac-sps, Ac-susy and Ac-ni also indicated distinct patterns related to sugar accumulation and composition of pineapple fruits. It suggests that differential expressions of multiple gene families are necessary for sugar metabolism in various parts and developmental stages of pineapple fruit. A cycle of sucrose breakdown in the cytosol of sink tissues could be mediated through both Ac-SuSy and Ac-NI, and Ac-NI could be involved in regulating crucial steps by generating sugar signals to the cells in a temporally and spatially restricted fashion.

  1. Differential expression of thromboxane synthase in prostate carcinoma: role in tumor cell motility.

    Science.gov (United States)

    Nie, Daotai; Che, Mingxin; Zacharek, Alex; Qiao, Yan; Li, Li; Li, Xinglin; Lamberti, Mario; Tang, Keqin; Cai, Yilong; Guo, Yande; Grignon, David; Honn, Kenneth V

    2004-02-01

    Arachidonic acid metabolism through cyclooxygenase, lipoxygenase, or P-450 epoxygenase pathways can generate a variety of eicosanoids. Thromboxane synthase (TxS) metabolizes the cyclooxygenase product, prostanglandin H(2), into thromboxane A(2) (TXA(2)), which can cause vessel constriction, platelet activation, and aggregation. Here we demonstrate that human prostate cancer (PCa) cells express enzymatically active TxS and that this enzyme is involved in cell motility. In human PCa cell lines, PC-3, PC-3M, and ML-2 cells expressed higher levels of TxS than normal prostate epithelial cells or other established PCa cell lines such as DU145, LNCaP, or PPC-1. We cloned and sequenced the full-length TxS cDNA from PC-3 cells and found two changes in the amino acid residues. Immunohistochemical analysis of tumor specimens revealed that expression of TxS is weak or absent in normal differentiated luminal, or secretory cells, significantly elevated in less differentiated or advanced prostate tumors, and markedly increased in tumors with perineural invasion. TxS expressed in PC-3 cells was enzymatically active and susceptible to carboxyheptal imidazole, an inhibitor of TxS. The biosynthesis of TXA(2) in PC-3 cells was dependent on COX-2, and to a lesser extent, COX-1. Treatment of PC-3 cells with a COX-1 selective inhibitor, piroxicam, reduced TXA(2) synthesis by approximately 40%, while the COX-2 specific inhibitor NS398 reduced TXA(2) production by approximately 80%. Inhibition of TxS activity or blockade of TXA(2) function reduced PC-3 cell migration on fibronectin, while having minimal effects on cell cycle progression or survival. Finally, increased expression of TxS in DU145 cells increased cell motility. Our data suggest that human PCa cells express TxS and that this enzyme may contribute to PCa progression through modulating cell motility.

  2. Gene knockout of Acc2 has little effect on body weight, fat mass, or food intake.

    Science.gov (United States)

    Olson, David P; Pulinilkunnil, Thomas; Cline, Gary W; Shulman, Gerald I; Lowell, Bradford B

    2010-04-20

    Deletion of acetyl CoA carboxylase-2 (Acc2) reportedly causes leanness in the setting of hyperphagia. To determine the cellular basis for these effects, we generated a mouse model in which Acc2 can be selectively deleted by the action of Cre recombinase. Deletion of Acc2 from skeletal muscle, the predominant site of Acc2 expression, had no effect on body weight, food intake, or body composition. When Acc2 was inactivated in the germline, Acc2 knockout (Acc2KO) mice displayed no differences in body weight, food intake, body composition, or glucose homeostasis as compared to controls on chow or high fat diet. Total malonyl CoA content and fatty acid oxidation rates in skeletal muscle of Acc2KO mice were unchanged, suggesting metabolic compensation in response to the loss of Acc2. The limited impact of Acc2 deletion on energy balance raises the possibility that selective pharmacological inhibition of Acc2 for the treatment of obesity may be ineffective.

  3. Expression of differential nitric oxide synthase isoforms in human gastric mucosa infected with Helicobacter pylori

    Institute of Scientific and Technical Information of China (English)

    屠振兴; 龚燕芳; 丁华; 许国铭; 李兆申; 满晓华

    2003-01-01

    Objective: To study the relationship between nitric oxide synthase (NOS) expression in human gastric mucosa and Helicobacter pylori (H.pylori) infection. Methods: Gastric mucosa samples were obtained from antrum of 33 patients received gastroendoscopy. H.pylori infection was confirmed by Giems staining and bacteria culture under microaerophilic conditions. Expression of iNOS, eNOS and nitrotyrosine were detected by immunohistochemistry. Results: (1) The positive rate of H. pylori infection was 66.7%(22/33). (2) iNOS positive staining in inflammatory cells was detected in 77.3%(17/22) of samples with H.pylori and 27.3%(3/11) without H.pylori infection (P0.05). (5) Moderate and severe infiltrations of inflammatory cells were found in 86.4%(19/22) of gastric biopsies with H. pylori and 9.1%(1/11) of samples without H. pylori infection (P<0.01). Conclusion: H.pylori infection might promote infiltration of mononuclear cells and macrophages in gastric mucosa and induce iNOS expression in these cells. The accumulated nitric oxide in local area may result in gastric mucosa damage.

  4. Cloning and expression analysis of chalcone synthase gene from Coleus forskohlii

    Indian Academy of Sciences (India)

    PRAVEEN AWASTHI; VIDUSHI MAHAJAN; VIJAY LAKSHMI JAMWAL; NITIKA KAPOOR; SHAFAQ RASOOL; YASHBIR S. BEDI; SUMIT G. GANDHI

    2016-09-01

    Flavonoids are an important class of secondary metabolites that play various roles in plants such as mediating defense, floral pigmentation and plant–microbe interaction. Flavonoids are also known to possess antioxidant and antimicrobial activities. Coleus forskohlii (Willd.) Briq. (Lamiaceae) is an important medicinal herb with a diverse metabolic profile, including production of a flavonoid, genkwanin. However, components of the flavonoid pathway have not yet been studied in this plant. Chalcone synthase (CHS) catalyses the first committed step of flavonoid biosynthetic pathway. Full-length cDNA, showing homology with plantCHS gene was isolated from leaves of C. forskohlii and named CfCHS (GenBank accession no. KF643243). Theoretical translation of CfCHS nucleotide sequence shows that it encodes a protein of 391 amino acids with a molecular weight of 42.75 kDa and pI 6.57. Expression analysis of CfCHS in different tissues and elicitor treatments showed that methyl jasmonate (MeJA) strongly induced its expression. Total flavonoids content and antioxidant activity of C.forskohlii also got enhanced in response to MeJA, which correlated with increased CfCHS expression. Induction ofCfCHS by MeJA suggest its involvement in production of flavonoids, providing protection from microbes during herbivory or mechanical wounding. Further, ourin silico predictions and experimental data suggested that CfCHS may be posttranscriptionally regulated by miR34.

  5. Cloning and expression analysis of chalcone synthase gene from Coleus forskohlii.

    Science.gov (United States)

    Awasthi, Praveen; Mahajan, Vidushi; Jamwal, Vijay Lakshmi; Kapoor, Nitika; Rasool, Shafaq; Bedi, Yashbir S; Gandhi, Sumit G

    2016-09-01

    Flavonoids are an important class of secondary metabolites that play various roles in plants such as mediating defense, floral pigmentation and plant-microbe interaction. Flavonoids are also known to possess antioxidant and antimicrobial activities. Coleus forskohlii (Willd.) Briq. (Lamiaceae) is an important medicinal herb with a diverse metabolic profile, including production of a flavonoid, genkwanin. However, components of the flavonoid pathway have not yet been studied in this plant. Chalcone synthase (CHS) catalyses the first committed step of flavonoid biosynthetic pathway. Full-length cDNA, showing homology with plant CHS gene was isolated from leaves of C. forskohlii and named CfCHS (GenBank accession no. KF643243). Theoretical translation of CfCHS nucleotide sequence shows that it encodes a protein of 391 amino acids with a molecular weight of 42.75 kDa and pI 6.57. Expression analysis of CfCHS in different tissues and elicitor treatments showed that methyl jasmonate (MeJA) strongly induced its expression. Total flavonoids content and antioxidant activity of C. forskohlii also got enhanced in response to MeJA, which correlated with increased CfCHS expression. Induction of CfCHS by MeJA suggest its involvement in production of flavonoids, providing protection from microbes during herbivory or mechanical wounding. Further, our in silico predictions and experimental data suggested that CfCHS may be posttranscriptionally regulated by miR34.

  6. Influence of Different Levels of Lipoic Acid Synthase Gene Expression on Diabetic Nephropathy

    Science.gov (United States)

    Xu, Longquan; Hiller, Sylvia; Simington, Stephen; Nickeleit, Volker; Maeda, Nobuyo; James, Leighton R.; Yi, Xianwen

    2016-01-01

    Oxidative stress is implicated in the pathogenesis of diabetic nephropathy (DN) but outcomes of many clinical trials are controversial. To define the role of antioxidants in kidney protection during the development of diabetic nephropathy, we have generated a novel genetic antioxidant mouse model with over- or under-expression of lipoic acid synthase gene (Lias). These models have been mated with Ins2Akita/+ mice, a type I diabetic mouse model. We compare the major pathologic changes and oxidative stress status in two new strains of the mice with controls. Our results show that Ins2Akita/+ mice with under-expressed Lias gene, exhibit higher oxidative stress and more severe DN features (albuminuria, glomerular basement membrane thickening and mesangial matrix expansion). In contrast, Ins2Akita/+ mice with highly-expressed Lias gene display lower oxidative stress and less DN pathologic changes. Our study demonstrates that strengthening endogenous antioxidant capacity could be an effective strategy for prevention and treatment of DN. PMID:27706190

  7. Reduced expression of citrate synthase leads to excessive superoxide formation and cell apoptosis.

    Science.gov (United States)

    Cai, Quanxiang; Zhao, Mengmeng; Liu, Xiang; Wang, Xiaochun; Nie, Yao; Li, Ping; Liu, Tingyan; Ge, Ruli; Han, Fengchan

    2017-02-16

    A/J mice are a mouse model of age-related hearing loss. It has been demonstrated that a mutation in gene of citrate synthase (CS) contributes to the early onset of hearing loss occurring at about one month of age. To understand the effects of a decreased CS activity that results from the mutation in Cs gene on hearing loss in A/J mice, human kidney cell line (293T) was transiently transfected with short hairpin RNA for Cs (shRNA-Cs) to reduce expression of CS. In comparison with those of cells transfected with a scrambled sequence (shRNA-NC), the oxygen consumption rate and adenosine trisphosphate (ATP) production level were decreased in 293T cells transfected with shRNA-Cs. Meanwhile, excessive superoxide production was induced as determined by mitochondrial superoxide formation assay (MitoSOX) and superoxide dismutase 2 (SOD2) detection. Moreover, the expression levels of BIP (binding immunoglobulin protein) and CHOP (CCAAT/enhancer-binding protein-homologous protein), markers of endoplasmic reticulum stress, were upregulated. Furthermore, apoptosis related molecule caspase-3 and the mitochondrial membrane potential were reduced. It is therefore concluded that downregulation of Cs expression in 293T cells leads to low level of ATP production, excessive superoxide formation and cell apoptosis, which implies a possible mechanism for hearing loss in A/J mice.

  8. Expression of D-myo-inositol-3-phosphate synthase in soybean. Implications for phytic acid biosynthesis.

    Science.gov (United States)

    Hegeman, C E; Good, L L; Grabau, E A

    2001-04-01

    Phytic acid, a phosphorylated derivative of myo-inositol, functions as the major storage form of phosphorus in plant seeds. Myo-inositol phosphates, including phytic acid, play diverse roles in plants as signal transduction molecules, osmoprotectants, and cell wall constituents. D-myo-inositol-3-phosphate synthase (MIPS EC 5.5.1.4) catalyzes the first step in de novo synthesis of myo-inositol. A soybean (Glycine max) MIPS cDNA (GmMIPS1) was isolated by reverse transcriptase-PCR using consensus primers designed from highly conserved regions in other plant MIPS sequences. Southern-blot analysis and database searches indicated the presence of at least four MIPS genes in the soybean genome. Northern-blot and immunoblot analyses indicated higher MIPS expression and accumulation in immature seeds than in other soybean tissues. MIPS was expressed early in the cotyledonary stage of seed development. The GmMIPS1 expression pattern suggested that it encodes a MIPS isoform that functions in seeds to generate D-myo-inositol-3-phosphate as a substrate for phytic acid biosynthesis.

  9. Nitric oxide synthase 2 (NOS2) expression in histologically normal margins of oral squamous cell carcinoma.

    Science.gov (United States)

    Morelatto, Rosana; Itoiz, María-Elina; Guiñazú, Natalia; Piccini, Daniel; Gea, Susana; López-de Blanc, Silvia

    2014-05-01

    The activity of Nitric Oxide Synthase 2 (NOS2) was found in oral squamous cell carcinomas (OSCC) but not in normal mucosa. Molecular changes associated to early carcinogenesis have been found in mucosa near carcinomas, which is considered a model to study field cancerization. The aim of the present study is to analyze NOS2 expression at the histologically normal margins of OSCC. Eleven biopsy specimens of OSCC containing histologically normal margins (HNM) were analyzed. Ten biopsies of normal oral mucosa were used as controls. The activity of NOS2 was determined by immunohistochemistry. Salivary nitrate and nitrite as well as tobacco and alcohol consumption were also analyzed. The Chi-squared test was applied. Six out of the eleven HNM from carcinoma samples showed positive NOS2 activity whereas all the control group samples yielded negative (p=0.005). No statistically significant association between enzyme expression and tobacco and/or alcohol consumption and salivary nitrate and nitrite was found. NOS2 expression would be an additional evidence of alterations that may occur in a state of field cancerization before the appearance of potentially malignant morphological changes.

  10. Heterooligomeric phosphoribosyl diphosphate synthase of Saccharomyces cerevisiae: combinatorial expression of the five PRS genes in Escherichia coli.

    Science.gov (United States)

    Hove-Jensen, Bjarne

    2004-09-24

    The yeast Saccharomyces cerevisiae contains five phosphoribosyl diphosphate (PRPP) synthase-homologous genes (PRS1-5), which specify PRPP synthase subunits 1-5. Expression of the five S. cerevisiae PRS genes individually in an Escherichia coli PRPP-less strain (Deltaprs) showed that a single PRS gene product had no PRPP synthase activity. In contrast, expression of five pairwise combinations of PRS genes resulted in the formation of active PRPP synthase. These combinations were PRS1 PRS2, PRS1 PRS3, and PRS1 PRS4, as well as PRS5 PRS2 and PRS5 PRS4. None of the remaining five possible pairwise combinations of PRS genes appeared to produce active enzyme. Extract of an E. coli strain containing a plasmid-borne PRS1 gene and a chromosome-borne PRS3 gene contained detectable PRPP synthase activity, whereas extracts of strains containing PRS1 PRS2, PRS1 PRS4, PRS5 PRS2, or PRS5 PRS4 contained no detectable PRPP synthase activity. In contrast PRPP could be detected in growing cells containing PRS1 PRS2, PRS1 PRS3, PRS5 PRS2, or PRS5 PRS4. These apparent conflicting results indicate that, apart from the PRS1 PRS3-specified enzyme, PRS-specified enzyme is functional in vivo but unstable when released from the cell. Certain combinations of three PRS genes appeared to produce an enzyme that is stable in vitro. Thus, extracts of strains harboring PRS1 PRS2 PRS5, PRS1 PRS4 PRS5, or PRS2 PRS4 PRS5 as well as extracts of strains harboring combinations with PRS1 PRS3 contained readily assayable PRPP synthase activity. The data indicate that although certain pairwise combinations of subunits produce an active enzyme, yeast PRPP synthase requires at least three different subunits to be stable in vitro. The activity of PRPP synthases containing subunits 1 and 3 or subunits 1, 2, and 5 was found to be dependent on Pi, to be temperature-sensitive, and inhibited by ADP.

  11. Co-suppression in transgenic Petunia hybrida expressing chalcone synthase A (chsA)

    Institute of Scientific and Technical Information of China (English)

    LI; Yan; (

    2001-01-01

    [1]Napoli, C., Lemieux, C., Jorgensen, R., Introduction of a chimeric chalone synthase gene into petunia results in reversible cosuppession of homologous genes in trans, The Plant Cell, 1990, 2: 279-289.[2]Van der Krol, A.R., Mur, L.A., Beld, M. M. et al., Flavonnoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression, The Plant Cell, 1990, 2: 291-299.[3]Manika, P.B., Bhadra, U., Birchler, J., Cosuppression in Drosophila: gene silencing of Alcohol dehydrogenase by White-Adh transgene is Polycomb dependent, Cell, 1997, 90: 479-498.[4]de Carvalho Niebel, F., Frendo, P., Van Montagu, M. et al., Post-transcriptional cosuppression of ?-1,3-glucanase transgene expression in homozygous plants, EMBO J., 1992, 11: 2595-2602.[5]Van Blokland, R., Van der Geest, N., Mol, J. N. M. et al., Transgene-mediated suppression of chalcone synthase expression in Petunia hybrida results from an increase in RNA turnover, The Plant Cell, 1994, 6: 861-877.[6]Stam, M., Mol, J. N. M., Kooter, J. M., The silence of genes in transgenic plants, Annals of Bot., 1997, 79: 3-12.[7]Vaucheret, H., Beclin, C., Elmayan, T. et al., Transgene-induced gene silencing in plants, Plant J., 1998, 16(6): 651-659.[8]Shao, L., Li, Y., Yang, M. Z. et al., Transformation of Petunia hybrida with chalcone synthase A (chsA) resulting flower colour alteration and male sterility, Acta Botanica Sinica (in Chinese), 1996, 38(7): 517-524.[9]Koes, R. E., Spelt, C. E., Mol, J. N. M., The chalcone synthase multigene family of Petunia hybrida (V30): differential, light-regulated expression during flower development and UV light induction, Plant Mol. Biol., 1989, 12: 213-225.[10]Drews, G. N., Beals, T. P., Bul, A. Q. et al., Regional and cell-specific expression patterns during petal development, The Plant Cell, 1992, 4: 1383-1404.[11]Martin, C., Gerats, T., Control of pigment biosynthesis genes during petal development, The

  12. The Regulation of Nitric Oxide Synthase Isoform Expression in Mouse and Human Fallopian Tubes: Potential Insights for Ectopic Pregnancy

    Directory of Open Access Journals (Sweden)

    Junting Hu

    2014-12-01

    Full Text Available Nitric oxide (NO is highly unstable and has a half-life of seconds in buffer solutions. It is synthesized by NO-synthase (NOS, which has been found to exist in the following three isoforms: neuro nitric oxide synthase (nNOS, inducible nitric oxide synthase (iNOS, and endothelial nitric oxide synthase (eNOS. NOS activity is localized in the reproductive tracts of many species, although direct evidence for NOS isoforms in the Fallopian tubes of mice is still lacking. In the present study, we investigated the expression and regulation of NOS isoforms in the mouse and human Fallopian tubes during the estrous and menstrual cycles, respectively. We also measured isoform expression in humans with ectopic pregnancy and in mice treated with lipopolysaccharide (LPS. Our results confirmed the presence of different NOS isoforms in the mouse and human Fallopian tubes during different stages of the estrous and menstrual cycles and showed that iNOS expression increased in the Fallopian tubes of women with ectopic pregnancy and in LPS-treated mice. Elevated iNOS activity might influence ovulation, cilia beats, contractility, and embryo transportation in such a manner as to increase the risk of ectopic pregnancy. This study has provided morphological and molecular evidence that NOS isoforms are present and active in the human and mouse Fallopian tubes and suggests that iNOS might play an important role in both the reproductive cycle and infection-induced ectopic pregnancies.

  13. Expression of Endothelial Nitric Oxide Synthase Traffic Inducer in the Placenta of Pregnancy Induced Hypertension

    Institute of Scientific and Technical Information of China (English)

    XIANG Wenpei; CHEN Hanping; GUO Yuzhen; SHEN Hongling

    2006-01-01

    The expression of endothelial nitric oxide synthase traffic inducer (NOSTRIN) in the placenta of the patients with pregnancy induced hypertension (PIH) was detected and its role in the pathogenesis of PIH was studied. The pathological changes in placental vessels were observed by HE staining. NO2-/NO3- , the stable metabolic end products of NO, was measured with nitrate reductase. The eNOS activity in placental tissues was assayed by spectrophotometry. Western blot analysis was applied to detect NOSTRIN expression. The incidence of thickening and fibronoid necrosis of placental vessels was significantly higher in women with PIH than in the normal group (P<0.01). The levels of placental NO2-/NO3- in PIH patients (27.53±7.48 μmol/mg) were significantly lower than in normal group (54.27±9.53 μmol/mg, P<0.01). The activity of eNOS was significantly decreased in PIH group (12. 826±3.61 U/mg) as compared with that in normal group (21. 72±3.83 U/mg, P<0.01). Western blot analysis revealed that both groups expressed 58 kD NOSTRIN, but the protein level was significantly higher in women with PIH than in the normal group (P<0.01). A significant negative correlation existed between the expression of NOSTRIN protein and the activity of eNOS in placental tissue of women with PIH (r=-0. 57, P<0. 01). It was concluded that the level of NOSTRIN expression in placenta of women with PIH was increased, which may play an important role in the pathogenesis of PIH.

  14. Vascular endothelial growth factor and nitric oxide synthase expression in human tooth germ development.

    Science.gov (United States)

    Mastrangelo, F; Sberna, M T; Tettamanti, L; Cantatore, G; Tagliabue, A; Gherlone, E

    2016-01-01

    Vascular Endothelia Growth Factor (VEGF) and Nitric Oxide Synthase (NOS) expression, were evaluated in human tooth germs at two different stages of embryogenesis, to clarify the role of angiogenesis during tooth tissue differentiation and growth. Seventy-two third molar germ specimens were selected during oral surgery. Thirty-six were in the early stage and 36 in the later stage of tooth development. The samples were evaluated with Semi-quantitative Reverse Transcription-Polymerase chain Reaction analyses (RT-PcR), Western blot analysis (WB) and immunohistochemical analysis. Western blot and immunohistochemical analysis showed a VEGF and NOS 1-2-3 positive reaction in all samples analysed. VEGF high positive decrease reaction was observed in stellate reticulum cells, ameloblast and odontoblast clusters in early stage compared to later stage of tooth germ development. Comparable VEGF expression was observed in endothelial cells of early and advanced stage growth. NOS1 and NOS3 expressions showed a high increased value in stellate reticulum cells, and ameloblast and odontoblast clusters in advanced stage compared to early stage of development. The absence or only moderate positive reaction of NOS2 was detected in all the different tissues. Positive NOS2 expression showed in advanced stage of tissue development compared to early stage. The action of VEGF and NOS molecules are important mediators of angiogenesis during dental tissue development. VEGF high positive expression in stellate reticulum cells in the early stage of tooth development compared to the later stage and the other cell types, suggests a critical role of the stellate reticulum during dental embryo-morphogenesis.

  15. Molecular cloning and expression profiling of a chalcone synthase gene from Lamiophlomis rotata

    Indian Academy of Sciences (India)

    Qiao Feng; Geng Gui-Gong; Zeng Yang; Xie Hui-Chun; Jin Lan; Shang Jun; Chen Zhi

    2015-06-01

    Lamiophlomis rotata is a renowned Chinese medicinal plant. Chalcone synthase (CHS) is important in flavonoid and isoflavonoid biosynthesis, catalysing the formation of naringenin chalcone in plants. A full-length cDNA encoding the CHS gene was cloned from L. rotata based on the highly conserved CHS gene sequences of Labiatae plants. A blast search showed its homology (named LrCHS) with other CHS genes of Labiate plants. The full-length genomic DNA of LrCHS was 2026 bp with one intron of 651 bp, two exons of 178 bp and 998 bp, flanked by a 73 bp $5'$-UTR and a 126 bp $3'$-UTR. The cDNA sequence of the LrCHS gene had an 1176 bp open reading frame encoding a 391 amino acid protein of 42,798 Da. The CHS protein predicted from L. rotata showed 79–86% identity with CHS of other plant species. We conducted a phylogenetic analysis of nine families containing 48 plants and L. rotata based on the full amino acid sequences of CHS proteins. Consequently, LrCHS was located in the Labiatae branch. Additionally, we examined LrCHS gene expression patterns in different tissues by quantitative real-time PCR with specific primers. The expression analysis showed preferential expression of LrCHS in flowers and leaves during the flowering stage. Total flavonoid content and CHS gene expression exhibited similar patterns during L. rotata organ development. In agreement with its function as an elicitor-responsive gene, LrCHS expression was coordinated by methyl jasmonate and UV light, and induced between 6 and 18 h. These results provide a molecular basis for additional functional studies of LrCHS in L. rotata.

  16. Expression of nitric oxide synthase in the colon of diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Rong Zhou; Lin Lin; Yingchun Li; Yingbin Ge

    2005-01-01

    Objective: To investigate the different expression of three isozymes of nitric oxide synthase (NOS) in diabetic rat colons and the contribution to the colonic dysfunction. Methods: Sprague-Dawley (SD) rats were used in this experiment and diabetes were induced by streptozotocin (65 mg/kg, i.v. ). Three isozymes of NOS (nNOS, iNOS and eNOS) expression in proximal and distal colon were measured in two weeks after diabetes induction using the methods of immunocytochemistry and semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). Results: Positive immunoreactivity for nNOS was found in intermuscular and submucous plexus neuronal cells, neither eNOS nor iNOS had been found in any layers of colon in the two groups. The expression of nNOS mRNA was significantly increased in diabetic colon than that in control rats as determined by RT-PCR. The eNOS mRNA level of diabetic colon was lower compared to thecontrol rats, while no expression of iNOS mRNA was found in the normal or diabetic rats. Conclusion: This report has demonstrated that nNOS increased and eNOS decreased in rat colon in the early stages of diabetes. NO production by the nNOS might play a key role in colonic dysfunction, as supported by raised nNOS mRNA and enzyme expression in the diabetic colon. Reduced eNOS activity might also contribute to colonic dysfunction in experimental diabetes.

  17. Analyses of the sucrose synthase gene family in cotton: structure, phylogeny and expression patterns

    Directory of Open Access Journals (Sweden)

    Chen Aiqun

    2012-06-01

    Full Text Available Abstract Background In plants, sucrose synthase (Sus is widely considered as a key enzyme involved in sucrose metabolism. Several paralogous genes encoding different isozymes of Sus have been identified and characterized in multiple plant genomes, while limited information of Sus genes is available to date for cotton. Results Here, we report the molecular cloning, structural organization, phylogenetic evolution and expression profiles of seven Sus genes (GaSus1 to 7 identified from diploid fiber cotton (Gossypium arboreum. Comparisons between cDNA and genomic sequences revealed that the cotton GaSus genes were interrupted by multiple introns. Comparative screening of introns in homologous genes demonstrated that the number and position of Sus introns are highly conserved among Sus genes in cotton and other more distantly related plant species. Phylogenetic analysis showed that GaSus1, GaSus2, GaSus3, GaSus4 and GaSus5 could be clustered together into a dicot Sus group, while GaSus6 and GaSus7 were separated evenly into other two groups, with members from both dicot and monocot species. Expression profiles analyses of the seven Sus genes indicated that except GaSus2, of which the transcripts was undetectable in all tissues examined, and GaSus7, which was only expressed in stem and petal, the other five paralogues were differentially expressed in a wide ranges of tissues, and showed development-dependent expression profiles in cotton fiber cells. Conclusions This is a comprehensive study of the Sus gene family in cotton plant. The results presented in this work provide new insights into the evolutionary conservation and sub-functional divergence of the cotton Sus gene family in response to cotton fiber growth and development.

  18. Nasal nitric oxide and nitric oxide synthase expression in primary ciliary dyskinesia.

    Science.gov (United States)

    Pifferi, M; Bush, A; Maggi, F; Michelucci, A; Ricci, V; Conidi, M E; Cangiotti, A M; Bodini, A; Simi, P; Macchia, P; Boner, A L

    2011-03-01

    No study has evaluated the correlation between different expression of nitric oxide synthase (NOS) isoforms in nasal epithelial cells and nasal NO (nNO) level in primary ciliary dyskinesia (PCD). Gene expression of endothelial (NOS3) and inducible NOS (NOS2) and their correlation with nNO level, ciliary function and morphology were studied in patients with PCD or secondary ciliary dyskinesia (SCD). NOS3 gene polymorphisms were studied in blood leukocytes. A total of 212 subjects were studied (48 with PCD, 161 with SCD and three normal subjects). nNO level correlated with mean ciliary beat frequency (p = 0.044; r = 0.174). The lower the nNO level the higher was the percentage of immotile cilia (p<0.001; r = -0.375). A significant positive correlation between NOS2 gene expression and nNO levels was demonstrated in all children (p = 0.001; r = 0.428), and this correlation was confirmed in patients with PCD (p = 0.019; r = 0.484). NOS2 gene expression was lower in PCD than in SCD (p = 0.04). The NOS3 isoform correlated with missing central microtubules (p = 0.048; r = 0.447). nNO levels were higher in PCD subjects with the NOS3 thymidine 894 mutation, and this was associated with a higher ciliary beat frequency (p = 0.045). These results demonstrate a relationship between nNO level, NOS mRNA expression and ciliary beat frequency.

  19. Nicotinamide increases thyroid radiosensitivity by stimulating nitric oxide synthase expression and the generation of organic peroxides.

    Science.gov (United States)

    Agote Robertson, M; Finochietto, P; Gamba, C A; Dagrosa, M A; Viaggi, M E; Franco, M C; Poderoso, J J; Juvenal, G J; Pisarev, M A

    2006-01-01

    Differentiated thyroid cancer and hyperthyroidism are treated with radioiodine. However, when the radioisotope dose exceeds certain limits, the patient must be hospitalized to avoid contact with people that would otherwise be exposed to radiation. It would be desirable to obtain a similar therapeutic effect using lower radioiodine doses. Radiosensitizers can be utilized for this purpose. Nicotinamide (NA) increases thyroid radiosensitivity to 131I in both normal and goitrous glands. NA causes a significant increase in thyroid blood flow, which would increase tissue oxygenation and tissue damage via free radicals. Wistar rats were treated with either nicotinamide (NA), 131I or both. The expression of the three isoforms of nitric oxide synthase (NOS) in the thyroid (Western blot) and the activities of SOD, GPx, catalase and organic peroxides were determined. Treatment with NA or 131I increased the expression of eNOS and the generation of organic peroxides. When administered jointly, they showed a synergistic effect. No changes were observed in the other NOS isoforms or in the activities of catalase, glutathione peroxidase and superoxide dismutase. NA potentiates the effect of 131I by increasing eNOS, which would in turn stimulate NO production, increasing thyroid blood flow and tissue damage via organic peroxides.

  20. Effects of carbon disulfide on the expression and activity of nitric oxide synthase in rat hippocampus

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Background Carbon disulfide (CS2) is a commonly used organic solvent. Many epidemiological investigations and animal experiments have indicated that learning and memory ability can be affected to different degrees after long-term exposure to CS2, but the mechanisms are still unclear. The aim of this study was to explore the possible mechanisms of CS2-related impairment of the learning and memory ability of rats, by investigating the effects of CS2 on nitric oxide synthase (NOS) activity and NOS mRNA expression in rat hippocampus. Methods Rat models of toxicity were generated by inhalation of various doses of CS2. After two months of inhaling intoxication, the activities of constitutive NOS (cNOS) and induced NOS (iNOS) in the hippocampus were measured. The levels of neuronal NOS (nNOS) mRNA and iNOS mRNA were measured by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). Results cNOS activity was significantly decreased compared with controls, while iNOS activity was changed only slightly. CS2 treatment significantly decreased nNOS mRNA levels, iNOS mRNA levels were significantly increased only at higher doses of CS2. Conclusion The effect of CS2 on learning and memory ability in rats is related to the activity of NOS and the expression of nNOS in the hippocampus.

  1. Enhanced Cadmium Accumulation in Transgenic Tobacco Expressing the Phytochelatin Synthase Gene of Cynodon dactylon L.

    Institute of Scientific and Technical Information of China (English)

    Jiangchuan Li; Jiangbo Guo; Wenzhong Xu; Mi Ma

    2006-01-01

    Bermudagrass (Cynodon dactylon L. cv. Goldensun) is highly resistant to and accumulates large amounts of cadmium (Cd). A phytochelatin synthase (PCS) cDNA (CdPCS1) was isolated from this grass by rapid amplification of cDNA ends. The putative CdPCS1 protein shared a high homology with PCS from other plants, with 79% homology at the N-terminal and 47% homology at the C-terminal. However, 16 Cys residues were found at the C-terminal of CdPCS1, and among these residues, three positions were different from other PCS proteins. Semiquantitative reverse transcription-polymerase chain reaction analysis showed that Cd stress induced CdPCS1 expression in both roots and leaves in Bermudagrass. We verified that CdPCS1 plays an important role in Cd tolerance in yeast cells by expressing the gene in ABDE1, a Cd-sensitive mutant. CdPCS1 was then introduced into tobacco plants. The phytochelatin level in some transgenic tobacco lines increased 3.88-fold more than in wild type plants and Cd accumulation in these transgenic plants was enhanced 3.21-fold accordingly. The results suggested that CdPCS1 could be used as a gene element for phytoremediation in the future.

  2. Genome-Wide Identification, Characterization and Expression Analysis of the Chalcone Synthase Family in Maize.

    Science.gov (United States)

    Han, Yahui; Ding, Ting; Su, Bo; Jiang, Haiyang

    2016-01-27

    Members of the chalcone synthase (CHS) family participate in the synthesis of a series of secondary metabolites in plants, fungi and bacteria. The metabolites play important roles in protecting land plants against various environmental stresses during the evolutionary process. Our research was conducted on comprehensive investigation of CHS genes in maize (Zea mays L.), including their phylogenetic relationships, gene structures, chromosomal locations and expression analysis. Fourteen CHS genes (ZmCHS01-14) were identified in the genome of maize, representing one of the largest numbers of CHS family members identified in one organism to date. The gene family was classified into four major classes (classes I-IV) based on their phylogenetic relationships. Most of them contained two exons and one intron. The 14 genes were unevenly located on six chromosomes. Two segmental duplication events were identified, which might contribute to the expansion of the maize CHS gene family to some extent. In addition, quantitative real-time PCR and microarray data analyses suggested that ZmCHS genes exhibited various expression patterns, indicating functional diversification of the ZmCHS genes. Our results will contribute to future studies of the complexity of the CHS gene family in maize and provide valuable information for the systematic analysis of the functions of the CHS gene family.

  3. Expression of the Inducible Nitric Oxide Synthase Isoform in Chorionic Villi in the Early Spontaneous Abortion

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To investigate the relationship between inducible nitric oxide synthase (iNOS) and the early spontaneous abortion. , in situ hybridization and immunohistochemistry were used to detect the expression of iNOS in trophoblasts in the early pregnancy with and without spontaneous abortion (group Ⅰ and group Ⅱ ). By light microscopy and computer color magic image analysis system (CMIAS), light density (D) and the positive cell number per statistic square (N/S) in situ hybridization were used to analyze the positive cell index, while total positive cells (N) and the positive unit (Pu) were used in immunohistochemistry. By in situ hybridization, D and N/S in trophoblasts were 0. 35±0. 028, 0. 07±0. 011 respectively in group Ⅰ and 0. 18±0. 016,0. 015±0. 003 in group Ⅱ . In terms of immunohistochemical staining, N and Pu were 0. 058±±0. 007, 11. 94±2. 01 in group Ⅰ and 0. 013±0. 009, 1. 08±0. 35 in group Ⅱ in trophoblasts. Significant differences existed between two groups. It is concluded that the higher nitric oxide produced by the higher expression of iNOS in trophoblasts might play an important role in the early spontaneous abortion.

  4. Ethylene biosynthetic genes are differentially expressed during carnation (Dianthus caryophyllus L.) flower senescence.

    Science.gov (United States)

    ten Have, A; Woltering, E J

    1997-05-01

    Ethylene production and expression patterns of an 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (CARAO1) and of two ACC synthase (EC 4.4.1.14) genes (CARACC3 and CARAS1) were studied in floral organs of cut carnation flowers (Dianthus caryophyllus L.) cv. White Sim. During the vase life and after treatment of fresh flowers with ethylene, production of ethylene and expression of ethylene biosynthetic genes first started in the ovary followed by the styles and the petals. ACC oxidase was expressed in all the floral organs whereas, during the vase life, tissue-specific expression of the two ACC synthase genes was observed. After treatment with a high ethylene concentration, tissue specificity of the two ACC synthase genes was lost and only a temporal difference in expression remained. In styles, poor correlation between ethylene production and ACC synthase (CARAS1) gene expression was observed suggesting that either activity is regulated at the translational level or that the CARAS1 gene product requires an additional factor for activity. Isolated petals showed no increase in ethylene production and expression of ethylene biosynthetic genes when excised from the flower before the increase in petal ethylene production (before day 7); showed rapid cessation of ethylene production and gene expression when excised during the early phase of petal ethylene production (day 7) and showed a pattern of ethylene production and gene expression similar to the pattern observed in the attached petals when isolated at day 8. The interorgan regulation of gene expression and ethylene as a signal molecule in flower senescence are discussed.

  5. Transcriptome analysis of potato leaves expressing the trehalose-6-phosphate synthase 1 gene of yeast.

    Science.gov (United States)

    Kondrák, Mihály; Marincs, Ferenc; Kalapos, Balázs; Juhász, Zsófia; Bánfalvi, Zsófia

    2011-01-01

    Transgenic lines of the potato cultivar White Lady expressing the trehalose-6-phosphate synthase (TPS1) gene of yeast exhibit improved drought tolerance, but grow slower and have a lower carbon fixation rate and stomatal density than the wild-type. To understand the molecular basis of this phenomenon, we have compared the transcriptomes of wild-type and TPS1-transgenic plants using the POCI microarray containing 42,034 potato unigene probes. We show that 74 and 25 genes were up-, and down-regulated, respectively, in the mature source leaves of TPS1-transgenic plants when compared with the wild-type. The differentially regulated genes were assigned into 16 functional groups. All of the seven genes, which were assigned into carbon fixation and metabolism group, were up-regulated, while about 42% of the assigned genes are involved in transcriptional and post-transcriptional regulation. Expression of genes encoding a 14-3-3 regulatory protein, and four transcription factors were down-regulated in the TPS1-transgenic leaves. To verify the microarray results, we used RNA gel blot analysis to examine the expression of eight genes and found that the RNA gel blot and microarray data correlated in each case. Using the putative Arabidopsis orthologs of the assigned potato sequences we have identified putative transcription binding sites in the promoter region of the differentially regulated genes, and putative protein-protein interactions involving some of the up- and down-regulated genes. We have also demonstrated that starch content is lower, while malate, inositol and maltose contents are higher in the TPS1-transgenic than in the wild-type leaves. Our results suggest that a complex regulatory network, involving transcription factors and other regulatory proteins, underpins the phenotypic alterations we have observed previously in potato when expressing the TPS1 gene of yeast.

  6. Transcriptome analysis of potato leaves expressing the trehalose-6-phosphate synthase 1 gene of yeast.

    Directory of Open Access Journals (Sweden)

    Mihály Kondrák

    Full Text Available Transgenic lines of the potato cultivar White Lady expressing the trehalose-6-phosphate synthase (TPS1 gene of yeast exhibit improved drought tolerance, but grow slower and have a lower carbon fixation rate and stomatal density than the wild-type. To understand the molecular basis of this phenomenon, we have compared the transcriptomes of wild-type and TPS1-transgenic plants using the POCI microarray containing 42,034 potato unigene probes. We show that 74 and 25 genes were up-, and down-regulated, respectively, in the mature source leaves of TPS1-transgenic plants when compared with the wild-type. The differentially regulated genes were assigned into 16 functional groups. All of the seven genes, which were assigned into carbon fixation and metabolism group, were up-regulated, while about 42% of the assigned genes are involved in transcriptional and post-transcriptional regulation. Expression of genes encoding a 14-3-3 regulatory protein, and four transcription factors were down-regulated in the TPS1-transgenic leaves. To verify the microarray results, we used RNA gel blot analysis to examine the expression of eight genes and found that the RNA gel blot and microarray data correlated in each case. Using the putative Arabidopsis orthologs of the assigned potato sequences we have identified putative transcription binding sites in the promoter region of the differentially regulated genes, and putative protein-protein interactions involving some of the up- and down-regulated genes. We have also demonstrated that starch content is lower, while malate, inositol and maltose contents are higher in the TPS1-transgenic than in the wild-type leaves. Our results suggest that a complex regulatory network, involving transcription factors and other regulatory proteins, underpins the phenotypic alterations we have observed previously in potato when expressing the TPS1 gene of yeast.

  7. Regulation of expression of GLT1, the gene encoding glutamate synthase in Saccharomyces cerevisiae.

    Science.gov (United States)

    Valenzuela, L; Ballario, P; Aranda, C; Filetici, P; González, A

    1998-07-01

    Saccharomyces cerevisiae glutamate synthase (GOGAT) is an oligomeric enzyme composed of three 199-kDa identical subunits encoded by GLT1. In this work, we analyzed GLT1 transcriptional regulation. GLT1-lacZ fusions were prepared and GLT1 expression was determined in a GDH1 wild-type strain and in a gdh1 mutant derivative grown in the presence of various nitrogen sources. Null mutants impaired in GCN4, GLN3, GAT1/NIL1, or UGA43/DAL80 were transformed with a GLT1-lacZ fusion to determine whether the above-mentioned transcriptional factors had a role in GLT1 expression. A collection of increasingly larger 5' deletion derivatives of the GLT1 promoter was constructed to identify DNA sequences that could be involved in GLT1 transcriptional regulation. The effect of the lack of GCN4, GLN3, or GAT1/NIL1 was also tested in the pertinent 5' deletion derivatives. Our results indicate that (i) GLT1 expression is negatively modulated by glutamate-mediated repression and positively regulated by Gln3p- and Gcn4p-dependent transcriptional activation; (ii) two cis-acting elements, a CGGN15CCG palindrome and an imperfect poly(dA-dT), are present and could play a role in GLT1 transcriptional activation; and (iii) GLT1 expression is moderately regulated by GCN4 under amino acid deprivation. Our results suggest that in a wild-type strain grown on ammonium, GOGAT constitutes an ancillary pathway for glutamate biosynthesis.

  8. Citrus nobiletin suppresses inducible nitric oxide synthase gene expression in interleukin-1β-treated hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshigai, Emi [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Machida, Toru [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Okuyama, Tetsuya [Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Mori, Masatoshi; Murase, Hiromitsu; Yamanishi, Ryota [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan); Okumura, Tadayoshi [Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga (Japan); Department of Surgery, Kansai Medical University, Hirakata, Osaka (Japan); Ikeya, Yukinobu [Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga (Japan); Nishino, Hoyoku [Ritsumeikan Global Innovation Research Organization (R-GIRO), Kusatsu, Shiga (Japan); Department of Biochemistry, Kyoto Prefectural University of Medicine, Kyoto (Japan); Nishizawa, Mikio, E-mail: nishizaw@sk.ritsumei.ac.jp [Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga (Japan)

    2013-09-13

    Highlights: •Nobiletin is a polymethoxylated flavone that is abundant in citrus peels. •Nobiletin is a major constituent of the Citrus unshiu peel extract. •Nobiletin suppresses induction of NO and reduces iNOS expression in hepatocytes. •Nobiletin reduces the iNOS promoter activity and the DNA-binding activity of NF-κB. -- Abstract: Background: Nobiletin is a polymethoxylated flavone that is abundant in the peels of citrus fruits, such as Citrus unshiu (Satsuma mandarin) and Citrus sinensis. The dried peels of C. unshiu (chinpi) have been included in several formulae of Japanese Kampo medicines. Nobiletin may suppress the induction of inducible nitric oxide synthase (iNOS), which synthesizes the inflammatory mediator nitric oxide (NO) in hepatocytes. Methods: A C. unshiu peel (CUP) extract was prepared. Primary cultured rat hepatocytes were treated with the CUP extract or nobiletin in the presence of interleukin 1β (IL-1β), which induces iNOS expression. NO production and iNOS gene expression were analyzed. Results: High-performance liquid chromatography analyses revealed that the nobiletin content in the CUP extract was 0.14%. Nobiletin dose-dependently reduced the NO levels and decreased iNOS expression at the protein, mRNA and antisense transcript levels. Flavone, which does not contain any methoxy groups, also suppressed iNOS induction. Nobiletin reduced the transcriptional activity of iNOS promoter-luciferase constructs and the DNA-binding activity of nuclear factor κB (NF-κB) in the nuclei. Conclusions: The suppression of iNOS induction by nobiletin suggests that nobiletin may be responsible for the anti-inflammatory effects of citrus peels and have a therapeutic potential for liver diseases.

  9. Expression of hyaluronan synthases and corresponding hyaluronan receptors is differentially regulated during oocyte maturation in cattle.

    Science.gov (United States)

    Schoenfelder, Martin; Einspanier, Ralf

    2003-07-01

    In response to the gonadotropin surge, the compact cumulus-oocyte complex (COC) undergoes expansion by synthesis of the mucopolysaccharide hyaluronan (HA) accompanying oocyte maturation. The objective of the present study was to quantify mRNA transcripts of the HA synthase (HAS) 1, HAS2, and HAS3 and the HA-receptors CD44 and RHAMM (receptor for HA-mediated motility). Additionally, we determined the histological localization of HA and its receptor, CD44, in maturing bovine COCs and cultured granulosa cells (GCs). Full-length transcript of bovine HAS2 and a part of the bovine RHAMM sequence has been made available. Real-time reverse transcriptase-polymerase chain reaction was used for individual mRNA expressions of bovine COCs in comparison to follicular GC gonadotropin treatment. Localization of CD44 and HA were done by immunohistochemistry and biotinylated HA-binding protein, respectively. Gonadotropins caused a rapid, 120-fold increase of HAS2 mRNA, whereas a delayed, 2-fold up-regulation of HAS3 mRNA was observed. The HAS1 transcripts were barely detected. Expression of CD44 mRNA greatly increased during in vitro maturation of COCs, indicating an important role when compared to an unchanged, steady-state RHAMM expression. As a consequence, HA was locally enriched after COC expansion, but only limited change was observed in the GCs. In cultured GCs, HAS2 expression was stimulated through FSH application, followed by the effective treatments of FSH+LH and LH. Treatment with LH induced the highest increase of the CD44 receptor, followed by FSH and FSH+LH treatments. These results suggest that HAS2 is mainly responsible for rapid HA synthesis in bovine COCs and GCs. In bovine COCs, the transcriptional up-regulation of both HAS2 and the receptor CD44 appear to be important prerequisites for initiating HA-mediated effects during final oocyte development and sperm-egg interaction.

  10. Temporal expression of hepatic inducible nitric oxide synthase in liver cirrhosis

    Institute of Scientific and Technical Information of China (English)

    Chang-Li Wei; Wei-Min Hon; Kang-Hoe Lee; Hoon-Eng Khoo

    2005-01-01

    AIM: Nitric oxide (NO) has been implicated in the pathogenesis of liver cirrhosis. We have found inducible nitric oxide synthase (iNOS) can be induced in hepatocytes of cirrhotic liver. This study further investigated the temporal expression and activity of hepatic iNOS in cirrhosis development.METHODS: Cirrhosis was induced in rats by chronic bile duct ligation (BDL). At different time points after the operation,samples were collected to examine NO concentration, liver function, and morphological changes. Hepatocytes were isolated for determination of iNOS mRNA, protein and enzymatic activity.RESULTS: Histological examination showed early cirrhosis 1-2 wk after BDL, with advanced cirrhosis at 3-4 wk.Bilirubin increased dramatically 3 d after BDL, but decreased by 47% on d 14. Three weeks after BDL, it elevated again. Systemic NO concentration did not increase significantly until 4 wk after BDL, when ascites developed.Hepatocyte iNOS mRNA expression was identified 3 d after BDL, and enhanced with time to 3 wk, but reduced thereafter. iNOS protein showed a similar pattern to mRNA expression. iNOS activity decreased from d 3 to d 7, but increased again thereafter till d 21.CONCLUSION: Hepatic iNOS can be induced in the early stage, which increases with time as cirrhosis develops. Its enzymatic activity is significantly correlated with protein expression and histological alterations of the liver, but not with systemic NO levels, nor with absolute values of liver function markers.

  11. Characterization and Expression Analysis of Phytoene Synthase from Bread Wheat (Triticum aestivum L.)

    Science.gov (United States)

    Flowerika; Alok, Anshu; Kumar, Jitesh; Thakur, Neha; Pandey, Ashutosh; Pandey, Ajay Kumar; Upadhyay, Santosh Kumar; Tiwari, Siddharth

    2016-01-01

    Phytoene synthase (PSY) regulates the first committed step of the carotenoid biosynthetic pathway in plants. The present work reports identification and characterization of the three PSY genes (TaPSY1, TaPSY2 and TaPSY3) in wheat (Triticum aestivum L.). The TaPSY1, TaPSY2, and TaPSY3 genes consisted of three homoeologs on the long arm of group 7 chromosome (7L), short arm of group 5 chromosome (5S), and long arm of group 5 chromosome (5L), respectively in each subgenomes (A, B, and D) with a similarity range from 89% to 97%. The protein sequence analysis demonstrated that TaPSY1 and TaPSY3 retain most of conserved motifs for enzyme activity. Phylogenetic analysis of all TaPSY revealed an evolutionary relationship among PSY proteins of various monocot species. TaPSY derived from A and D subgenomes shared proximity to the PSY of Triticum urartu and Aegilops tauschii, respectively. The differential expression of TaPSY1, TaPSY2, and TaPSY3 in the various tissues, seed development stages, and stress treatments suggested their role in plant development, and stress condition. TaPSY3 showed higher expression in all tissues, followed by TaPSY1. The presence of multiple stress responsive cis-regulatory elements in promoter region of TaPSY3 correlated with the higher expression during drought and heat stresses has suggested their role in these conditions. The expression pattern of TaPSY3 was correlated with the accumulation of β-carotene in the seed developmental stages. Bacterial complementation assay has validated the functional activity of each TaPSY protein. Hence, TaPSY can be explored in developing genetically improved wheat crop. PMID:27695116

  12. Expression pattern and biochemical properties of zebrafish N-acetylglutamate synthase.

    Directory of Open Access Journals (Sweden)

    Ljubica Caldovic

    Full Text Available The urea cycle converts ammonia, a waste product of protein catabolism, into urea. Because fish dispose ammonia directly into water, the role of the urea cycle in fish remains unknown. Six enzymes, N-acetylglutamate synthase (NAGS, carbamylphosphate synthetase III, ornithine transcarbamylase, argininosuccinate synthase, argininosuccinate lyase and arginase 1, and two membrane transporters, ornithine transporter and aralar, comprise the urea cycle. The genes for all six enzymes and both transporters are present in the zebrafish genome. NAGS (EC 2.3.1.1 catalyzes the formation of N-acetylglutamate from glutamate and acetyl coenzyme A and in zebrafish is partially inhibited by L-arginine. NAGS and other urea cycle genes are highly expressed during the first four days of zebrafish development. Sequence alignment of NAGS proteins from six fish species revealed three regions of sequence conservation: the mitochondrial targeting signal (MTS at the N-terminus, followed by the variable and conserved segments. Removal of the MTS yields mature zebrafish NAGS (zfNAGS-M while removal of the variable segment from zfNAGS-M results in conserved NAGS (zfNAGS-C. Both zfNAGS-M and zfNAGS-C are tetramers in the absence of L-arginine; addition of L-arginine decreased partition coefficients of both proteins. The zfNAGS-C unfolds over a broader temperature range and has higher specific activity than zfNAGS-M. In the presence of L-arginine the apparent Vmax of zfNAGS-M and zfNAGS-C decreased, their Km(app for acetyl coenzyme A increased while the Km(app for glutamate remained unchanged. The expression pattern of NAGS and other urea cycle genes in developing zebrafish suggests that they may have a role in citrulline and/or arginine biosynthesis during the first day of development and in ammonia detoxification thereafter. Biophysical and biochemical properties of zebrafish NAGS suggest that the variable segment may stabilize a tetrameric state of zfNAGS-M and that under

  13. Molecular cloning, functional expression and characterization of (E)-beta farnesene synthase from Citrus junos.

    Science.gov (United States)

    Maruyama, T; Ito, M; Honda, G

    2001-10-01

    We cloned the gene of the acyclic sesquiterpene synthase, (E)-beta-farnesene synthase (CJFS) from Yuzu (Citrus junos, Rutaceae). The function of CJFS was elucidated by the preparation of recombinant protein and subsequent enzyme assay. CJFS consisted of 1867 nucleotides including 1680 bp of coding sequence encoding a protein of 560 amino acids with a molecular weight of 62 kDa. The deduced amino acid sequence possessed characteristic amino acid residues, such as the DDxxD motif, which are highly conserved among terpene synthases. This is the first report of the cloning of a terpene synthase from a Rutaceous plant. A possible reaction mechanism for terpene biosynthesis is also discussed on the basis of sequence comparison of CJFS with known sesquiterpene synthase genes.

  14. The Relationship Between Endothelial Nitric Oxide Synthase Gene (NOS3) Polymorphisms, NOS3 Expression, and Varicocele.

    Science.gov (United States)

    Kahraman, Cigdem Yuce; Tasdemir, Sener; Sahin, Ibrahim; Marzioglu Ozdemir, Ebru; Yaralı, Oguzhan; Ziypak, Tevfik; Adanur, Senol; Kahraman, Mustafa; Tatar, Abdulgani

    2016-04-01

    Varicocele is an abnormal enlargement of the pampiniform venous plexus in the scrotum. Varicocele is the most common cause of secondary male infertility. Nitric oxide (NO), which has a role on varicocele pathophysiology, is synthesized by endothelial nitric oxide synthase gene (NOS3). In our study, we aimed to explain the relationship between varicocele, three common NOS3 polymorphisms (T-786C, G894T, 4b/a), and NOS3 mRNA expression levels. We investigated NOS3 T-786C, G894T, and 4b/a polymorphisms in 102 patients with varicocele and 100 healthy controls. Twenty-four patients and 17 controls were chosen for expression studies based on polymorphism subgroupings. Subgroup 1 includes patients who have no minor allele polymorphisms, and subgroups 2, 3, and 4 have T-786C, G894T, and 4b/a polymorphisms, respectively. The 4b/a polymorphism demonstrated significantly elevated levels in both allele and genotype analysis in the control group compared to the patient group. The G894T polymorphism was statistically elevated for genotypic frequencies in the patient group compared to the control group, but this finding did not extend to allelic frequencies. There were no statistically significant differences in either the allelic or genotypic frequencies between patients and control groups for the T-786C polymorphism. When patient and control expression levels were compared without considering the subgroups, the NOS3 expression level was found to be statistically higher in the patient group. There were no statistically significant differences in the patient and control group expression levels when stratified by subgroup, nor was there any effect of the polymorphisms under study on expression levels. The 4b/a polymorphism may have a protective effect for varicocelem and G894T polymorphism may contribute to varicocele occurrence by lowering the level of NO. The higher NOS3 expression levels in the patient group may be a kind of dilator compensatory mechanism to protect vascular

  15. Fatty Acid Synthase Polymorphisms, Tumor Expression, Body Mass Index, Prostate Cancer Risk, and Survival

    Science.gov (United States)

    Nguyen, Paul L.; Ma, Jing; Chavarro, Jorge E.; Freedman, Matthew L.; Lis, Rosina; Fedele, Giuseppe; Fiore, Christopher; Qiu, Weiliang; Fiorentino, Michelangelo; Finn, Stephen; Penney, Kathryn L.; Eisenstein, Anna; Schumacher, Fredrick R.; Mucci, Lorelei A.; Stampfer, Meir J.; Giovannucci, Edward; Loda, Massimo

    2010-01-01

    Purpose Fatty acid synthase (FASN) regulates de novo lipogenesis, body weight, and tumor growth. We examined whether common germline single nucleotide polymorphisms (SNPs) in the FASN gene affect prostate cancer (PCa) risk or PCa-specific mortality and whether these effects vary by body mass index (BMI). Methods In a prospective nested case-control study of 1,331 white patients with PCa and 1,267 age-matched controls, we examined associations of five common SNPs within FASN (and 5 kb upstream/downstream, R2 > 0.8) with PCa incidence and, among patients, PCa-specific death and tested for an interaction with BMI. Survival analyses were repeated for tumor FASN expression (n = 909). Results Four of the five SNPs were associated with lethal PCa. SNP rs1127678 was significantly related to higher BMI and interacted with BMI for both PCa risk (Pinteraction = .004) and PCa mortality (Pinteraction = .056). Among overweight men (BMI ≥ 25 kg/m2), but not leaner men, the homozygous variant allele carried a relative risk of advanced PCa of 2.49 (95% CI, 1.00 to 6.23) compared with lean men with the wild type. Overweight patients carrying the variant allele had a 2.04 (95% CI, 1.31 to 3.17) times higher risk of PCa mortality. Similarly, overweight patients with elevated tumor FASN expression had a 2.73 (95% CI, 1.05 to 7.08) times higher risk of lethal PCa (Pinteraction = .02). Conclusion FASN germline polymorphisms were significantly associated with risk of lethal PCa. Significant interactions of BMI with FASN polymorphisms and FASN tumor expression suggest FASN as a potential link between obesity and poor PCa outcome and raise the possibility that FASN inhibition could reduce PCa-specific mortality, particularly in overweight men. PMID:20679621

  16. Expression of neuronal nitric oxide synthase in the hippocampal formation in affective disorders

    Directory of Open Access Journals (Sweden)

    R.M.W. Oliveira

    2008-04-01

    Full Text Available Hippocampal output is increased in affective disorders and is mediated by increased glutamatergic input via N-methyl-D-aspartate (NMDA receptor and moderated by antidepressant treatment. Activation of NMDA receptors by glutamate evokes the release of nitric oxide (NO by the activation of neuronal nitric oxide synthase (nNOS. The human hippocampus contains a high density of NMDA receptors and nNOS-expressing neurons suggesting the existence of an NMDA-NO transduction pathway which can be involved in the pathogenesis of affective disorders. We tested the hypothesis that nNOS expression is increased in the human hippocampus from affectively ill patients. Immunocytochemistry was used to demonstrate nNOS-expressing neurons in sections obtained from the Stanley Consortium postmortem brain collection from patients with major depression (MD, N = 15, bipolar disorder (BD, N = 15, and schizophrenia (N = 15 and from controls (N = 15. nNOS-immunoreactive (nNOS-IR and Nissl-stained neurons were counted in entorhinal cortex, hippocampal CA1, CA2, CA3, and CA4 subfields, and subiculum. The numbers of Nissl-stained neurons were very similar in different diagnostic groups and correlated significantly with the number of nNOS-IR neurons. Both the MD and the BD groups had greater number of nNOS-IR neurons/400 µm² in CA1 (mean ± SEM: MD = 9.2 ± 0.6 and BD = 8.4 ± 0.6 and subiculum (BD = 6.7 ± 0.4 when compared to control group (6.6 ± 0.5 and this was significantly more marked in samples from the right hemisphere. These changes were specific to affective disorders since no changes were seen in the schizophrenic group (6.7 ± 0.8. The results support the current view of the NMDA-NO pathway as a target for the pathophysiology of affective disorders and antidepressant drug development.

  17. Evaluating Performance Portability of OpenACC

    Energy Technology Data Exchange (ETDEWEB)

    Sabne, Amit J [ORNL; Sakdhnagool, Putt [ORNL; Lee, Seyong [ORNL; Vetter, Jeffrey S [ORNL

    2015-01-01

    Accelerator-based heterogeneous computing is gaining momentum in High Performance Computing arena. However, the increased complexity of the accelerator architectures demands more generic, high-level programming models. OpenACC is one such attempt to tackle the problem. While the abstraction endowed by OpenACC offers productivity, it raises questions on its portability. This paper evaluates the performance portability obtained by OpenACC on twelve OpenACC programs on NVIDIA CUDA, AMD GCN, and Intel MIC architectures. We study the effects of various compiler optimizations and OpenACC program settings on these architectures to provide insights into the achieved performance portability.

  18. Epistasis in tomato color mutations involves regulation of phytoene synthase 1 expression by cis-carotenoids.

    Science.gov (United States)

    Kachanovsky, David E; Filler, Shdema; Isaacson, Tal; Hirschberg, Joseph

    2012-11-13

    Tomato (Solanum lycopersicum) fruit accumulate the red carotenoid pigment lycopene. The recessive mutation yellow-flesh (locus r) in tomato eliminates fruit carotenoids by disrupting the activity of the fruit-specific phytoene synthase (PSY1), the first committed step in the carotenoid biosynthesis pathway. Fruits of the recessive mutation tangerine (t) appear orange due to accumulation of 7,9,7',9'-tetra-cis-lycopene (prolycopene) as a result of a mutation in the carotenoid cis-trans isomerase. It was established 60 y ago that tangerine is epistatic to yellow-flesh. This uncharacteristic epistasis interaction defies a paradigm in biochemical genetics arguing that mutations that disrupt enzymes acting early in a biosynthetic pathway are epistatic to other mutations that block downstream steps in the same pathway. To explain this conundrum, we have investigated the interaction between tangerine and yellow-flesh at the molecular level. Results presented here indicate that allele r(2997) of yellow-flesh eliminates transcription of PSY1 in fruits. In a genetic background of tangerine, transcription of PSY1 is partially restored to a level sufficient for producing phytoene and downstream carotenoids. Our results revealed the molecular mechanism underlying the epistasis of t over r and suggest the involvement of cis-carotenoid metabolites in a feedback regulation of PSY1 gene expression.

  19. Molecular cloning and expression of a novel trehalose synthase gene from Enterobacter hormaechei

    Directory of Open Access Journals (Sweden)

    Yue Ming

    2009-06-01

    Full Text Available Abstract Background Trehalose synthase (TreS which converts maltose to trehalose is considered to be a potential biocatalyst for trehalose production. This enzymatic process has the advantage of simple reaction and employs an inexpensive substrate. Therefore, new TreS producing bacteria with suitable enzyme properties are expected to be isolated from extreme environment. Results Six TreS producing strains were isolated from a specimen obtained from soil of the Tibetan Plateau using degenerate PCR. A novel treS gene from Enterobacter hormaechei was amplified using thermal asymmetric interlaced PCR. The gene contained a 1626 bp open reading frame encoding 541 amino acids. The gene was expressed in Escherichia coli, and the recombinant TreS was purified and characterized. The purified TreS had a molecular mass of 65 kDa and an activity of 18.5 U/mg. The optimum temperature and pH for the converting reaction were 37°C and 6, respectively. Hg2+, Zn2+, Cu2+and SDS inhibited the enzyme activity at different levels whereas Mn2+ showed an enhancing effect by 10%. Conclusion In this study, several TreS producing strains were screened from a source of soil bacteria. The characterization of the recombinant TreS of Enterobacter hormaechei suggested its potential application. Consequently, a strategy for isolation of TreS producing strains and cloning of novel treS genes from natural sources was demonstrated.

  20. Changes in the expression of NO synthase isoforms after ozone: the effects of allergen exposure

    Directory of Open Access Journals (Sweden)

    Lee June-Hyuk

    2004-06-01

    Full Text Available Abstract Background The functional role of nitric oxide (NO and various nitric oxide synthase (NOS isoforms in asthma remains unclear. Objective This study investigated the effects of ozone and ovalbumin (OVA exposure on NOS isoforms. Methods The expression of inducible NOS (iNOS, neuronal NOS (nNOS, and endothelial NOS (eNOS in lung tissue was measured. Enhanced pause (Penh was measured as a marker of airway obstruction. Nitrate and nitrite in bronchoalveolar lavage (BAL fluid were measured using a modified Griess reaction. Results The nitrate concentration in BAL fluid from the OVA-sensitized/ozone-exposed/OVA-challenged group was greater than that of the OVA-sensitized/saline-challenged group. Methacholine-induced Penh was increased in the OVA-sensitized/ozone-exposed/OVA-challenged group, with a shift in the dose-response curve to the left, compared with the OVA-sensitized/saline-challenged group. The levels of nNOS and eNOS were increased significantly in the OVA-sensitized/ozone-exposed/OVA-challenged group and the iNOS levels were reduced compared with the OVA-sensitized/saline-challenged group. Conclusion In mice, ozone is associated with increases in lung eNOS and nNOS, and decreases in iNOS. None of these enzymes are further affected by allergens, suggesting that the NOS isoforms play different roles in airway inflammation after ozone exposure.

  1. Differential expression of fatty acid synthase genes, Acl, Fat and Kas, in Capsicum fruit.

    Science.gov (United States)

    Aluru, Maneesha R; Mazourek, Michael; Landry, Laurie G; Curry, Jeanne; Jahn, Molly; O'Connell, Mary A

    2003-07-01

    The biosynthesis of capsaicinoids in the placenta of chilli fruit is modelled to require components of the fatty acid synthase (FAS) complex. Three candidate genes for subunits in this complex, Kas, Acl, and Fat, isolated based on differential expression, were characterized. Transcription of these three genes was placental-specific and RNA abundance was positively correlated with degree of pungency. Kas and Acl were mapped to linkage group 1 and Fat to linkage group 6. None of the genes is linked to the pungency locus, C, on linkage group 2. KAS accumulation was positively correlated with pungency. Western blots of placental extracts and histological sections both demonstrated that the accumulation of this enzyme was correlated with fruit pungency and KAS was immunolocalized to the expected cell layer, the placental epidermis. Enzyme activity of the recombinant form of the placental-specific KAS was confirmed using crude cell extracts. These FAS components are fruit-specific members of their respective gene families. These genes are predicted to be associated with Capsicum fruit traits, for example, capsaicinoid biosynthesis or fatty acid biosynthesis necessary for placental development.

  2. Expression of nitric oxide synthase in the developing eye of Zebrafish Danio rerio

    Institute of Scientific and Technical Information of China (English)

    WANG Yongjun; ZHANG Shicui; M S. Sawant

    2004-01-01

    Expression of nitric oxide synthase (NOS) in the developing eye of zebrafish was studied by NADPH-diaphorase staining technique. NOS activity was first observed in the optic primordium and the lens placode at 5-somite stage, and remained basically unchanged up to the prim-5 stage. Upon hatching, NOS activity was nearly equally detected in the gangalion cell layer and the photoreceptor layer in the developing retina. However, it began declining in the inner plexiform layer and the inner nuclear layer at this stage. NOS activity disappeared in the lens although the anterior lens epithelium was strongly stained. Two days after hatching, NOS activity was still strong in the photoreceptor layer, but decreased markedly in the gangalion cell layer, the inner plexiform layer and the inner nuclear layer with the retinal patterning. These suggested that nitric oxide (NO), the product of NOS, is not only involved in the modulation of patterning and differentiation of the retinal cells but also in the regulation of proliferation, and differentiation of the lens fibrocytes.

  3. cDNA cloning, chromosome mapping and expression characterization of human geranylgeranyl pyrophosphate synthase

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Geranylgeranyl pyrophosphate (GGPP) mainly participates in post-translational modification for various proteins including Rho/Rac, Rap and Rab families, as well as in regulation for cell apoptosis. Geranylgeranyl pyrophosphate synthase (GGPPS), which catalyzes the condensation reaction between farnesyl diphosphate and isopentenyl diphosphate, is the key enzyme for synthesizing GGPP. We report the isolation of a gene transcript showing high homology with Drosophila GGPPS cDNA. The transcript is 1 466 bp in length and contains an intact open reading frame (ORF) ranging from nt 239 to 1 138. This ORF encodes a deduced protein of 300 residues with calculated molecular weight of 35 ku. The deduced protein shows 57.5% identity and 75% similarity with Drosophila GGPPS, and contains five characteristic domains of prenyltransferases. Northern hybridization revealed that human GGPPS was expressed highest in heart, and moderately in spleen, testis, brain, placenta, lung, liver, skeletal muscle, kidney and pancreas. No obvious bands were detected in other examined tissues. The GGPPS gene was located on human chromosome 1q43 by Radiation Hybrid mapping method. It was proved that there was a putative predisposing gene for prostate cancer in this region, and that analogs of GGPP can inhibit the geranylgeranylation of p21rap protein in PC-3 prostate cancer cell lines. These facts suggest that GGPPS may be one of the candidate genes for prostate cancer.

  4. Inhibition of inducible nitric oxide synthase expression by yuccaol C from Yucca schidigera roezl.

    Science.gov (United States)

    Marzocco, Stefania; Piacente, Sonia; Pizza, Cosimo; Oleszek, Wieslaw; Stochmal, Anna; Pinto, Aldo; Sorrentino, Raffaella; Autore, Giuseppina

    2004-08-06

    Yucca schidigera extract finds wide commercial application in foods, cosmetics and pharmaceuticals. In a previous paper we have found as the main constituents of yucca bark, yuccaol A, B and C, new and very unusual spiro-derivatives made up of a C15 unit and a stilbenic portion closely related to resveratrol. This study was performed to examine whether yuccaol A, B or C (0.01-100 microM) could affect cytosolic inducible nitric oxide synthase (iNOS) protein expression and nitric oxide (NO) generation in vitro in Escherichia coli lipopolysaccharide (LPS)-activated J774.A1 macrophage cell line. NO production, detected as NO2-, increased significantly in LPS treated J774.A1 cells from 0.05 +/- 0.03 microM to 16.64 +/- 0.58 microM (P schidigera as anti-inflammatory remedy could be addressed not only to the resveratrol content but also to the presence of yuccaol C. Copyright 2004 Elsevier Inc.

  5. Phytoene Synthase Gene Cloning from Citrus sinensis Osbeck cv.Cara Cara and Its Prokaryotic Expression

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-cheng; TAO Neng-guo; TONG Zhu; DENG Xiu-xin

    2008-01-01

    Using the mRNA from the fruit of Cara Cara as the template,the cDNA of phytoene synthase(PSY)gene was amplified by reverse transcription polymerse chain reaction(RT-PCR).Sequence analysis indicated that the eDNA was of 1 520 bp,which had an open reading frame of 1 308 bp and encoded a protein of 436 amino acids.The homology analysis showed that PSY of Cara Cara shared high similarities of nucleotides and deduced amino acids with those in other plants up to more than 75 and 70%,respectively.A putative signal transit peptide for plastid targeting was found in the N-terminal region of PSY.The mature forms of PSY included a transmembrane(TM) domain.The recombinant plasmid pET-CitPSY was constructed by subeloning the full coding sequence of PSY eDNA into pET-28(+).After transformation of E.coil BL21 and induced by 1 mmol L-1 isopropyl-a-D-thiogalacropyranoside(IPTG),the fusion protein(6×His-PSY)with 52 kD was produced at a high level by prokaryotic expression system.The results of Western blot demonstrated that the fusion protein(6xHis-PSY)could be recognized by anti-6×His monoclonal antibody.The study could establish a basis for molecular improvement of Citrus fruit colors.

  6. Homologous cloning, characterization and expression of a new halophyte phytochelatin synthase gene in Suaeda salsa

    Science.gov (United States)

    Cong, Ming; Zhao, Jianmin; Lü, Jiasen; Ren, Zhiming; Wu, Huifeng

    2016-09-01

    The halophyte Suaeda salsa can grow in heavy metal-polluted areas along intertidal zones having high salinity. Since phytochelatins can eff ectively chelate heavy metals, it was hypothesized that S. salsa possessed a phytochelatin synthase (PCS) gene. In the present study, the cDNA of PCS was obtained from S. salsa (designated as SsPCS) using homologous cloning and the rapid amplification of cDNA ends (RACE). A sequence analysis revealed that SsPCS consisted of 1 916 bp nucleotides, encoding a polypeptide of 492 amino acids with one phytochelatin domain and one phytochelatin C domain. A similarity analysis suggested that SsPCS shared up to a 58.6% identity with other PCS proteins and clustered with PCS proteins from eudicots. There was a new kind of metal ion sensor motif in its C-terminal domain. The SsPCS transcript was more highly expressed in elongated and fibered roots and stems ( Pcloned from a halophyte, and it might contain a diff erent metal sensing capability than the first PCS from Thellungiella halophila. This study provided a new view of halophyte PCS genes in heavy metal tolerance.

  7. Relationship between inducible nitric oxide synthase expression and angiogenesis in primary gallbladder carcinoma tissue

    Institute of Scientific and Technical Information of China (English)

    Xin-Jie Niu; Zuo-Ren Wang; Sheng-Li Wu; Zhi-Min Geng; Yun-Feng Zhang; Xing-Lei Qing

    2004-01-01

    AIM: To explore the relationship between angiogenesis and biological behaviors of primary gallbladder carcinoma (PGBC),the relationship between the expression of inducible nitric oxide synthase (iNOS) and biological behaviors of PGBC and its relationship with the expression of iNOS and angiogenesis of PGBC.METHODS: The expression of iNOS and micro-vessel density (MVD) were assessed by immunohistochemical method and image analysis system in 40 specimens of PGBC and in 8 specimens of normal gallbladder. The immunostaining results and related clinicopathologic materials were analyzed by statistical methods.RESULTS: MVD in PGBC was significantly higher than that in normal gallbladder tissue (46±14 vS 14±6, P<0.05), and was not related with age, gender, tumor size and histological type. MVD of poorly and undifferentiated tumor tissues was higher than that of moderately-differentiated and welldifferentiated tumor tissues (52±9 vs43±9 vs33±6, P<0.01).MVD of Nevin IV and V stages was higher than that of Nevin I, II and III stages (52±8 Vs37±13, P<0.01). MVD of cases with lymphatic or liver metastasis was significantly higher than that without liver metastasis (55±6 vS42±10, P<0.05)or lymphatic metastasis (53±8 vs38±8, P<0.01). The positive level index (PLI) of iNOS in PGBC was 0.435±0.134, and was not related with age, gender, tumor size, histological type,differentiation and clinical stage of PGBC. The PLI of iNOS in cases with lymphatic metastasis was higher than that without lymphatic metastasis (0.573±0.078 vs0.367±0.064,P<0.01). The PLI of iNOS in cases with liver metastasis was higher than that without liver metastasis (0.533±0.067 vS 0.424±0.084, P<0.05). There was a significant correlation between PLI of iNOS and MVD in PGBC (P<0.05).CONCLUSION: Angiogenesis of PGBC is significantly related to the biological behaviors of PGBC. The expression of iNOS is related to the biological behaviors of PGBC. The detection of MVD and the

  8. Relationship between the Expression of Thymidylate Synthase,Thymidine Phosphorylase and Dihydropyrimidine Dehydrogenase and Survival in Epithelial Ovarian Cancer

    Institute of Scientific and Technical Information of China (English)

    王常玉; 翁艳洁; 王鸿雁; 石英; 马丁

    2010-01-01

    The mRNA and protein expression of thymidylate synthase (TS), thymidine phosphorylase (TP) and dihydropyrimidine dehydrogenase (DPD) and their relationship with prognosis were investigated. Real-time quantitative RT-PCR (Taqman) was used to detect the mRNA expression of TS, TP and DPD in formalin-fixed and paraffin-embedded 106 samples of epithelial ovarian cancer and 29 normal ovaries. A TATA box-binding protein (TBP) was used as an endogenous reference gene. A relationship between TS, TP, DPD expression a...

  9. Macrophages expressing arginase 1 and nitric oxide synthase 2 accumulate in the small intestine during Giardia lamblia infection.

    Science.gov (United States)

    Maloney, Jenny; Keselman, Aleksander; Li, Erqiu; Singer, Steven M

    2015-06-01

    Nitric oxide (NO) has been shown to inhibit Giardia lamblia in vitro and in vivo. This study sought to determine if Giardia infection induces arginase 1 (ARG1) expression in host macrophages to reduce NO production. Stimulations of RAW 264.7 macrophage-like cells with Giardia extract induced arginase activity. Real-time PCR and immunohistochemistry showed increased ARG1 and nitric oxide synthase 2 (NOS2) expression in mouse intestine following infection. Flow cytometry demonstrated increased numbers of macrophages positive for both ARG1 and NOS2 in lamina propria following infection, but there was no evidence of increased expression of ARG1 in these cells.

  10. Regulation of the expression of nitric oxide synthase by Leishmania mexicana amastigotes in murine dendritic cells.

    Science.gov (United States)

    Wilkins-Rodríguez, Arturo A; Escalona-Montaño, Alma Reyna; Aguirre-García, Magdalena; Becker, Ingeborg; Gutiérrez-Kobeh, Laila

    2010-11-01

    In mammalian hosts, Leishmania parasites are obligatory intracellular organisms that invade macrophages (M phi) and dendritic cells (DC). In M phi, the production of nitric oxide (NO) catalyzed by the inducible nitric oxide synthase (iNOS) has been implicated as a major defense against Leishmania infection. The modulation of this microbicidal mechanism by different species of Leishmania has been well studied in M phi. Although DC are permissive for infection with Leishmania both in vivo and in vitro, the effect of this parasite in the expression of iNOS and NO production in these cells has not been established. To address this issue, we analyzed the regulation of iNOS by Leishmania mexicana amastigotes in murine bone marrow-derived dendritic cells (BMDC) stimulated with LPS and IFN-gamma. We show that the infection of BMDC with amastigotes down regulated NO production and diminished iNOS protein levels in cells stimulated with LPS alone or in combination with IFN-gamma. The reduction in iNOS protein levels and NO production did not correlate with a decrease in iNOS mRNA expression, suggesting that the parasite affects post-transcriptional events of NO synthesis. Although amastigotes were able to reduce NO production in BMDC, the interference with this cytotoxic mechanism was not sufficient to permit the survival of L. mexicana. At 48 h post-infection, BMDC stimulated with LPS+IFN-gamma were able to eliminate the parasites. These results are the first to identify the regulation of iNOS by L. mexicana amastigotes in DC.

  11. Further studies of auxin and ACC induced feminization in the cucumber plant using ethylene inhibitors

    Science.gov (United States)

    Takahashi, H.; Jaffe, M. J.

    1984-01-01

    The present study was designed to establish the role of an essential hormone controlling sex expression in cucumber. A potent anti-ethylene agent, AgNO3, completely inhibited pistillate flower formation caused by IAA, ACC or ethephon. Inhibitors of ethylene biosynthesis, AVG and CoCl2 also suppressed feminization due to exogenous IAA or ACC. Though AVG also suppressed ethephon-induced feminization, this may be due to the second effect of AVG rather than the effect on ACC biosynthesis. These results confirm that ethylene is a major factor regulating feminization and that exogenous auxin induces pistillate flower formation through its stimulation of ethylene production, rather than ACC production.

  12. Thymidylate synthase protein expression levels remain stable during paclitaxel and carboplatin treatment in non-small cell lung cancer

    DEFF Research Database (Denmark)

    Jakobsen, Jan Nyrop; Santoni-Rugiu, Eric; Sørensen, Jens Benn

    2014-01-01

    BACKGROUND: Thymidylate synthase (TS) is a potential predictive marker for efficacy of treatment with pemetrexed. The current study aimed at investigating whether TS expression changes during non-pemetrexed chemotherapy of non-small cell lung cancer (NSCLC), thus making rebiopsy necessary for dec...... in primary tumors remained unchanged, and new biopsies for deciding on second-line pemetrexed does not seem warranted based on the current results....

  13. Clinical Significance of a Myeloperoxidase Gene Polymorphism and Inducible Nitric Oxide Synthase Expression in Cirrhotic Patients with Hepatopulmonary Syndrome

    Institute of Scientific and Technical Information of China (English)

    王燕颖; 王文多; 张艳霞; 赵欣; 杨东亮

    2010-01-01

    The clinical significance of a myeloperoxidase (MPO) gene polymorphism and inducible nitric oxide synthase (iNOS) expression in cirrhotic patients with hepatopulmonary syndrome (HPS) was explored. Enrolled subjects were divided into three groups according to their disease/health conditions: the HPS group (cirrhotic patients with HPS; n=63), the non-HPS group (cirrhotic patients without HPS; n=182), and the control group (healthy subjects without liver disease; n=35). The distribution of the MPO-463 G/A geno...

  14. Expression of Neuronal and Inducible Nitric Oxide Synthase Isoforms and Generation of Protein Nitrotyrosine in Rat Brain Following Hypobaric Hypoxia

    Science.gov (United States)

    2001-06-01

    compilation report: ADPO11059 thru ADP011100 UNCLASSIFIED 38- 1 Expression of Neuronal and Inducible Nitric Oxide Synthase Isoforms and Generation of Protein...cloned, both from chondrocytes (Charles et al., 1993) and hepatocytes (Geller et al., 1993). The neurotoxic effects of NO is mediated by formation of...injection at multiple sites on the back. Four boosts of 1 /6 of the conjugate emulsified in Freund’s incomplete adjuvant were given by subcutaneous injection

  15. Prostaglandin-endoperoxide H synthase-2 expression and activity increases with term labor in human chorion

    National Research Council Canada - National Science Library

    Mijovic, J E; Zakar, T; Nairn, T K; Olson, D M

    1997-01-01

    We investigated the changes in prostaglandin-endoperoxide H synthase (PGHS) specific activity and the levels and distribution of PGHS-1 and PGHS-2 mRNA in chorion collected at term before the onset of labor (CS...

  16. Expression of an (E-β-farnesene synthase gene from Asian peppermint in tobacco affected aphid infestation

    Directory of Open Access Journals (Sweden)

    Xiudao Yu

    2013-10-01

    Full Text Available Aphids are major agricultural pests that cause significant yield losses in crop plants each year. (E-β-farnesene (EβF is the main or only component of an alarm pheromone involved in chemical communication within aphid species and particularly in the avoidance of predation. EβF also occurs in the essential oil of some plant species, and is catalyzed by EβF synthase. By using oligonucleotide primers designed from the known sequence of an EβF synthase gene from black peppermint (Mentha × piperita, two cDNA sequences, MaβFS1 and MaβFS2, were isolated from Asian peppermint (Mentha asiatica. Expression pattern analysis showed that the MaβFS1 gene exhibited higher expression in flowers than in roots, stems and leaves at the transcriptional level. Overexpression of MaβFS1 in tobacco plants resulted in emission of pure EβF ranging from 2.62 to 4.85 ng d− 1 g− 1 of fresh tissue. Tritrophic interactions involving peach aphids (Myzus persicae, and predatory lacewing (Chrysopa septempunctata larvae demonstrated that transgenic tobacco expressing MaβFS1 had lower aphid infestation. This result suggested that the EβF synthase gene from Asian peppermint could be a good candidate for genetic engineering of agriculturally important crop plants.

  17. Expression of an(E)-β-farnesene synthase gene from Asian peppermint in tobacco affected aphid infestation

    Institute of Scientific and Technical Information of China (English)

    Xiudao; Yu; Yongjun; Zhang; Youzhi; Ma; Zhaoshi; Xu; Genping; Wang; Lanqin; Xia

    2013-01-01

    Aphids are major agricultural pests that cause significant yield losses in crop plants each year.(E)-β-farnesene(EβF) is the main or only component of an alarm pheromone involved in chemical communication within aphid species and particularly in the avoidance of predation. EβF also occurs in the essential oil of some plant species, and is catalyzed by EβF synthase. By using oligonucleotide primers designed from the known sequence of an EβF synthase gene from black peppermint(Mentha × piperita), two cDNA sequences, MaβFS1 and MaβFS2, were isolated from Asian peppermint(Mentha asiatica). Expression pattern analysis showed that the MaβFS1 gene exhibited higher expression in flowers than in roots, stems and leaves at the transcriptional level. Overexpression of MaβFS1 in tobacco plants resulted in emission of pure EβF ranging from 2.62 to 4.85 ng d-1g-1of fresh tissue. Tritrophic interactions involving peach aphids(Myzus persicae), and predatory lacewing(Chrysopa septempunctata) larvae demonstrated that transgenic tobacco expressing MaβFS1 had lower aphid infestation. This result suggested that the EβF synthase gene from Asian peppermint could be a good candidate for genetic engineering of agriculturally important crop plants.

  18. Airborne Cloud Computing Environment (ACCE)

    Science.gov (United States)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  19. Airborne Cloud Computing Environment (ACCE)

    Science.gov (United States)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  20. Changes of macrovascular endothelial ultrastructure and gene expression of endothelial nitric oxide synthase in diabetic rats

    Institute of Scientific and Technical Information of China (English)

    陆颖理; 胡申江; 沈周俊; 邵一川

    2004-01-01

    Background The most intimidatory pathological changes in patients with DM are cardiovascular illnesses, which are the major causes of death in diabetic patients and are far more prevalent than in nondiabetics because of accelerated atherosclerosis. In this study, we tried to clarify the changes in macrovascular endothelial ultrastructure and in the gene expression of endothelial nitric oxide synthase (eNOS)mRNA in diabetic rats. Methods The study was conducted on 52 of 10-week old Sprague Dawley (SD) rats with body weight of (320±42) g. SD rats were divided into: experimental group treated with a single intraperitoneal injection of streptozotocin (STZ, 60 mg/kg), (male, n=20, diabetes mellitus (DMM)); female, n=12, diabetes mellitus female (DMF)) and control group (male, n=10, diabetes mellitus male control (DMMC); female, n=10, diabetes mellitus female control (DMFC)). Four weeks after treatment, half of the rats were sacrificed; the remainders were sacrificed ten weeks after treatment. One part of the abdominal aortic sample was stored under glutaraldehyde (volume fraction ψB = 2.5 %). After the process of chemical fixation, chemical dehydration, drying and conductivity enhancement, all samples were observed and photographed using scanning electron microscopy (Leica-Stereoscan 260, England). The other part of the abdominal aortic sample was treated with liquid nitrogen and the expression of eNOSmRNA was assessed by semi-quantitative RT-PCR. Results The aortic lumen of both experimental groups adsorbed much more debris than that of either control group. The endothelial surfaces of diabetic rats were coarse, wrinkled and protuberant like fingers or villi. The vascular endothelial lesions of diabetic male rats were very distinct after 4 weeks, and as obvious as those at 10 weeks. The vascular endothelial lesions of diabetic female rats were not severe at 4 weeks and only became marked after 10 weeks. In both males and females, the abdominal aortic eNOSmRNA content

  1. Repetitive prenatal glucocorticoids increase lung endothelial nitric oxide synthase expression in ovine fetuses delivered at term.

    Science.gov (United States)

    Grover, T R; Ackerman, K G; Le Cras, T D; Jobe, A H; Abman, S H

    2000-07-01

    Antenatal administration of glucocorticoids has been shown to improve postnatal lung function after preterm birth in the ovine fetus. Mechanisms of steroid-induced lung maturation include increased surfactant production and altered parenchymal lung structure. Whether steroid treatment also affects lung vascular function is unclear. Because nitric oxide contributes to the fall in pulmonary vascular resistance at birth, we hypothesized that the improvement of postnatal lung function of preterm lambs after treatment with prenatal glucocorticoids may be in part caused by an increase in endothelial nitric oxide synthase (eNOS) activity. To determine whether glucocorticoid treatment increases lung eNOS expression, we measured eNOS protein content by Western blot analysis of distal lung homogenates and immunostaining of formalin-fixed lungs from ovine fetuses delivered at preterm and term gestation after prenatal administration of glucocorticoids. Treatment protocols were followed in which ewes were treated with intramuscular betamethasone (0.5 mg/kg) at single or multiple doses at weekly intervals, and fetuses were delivered at 125, 135, or 145 d gestation. All groups were compared with saline-treated controls. Western blot analysis of whole lung homogenates demonstrated a 4-fold increase in eNOS protein content in lambs treated with repetitive doses of glucocorticoids and delivery at term (145 d; p preterm ages (125 and 135 d). Immunostaining showed eNOS predominantly in the vascular endothelium in all vessel sizes. Pattern of staining was not altered by treatment with antenatal glucocorticoids. We conclude that maternal treatment with glucocorticoids increases lung eNOS content after multiple doses and delivery at term gestation. We speculate that antenatal glucocorticoids may up-regulate eNOS but that the timing and duration of steroid administration appears to be critical to this response.

  2. Analysis of the Expression and Activity of Nitric Oxide Synthase from Marine Photosynthetic Microorganisms.

    Science.gov (United States)

    Foresi, Noelia; Correa-Aragunde, Natalia; Santolini, Jerome; Lamattina, Lorenzo

    2016-01-01

    Nitric oxide (NO) functions as a signaling molecule in many biological processes in species belonging to all kingdoms of life. In animal cells, NO is synthesized primarily by NO synthase (NOS), an enzyme that catalyze the NADPH-dependent oxidation of L-arginine to NO and L-citrulline. Three NOS isoforms have been identified, the constitutive neuronal NOS (nNOS) and endothelial NOS (eNOS) and one inducible (iNOS). Plant NO synthesis is complex and is a matter of ongoing investigation and debate. Despite evidence of an Arg-dependent pathway for NO synthesis in plants, no plant NOS homologs to animal forms have been identified to date. In plants, there is also evidence for a nitrate-dependent mechanism of NO synthesis, catalyzed by cytosolic nitrate reductase. The existence of a NOS enzyme in the plant kingdom, from the tiny single-celled green alga Ostreococcus tauri was reported in 2010. O. tauri shares a common ancestor with higher plants and is considered to be part of an early diverging class within the green plant lineage.In this chapter we describe detailed protocols to study the expression and characterization of the enzymatic activity of NOS from O. tauri. The most used methods for the characterization of a canonical NOS are the analysis of spectral properties of the oxyferrous complex in the heme domain, the oxyhemoglobin (oxyHb) and citrulline assays and the NADPH oxidation for in vitro analysis of its activity or the use of fluorescent probes and Griess assay for in vivo NO determination. We further discuss the advantages and drawbacks of each method. Finally, we remark factors associated to the measurement of NOS activity in photosynthetic organisms that can generate misunderstandings in the interpretation of results.

  3. Homologous and heterologous expression of grapevine E-(β)-caryophyllene synthase (VvGwECar2).

    Science.gov (United States)

    Salvagnin, Umberto; Carlin, Silvia; Angeli, Sergio; Vrhovsek, Urska; Anfora, Gianfranco; Malnoy, Mickael; Martens, Stefan

    2016-11-01

    E-(β)-caryophyllene is a sesquiterpene volatile emitted by plants and involved in many ecological interactions within and among trophic levels and it has a kairomonal activity for many insect species. In grapevine it is a key compound for host-plant recognition by the European grapevine moth, Lobesia botrana, together with other two sesquiterpenes. In grapevine E-(β)-caryophyllene synthase is coded by the VvGwECar2 gene, although complete characterization of the corresponding protein has not yet been achieved. Here we performed the characterization of the enzyme after heterologous expression in E. coli, which resulted to produce in vitro also minor amounts of the isomer α-humulene and of germacrene D. The pH optimum was estimated to be 7.8, and the Km and Kcat values for farnesyl pyrophosphate were 31.4 μM and 0.19 s(-1) respectively. Then, we overexpressed the gene in the cytoplasm of two plant species, Arabidopsis thaliana and the native host Vitis vinifera. In Arabidopsis the enzyme changed the plant head space release, showing a higher selectivity for E-(β)-caryophyllene, but also the production of thujopsene instead of germacrene D. Overall plants increased the E-(β)-caryophyllene emission in the headspace collection by 8-fold compared to Col-0 control plants. In grapevine VvGwECar2 overexpression resulted in higher E-(β)-caryophyllene emissions, although there was no clear correlation between gene activity and sesquiterpene quantity, suggesting a key role by the plant regulation machinery.

  4. Inducible nitric oxide synthase expression is upregulated in oral submucous fibrosis

    Directory of Open Access Journals (Sweden)

    Rajendran R

    2007-01-01

    Full Text Available Objective: We tested the hypothesis that inducible nitric oxide synthase (iNOS modulates angiogenesis in human models and this information could be extrapolated in elucidating the pathophysiology of oral submucous fibrosis (OSF. A hypothesis which looks inadequate, but is deep rooted in literature is the epithelial alteration ("atrophy" seen in OSF and the events that lead to its causation. This aspect was tried to be addressed and an alternative pathogenetic pathway for the disease is proposed. Materials and Methods: This immunohistochemical study sought to investigate the expression of iNOS in OSF samples (n= 30 a using monospecific antibody (SC- 2050, Santa Cruz Biotechnology, Inc to the protein and also to correlate it with different grades of epithelial dysplasia associated with the disease. Twenty (20 healthy adults acted as controls. Results: iNOS staining was not demonstrated in normal oral epithelium. In oral epithelial dysplasia, staining was seen in all cases (100% in the basal layers of the epithelium and in 30% of cases it extended into the parabasal compartments as well. iNOS staining was uniformly positive in moderate dysplasia with an increase in intensity and distribution noted as the severity of dysplasia progressed. There were highly significant differences in overall positivity for iNOS in epithelium between cases and controls (Mann-Whitney U = 11.000, Wilcoxon W = 221.00, P = 0.000. Significant comparisons were made of mild Vs moderate dysplasia (Mann-Whitney U = 48.000, P = 0.014 Conclusions: This study supports our earlier morphological assessment (image analysis of the nature of vascularity in OSF mucosa. The significant vasodilation noticed in these cases argues against the concept of ischemic atrophy of the epithelium. This observation of vascularity and iNOS expression helped to explain the vasodilation noticed (sinusoids in this disease; NO being a net vasodilator. The mechanism of activation of iNOS in dysplasia is

  5. Tuning OpenACC loop execution

    KAUST Repository

    Feki, Saber

    2017-01-07

    The purpose of this chapter is to help OpenACC developer who is already familiar with the basic and essential directives to further improve his code performance by adding more descriptive clauses to OpenACC loop constructs. At the end of this chapter the reader will: • Have a better understanding of the purpose of the OpenACC loop construct and its associated clauses illustrated with use cases • Use the acquired knowledge in practice to further improve the performance of OpenACC accelerated codes

  6. Sequential changes in redox status and nitric oxide synthases expression in the liver after bile duct ligation.

    Science.gov (United States)

    Vázquez-Gil, M José; Mesonero, M José; Flores, Olga; Criado, Manuela; Hidalgo, Froilán; Arévalo, Miguel A; Sánchez-Rodríguez, Angel; Tuñón, M Jesús; López-Novoa, José M; Esteller, A

    2004-06-25

    Bile duct ligation (BDL) in rats induces portal fibrosis. This process has been linked to changes in the oxidative state of the hepatic cells and in the production of nitric oxide. Our objective was to find possible temporal connections between hepatic redox state, NO synthesis and liver injury. In this work we have characterized hepatic lesions 17 and 31 days after BDL and determined changes in hepatic function, oxidative state, and NO production. We have also analyzed the expression and localization of inducible NO synthase (NOS2) and constitutive NO synthase (NOS3). After 17 and 31 days from ligature, lipid peroxidation is increased and both plasma concentration and biliary excretion of nitrite+nitrate are rised. 17 days after BDL both NOS2 and NOS3 are expressed intensely and in the same regions. 31 days after BDL, the expression of NOS2 remains elevated and is localized mostly in preserved hepatocytes in portal areas and in neighborhoods of centrolobulillar vein. NOS3 is localized in vascular regions of portal spaces and centrolobulillar veins and in preserved sinusoids and although its expression is greater than in control animals (34%), it is clearly lower (50%) than 17 days after BDL. The time after BDL is crucial in the study of NO production, intrahepatic localization of NOS isoforms expression, and cell type involved, since all these parameters change with time. BDL-induced, peroxidation and fibrosis are not ligated by a cause-effect relationship, but rather they both seem to be the consequence of common inductors.

  7. Hyperlipidemia affects neuronal nitric oxide synthase expression in brains of focal cerebral ischemia rat model

    Institute of Scientific and Technical Information of China (English)

    Jianji Pei; Liqiang Liu; Jinping Pang; Xiaohong Tian

    2008-01-01

    BACKGROUND: Hyperlipidemia, a risk factor for ischemic cerebrovascular disease, may mediate production of neuronal nitric oxide synthase (nNOS) to induce increased nitric oxide levels, resulting in brain neuronal injury. OBJECTIVE: To investigate effects of hyperlipidemia on brain nNOS expression, and to verify changes in infarct volume and pathology during reperfusion, as well as neuronal injury following ischemia/reperfusion in a rat model of focal cerebral ischemia. DESIGN, TIME AND SETTING: Complete, randomized grouping experiment was performed at the Laboratory of Physiology, Shanxi Medical University from March 2005 to March 2006. MATERIALS: A total of 144 eight-week-old, male, Wistar rats, weighing 160-180 g, were selected. A rat model of middle cerebral artery occlusion was established by suture method after 4 weeks of formulated diet. Nitric oxide kit and rabbit anti-rat nNOS kit were respectively purchased from Nanjing Jiancheng Bioengineering Institute, China and Wuhan Boster Biological Technology, Ltd., China. METHODS: The rats were equally and randomly divided into high-fat diet and a normal diet groups. Rats in the high-fat diet group were fed a high-fat diet, consisting of 10% egg yolk powder, 5% pork fat, and 0.5% pig bile salt combined with standard chow to create hyperlipidemia. Rats in the normal diet group were fed a standard rat chow. A total of 72 rats in both groups were randomly divided into 6 subgroups: sham-operated, 4-hour ischemia, 4-hour ischemia/2-hour reperfusion, 4-hour ischemia/4-hour reperfusion, 4-hour ischemia/6-hour reperfusion, and 4-hour ischemia/12-hour reperfusion, with 12 rats in each subgroup. MAIN OUTCOME MEASURES: nNOS expression was measured by immunohistochemistry, and pathomorphology changes were detected by hematoxylin-eosin staining. Infarct volume and nitric oxide levels were respectively measured using 2, 3, 5-triphenyltetrazolium chloride (TTC) and immunohistochemistry. RESULTS: In the ischemic region, pathology

  8. RNAi and Homologous Over-Expression Based Functional Approaches Reveal Triterpenoid Synthase Gene-Cycloartenol Synthase Is Involved in Downstream Withanolide Biosynthesis in Withania somnifera.

    Directory of Open Access Journals (Sweden)

    Smrati Mishra

    Full Text Available Withania somnifera Dunal, is one of the most commonly used medicinal plant in Ayurvedic and indigenous medicine traditionally owing to its therapeutic potential, because of major chemical constituents, withanolides. Withanolide biosynthesis requires the activities of several enzymes in vivo. Cycloartenol synthase (CAS is an important enzyme in the withanolide biosynthetic pathway, catalyzing cyclization of 2, 3 oxidosqualene into cycloartenol. In the present study, we have cloned full-length WsCAS from Withania somnifera by homology-based PCR method. For gene function investigation, we constructed three RNAi gene-silencing constructs in backbone of RNAi vector pGSA and a full-length over-expression construct. These constructs were transformed in Agrobacterium strain GV3101 for plant transformation in W. somnifera. Molecular and metabolite analysis was performed in putative Withania transformants. The PCR and Southern blot results showed the genomic integration of these RNAi and overexpression construct(s in Withania genome. The qRT-PCR analysis showed that the expression of WsCAS gene was considerably downregulated in stable transgenic silenced Withania lines compared with the non-transformed control and HPLC analysis showed that withanolide content was greatly reduced in silenced lines. Transgenic plants over expressing CAS gene displayed enhanced level of CAS transcript and withanolide content compared to non-transformed controls. This work is the first full proof report of functional validation of any metabolic pathway gene in W. somnifera at whole plant level as per our knowledge and it will be further useful to understand the regulatory role of different genes involved in the biosynthesis of withanolides.

  9. RNAi and Homologous Over-Expression Based Functional Approaches Reveal Triterpenoid Synthase Gene-Cycloartenol Synthase Is Involved in Downstream Withanolide Biosynthesis in Withania somnifera.

    Science.gov (United States)

    Mishra, Smrati; Bansal, Shilpi; Mishra, Bhawana; Sangwan, Rajender Singh; Asha; Jadaun, Jyoti Singh; Sangwan, Neelam S

    2016-01-01

    Withania somnifera Dunal, is one of the most commonly used medicinal plant in Ayurvedic and indigenous medicine traditionally owing to its therapeutic potential, because of major chemical constituents, withanolides. Withanolide biosynthesis requires the activities of several enzymes in vivo. Cycloartenol synthase (CAS) is an important enzyme in the withanolide biosynthetic pathway, catalyzing cyclization of 2, 3 oxidosqualene into cycloartenol. In the present study, we have cloned full-length WsCAS from Withania somnifera by homology-based PCR method. For gene function investigation, we constructed three RNAi gene-silencing constructs in backbone of RNAi vector pGSA and a full-length over-expression construct. These constructs were transformed in Agrobacterium strain GV3101 for plant transformation in W. somnifera. Molecular and metabolite analysis was performed in putative Withania transformants. The PCR and Southern blot results showed the genomic integration of these RNAi and overexpression construct(s) in Withania genome. The qRT-PCR analysis showed that the expression of WsCAS gene was considerably downregulated in stable transgenic silenced Withania lines compared with the non-transformed control and HPLC analysis showed that withanolide content was greatly reduced in silenced lines. Transgenic plants over expressing CAS gene displayed enhanced level of CAS transcript and withanolide content compared to non-transformed controls. This work is the first full proof report of functional validation of any metabolic pathway gene in W. somnifera at whole plant level as per our knowledge and it will be further useful to understand the regulatory role of different genes involved in the biosynthesis of withanolides.

  10. Astrocytes and microglia express inducible nitric oxide synthase in mice with experimental allergic encephalomyelitis

    DEFF Research Database (Denmark)

    Tran, E H; Hardin-Pouzet, H; Verge, G;

    1997-01-01

    Nitric oxide (NO), produced by inducible NO synthase (iNOS), may play a role in inflammatory demyelinating diseases of the central nervous system (CNS). We show upregulation of iNOS mRNA in CNS of SJL/J mice with experimental allergic encephalomyelitis (EAE). Using antibodies against mouse iNOS, ...

  11. NITRIC OXIDE SYNTHASE AND VASCULAR ENDOTHELIAL GROWTH FACTOR EXPRESSION IN HEPATOCELLULAR CARCINOMA AND THE CORRELATION WITH ANGIOGENESIS

    Institute of Scientific and Technical Information of China (English)

    王鲁; 汤钊猷; 孙惠川; 叶胜龙; 纪元; 陆洪芬; 施达仁

    2001-01-01

    Objective: To analyze the expression of inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) in hepatocellular carcinoma (HCC) and its relation to angiogenesis. Methods: Tissue sections from 71 HCC patients were examined immunohistochemically for protein expression of iNOS, eNOS, and VEGF. Microvessal density (MVD) was counted by endothelial cells immunostained by anti-CD34 antibody. Results: Positive immunostaining for iNOS, eNOS was detected in 83.1% and 85.9% of HCC respectively. INOS and eNOS were not detected in normal hepatic tissue. MVD was 34.3±1.5/HP and 38.6±1.6/HP in HCC with positive staining for iNOS and VEGF while it was 31.2± 2.8/HP, and 22.4± 2.0/HP in HCC with negative staining for iNOS and VEGF (P<0.01). A correlation between NOS expression and VEGF in HCC was not observed. Conclusion: iNOS and eNOS may play a role in malignant transformation f post-hepatic cirrhosis. The expression of iNOS and VEGF favors angiogenesis of HCC.

  12. Lanthanum Chloride Inhibiting Expression of Inducible Nitric Oxide Synthase in RAW264.7 Macrophages Induced by Lipopolysaccharide

    Institute of Scientific and Technical Information of China (English)

    Guo Fei; Lou Yuanlei; Wang Yang; Xie An; Li Guohui

    2007-01-01

    Nitric oxide (NO) and its reaction products were key players in the pathophysiology of sepsis and shock. The present study was designed to explore the effects of lanthanum chloride (LaCl3) on inducible nitric oxide synthase (iNOS) expression, at both gene and protein levels, in RAW264.7 macrophages induced by Lipopolysaccharide (LPS). Reverse transcription polymerase chain reaction (RT-PCR), immunofluorescence, and western blot were employed to measure iNOS gene expression, localization, and protein expression respectively. NO production in culture supernatants was detected by the nitrate reductase method. The results showed that LaCl3 significantly attenuated the iNOS gene and protein expression, as well as NO production in RAW264.7cells induced by LPS.

  13. Identification, expression and serological evaluation of the recombinant ATP synthase beta subunit of Mycoplasma pneumoniae

    Directory of Open Access Journals (Sweden)

    Nuyttens Hélène

    2010-08-01

    Full Text Available Abstract Background Mycoplasma pneumoniae is responsible for acute respiratory tract infections (RTIs common in children and young adults. As M. pneumoniae is innately resistant to β-lactams antibiotics usually given as the first-line treatment for RTIs, specific and early diagnosis is important in order to select the right treatment. Serology is the most used diagnostic method for M. pneumoniae infections. Results In this study, we identified the M. pneumoniae ATP synthase beta subunit (AtpD by serologic proteome analysis and evaluated its usefulness in the development of a serological assay. We successfully expressed and purified recombinant AtpD (rAtpD protein, which was recognised by serum samples from M. pneumoniae-infected patient in immunoblots. The performance of the recombinant protein rAtpD was studied using a panel of serum samples from 103 infected patients and 86 healthy blood donors in an in-house IgM, IgA and IgG enzyme-linked immunosorbent assay (ELISA. The results of this assay were then compared with those of an in-house ELISA with a recombinant C-terminal fragment of the P1 adhesin (rP1-C and of the commercial Ani Labsystems ELISA kit using an adhesin P1-enriched whole-cell extract. Performances of the rAtpD and rP1-C antigen combination were further assessed by binary logistic regression analysis. We showed that combination of rAtpD and rP1-C discriminated maximally between the patients infected with M. pneumoniae (children and adults and the healthy subjects for the IgM class, performing better than the single recombinant antigens or the commercial whole-cell extract. Conclusion These results suggest that AtpD can be used as an antigen for the immunodiagnosis of early and acute M. pneumoniae infection in association with adhesin P1, providing an excellent starting point for the development of point-of-care diagnostic assays.

  14. Lattice Simulations using OpenACC compilers

    CERN Document Server

    Majumdar, Pushan

    2013-01-01

    OpenACC compilers allow one to use Graphics Processing Units without having to write explicit CUDA codes. Programs can be modified incrementally using OpenMP like directives which causes the compiler to generate CUDA kernels to be run on the GPUs. In this article we look at the performance gain in lattice simulations with dynamical fermions using OpenACC compilers.

  15. Monoterpene synthases from common sage (Salvia officinalis)

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wise, Mitchell Lynn (Pullman, WA); Katahira, Eva Joy (Pullman, WA); Savage, Thomas Jonathan (Christchurch 5, NZ)

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  16. Stable expression of lipocalin-type prostaglandin D synthase in cultured preadipocytes impairs adipogenesis program independently of endogenous prostanoids

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Mohammad Salim; Chowdhury, Abu Asad; Rahman, Mohammad Sharifur [Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504 (Japan); Nishimura, Kohji [Department of Molecular and Functional Genomics, Center for Integrated Research in Science, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504 (Japan); Jisaka, Mitsuo; Nagaya, Tsutomu [Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504 (Japan); Shono, Fumiaki [Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Yamashiro-cho, Tokushima-shi, Tokushima 770-8514 (Japan); Yokota, Kazushige, E-mail: yokotaka@life.shimane-u.ac.jp [Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504 (Japan)

    2012-02-15

    Lipocalin-type prostaglandin D synthase (L-PGDS) expressed preferentially in adipocytes is responsible for the synthesis of PGD{sub 2} and its non-enzymatic dehydration products, PGJ{sub 2} series, serving as pro-adipogenic factors. However, the role of L-PGDS in the regulation of adipogenesis is complex because of the occurrence of several derivatives from PGD{sub 2} and their distinct receptor subtypes as well as other functions such as a transporter of lipophilic molecules. To manipulate the expression levels of L-PGDS in cultured adipocytes, cultured preadipogenic 3T3-L1 cells were transfected stably with a mammalian expression vector having cDNA encoding murine L-PGDS oriented in the sense direction. The isolated cloned stable transfectants with L-PGDS expressed higher levels of the transcript and protein levels of L-PGDS, and synthesized PGD{sub 2} from exogenous arachidonic acid at significantly higher levels. By contrast, the synthesis of PGE{sub 2} remained unchanged, indicating no influence on the reactions of cyclooxygenase (COX) and PGE synthase. Furthermore, the ability of those transfectants to synthesize {Delta}{sup 12}-PGJ{sub 2} increased more greatly during the maturation phase. The sustained expression of L-PGDS in cultured stable transfectants hampered the storage of fats during the maturation phase of adipocytes, which was accompanied by the reduced gene expression of adipocyte-specific markers reflecting the down-regulation of the adipogenesis program. The suppressed adipogenesis was not rescued by either exogenous aspirin or peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonists including troglitazone and {Delta}{sup 12}-PGJ{sub 2}. Taken together, the results indicate the negative regulation of the adipogenesis program by the enhanced expression of L-PGDS through a cellular mechanism involving the interference of the PPAR{gamma} signaling pathway without the contribution of endogenous pro-adipogenic prostanoids

  17. Molecular cloning and functional expression analysis of a new gene encoding geranylgeranyl diphosphate synthase from hazel (Corylus avellana L. Gasaway).

    Science.gov (United States)

    Wang, Yechun; Miao, Zhiqi; Tang, Kexuan

    2010-10-01

    Geranylgeranyl diphosphate synthase (GGPPS) [EC 2.5.1.29] catalyzes the biosynthesis of geranylgeranyl diphosphate (GGPP), which is a key precursor for diterpenes such as taxol. Herein, a full-length cDNA encoding GGPPS (designated as CgGGPPS) was cloned and characterized from hazel (Corylus avellana L. Gasaway), a taxol-producing angiosperms. The full-length cDNA of CgGGPPS was 1515 bp with a 1122 bp open reading frame (ORF) encoding a 373 amino acid polypeptide. The CgGGPPS genomic DNA sequence was also obtained, revealing CgGGPPS gene was not interrupted by an intron. Southern blot analysis indicated that CgGGPPS belonged to a small gene family. Tissue expression pattern analysis indicated that CgGGPPS expressed the highest in leaves. RT-PCR analysis indicated that CgGGPPS expression could be induced by exogenous methyl jasmonate acid. Furthermore, carotenoid accumulation was observed in Escherichia coli carrying pACCAR25ΔcrtE plasmid carrying CgGGPPS. The result revealed that cDNA encoded a functional GGPP synthase.

  18. Effects of Naoxintong on atherosclerosis and inducible nitric oxide synthase expression in atherosclerotic rabbit

    Institute of Scientific and Technical Information of China (English)

    ZHONG Xiao-nan; WANG Hong-hao; LU Zheng-qi; DAI Yong-qiang; HUANG Jian-hua; QIU Wei; SHU Ya-qing

    2013-01-01

    Background High levels of nitric oxide (NO) produced by inducible NO synthase (iNOS) have been associated with atherosclerosis processes.Naoxintong is a traditional Chinese medicine for treatment of cerebrovascular and cardiovascular disease.The aim of the present study was to detect and quantify changes of iNOS mRNA and NO levels in the vessel wall after the administration of Naoxintong in an atherosclerotic rabbit model.Methods Forty New Zealand white rabbits were randomly divided into five groups (n=8).Rabbits were fed a standard diet (group A),an atherogenic diet consisting of 79% standard feed+1% cholesterol+5% lard+15% egg yolk powder (group B),an atherogenic diet with Naoxintong 0.25 mg·kg-1·d-1 (group C),an atherogenic diet with Naoxintong 0.5mg·kg-1·d-1 (group D),or atherogenic diet with Naoxintong 1.0 mg·kg-1·d-1 (group E) for 12 weeks.Results Supplemented administration of Naoxintong led to a down-regulation of cholesterol (CHOL) (P <0.001) and low-density lipoprotein (LDL) (P <0.001).The trend became more notable as the dose of Naoxintong increased; group Cvs.group B (CHOL,P=0.568; LDL-cholesterol (LDL-C),P=0.119),group D vs.group B (CHOL,P=0.264; LDL-C,P=0.027),group E vs.group B (CHOL,P=0.028; LDL-C,P=0.002).Atherosclerotic lesions in aorta were reduced in Naoxintong groups (groups C,D,E) compared to group B.Group B had higher iNOS mRNA (P=0.001) and NO level (P<0.001) than group A.Compared with the atherogenic diet fed-rabbits,Naoxintong supplements decreased the expression of iNOS mRNA (P <0.001) and the NO level (P <0.001) in the vessel wall.Groups given a higher Naoxintong dose exhibited greater benefits.iNOS mRNA and NO levels seemed to be reduced in group C,although the difference did not quite reach statistical significance (iNOS mRNA,P=0.130; NO,P=0.038).iNOS mRNA and NO levels significantly decreased in group D (iNOS mRNA,P=0.019; NO,P=0.018) and group E (iNOS mRNA,P=0.004; NO,P<0.001).Conclusion Naoxintong has

  19. Expression of nitric oxide synthase in the spinal cord after selective brachial plexus injury

    Institute of Scientific and Technical Information of China (English)

    Na Liu; Feng Li; Longju Chen; Wutian Wu

    2006-01-01

    BACKGROUND: Some researches showed that motoneurons in spinal cord anterior horn wound die following brachial plexus injury, but the concrete mechanism of motoneurons death remains unclear.OBJECTIVE: To observe the expression of nitric oxide synthase (NOS) and survival of C7 motoneurons in spinal cord of rats after selective brachial plexus injury.DESIGN: A randomized controlled animal experiment.SETTING: Department of Anatomy, Sun Yet-sen Medical College, Sun Yet-sen University.MATERIALS: Totally 35 adult healthy male Sprague-Dawley rats with the body mass of 200-300 g were provided by Experimental Animal Center, Sun Yet-sen Medical College, Sun Yat-sen University. The rats were divided into control group (n =5) and experimental group (n=30) by random number table method, and the experimental group was divided into three injury subgroups: anterior root avulsion group, dorsal root transection group and spinal cord hemisection group, 10 rats in each group. There were horse anti-neuronal NOS (Nnos) polycolonal antibody (Sigma company) and nicotina mideadeninedinucleotide phosphate (NADPH-d) (SigmaCompany).METHODS: The experiment was performed at Department of Anatomy, Sun Yet-sen Medical College, Sun Yet-sen University between September 2004 and April 2005. ①After anesthetizing the rats, the spinous process of second thoracic vertebra as a marker, the vertebra was exposed from C5 to T1 and the lamina of vertebra was unclenched, and spinal dura mater was carved to expose the spinal nerve dorsal roots of C5-T1.The right ventral root of C7 was avulsed, and the residual root was removed in anterior root avulsion group. The right ventral root of C7 was avulsed and the right dorsal roots of brachial plexus (C5-T1) were cut off in dorsal root transection group. In spinal cord hemisection group, the hemisection between the C5 and C6 spinal segment on right side and avulsion of right ventral root of C7 were made. In the control group, the vertebra from C5 to T1 was

  20. Co-expression of Arabidopsis thaliana phytochelatin synthase and Treponema denticola cysteine desulfhydrase for enhanced arsenic accumulation.

    Science.gov (United States)

    Tsai, Shen-Long; Singh, Shailendra; Dasilva, Nancy A; Chen, Wilfred

    2012-02-01

    Arsenic is one of the most hazardous pollutants found in aqueous environments and has been shown to be a carcinogen. Phytochelatins (PCs), which are cysteine-rich and thio-reactive peptides, have high binding affinities for various metals including arsenic. Previously, we demonstrated that genetically engineered Saccharomyces cerevisiae strains expressing phytochelatin synthase (AtPCS) produced PCs and accumulated arsenic. In an effort to further improve the overall accumulation of arsenic, cysteine desulfhydrase, an aminotransferase that converts cysteine into hydrogen sulfide under aerobic condition, was co-expressed in order to promote the formation of larger AsS complexes. Yeast cells producing both AtPCS and cysteine desulfhydrase showed a higher level of arsenic accumulation than a simple cumulative effect of expressing both enzymes, confirming the coordinated action of hydrogen sulfide and PCs in the overall bioaccumulation of arsenic.

  1. Nicotinic receptor mediates nitric oxide synthase expression in the rat gastric myenteric plexus.

    OpenAIRE

    1998-01-01

    The mechanism that regulates the synthesis of nitric oxide synthase (NOS), a key enzyme responsible for NO production in the myenteric plexus, remains unknown. We investigated the roles of the vagal nerve and nicotinic synapses in the mediation of NOS synthesis in the gastric myenteric plexus in rats. Truncal vagotomy and administration of hexamethonium significantly reduced nonadrenergic, noncholinergic relaxation, the catalytic activity of NOS, the number of NOS-immunoreactive cells, and th...

  2. Tissue specificity and diurnal change in gene expression of the sucrose phosphate synthase gene family in rice.

    Science.gov (United States)

    Okamura, Masaki; Aoki, Naohiro; Hirose, Tatsuro; Yonekura, Madoka; Ohto, Chikara; Ohsugi, Ryu

    2011-08-01

    The rice genome contains 5 isogenes for sucrose phosphate synthase (SPS), the key enzyme in sucrose synthesis; however, little is known about their transcriptional regulation. In order to determine the expression patterns of the SPS gene family in rice plants, we conducted an expression analysis in various tissues and developmental stages by real-time quantitative RT-PCR. At the transcript level, the rice SPS genes, particularly SPS1, were preferentially expressed in source tissues, whereas SPS2, SPS6, and SPS8 were expressed equally in source and sink tissues. We also investigated diurnal changes in SPS gene expression, SPS activity, and soluble sugar content in leaf blades. Interestingly, the expression of all the SPS genes, particularly that of SPS1 and SPS11, tended to be higher at night when the activation state of the SPS proteins was low, and the mRNA levels of SPS1 and SPS6 were negatively correlated with sucrose content. Furthermore, the temporal patterns of SPS gene expression and sugar content under continuous light conditions suggested the involvement of endogenous rhythm and/or sucrose sensing in the transcriptional regulation of SPS genes. Our data revealed differential expression patterns in the rice SPS gene family and part of the complex mechanisms of their transcriptional control.

  3. Geranyl diphosphate synthase from mint

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  4. Geranyl diphosphate synthase from mint

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wildung, Mark Raymond (Colfax, WA); Burke, Charles Cullen (Moscow, ID); Gershenzon, Jonathan (Jena, DE)

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  5. 1-Aminocyclopropane-1-carboxylate (ACC) deaminases from Methylobacterium radiotolerans and Methylobacterium nodulans with higher specificity for ACC.

    Science.gov (United States)

    Fedorov, Dmitry N; Ekimova, Galina A; Doronina, Nina V; Trotsenko, Yuri A

    2013-06-01

    The 1-aminocyclopropane-1-carboxylate (ACC) deaminases (EC 3.4.99.7), the key enzymes of degradation of the precursor of the phytohormone ethylene, have not been well studied despite their great importance for plant-bacterial interactions. Using blast, the open reading frames encoding ACC deaminases were found in the genomes of epiphytic methylotroph Methylobacterium radiotolerans JCM2831 and nodule-forming endosymbiont Methylobacterium nodulans ORS2060. These genes were named acdS and cloned; recombinant proteins were expressed and purified from Escherichia coli. The enzyme from M. nodulans displayed the highest substrate specificity among all of the characterized ACC deaminases (Km 0.80 ± 0.04 mM), whereas the enzyme from M. radiotolerans had Km 1.8 ± 0.3 mM. The kcat values were 111.8 ± 0.2 and 65.8 ± 2.8 min(-1) for the enzymes of M. nodulans and M. radiotolerans, respectively. Both enzymes are homotetramers with a molecular mass of 144 kDa, as was demonstrated by size exclusion chromatography and native PAGE. The purified enzymes displayed the maximum activity at 45-50 °C and pH 8.0. Thus, the priority data have been obtained, extending the knowledge of biochemical properties of bacterial ACC deaminases.

  6. Isolation of developing secondary xylem specific cellulose synthase genes and their expression profiles during hormone signalling in Eucalyptus tereticornis

    Indian Academy of Sciences (India)

    Balachandran Karpaga Raja Sundari; Modhumita Ghosh Dasgupta

    2014-08-01

    Cellulose synthases (CesA) represent a group of -1, 4 glycosyl transferases involved in cellulose biosynthesis. Recent reports in higher plants have revealed that two groups of CesA gene families exist, which are associated with either primary or secondary cell wall deposition. The present study aimed at identifying developing secondary xylem specific cellulose synthase genes from Eucalyptus tereticornis, a species predominantly used in paper and pulp industries in the tropics. The differential expression analysis of the three EtCesA genes using qRT-PCR revealed 49 to 87 fold relative expression in developing secondary xylem tissues. Three full length gene sequences of EtCesA1, EtCesA2 and EtCesA3 were isolated with the size of 2940, 3114 and 3123 bp, respectively. Phytohormone regulation of all three EtCesA genes were studied by exogenous application of gibberellic acid, naphthalene acetic acid, indole acetic acid and 2, 4-epibrassinolide in internode tissues derived from three-month-old rooted cuttings. All three EtCesA transcripts were upregulated by indole acetic acid and gibberellic acid. This study demonstrates that the increased cellulose deposition in the secondary wood induced by hormones can be attributed to the upregulation of xylem specific CesAs.

  7. Heterologous expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in rice leads to lower arsenic accumulation in grain.

    Science.gov (United States)

    Shri, Manju; Dave, Richa; Diwedi, Sanjay; Shukla, Devesh; Kesari, Ravi; Tripathi, Rudra Deo; Trivedi, Prabodh Kumar; Chakrabarty, Debasis

    2014-07-22

    Recent studies have identified rice (Oryza sativa) as a major dietary source of inorganic arsenic (As) and poses a significant human health risk. The predominant model for plant detoxification of heavy metals is complexation of heavy metals with phytochelatins (PCs), synthesized non-translationally by PC synthase (PCS) and compartmentalized in vacuoles. In this study, in order to restrict As in the rice roots as a detoxification mechanism, a transgenic approach has been followed through expression of phytochelatin synthase, CdPCS1, from Ceratophyllum demersum, an aquatic As-accumulator plant. CdPCS1 expressing rice transgenic lines showed marked increase in PCS activity and enhanced synthesis of PCs in comparison to non-transgenic plant. Transgenic lines showed enhanced accumulation of As in root and shoot. This enhanced metal accumulation potential of transgenic lines was positively correlated to the content of PCs, which also increased several-fold higher in transgenic lines. However, all the transgenic lines accumulated significantly lower As in grain and husk in comparison to non-transgenic plant. The higher level of PCs in transgenic plants relative to non-transgenic presumably allowed sequestering and detoxification of higher amounts of As in roots and shoots, thereby restricting its accumulation in grain.

  8. Expression in Arabidopsis of a Strawberry Linalool Synthase Gene Under the Control of the Inducible Potato P12 Promoter

    Institute of Scientific and Technical Information of China (English)

    YANG Li-mei; Per Mercke; Joop J A van Loon; FANG Zhi-yuan; Marcel Dicke; Maarten A Jongsma

    2008-01-01

    To investigate the role of inducible linalool in Arabidopsis-insect interactions, the FANESl linalool synthase (LIS) cDNA from strawberry with plastid targeting and a synthetic intron (LIS') was placed under the control of the wound inducible proteinase inhibitor 2 (PI2) promoter from potato. The construct pBin-PP12-LIS' was transformed to Arabidopsis thaliana ecotype Columbia O. Kanamycin resistant T0 seedlings were confirmed for the presence and transcription of the LIS' gene by PCR analysis on genomic DNA and by RT-PCR analysis on RNA. Genomic and RT-PCR products were sequenced to confirm correct splicing of the synthetic intron. The expression of active linalool synthase by the PP12-LIS' gene construct in the transgenic lines was assessed by measuring linalool emission using solid phase micro-extraction (SPME) GC-MS measurements after induction with methyl jasmonate. Among 30 tested independent T2 transgenic lines, 10 exhibited linalool production.Linalool expression could be induced by methyl jasmonate treatment, but not by diamondback moth larvae.

  9. Cloning, expression, and characterization of soluble starch synthase I cDNA from taro (Colocasia esculenta Var. esculenta).

    Science.gov (United States)

    Lin, Da-Gin; Jeang, Chii-Ling

    2005-10-01

    Soluble starch synthase I (SSSI) cDNA was isolated from taro (Colocasia esculenta var. esculenta) by RT-PCR and rapid amplification of cDNA ends reaction. The transcript of this single-copy gene is 2340 bp and encodes 642 amino acids protein containing a putative transit peptide of 54 residues. Recombinant SSSI protein displayed both primer-dependent and primer-independent activities of starch synthase. More SSSI transcript was expressed in taro leaves than in tubers, with no evident expression in petioles; and more transcript and protein were found in tubers of 597 +/- 37 g of fresh weight than in smaller or larger ones. Two forms of SSSI, i.e., 72 and 66 kDa, exist in leaves, and only the 66 kDa form was found in tubers. The taro SSSI, proposed as a novel member, was located only in the soluble fraction of tuber extract, while SSSI from other sources exist in both soluble and granule-bound forms.

  10. Molecular cloning and expression profile of β-ketoacyl-acp synthase gene from tung tree (Vernicia fordii Hemsl.

    Directory of Open Access Journals (Sweden)

    Long Hongxu

    2015-01-01

    Full Text Available Tung tree (Vernicia fordii is an important woody oil tree. Tung tree seeds contain 50-60% oil with approximately 80 mole α-eleostearic acid (9 cis, 11 trans, 13 trans octadecatrienoic acid. Fatty acid synthesis is catalyzed by the concerted action of acetyl-CoA carboxylase and fatty acid synthase, a multienzyme complex including β-ketoacyl-acyl-carrier-protein synthase (KAS. Little is known about KAS in tung tree. The objective of this study was to clone KAS genes and analyze their expression profiles in tung tree. A full-length cDNA encoding KAS III and a partial cDNA encoding KAS II were isolated from tung tree by PCR cloning using degenerate primers and rapid amplification of cDNA ends system. The full-length cDNA of VfKAS III was 1881 bp in length with an open reading frame of 1212 bp. VfKAS III genomic DNA was also isolated and sequenced, which contained 8 exons in 5403 bp length. The deduced VfKAS III protein shared approximately 80% identity with homologous KAS IIIs from other plants. Quantitative PCR analysis revealed that KAS II and KAS III were expressed in all of the tissues and organs tested but exhibited different expression patterns in tung tree. The expression levels of KAS II in young tissues were much lower than those in mature tissues, whereas the highest expression levels of KAS III were observed in young stem and young leaf. These results should facilitate further studies on the regulation of tung oil biosynthesis by KAS in tung tree.

  11. DOWN-REGULATION OF INDUCIBLE NITRIC OXIDE SYNTHASE EXPRESSION BY INOSITOL HEXAPHOSPHATE IN HUMAN COLON CANCER CELLS.

    Science.gov (United States)

    Kapral, Małgorzata; Wawszczyk, Joanna; Sośnicki, Stanisław; Węglarz, Ludmiła

    2015-01-01

    Inflammatory bowel disease (IBD) is chronic inflammatory condition associated with increased risk of developing colorectal cancer. A number of mediators of inflammation, such as pro-inflammatory cytokines, prostaglandins and nitric oxide have been involved in carcinogenesis, especially in the promotion and progression stages. NO is synthesized from L-arginine by constitutively expressed endothelial and neuronal nitric oxide synthases (eNOS and nNOS, respectively) and an inducible NOS (iNOS) isoform expressed under inflammatory conditions. A selective inhibitors of iNOS could be, therefore, considered to be good candidates as chemopreventive agents against colon cancer. In this study, the effect of inositol hexaphosphate (IP6), dietary phytochemical, on the mRNA expression of iNOS stimulated with bacterial lipopolysaccharides (Escherichia coli and Salmonella typhimurium) and IL-1β in intestinal cells Caco-2 for 6 and 12 h was investigated. A transcription level of iNOS with the use real time QRT-PCR technique was determined in cells treated with 1 and 2.5 mM IP6. Stimulation of Caco-2 with pro-inflammatory factors (LPS and IL-1β) resulted in an up-expression of iNOS mRNA at 6 and 12 h. Cells exposed to IP6 only revealed significant reduction in iNOS gene transcription after 12 h. A decrease in iNOS transcription by IP6 following the gene induction by proinflammatory agents in 6 and 12 h lasting cultures was also determined. The findings of this study suggest that one of the anti-cancer and anti-inflammatory abilities of IP6 can be realized by suppressing the expression of gene encoding inducible nitric oxide synthase isoform at the transcriptional level.

  12. Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance.

    Science.gov (United States)

    Romero, C; Bellés, J M; Vayá, J L; Serrano, R; Culiáñez-Macià, F A

    1997-03-01

    The yeast trehalose-6-phosphate synthase gene (TPS1) was engineered under the control of the cauliflower mosaic virus regulatory sequences (CaMV35S) for expression in plants. Using Agrobacterium-mediated transfer, the gene was incorporated into the genomic DNA and constitutively expressed in Nicotiana tabacum L. plants. Trehalose was determined in the transformants, by anion-exchange chromatography coupled to pulsed amperometric detection. The non-reducing disaccharide accumulated up to 0.17 mg per g fresh weight in leaf extracts of transgenic plants. Trehaloseaccumulating plants exhibited multiple phenotypic alterations, including stunted growth, lancet-shaped leaves, reduced sucrose content and improved drought tolerance. These pleiotropic effects, and the fact that water loss from detached leaves was not significantly affected by trehalose accumulation, suggest that synthesis of this sugar, rather than leading to an osmoprotectant effect, had altered sugar metabolism and regulatory pathways affecting plant development and stress tolerance.

  13. Isolation of a sesquiterpene synthase expressing in specialized epithelial cells surrounding the secretory cavities in rough lemon (Citrus jambhiri).

    Science.gov (United States)

    Uji, Yuya; Ozawa, Rika; Shishido, Hodaka; Taniguchi, Shiduku; Takabayashi, Junji; Akimitsu, Kazuya; Gomi, Kenji

    2015-05-15

    Volatile terpenoids such as monoterpenes and sesquiterpenes play multiple roles in plant responses and are synthesized by terpene synthases (TPSs). We have previously isolated a partial TPS gene, RlemTPS4, that responds to microbial attack in rough lemon. In this study, we isolated a full length RlemTPS4 cDNA from rough lemon. RlemTPS4 localized in the cytosol. The recombinant RlemTPS4 protein was obtained using a prokaryotic expression system and GC-MS analysis of the terpenes produced by the RlemTPS4 enzymatic reaction determined that RlemTPS4 produces some sesquiterpenes such as δ-elemene. The RlemTPS4 gene was specifically expressed in specialized epithelial cells surrounding the oil secretory cavities in rough lemon leaf tissue.

  14. Significance of differential expression of thymidylate synthase in normal and primary tumor tissues from patients with colorectal cancer

    Directory of Open Access Journals (Sweden)

    Hua Yawei

    2011-08-01

    Full Text Available Abstract The role of thymidylate synthase (TS is essential as a key rate-limiting enzyme in DNA synthesis. It is the primary target of fluorouracil and its derivates in colorectal cancer. In this study, TS mRNA expression was examined in primary tumor and normal tissues from 76 patients with high- risk stage II/III colorectal cancer by laser capture microdissection and polymerase chain reaction. Thirty (39.47% patients were found to have higher TS expression in primary tumors with earlier stage (P = 0.018, lower histological grades (P = 0.001 and high frequency microsatellite instability (P = 0.000. Multivariate analysis showed that microsatellite instability, histological grade and number of lymph nodes examined are independent prognostic markers.

  15. One type of chalcone synthase gene expressed during embryogenesis regulates the flavonoid accumulation in citrus cell cultures.

    Science.gov (United States)

    Moriguchi, T; Kita, M; Tomono, Y; EndoInagaki, T; Omura, M

    1999-06-01

    To elucidate the relationship between the expression of chalcone synthase (CHS) genes and the production of flavonoid in citrus cell cultures, two cDNA clones encoding CHS were isolated (CitCHS1 and CitCHS2) from the citrus. The accumulation of CitCHS2 mRNA was notably induced by embryogenesis but CitCHS1 mRNA was not. There was no detectable accumulation of flavonoid in the undifferentiated calli, but flavonoid accumulated after the morphological changes to embryoids. These results indicate that two CHS genes differentially expressed during citrus somatic embryogenesis and CitCHS2 may regulate the accumulation of flavonoid in citrus cell cultures.

  16. Inducible nitric oxide synthase expression is related to angiogenesis, bcl-2 and cell proliferation in hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    彭佳萍; 郑树; 孝作祥; 张苏展

    2003-01-01

    In this study, we examined the expression of inducible nitric oxide synthase (iNOS) and vascular endothelial growth factor (VEGF) by immunohistochemical staining in 76 tissue sections collected from hepatocellular carcinoma (HCC) patients undergoing hepatectomy. Microvascular density (MVD) was determined by counting endothelial cells immunostained using anti-CD34 antibody. We performed DNA-flow cytometric analyses to elucidate the impact of iNOS and VEGF expression on the cell cycle of HCC. Most of the HCC cells that invaded stroma were markedly immunostained by iNOS antibody. The iNOS stain intensity of the liver tissue close to the tumor edge was stronger than that of HCC tissue, and the strongest was the hepatocytes closer to the tumor tissue. However, iNOS expression in 10 normal hepatic samples was undetectable. VEGF positive expression ratio was 84.8% in iNOS positive expression cases, and the ratio was 35.3% in negative cases. There was significant correlation (P=0.000) between iNOS and VEGF expression. Moreover, iNOS expression was significantly associated with bcl-2 and MVD, but without p53 expression. DNA-flow cytometric analyses showed that combined expression of iNOS and VEGF had significant impact on the cell cycle in HCC. PI (Proliferating Index) and SPF (S-phase fraction) in the combined positive expression of iNOS and VEGF group was significantly higher than that in the combined negative group. The present findings suggested that iNOS expression was significantly associated with angiogenesis, bcl-2 and cell proliferation of HCC.

  17. Modulation of cerebral RAGE expression following nitric oxide synthase inhibition in rats subjected to focal cerebral ischemia.

    Science.gov (United States)

    Greco, Rosaria; Demartini, Chiara; Zanaboni, Anna Maria; Blandini, Fabio; Amantea, Diana; Tassorelli, Cristina

    2017-04-05

    The receptor for advanced glycation endproducts (RAGE) is a key mediator of neuroinflammation following cerebral ischemia. Nitric oxide (NO) plays a dualistic role in cerebral ischemia, depending on whether it originates from neuronal, inducible or endothelial synthase. Although a dynamic interplay between RAGE and NO pathways exists, its relevance in ischemic stroke has not been investigated. The aim of this study is to evaluate the effect of the NO synthase (NOS) inhibition on RAGE expression in rats subjected to transient middle cerebral artery occlusion (tMCAo). Full-length (fl-RAGE) gene expression was elevated in the striatum and, to a lesser extent, in the cortex of rats undergone tMCAo. The exacerbation of cortical damage caused by systemic administration of L-N-(1-iminoethyl)ornithine (L-NIO), a relatively selective inhibitor of endothelial NOS (eNOS), was associated with elevated mRNA levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α and fl-RAGE in both the cortex and the striatum. Conversely, NG-nitro-l-arginine methyl ester (L-NAME), a non-selective NOS inhibitor, decreased cortical damage, did not affect cerebral cytokine mRNA levels, while it increased fl-RAGE mRNA expression only in the striatum. Fl-RAGE striatal protein levels varied accordingly with observed mRNA changes in the striatum, while in the cortex, RAGE protein levels were reduced by tMCAo and further decreased following L-NIO treatment. Modulation of RAGE expression by different inhibitors of NOS may have opposite effects on transient cortical ischemia: the non selective inhibition of NOS activity is protective, while the selective inhibition of eNOS is harmful, probably via the activation of inflammatory pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Dammarenediol-II production confers TMV tolerance in transgenic tobacco expressing Panax ginseng dammarenediol-II synthase.

    Science.gov (United States)

    Lee, Mi-Hyun; Han, Jung-Yeon; Kim, Hyun-Jung; Kim, Yun-Soo; Huh, Gyung Hye; Choi, Yong-Eui

    2012-01-01

    Panax ginseng is one of the famous medicinal plants. Ginsenosides, a class of tetracyclic triterpene saponins, are mainly responsible for its pharmacological activity. Most ginsenosides are composed of dammarenediol-II aglycone with various sugar moieties. Dammarenediol-II synthase is the first enzyme in the biosynthesis of ginsenosides. Here, we report that transgenic tobacco expressing the P. ginseng dammarenediol-II synthase gene (PgDDS) produced dammarenediol-II, and conferred resistance to Tobacco mosaic virus (TMV). Upon infection with TMV, lesions developed more rapidly in transgenic tobacco plants, and their size was smaller than those of wild-type plants. Transgenic tobacco plants showed a low level of both the viral titer and mRNA accumulation of TMV coat protein (CP) compared with the wild type. The production of dammarenediol-II in transgenic tobacco stimulated the expression of tobacco pathogenesis-related genes (PR1 and PR2) under both virus-untreated and -treated conditions. When the leaves of wild-type plants were inoculated with a mixture of TMV and dammarenediol-II, the leaves exhibited a reduced viral concentration and TMV-CP expression than those receiving TMV treatment alone. When the leaves of P. ginseng were infected with TMV, transcription of PgDDS was significantly increased. Transgenic P. ginseng plants harboring a β-glucuronidase (GUS) gene driven by the PgDDS promoter were constructed. The GUS expression was activated when the transgenic ginseng plants were treated with TMV. These results indicate that the medicinally important dammarenediol-II can be ectopically produced in tobacco, and the production of dammarenediol-II in tobacco plants allows them to adopt a viral defense system.

  19. Enhanced polyamine accumulation alters carotenoid metabolism at the transcriptional level in tomato fruit over-expressing spermidine synthase.

    Science.gov (United States)

    Neily, Mohamed Hichem; Matsukura, Chiaki; Maucourt, Mickaël; Bernillon, Stéphane; Deborde, Catherine; Moing, Annick; Yin, Yong-Gen; Saito, Takeshi; Mori, Kentaro; Asamizu, Erika; Rolin, Dominique; Moriguchi, Takaya; Ezura, Hiroshi

    2011-02-15

    Polyamines are involved in crucial plant physiological events, but their roles in fruit development remain unclear. We generated transgenic tomato plants that show a 1.5- to 2-fold increase in polyamine content by over-expressing the spermidine synthase gene, which encodes a key enzyme for polyamine biosynthesis. Pericarp-columella and placental tissue from transgenic tomato fruits were subjected to (1)H-nuclear magnetic resonance (NMR) for untargeted metabolic profiling and high-performance liquid chromatography-diode array detection for carotenoid profiling to determine the effects of high levels of polyamine accumulation on tomato fruit metabolism. A principal component analysis of the quantitative (1)H NMR data from immature green to red ripe fruit showed a clear discrimination between developmental stages, especially during ripening. Quantification of 37 metabolites in pericarp-columella and 41 metabolites in placenta tissues revealed distinct metabolic profiles between the wild type and transgenic lines, particularly at the late ripening stages. Notably, the transgenic tomato fruits also showed an increase in carotenoid accumulation, especially in lycopene (1.3- to 2.2-fold), and increased ethylene production (1.2- to 1.6-fold) compared to wild-type fruits. Genes responsible for lycopene biosynthesis, including phytoene synthase, phytoene desaturase, and deoxy-d-xylulose 5-phosphate synthase, were significantly up-regulated in ripe transgenic fruits, whereas genes involved in lycopene degradation, including lycopene-epsilon cyclase and lycopene beta cyclase, were down-regulated in the transgenic fruits compared to the wild type. These results suggest that a high level of accumulation of polyamines in the tomato regulates the steady-state level of transcription of genes responsible for the lycopene metabolic pathway, which results in a higher accumulation of lycopene in the fruit.

  20. Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases

    Directory of Open Access Journals (Sweden)

    Saito Koji

    2005-08-01

    Full Text Available Abstract Background In Arabidopsis, ETO1 (ETHYLENE-OVERPRODUCER1 is a negative regulator of ethylene evolution by interacting with AtACS5, an isoform of the rate-limiting enzyme, 1-aminocyclopropane-1-carboxylate synthases (ACC synthase or ACS, in ethylene biosynthetic pathway. ETO1 directly inhibits the enzymatic activity of AtACS5. In addition, a specific interaction between ETO1 and AtCUL3, a constituent of a new type of E3 ubiquitin ligase complex, suggests the molecular mechanism in promoting AtACS5 degradation by the proteasome-dependent pathway. Because orthologous sequences to ETO1 are found in many plant species including tomato, we transformed tomato with Arabidopsis ETO1 to evaluate its ability to suppress ethylene production in tomato fruits. Results Transgenic tomato lines that overexpress Arabidopsis ETO1 (ETO1-OE did not show a significant delay of fruit ripening. So, we performed yeast two-hybrid assays to investigate potential heterologous interaction between ETO1 and three isozymes of ACC synthases from tomato. In the yeast two-hybrid system, ETO1 interacts with LE-ACS3 as well as AtACS5 but not with LE-ACS2 or LE-ACS4, two major isozymes whose gene expression is induced markedly in ripening fruits. According to the classification of ACC synthases, which is based on the C-terminal amino acid sequences, both LE-ACS3 and AtACS5 are categorized as type 2 isozymes and possess a consensus C-terminal sequence. In contrast, LE-ACS2 and LE-ACS4 are type 1 and type 3 isozymes, respectively, both of which do not possess this specific C-terminal sequence. Yeast two-hybrid analysis using chimeric constructs between LE-ACS2 and LE-ACS3 revealed that the type-2-ACS-specific C-terminal tail is required for interaction with ETO1. When treated with auxin to induce LE-ACS3, seedlings of ETO1-OE produced less ethylene than the wild type, despite comparable expression of the LE-ACS3 gene in the wild type. Conclusion These results suggest that ETO1

  1. Expression of inducible nitric oxide synthase and cyclooxygenase-2 in pancreatic adenocarcinoma:Correlation with microvessel density

    Institute of Scientific and Technical Information of China (English)

    Hans U. Kasper; Hella Wolf; Uta Drebber; Helmut K. Wolf; Michael A. Kern

    2004-01-01

    AIM: Cyclooxygenases (COX) are key enzymes for conversion of arachidonic acid to prostaglandins. Nitric oxide synthase (NOS) is the enzyme responsible for formation of nitric oxide.Both have constitutive and inducible isoforms. The inducible isoforms (iNOS and COX-2) are of great interest as regulators of tumor angiogenesis, tumorigenesis and inflammatory processes. This study was to clarify their role in pancreatic adenocarcinomas.METHODS: We investigated the immunohistochemical iNOS and COX-2 expression in 40 pancreatic ducal adenocarcinomas of different grade and stage. The results were compared with microvessel density and clinicopathological data.RESULTS: Twenty-one (52.5%) of the cases showed iNOS expression, 15 (37.5%) of the cases were positive for COX-2.The immunoreaction was heterogeneously distributed within the tumors. Staining intensity was different between the tumors. No correlation between iNOS and COX-2 expression was seen. There was no relationship with microvessel density.However, iNOS positive tumors developed more often distant metastases and the more malignant tumors showed a higher COX-2 expression. There was no correlation with other clinicopathological data.CONCLUSION: Approximately half of the cases expressed iNOS and COX-2. These two enzymes do not seem to be the key step in angiogenesis or carcinogenesis of pancreatic adenocarcinomas. Due to a low prevalence of COX-2expression, chemoprevention of pancreatic carcinomas by COX-2 inhibitors can only achieve a limited success.

  2. New insights into 1-aminocyclopropane-1-carboxylate (ACC deaminase phylogeny, evolution and ecological significance.

    Directory of Open Access Journals (Sweden)

    Francisco X Nascimento

    Full Text Available The main objective of this work is the study of the phylogeny, evolution and ecological importance of the enzyme 1-aminocyclopropane-1-carboxylate (ACC deaminase, the activity of which represents one of the most important and studied mechanisms used by plant growth-promoting microorganisms. The ACC deaminase gene and its regulatory elements presence in completely sequenced organisms was verified by multiple searches in diverse databases, and based on the data obtained a comprehensive analysis was conducted. Strain habitat, origin and ACC deaminase activity were taken into account when analyzing the results. In order to unveil ACC deaminase origin, evolution and relationships with other closely related pyridoxal phosphate (PLP dependent enzymes a phylogenetic analysis was also performed. The data obtained show that ACC deaminase is mostly prevalent in some Bacteria, Fungi and members of Stramenopiles. Contrary to previous reports, we show that ACC deaminase genes are predominantly vertically inherited in various bacterial and fungal classes. Still, results suggest a considerable degree of horizontal gene transfer events, including interkingdom transfer events. A model for ACC deaminase origin and evolution is also proposed. This study also confirms the previous reports suggesting that the Lrp-like regulatory protein AcdR is a common mechanism regulating ACC deaminase expression in Proteobacteria, however, we also show that other regulatory mechanisms may be present in some Proteobacteria and other bacterial phyla. In this study we provide a more complete view of the role for ACC deaminase than was previously available. The results show that ACC deaminase may not only be related to plant growth promotion abilities, but may also play multiple roles in microorganism's developmental processes. Hence, exploring the origin and functioning of this enzyme may be the key in a variety of important agricultural and biotechnological applications.

  3. Chondrogenic potential of canine articular cartilage derived cells (cACCs

    Directory of Open Access Journals (Sweden)

    Nowak Urszula

    2016-01-01

    Full Text Available In the present paper, the potential of canine articular cartilage-derived cells (cACCs for chondrogenic differentiation was evaluated. The effectiveness of cACCs’ lineage commitment was analyzed after 14 days of culture in chondorgenic and non-chondrogenic conditions. Formation of proteoglycan-rich extracellular matrix was assessed using histochemical staining – Alcian Blue and Safranin-O, while elemental composition was determined by means of SEM-EDX. Additionally, ultrastructure of cACCs was evaluated using TEM. The expression of genes involved in chondrogenesis was monitored with quantitative Real Time PCR. Results obtained indicate that the potential of cACCs for cartilagous extracellular matrix formation may be maintained only in chondrogenic cultures. The formation of specific chondro-nodules was not observed in a non-chondrogenic culture environment. The analysis of cACCs’ ultrastructure, both in non-chondrogenic and chondrogenic cultures, revealed well-developed rough endoplasmatic reticulum and presence of mitochondria. The cACCs in chondrogenic medium shed an increased number of microvesicles. Furthermore, it was shown that the extracellular matrix of cACCs in chondrogenic cultures is rich in potassium and molybdenum. Additionally, it was determined that gene expression of collagen type II, aggrecan and SOX-9 was significantly increased during chondrogenic differentiation of cACCs. Results obtained indicate that the culture environment may significantly influence the cartilage phenotype of cACCs during long term culture.

  4. Cloning, expression, and characterization of (+)-delta-cadinene synthase: a catalyst for cotton phytoalexin biosynthesis.

    Science.gov (United States)

    Chen, X Y; Chen, Y; Heinstein, P; Davisson, V J

    1995-12-20

    In cotton, sesquiterpene phytoalexins are elicited in response to bacterial or fungal infection. A Gossypium arboreum cell suspension culture which produces the sesquiterpene phytoalexin gossypol showed a time-dependent 10-fold increase in a 1.9-kb mRNA in response to a challenge by a preparation from Verticillium dahliae. The mRNA prepared from these elicited cultures was used to isolated two cDNA clones that contain open frames coding for proteins of 554 amino acids with M(r) 64,096 and 64,118. The encoded protein shows a significant degree of sequence identity with the other known plant terpene cyclases. Western blot analyses with a cross-reactive monoclonal antibody from a related sesquiterpene synthase in Nicotiana tabacum showed a time-dependent increase of a 65-kDa protein which reached a maximal level 24 h post elicitor treatment. The encoded protein from the pXC1 cDNA was produced in Escherichia coli and purified by affinity column chromatography. The enzymatic properties of this protein were identified by a radiochemical assay for cyclization of farnesyldiphosphate and a product structure was assigned by GC-MS, chiral phase GC, and NMR analyses as (+)-delta-cadinene. The fungal-elicited production of a (+)-delta-cadinene synthase is consistent with a role for this enzyme as the first committed step in the pathways leading to the related phytoalexins gossypol and lacinilene C in cotton.

  5. The effect of inoculation with mycorrhizal arbuscular fungi on expression of limonene synthase in Mentha spicata L. genotypes

    Directory of Open Access Journals (Sweden)

    Leila Shabani

    2015-03-01

    Full Text Available Spearmint (Mentha spicata L. is an important economical and medicinal plant from Lamiaceae family, which has gained research attraction as a model for biosynthesis of essential oils due to its high capability for synthesis of monoterpenes. Limonene is a simple monoterpene and its biosynthesis is catalyzed by limonene synthase a key regulatory enzyme in the biosynthesis pathway of monoterpenes in spearmint plant. This study was concerned with the effect of colonization of roots with Funneliformis mosseae and F. etunicatum fungi on spearmint plant growth indices, leaf essential oils and changes in the expression of limonene synthase (LS gene. This study also explained the application of GADPH gene as the internal standard for real-time quantitative PCR (RTqPCR analysis of LS in spearmints. Our results showed that essential oil content of leaf in spearmint genotype Meybod inoculated with F. etunicatum was higher than that of genotypes from populations Kashan and Bojnourd and was 130% higher than the control. According to the results of this study, increase in transcript accumulation of the LS gene in leaves of spearmint plants inoculated with F. etunicatum was concordant with the increased essential oil contents and was dependent on the plant genotype.

  6. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic study of molybdopterin synthase from Thermus thermophilus HB8

    Energy Technology Data Exchange (ETDEWEB)

    Kanaujia, Shankar Prasad; Ranjani, Chellamuthu Vasuki [Bioinformatics Centre (Centre of Excellence in Structural Biology and Biocomputing), Indian Institute of Science, Bangalore 560 012 (India); Jeyakanthan, Jeyaraman; Ohmori, Miwa; Agari, Kazuko; Kitamura, Yoshiaki [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Baba, Seiki [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Ebihara, Akio; Shinkai, Akeo [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Kuramitsu, Seiki [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Shiro, Yoshitsugu [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); Sekar, Kanagaraj, E-mail: sekar@physics.iisc.ernet.in [Bioinformatics Centre (Centre of Excellence in Structural Biology and Biocomputing), Indian Institute of Science, Bangalore 560 012 (India); Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560 012 (India); Yokoyama, Shigeyuki, E-mail: sekar@physics.iisc.ernet.in [RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045 (Japan); Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Bioinformatics Centre (Centre of Excellence in Structural Biology and Biocomputing), Indian Institute of Science, Bangalore 560 012 (India)

    2007-04-01

    The molybdopterin synthase from T. thermophilus HB8 was cloned, expressed, purified and crystallized. The crystals belong to space group P2{sub 1} and diffracted to a resolution of 1.64 Å. Thermus thermophilus is a Gram-negative aerobic thermophilic eubacterium which can grow at temperatures ranging from 323 to 355 K. In addition to their importance in thermostability or adaptation strategies for survival at high temperatures, the thermostable enzymes in thermophilic organisms contribute to a wide range of biotechnological applications. The molybdenum cofactor in all three kingdoms consists of a tricyclic pyranopterin termed molybdopterin that bears the cis-dithiolene group responsible for molybdenum ligation. The crystals of molybdopterin synthase from T. thermophilus HB8 belong to the primitive monoclinic space group P2{sub 1}, with unit-cell parameters a = 33.94, b = 103.32, c = 59.59 Å, β = 101.3°. Preliminary studies and molecular-replacement calculations reveal the presence of three monomers in the asymmetric unit.

  7. Cloning, expression, and characterization of para-aminobenzoic acid (PABA) synthase from Agaricus bisporus 02, a thermotolerant mushroom strain.

    Science.gov (United States)

    Deng, Li-Xin; Shen, Yue-Mao; Song, Si-Yang

    2015-01-01

    The pabS gene of Agaricus bisporus 02 encoding a putative PABA synthase was cloned, and then the recombinant protein was expressed in Escherichia coli BL21 under the control of the T7 promoter. The enzyme with an N-terminal GST tag or His tag, designated GST-AbADCS or His-AbADCS, was purified with glutathione Sepharose 4B or Ni Sepharose 6 Fast Flow. The enzyme was an aminodeoxychorismate synthase, and it was necessary to add with an aminodeoxychorismate lyase for synthesizing PABA. AbADCS has maximum activity at a temperature of approximately 25°C and pH 8.0. Magnesium or manganese ions were necessary for the enzymatic activity. The Michaelis-Menten constant for chorismate was 0.12 mM, and 2.55 mM for glutamine. H2O2 did distinct damage on the activity of the enzyme, which could be slightly recovered by Hsp20. Sulfydryl reagents could remarkably promote its activity, suggesting that cysteine residues are essential for catalytic function.

  8. Differential expression of cellulose synthase (CesA) gene transcripts in potato as revealed by QRT-PCR.

    Science.gov (United States)

    Obembe, Olawole O; Jacobsen, Evert; Vincken, Jean-Paul; Visser, Richard G F

    2009-01-01

    Two transgenic potato lines, csr2-1 and csr4-8 that contained two different antisense cellulose synthase (CesA) genes, csr2 and csr4, respectively were crossed. The aim, amongst others, was to investigate the possibility of generating double transformants to validate a hypothetical presence of the proteins of the two CesA genes in the same cellulose synthase enzyme complex. SYBR-Green quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) assays were carried out on four CesA gene transcripts (CesA1, 2, 3, and 4) in the wild type genetic background, and on the two antisense CesA gene transcripts (CesA2 and 4) in the progeny resulting from the cross between the two transgenic potato lines. The quantitative RT-PCR analyses revealed different expression patterns of the two CesA genes. The CesA2 mRNA was shown to be relatively more abundant than CesA4 mRNA, regardless of the genetic background, suggesting that the two proteins are not present in the same enzyme complex.

  9. Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase.

    Science.gov (United States)

    Mahmoud, S S; Croteau, R B

    2001-07-17

    Peppermint (Mentha x piperita L.) was independently transformed with a homologous sense version of the 1-deoxy-d-xylulose-5-phosphate reductoisomerase cDNA and with a homologous antisense version of the menthofuran synthase cDNA, both driven by the CaMV 35S promoter. Two groups of transgenic plants were regenerated in the reductoisomerase experiments, one of which remained normal in appearance and development; another was deficient in chlorophyll production and grew slowly. Transgenic plants of normal appearance and growth habit expressed the reductoisomerase transgene strongly and constitutively, as determined by RNA blot analysis and direct enzyme assay, and these plants accumulated substantially more essential oil (about 50% yield increase) without change in monoterpene composition compared with wild-type. Chlorophyll-deficient plants did not afford detectable reductoisomerase mRNA or enzyme activity and yielded less essential oil than did wild-type plants, indicating cosuppression of the reductoisomerase gene. Plants transformed with the antisense version of the menthofuran synthase cDNA were normal in appearance but produced less than half of this undesirable monoterpene oil component than did wild-type mint grown under unstressed or stressed conditions. These experiments demonstrate that essential oil quantity and quality can be regulated by metabolic engineering. Thus, alteration of the committed step of the mevalonate-independent pathway for supply of terpenoid precursors improves flux through the pathway that leads to increased monoterpene production, and antisense manipulation of a selected downstream monoterpene biosynthetic step leads to improved oil composition.

  10. Expression of a GALACTINOL SYNTHASE gene is positively associated with desiccation tolerance of Brassica napus seeds during development.

    Science.gov (United States)

    Li, Xu; Zhuo, Jiajin; Jing, Yin; Liu, Xiao; Wang, Xiaofeng

    2011-10-15

    Desiccation tolerance of seeds is positively correlated with raffinose family oligosaccharides (RFOs). However, RFOs' role in desiccation tolerance is still a matter of controversy. The aim of this work was to monitor the accumulation of RFO during acquisition of desiccation tolerance in rapeseed (Brassica napus L.). Rapeseeds become desiccation tolerant at 21-24d after flowering (DAF), and the time was coincident with an accumulation of raffinose and stachyose. A gene encoding galactinol synthase (GolS; EC2.4.1.123), involved in RFO biosynthesis, was cloned and functionally characterized. Enzymatic properties of recombinant galactinol synthase were also determined. Accumulation of BnGOLS-1 mRNA in developing rapeseeds was concomitant with dry weight deposition and the acquisition of desiccation tolerance, and was concurrent with the formation of raffinose and stachyose. The physiological implications of BnGOLS-1 expression patterns in developing seeds are discussed in light of the hypothesized role of RFOs in seed desiccation tolerance. Copyright © 2011 Elsevier GmbH. All rights reserved.

  11. Crystallization and preliminary crystallographic analysis of latent, active and recombinantly expressed aurone synthase, a polyphenol oxidase, from Coreopsis grandiflora

    Energy Technology Data Exchange (ETDEWEB)

    Molitor, Christian; Mauracher, Stephan Gerhard; Rompel, Annette, E-mail: annette.rompel@univie.ac.at [Universität Wien, Althanstrasse 14, 1090 Wien (Austria)

    2015-05-22

    Latent and active aurone synthase purified from petals of C. grandiflora (cgAUS1) were crystallized. The crystal quality of recombinantly expressed latent cgAUS1 was significantly improved by co-crystallization with the polyoxotungstate Na{sub 6}[TeW{sub 6}O{sub 24}] within the liquid–liquid phase-separation zone. Aurone synthase (AUS), a member of a novel group of plant polyphenol oxidases (PPOs), catalyzes the oxidative conversion of chalcones to aurones. Two active cgAUS1 (41.6 kDa) forms that differed in the level of phosphorylation or sulfation as well as the latent precursor form (58.9 kDa) were purified from the petals of Coreopsis grandiflora. The differing active cgAUS1 forms and the latent cgAUS1 as well as recombinantly expressed latent cgAUS1 were crystallized, resulting in six different crystal forms. The active forms crystallized in space groups P2{sub 1}2{sub 1}2{sub 1} and P12{sub 1}1 and diffracted to ∼1.65 Å resolution. Co-crystallization of active cgAUS1 with 1,4-resorcinol led to crystals belonging to space group P3{sub 1}21. The crystals of latent cgAUS1 belonged to space group P12{sub 1}1 and diffracted to 2.50 Å resolution. Co-crystallization of recombinantly expressed pro-AUS with the hexatungstotellurate(VI) salt Na{sub 6}[TeW{sub 6}O{sub 24}] within the liquid–liquid phase separation zone significantly improved the quality of the crystals compared with crystals obtained without hexatungstotellurate(VI)

  12. Hydrocellular foam dressing promotes wound healing along with increases in hyaluronan synthase 3 and PPARα gene expression in epidermis.

    Directory of Open Access Journals (Sweden)

    Takumi Yamane

    Full Text Available BACKGROUND: Hydrocellular foam dressing, modern wound dressing, induces moist wound environment and promotes wound healing: however, the regulatory mechanisms responsible for these effects are poorly understood. This study was aimed to reveal the effect of hydrocellular foam dressing on hyaluronan, which has been shown to have positive effects on wound healing, and examined its regulatory mechanisms in rat skin. METHODOLOGY/PRINCIPAL FINDINGS: We created two full-thickness wounds on the dorsolateral skin of rats. Each wound was covered with either a hydrocellular foam dressing or a film dressing and hyaluronan levels in the periwound skin was measured. We also investigated the mechanism by which the hydrocellular foam dressing regulates hyaluronan production by measuring the gene expression of hyaluronan synthase 3 (Has3, peroxisome proliferator-activated receptor α (PPARα, and CD44. Hydrocellular foam dressing promoted wound healing and upregulated hyaluronan synthesis, along with an increase in the mRNA levels of Has3, which plays a primary role in hyaluronan synthesis in epidermis. In addition, hydrocellular foam dressing enhanced the mRNA levels of PPARα, which upregulates Has3 gene expression, and the major hyaluronan receptor CD44. CONCLUSIONS/SIGNIFICANCE: These findings suggests that hydrocellular foam dressing may be beneficial for wound healing along with increases in hyaluronan synthase 3 and PPARα gene expression in epidermis. We believe that the present study would contribute to the elucidation of the mechanisms underlying the effects of hydrocellular foam dressing-induced moist environment on wound healing and practice evidence-based wound care.

  13. The organ-specific expression of terpene synthase genes contributes to the terpene hydrocarbon composition of chamomile essential oils

    Directory of Open Access Journals (Sweden)

    Irmisch Sandra

    2012-06-01

    Full Text Available Abstract Background The essential oil of chamomile, one of the oldest and agronomically most important medicinal plant species in Europe, has significant antiphlogistic, spasmolytic and antimicrobial activities. It is rich in chamazulene, a pharmaceutically active compound spontaneously formed during steam distillation from the sesquiterpene lactone matricine. Chamomile oil also contains sesquiterpene alcohols and hydrocarbons which are produced by the action of terpene synthases (TPS, the key enzymes in constructing terpene carbon skeletons. Results Here, we present the identification and characterization of five TPS enzymes contributing to terpene biosynthesis in chamomile (Matricaria recutita. Four of these enzymes were exclusively expressed in above-ground organs and produced the common terpene hydrocarbons (−-(E-β-caryophyllene (MrTPS1, (+-germacrene A (MrTPS3, (E-β-ocimene (MrTPS4 and (−-germacrene D (MrTPS5. A fifth TPS, the multiproduct enzyme MrTPS2, was mainly expressed in roots and formed several Asteraceae-specific tricyclic sesquiterpenes with (−-α-isocomene being the major product. The TPS transcript accumulation patterns in different organs of chamomile were consistent with the abundance of the corresponding TPS products isolated from these organs suggesting that the spatial regulation of TPS gene expression qualitatively contribute to terpene composition. Conclusions The terpene synthases characterized in this study are involved in the organ-specific formation of essential oils in chamomile. While the products of MrTPS1, MrTPS2, MrTPS4 and MrTPS5 accumulate in the oils without further chemical alterations, (+-germacrene A produced by MrTPS3 accumulates only in trace amounts, indicating that it is converted into another compound like matricine. Thus, MrTPS3, but also the other TPS genes, are good markers for further breeding of chamomile cultivars rich in pharmaceutically active essential oils.

  14. Heterologous expression of chloroplast-localized geranylgeranyl pyrophosphate synthase confers fast plant growth, early flowering and increased seed yield.

    Science.gov (United States)

    Tata, Sandeep Kumar; Jung, Jihye; Kim, Yoon-Ha; Choi, Jun Young; Jung, Ji-Yul; Lee, In-Jung; Shin, Jeong Sheop; Ryu, Stephen Beungtae

    2016-01-01

    Geranylgeranyl pyrophosphate synthase (GGPS) is a key enzyme for a structurally diverse class of isoprenoid biosynthetic metabolites including gibberellins, carotenoids, chlorophylls and rubber. We expressed a chloroplast-targeted GGPS isolated from sunflower (Helianthus annuus) under control of the cauliflower mosaic virus 35S promoter in tobacco (Nicotiana tabacum). The resulting transgenic tobacco plants expressing heterologous GGPS showed remarkably enhanced growth (an increase in shoot and root biomass and height), early flowering, increased number of seed pods and greater seed yield compared with that of GUS-transgenic lines (control) or wild-type plants. The gibberellin levels in HaGGPS-transgenic plants were higher than those in control plants, indicating that the observed phenotype may result from increased gibberellin content. However, in HaGGPS-transformant tobacco plants, we did not observe the phenotypic defects such as reduced chlorophyll content and greater petiole and stalk length, which were previously reported for transgenic plants expressing gibberellin biosynthetic genes. Fast plant growth was also observed in HaGGPS-expressing Arabidopsis and dandelion plants. The results of this study suggest that GGPS expression in crop plants may yield desirable agronomic traits, including enhanced growth of shoots and roots, early flowering, greater numbers of seed pods and/or higher seed yield. This research has potential applications for fast production of plant biomass that provides commercially valuable biomaterials or bioenergy. © 2015 Korea Research Institute of Bioscience & Biotechnology. Plant Biotechnology Journal published by John Wiley & Sons Ltd and Society for Experimental Biology, Association of Applied Biologists.

  15. Expression of nitric oxide synthase in T-cell-dependent liver injury initiated by ConA in Kunming mice

    Institute of Scientific and Technical Information of China (English)

    张修礼; 曲建慧; 万谟彬; 权启镇; 孙自勤; 王要军; 江学良; 李文波

    2004-01-01

    Objective: To investigate whether nitric oxide synthase (NOS) is expressed in T-cell-dependent liver injury initiated by concanavalin A (ConA) in Kunming mice and study the possible effect of nitric oxide(NO) on liver injury models. Methods: Liver injury in Kunming mice was induced by administration of ConA through tail vein. Expression of NOS in the liver was detected by NADPH diaphorase staining method. The possible effect of NO on liver injury models was obtained by L-NAME injection to suppress synthesis of NO. Results: NOS has a strong expression in hepatocytes after ConA injection, especially in those close to the central vein, while only a weak expression was found in the epithelial cells in control group. Liver injury became more serious when NO synthesis was inhibited by L-NAME, accompanied by great malondialdehyde(MDA) increase in serum and severe intrahepatic vascular thrombosis. Conclusion: NOS markedly expressed in ConAinduced liver injury, which may subsequently promote nitric oxide synthesis. Increasement of nitric oxide has a protective effect on ConA-induced liver injury.

  16. Caloric restriction increases internal iliac artery and penil nitric oxide synthase expression in rat: Comparison of aged and adult rats

    Directory of Open Access Journals (Sweden)

    Emin Ozbek

    2013-09-01

    Full Text Available Because of the positive corelation between healthy cardiovascular system and sexual life we aimed to evaluate the effect of caloric restriction (CR on endothelial and neuronal nitric oxide synthase (eNOS, nNOS expression in cavernousal tissues and eNOS expression in the internal iliac artery in young and aged rats. Young (3 mo, n = 7 and aged (24 mo, n = 7 male Sprague-Dawley rats were subjected to 40% CR and were allowed free access to water for 3 months. Control rats (n = 14 fed ad libitum had free access to food and water at all times. On day 90, rats were sacrified and internal iliac arteries and penis were removed and parafinized, eNOS and nNOS expression evaluated with immunohistochemistry. Results were evaluated semiquantitatively. eNOS and nNOS expression in cavernousal tis- sue in CR rats were more strong than in control group in both young and old rats. eNOS expression was also higher in the internal iliac arteries of CR rats than in control in young and old rats. As a result of our study we can say that there is a positive link between CR and neurotransmitter of erection in cavernousal tissues and internal iliac arteries. CR has beneficial effect to prevent sexual dysfunction in young and old animals and possible humans.

  17. Evaluating the Effect of Expressing a Peanut Resveratrol Synthase Gene in Rice.

    Directory of Open Access Journals (Sweden)

    Shigang Zheng

    Full Text Available Resveratrol (Res is a type of natural plant stilbenes and phytoalexins that only exists in a few plant species. Studies have shown that the Res could be biosynthesized and accumulated within plants, once the complete metabolic pathway and related enzymes, such as the key enzyme resveratrol synthase (RS, existed. In this study, a RS gene named PNRS1 was cloned from the peanut, and the activity was confirmed in E. coli. Using transgenic approach, the PNRS1 transgenic rice was obtained. In T3 generation, the Res production and accumulation were further detected by HPLC. Our data revealed that compared to the wild type rice which trans-resveratrol was undetectable, in transgenic rice, the trans-resveratrol could be synthesized and achieved up to 0.697 μg/g FW in seedlings and 3.053 μg/g DW in seeds. Furthermore, the concentration of trans-resveratrol in transgenic rice seedlings could be induced up to eight or four-fold higher by ultraviolet (UV-C or dark, respectively. Simultaneously, the endogenous increased of Res also showed the advantages in protecting the host plant from UV-C caused damage or dark-induced senescence. Our data indicated that Res was involved in host-defense responses against environmental stresses in transgenic rice. Here the results describes the processes of a peanut resveratrol synthase gene transformed into rice, and the detection of trans-resveratrol in transgenic rice, and the role of trans-resveratrol as a phytoalexin in transgenic rice when treated by UV-C and dark. These findings present new outcomes of transgenic approaches for functional genes and their corresponding physiological functions, and shed some light on broadening available resources of Res, nutritional improvement of crops, and new variety cultivation by genetic engineering.

  18. Expression of spearmint limonene synthase in transgenic spike lavender results in an altered monoterpene composition in developing leaves.

    Science.gov (United States)

    Muñoz-Bertomeu, Jesús; Ros, Roc; Arrillaga, Isabel; Segura, Juan

    2008-01-01

    We generated transgenic spike lavender (Lavandula latifolia) plants constitutively expressing the limonene synthase (LS) gene from spearmint (Mentha spicata), encoding the LS enzyme that catalyzes the synthesis of limonene from geranyl diphosphate. Overexpression of the LS transgene did not consistently affect monoterpene profile in pooled leaves or flowers from transgenic T(0) plants. Analyses from cohorts of leaves sampled at different developmental stages showed that essential oil accumulation in transgenic and control plants was higher in developing than in mature leaves. Furthermore, developing leaves of transgenic plants contained increased limonene contents (more than 450% increase compared to controls) that correlated with the highest transcript accumulation of the LS gene. The levels of other monoterpene pathway components were also significantly altered. T(0) transgenic plants were grown for 2 years, self-pollinated, and the T(1) seeds obtained. The increased limonene phenotype was maintained in the progenies that inherited the LS transgene.

  19. Effect of an Introduced Phytoene Synthase Gene Expression on Carotenoid Biosynthesis in the Marine Diatom Phaeodactylum tricornutum

    Directory of Open Access Journals (Sweden)

    Takashi Kadono

    2015-08-01

    Full Text Available Carotenoids exert beneficial effects on human health through their excellent antioxidant activity. To increase carotenoid productivity in the marine Pennales Phaeodactylum tricornutum, we genetically engineered the phytoene synthase gene (psy to improve expression because RNA-sequencing analysis has suggested that the expression level of psy is lower than other enzyme-encoding genes that are involved in the carotenoid biosynthetic pathway. We isolated psy from P. tricornutum, and this gene was fused with the enhanced green fluorescent protein gene to detect psy expression. After transformation using the microparticle bombardment technique, we obtained several P. tricornutum transformants and confirmed psy expression in their plastids. We investigated the amounts of PSY mRNA and carotenoids, such as fucoxanthin and β-carotene, at different growth phases. The introduction of psy increased the fucoxanthin content of a transformants by approximately 1.45-fold relative to the levels in the wild-type diatom. However, some transformants failed to show a significant increase in the carotenoid content relative to that of the wild-type diatom. We also found that the amount of PSY mRNA at log phase might contribute to the increase in carotenoids in the transformants at stationary phase.

  20. Liver dominant expression of fatty acid synthase (FAS) gene in two chicken breeds during intramuscular-fat development.

    Science.gov (United States)

    Cui, H X; Zheng, M Q; Liu, R R; Zhao, G P; Chen, J L; Wen, J

    2012-04-01

    Fatty acid synthase (FAS) is a key enzyme of lipogenesis. In this study, the FAS mRNA expression patterns were examined in three fat related tissues (liver, breast and thigh) at different developmental stages in two chicken breeds (Beijing-You, BJY and Arbor Acres broiler, AA). Results of the Real time-qPCR showed that the expression of FAS mRNA level in liver was significantly higher (P chicken breeds. Significant differences of FAS mRNA expression in liver were found between BJY and AA chickens during different developmental stages. After the contents of intramuscular-fat (IMF) and the liver fat were measured, the correlation analysis was performed. In liver, the FAS mRNA level was highly correlated with hepatic fat content (r = 0.891, P breed. The results here can contribute to the knowledge on the developmental expression pattern of FAS mRNA and facilitate the further research on the molecular mechanism underlying IMF deposition in chicken.

  1. Macrophage metalloelastase (MMP12) regulates adipose tissue expansion, insulin sensitivity, and expression of inducible nitric oxide synthase.

    Science.gov (United States)

    Lee, Jung-Ting; Pamir, Nathalie; Liu, Ning-Chun; Kirk, Elizabeth A; Averill, Michelle M; Becker, Lev; Larson, Ilona; Hagman, Derek K; Foster-Schubert, Karen E; van Yserloo, Brian; Bornfeldt, Karin E; LeBoeuf, Renee C; Kratz, Mario; Heinecke, Jay W

    2014-09-01

    Macrophage metalloelastase, a matrix metallopeptidase (MMP12) predominantly expressed by mature tissue macrophages, is implicated in pathological processes. However, physiological functions for MMP12 have not been described. Because mRNA levels for the enzyme increase markedly in adipose tissue of obese mice, we investigated the role of MMP12 in adipose tissue expansion and insulin resistance. In humans, MMP12 expression correlated positively and significantly with insulin resistance, TNF-α expression, and the number of CD14(+)CD206(+) macrophages in adipose tissue. MMP12 was the most abundant matrix metallopeptidase detected by proteomic analysis of conditioned medium of M2 macrophages and dendritic cells. In contrast, it was detected only at low levels in bone marrow derived macrophages and M1 macrophages. When mice received a high-fat diet, adipose tissue mass increased and CD11b(+)F4/80(+)CD11c(-) macrophages accumulated to a greater extent in MMP12-deficient (Mmp12(-/-)) mice than in wild-type mice (Mmp12(+/+)). Despite being markedly more obese, fat-fed Mmp12(-/-) mice were more insulin sensitive than fat-fed Mmp12(+/+) mice. Expression of inducible nitric oxide synthase (Nos2) by Mmp12(-/-) macrophages was significantly impaired both in vivo and in vitro, suggesting that MMP12 might mediate nitric oxide production during inflammation. We propose that MMP12 acts as a double-edged sword by promoting insulin resistance while combatting adipose tissue expansion.

  2. Citrate-release-mediated aluminum resistance is coupled to the inducible expression of mitochondrial citrate synthase gene in Paraserianthes falcataria.

    Science.gov (United States)

    Osawa, Hiroki; Kojima, Katsumi

    2006-05-01

    Aluminum (Al) resistance in some leguminous plants is achieved by enhanced citrate release from roots. Enhancement requires several hours for complete activation and is postulated to involve Al-responsive genes or components. We examined the mechanism of Al-induced citrate release by studying the relationship between citrate release and expression of the mitochondrial citrate synthase (mCS) gene in three leguminous trees. Root elongation in Leucaena leucocephala (Lam.) de Wit was arrested within 24 h by 30 microM Al, whereas root elongation in Paraserianthes falcataria (L.) Neilson and Acacia mangium Willd. was inhibited mangium maintained enhanced release and accumulation of citrate for at least 28 days in response to Al treatment. Aluminum increased the accumulation of mCS transcripts in P. falcataria roots, but not in L. leucocephala roots, and thus up-regulation decreased following removal of Al. Lanthanum did not alter the expression level of mCS. Aluminum increased mCS activity concomitantly with enhanced mCS gene expression in P. falcataria, whereas it did not affect mCS activity in L. leucocephala. Aluminum content in root apices of P. falcataria was increased by cycloheximide, supporting the idea that de novo synthesis of proteins is a prerequisite for Al resistance. Our findings suggest that Al-inducible expression of mCS coupled with enhanced citrate release mediates Al resistance in P. falcataria.

  3. TCP transcription factors are critical for the coordinated regulation of isochorismate synthase 1 expression in Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Xiaoyan; Gao, Jiong; Zhu, Zheng; Dong, Xianxin; Wang, Xiaolei; Ren, Guodong; Zhou, Xin; Kuai, Benke

    2015-04-01

    Salicylic acid (SA) plays an important role in various aspects of plant development and responses to stresses. To elucidate the sophisticated regulatory mechanism of SA synthesis and signaling, we used a yeast one-hybrid system to screen for regulators of isochorismate synthase 1 (ICS1), a gene encoding the key enzyme in SA biosynthesis in Arabidopsis thaliana. A TCP family transcription factor AtTCP8 was initially identified as a candidate regulator of ICS1. The regulation of ICS1 by TCP proteins is supported by the presence of a typical TCP binding site in the ICS1 promoter. The binding of TCP8 to this site was confirmed by in vitro and in vivo assays. Expression patterns of TCP8 and its corresponding gene TCP9 largely overlapped with ICS1 under pathogen attack. A significant reduction in the expression of ICS1 during immune responses was observed in the tcp8 tcp9 double mutant. We also detected strong interactions between TCP8 and SAR deficient 1 (SARD1), WRKY family transcription factor 28 (WRKY28), NAC (NAM/ATAF1,ATAF2/CUC2) family transcription factor 019 (NAC019), as well as among TCP8, TCP9 and TCP20, suggesting a complex coordinated regulatory mechanism underlying ICS1 expression. Our results collectively demonstrate that TCP proteins are involved in the orchestrated regulation of ICS1 expression, with TCP8 and TCP9 being verified as major representatives.

  4. Gene structure, phylogeny and expression profile of the sucrose synthase gene family in cacao (Theobroma cacao L.)

    Indian Academy of Sciences (India)

    Fupeng Li; Chaoyun Hao; Lin Yan; Baoduo Wu; Xiaowei Qin; Jianxiong Lai; Yinghui Song

    2015-09-01

    In higher plants, sucrose synthase (Sus, EC 2.4.1.13) is widely considered as a key enzyme involved in sucrose metabolism. Although, several paralogous genes encoding different isozymes of Sus have been identified and characterized in multiple plant genomes, to date detailed information about the Sus genes is lacking for cacao. This study reports the identification of six novel Sus genes from economically important cacao tree. Analyses of the gene structure and phylogeny of the Sus genes demonstrated evolutionary conservation in the Sus family across cacao and other plant species. The expression of cacao Sus genes was investigated via real-time PCR in various tissues, different developmental phases of leaf, flower bud and pod. The Sus genes exhibited distinct but partially redundant expression profiles in cacao, with TcSus1, TcSus5 and TcSus6, being the predominant genes in the bark with phloem, TcSus2 predominantly expressing in the seed during the stereotype stage. TcSus3 and TcSus4 were significantly detected more in the pod husk and seed coat along the pod development, and showed development dependent expression profiles in the cacao pod. These results provide new insights into the evolution, and basic information that will assist in elucidating the functions of cacao Sus gene family.

  5. Expression of Prostacyclin-Synthase in Human Breast Cancer: Negative Prognostic Factor and Protection against Cell Death In Vitro

    Directory of Open Access Journals (Sweden)

    Thomas Klein

    2015-01-01

    Full Text Available Endogenously formed prostacyclin (PGI2 and synthetic PGI2 analogues have recently been shown to regulate cell survival in various cell lines. To elucidate the significance of PGI2 in human breast cancer, we performed immunohistochemistry to analyze expression of prostacyclin-synthase (PGIS in 248 human breast cancer specimens obtained from surgical pathology files. We examined patients’ 10-year survival retrospectively by sending a questionnaire to their general practitioners and performed univariate analysis to determine whether PGIS expression correlated with patient survival. Lastly, the effects of PGI2 and its analogues on cell death were examined in a human breast cancer cell line (MCF-7 and a human T-cell leukemia cell line (CCRF-CEM. PGIS expression was observed in tumor cells in 48.7% of samples and was associated with a statistically significant reduction in 10-year survival (P=0.038; n=193. Transient transfection of PGIS into MCF-7 cells exposed to sulindac increased cell viability by 50% and exposure to carbaprostacyclin protected against sulindac sulfone induced apoptosis in CCRF-CEM cells. Expression of PGIS is correlated with a reduced patient survival and protects against cell death in vitro, suggesting that PGIS is a potential therapeutic target in breast cancer.

  6. Gene structure, phylogeny and expression profile of the sucrose synthase gene family in cacao (Theobroma cacao L.).

    Science.gov (United States)

    Li, Fupeng; Hao, Chaoyun; Yan, Lin; Wu, Baoduo; Qin, Xiaowei; Lai, Jianxiong; Song, Yinghui

    2015-09-01

    In higher plants, sucrose synthase (Sus, EC 2.4.1.13) is widely considered as a key enzyme involved in sucrose metabolism. Although, several paralogous genes encoding different isozymes of Sus have been identified and characterized in multiple plant genomes, to date detailed information about the Sus genes is lacking for cacao. This study reports the identification of six novel Sus genes from economically important cacao tree. Analyses of the gene structure and phylogeny of the Sus genes demonstrated evolutionary conservation in the Sus family across cacao and other plant species. The expression of cacao Sus genes was investigated via real-time PCR in various tissues, different developmental phases of leaf, flower bud and pod. The Sus genes exhibited distinct but partially redundant expression profiles in cacao, with TcSus1, TcSus5 and TcSus6, being the predominant genes in the bark with phloem, TcSus2 predominantly expressing in the seed during the stereotype stage. TcSus3 and TcSus4 were significantly detected more in the pod husk and seed coat along the pod development, and showed development dependent expression profiles in the cacao pod. These results provide new insights into the evolution, and basic information that will assist in elucidating the functions of cacao Sus gene family.

  7. Distinctive expression patterns of hypoxia-inducible factor-1α and endothelial nitric oxide synthase following hypergravity exposure

    Science.gov (United States)

    Yoon, Gun; Oh, Choong Sik; Kim, Hyun-Soo

    2016-01-01

    This study was designed to examine the expression of hypoxia-inducible factor-1α (HIF-1α) and the level and activity of endothelial nitric oxide synthase (eNOS) in the hearts and livers of mice exposed to hypergravity. Hypergravity-induced hypoxia and the subsequent post-exposure reoxygenation significantly increased cardiac HIF-1α levels. Furthermore, the levels and activity of cardiac eNOS also showed significant increase immediately following hypergravity exposure and during the reoxygenation period. In contrast, the expression of phosphorylated Akt (p-Akt) and phosphorylated extracellular signal-regulated kinase (p-ERK) showed significant elevation only during the reoxygenation period. These data raise the possibility that the increase in cardiac HIF-1α expression induced by reoxygenation involves a cascade of signaling events, including activation of the Akt and ERK pathways. In the liver, HIF-1α expression was significantly increased immediately after hypergravity exposure, indicating that hypergravity exposure to causes hepatocellular hypoxia. The hypergravity-exposed livers showed significantly higher eNOS immunoreactivity than did those of control mice. Consistent with these results, significant increases in eNOS activity and nitrate/nitrite levels were also observed. These findings suggest that hypergravity-induced hypoxia plays a significant role in the upregulation of hepatic eNOS. PMID:27191892

  8. Cloning and expression of zebrafish genes encoding the heme synthesis enzymes uroporphyrinogen III synthase (UROS) and protoporphyrinogen oxidase (PPO).

    Science.gov (United States)

    Hanaoka, Ryuki; Dawid, Igor B; Kawahara, Atsuo

    2007-02-01

    Heme is synthesized from glycine and succinyl CoA by eight heme synthesis enzymes. Although genetic defects in any of these enzymes are known to cause severe human blood diseases, their developmental expression in mammals is unknown. In this paper, we report two zebrafish heme synthesis enzymes, uroporphyrinogen III synthase (UROS) and protoporphyrinogen oxidase (PPO) that are well conserved in comparison to their human counterparts. Both UROS and PPO formed pairs of bilateral stripes in the lateral plate mesoderm at the 15-somite stage. At 24 h post-fertilization (hpf), UROS and PPO were predominantly expressed in the intermediate cell mass (ICM) that is the major site of primitive hematopoiesis. The expression of UROS and PPO was drastically suppressed in the bloodless mutants cloche and vlad tepes/gata 1 from 15-somite to 24hpf stages, indicating that both cloche and vlad tepes/gata 1 are required for the induction and maintenance of UROS and PPO expression in the ICM.

  9. Differentially expressed galactinol synthase(s) in chickpea are implicated in seed vigor and longevity by limiting the age induced ROS accumulation.

    Science.gov (United States)

    Salvi, Prafull; Saxena, Saurabh Chandra; Petla, Bhanu Prakash; Kamble, Nitin Uttam; Kaur, Harmeet; Verma, Pooja; Rao, Venkateswara; Ghosh, Shraboni; Majee, Manoj

    2016-10-11

    Galactinol synthase (GolS) catalyzes the first and rate limiting step of Raffinose Family Oligosaccharide (RFO) biosynthetic pathway, which is a highly specialized metabolic event in plants. Increased accumulation of galactinol and RFOs in seeds have been reported in few plant species, however their precise role in seed vigor and longevity remain elusive. In present study, we have shown that galactinol synthase activity as well as galactinol and raffinose content progressively increase as seed development proceeds and become highly abundant in pod and mature dry seeds, which gradually decline as seed germination progresses in chickpea (Cicer arietinum). Furthermore, artificial aging also stimulates galactinol synthase activity and consequent galactinol and raffinose accumulation in seed. Molecular analysis revealed that GolS in chickpea are encoded by two divergent genes (CaGolS1 and CaGolS2) which potentially encode five CaGolS isoforms through alternative splicing. Biochemical analysis showed that only two isoforms (CaGolS1 and CaGolS2) are biochemically active with similar yet distinct biochemical properties. CaGolS1 and CaGolS2 are differentially regulated in different organs, during seed development and germination however exhibit similar subcellular localization. Furthermore, seed-specific overexpression of CaGolS1 and CaGolS2 in Arabidopsis results improved seed vigor and longevity through limiting the age induced excess ROS and consequent lipid peroxidation.

  10. Developmental evolution of flowering plant pollen tube cell walls: callose synthase (CalS gene expression patterns

    Directory of Open Access Journals (Sweden)

    Abercrombie Jason M

    2011-07-01

    Full Text Available Abstract Background A number of innovations underlie the origin of rapid reproductive cycles in angiosperms. A critical early step involved the modification of an ancestrally short and slow-growing pollen tube for faster and longer distance transport of sperm to egg. Associated with this shift are the predominantly callose (1,3-β-glucan walls and septae (callose plugs of angiosperm pollen tubes. Callose synthesis is mediated by callose synthase (CalS. Of 12 CalS gene family members in Arabidopsis, only one (CalS5 has been directly linked to pollen tube callose. CalS5 orthologues are present in several monocot and eudicot genomes, but little is known about the evolutionary origin of CalS5 or what its ancestral function may have been. Results We investigated expression of CalS in pollen and pollen tubes of selected non-flowering seed plants (gymnosperms and angiosperms within lineages that diverged below the monocot/eudicot node. First, we determined the nearly full length coding sequence of a CalS5 orthologue from Cabomba caroliniana (CcCalS5 (Nymphaeales. Semi-quantitative RT-PCR demonstrated low CcCalS5 expression within several vegetative tissues, but strong expression in mature pollen. CalS transcripts were detected in pollen tubes of several species within Nymphaeales and Austrobaileyales, and comparative analyses with a phylogenetically diverse group of sequenced genomes indicated homology to CalS5. We also report in silico evidence of a putative CalS5 orthologue from Amborella. Among gymnosperms, CalS5 transcripts were recovered from germinating pollen of Gnetum and Ginkgo, but a novel CalS paralog was instead amplified from germinating pollen of Pinus taeda. Conclusion The finding that CalS5 is the predominant callose synthase in pollen tubes of both early-diverging and model system angiosperms is an indicator of the homology of their novel callosic pollen tube walls and callose plugs. The data suggest that CalS5 had transient expression

  11. The effect of ACC vehicles to mixed traffic flow consisting of manual and ACC vehicles

    Institute of Scientific and Technical Information of China (English)

    Xie Dong-Fan; Gao Zi-You; Zhao Xiao-Mei

    2008-01-01

    This paper studies the effect of adaptive cruise control (ACC) system on traffic flow by using simulations. The multiple headway and velocity difference (MHVD) model is used to depict the motion of ACC vehicles, and the simulation results are compared with the optimal velocity (OV) model which is used to depict the motion of manual vehicles.Compared the cases between the manual and the ACC vehicle flow, the fundamental diagram can be classified into four regions: I, II, III, IV. In low and high density the flux of the two models is the same; in region Ⅱ the free flow region of the MHVD model is enlarged, and the flux of the MHVD model is larger than that of the OV model; in region Ⅲ serious jams occur in the OV model while the ACC system suppresses the jams in the MHVD model and the traffic flow is in order, but the flux of the OV model is larger than that of the MHVD model. Similar phenomena also appeared in mixed traffic flow which consists of manual and ACC vehicles. The results indicate that ACC vehicles have significant effect on traffic flow. The improvement induced by ACC vehicles decreases with the increasing proportion of ACC vehicles.

  12. Gene expression profiles of inducible nitric oxide synthase and cytokines in Leishmania major-infected macrophage-like RAW 264.7 cells treated with gallic acid

    NARCIS (Netherlands)

    Radtke, O.A.; Kiderlen, A.F.; Kayser, Oliver; Kolodziej, H

    2004-01-01

    The effects of gallic acid on the gene expressions of inducible nitric oxide synthase (iNOS) and the cytokines interleukin (IL)-1, IL-10, IL-12, IL-18, TNF-alpha, and interferon (IFN)-gamma were investigated by reverse-transcription polymerase chain reaction (RT-PCR). The experiments were performed

  13. Lentiviral-mediated over-expression of hyaluronan synthase-1 (HAS-1) decreases the cellular inflammatory response and results in regenerative wound repair

    NARCIS (Netherlands)

    Caskey, Robert C.; Allukian, Myron; Lind, Robert C.; Herdrich, Benjamin J.; Xu, Junwang; Radu, Antoneta; Mitchell, Marc E.; Liechty, Kenneth W.

    2013-01-01

    Fetal wounds have been found to have increased levels of high-molecular-weight hyaluronan (HMW-HA) compared with those of adults. The primary enzyme responsible for producing HMW-HA is hyaluronic acid synthase-1 (HAS-1). We hypothesized that over-expression of HAS-1 in adult dermal wounds would decr

  14. Effects of terpenoid precursor feeding on Catharanthus roseus hairy roots over-expressing the alpha or the alpha and beta subunits of anthranilate synthase.

    Science.gov (United States)

    Peebles, Christie A M; Hong, Seung-Beom; Gibson, Susan I; Shanks, Jacqueline V; San, Ka-Yiu

    2006-02-20

    Among the pharmacologically important terpenoid indole alkaloids produced by Catharanthus roseus are the anti-cancer drugs vinblastine and vincristine. These two drugs are produced in small yields within the plant, which makes them expensive to produce commercially. Metabolic engineering has focused on increasing flux through this pathway by various means such as elicitation, precursor feeding, and introduction of genes encoding specific metabolic enzymes into the plant. Recently in our lab, a feedback-resistant anthranilate synthase alpha subunit was over-expressed in C. roseus hairy roots under the control of a glucocorticoid inducible promoter system. Upon induction we observed a large increase in the indole precursors, tryptophan, and tryptamine. The current work explores the effects of over-expressing the anthranilate synthase alpha or alpha and beta subunits in combination with feeding with the terpenoid precursors 1-deoxy-D-xylulose, loganin, and secologanin. In feeding 1-deoxy-D-xylulose to the hairy root line expressing the anthranilate synthase alpha subunit, we observed an increase of 125% in hörhammericine levels in the induced samples, while loganin feeding increased catharanthine by 45% in the induced samples. Loganin feeding to the hairy root line expressing anthranilate synthase alpha and beta subunits increases catharanthine by 26%, ajmalicine by 84%, lochnericine by 119%, and tabersonine by 225% in the induced samples. These results suggest that the terpenoid precursors to the terpenoid indole alkaloids are important factors in terpenoid indole alkaloid production.

  15. Expression of inducible nitric oxide synthase and effects of L-arginine on colonic nitric oxide production and fluid transport in patients with "minimal colitis"

    DEFF Research Database (Denmark)

    Perner, Anders; Andresen, Lars; Normark, Michel;

    2005-01-01

    Some patients with idiopathic, chronic diarrhoea have minimal, non-specific colonic inflammation. As nitric oxide (NO) acts as a secretagogue in the colon, we studied the expression of inducible NO synthase (iNOS) in mucosal biopsies and the effects of NOS stimulation on colonic transfer of fluid...

  16. Enhanced expression of cystathionine β-synthase and cystathionine γ-lyase during acute cholecystitis-induced gallbladder inflammation.

    Directory of Open Access Journals (Sweden)

    Li Zhang

    Full Text Available BACKGROUND: Hydrogen sulfide (H2S has recently been shown to play an important role in the digestive system, but the role of endogenous H2S produced locally in the gallbladder is unknown. The aim of this study was to investigate whether gallbladder possesses the enzymatic machinery to synthesize H2S, and whether H2S synthesis is changed in gallbladder inflammation during acute acalculous cholecystitis (AC. METHODS: Adult male guinea pigs underwent either a sham operation or common bile duct ligation (CBDL. One, two, or three days after CBDL, the animals were sacrificed separately. Hematoxylin and eosin-stained slides of gallbladder samples were scored for inflammation. H2S production rate in gallbladder tissue from each group was determined; immunohistochemistry and western blotting were used to determine expression levels of the H2S-producing enzymes cystathionine β-synthase (CBS and cystathionine γ-lyase (CSE in gallbladder. RESULTS: There was a progressive inflammatory response after CBDL. Immunohistochemistry analysis showed that CBS and CSE were expressed in the gallbladder epithelium, muscular layer, and blood vessels and that the expression increased progressively with increasing inflammation following CBDL. The expression of CBS protein as well as the H2S-production rate was significantly increased in the animals that underwent CBDL, compared to those that underwent the sham operation. CONCLUSIONS: Both CBS and CSE are expressed in gallbladder tissues. The expression of these enzymes, as well as H2S synthesis, was up-regulated in the context of inflammation during AC.

  17. Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers.

    Science.gov (United States)

    Wen, Xiao-Peng; Pang, Xiao-Ming; Matsuda, Narumi; Kita, Masayuki; Inoue, Hiromichi; Hao, Yu-Jin; Honda, Chikako; Moriguchi, Takaya

    2008-04-01

    An apple spermidine synthase (SPDS) gene (MdSPDS1) was verified to encode a functional protein by the complementation of the spe3 yeast mutant, which lacks the SPDS gene. To justify our hypothesis that apple SPDS is involved in abiotic stress responses and to obtain transgenic fruit trees tolerant to abiotic stresses as well, MdSPDS1-over-expressing transgenic European pear (Pyrus communis L. 'Ballad') plants were created by Agrobacterium-mediated transformation. A total of 21 transgenic lines showing various spermidine (Spd) titers and MdSPDS1 expression levels were obtained. Selected lines were exposed to salt (150 mM NaCl), osmosis (300 mM mannitol), and heavy metal (500 microM CuSO4) stresses for evaluating their stress tolerances. Transgenic line no. 32, which was revealed to have the highest Spd accumulation and expression level of MdSPDS1, showed the strongest tolerance to these stresses. When growth increments, electrolyte leakage (EL), and values of thiobarbituric acid reactive substances (TBARS) were monitored, line no. 32 showed the lowest growth inhibition and the least increase in EL or TBARS under stress conditions. Spd titers in wild-type and transgenic lines showed diverse changes upon stresses, and these changes were not consistent with the changes in MdSPDS1 expressions. Moreover, there were no differences in the sodium concentration in the shoots between the wild type and line no. 32, whereas the copper concentration was higher in the wild type than in line no. 32. Although the mechanism(s) underlying the involvement of polyamines in stress responses is not known, these results suggest that the over-expression of the SPDS gene substantially increased the tolerance to multiple stresses by altering the polyamine titers in pear. Thus, MdSPDS1-over-expressing transgenic pear plants could be used to improve desert land and/or to repair polluted environments.

  18. Nitric Oxide Synthase Enzymes in the Airways of Mice Exposed to Ovalbumin: NOS2 Expression Is NOS3 Dependent

    Directory of Open Access Journals (Sweden)

    Jennifer M. Bratt

    2010-01-01

    Full Text Available Objectives and Design. The function of the airway nitric oxide synthase (NOS isoforms and the lung cell types responsible for its production are not fully understood. We hypothesized that NO homeostasis in the airway is important to control inflammation, which requires upregulation, of NOS2 protein expression by an NOS3-dependent mechanism. Materials or Subjects. Mice from a C57BL/6 wild-type, NOS1−/−, NOS2−/−, and NOS3−/− genotypes were used. All mice strains were systemically sensitized and exposed to filtered air or ovalbumin (OVA aerosol for two weeks to create a subchronic model of allergen-induced airway inflammation. Methods. We measured lung function, lung lavage inflammatory and airway epithelial goblet cell count, exhaled NO, nitrate and nitrite concentration, and airway NOS1, NOS2, and NOS3 protein content. Results. Deletion of NOS1 or NOS3 increases NOS2 protein present in the airway epithelium and smooth muscle of air-exposed animals. Exposure to allergen significantly reduced the expression of NOS2 protein in the airway epithelium and smooth muscle of the NOS3−/− strain only. This reduction in NOS2 expression was not due to the replacement of epithelial cells with goblet cells as remaining epithelial cells did not express NOS2. NOS1−/− animals had significantly reduced goblet cell metaplasia compared to C57Bl/6 wt, NOS2−/−, and NOS3−/− allergen-exposed mice. Conclusion. The airway epithelial and smooth muscle cells maintain a stable airway NO concentration under noninflammatory conditions. This “homeostatic” mechanism is unable to distinguish between NOS derived from the different constitutive NOS isoforms. NOS3 is essential for the expression of NOS2 under inflammatory conditions, while NOS1 expression contributes to allergen-induced goblet cell metaplasia.

  19. Nitric oxide synthase enzymes in the airways of mice exposed to ovalbumin: NOS2 expression is NOS3 dependent.

    Science.gov (United States)

    Bratt, Jennifer M; Williams, Keisha; Rabowsky, Michelle F; Last, Michael S; Franzi, Lisa M; Last, Jerold A; Kenyon, Nicholas J

    2010-01-01

    The function of the airway nitric oxide synthase (NOS) isoforms and the lung cell types responsible for its production are not fully understood. We hypothesized that NO homeostasis in the airway is important to control inflammation, which requires upregulation, of NOS2 protein expression by an NOS3-dependent mechanism. Mice from a C57BL/6 wild-type, NOS1(-/-), NOS2(-/-), and NOS3(-/-) genotypes were used. All mice strains were systemically sensitized and exposed to filtered air or ovalbumin (OVA) aerosol for two weeks to create a subchronic model of allergen-induced airway inflammation. We measured lung function, lung lavage inflammatory and airway epithelial goblet cell count, exhaled NO, nitrate and nitrite concentration, and airway NOS1, NOS2, and NOS3 protein content. Deletion of NOS1 or NOS3 increases NOS2 protein present in the airway epithelium and smooth muscle of air-exposed animals. Exposure to allergen significantly reduced the expression of NOS2 protein in the airway epithelium and smooth muscle of the NOS3(-/-) strain only. This reduction in NOS2 expression was not due to the replacement of epithelial cells with goblet cells as remaining epithelial cells did not express NOS2. NOS1(-/-) animals had significantly reduced goblet cell metaplasia compared to C57Bl/6 wt, NOS2(-/-), and NOS3(-/-) allergen-exposed mice. The airway epithelial and smooth muscle cells maintain a stable airway NO concentration under noninflammatory conditions. This "homeostatic" mechanism is unable to distinguish between NOS derived from the different constitutive NOS isoforms. NOS3 is essential for the expression of NOS2 under inflammatory conditions, while NOS1 expression contributes to allergen-induced goblet cell metaplasia.

  20. Inhaled nitric oxide decreases pulmonary endothelial nitric oxide synthase expression and activity in normal newborn rat lungs

    Directory of Open Access Journals (Sweden)

    Thông Hua-Huy

    2016-02-01

    Full Text Available Inhaled nitric oxide (iNO is commonly used in the treatment of very ill pre-term newborns. Previous studies showed that exogenous NO could affect endothelial NO synthase (eNOS activity and expression in vascular endothelial cell cultures or adult rat models, but this has never been fully described in newborn rat lungs. We therefore aimed to assess the effects of iNO on eNOS expression and activity in newborn rats. Rat pups, post-natal day (P 0 to P7, and their dams were placed in a chamber containing NO at 5 ppm (iNO-5 ppm group or 20 ppm (iNO-20 ppm group, or in room air (control group. Rat pups were sacrificed at P7 and P14 for evaluation of lung eNOS expression and activity. At P7, eNOS protein expression in total lung lysates, in bronchial and arterial sections, was significantly decreased in the iNO-20 ppm versus control group. At P14, eNOS expression was comparable among all three groups. The amounts of eNOS mRNA significantly differed at P7 between the iNO-20 ppm and control groups. NOS activity decreased in the iNO-20 ppm group at P7 and returned to normal levels at P14. There was an imbalance between superoxide dismutase and NOS activities in the iNO-20 ppm group at P7. Inhalation of NO at 20 ppm early after birth decreases eNOS gene transcription, protein expression and enzyme activity. This decrease might account for the rebound phenomenon observed in patients treated with iNO.

  1. Prostaglandin H2 synthase-1 and -2 expression in guinea pig gestational tissues during late pregnancy and parturition.

    Science.gov (United States)

    Welsh, Toni; Mitchell, Carolyn M; Walters, William A; Mesiano, Sam; Zakar, Tamas

    2005-12-15

    Increased intrauterine prostaglandin (PG) production is crucial for the initiation of parturition. To investigate the mechanisms controlling intrauterine PG synthesis, we examined the expression of the key PG biosynthetic isoenzymes, PG-H2 synthase (PTGS)-1 and -2, in the amnion, visceral yolk sac (VYS), placenta and myo-endometrium of pregnant guinea pigs. This animal model was chosen because the hormonal milieu of pregnancy and the role of PGs in the hormonal control of parturition are similar to those in the human. PTGS1 mRNA abundance, measured by real-time RT-PCR, increased in the amnion and the placenta during the last third of gestation. During labour, PTGS1 mRNA levels decreased precipitously in all four tissues. PTGS1 protein abundance, assessed by immunoblotting, increased to high levels in the amnion and the placenta by the end of pregnancy and remained high during labour. PTGS2 mRNA expression was higher in the placenta than in the other tissues, but did not change before and during labour. PTGS2 protein expression decreased in the placenta and remained low in the other tissues during labour. Immunohistochemistry showed pervasive PTGS1 protein expression in the amnion and strong expression in the parietal yolk sac membrane (PYS) covering the placenta. PTGS2 was expressed in the PYS and the endometrium. The PTGS inhibitor piroxicam, administered in doses that inhibited PTGS1 but not PTGS2, significantly prolonged gestation. These data suggest that PGs generated by intrauterine PTGS1 are involved in the timing of birth in guinea pigs. The induction of PTGS1 in the amnion and the PYS is a critical event leading to labour in guinea pigs and models analogous changes in the human gestational tissues before labour.

  2. Effect of growth hormone on fatty acid synthase gene expression in porcine adipose tissue cultures

    Directory of Open Access Journals (Sweden)

    Andrea A.F.B.V. José

    2006-01-01

    Full Text Available We describe an efficient in vitro assay to test growth hormone effects on mRNA levels and fatty acid synthase (FAS, EC. 2.3.1.85 activity. Swine adipose tissue explants were long-term cultured in medium containing growth hormone and FAS mRNA levels and enzyme activity were measured. We quantified FAS transcripts by competitive reverse transcriptase PCR (RT-PCR using total RNA from cultured adipose tissue explants and RT-PCR standard-curves were constructed using a cloned 307 bp segment of native FAS cDNA and a shorter fragment from which a 64 bp (competitor, 243 bp internal sequence had been deleted. A known amount of competitor was added to each PCR as an internal control and µ-actin transcripts were also measured to correct for differences in total RNA extraction and reverse transcription efficiency. In cultures with added growth hormone FAS mRNA levels decreased 70% (p < 0.01 and FAS enzyme activity decreased 22% (p < 0.05. These in vitro growth hormone effects were consistent with those observed in vivo, showing that in vitro adipose tissue culture combined with RT-PCR is a useful and accurate tool for studying growth hormone modulation of adipose tissue metabolism. This technique allowed the diagnosis of lower levels of FAS mRNA in the presence of growth hormone and these low levels were associated with decreased FAS activity in the adipose tissue explants.

  3. Chalcone synthase genes from milk thistle (Silybum marianum): isolation and expression analysis

    Indian Academy of Sciences (India)

    Sepideh Sanjari; Zahra Sadat Shobbar; Mohsen Ebrahimi; Tahereh Hasanloo; Seyed-Ahmad Sadat-Noor; Soodeh Tirnaz

    2015-12-01

    Silymarin is a flavonoid compound derived from milk thistle (Silybum marianum) seeds which has several pharmacological applications. Chalcone synthase (CHS) is a key enzyme in the biosynthesis of flavonoids; thereby, the identification of encoding genes in milk thistle plant can be of great importance. In the current research, fragments of genes were amplified using degenerate primers based on the conserved parts of Asteraceae genes, and then cloned and sequenced. Analysis of the resultant nucleotide and deduced amino acid sequences led to the identification of two different members of gene family, 1 and 2. Third member, full-length cDNA (3) was isolated by rapid amplification of cDNA ends (RACE), whose open reading frame contained 1239 bp including exon 1 (190 bp) and exon 2 (1049 bp), encoding 63 and 349 amino acids, respectively. In silico analysis of SmCHS3 sequence contains all the conserved CHS sites and shares high homology with CHS proteins from other plants. Real-time PCR analysis indicated that 1 and 3 had the highest transcript level in petals in the early flowering stage and in the stem of five upper leaves, followed by five upper leaves in the mid-flowering stage which are most probably involved in anthocyanin and silymarin biosynthesis.

  4. Isolation and expression of two polyketide synthase genes from Trichoderma harzianum 88 during mycoparasitism

    Directory of Open Access Journals (Sweden)

    Lin Yao

    2016-06-01

    Full Text Available Abstract Metabolites of mycoparasitic fungal species such as Trichoderma harzianum 88 have important biological roles. In this study, two new ketoacyl synthase (KS fragments were isolated from cultured Trichoderma harzianum 88 mycelia using degenerate primers and analysed using a phylogenetic tree. The gene fragments were determined to be present as single copies in Trichoderma harzianum 88 through southern blot analysis using digoxigenin-labelled KS gene fragments as probes. The complete sequence analysis in formation of pksT-1 (5669 bp and pksT-2 (7901 bp suggests that pksT-1 exhibited features of a non-reducing type I fungal PKS, whereas pksT-2 exhibited features of a highly reducing type I fungal PKS. Reverse transcription polymerase chain reaction indicated that the isolated genes are differentially regulated in Trichoderma harzianum 88 during challenge with three fungal plant pathogens, which suggests that they participate in the response of Trichoderma harzianum 88 to fungal plant pathogens. Furthermore, disruption of the pksT-2 encoding ketosynthase–acyltransferase domains through Agrobacterium -mediated gene transformation indicated that pksT-2 is a key factor for conidial pigmentation in Trichoderma harzianum 88.

  5. Enhanced phytoremediation of toxic metals by inoculating endophytic Enterobacter sp. CBSB1 expressing bifunctional glutathione synthase.

    Science.gov (United States)

    Qiu, Zhiqi; Tan, Hongming; Zhou, Shining; Cao, Lixiang

    2014-02-28

    To engineer plant-bacteria symbionts for remediating complex sites contaminated with multiple metals, the bifunctional glutathione (GSH) synthase gene gcsgs was introduced into endophytic Enterobacter sp. CBSB1 to improve phytoremediation efficiency of host plant Brassica juncea. The GSH contents of shoots inoculated with CBSB1 is 0.4μMg(-1) fresh weight. However, the GSH concentration of shoots with engineered CBSB1-GCSGS increased to 0.7μMg(-1) fresh weight. The shoot length, fresh weight and dry weight of seedlings inoculated with CBSB1-GCSGS increased 67%, 123%, and 160%, compared with seedlings without inoculation, respectively. The Cd and Pb concentration in shoots with CBSB1-GCSGS increased 48% and 59% compared with seedlings without inoculation, respectively. The inoculation of CBSB1 and CBSB1-GCSGS could increase the Cd and Pb extraction amounts of seedlings significantly compared with those without inoculation (PEnterobacter sp. CBSB1 upgraded the phytoremediation efficacy of B. juncea. So the engineered Enterobacter sp. CBSB1-GCSGS showed potentials in remediation sites contaminated with complex contaminants by inoculating into remediating plants.

  6. Expression of Fatty Acid Synthase Depends on NAC1 and Is Associated with Recurrent Ovarian Serous Carcinomas.

    Science.gov (United States)

    Ueda, Stefanie M; Yap, Kai Lee; Davidson, Ben; Tian, Yuan; Murthy, Vivek; Wang, Tian-Li; Visvanathan, Kala; Kuhajda, Francis P; Bristow, Robert E; Zhang, Hui; Shih, Ie-Ming

    2010-01-01

    Our previous reports demonstrated that NAC1, a BTB/POZ domain-containing nuclear protein, upregulates in recurrent ovarian serous carcinoma and participates in developing drug resistance in cancer cells. The current study applies quantitative proteomics to identify the proteins controlled by NAC1 by comparing the proteomes of SKOV3 cells with and without expression of a dominant negative NAC1 construct, N130. From the proteins that are downregulated by N130 (upregulated by NAC1), we chose to further characterize fatty acid synthase (FASN). Similar to change in protein level, the FASN transcript level in SKOV3 cells was significantly reduced by N130 induction or by NAC1 knockdown. Immunohistochemistry showed that NAC1 and FASN immunointensities in ovarian serous carcinoma tissues had a highly significant correlation (P 1 in serous carcinomas was associated with a worse overall survival time (P NAC1 is essential for FASN expression in ovarian serous carcinomas and the expression of FASN significantly correlates with tumor recurrence and disease aggressiveness. The dependence of drug resistant tumor cells on FASN suggests a potential application of FASN-based therapeutics for recurrent ovarian cancer patients.

  7. Expression of Fatty Acid Synthase Depends on NAC1 and Is Associated with Recurrent Ovarian Serous Carcinomas

    Directory of Open Access Journals (Sweden)

    Stefanie M. Ueda

    2010-01-01

    Full Text Available Our previous reports demonstrated that NAC1, a BTB/POZ domain-containing nuclear protein, upregulates in recurrent ovarian serous carcinoma and participates in developing drug resistance in cancer cells. The current study applies quantitative proteomics to identify the proteins controlled by NAC1 by comparing the proteomes of SKOV3 cells with and without expression of a dominant negative NAC1 construct, N130. From the proteins that are downregulated by N130 (upregulated by NAC1, we chose to further characterize fatty acid synthase (FASN. Similar to change in protein level, the FASN transcript level in SKOV3 cells was significantly reduced by N130 induction or by NAC1 knockdown. Immunohistochemistry showed that NAC1 and FASN immunointensities in ovarian serous carcinoma tissues had a highly significant correlation (P1 in serous carcinomas was associated with a worse overall survival time (P<.01. Finally, C93, a new FASN inhibitor, induced massive apoptosis in carboplatin/paclitaxel resistant ovarian cancer cells. In conclusion, we show that NAC1 is essential for FASN expression in ovarian serous carcinomas and the expression of FASN significantly correlates with tumor recurrence and disease aggressiveness. The dependence of drug resistant tumor cells on FASN suggests a potential application of FASN-based therapeutics for recurrent ovarian cancer patients.

  8. Phenotype commitment in vascular smooth muscle cells derived from coronary atherosclerotic plaques: differential gene expression of endothelial Nitric Oxide Synthase

    Directory of Open Access Journals (Sweden)

    ML Rossi

    2009-06-01

    Full Text Available Unstable angina and myocardial infarction are the clinical manifestations of the abrupt thrombotic occlusion of an epicardial coronary artery as a result of spontaneous atherosclerotic plaque rupture or fissuring, and the exposure of highly thrombogenic material to blood. It has been demonstrated that the proliferation of vascular smooth muscle cells (VSMCs and impaired bioavailabilty of nitric oxide (NO are among the most important mechanisms involved in the progression of atherosclerosis. It has also been suggested that a NO imbalance in coronary arteries may be involved in myocardial ischemia as a result of vasomotor dysfunction triggering plaque rupture and the thrombotic response. We used 5’ nuclease assays (TaqMan™ PCRs to study gene expression in coronary plaques collected by means of therapeutic directional coronary atherectomy from 15 patients with stable angina (SA and 15 with acute coronary syndromes (ACS without ST elevation. Total RNA was extracted from the 30 plaques and the cDNA was amplified in order to determine endothelial nitric oxide synthase (eNOS gene expression. Analysis of the results showed that the expression of eNOS was significantly higher (p<0.001 in the plaques from the ACS patients. Furthermore, isolated VSMCs from ACS and SA plaques confirmed the above pattern even after 25 plating passages. In situ RT-PCR was also carried out to co-localize the eNOS messengers and the VSMC phenotype.

  9. Glycogen Synthase Kinase 3 (GSK-3) influences epithelial barrier function by regulating Occludin, Claudin-1 and E-cadherin expression

    Energy Technology Data Exchange (ETDEWEB)

    Severson, Eric A.; Kwon, Mike; Hilgarth, Roland S.; Parkos, Charles A. [Epithelial Pathobiology Research Unit, Dept. of Pathology, Emory University, Atlanta, GA 30322 (United States); Nusrat, Asma, E-mail: anusrat@emory.edu [Epithelial Pathobiology Research Unit, Dept. of Pathology, Emory University, Atlanta, GA 30322 (United States)

    2010-07-02

    The Apical Junctional Complex (AJC) encompassing the tight junction (TJ) and adherens junction (AJ) plays a pivotal role in regulating epithelial barrier function and epithelial cell proliferative processes through signaling events that remain poorly characterized. A potential regulator of AJC protein expression is Glycogen Synthase Kinase-3 (GSK-3). GSK-3 is a constitutively active kinase that is repressed during epithelial-mesenchymal transition (EMT). In the present study, we report that GSK-3 activity regulates the structure and function of the AJC in polarized model intestinal (SK-CO15) and kidney (Madin-Darby Canine Kidney (MDCK)) epithelial cells. Reduction of GSK-3 activity, either by small molecule inhibitors or siRNA targeting GSK-3 alpha and beta mRNA, resulted in increased permeability to both ions and bulk solutes. Immunofluorescence labeling and immunoblot analyses revealed that the barrier defects correlated with decreased protein expression of AJC transmembrane proteins Occludin, Claudin-1 and E-cadherin without influencing other TJ proteins, Zonula Occludens-1 (ZO-1) and Junctional Adhesion Molecule A (JAM-A). The decrease in Occludin and E-cadherin protein expression correlated with downregulation of the corresponding mRNA levels for these respective proteins following GSK-3 inhibition. These observations implicate an important role of GSK-3 in the regulation of the structure and function of the AJC that is mediated by differential modulation of mRNA transcription of key AJC proteins, Occludin, Claudin-1 and E-cadherin.

  10. Expression of Biphenyl Synthase Genes and Formation of Phytoalexin Compounds in Three Fire Blight-Infected Pyrus communis Cultivars.

    Directory of Open Access Journals (Sweden)

    Cornelia Chizzali

    Full Text Available Pear (Pyrus communis is an economically important fruit crop. Drops in yield and even losses of whole plantations are caused by diseases, most importantly fire blight which is triggered by the bacterial pathogen Erwinia amylovora. In response to the infection, biphenyls and dibenzofurans are formed as phytoalexins, biosynthesis of which is initiated by biphenyl synthase (BIS. Two PcBIS transcripts were cloned from fire blight-infected leaves and the encoded enzymes were characterized regarding substrate specificities and kinetic parameters. Expression of PcBIS1 and PcBIS2 was studied in three pear cultivars after inoculation with E. amylovora. Both PcBIS1 and PcBIS2 were expressed in 'Harrow Sweet', while only PcBIS2 transcripts were detected in 'Alexander Lucas' and 'Conference'. Expression of the PcBIS genes was observed in both leaves and the transition zone of the stem; however, biphenyls and dibenzofurans were only detected in stems. The maximum phytoalexin level (~110 μg/g dry weight was observed in the transition zone of 'Harrow Sweet', whereas the concentrations were ten times lower in 'Conference' and not even detectable in 'Alexander Lucas'. In 'Harrow Sweet', the accumulation of the maximum phytoalexin level correlated with the halt of migration of the transition zone, whereby the residual part of the shoot survived. In contrast, the transition zones of 'Alexander Lucas' and 'Conference' advanced down to the rootstock, resulting in necrosis of the entire shoots.

  11. Bioinformatic and molecular analysis of hydroxymethylbutenyl diphosphate synthase (GCPE) gene expression during carotenoid accumulation in ripening tomato fruit.

    Science.gov (United States)

    Rodríguez-Concepción, Manuel; Querol, Jordi; Lois, Luisa María; Imperial, Santiago; Boronat, Albert

    2003-07-01

    Carotenoids are plastidic isoprenoid pigments of great biological and biotechnological interest. The precursors for carotenoid production are synthesized through the recently elucidated methylerythritol phosphate (MEP) pathway. Here we have identified a tomato ( Lycopersicon esculentum Mill.) cDNA sequence encoding a full-length protein with homology to the MEP pathway enzyme hydroxymethylbutenyl 4-diphosphate synthase (HDS, also called GCPE). Comparison with other plant and bacterial HDS sequences showed that the plant enzymes contain a plastid-targeting N-terminal sequence and two highly conserved plant-specific domains in the mature protein with no homology to any other sequence in the databases. The ubiquitous distribution of HDS-encoding expressed sequence tags (ESTs) in the tomato collections suggests that the corresponding gene is likely expressed throughout the plant. The role of HDS in controlling the supply of precursors for carotenoid biosynthesis was estimated from the bioinformatic and molecular analysis of transcript abundance in different stages of fruit development. No significant changes in HDS gene expression were deduced from the statistical analysis of EST distribution during fruit ripening, when an active MEP pathway is required to support a massive accumulation of carotenoids. RNA blot experiments confirmed that similar transcript levels were present in both the wild-type and carotenoid-depleted yellow ripe ( r) mutant fruit independent of the stage of development and the carotenoid composition of the fruit. Together, our results are consistent with a non-limiting role for HDS in carotenoid biosynthesis during tomato fruit ripening.

  12. Expression of Biphenyl Synthase Genes and Formation of Phytoalexin Compounds in Three Fire Blight-Infected Pyrus communis Cultivars.

    Science.gov (United States)

    Chizzali, Cornelia; Swiddan, Asya K; Abdelaziz, Sahar; Gaid, Mariam; Richter, Klaus; Fischer, Thilo C; Liu, Benye; Beerhues, Ludger

    2016-01-01

    Pear (Pyrus communis) is an economically important fruit crop. Drops in yield and even losses of whole plantations are caused by diseases, most importantly fire blight which is triggered by the bacterial pathogen Erwinia amylovora. In response to the infection, biphenyls and dibenzofurans are formed as phytoalexins, biosynthesis of which is initiated by biphenyl synthase (BIS). Two PcBIS transcripts were cloned from fire blight-infected leaves and the encoded enzymes were characterized regarding substrate specificities and kinetic parameters. Expression of PcBIS1 and PcBIS2 was studied in three pear cultivars after inoculation with E. amylovora. Both PcBIS1 and PcBIS2 were expressed in 'Harrow Sweet', while only PcBIS2 transcripts were detected in 'Alexander Lucas' and 'Conference'. Expression of the PcBIS genes was observed in both leaves and the transition zone of the stem; however, biphenyls and dibenzofurans were only detected in stems. The maximum phytoalexin level (~110 μg/g dry weight) was observed in the transition zone of 'Harrow Sweet', whereas the concentrations were ten times lower in 'Conference' and not even detectable in 'Alexander Lucas'. In 'Harrow Sweet', the accumulation of the maximum phytoalexin level correlated with the halt of migration of the transition zone, whereby the residual part of the shoot survived. In contrast, the transition zones of 'Alexander Lucas' and 'Conference' advanced down to the rootstock, resulting in necrosis of the entire shoots.

  13. Improved expression of His(6)-tagged strictosidine synthase cDNA for chemo-enzymatic alkaloid diversification.

    Science.gov (United States)

    Yang, Liuqing; Zou, Hongbin; Zhu, Huajian; Ruppert, Martin; Gong, Jingxu; Stöckigt, Joachim

    2010-04-01

    Strictosidine synthase (STR1) catalyzes the stereoselective formation of 3alpha(S)-strictosidine from tryptamine and secologanin. Strictosidine is the key intermediate in the biosynthesis of 2,000 plant monoterpenoid indole alkaloids, and it is a key precursor of enzyme-mediated synthesis of alkaloids. An improved expression system is described which leads to optimized His(6)-STR1 synthesis in Escherichia coli. Optimal production of STR1 was achieved by determining the impact of co-expression of chaperones pG-Tf2 and pG-LJE8. The amount and activity of STR1 was doubled in the presence of chaperone pG-Tf2 alone. His(6)-STR1 immobilized on Ni-NTA can be used for enzymatic synthesis of strictosidines on a preparative scale. With the newly co-expressed His(6)-STR1, novel 3alpha(S)-12-azastrictosidine was obtained by enzymatic catalysis of 7-azatryptamine and secologanin. The results obtained are of significant importance for application to chemo-enzymatic approaches leading to diversification of alkaloids with novel improved structures.

  14. Regulation of expression of citrate synthase by the retinoic acid receptor-related orphan receptor α (RORα.

    Directory of Open Access Journals (Sweden)

    Christine Crumbley

    Full Text Available The retinoic acid receptor-related orphan receptor α (RORα is a member of the nuclear receptor superfamily of transcription factors that plays an important role in regulation of the circadian rhythm and metabolism. Mice lacking a functional RORα display a range of metabolic abnormalities including decreased serum cholesterol and plasma triglycerides. Citrate synthase (CS is a key enzyme of the citric acid cycle that provides energy for cellular function. Additionally, CS plays a critical role in providing citrate derived acetyl-CoA for lipogenesis and cholesterologenesis. Here, we identified a functional RORα response element (RORE in the promoter of the CS gene. ChIP analysis demonstrates RORα occupancy of the CS promoter and a putative RORE binds to RORα effectively in an electrophoretic mobility shift assay and confers RORα responsiveness to a reporter gene in a cotransfection assay. We also observed a decrease in CS gene expression and CS enzymatic activity in the staggerer mouse, which has a mutation of in the Rora gene resulting in nonfunctional RORα protein. Furthermore, we found that SR1001 a RORα inverse agonist eliminated the circadian pattern of expression of CS mRNA in mice. These data suggest that CS is a direct RORα target gene and one mechanism by which RORα regulates lipid metabolism is via regulation of CS expression.

  15. Amygdalin suppresses lipopolysaccharide-induced expressions of cyclooxygenase-2 and inducible nitric oxide synthase in mouse BV2 microglial cells.

    Science.gov (United States)

    Yang, Hye-Young; Chang, Hyun-Kyung; Lee, Jin-Woo; Kim, Young-Sick; Kim, Hong; Lee, Myoung-Hwa; Shin, Mal-Soon; Ham, Dae-Hyun; Park, Hun-Kuk; Lee, Hyejung; Kim, Chang-Ju

    2007-01-01

    Amygdalin (D-mandelonitrile-beta-D-gentiobioside) is a cynogenic compound found in sweet and bitter almonds, Persicae semen and Armeniacae semen. Amygdalin has been used for the treatment of cancers and for the relief of the pain. We made an aqueous extraction of amygdalin from Armeniacae semen. In this study, the effect of amygdalin on the lipopolysaccharide (LPS)-induced inflammation was investigated. The effects of amygdalin extracted from Armeniacae semen on the LPS-stimulated mRNA expressions of cyclooxygenase (COX)-1, COX-2 and inducible nitric oxide synthase (iNOS) in the mouse BV2 microglial cells were investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, reverse transcription-polymerase chain reaction (RT-PCR). The effects of amygdalin on the prostaglandins E(2) synthesis and the nitric oxide production were also studied by performing prostaglandins E(2) immunoassay and by detecting nitric oxide. The present results showed that amygdalin suppressed the prostaglandin E(2) synthesis and the nitric oxide production by inhibiting the LPS-stimulated mRNA expressions of COX-2 and iNOS in the mouse BV2 cells. These results show that amygdalin exerts anti-inflammatory and analgesic effects and it dose so probably by suppressing the mRNA expressions of COX-2 and iNOS.

  16. Hypericum perforatum hydroxyalkylpyrone synthase involved in sporopollenin biosynthesis--phylogeny, site-directed mutagenesis, and expression in nonanther tissues.

    Science.gov (United States)

    Jepson, Christina; Karppinen, Katja; Daku, Rhys M; Sterenberg, Brian T; Suh, Dae-Yeon

    2014-09-01

    Anther-specific chalcone synthase-like enzyme (ASCL), an ancient plant type III polyketide synthase, is involved in the biosynthesis of sporopollenin, the stable biopolymer found in the exine layer of the wall of a spore or pollen grain. The gene encoding polyketide synthase 1 from Hypericum perforatum (HpPKS1) was previously shown to be expressed mainly in young flower buds, but also in leaves and other tissues at lower levels. Angiosperm ASCLs, identified by sequence and phylogenetic analyses, are divided into two sister clades, the Ala-clade and the Val-clade, and HpPKS1 belongs to the Ala-clade. Recombinant HpPKS1 produced triketide and, to a lesser extent, tetraketide alkylpyrones from medium-chain (C6) to very long-chain (C24) fatty acyl-CoA substrates. Like other ASCLs, HpPKS1 also preferred hydroxyl fatty acyl-CoA esters over the analogous unsubstituted fatty acyl-CoA esters. To study the structural basis of the substrate preference, mutants of Ala200 and Ala215 at the putative active site and Arg202 and Asp211 at the modeled acyl-binding tunnel were constructed. The A200T/A215Q mutant accepted decanoyl-CoA, a poor substrate for the wild-type enzyme, possibly because of active site constriction by bulkier substitutions. The substrate preference of the A215V and A200T/A215Q mutants shifted toward nonhydroxylated, medium-chain to long-chain fatty acyl-CoA substrates. The R202L/D211V double mutant was selective for acyl-CoA with chain lengths of C16-C18, and showed a diminished preference for the hydroxylated acyl-CoA substrates. Transient upregulation by abscisic acid and downregulation by jasmonic acid and wounding suggested that HpPKS1, and possibly other Ala-clade ASCLs, may be involved in the biosynthesis of minor cell wall components in nonanther tissues.

  17. Early Growth Response1and Fatty Acid Synthase Expression is Altered in Tumor Adjacent Prostate Tissue and Indicates Field Cancerization

    Science.gov (United States)

    Jones, Anna C.; Trujillo, Kristina A.; Phillips, Genevieve K.; Fleet, Trisha M.; Murton, Jaclyn K.; Severns, Virginia; Shah, Satyan K.; Davis, Michael S.; Smith, Anthony Y.; Griffith, Jeffrey K.; Fischer, Edgar G.; Bisoffi, Marco

    2011-01-01

    BACKGROUND Field cancerization denotes the occurrence of molecular alterations in histologically normal tissues adjacent to tumors. In prostate cancer, identification of field cancerization has several potential clinical applications. However, prostate field cancerization remains ill defined. Our previous work has shown up-regulated mRNA of the transcription factor early growth response 1 (EGR-1) and the lipogenic enzyme fatty acid synthase (FAS) in tissues adjacent to prostate cancer. METHODS Immunofluorescence data were analyzed quantitatively by spectral imaging and linear unmixing to determine the protein expression levels of EGR-1 and FAS in human cancerous, histologically normal adjacent, and disease-free prostate tissues. RESULTS EGR-1 expression was elevated in both structurally intact tumor adjacent (1.6× on average) and in tumor (3.0× on average) tissues compared to disease-free tissues. In addition, the ratio of cytoplasmic versus nuclear EGR-1 expression was elevated in both tumor adjacent and tumor tissues. Similarly, FAS expression was elevated in both tumor adjacent (2.7× on average) and in tumor (2.5× on average) compared to disease-free tissues. CONCLUSIONS EGR-1 and FAS expression is similarly deregulated in tumor and structurally intact adjacent prostate tissues and defines field cancerization. In cases with high suspicion of prostate cancer but negative biopsy, identification of field cancerization could help clinicians target areas for repeat biopsy. Field cancerization at surgical margins on prostatectomy specimen should also be looked at as a predictor of cancer recurrence. EGR-1 and FAS could also serve as molecular targets for chemoprevention. PMID:22127986

  18. The Nutrient-Dependent O-GlcNAc Modification Controls the Expression of Liver Fatty Acid Synthase.

    Science.gov (United States)

    Baldini, Steffi F; Wavelet, Cindy; Hainault, Isabelle; Guinez, Céline; Lefebvre, Tony

    2016-08-14

    Liver Fatty Acid Synthase (FAS) is pivotal for de novo lipogenesis. Loss of control of this metabolic pathway contributes to the development of liver pathologies ranging from steatosis to nonalcoholic steatohepatitis (NASH) which can lead to cirrhosis and, less frequently, to hepatocellular carcinoma. Therefore, deciphering the molecular mechanisms governing the expression and function of key enzymes such as FAS is crucial. Herein, we link the availability of this lipogenic enzyme to the nutrient-dependent post-translational modification O-GlcNAc that is thought to be deregulated in metabolic diseases (diabetes, obesity, and metabolic syndrome). We demonstrate that expression and activity of liver FAS correlate with O-GlcNAcylation contents in ob/ob mice and in mice fed with a high-carbohydrate diet both in a transcription-dependent and -independent manner. More importantly, inhibiting the removal of O-GlcNAc residues in mice intraperitoneally injected with the selective and potent O-GlcNAcase (OGA) inhibitor Thiamet-G increases FAS expression. FAS and O-GlcNAc transferase (OGT) physically interact, and FAS is O-GlcNAc modified. Treatment of a liver cell line with drugs or nutrients that elevate the O-GlcNAcylation interferes with FAS expression. Inhibition of OGA increases the interaction between FAS and the deubiquitinase Ubiquitin-specific protease-2a (USP2A) in vivo and ex vivo, providing mechanistic insights into the control of FAS expression through O-GlcNAcylation. Together, these results reveal a new type of regulation of FAS, linked to O-GlcNAcylation status, and advance our knowledge on deregulation of lipogenesis in diverse forms of liver diseases.

  19. Alfalfa Cellulose synthase gene expression under abiotic stress: a Hitchhiker's guide to RT-qPCR normalization.

    Directory of Open Access Journals (Sweden)

    Gea Guerriero

    Full Text Available Abiotic stress represents a serious threat affecting both plant fitness and productivity. One of the promptest responses that plants trigger following abiotic stress is the differential expression of key genes, which enable to face the adverse conditions. It is accepted and shown that the cell wall senses and broadcasts the stress signal to the interior of the cell, by triggering a cascade of reactions leading to resistance. Therefore the study of wall-related genes is particularly relevant to understand the metabolic remodeling triggered by plants in response to exogenous stresses. Despite the agricultural and economical relevance of alfalfa (Medicago sativa L., no study, to our knowledge, has addressed specifically the wall-related gene expression changes in response to exogenous stresses in this important crop, by monitoring the dynamics of wall biosynthetic gene expression. We here identify and analyze the expression profiles of nine cellulose synthases, together with other wall-related genes, in stems of alfalfa plants subjected to different abiotic stresses (cold, heat, salt stress at various time points (e.g. 0, 24, 72 and 96 h. We identify 2 main responses for specific groups of genes, i.e. a salt/heat-induced and a cold/heat-repressed group of genes. Prior to this analysis we identified appropriate reference genes for expression analyses in alfalfa, by evaluating the stability of 10 candidates across different tissues (namely leaves, stems, roots, under the different abiotic stresses and time points chosen. The results obtained confirm an active role played by the cell wall in response to exogenous stimuli and constitute a step forward in delineating the complex pathways regulating the response of plants to abiotic stresses.

  20. H2S regulates endothelial nitric oxide synthase protein stability by promoting microRNA-455-3p expression

    Science.gov (United States)

    Li, Xing-Hui; Xue, Wen-Long; Wang, Ming-Jie; Zhou, Yu; Zhang, Cai-Cai; Sun, Chen; Zhu, Lei; Liang, Kun; Chen, Ying; Tao, Bei-Bei; Tan, Bo; Yu, Bo; Zhu, Yi-Chun

    2017-01-01

    The aims of the present study are to determine whether hydrogen sulfide (H2S) is involved in the expression of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) production, and to identify the role of microRNA-455-3p (miR-455-3p) during those processes. In cultured human umbilical vein endothelial cells (HUVECs), the expression of miR-455-3p, eNOS protein and the NO production was detected after administration with 50 μM NaHS. The results indicated that H2S could augment the expression of miR-455-3p and eNOS protein, leading to the increase of NO level. We also found that overexpression of miR-455-3p in HUVECs increased the protein levels of eNOS whereas inhibition of miR-455-3p decreased it. Moreover, H2S and miR-455-3p could no longer increase the protein level of eNOS in the presence of proteasome inhibitor, MG-132. In vivo, miR-455-3p and eNOS expression were considerably increased in C57BL/6 mouse aorta, muscle and heart after administration with 50 μmol/kg/day NaHS for 7 days. We also identified that H2S levels and miR-455-3p expression increased in human atherosclerosis plaque while H2S levels decreased in plasma of atherosclerosis patients. Our data suggest that the stability of eNOS protein and the NO production could be regulated by H2S through miR-455-3p. PMID:28322298

  1. Influence of hCG on inducible nitric oxide synthase gene expression in ram testicular arteries

    Directory of Open Access Journals (Sweden)

    Maria Matteo

    2014-09-01

    Full Text Available Background. Experimental evidence suggests a relationship between the vasodilatory effect of hCG and the NOS system in the testis. The influence of hCG administration on testicular vascular NOS gene expression has not been fully investigated. Objective: This study aimed to evaluate the presence of the nitric oxide syntheses gene in ram testicular arteries and the influence of hCG administration on its expression. Materials and methods: Both testicular arteries of sixteen rams were extracted before and after i.v. administration of 5000 IU of hCG or placebo. The expression of the iNOS gene was investigated by real time PCR. Data were analyzed by means of Wilcoxon and Mann-Whitney tests. A p value of < 0.05 was considered statistically significant. Results: PCR revealed the presence of iNOS mRNA in all basal samples but the expression of the iNOS gene was significantly reduced in all arteries obtained 24 h after the administration of either hCG or placebo. A significant reduction in the expression of iNOS gene was observed in the testicular arteries extracted after 24 h in both treated and placebo groups. On the other hand hCG stimulation did not significantly influence iNOS expression following its administration compared to a placebo. Conclusion: Ram testicular arteries express the iNOS gene but hCG stimulation did not significantly influence iNOS expression. A significant reduction in the expression of this gene was observed in the testicular arteries extracted after 24 h in both treated and placebo groups, suggesting that iNOS expression on the testicular artery could be influenced by the spermatic vessel ligation of the controlateral testis.

  2. Expression of Apoptosis and Inducible Nitric Oxide Synthase in Trophoblastic Cells in Early Spontaneous Abortion

    Institute of Scientific and Technical Information of China (English)

    夏革清; 孙永玉

    2001-01-01

    Objective To investigate the effect of apoptosis and inducible nitric oxide (Inos) on the early spontaneous abortion Methods TUNEL method was used to detect the apoptosis in trophoblast cells in early pregnancy with and without spontaneous abortion (the experiment group and the control group), while Inos was detected by both in situ hybridization and immunohis tochemistry. By computer color magic image analysis system (CMIAS), positive cell indexes were represented by D (density) and N/S (number/square) in both apoptosis and in situ hybridization, in immunohistochemistry were N/S and PU (positive unit).Results Positive cell indexes of apoptosis D and N/S were significntly higher in the experiment group (0. 48± 0. 004, 0. 045±0. 002) than that in the control group( 0. 35 +0. 06, 0. 031±0. 003. P<0. 001). D and N/S of inducible nitric oxide synthase in situ hybridization were 0. 33± 0. 028, 0. 074± 0. 001 respectively in the experiment group and 0. 13± 0. 015, 0. 019± 0. 004 respectively in the control group. N/S and PU were significantly higher in the experiment group( 0. 058± 0. 007, 11. 94± 2. 01)than that in the control group (0. 007± 0. 001, 1. 18± 0. 35, P<0. 01). There existed a positive correlation between Inos and apoptosis too.Conclution Apoptosis and Inos in trophoblasts might play an important role in early spontaneous abortion and there was a positive correlation between apoptosis and Inos.

  3. Construction of eukaryotic expression vector encoding ATP synthase lipid-binding protein-like protein gene of Sj and its expression in HeLa cells

    Institute of Scientific and Technical Information of China (English)

    Ouyang Danming; Hu Yongxuan; Li Mulan; Zeng Xiaojun; He Zhixiong; Yuan Caijia

    2008-01-01

    Objective: To clone and construct the recombinant plasmid containing ATP synthase lipid-binding protein-like protein gene of Schistosoma japonicum,(SjAslp) and transfer it into mammalian cells to express the objective protein. Methods: By polymerase chain reaction (PCR) technique, SjAslp was amplified from the constructed recombinant plasmid pBCSK+/SjAslp, and inserted into cloning vector pUCm-T. Then, SjAslp was subcloned into an eukaryotic expression vector pcDNA3.1(+). After identifying it by PCR, restrictive enzymes digestion and DNA sequencing, the recombinant plasmid was transfected into HeLa cells using electroporation, and the expression of the recombinant protein was analyzed by immunocytochemical assay. Resnlts: The specific gene fragment of 558 bp was successfully amplified. The DNA vaccine of SjAslp was successfully constructed. Immunocytochemical assay showed that SjAslp was expressed in the cytoplasm of HeLa cells. Conclusion: SjAslp gene can be expressed in eukaryotic system, which lays the foundation for development of the SjAslp DNA vaccine against schitosomiasis.

  4. Identification of the trehalose-6-phosphate synthase gene family in winter wheat and expression analysis under conditions of freezing stress

    Indian Academy of Sciences (India)

    D. W. Xie; X. N. Wang; L. S. Fu; J. Sun; W. Zheng; Z. F. Li

    2015-03-01

    Trehalose plays an important role in metabolic regulation and abiotic stress tolerance in plants. Trehalose contents are potentially modulated by trehalose-6-phosphate synthase (TPS), which is a key enzyme in the trehalose biosynthetic pathway. Using available wheat expressed sequence tag sequence information from NCBI and two wheat genome databases, we identified 12 wheat TPS genes and performed a comprehensive study on their structural, evolutionary and functional properties. The estimated divergence time of wheat TPS gene pairs and wheat–rice orthologues suggested that wheat and rice have a common ancestor. The number of TPS genes in the wheat genome was estimated to be at least 12, which is close to the number found in rice, Arabidopsis and soybean. Moreover, it has been reported earlier in other plants that TPS genes respond to abiotic stress, however, our study mainly analysed the TPS gene family under freezing conditions in winter wheat, and determined that most of the TPS gene expression in winter wheat was induced by freezing conditions, which further suggested that wheat TPS genes were involved in winter wheat freeze-resistance signal transduction pathways. Taken together, the current study represents the first comprehensive study of TPS genes in winter wheat and provides a foundation for future functional studies of this important gene family in Triticeae.

  5. Triptolide Inhibits Cyclooxygenase-2 and Inducible Nitric Oxide Synthase Expression in Human Colon Cancer and Leukemia Cells

    Institute of Scientific and Technical Information of China (English)

    Xiangmin TONG; Shui ZHENG; Jie JIN; Lifen ZHU; Yinjun LOU; Hangping YAO

    2007-01-01

    Triptolide (TP), a traditional Chinese medicine, has been reported to be effective in the treatment of autoimmune diseases and exerting antineoplastic activity in several human tumor cell lines. This study investigates the antitumor effect of TP in human colon cancer cells (SW114) and myelocytic leukemia (K562), and elucidates the possible molecular mechanism involved. SW114 and K562 cells were treated with different doses of TP (0, 5, 10, 20, or 50 ng/ml). The cell viability was assessed by 3-[4,5-dimethylthiazol2-yl]-2,5-diphenyltetrazolium bromide (MTT). Results demonstrated that TP inhibited the proliferation of both tumor cell lines in a dose-dependent manner. To further investigate its mechanisms, the products prostaglandin E2 (PGE2) and nitric oxide (NO) were measured by enzyme-linked immunosorbent assay (ELISA). Our data showed that TP strongly inhibited the production of NO and PGE2. Consistent with these results, the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) was up-regulated both at the mRNA level and the protein expression level, as shown by real-time RT-PCR and Western blotting. These results indicated that the inhibition of the inflammatory factor COX-2 and iNOS activity could be involved in the antitumor mechanisms of TP.

  6. Appetite suppressive effects of yeast hydrolysate on nitric oxide synthase (NOS) expression and vasoactive intestinal peptide (VIP) immunoreactivity in hypothalamus.

    Science.gov (United States)

    Jung, E Y; Suh, H J; Kim, S Y; Hong, Y S; Kim, M J; Chang, U J

    2008-11-01

    To investigate the effects of yeast hydrolysate on appetite regulation mechanisms in the central nervous system, nitric oxide synthase (NOS) expression and vasoactive intestinal peptide (VIP) immunoreactivity in the paraventricular nucleus (PVN) and ventromedial hypothalamic nucleus (VMH) of the hypothalamus were examined. Male Sprague-Dawley (SD) rats were assigned to five groups: control (normal diet), BY-1 and BY-2 (normal diet with oral administration of 0.1 g and 1.0 g of yeast hydrolysate yeast hydrolysate 10-30 kDa/kg body weight, respectively). The body weight gain in the BY groups was less than that in the control. In particular, the weight gain of the BY-2 group (133.0 +/- 5.1 g) was significantly lower (p yeast hydrolysate of <10 kDa reduced the body weight gain and body fat in normal diet-fed rats and increased the lipid energy metabolism by altering the expression of NOS and VIP in neurons.

  7. Isolation and developmental expression analysis of L-myo-inositol-1-phosphate synthase in four Actinidia species.

    Science.gov (United States)

    Cui, Meng; Liang, Dong; Wu, Shan; Ma, Fengwang; Lei, Yushan

    2013-12-01

    Myo-inositol (MI) is an important polyol involved in cellular signal transduction, auxin storage, osmotic regulation, and membrane formation. It also serves as a precursor for the production of pinitol, ascorbic acid, and members of the raffinose family. The first committed step for MI formation is catalyzed by L-myo-inositol-1-phosphate synthase (MIPS). We isolated MIPS cDNA sequences from Actinidia eriantha, Actinidia rufa, and Actinidia arguta and compared them with that of Actinidia deliciosa. Each comprised 1533 bp, encoding 510 amino acids with a predicted molecular weight of 56.5 KDa. The MIPS protein was highly conserved in Actinidia, sharing 98.94% identity among species. The MIPS gene was expressed in the flowers, leaves, petioles, and carpopodia. Similarly high levels of expression were detected in the young fruit of all four species. Overall activity of the enzyme was also maximal in young fruit, indicating that this developmental stage is the key point for MI synthesis in Actinidia. Among the four species, A. arguta had the greatest concentration of MI as well as the highest ratios of MI:sucrose and MI:glucose+fructose. This suggests that conversion to MI from carbohydrates was most efficient in A. arguta during early fruit development.

  8. Salt stress enhances xylem development and expression of S-adenosyl-L-methionine synthase in lignifying tissues of tomato plants.

    Science.gov (United States)

    Sánchez-Aguayo, Inmaculada; Rodríguez-Galán, José Manuel; García, Remedios; Torreblanca, José; Pardo, José Manuel

    2004-12-01

    S-Adenosyl-L-methionine synthase (SAM; ATP: L-methionine adenosyltransferase, EC 2.5.1.6) catalyzes the biosynthesis of S-adenosyl-L-methionine (AdoMet), a universal methyl-group donor. This enzyme is induced by salinity stress in tomato (Lycopersicon esculentum Mill.). To elucidate the role of SAM and AdoMet in the adaptation of plants to a saline environment, the expression pattern and histological distribution of SAM was investigated in control and salt-stressed tomato plants. Immunohistochemical analysis showed that SAM proteins were expressed in all cell types and plant organs, albeit with preferential accumulation in lignified tissues. Lignin deposition was estimated by histochemical tests and the extent of tissue lignification in response to salinity was quantified by image analysis. The average number of lignified cells in vascular bundles was significantly greater in plants under salt stress, with a maximal expansion of the lignified area found in the root vasculature. Accordingly, the greatest abundance of SAM gene transcripts and proteins occurred in roots. These results indicate that increased SAM activity correlated with a greater deposition of lignin in the vascular tissues of plants under salinity stress. A model is proposed in which an increased number of lignified tracheary elements in tomato roots under salt stress may enhance the cell-to-cell pathway for water transport, which would impart greater selectivity and reduced ion uptake, and compensate for diminished bulk flow of water and solutes along the apoplastic pathway.

  9. Expression of the Grifola frondosa Trehalose Synthase Gene and Improvement of Drought-Tolerance in Sugarcane (Saccharum officinarum L.)

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Trehalose is a nonreducing disaccharide of glucose that functions as a protectant in the stabilization of biological structures and enhances stress tolerance to abiotic stresses in organisms. We report here the expression of a Grifola frondosa trehalose synthase (TSase) gene for improving drought tolerance in sugarcane (Saccharum officinarum L.). The expression of the transgene was under the control of two tandem copies of the CaMV35S promoter and transferred into sugarcane by Agrobacterium tumefaciens EHA105. The transgenic plants accumulated high levels of trehalose, up to 8.805-12.863 mg/g fresh weight, whereas it was present at undetectable level in nontransgenic plants. It has been reported that transgenic plants transformed with Escherichia coli TPS (trehalose-6-phosphatesynthase) and/or TPP (trehalose-6-phosphate phosphatase) are severely stunted and have root morphologic alterations. Interestingly, our transgenic sugarcane plants had no obvious morphological changes and no growth inhibition in the field. Trehalose accumulation in 35S-35S: TSase plants resulted in increased drought tolerance, as shown by the drought and the drought physiological indexes, such as the rate of bound water/free water, plasma membrane permeability, malondialdehyde content, chlorophyll a and b contents,and activity of SOD and POD of the excised leaves. These results suggest that transgenic plants transformed with the TSase gene can accumulate high levels of trehalose and have enhanced tolerance to drought.

  10. Increased expression of fatty acid synthase provides a survival advantage to colorectal cancer cells via upregulation of cellular respiration.

    Science.gov (United States)

    Zaytseva, Yekaterina Y; Harris, Jennifer W; Mitov, Mihail I; Kim, Ji Tae; Butterfield, D Allan; Lee, Eun Y; Weiss, Heidi L; Gao, Tianyan; Evers, B Mark

    2015-08-07

    Fatty acid synthase (FASN), a lipogenic enzyme, is upregulated in colorectal cancer (CRC). Increased de novo lipid synthesis is thought to be a metabolic adaptation of cancer cells that promotes survival and metastasis; however, the mechanisms for this phenomenon are not fully understood. We show that FASN plays a role in regulation of energy homeostasis by enhancing cellular respiration in CRC. We demonstrate that endogenously synthesized lipids fuel fatty acid oxidation, particularly during metabolic stress, and maintain energy homeostasis. Increased FASN expression is associated with a decrease in activation of energy-sensing pathways and accumulation of lipid droplets in CRC cells and orthotopic CRCs. Immunohistochemical evaluation demonstrated increased expression of FASN and p62, a marker of autophagy inhibition, in primary CRCs and liver metastases compared to matched normal colonic mucosa. Our findings indicate that overexpression of FASN plays a crucial role in maintaining energy homeostasis in CRC via increased oxidation of endogenously synthesized lipids. Importantly, activation of fatty acid oxidation and consequent downregulation of stress-response signaling pathways may be key adaptation mechanisms that mediate the effects of FASN on cancer cell survival and metastasis, providing a strong rationale for targeting this pathway in advanced CRC.

  11. Modulation of lipocalin-type prostaglandin D2 synthase expression in catfish seminal vesicles by thyroid disrupting agents and hormones.

    Science.gov (United States)

    Sreenivasulu, Gunti; Pavani, Ayinampudi; Sudhakumari, Cheni-Chery; Dutta-Gupta, Aparna; Senthilkumaran, Balasubramanian

    2013-11-01

    Thyroid hormones play crucial role in several biological processes including reproduction. Disruption of normal thyroid status by environmental contaminants can cause severe impairment in reproductive functions. In our previous study, we reported down-regulation of a protein in seminal vesicular fluid of air-breathing catfish, Clarias gariepinus during experimentally induced hyperthyroidism. N-terminal amino acid sequence analysis followed by search in sequence database denoted it to be lipocalin-type prostaglandin D2 synthase (ptgds-b). In the present study, we cloned full-length cDNA of ptgds-b based on the N-terminal amino acid sequence. Surprisingly, Northern blot as well as RT-PCR analysis demonstrated the presence of ptgds-b transcript predominantly in seminal vesicles and developing testis. Further, ptgds-b mRNA significantly decreased in seminal vesicles following L-thyroxine overdose while there was an increased expression of ptgds-b after depletion of thyroid hormone by thiourea and withdrawal of the treatments reverted this effect. Treatment of catfish with human chorionic gonadotropin and estradiol significantly reduced ptgds-b expression. Taken together, we report ptgds-b as a thyroid hormone regulated protein in the seminal vesicles in addition to gonadotropin and estradiol. Further studies might explain the exclusive presence of ptgds-b in seminal vesicles and developing testis yet present data evaluated it as a putative biomarker for thyroid hormone disruption.

  12. Estrous cycle influences the expression of neuronal nitric oxide synthase in the hypothalamus and limbic system of female mice

    Science.gov (United States)

    Sica, Monica; Martini, Mariangela; Viglietti-Panzica, Carla; Panzica, GianCarlo

    2009-01-01

    Background Nitric oxide plays an important role in the regulation of male and female sexual behavior in rodents, and the expression of the nitric oxide synthase (NOS) is influenced by testosterone in the male rat, and by estrogens in the female. We have here quantitatively investigated the distribution of nNOS immunoreactive (ir) neurons in the limbic hypothalamic region of intact female mice sacrificed during different phases of estrous cycle. Results Changes were observed in the medial preoptic area (MPA) (significantly higher number in estrus) and in the arcuate nucleus (Arc) (significantly higher number in proestrus). In the ventrolateral part of the ventromedial nucleus (VMHvl) and in the bed nucleus of the stria terminalis (BST) no significant changes have been observed. In addition, by comparing males and females, we observed a stable sex dimorphism (males have a higher number of nNOS-ir cells in comparison to almost all the different phases of the estrous cycle) in the VMHvl and in the BST (when considering only the less intensely stained elements). In the MPA and in the Arc sex differences were detected only comparing some phases of the cycle. Conclusion These data demonstrate that, in mice, the expression of nNOS in some hypothalamic regions involved in the control of reproduction and characterized by a large number of estrogen receptors is under the control of gonadal hormones and may vary according to the rapid variations of hormonal levels that take place during the estrous cycle. PMID:19604366

  13. GNC and CGA1 modulate chlorophyll biosynthesis and glutamate synthase (GLU1/Fd-GOGAT expression in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Darryl Hudson

    Full Text Available Chloroplast development is an important determinant of plant productivity and is controlled by environmental factors including amounts of light and nitrogen as well as internal phytohormones including cytokinins and gibberellins (GA. The paralog GATA transcription factors GNC and CGA1/GNL up-regulated by light, nitrogen and cytokinin while also being repressed by GA signaling. Modifying the expression of these genes has previously been shown to influence chlorophyll content in Arabidopsis while also altering aspects of germination, elongation growth and flowering time. In this work, we also use transgenic lines to demonstrate that GNC and CGA1 exhibit a partially redundant control over chlorophyll biosynthesis. We provide novel evidence that GNC and CGA1 influence both chloroplast number and leaf starch in proportion to their transcript level. GNC and CGA1 were found to modify the expression of chloroplast localized GLUTAMATE SYNTHASE (GLU1/Fd-GOGAT, which is the primary factor controlling nitrogen assimilation in green tissue. Altering GNC and CGA1 expression was also found to modulate the expression of important chlorophyll biosynthesis genes (GUN4, HEMA1, PORB, and PORC. As previously demonstrated, the CGA1 transgenic plants demonstrated significantly altered timing to a number of developmental events including germination, leaf production, flowering time and senescence. In contrast, the GNC transgenic lines we analyzed maintain relatively normal growth phenotypes outside of differences in chloroplast development. Despite some evidence for partial divergence, results indicate that regulation of both GNC and CGA1 by light, nitrogen, cytokinin, and GA acts to modulate nitrogen assimilation, chloroplast development and starch production. Understanding the mechanisms controlling these processes is important for agricultural biotechnology.

  14. Expression of Nitric Oxide Synthase Isoenzyme in Lung Tissue of Smokers with and without Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Wen-Ting Jiang

    2015-01-01

    Full Text Available Background: It has been demonstrated that only 10%-20% cigarette smokers finally suffer chronic obstructive pulmonary disease (COPD. The underlying mechanism of development remains uncertain so far. Nitric oxide (NO has been found to be closely associated with the pathogenesis of COPD, the alteration of NO synthase (NOS expression need to be revealed. The study aimed to investigate the alterations of NOS isoforms expressions between smokers with and without COPD, which might be helpful for identifying the susceptibility of smokers developing into COPD. Methods: Peripheral lung tissues were obtained from 10 nonsmoker control subjects, 15 non-COPD smokers, and 15 smokers with COPD. Neuronal NOS (nNOS, inducible NOS (iNOS, and endothelial NOS (eNOS mRNA and protein levels were measured in each sample by using real-time polymerase chain reaction and Western blotting. Results: INOS mRNA was significantly increased in patients with COPD compared with nonsmokers and smokers with normal lung function (P < 0.001, P = 0.001, respectively. iNOS protein was also higher in COPD patients than nonsmokers and smokers with normal lung function (P < 0.01 and P = 0.01, respectively. However, expressions of nNOS and eNOS did not differ among nonsmokers, smokers with and without COPD. Furthermore, there was a negative correlation between iNOS protein level and lung function parameters forced expiratory volume in 1 s (FEV 1 (% predicted (r = −0.549, P = 0.001 and FEV 1 /forced vital capacity (%, r = −0.535, P = 0.001. Conclusions: The expression of iNOS significantly increased in smokers with COPD compared with that in nonsmokers or smokers without COPD. The results suggest that iNOS might be involved in the pathogenesis of COPD, and may be a potential marker to identify the smokers who have more liability to suffer COPD.

  15. Macrophage Metalloelastase (MMP12) Regulates Adipose Tissue Expansion, Insulin Sensitivity, and Expression of Inducible Nitric Oxide Synthase

    Science.gov (United States)

    Lee, Jung-Ting; Pamir, Nathalie; Liu, Ning-Chun; Kirk, Elizabeth A.; Averill, Michelle M.; Becker, Lev; Larson, Ilona; Hagman, Derek K.; Foster-Schubert, Karen E.; van Yserloo, Brian; Bornfeldt, Karin E.; LeBoeuf, Renee C.; Kratz, Mario

    2014-01-01

    Macrophage metalloelastase, a matrix metallopeptidase (MMP12) predominantly expressed by mature tissue macrophages, is implicated in pathological processes. However, physiological functions for MMP12 have not been described. Because mRNA levels for the enzyme increase markedly in adipose tissue of obese mice, we investigated the role of MMP12 in adipose tissue expansion and insulin resistance. In humans, MMP12 expression correlated positively and significantly with insulin resistance, TNF-α expression, and the number of CD14+CD206+ macrophages in adipose tissue. MMP12 was the most abundant matrix metallopeptidase detected by proteomic analysis of conditioned medium of M2 macrophages and dendritic cells. In contrast, it was detected only at low levels in bone marrow derived macrophages and M1 macrophages. When mice received a high-fat diet, adipose tissue mass increased and CD11b+F4/80+CD11c−macrophages accumulated to a greater extent in MMP12-deficient (Mmp12−/−) mice than in wild-type mice (Mmp12+/+). Despite being markedly more obese, fat-fed Mmp12−/− mice were more insulin sensitive than fat-fed Mmp12+/+ mice. Expression of inducible nitric oxide synthase (Nos2) by Mmp12−/− macrophages was significantly impaired both in vivo and in vitro, suggesting that MMP12 might mediate nitric oxide production during inflammation. We propose that MMP12 acts as a double-edged sword by promoting insulin resistance while combatting adipose tissue expansion. PMID:24914938

  16. Jinggangmycin increases fecundity of the brown planthopper, Nilaparvata lugens (Stål) via fatty acid synthase gene expression.

    Science.gov (United States)

    Li, Lei; Jiang, Yiping; Liu, Zongyu; You, Linlin; Wu, You; Xu, Bing; Ge, Linquan; Stanley, David; Song, Qisheng; Wu, Jincai

    2016-01-01

    The antibiotic jinggangmycin (JGM) is mainly used in controlling the rice sheath blight, Rhizoctonia solani, in China. JGM also enhances reproduction of the brown planthopper (BPH), Nilaparvata lugens (Stål). To date, however, molecular mechanisms of the enhancement are unclear. Our related report documented the influence of foliar JGM sprays on ovarian protein content. Here, we used isobaric tags for relative and absolute quantitation (iTRAQ) protocols to analyze ovarian proteins of BPH females following JGM spray (JGM-S) and topical application (JGM-T). We recorded changes in expression of 284 proteins (142↑ and 142↓) in JGM-S compared to the JGM-S control group (S-control); 267 proteins were differentially expressed (130↑ and 137↓) in JGM-T compared to the JGM-T control group (T-control), of which, 22 proteins were up-regulated in both groups. Comparing the JGM-S to the JGM-T group, 114 proteins were differentially expressed (62↑ and 52↓). Based on the biological significance of fatty acids, pathway annotation and enrichment analysis, we designed a dsRNA construct to silence a gene encoding fatty acid synthase (FAS). FAS was more highly expressed in JGM-S vs S-control and JGM-S vs JGM-T groups. The dsFAS treatment reduced fecundity by about 46% and reduced ovarian and fat body fatty acid concentrations in JGM-S-treated females relative to controls. We infer FAS provides critically needed fatty acids to support JGM-enhanced fecundity in BPH.

  17. Late postnatal shifts of parvalbumin and nitric oxide synthase expression within the GABAergic and glutamatergic phenotypes of inferior colliculus neurons.

    Science.gov (United States)

    Fujimoto, Hisataka; Konno, Kotaro; Watanabe, Masahiko; Jinno, Shozo

    2017-03-01

    The inferior colliculus (IC) is partitioned into three subdivisions: the dorsal and lateral cortices (DC and LC) and the central nucleus (ICC), and serves as an integration center of auditory information. Recent studies indicate that a certain population of IC neurons may represent the non-GABAergic phenotype, while they express well-established cortical/hippocampal GABAergic neuron markers. In this study we used the optical disector to investigate the phenotype of IC neurons expressing parvalbumin (PV) and/or nitric oxide synthase (NOS) in C57BL/6J mice during the late postnatal period. Four major types of IC neurons were defined by the presence (+) or absence (-) of PV, NOS, and glutamic acid decarboxylase 67 (GAD67): PV(+) /NOS(-) /GAD67(+) , PV(+) /NOS(+) /GAD67(+) , PV(+) /NOS(-) /GAD67(-) , and PV(-) /NOS(+) /GAD67(-) . Fluorescent in situ hybridization for vesicular glutamate transporter 2 mRNA indicated that almost all GAD67(-) IC neurons represented the glutamatergic phenotype. The numerical densities (NDs) of total GAD67(+) IC neurons remained unchanged in all subdivisions. The NDs of PV(+) /NOS(-) /GAD67(+) neurons and PV(-) /NOS(+) /GAD67(-) neurons were reduced with age in the ICC, while they remained unchanged in the DC and LC. By contrast, the NDs of PV(+) /NOS(+) /GAD67(+) neurons and PV(+) /NOS(-) /GAD67(-) neurons were increased with age in the ICC, although there were no changes in the DC and LC. The cell body size of GAD67(+) IC neurons did not vary according to the expression of PV with or without NOS. The present findings indicate that the expression of PV and NOS may shift with age within the GABAergic and glutamatergic phenotypes of IC neurons during the late postnatal period. J. Comp. Neurol. 525:868-884, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Development of adrenal zonation in fetal rats defined by expression of aldosterone synthase and 11beta-hydroxylase.

    Science.gov (United States)

    Wotus, C; Levay-Young, B K; Rogers, L M; Gomez-Sanchez, C E; Engeland, W C

    1998-10-01

    The adult rat adrenal cortex is comprised of three concentric steroidogenic zones that are morphologically and functionally distinguishable: the zona glomerulosa, zona intermedia, and the zona fasciculata/reticularis. Expression of the zone-specific steroidogenic enzymes, cytochrome P450 aldosterone synthase (P450aldo), and P450 11beta hydroxylase (P45011beta), produced by the zona glomerulosa and zona fasciculata/reticularis, respectively, can be used to define the adrenal cortical cell phenotype of these two zones. In this study, immunohistochemistry and in situ hybridization were used to determine the ontogeny of expression of P450aldo and P45011beta to monitor the pattern of development of the rat adrenal cortex. RIA was used to measure adrenal content of aldosterone and corticosterone, the resulting products of the two enzymatic pathways. Double immunofluorescent staining for both enzymes at gestational day 16 (E16) showed P45011beta protein expressed in cells distributed throughout most of the adrenal intermixed with a separate, but smaller, population of cells expressing P450aldo protein. Whereas expression of P45011beta protein retained a similar pattern of distribution from E16 to adulthood (ignoring distribution of SA-1 positive, presumptive medullary cells), P450aldo protein changed its pattern of distribution by E19, becoming localized in a discontinuous ring of cells adjacent to the capsule. By postnatal day 1, P450aldo protein distribution was similar to that observed in adult glands; P450aldo-positive cells formed a continuous zone underlying the capsule. In situ hybridization showed that the pattern of P45011beta messenger RNA expression paralleled protein expression at all times, whereas P450aldo messenger RNA paralleled protein at E19 and after, but was undetectable before E19. However, adrenal aldosterone and corticosterone, as measured by RIA, were detected by E16, supporting the functional capacity of both phenotypes for all ages studied. These

  19. Constant Width Planar Computation Characterizes ACC0

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt

    2006-01-01

    We obtain a characterization of ACC0 in terms of a natural class of constant width circuits, namely in terms of constant width polynomial size planar circuits. This is shown via a characterization of the class of acyclic digraphs which can be embedded on a cylinder surface in such a way that all...

  20. Constant Width Planar Computation Characterizes ACC0

    DEFF Research Database (Denmark)

    Hansen, K.A.

    2004-01-01

    We obtain a characterization of ACC 0 in terms of a natural class of constant width circuits, namely in terms of constant width polynomial size planar circuits. This is shown via a characterization of the class of acyclic digraphs which can be embedded on a cylinder surface in such a way that all...

  1. Expression of inducible nitric oxide synthase in trigeminal ganglion cells during culture

    DEFF Research Database (Denmark)

    Jansen-Olesen, Inger; Zhou, MingFang; Zinck, Tina Jovanovic

    2005-01-01

    , reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting. In trigeminal ganglia cells not subjected to culture, endothelial (e) and neuronal (n) but not inducible (i) NOS mRNA and protein were detected. Culture of rat neurones resulted in a rapid axonal outgrowth of NOS positive...... fibres. At 12, 24 and 48 hr of culture, NOS immunoreactivity was detected in medium-sized trigeminal ganglia cells. Western blotting and RT-PCR revealed an up-regulation of inducible iNOS expression during culture. However, after culture only low levels of eNOS protein was found while no eNOS and nNOS m......RNA and protein could be detected. The data suggest that iNOS expression may be a molecular mechanism mediating the adaptive response of trigeminal ganglia cells to the serum free stressful stimulus the culture environment provides. It may act as a cellular signalling molecule that is expressed after cell...

  2. Adrenocortical carcinoma (ACC: diagnosis, prognosis and treatment.

    Directory of Open Access Journals (Sweden)

    Rossella eLibé

    2015-07-01

    Full Text Available Adrenocortical carticnoma (ACC is a rare malignancy with an incidence of 0.7–2.0 cases/million habitants/year. The diagnosis of malignancy relies on careful investigations of clinical, biological and imaging features before surgery and pathological examination after tumor removal. Most patients present with steroid hormone excess or abdominal mass effects, but 15% of patients with ACC is initially diagnosed incidentally. After the diagnosis, in order to assess the ACC prognosis and establish an adequate basis for treatment decisions different tools are proposed. The stage classification pro¬posed by the European Network for the Study of Adrenal Tumors (ENSAT is recommended. Pathology reports define the Weiss score, the resection status and the proliferative index, including the mitotic count and the Ki67 index. As far as the treatment is concerned, in case of tumor limited to the adrenal gland, the complete resection of the tumor is the first option. Most patients benefit from adjuvant mitotane treatment. In metastatic disease, mitotane is the cornerstone of initial treatment, and cytotoxic drugs should be added in case of progression. Recently, the First International Randomised (FIRM-ACT Trial in metastatic ACC reported the association between mitotane and etoposide/ doxorubicin/cisplatin (EDP as the new standard in first line treatment of ACC. In last years, new targeted therapies, including the IGF 1 receptor inhibitors, have been investigated, but their efficacy remains limited. Thus, new treatment concepts are urgently needed. The ongoing omic approaches and next-generation sequencing will improve our understanding of the pathogenesis and hopefully will lead to better therapies.

  3. Impaired expression of glycogen synthase mRNA in skeletal muscle of NIDDM patients

    DEFF Research Database (Denmark)

    Vestergaard, H; Bjørbaek, C; Andersen, P H

    1991-01-01

    with NIDDM were accompanied by a 39% reduction (P less than 0.02) in the steady state level of GS mRNA per microgram DNA of muscle. In both diabetic and control subjects, the mRNA expression of GS was unaffected after euglycemic-hyperinsulinemic clamp for 4 h. With single-stranded conformation polymorphism...

  4. Fish Oil Supplementation and Fatty Acid Synthase Expression in the Prostate: A Randomized Controlled Trial

    Science.gov (United States)

    2008-03-01

    expression and fatty acid synthesis. Research in normal cells has demonstrated that dietary supplementation with polyunsaturated fatty acids ( PUFA ...particularly omega -3 fatty acids , inhibits SREBP-1 activation, resulting in a decreased transcription of FAS. 15. SUBJECT TERMS Prostate Cancer...Lipid Medtabolism, Clinical Trial; Omega -3 Fatty Acids 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME

  5. Impaired expression of glycogen synthase mRNA in skeletal muscle of NIDDM patients

    DEFF Research Database (Denmark)

    Vestergaard, H; Bjørbaek, C; Andersen, P H

    1991-01-01

    with NIDDM were accompanied by a 39% reduction (P less than 0.02) in the steady state level of GS mRNA per microgram DNA of muscle. In both diabetic and control subjects, the mRNA expression of GS was unaffected after euglycemic-hyperinsulinemic clamp for 4 h. With single-stranded conformation polymorphism...

  6. Abundance and diversity of archaeal accA gene in hot springs in Yunnan Province, China.

    Science.gov (United States)

    Song, Zhao-Qi; Wang, Li; Wang, Feng-Ping; Jiang, Hong-Chen; Chen, Jin-Quan; Zhou, En-Min; Liang, Feng; Xiao, Xiang; Li, Wen-Jun

    2013-09-01

    It has been suggested that archaea carrying the accA gene, encoding the alpha subunit of the acetyl CoA carboxylase, autotrophically fix CO2 using the 3-hydroxypropionate/4-hydroxybutyrate pathway in low-temperature environments (e.g., soils, oceans). However, little new information has come to light regarding the occurrence of archaeal accA genes in high-temperature ecosystems. In this study, we investigated the abundance and diversity of archaeal accA gene in hot springs in Yunnan Province, China, using DNA- and RNA-based phylogenetic analyses and quantitative polymerase chain reaction. The results showed that archaeal accA genes were present and expressed in the investigated Yunnan hot springs with a wide range of temperatures (66-96 °C) and pH (4.3-9.0). The majority of the amplified archaeal accA gene sequences were affiliated with the ThAOA/HWCG III [thermophilic ammonia-oxidizing archaea (AOA)/hot water crenarchaeotic group III]. The archaeal accA gene abundance was very close to that of AOA amoA gene, encoding the alpha subunit of ammonia monooxygenase. These data suggest that AOA in terrestrial hot springs might acquire energy from ammonia oxidation coupled with CO2 fixation using the 3-hydroxypropionate/4-hydroxybutyrate pathway.

  7. Disequilibrium of flavonol synthase and dihydroflavonol-4-reductase expression associated tightly to white versus red color flower formation in plants

    Directory of Open Access Journals (Sweden)

    Ping eLuo

    2016-01-01

    Full Text Available Flower colour is the main character throughout the plant kingdom. Though substantial information exists regarding the structural and regulatory genes involved in anthocyanin and flavonol biosynthesis, little is known that what make a diverse white versus red color flower in natural species. Here, the contents of pigments in seven species from varied phylogenetic location in plants with red and white flowers.were determined. Flavonols could be detected in red and white flowers, but anthocyanins were almost undetectable in the white cultivar. Comparisons of expression patterns of gene related to the flavonoid biosynthesis indicated that disequilibrium expression of flavonol synthase (FLS and dihydroflavonol-4-reductase (DFR genes determined the accumulation of flavonols and anothcyanins in both red and white flowers of seven species. To further investigate the role of such common regulatory patterns in determining flower color, FLS genes were isolated from Rosa rugosa (RrFLS1, Prunus persica (PpFLS and Petunia hybrida (PhFLS, and DFR genes were isolated from Rosa rugosa (RrDFR1 and Petunia hybrida (PhDFR. Heterologous expression of the FLS genes within tobacco host plants demonstrated conservation of function, with the transgenes promoting flavonol biosynthesis and inhibiting anthocyanin accumulation, so resulting in white flowers. Conversely, overexpression of DFR genes in tobacco displayed down-regulation of the endogenous NtFLS gene, and the promotion of anthocyanin synthesis. On this basis, we propose a model in which FLS and DFR gene-products compete for common substrates in order to direct the biosynthesis of flavonols and anthocyanins, respectively, thereby determining white versus red coloration of flowers.

  8. Macrophage inducible nitric oxide synthase gene expression is blocked by a benzothiophene derivative with anti-HIV properties.

    Science.gov (United States)

    Carballo, M; Conde, M; Tejedo, J; Gualberto, A; Jimenez, J; Monteseirín, J; Santa María, C; Bedoya, F J; Hunt, S W; Pintado, E; Baldwin, A S; Sobrino, F

    2002-04-01

    Nitric oxide (NO) has been shown to mediate multiple physiological and toxicological functions. The inducible nitric oxide synthase (iNOS) is responsible for the high output generation of NO by macrophages following their stimulation by cytokines or bacterial antigens. The inhibition of TNF alpha-stimulated HIV expression and the anti-inflammatory property of PD144795, a new benzothiophene derivative, have been recently described. We have now analyzed whether some of these properties could be mediated by an effect of PD144795 on NO-dependent inflammatory events. We show that PD144795 suppresses the lipopolysaccharide-elicited production of nitrite (NO(-)(2)) by primary peritoneal mouse macrophages and by a macrophage-derived cell line, RAW 264.7. This effect was dependent on the dose and timing of addition of PD144795 to the cells. Suppression of NO(-)(2) production was associated with a decrease in the amount of iNOS protein, iNOS enzyme activity and mRNA expression. The effect of PD144795 was partially abolished by coincubation of the cells with LPS and IFN gamma. However, the inhibitory effect of PD144795 was not abrogated by the simultaneous addition of LPS and TNF alpha, which indirectly suggests that the effect of PD144795 was not due to the inhibition of TNF alpha synthesis. Additionally, PD144795 did not block NF-kappa B nuclear translocation induced by LPS. Inhibition of iNOS gene expression represents a novel mechanism of PD144795 action that underlines the anti-inflammatory effects of this immunosuppressive drug.

  9. RNase E affects the expression of the acyl-homoserine lactone synthase gene sinI in Sinorhizobium meliloti.

    Science.gov (United States)

    Baumgardt, Kathrin; Charoenpanich, Pornsri; McIntosh, Matthew; Schikora, Adam; Stein, Elke; Thalmann, Sebastian; Kogel, Karl-Heinz; Klug, Gabriele; Becker, Anke; Evguenieva-Hackenberg, Elena

    2014-04-01

    Quorum sensing of Sinorhizobium meliloti relies on N-acyl-homoserine lactones (AHLs) as autoinducers. AHL production increases at high population density, and this depends on the AHL synthase SinI and two transcriptional regulators, SinR and ExpR. Our study demonstrates that ectopic expression of the gene rne, coding for RNase E, an endoribonuclease that is probably essential for growth, prevents the accumulation of AHLs at detectable levels. The ectopic rne expression led to a higher level of rne mRNA and a lower level of sinI mRNA independently of the presence of ExpR, the AHL receptor, and AHLs. In line with this, IPTG (isopropyl-β-D-thiogalactopyranoside)-induced overexpression of rne resulted in a shorter half-life of sinI mRNA and a strong reduction of AHL accumulation. Moreover, using translational sinI-egfp fusions, we found that sinI expression is specifically decreased upon induced overexpression of rne, independently of the presence of the global posttranscriptional regulator Hfq. The 28-nucleotide 5' untranslated region (UTR) of sinI mRNA was sufficient for this effect. Random amplification of 5' cDNA ends (5'-RACE) analyses revealed a potential RNase E cleavage site at position +24 between the Shine-Dalgarno site and the translation start site. We postulate therefore that RNase E-dependent degradation of sinI mRNA from the 5' end is one of the steps mediating a high turnover of sinI mRNA, which allows the Sin quorum-sensing system to respond rapidly to changes in transcriptional control of AHL production.

  10. Expression of Biphenyl Synthase Genes and Formation of Phytoalexin Compounds in Three Fire Blight-Infected Pyrus communis Cultivars

    Science.gov (United States)

    Chizzali, Cornelia; Swiddan, Asya K.; Abdelaziz, Sahar; Gaid, Mariam; Richter, Klaus; Fischer, Thilo C.; Liu, Benye; Beerhues, Ludger

    2016-01-01

    Pear (Pyrus communis) is an economically important fruit crop. Drops in yield and even losses of whole plantations are caused by diseases, most importantly fire blight which is triggered by the bacterial pathogen Erwinia amylovora. In response to the infection, biphenyls and dibenzofurans are formed as phytoalexins, biosynthesis of which is initiated by biphenyl synthase (BIS). Two PcBIS transcripts were cloned from fire blight-infected leaves and the encoded enzymes were characterized regarding substrate specificities and kinetic parameters. Expression of PcBIS1 and PcBIS2 was studied in three pear cultivars after inoculation with E. amylovora. Both PcBIS1 and PcBIS2 were expressed in ‘Harrow Sweet’, while only PcBIS2 transcripts were detected in ‘Alexander Lucas’ and ‘Conference’. Expression of the PcBIS genes was observed in both leaves and the transition zone of the stem; however, biphenyls and dibenzofurans were only detected in stems. The maximum phytoalexin level (~110 μg/g dry weight) was observed in the transition zone of ‘Harrow Sweet’, whereas the concentrations were ten times lower in ‘Conference’ and not even detectable in ‘Alexander Lucas’. In ‘Harrow Sweet’, the accumulation of the maximum phytoalexin level correlated with the halt of migration of the transition zone, whereby the residual part of the shoot survived. In contrast, the transition zones of ‘Alexander Lucas’ and ‘Conference’ advanced down to the rootstock, resulting in necrosis of the entire shoots. PMID:27410389

  11. Interaction between cysteine synthase and serine O-acetyltransferase proteins and their stage specific expression in Leishmania donovani.

    Science.gov (United States)

    Singh, Kuljit; Singh, Krishn Pratap; Equbal, Asif; Suman, Shashi S; Zaidi, Amir; Garg, Gaurav; Pandey, Krishna; Das, Pradeep; Ali, Vahab

    2016-12-01

    Leishmania possess a unique trypanothione redox metabolism with undebated roles in protection from oxidative damage and drug resistance. The biosynthesis of trypanothione depends on l-cysteine bioavailability which is regulated by cysteine biosynthesis pathway. The de novo cysteine biosynthesis pathway is comprised of serine O-acetyltransferase (SAT) and cysteine synthase (CS) enzymes which sequentially mediate two consecutive steps of cysteine biosynthesis, and is absent in mammalian host. However, despite the apparent dependency of redox metabolism on cysteine biosynthesis pathway, the role of SAT and CS in redox homeostasis has been unexplored in Leishmania parasites. Herein, we have characterized CS and SAT to investigate their interaction and relative abundance of these proteins in promastigote vs. amastigote growth stages of L. donovani. CS and SAT genes of L. donovani (LdCS and LdSAT) were cloned, expressed, and fusion proteins purified to homogeneity with affinity column chromatography. Purified LdCS contains PLP as cofactor and showed optimum enzymatic activity at pH 7.5. Enzyme kinetics showed that LdCS catalyses the synthesis of cysteine using O-acetylserine and sulfide with a Km of 15.86 mM and 0.17 mM, respectively. Digitonin fractionation and indirect immunofluorescence microscopy showed that LdCS and LdSAT are localized in the cytoplasm of promastigotes. Size exclusion chromatography, co-purification, pull down and immuno-precipitation assays demonstrated a stable complex formation between LdCS and LdSAT proteins. Furthermore, LdCS and LdSAT proteins expression/activity was upregulated in amastigote growth stage of the parasite. Thus, the stage specific differential expression of LdCS and LdSAT suggests that it may have a role in the redox homeostasis of Leishmania.

  12. Yeast PAH1-encoded phosphatidate phosphatase controls the expression of CHO1-encoded phosphatidylserine synthase for membrane phospholipid synthesis.

    Science.gov (United States)

    Han, Gil-Soo; Carman, George M

    2017-08-11

    The PAH1-encoded phosphatidate phosphatase (PAP), which catalyzes the committed step for the synthesis of triacylglycerol in Saccharomyces cerevisiae, exerts a negative regulatory effect on the level of phosphatidate used for the de novo synthesis of membrane phospholipids. This raises the question whether PAP thereby affects the expression and activity of enzymes involved in phospholipid synthesis. Here, we examined the PAP-mediated regulation of CHO1-encoded phosphatidylserine synthase (PSS), which catalyzes the committed step for the synthesis of major phospholipids via the CDP-diacylglycerol pathway. The lack of PAP in the pah1Δ mutant highly elevated PSS activity, exhibiting a growth-dependent up-regulation from the exponential to the stationary phase of growth. Immunoblot analysis showed that the elevation of PSS activity results from an increase in the level of the enzyme encoded by CHO1 Truncation analysis and site-directed mutagenesis of the CHO1 promoter indicated that Cho1 expression in the pah1Δ mutant is induced through the inositol-sensitive upstream activation sequence (UASINO), a cis-acting element for the phosphatidate-controlled Henry (Ino2-Ino4/Opi1) regulatory circuit. The abrogation of Cho1 induction and PSS activity by a CHO1 UASINO mutation suppressed pah1Δ effects on lipid synthesis, nuclear/endoplasmic reticulum membrane morphology, and lipid droplet formation, but not on growth at elevated temperature. Loss of the DGK1-encoded diacylglycerol kinase, which converts diacylglycerol to phosphatidate, partially suppressed the pah1Δ-mediated induction of Cho1 and PSS activity. Collectively, these data showed that PAP activity controls the expression of PSS for membrane phospholipid synthesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Increased cyclooxygenase-2 and thromboxane synthase expression is implicated in diosgenin-induced megakaryocytic differentiation in human erythroleukemia cells.

    Science.gov (United States)

    Cailleteau, C; Liagre, B; Battu, S; Jayat-Vignoles, C; Beneytout, J L

    2008-09-01

    Differentiation induction as a therapeutic strategy has, so far, the greatest impact in hematopoietic malignancies, most notably leukemia. Diosgenin is a very interesting natural product because, depending on the specific dose used, its biological effect is very different in HEL (human erythroleukemia) cells. For example, at 10 microM, diosgenin induced megakaryocytic differentiation, in contrast to 40 microM diosgenin, which induced apoptosis in HEL cells previously demonstrated using sedimentation field-flow fractionation (SdFFF). The goal of this work focused on the correlation between cyclooxygenase-2 (COX-2) and thromboxane synthase (TxS) and megakaryocytic differentiation induced by diosgenin in HEL cells. Furthermore, the technique of SdFFF, having been validated in our models, was used in this new study as an analytical tool that provided us with more or less enriched differentiated cell fractions that could then be used for further analyses of enzyme protein expression and activity for the first time. In our study, we showed the implication of COX-2 and TxS in diosgenin-induced megakaryocytic differentiation in HEL cells. Furthermore, we showed that the analytical technique of SdFFF may be used as a tool to confirm our results as a function of the degree of cell differentiation.

  14. Oestrogen receptor expression and neuronal nitric oxide synthase in the clitoris and preputial gland structures of mice.

    Science.gov (United States)

    Martin-Alguacil, Nieves; Schober, Justine; Kow, Lee-Ming; Pfaff, Donald

    2008-12-01

    To study the presence of oestrogen receptors (ER) and neuronal nitric oxide synthase (nNOS) in the mouse clitoris. A series of sections of the pelvic area, including the preputial glands and clitoris, of 10 mice were assessed by immunocytochemical studies specific for ER-alpha and -beta, and nNOS; selected sections were also stained with Masson's trichrome. ER alpha was detected in the epithelium of the gland of the clitoris, and in the glandular tissue, preputial and apocrine gland. ER alpha was detected in the nuclei of stromal cells around the cavernous tissue and near the epithelium of the clitoris. Cytoplasm ER alpha was detected in a few cells in an area ventral to the clitoral gland. There was also nuclear staining in the connective tissue cells surrounding the clitoris. Very light ER beta immunostaining was detected in the clitoris and in the tissue related to it. There were some cells with nuclear staining in the vessels of the cavernous tissue of the clitoris. nNOS immunostaining was detected in the clitoris, the preputial gland and the connective tissue. ER alpha and beta isoforms, and nNOS, are present in the clitoris and preputial glands of female mice in different cellular locations and with differing levels of receptivity. Functional studies would further elucidate the role of receptor functions and their relationship to the neuronal expression of NO.

  15. In planta production of the highly potent resveratrol analogue pterostilbene via stilbene synthase and O-methyltransferase co-expression

    Energy Technology Data Exchange (ETDEWEB)

    Rimando A. M.; Liu C.; Pan, Z.; Polashock, J. J.; Dayan, F. E., Mizuno, C. S.; Snook, M. E.; Baerson, S. R.

    2012-04-01

    Resveratrol and related stilbenes are thought to play important roles in defence responses in several plant species and have also generated considerable interest as nutraceuticals owing to their diverse health-promoting properties. Pterostilbene, a 3,5-dimethylether derivative of resveratrol, possesses properties similar to its parent compound and, additionally, exhibits significantly higher fungicidal activity in vitro and superior pharmacokinetic properties in vivo. Recombinant enzyme studies carried out using a previously characterized O-methyltransferase sequence from Sorghum bicolor (SbOMT3) demonstrated its ability to catalyse the A ring-specific 3,5-bis-O-methylation of resveratrol, yielding pterostilbene. A binary vector was constructed for the constitutive co-expression of SbOMT3 with a stilbene synthase sequence from peanut (AhSTS3) and used for the generation of stably transformed tobacco and Arabidopsis plants, resulting in the accumulation of pterostilbene in both species. A reduced floral pigmentation phenotype observed in multiple tobacco transformants was further investigated by reversed-phase HPLC analysis, revealing substantial decreases in both dihydroquercetin-derived flavonoids and phenylpropanoid-conjugated polyamines in pterostilbene-producing SbOMT3/AhSTS3 events. These results demonstrate the potential utility of this strategy for the generation of pterostilbene-producing crops and also underscore the need for the development of additional approaches for minimizing concomitant reductions in key phenylpropanoid-derived metabolites.

  16. Inhibition of nitric oxide synthase expression in activated microglia and peroxynitrite scavenging activity by Opuntia ficus indica var. saboten.

    Science.gov (United States)

    Lee, Ming Hong; Kim, Jae Yeon; Yoon, Jeong Hoon; Lim, Hyo Jin; Kim, Tae Hee; Jin, Changbae; Kwak, Wie-Jong; Han, Chang-Kyun; Ryu, Jae-Ha

    2006-09-01

    Activated microglia by neuronal injury or inflammatory stimulation overproduce nitric oxide (NO) by inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS) such as superoxide anion, resulting in neurodegenerative diseases. The toxic peroxynitrite (ONOO-), the reaction product of NO and superoxide anion further contributes to oxidative neurotoxicity. A butanol fraction obtained from 50% ethanol extracts of Opuntia ficus indica var. saboten (Cactaceae) stem (SK OFB901) and its hydrolysis product (SK OFB901H) inhibited the production of NO in LPS-activated microglia in a dose dependent manner (IC50 15.9, 4.2 microg/mL, respectively). They also suppressed the expression of protein and mRNA of iNOS in LPS-activated microglial cells at higher than 30 microg/mL as observed by western blot analysis and RT-PCR experiment. They also inhibited the degradation of I-kappaB-alpha in activated microglia. Moreover, they showed strong activity of peroxynitrite scavenging in a cell free bioassay system. These results imply that Opuntia ficus indica may have neuroprotective activity through the inhibition of NO production by activated microglial cells and peroxynitrite scavenging activity.

  17. Characterization of triterpenoid profiles and triterpene synthase expression in the leaves of eight Vitis vinifera cultivars grown in the Upper Rhine Valley.

    Science.gov (United States)

    Pensec, Flora; Szakiel, Anna; Pączkowski, Cezary; Woźniak, Agnieszka; Grabarczyk, Marta; Bertsch, Christophe; Fischer, Marc J C; Chong, Julie

    2016-05-01

    Plant triterpenoids are a diverse group of secondary metabolites with wide distribution, high chemical diversity and interesting pharmacological and antimicrobial properties. The first step in the biosynthesis of all triterpenoids is the cyclization of the 2,3-oxidosqualene precursor, catalyzed by oxidosqualene cyclases (OSCs), which have characteristic product specificities. Biosynthesis and functions of pentacyclic triterpenes have been poorly studied in grapevine. In this study, we first investigated the profile of triterpenoids present in leaf cuticular waxes from eight Vitis vinifera cultivars cultivated in the Upper Rhine Valley. Further quantification of triterpenoids showed that these cultivars can be divided into two groups, characterized by high levels of lupeol (e.g., Pinot noir) or taraxerol (e.g., Gewurztraminer) respectively. We further analyzed the OSC family involved in the synthesis of pentacyclic triterpenes (called VvTTPSs) in the sequenced V. vinifera 40024 genome and found nine genes with similarity to previously characterized triterpene synthases. Phylogenetic analysis further showed that VvTTPS1-VvTTPS3 and VvTTPS5-VvTTPS9 belong to the β-amyrin synthase and multifunctional triterpene synthase clade, whereas VvTTPS10 belongs to the lupeol synthase clade. We studied the expression of several members of the VvTTPS family following biotic and abiotic stresses in V. vinifera 40024 as well as in the eight healthy cultivars. This study further revealed that one candidate gene, VvTTPS5, which does not belong to the lupeol synthase clade, is highly expressed in lupeol-rich cultivars. VvTTPS3, VvTTPS5, VvTTPS6, VvTTPS7 and VvTTPS10 were highly upregulated by UV stress, but only VvTTPS3, VvTTPS5, VvTTPS6 and VvTTPS10 were upregulated following downy mildew and gray mold infections respectively. These results suggest differential roles of VvTTPS against environmental stresses in grape leaves.

  18. Cloning and expression of quorum sensing N-acyl-homoserine synthase (LuxI gene detected in Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Farzan Modarresi

    2016-05-01

    Full Text Available Objectives: In present study we aimed to clone the luxI gene encoding N-acyl-homoserine synthase detected in biofilm forming clinical isolates of Acinetobacter baumannii and study its expression in Escherichia coli transformants.Materials and Methods: Four A. baumannii hospital strains which demonstrated strong biofilm activity were selected in this investigation. The presence of luxI gene was detected using PCR technique. Purified PCR product DNA was initially cloned to pTG19 plasmid embedded with overhang 3'dT residue and transformed to Escherichia coli K12 DH5α (luxI- mutant. The gene was then recovered from agarose gel after digestion after digestion with DraI restriction enzyme and ligated by T4 DNA ligase into pET28a expression vector using NdeI and XhoI enzymes. Recombinant (pET28a + luxI was transformed into E. coli BL21 (DE3 containing knockout luxI- gene. The luxI putative gene was further detected in transformants by colony PCR. Expression of the luxI gene in the recombinant E. coli BL21 cells was studied by quantitative real time PCR (qRT-PCR and the presence of N-acyl-homoserine lactone (AHL in wild types and the transformants were checked by colorimetric assay and Fourier Transform Infra- Red (FT-IR.Results: In our study, we found successful cloning of AHL from A. baumannii strain 23 which showed high biofilm. The presence of luxI gene in recombinant E. coli BL21 was confirmed by PCR. There was four fold increases in expression of luxI in the transformants (P ≤ 0.05. To verify the AHL synthesis, it was found that, strain 23 and the transformants showed highest amount of AHL activity (OD = 1.524. The FT-IR analysis indicated stretching C=O bond of the lactone ring and primary amides (N=H at 1764.69 cm-1 and 1659.23 cm-1 respectively.Conclusion: From above results we concluded that, luxI and AHL are the only quorum sensing elements existed in A. baumannii and pET28a vector allows efficient AHL expression in E. coli BL21

  19. Cloning and functional characterization of a beta-pinene synthase from Artemisia annua that shows a circadian pattern of expression.

    Science.gov (United States)

    Lu, Shan; Xu, Ran; Jia, Jun-Wei; Pang, Jihai; Matsuda, Seiichi P T; Chen, Xiao-Ya

    2002-09-01

    Artemisia annua plants produce a broad range of volatile compounds, including monoterpenes, which contribute to the characteristic fragrance of this medicinal species. A cDNA clone, QH6, contained an open reading frame encoding a 582-amino acid protein that showed high sequence identity to plant monoterpene synthases. The prokaryotically expressed QH6 fusion protein converted geranyl diphosphate to (-)-beta-pinene and (-)-alpha-pinene in a 94:6 ratio. QH6 was predominantly expressed in juvenile leaves 2 weeks postsprouting. QH6 transcript levels were transiently reduced following mechanical wounding or fungal elicitor treatment, suggesting that this gene is not directly involved in defense reaction induced by either of these treatments. Under a photoperiod of 12 h/12 h (light/dark), the abundance of QH6 transcripts fluctuated in a diurnal pattern that ebbed around 3 h before daybreak (9th h in the dark phase) and peaked after 9 h in light (9th h in the light phase). The contents of (-)-beta-pinene in juvenile leaves and in emitted volatiles also varied in a diurnal rhythm, correlating strongly with mRNA accumulation. When A. annua was entrained by constant light or constant dark conditions, QH6 transcript accumulation continued to fluctuate with circadian rhythms. Under constant light, advanced cycles of fluctuation of QH6 transcript levels were observed, and under constant dark, the cycle was delayed. However, the original diurnal pattern could be regained when the plants were returned to the normal light/dark (12 h/12 h) photoperiod. This is the first report that monoterpene biosynthesis is transcriptionally regulated in a circadian pattern.

  20. Expression, subcellular localization, and cis-regulatory structure of duplicated phytoene synthase genes in melon (Cucumis melo L.).

    Science.gov (United States)

    Qin, Xiaoqiong; Coku, Ardian; Inoue, Kentaro; Tian, Li

    2011-10-01

    Carotenoids perform many critical functions in plants, animals, and humans. It is therefore important to understand carotenoid biosynthesis and its regulation in plants. Phytoene synthase (PSY) catalyzes the first committed and rate-limiting step in carotenoid biosynthesis. While PSY is present as a single copy gene in Arabidopsis, duplicated PSY genes have been identified in many economically important monocot and dicot crops. CmPSY1 was previously identified from melon (Cucumis melo L.), but was not functionally characterized. We isolated a second PSY gene, CmPSY2, from melon in this work. CmPSY2 possesses a unique intron/exon structure that has not been observed in other plant PSYs. Both CmPSY1 and CmPSY2 are functional in vitro, but exhibit distinct expression patterns in different melon tissues and during fruit development, suggesting differential regulation of the duplicated melon PSY genes. In vitro chloroplast import assays verified the plastidic localization of CmPSY1 and CmPSY2 despite the lack of an obvious plastid target peptide in CmPSY2. Promoter motif analysis of the duplicated melon and tomato PSY genes and the Arabidopsis PSY revealed distinctive cis-regulatory structures of melon PSYs and identified gibberellin-responsive motifs in all PSYs except for SlPSY1, which has not been reported previously. Overall, these data provide new insights into the evolutionary history of plant PSY genes and the regulation of PSY expression by developmental and environmental signals that may involve different regulatory networks.

  1. Enhanced tolerance and accumulation of heavy metal ions by engineered Escherichia coli expressing Pyrus calleryana phytochelatin synthase.

    Science.gov (United States)

    Li, Hui; Cong, Yu; Lin, Jing; Chang, Youhong

    2015-03-01

    Contamination by heavy metals is a major environmental problem worldwide and microbial bioremediation is an efficient method for removing this type of pollution. The plant enzymephytochelatin synthase (PCS, also known as glutathione g-glutamylcysteinyltransferase, EC2.3.2.15) involved in the synthesis of phytochelatins (PCs), which are metal-binding cysteine-rich peptides, has a major role in the detoxification of heavy metals in plants. Expression of the PcPCS1 gene from the bean pear (Pyrus calleryana Dcne.) was induced after cadmium and copper treatments. However, functional analysis of this gene in vivo has not been reported. And it is or not suitable for bioremediation also needs to be assessed. In this study, we found Escherichia coli with over-expressed PcPCS1 had enhanced tolerance to cadmium, copper, sodium, and mercury. E. colicells transformed with pPcPCS1 was found to survive in solid M9 medium containing 2.0 mM Cd(2+), 4.0 mM Cu(2+). 4.5% (w/v) Na+, or 200 μ MHg(2+). Moreover, the growth curve showed 1.5 mM Cd(2+), 2.5 mM Cu(2+), 3.5% (w/v) Naþ, and 100 μ MHg(2+) had no effect on the growth of the E. coli cells transformed with pPcPCS1. Also, we found the contents of PCs and the accumulation of cadmium,copper, sodium, and mercury ions were enhanced in the recombinant E. coli strain Rosetta(TM) (DE3).These results suggested the PcPCS1 gene might be a candidate for heavy metal bioremediation via recombinant bacteria.

  2. Differential stress-response expression of two flavonol synthase genes and accumulation of flavonols in tartary buckwheat.

    Science.gov (United States)

    Li, Xiaohua; Kim, Yeon Bok; Kim, Yeji; Zhao, Shicheng; Kim, Haeng Hoon; Chung, Eunsook; Lee, Jai-Heon; Park, Sang Un

    2013-12-15

    Flavonoids are ubiquitously present in plants and play important roles in these organisms as well as in the human diet. Flavonol synthase (FLS) is a key enzyme of the flavonoid biosynthetic pathway, acting at the diverging point into the flavonol subclass branch. We isolated and characterized a FLS isoform gene, FtFLS2, from tartary buckwheat (Fagopyrum tataricum). FtFLS2 shares 48% identity and 67% similarity with the previously reported FtFLS1, whereas both genes share 47-65% identity and 65-69% similarity with FLSs from other plant species. Using quantitative real-time PCR and high-performance liquid chromatography (HPLC), the expression of FtFLS1/2 and the production of 3 main flavonols (kaempferol, myricetin and quercetin) was detected in roots, leaves, stems, flowers and different stages of developing seeds. The relationship between the expression of the 2 FLS genes and the accumulation of the 3 basic flavonols was analyzed in 2 tartary buckwheat cultivars. FtFLS1 and FtFLS2 exhibited differential transcriptional levels between the tartary buckwheat cultivars 'Hokkai T10' and 'Hokkai T8'. Generally, higher transcript levels of FtFLS1 and FtFLS2 and a higher amount of flavonols were observed in the 'Hokkai T10' cultivar than 'Hokkai T8'. The content of flavonols showed tissue-specific accumulation between the 2 cultivars. The transcription of FtFLS1 was inhibited by the exogenous application of abscisic acid (ABA), salicylic acid (SA) and sodium chloride (NaCl), while FtFLS2 was not affected by ABA but up-regulated by SA and NaCl. These data indicate that the 2 FtFLS isoforms of buckwheat have different functions in the response of buckwheat to environmental stress.

  3. Molecular cloning and expression levels of the monoterpene synthase gene (ZMM1 in Cassumunar ginger (Zingiber montanum (Koenig Link ex Dietr.

    Directory of Open Access Journals (Sweden)

    Bua-In Saowaluck

    2014-01-01

    Full Text Available Cassumunar ginger (Zingiber montanum (Koenig Link ex Dietr. is a native Thai herb with a high content and large variety of terpenoids in its essential oil. Improving the essential oil content and quality of cassumunar ginger is difficult for a breeder due to its clonally propagated nature. In this research, we describe the isolation and expression level of the monoterpene synthase gene that controls the key step of essential oil synthesis in this plant and evaluate the mechanical wounding that may influence the transcription level of the monoterpene synthase gene. To isolate the gene, the selected clones from DNA derived from young leaves were sequenced and analyzed and the monoterpene synthase gene from cassumunar ginger (ZMM1 was identified. The ZMM1 CDS containing 1 773 bp (KF500399 is predicted to encode a protein of 590 amino acids. The deduced amino acid sequence is 40-74% identical with known sequences of other angiosperm monoterpene synthases belonging to the isoprenoid biosynthesis C1 superfamily. A transcript of ZMM1 was detected almost exclusively in the leaves and was related to leaf wounding. The results of this research offer insight into the control of monoterpene synthesis in this plant. This finding can be applied to breeding programs or crop management of cassumunar ginger for better yield and quality of essential oil.

  4. Potential for quantifying expression of the Geobacteraceae citrate synthase gene to assess the activity of Geobacteraceae in the subsurface and on current-harvesting electrodes

    Science.gov (United States)

    Holmes, Dawn E.; Nevin, Kelly P.; O'Neil, Regina A.; Ward, Joy E.; Adams, Lorrie A.; Woodard, Trevor L.; Vrionis, Helen A.; Lovely, Derek R.

    2005-01-01

    The Geobacteraceae citrate synthase is phylogenetically distinct from those of other prokaryotes and is a key enzyme in the central metabolism of Geobacteraceae. Therefore, the potential for using levels of citrate synthase mRNA to estimate rates of Geobacter metabolism was evaluated in pure culture studies and in four different Geobacteraceae-dominated environments. Quantitative reverse transcription-PCR studies with mRNA extracted from cultures of Geobacter sulfurreducens grown in chemostats with Fe(III) as the electron acceptor or in batch with electrodes as the electron acceptor indicated that transcript levels of the citrate synthase gene, gltA, increased with increased rates of growth/Fe(III) reduction or current production, whereas the expression of the constitutively expressed housekeeping genes recA, rpoD, and proC remained relatively constant. Analysis of mRNA extracted from groundwater collected from a U(VI)-contaminated site undergoing in situ uranium bioremediation revealed a remarkable correspondence between acetate levels in the groundwater and levels of transcripts of gltA. The expression of gltA was also significantly greater in RNA extracted from groundwater beneath a highway runoff recharge pool that was exposed to calcium magnesium acetate in June, when acetate concentrations were high, than in October, when the levels had significantly decreased. It was also possible to detect gltA transcripts on current-harvesting anodes deployed in freshwater sediments. These results suggest that it is possible to monitor the in situ metabolic rate of Geobacteraceae by tracking the expression of the citrate synthase gene.

  5. Expression of nitric oxide synthases and effects of L-arginine and L-NMMA on nitric oxide production and fluid transport in collagenous colitis

    DEFF Research Database (Denmark)

    Perner, A; Andresen, Lars; Normark, M;

    2001-01-01

    Luminal nitric oxide (NO) is greatly increased in the colon of patients with collagenous and ulcerative colitis. To define the source and consequence of enhanced NO production we have studied expression of NO synthase (NOS) isoforms and nitrotyrosine in mucosal biopsies from these patients....... In addition, effects on colonic fluid transfer caused by manipulating the substrate of NOS were studied in patients with collagenous colitis....

  6. Activation of Phosphotyrosine Phosphatase Activity Attenuates Mitogen-Activated Protein Kinase Signaling and Inhibits c-FOS and Nitric Oxide Synthase Expression in Macrophages Infected with Leishmania donovani

    OpenAIRE

    Nandan, Devki; Lo, Raymond; Reiner, Neil E

    1999-01-01

    Intracellular protozoan parasites of the genus Leishmania antagonize host defense mechanisms by interfering with cell signaling in macrophages. In this report, the impact of Leishmania donovani on mitogen-activated protein (MAP) kinases and nitric oxide synthase (NOS) expression in the macrophage cell line RAW 264 was investigated. Overnight infection of cells with leishmania led to a significant decrease in phorbol-12-myristate-13-acetate (PMA)-stimulated MAP kinase activity and inhibited PM...

  7. Engineering Fungal Nonreducing Polyketide Synthase by Heterologous Expression and Domain Swapping

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Hsu-Hua; Chang, Shu-Lin; Chiang, Yi-Ming; Bruno, Kenneth S.; Oakley, Berl R.; Wu, Tung-Kung; Wang, Clay C. C.

    2013-02-15

    Heterologous expression of the A. niger NR-PKS gene, e_gw1_19.204 and the adjacent stand-alone R domain gene, est_GWPlus_C_190476 in A. nidulans demonstrated that they belong to a single gene named dtbA. The DtbA protein produces two polyketides, 2,4-dihydroxy-3,5,6-trimethylbenzaldehyde 1 and 2-ethyl-4,6-dihydroxy-3,5-dimethylbenzaldehyde 2. Generation of DtbA+R-TE chimeric PKSs by swapping the DtbA R domain with the AusA (austinol biosynthesis) or ANID_06448 TE domain enabled the production of two metabolites with carboxylic acids replacing the corresponding aldehydes.

  8. ACC 290new UOP Courses / uoptutorial

    OpenAIRE

    jani

    2015-01-01

    For more course tutorials visit www.uoptutorial.com   ACC 290 Finals Question 1 Jackson Company recorded the following cash transactions for the year: Paid $135,000 for salaries. Paid $60,000 to purchase office equipment. Paid $15,000 for utilities. Paid $6,000 in dividends. Collected $245,000 from customers.    Question 2 Which of the following describes the classification and normal balance of the Unearned Rent Revenue accou...

  9. Volatile emissions of scented Alstroemeria genotypes are dominated by terpenes, and a myrcene synthase gene is highly expressed in scented Alstroemeria flowers.

    Science.gov (United States)

    Aros, Danilo; Gonzalez, Veronica; Allemann, Rudolf K; Müller, Carsten T; Rosati, Carlo; Rogers, Hilary J

    2012-04-01

    Native to South America, Alstroemeria flowers are known for their colourful tepals, and Alstroemeria hybrids are an important cut flower. However, in common with many commercial cut flowers, virtually all the commercial Alstroemeria hybrids are not scented. The cultivar 'Sweet Laura' is one of very few scented commercial Alstroemeria hybrids. Characterization of the volatile emission profile of these cut flowers revealed three major terpene compounds: (E)-caryophyllene, humulene (also known as α-caryophyllene), an ocimene-like compound, and several minor peaks, one of which was identified as myrcene. The profile is completely different from that of the parental scented species A. caryophyllaea. Volatile emission peaked at anthesis in both scented genotypes, coincident in cv. 'Sweet Laura' with the maximal expression of a putative terpene synthase gene AlstroTPS. This gene was preferentially expressed in floral tissues of both cv. 'Sweet Laura' and A. caryophyllaea. Characterization of the AlstroTPS gene structure from cv. 'Sweet Laura' placed it as a member of the class III terpene synthases, and the predicted 567 amino acid sequence placed it into the subfamily TPS-b. The conserved sequences R(28)(R)X(8)W and D(321)DXXD are the putative Mg(2+)-binding sites, and in vitro assay of AlstroTPS expressed in Escherichia coli revealed that the encoded enzyme possesses myrcene synthase activity, consistent with a role for AlstroTPS in scent production in Alstroemeria cv. 'Sweet Laura' flowers.

  10. Correlation of cytokines and inducible nitric oxide synthase expression with prognostic factors in ovarian cancer.

    Science.gov (United States)

    Martins Filho, Agrimaldo; Jammal, Millena Prata; Côbo, Eliângela de Castro; Silveira, Thales Parenti; Adad, Sheila Jorge; Murta, Eddie Fernando Candido; Nomelini, Rosekeila Simões

    2014-01-01

    The study related the immunohistochemical staining of cytokines (IL2, IL5, IL6, IL8, IL10, and TNF-alpha), and iNOS staining with clinical and pathological parameters of patients with primary ovarian malignancy. We prospectively evaluated 40 patients who underwent surgical treatment in accordance with pre-established criteria and later confirmed diagnosis of ovarian cancer. Immunohistochemistry study for cytokines (IL2, IL5, IL6, IL8, IL10, TNF-alpha) and iNOS was performed. The evaluation of prognostic factors was performed using the Fisher's exact test. The significance level was less than 0.05. Histological grade 1 was significantly correlated with strong intensity for TNF-α (p=0.0028). In addition, early stages showed strong expression intensity of TNF-α, but this was at the limit of significance (p=0.0525). Strong staining immunohistochemical IL5 was related to disease-free survival less than or equal to 24 months, suggesting that a factor of poor prognosis, but there was no statistical significance (p=0.1771). There was no statistical significance in relation at other cytokines studied. Therefore, immunohistochemical staining in strong intensity for TNF-α was related to histological grade 1 and early stages of ovarian cancer in our sample of patients.

  11. Multiple embryonic origins of nitric oxide synthase-expressing GABAergic neurons of the neocortex

    Directory of Open Access Journals (Sweden)

    Lorenza eMagno

    2012-09-01

    Full Text Available Cortical GABAergic interneurons in rodents originate in three subcortical regions: the medial ganglionic eminence (MGE, the lateral/caudal ganglionic eminence (LGE/CGE and the preoptic area (POA. Each of these neuroepithelial precursor domains contributes different interneuron subtypes to the cortex. nNOS-expressing neurons represent a heterogenous population of cortical interneurons. We examined the development of these cells in the mouse embryonic cortex and their abundance and distribution in adult animals. Using genetic lineage tracing in transgenic mice we find that nNOS type I cells originate only in the MGE whereas type II cells have a triple origin in the MGE, LGE/CGE and POA. The two populations are born at different times during development, occupy different layers in the adult cortex and have distinct neurochemical profiles. nNOS neurons are more numerous in the adult cortex than previously reported and constitute a significant proportion of the cortical interneuron population. Our data suggest that the heterogeneity of nNOS neurons in the cortex can be attributed to their multiple embryonic origins which likely impose distinct genetic specification programs.

  12. Lower expression of inducible nitric oxide synthase and higher expression of arginase in rat alveolar macrophages are linked to their susceptibility to Toxoplasma gondii infection.

    Directory of Open Access Journals (Sweden)

    Zhi-Jun Zhao

    Full Text Available Rats are naturally resistant to Toxoplasma gondii infection, particularly the RH strain, while mice are not. Previous studies have demonstrated that inducible nitric oxide synthase (iNOS and arginase-1 of rodent peritoneal macrophages are linked to the mechanism of resistance. As an increasing number of studies on human and animal infections are showing that pulmonary toxoplasmosis is one of the most severe clinical signs from T. gondii infection, we are interested to know whether T. gondii infection in alveolar macrophages of rats is also linked to the levels of iNOS and arginase-1 activity. Our results demonstrate that T. gondii could grow and proliferate in rat alveolar macrophages, both in vitro and in vivo, at levels higher than resistant rat peritoneal macrophages and at comparable levels to sensitive mouse peritoneal macrophages. Lower activity and expression levels of iNOS and higher activity and expression levels of arginase-1 in rat alveolar macrophages were found to be linked to the susceptibility of T. gondii infection in these cells. These novel findings could aid a better understanding of the pathogenesis of clinical pulmonary toxoplasmosis in humans and domestic animals.

  13. Prostacyclin Synthase: Upregulation during Renal Development and in Glomerular Disease as well as Its Constitutive Expression in Cultured Human Mesangial Cells

    Directory of Open Access Journals (Sweden)

    Thomas Klein

    2015-01-01

    Full Text Available Prostacyclin (PGI2 plays a critical role in nephrogenesis and renal physiology. However, our understanding of how prostacyclin release in the kidney is regulated remains poorly defined. We studied expression of prostacyclin synthase (PGIS in developing and adult human kidneys, and also in selected pediatric renal diseases. We also examined PGI2 formation in human mesangial cells in vitro. We observed abundant expression of PGIS in the nephrogenic cortex in humans and in situ hybridization revealed an identical pattern in mice. In the normal adult kidney, PGIS-immunoreactive protein and mRNA appear to localize to mesangial fields and endothelial and smooth muscle cells of arteries and peritubular capillaries. In kidney biopsies taken from pediatric patients, enhanced expression of PGIS-immunoreactive protein was noted mainly in endothelial cells of patients with IgA-nephropathy. Cultured human mesangial cells produce primarily PGI2 and prostaglandin E2, followed by prostaglandin F2α Cytokine stimulation increased PGI2 formation 24-fold. Under these conditions expression of PGIS mRNA and protein remained unaltered whereas mRNA for cyclooxygenase-2 was markedly induced. In contrast to its constitutive expression in vitro, renal expression of prostacyclin-synthase appears to be regulated both during development and in glomerular disease. Further research is needed to identify the factors involved in regulation of PGIS-expression.

  14. The acquisition of desiccation tolerance in developing Vicia hirsuta seeds coincides with an increase in galactinol synthase expression and soluble α-D-galactosides accumulation.

    Science.gov (United States)

    Gojło, Ewa; Pupel, Piotr; Lahuta, Lesław B; Podliński, Paweł; Kucewicz, Magdalena; Górecki, Ryszard J

    2015-07-20

    Galactinol is the galactosyl donor for the biosynthesis of both the raffinose family oligosaccharides (RFOs) and galactosyl cyclitols (Gal-C). Its synthesis by galactinol synthase (GolS, EC 2.4.1.123) is the first committed step of the soluble α-D-galactosides biosynthetic pathway in orthodox seeds. The deposition of galactosides in seeds is suggested to be associated with desiccation tolerance (DT). In this work, for the first time, we cloned and characterized two Vicia hirsuta (L.) S.F. Gray galactinol synthase genes (VhGolS1, VhGolS2), analyzed galactinol synthase activity and measured the accumulation of galactosides of both sucrose and D-pinitol in relation to the acquisition of DT in developing seeds of this wild species. A developmentally induced increase of VhGolS1 expression preceded the rise of GolS activity in crude protein extract from maturing seeds, while the expression of the VhGolS2 gene remained low. GolS activity peaked just after the beginning of the maturation drying phase. The increase of GolS activity was not followed by galactinol accumulation, instead the high enzyme activity was related to high levels of galactose bound in soluble galactosides of the RFO and galactosyl pinitol series. Acquisition of DT coincided with an increase of VhGolS1 expression, high galactinol synthase activity and the accumulation of oligogalactosides in seeds. DT was positively correlated with the high content of soluble α-D-galactosides of both the RFO and galactosyl pinitol series as well as with the amount of galactose bound in these galactosides.

  15. Cloning and Sequence of cDNA Encoding ACC Synthase Specifically Expressed in Banana Fruit%香蕉果实特异性ACC合酶的cDNA克隆及序列分析

    Institute of Scientific and Technical Information of China (English)

    王新力; 彭学贤; 李宏

    2000-01-01

    根据ACC合酶高度保守区氨基酸序列设计两种兼并引物.通过RT-PCR,克隆了香蕉果肉ACC合酶1693bp的cDNA片段.再根据其序列测定结果进行5'RACE(Rapid amplification of cDNA ends).最终确定香蕉果肉中ACC合酶的mRNA全长为1752个核苷酸.其中5'非翻译区74个核苷酸,编码区1461个核苷酸,3'非翻译区217个核苷酸,编码产物为486个氨基酸.通过Northern杂交分析,证明此ACC合酶基因的表达具有果实特异性.

  16. Identification and characterization of an Apis cerana cerana Delta class glutathione S-transferase gene ( AccGSTD) in response to thermal stress

    Science.gov (United States)

    Yan, Huiru; Jia, Haihong; Wang, Xiuling; Gao, Hongru; Guo, Xingqi; Xu, Baohua

    2013-02-01

    Glutathione S-transferases (GSTs) are members of a multifunctional enzyme super family that plays a pivotal role in both insecticide resistance and protection against oxidative stress. In this study, we identified a single-copy gene, AccGSTD, as being a Delta class GST in the Chinese honey bee ( Apis cerana cerana). A predicted antioxidant response element, CREB, was found in the 1,492-bp 5'-flanking region, suggesting that AccGSTD may be involved in oxidative stress response pathways. Real-time PCR and immunolocalization studies demonstrated that AccGSTD exhibited both developmental- and tissue-specific expression patterns. During development, AccGSTD transcript was increased in adults. The AccGSTD expression level was the highest in the honey bee brain. Thermal stress experiments demonstrated that AccGSTD could be significantly upregulated by temperature changes in a time-dependent manner. It is hypothesized that high expression levels might be due to the increased levels of oxidative stress caused by the temperature challenges. Additionally, functional assays of the recombinant AccGSTD protein revealed that AccGSTD has the capability to protect DNA from oxidative damage. Taken together, these data suggest that AccGSTD may be responsible for antioxidant defense in adult honey bees.

  17. Identification, genomic organization, and oxidative stress response of a sigma class glutathione S-transferase gene (AccGSTS1) in the honey bee, Apis cerana cerana.

    Science.gov (United States)

    Yan, Huiru; Jia, Haihong; Gao, Hongru; Guo, Xingqi; Xu, Baohua

    2013-07-01

    Glutathione S-transferases (GSTs) are members of a multifunctional antioxidant enzyme superfamily that play pivotal roles in both detoxification and protection against oxidative damage caused by reactive oxygen species. In this study, a complementary DNA (cDNA) encoding a sigma class GST was identified in the Chinese honey bee, Apis cerana cerana (AccGSTS1). AccGSTS1 was constitutively expressed in all tissues of adult worker bees, including the brain, fat body, epidermis, muscle, and midgut, with particularly robust transcription in the fat body. Relative messenger RNA expression levels of AccGSTS1 at different developmental stages varied, with the highest levels of expression observed in adults. The potential function of AccGSTS1 in cellular defenses against abiotic stresses (cold, heat, UV, H2O2, HgCl2, and insecticides) was investigated. AccGSTS1 was significantly upregulated in response to all of the treatment conditions examined, although the induction levels were varied. Recombinant AccGSTS1 protein showed characteristic glutathione-conjugating catalytic activity toward 1-chloro-2,4-dinitrobenzene. Functional assays revealed that AccGSTS1 could remove H2O2, thereby protecting DNA from oxidative damage. Escherichia coli overexpressing AccGSTS1 showed long-term resistance under conditions of oxidative stress. Together, these results suggest that AccGSTS1 is a crucial antioxidant enzyme involved in cellular antioxidant defenses and honey bee survival.

  18. Modulation of inducible nitric oxide synthase gene expression in RAW 264.7 murine macrophages by Pacific ciguatoxin.

    Science.gov (United States)

    Kumar-Roiné, Shilpa; Matsui, Mariko; Chinain, Mireille; Laurent, Dominique; Pauillac, Serge

    2008-08-01

    To investigate the possible involvement of the nitric oxide radical (NO) in ciguatera fish poisoning (CFP), the in vitro effects of the main Pacific ciguatoxin (P-CTX-1B) and bacterial lipopolysaccharide (LPS) were comparatively studied on neuroblastoma Neuro-2a and on macrophage RAW 264.7 cell lines. NO accumulation was quantified by measuring nitrite levels in cellular supernatant using Griess reagent while the up-regulation of inducible nitric oxide synthase (iNOS) at the mRNA level was quantified via Real-Time Reverse-Transcription Polymerase Chain Reaction (RT-PCR). P-CTX-1B caused a concentration- and time-dependent induction of iNOS in RAW 264.7 cells but not in Neuro-2a cells. NO production was evidenced by increased nitrite levels in the 10 microM range after 48 h of RAW 264.7 cells exposure to LPS and P-CTX-1B (0.05 microg/ml and 6 nM, respectively). The expression of iNOS mRNA peaked at 8h for LPS then gradually decreased to low level at 48 h. In contrast, a sustained level was recorded with P-CTX-1B in the 8-48 h time interval. The addition of N(omega)-nitro-L-arginine methyl ester (L-NAME), a stereoselective NOS inhibitor, strongly diminished NO formation but had no effect on iNOS mRNA synthesis. The implication of NO in CFP paves the way for new therapies for both western and traditional medicines.

  19. Neisseria meningitidis expresses a single 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase that is inhibited primarily by phenylalanine.

    Science.gov (United States)

    Cross, Penelope J; Pietersma, Amy L; Allison, Timothy M; Wilson-Coutts, Sarah M; Cochrane, Fiona C; Parker, Emily J

    2013-08-01

    Neisseria meningitidis is the causative agent of meningitis and meningococcal septicemia is a major cause of disease worldwide, resulting in brain damage and hearing loss, and can be fatal in a large proportion of cases. The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyzes the first reaction in the shikimate pathway leading to the biosynthesis of aromatic metabolites including the aromatic acids l-Trp, l-Phe, and l-Tyr. This pathway is absent in humans, meaning that enzymes of the pathway are considered as potential candidates for therapeutic intervention. As the entry point, feedback inhibition of DAH7PS by pathway end products is a key mechanism for the control of pathway flux. The structure of the single DAH7PS expressed by N. meningitidis was determined at 2.0 Å resolution. In contrast to the other DAH7PS enzymes, which are inhibited only by a single aromatic amino acid, the N. meningitidis DAH7PS was inhibited by all three aromatic amino acids, showing greatest sensitivity to l-Phe. An N. meningitidis enzyme variant, in which a single Ser residue at the bottom of the inhibitor-binding cavity was substituted to Gly, altered inhibitor specificity from l-Phe to l-Tyr. Comparison of the crystal structures of both unbound and Tyr-bound forms and the small angle X-ray scattering profiles reveal that N. meningtidis DAH7PS undergoes no significant conformational change on inhibitor binding. These observations are consistent with an allosteric response arising from changes in protein motion rather than conformation, and suggest ligands that modulate protein dynamics may be effective inhibitors of this enzyme.

  20. Immunohistochemical expressions of fatty acid synthase and phosphorylated c-Met in thyroid carcinomas of follicular origin.

    Science.gov (United States)

    Liu, Jing; Brown, Robert E

    2011-01-01

    Thyroid carcinoma is the most common endocrine malignancy and the first cause of death among endocrine cancers. Fatty acid synthase (FASN) and c-Met are overexpressed in many types of human cancers. Recent studies have suggested a functional interaction between FASN and c-Met. However, their roles in thyroid carcinomas have not been fully investigated. In this study, we evaluated the expressions of FASN and phosphorylated (p)-c-Met by using immunohistochemistry in thyroid carcinomas of follicular origin, from 32 patients. The adjacent non-neoplastic thyroid tissue was also evaluated for comparison. Immunoreactive intensity and extensiveness were semi-quantified. The overexpression of FASN was observed in a subset of papillary thyroid carcinomas (PTC) including the classical type and tall cell, follicular, trabecular/insular and diffuse sclerosing variants, a subset of follicular thyroid carcinomas (FTC), and the PTC and FTC components in anaplastic thyroid carcinomas (ATC). No overexpression was observed in the ATCs per se and the columnar cell, solid, and cribriform variants of PTCs. All Hürthle cell variant FTCs and non-neoplastic Hürthle cells demonstrated positive staining for FASN while the non-neoplastic follicular cells without Hürthle cell change were negative. An association in overexpression between FASN and p-c-Met was observed in the majority of carcinomas as well as in the non-neoplastic Hürthle cells. In conclusion, overexpressions of FASN and p-c-Met were observed in a subset of thyroid carcinomas of follicular origin, which may be of values for targeted therapy and predicting prognosis while the positive immunostaining for these immunomarkers may be nonspecific for Hürthle cell thyroid carcinomas.

  1. Associations between gene polymorphisms of thymidylate synthase with its protein expression and chemosensitivity to 5-fluorouracil in pancreatic carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qiang; ZHAO Yu-pei; LIAO Quan; HU Ya; XU Qiang; ZHOU Li; SHU Hong

    2011-01-01

    Background Thymidylate synthase (TS) is a key regulatory enzyme for de novo DNA synthesis.TS activity is also an important determinant of the response to chemotherapy with fluoropyrimidine prodrugs,and its expression may be affected by gene polymorphisms.In this study,we investigated the associations between polymorphisms of the TS gene and its protein expression,and the implications on the efficacy of 5-fluorouracil (5-FU) in pancreatic cancer cells.Methods Genotypes based on the 28-bp TS tandem repeat for pancreatic cell lines were determined by electrophoretic analysis of PCR products.A single nucleotide polymorphism (SNP) at nucleotide 12 of the second 28-bp repeat of the 3R allele was determined by nucleotide sequencing.The chemosensitivity of pancreatic carcinoma cells to 5-FU in vitro was evaluated using Cell Counting Kit-8 (CCK-8).TS protein expression was analyzed by Western blotting.Results Seven pancreatic carcinoma cell lines had different genotypes in terms of the 28-bp TS tandem repeat,as follows:homozygous 2R/2R (T3M4 and BxPC-3 cells),heterozygous 2R/3R (AsPC-1,Capan-1,and SU86.86),and homozygous 3R/3R (PANC-1 and COLO357).The optical density ratio of genotypes 3R/3R,2R/2R and 2R/3R was 1.393±0.374,0.568±0.032 and 0.561±0.056,respectively.Cells with the 2R/3R or 3R/3R genotypes were further analyzed for the G to C SNP at nucleotide 12 of the second 28-bp repeat of the 3R allele,yielding heterozygous 2R/3Rc (AsPC-1,Capan-1,and SU86.86),homozygous 3Rg/3Rg (COLO357) and homozygous 3Rc/3Rc (PANC-1).The optical density ratio of homozygous 3Rg/3Rg cells and homozygous 3Rc/3Rc cells was 1.723±0.062 and 1.063±0.134,respectively,and this difference was statistically significant (P <0.05).Cells with the 2R/2R and 2R/3R genotypes of TS were hypersensitive to 5-FU in vitro as compared with those with the 3R/3R cells.Conclusions Polymorphisms in the TS gene influenced its protein expression and affected sensitivity of 5-FU in seven pancreatic cancer cell

  2. The expression, purification, crystallization and preliminary X-ray analysis of a subcomplex of the peripheral stalk of ATP synthase from bovine mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Silvester, Jocelyn A.; Kane Dickson, Veronica; Runswick, Michael J. [The Medical Research Council Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 2XY (United Kingdom); Leslie, Andrew G. W. [The Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH (United Kingdom); Walker, John E., E-mail: walker@mrc-dunn.cam.ac.uk [The Medical Research Council Dunn Human Nutrition Unit, Hills Road, Cambridge CB2 2XY (United Kingdom)

    2006-06-01

    A recombinant subcomplex of the peripheral stalk or stator domain of the ATP synthase from bovine mitochondria has been crystallized and a native data set has been collected to 2.8 Å resolution. A subcomplex of the peripheral stalk or stator domain of the ATP synthase from bovine mitochondria has been expressed to high levels in a soluble form in Escherichia coli. The subcomplex consists of residues 79–184 of subunit b, residues 1–124 of subunit d and the entire F{sub 6} subunit (76 residues). It has been purified and crystallized by vapour diffusion. The morphology and diffraction properties of the crystals of the subcomplex were improved by the presence of thioxane or 4-methylpyridine in the crystallization liquor. With a synchrotron-radiation source, these crystals diffracted to 2.8 Å resolution. They belong to the monoclinic space group P2{sub 1}.

  3. CLONING OF ACC OXTDASE GENE FROM Cattleya FLOWER AND CONSTRUCTION OF ITS PLANT ANTISENSE EXPRESSION VECTOR%卡特兰ACO基因克隆与反义表达载体的构建

    Institute of Scientific and Technical Information of China (English)

    郑宝强; 王雁; 彭镇华; 李晓华

    2009-01-01

    以卡特兰(Cattleya)花瓣为试材,提取其总RNA,并根据其他兰花的ACC氧化酶(1-aminocyclopropane-1-carboxylic acid oxidase,ACO)基因保守序列设计了一对特异性引物,通过RT-PCR法克隆得到1条967bp的卡特兰ACO cDNA片断,共编码321个氨基酸残基.序列分析结果显示该克隆片断与已发表的其他兰花的ACO基因序列同源性很高,均在85%以上,尤其与原生种和其近亲属的同源性在95%以上.将克隆的卡特兰ACO片段反向连接到植物表达载体pBI121中CaMV35S启动子的下游,构建了卡特兰ACO基因的反义表达载体pBI121ACC,为进一步应用反义技术培养长花期卡特兰新品种奠定了基础,也首次为应用生物技术延长卡特兰花期做出了尝试.

  4. Effect of IBD sera on expression of inducible and endothelial nitric oxide synthase in human umbilical vein endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Károly Palatka; István Altorjay; Zoltán Serf(o)z(o); Zoltán Veréb; Róbert Bátori; Beáta Lontay; Zoltán Hargitay; Zoltán Nemes; Miklós Udvardy; Ferenc Erd(o)di

    2006-01-01

    AIM: To study the expression of endothelial and inducible nitric oxide synthases (eNOS and iNOS) and their role in inflammatory bowel disease (IBD).METHODS: We examined the effect of sera obtained from patients with active Crohn's disease (CD) and ulcerative colitis (UC) on the function and viability of human umbilical vein endothelial cells (HUVEC). HUVECs were cultured for 0-48 h in the presence of a medium containing pooled serum of healthy controls, or serum from patients with active CD or UC. Expression of eNOS and iNOS was visualized by immunofluorescence,and quantified by the densitometry of Western blots.Proliferation activity was assessed by computerized image analyses of Ki-67 immunoreactive cells, and also tested in the presence of the NOS inhibitor, 10-4 mol/L L-NAME. Apoptosis and necrosis was examined by the annexin-Ⅴ-biotin method and by propidium iodide staining, respectively.RESULTS: In HUVEC immediately after exposure to UC,serum eNOS was markedly induced, reaching a peak at 12 h. In contrast, a decrease in eNOS was observed after incubation with CD sera and the eNOS level was minimal at 20 h compared to control (18% ± 16% vs 23% ± 15% P<0.01). UC or CD serum caused a significant increase in iNOS compared to control (UC: 300%±21%; CD:275%±27% vs 108%± 14%, P<0.01). Apoptosis/necrosis characteristics did not differ significantly in either experiment. Increased proliferation activity was detected in the presence of CD serum or after treatment with L-NAME. Cultures showed tube-like formations after 24 h treatment with CD serum.CONCLUSION: IBD sera evoked changes in the ratio of eNOS/iNOS, whereas did not influence the viability of HUVEC. These involved down-regulation of eNOS and up-regulation of iNOS simultaneously, leading to increased proliferation activity and possibly a reduced antiinflammatory protection of endothelial cells.

  5. Expression of dehydratase domains from a polyunsaturated fatty acid synthase increases the production of fatty acids in Escherichia coli.

    Science.gov (United States)

    Oyola-Robles, Delise; Rullán-Lind, Carlos; Carballeira, Néstor M; Baerga-Ortiz, Abel

    2014-02-05

    Increasing the production of fatty acids by microbial fermentation remains an important step toward the generation of biodiesel and other portable liquid fuels. In this work, we report an Escherichia coli strain engineered to overexpress a fragment consisting of four dehydratase domains from the polyunsaturated fatty acid (PUFA) synthase enzyme complex from the deep-sea bacterium, Photobacterium profundum. The DH1-DH2-UMA enzyme fragment was excised from its natural context within a multi-enzyme PKS and expressed as a stand-alone protein. Fatty acids were extracted from the cell pellet, esterified with methanol and quantified by GC-MS analysis. Results show that the E. coli strain expressing the DH tetradomain fragment was capable of producing up to a 5-fold increase (80.31 mg total FA/L culture) in total fatty acids over the negative control strain lacking the recombinant enzyme. The enhancement in production was observed across the board for all the fatty acids that are typically made by E. coli. The overexpression of the DH tetradomain did not affect E. coli cell growth, thus showing that the observed enhancement in fatty acid production was not a result of effects associated with cell density. The observed enhancement was more pronounced at lower temperatures (3.8-fold at 16 °C, 3.5-fold at 22 °C and 1.5-fold at 30 °C) and supplementation of the media with 0.4% glycerol did not result in an increase in fatty acid production. All these results taken together suggest that either the dehydration of fatty acid intermediates are a limiting step in the E. coli fatty acid biosynthesis machinery, or that the recombinant dehydratase domains used in this study are also capable of catalyzing thioester hydrolysis of the final products. The enzyme in this report is a new tool which could be incorporated into other existing strategies aimed at improving fatty acid production in bacterial fermentations toward accessible biodiesel precursors.

  6. Expression of dehydratase domains from a polyunsaturated fatty acid synthase increases the production of fatty acids in Escherichia coli

    Science.gov (United States)

    Oyola-Robles, Delise; Rullán-Lind, Carlos; Carballeira, Néstor M.; Baerga-Ortiz, Abel

    2014-01-01

    Increasing the production of fatty acids by microbial fermentation remains an important step towards the generation of biodiesel and other portable liquid fuels. In this work, we report an Escherichia coli strain engineered to overexpress a fragment consisting of four dehydratase domains from the polyunsaturated fatty acid (PUFA) synthase enzyme complex from the deep-sea bacterium, Photobacterium profundum. The DH1-DH2-UMA enzyme fragment was excised from its natural context within a multi-enzyme PKS and expressed as a stand-alone protein. Fatty acids were extracted from the cell pellet, esterified with methanol and quantified by GC-MS analysis. Results show that the E. coli strain expressing the DH tetradomain fragment was capable of producing up to a 5-fold increase (80.31 mg total FA/L culture) in total fatty acids over the negative control strain lacking the recombinant enzyme. The enhancement in production was observed across the board for all the fatty acids that are typically made by E. coli. The overexpression of the DH tetradomain did not affect E. coli cell growth, thus showing that the observed enhancement in fatty acid production was not a result of effects associated with cell density. The observed enhancement was more pronounced at lower temperatures (3.8-fold at 16 °C, 3.5-fold at 22 °C and 1.5-fold at 30 °C) and supplementation of the media with 0.4% glycerol did not result in an increase in fatty acid production. All these results taken together suggest that either the dehydration of fatty acid intermediates are a limiting step in the E. coli fatty acid biosynthesis machinery, or that the recombinant dehydratase domains used in this study are also capable of catalyzing thioester hydrolysis of the final products. The enzyme in this report is a new tool which could be incorporated into other existing strategies aimed at improving fatty acid production in bacterial fermentations towards accessible biodiesel precursors. PMID:24411456

  7. Heterologous gene expression and functional analysis of a type III polyketide synthase from Aspergillus niger NRRL 328

    Energy Technology Data Exchange (ETDEWEB)

    Kirimura, Kohtaro, E-mail: kkohtaro@waseda.jp; Watanabe, Shotaro; Kobayashi, Keiichi

    2016-05-13

    Type III polyketide synthases (PKSs) catalyze the formation of pyrone- and resorcinol-types aromatic polyketides. The genomic analysis of the filamentous fungus Aspergillus niger NRRL 328 revealed that this strain has a putative gene (chr-8-2: 2978617–2979847) encoding a type III PKS, although its functions are unknown. In this study, for functional analysis of this putative type III PKS designated as An-CsyA, cloning and heterologous expression of the An-CsyA gene (An-csyA) in Escherichia coli were performed. Recombinant His-tagged An-CsyA was successfully expressed in E. coli BL21 (DE3), purified by Ni{sup 2+}-affinity chromatography, and used for in vitro assay. Tests on the substrate specificity of the His-tagged An-CsyA with myriad acyl-CoAs as starter substrates and malonyl-CoA as extender substrate showed that His-tagged An-CsyA accepted fatty acyl-CoAs (C2-C14) and produced triketide pyrones (C2-C14), tetraketide pyrones (C2-C10), and pentaketide resorcinols (C10-C14). Furthermore, acetoacetyl-CoA, malonyl-CoA, isobutyryl-CoA, and benzoyl-CoA were also accepted as starter substrates, and both of triketide pyrones and tetraketide pyrones were produced. It is noteworthy that the His-tagged An-CsyA produced polyketides from malonyl-CoA as starter and extender substrates and produced tetraketide pyrones from short-chain fatty acyl-CoAs as starter substrates. Therefore, this is the first report showing the functional properties of An-CsyA different from those of other fungal type III PKSs. -- Highlights: •Type III PKS from Aspergillus niger NRRL 328, An-CsyA, was cloned and characterized. •An-CsyA produced triketide pyrones, tetraketide pyrones and pentaketide resorcinols. •Functional properties of An-CsyA differs from those of other fungal type III PKSs.

  8. Improvement of manganese peroxidase production by the hyper lignin-degrading fungus Phanerochaete sordida YK-624 by recombinant expression of the 5-aminolevulinic acid synthase gene.

    Science.gov (United States)

    Hirai, Hirofumi; Misumi, Kenta; Suzuki, Tomohiro; Kawagishi, Hirokazu

    2013-12-01

    The manganese peroxidase (MnP) gene (mnp4) promoter of Phanerochaete sordida YK-624 was used to drive expression of 5-aminolevulinic acid synthase (als), which is a key heme biosynthesis enzyme. The expression plasmid pMnP4pro-als was transformed into P. sordida YK-624 uracil auxotrophic mutant UV-64, and 14 recombinant als expressing-transformants were generated. Average cumulative MnP activities in the transformants were 1.18-fold higher than that of control transformants. In particular, transformants A-14 and A-61 showed significantly higher MnP activity (approximately 2.8-fold) than wild type. RT-PCR analysis indicated that the increased MnP activity was caused by elevated recombinant als expression. These results suggest that the production of MnP is improved by high expression of als.

  9. Isolation of the GFA1 gene encoding glucosamine-6-phosphate synthase of Sporothrix schenckii and its expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sánchez-López, Juan Francisco; González-Ibarra, Joaquín; Álvarez-Vargas, Aurelio; Milewski, Slawomir; Villagómez-Castro, Julio César; Cano-Canchola, Carmen; López-Romero, Everardo

    2015-06-01

    Glucosamine-6-phosphate synthase (GlcN-6-P synthase) is an essential enzyme involved in cell wall biogenesis that has been proposed as a strategic target for antifungal chemotherapy. Here we describe the cloning and functional characterization of Sporothrix schenckii GFA1 gene which was isolated from a genomic library of the fungus. The gene encodes a predicted protein of 708 amino acids that is homologous to GlcN-6-P synthases from other sources. The recombinant enzyme restored glucosamine prototrophy of the Saccharomyces cerevisiae gfa1 null mutant. Purification and biochemical analysis of the recombinant enzyme revealed some differences from the wild type enzyme, such as improved stability and less sensitivity to UDP-GlcNAc. The sensitivity of the recombinant enzyme to the selective inhibitor FMDP [N(3)-(4-methoxyfumaroyl)-l-2,3-diaminopropanoic acid] and other properties were similar to those previously reported for the wild type enzyme.

  10. Expression, purification, crystallization and preliminary diffraction studies of the tRNA pseudouridine synthase TruD from Escherichia coli.

    Science.gov (United States)

    Ericsson, Ulrika B; Andersson, Martin E; Engvall, Benita; Nordlund, Pär; Hallberg, B Martin

    2004-04-01

    Pseudouridine, the 5-ribosyl isomer of uridine, is the most common modification of structural RNA. The recently identified pseudouridine synthase TruD belongs to a widespread class of pseudouridine synthases without significant sequence homology to previously known families. TruD from Escherichia coli was overexpressed, purified and crystallized. The crystals diffract to a minimum Bragg spacing of 2.4 A and belong to space group P2(1)2(1)2(1), with unit-cell parameters a = 63.4, b = 108.6, c = 111.7 A.

  11. Expression in Arabidopsis of a strawberry linalool synthase gene under the control of the inducible potato P12 promoter

    NARCIS (Netherlands)

    Yang, L.; Mercke, P.; Loon, van J.J.A.; Fang, Zhiyuan; Dicke, M.; Jongsma, M.A.

    2008-01-01

    To investigate the role of inducible linalool in Arabidopsis-insect interactions, the FaNES1 linalool synthase (LIS) cDNA from strawberry with plastid targeting and a synthetic intron (LIS') was placed under the control of the wound inducible proteinase inhibitor 2 (PI2) promoter from potato. The co

  12. Macrophages in lung tissue from patients with pulmonary emphysema express both inducible and endothelial nitric oxide synthase

    NARCIS (Netherlands)

    van Straaten, JFM; Postma, DS; Coers, W; Noordhoek, JA; Kauffman, HF; Timens, W

    1998-01-01

    To provide information concerning a possible biologic role of nitric oxide (NO) in smoking-related emphysema, we performed immunohistochemical studies in lung tissue from control subjects and patients with mild and severe emphysema We studied the presence of inducible and endothelial NO synthases (i

  13. Expression in Arabidopsis of a strawberry linalool synthase gene under the control of the inducible potato P12 promoter

    NARCIS (Netherlands)

    Yang, L.; Mercke, P.; Loon, van J.J.A.; Fang, Zhiyuan; Dicke, M.; Jongsma, M.A.

    2008-01-01

    To investigate the role of inducible linalool in Arabidopsis-insect interactions, the FaNES1 linalool synthase (LIS) cDNA from strawberry with plastid targeting and a synthetic intron (LIS') was placed under the control of the wound inducible proteinase inhibitor 2 (PI2) promoter from potato. The co

  14. Plasmodium falciparum avoids change in erythrocytic surface expression of phagocytosis markers during inhibition of nitric oxide synthase activity

    DEFF Research Database (Denmark)

    Hempel, Casper; Kohnke, Hannes; Maretty, Lasse

    2014-01-01

    Nitric oxide (NO) accumulates in Plasmodium falciparum-infected erythrocytes. It may be produced by a parasite NO synthase (NOS) or by nitrate reduction. The parasite's benefit of NO accumulation is not understood. We investigated if inhibiting the P. falciparum NOS with specific and unspecific N...

  15. Expression in Arabidopsis of a strawberry linalool synthase gene under the control of the inducible potato P12 promoter

    NARCIS (Netherlands)

    Yang, L.; Mercke, P.; Loon, van J.J.A.; Fang, Zhiyuan; Dicke, M.; Jongsma, M.A.

    2008-01-01

    To investigate the role of inducible linalool in Arabidopsis-insect interactions, the FaNES1 linalool synthase (LIS) cDNA from strawberry with plastid targeting and a synthetic intron (LIS') was placed under the control of the wound inducible proteinase inhibitor 2 (PI2) promoter from potato. The

  16. Differential expression of cellulose synthase (CesA) gene transcripts in potato as revealed by QRT-PCR

    NARCIS (Netherlands)

    Olawole, O.; Jacobsen, E.; Vincken, J.P.; Visser, R.G.F.

    2009-01-01

    Two transgenic potato lines, csr2–1 and csr4–8 that contained two different antisense cellulose synthase (CesA) genes, csr2 and csr4, respectively were crossed. The aim, amongst others, was to investigate the possibility of generating double transformants to validate a hypothetical presence of the p

  17. Molecular cloning and expression profile of ß-ketoacyl-acp synthase gene from tung tree (Vernicia fordii Hemsl.)

    Science.gov (United States)

    Tung tree (Vernicia fordii) is an important woody oil tree. Tung tree seeds contain 50-60% oil with approximately 80 mole a-eleostearic acid (9cis, 11trans, 13trans octadecatrienoic acid). Fatty acid synthesis is catalyzed by the concerted action of acetyl-CoA carboxylase and fatty acid synthase, a ...

  18. Angiotensin II-induced hypertension blunts thick ascending limb NO production by reducing NO synthase 3 expression and enhancing threonine 495 phosphorylation

    Science.gov (United States)

    Ramseyer, Vanesa D.; Gonzalez-Vicente, Agustin; Carretero, Oscar A.

    2014-01-01

    Thick ascending limbs reabsorb 30% of the filtered NaCl load. Nitric oxide (NO) produced by NO synthase 3 (NOS3) inhibits NaCl transport by this segment. In contrast, chronic angiotensin II (ANG II) infusion increases net thick ascending limb transport. NOS3 activity is regulated by changes in expression and phosphorylation at threonine 495 (T495) and serine 1177 (S1177), inhibitory and stimulatory sites, respectively. We hypothesized that NO production by thick ascending limbs is impaired by chronic ANG II infusion, due to reduced NOS3 expression, increased phosphorylation of T495, and decreased phosphorylation of S1177. Rats were infused with 200 ng·kg−1·min−1 ANG II or vehicle for 1 and 5 days. ANG II infusion for 5 days decreased NOS3 expression by 40 ± 12% (P NOS3 expression and altered phosphorylation. PMID:25377910

  19. Aging-related expression of inducible nitric oxide synthase and markers of tissue damage in the rat penis.

    Science.gov (United States)

    Ferrini, M; Magee, T R; Vernet, D; Rajfer, J; González-Cadavid, N F

    2001-03-01

    Erectile dysfunction in the aging male results in part from the loss of compliance of the corpora cavernosal smooth muscle due to the progressive replacement of smooth muscle cells by collagen fibers. We have examined the hypothesis that a spontaneous local induction of inducible nitric oxide synthase (iNOS) expression and the subsequent peroxynitrite formation occurs in the penis during aging and that this process is accompanied by a stimulation of smooth muscle apoptosis and collagen deposition. The penile shaft and crura were excised from young (3-5 mo old) and old (24-30 mo old) rats, with or without perfusion with 4% formalin. Fresh tissue was used for iNOS and proteasome 2C mRNA determinations by reverse transcription polymerase chain reaction assay, ubiquitin mRNA by Northern blot, and iNOS protein by Western blot. Penile sections from perfused animals were embedded in paraffin and immunostained with antibodies against iNOS and nitrotyrosine, submitted to the TUNEL assay for apoptosis, or stained for collagen, followed by image analysis quantitation. A 4.1-fold increase in iNOS mRNA was observed in the old versus young tissues, paralleled by a 4.9-fold increase in iNOS protein. The proteolysis marker, ubiquitin, was increased 1.9-fold, whereas a related gene, proteasome 2c, was not significantly affected. iNOS immunostaining was increased 3.6-fold in the penile smooth muscle of the old rats as compared with the young rats. The peroxynitrite indicator nitrotyrosine was increased by 1.6-fold, accompanied by a 3.6-fold increase in apoptotic cells and a 2.0-fold increase in collagen fibers in the old penis. In conclusion, aging in the penis is accompanied by an induction of iNOS and peroxynitrite formation that may lead to the observed increase in apoptosis and proteolysis and may counteract a higher rate of collagen deposition in the old penis.

  20. Molecular cloning and differential expressions of two cDNA encoding Type III polyketide synthase in different tissues of Curcuma longa L.

    Science.gov (United States)

    Resmi, M S; Soniya, E V

    2012-01-10

    Type III polyketide synthase family of enzymes play an important role in the biosynthesis of flavonoids and a variety of plant polyphenols by condensing multiple acetyl units derived from malonyl Co-A to thioester linked starter molecules covalently bound in the PKS active site. Turmeric (Curucma longa L.) through diverse metabolic pathways produces a large number of metabolites, of which curcuminoids had gained much attention due to its immense pharmaceutical value. Recent identification of multiple curcuminoid synthases from turmeric lead us to look for additional Type III PKS from this plant. The current study describes the occurrence of a multigene family of Type III PKS enzymes in C. longa by RT-PCR based genomic screening. We have also isolated two new Type III PKS, ClPKS9 and ClPKS10 using homology based RT-PCR and data mining. The comparative sequence and phylogenetic analysis revealed that the two PKSs belong to different groups with only 56% sequence similarity at their amino acid level. ClPKS9 shows all possible sequence requirements for a typical chalcone synthase whereas ClPKS10 shows promising variation at amino acid level and high similarity to reported curcuminoid synthases. ClPKS9 and ClPKS10 exhibited distinct tissue specific expression pattern in C. longa with the ClPKS9 transcript abundant in shoot and rhizome than leaves whereas ClPKS10 transcript was found to be high in leaf and very low in rhizome and root. Therefore it was concluded that ClPKS9 and ClPKS10 may have divergent function in planta, with possible role in typical chalcone forming reaction and curcuminoid scaffold biosynthetic pathway respectively.

  1. Pseudouridine synthases.

    Science.gov (United States)

    Hamma, Tomoko; Ferré-D'Amaré, Adrian R

    2006-11-01

    Pseudouridine synthases are the enzymes responsible for the most abundant posttranscriptional modification of cellular RNAs. These enzymes catalyze the site-specific isomerization of uridine residues that are already part of an RNA chain, and appear to employ both sequence and structural information to achieve site specificity. Crystallographic analyses have demonstrated that all pseudouridine synthases share a common core fold and active site structure and that this core is modified by peripheral domains, accessory proteins, and guide RNAs to give rise to remarkable substrate versatility.

  2. Differential Expression of Biphenyl Synthase Gene Family Members in Fire-Blight-Infected Apple ‘Holsteiner Cox’ 1[W][OA

    Science.gov (United States)

    Chizzali, Cornelia; Gaid, Mariam M.; Belkheir, Asma K.; Hänsch, Robert; Richter, Klaus; Flachowsky, Henryk; Peil, Andreas; Hanke, Magda-Viola; Liu, Benye; Beerhues, Ludger

    2012-01-01

    Fire blight, caused by the bacterium Erwinia amylovora, is a devastating disease of apple (Malus × domestica). The phytoalexins of apple are biphenyls and dibenzofurans, whose carbon skeleton is formed by biphenyl synthase (BIS), a type III polyketide synthase. In the recently published genome sequence of apple ‘Golden Delicious’, nine BIS genes and four BIS gene fragments were detected. The nine genes fall into four subfamilies, referred to as MdBIS1 to MdBIS4. In a phylogenetic tree, the BIS amino acid sequences from apple and Sorbus aucuparia formed an individual cluster within the clade of the functionally diverse type III polyketide synthases. cDNAs encoding MdBIS1 to MdBIS4 were cloned from fire-blight-infected shoots of apple ‘Holsteiner Cox,’ heterologously expressed in Escherichia coli, and functionally analyzed. Benzoyl-coenzyme A and salicoyl-coenzyme A were the preferred starter substrates. In response to inoculation with E. amylovora, the BIS3 gene was expressed in stems of cv Holsteiner Cox, with highest transcript levels in the transition zone between necrotic and healthy tissues. The transition zone was the accumulation site of biphenyl and dibenzofuran phytoalexins. Leaves contained transcripts for BIS2 but failed to form immunodetectable amounts of BIS protein. In cell cultures of apple ‘Cox Orange,’ expression of the BIS1 to BIS3 genes was observed after the addition of an autoclaved E. amylovora suspension. Using immunofluorescence localization under a confocal laser-scanning microscope, the BIS3 protein in the transition zone of stems was detected in the parenchyma of the bark. Dot-shaped immunofluorescence was confined to the junctions between neighboring cortical parenchyma cells. PMID:22158676

  3. Inhibition of de novo Palmitate Synthesis by Fatty Acid Synthase Induces Apoptosis in Tumor Cells by Remodeling Cell Membranes, Inhibiting Signaling Pathways, and Reprogramming Gene Expression

    Directory of Open Access Journals (Sweden)

    Richard Ventura

    2015-08-01

    Research in context: Fatty acid synthase (FASN is a vital enzyme in tumor cell biology; the over-expression of FASN is associated with diminished patient prognosis and resistance to many cancer therapies. Our data demonstrate that selective and potent FASN inhibition with TVB-3166 leads to selective death of tumor cells, without significant effect on normal cells, and inhibits in vivo xenograft tumor growth at well-tolerated doses. Candidate biomarkers for selecting tumors highly sensitive to FASN inhibition are identified. These preclinical data provide mechanistic and pharmacologic evidence that FASN inhibition presents a promising therapeutic strategy for treating a variety of cancers.

  4. Transgenic expression of trehalulose synthase results in high concentrations of the sucrose isomer trehalulose in mature stems of field-grown sugarcane.

    Science.gov (United States)

    Hamerli, Dénes; Birch, Robert G

    2011-01-01

    Sugarcane plants were developed that produce the sucrose isomers trehalulose and isomaltulose through expression of a vacuole-targeted trehalulose synthase modified from the gene in 'Pseudomonas mesoacidophila MX-45' and controlled by the maize ubiquitin (Ubi-1) promoter. Trehalulose concentration in juice increased with internode maturity, reaching about 600 mM, with near-complete conversion of sucrose in the most mature internodes. Plants remained vigorous, and trehalulose production in selected lines was retained over multiple vegetative generations under glasshouse and field conditions.

  5. Cloning of a putative monogalactosyldiacylglycerol synthase gene from rice (Oryza sativa L.) plants and its expression in response to submergence and other stresses.

    Science.gov (United States)

    Qi, Yanhua; Yamauchi, Yasuo; Ling, Jianqun; Kawano, Naoyoshi; Li, Debao; Tanaka, Kiyoshi

    2004-07-01

    Suppression subtractive hybridization was used to construct a subtractive cDNA library from plants of non-submerged and 7-day-submerged rice (Oryza sativa L., FR13A, a submergence-tolerant cultivar). One clone of the subtractive cDNA library, S23, was expressed abundantly during submergence. The full length of S23 was amplified using 5'- and 3'-rapid amplification of cDNA ends, and found to consist of 1,671 bp with an open reading frame of 1,077 bp (181-1257) encoding 358 amino acids. Its deduced amino acid sequence showed a high homology with monogalactosyldiacylglycerol synthase (UDPgalactose: 1,2-diacylglycerol 3-beta-D-galactosyl transferase; EC 2.4.1.46, MGDG synthase) from Arabidopsis thaliana; therefore, we named the gene OsMGD. Time-course studies showed that the expression of OsMGD in the rice cultivars FR13A and IR42 (submergence-susceptive cultivar) during submergence was gradually increased and that expression in FR13A was higher than in IR42. The expression of OsMGD in FR13A was influenced by benzyladenine and illumination. The accumulation of OsMGD mRNA in both FR13A and IR42 was also increased by ethephon, gibberellin, drought and salt treatment, but cold stress had no effect on the expression of the gene. These results suggest that the expression of OsMGD mRNA requires benzyladenine or illumination, and that the process is also mediated by ethephon and gibberellin. Salt and drought stress have an effect similar to that of submergence. Furthermore, the enhanced expression of OsMGD may relate to photosynthesis, and play an important role during submergence.

  6. Lattice QCD simulations using the OpenACC platform

    Science.gov (United States)

    Majumdar, Pushan

    2016-10-01

    In this article we will explore the OpenACC platform for programming Graphics Processing Units (GPUs). The OpenACC platform offers a directive based programming model for GPUs which avoids the detailed data flow control and memory management necessary in a CUDA programming environment. In the OpenACC model, programs can be written in high level languages with OpenMP like directives. We present some examples of QCD simulation codes using OpenACC and discuss their performance on the Fermi and Kepler GPUs.

  7. Effects of acupuncturing Tsusanli (ST36) on expression of nitric oxide synthase in hypothalamus and adrenal gland in rats with cold stress ulcer

    Institute of Scientific and Technical Information of China (English)

    Jin-Ping Sun; Hai-Tao Pei; Xiang-Lan Jin; Ling Yin; Qing-Hua Tian; Shu-Jun Tian

    2005-01-01

    AIM: To study the protective effect of acupuncturing Tsusanli (ST36) on cold stress ulcer, and the expression of nitric oxide synthase (NOS) in hypothalamus and adrenal gland.METHODS: Ulcer index in rats and RT-PCR were used to study the protective effect of acupuncture on cold stress ulcer, and the expression of NOS in hypothalamus and adrenal gland. Images were analyzed with semi-quantitative method.RESULTS: The ulcer index significantly decreased in rats with stress ulcer. Plasma cortisol concentration was up regulated during cold stress, which could be depressed by pre-acupuncture. The expression of NOS1 in hypothalamus increased after acupuncture. The increased expression of NO$2 was related with stress ulcer, which could be decreased by acupuncture. The expression of NOS3 in hypothalamus was similar to NOS2, but the effect of acupuncture was limited. The expression of NOS2 and NOS3 in adrenal gland increased after cold stress, only the expression of NOS1 could be repressed with acupuncture. There was no NOS2 expression in adrenal gland in rats with stress ulcer.CONCLUSION: The protective effect of acupuncturing Tsusanli (Sr36) on the expression of NOS in hypothalamus and adrenal gland can be achieved.

  8. Expression of nitric oxide synthases and effects of L-arginine and L-NMMA on nitric oxide production and fluid transport in collagenous colitis

    DEFF Research Database (Denmark)

    Perner, A; Andresen, L; Normark, M;

    2001-01-01

    BACKGROUND AND AIMS: Luminal nitric oxide (NO) is greatly increased in the colon of patients with collagenous and ulcerative colitis. To define the source and consequence of enhanced NO production we have studied expression of NO synthase (NOS) isoforms and nitrotyrosine in mucosal biopsies from...... these patients. In addition, effects on colonic fluid transfer caused by manipulating the substrate of NOS were studied in patients with collagenous colitis. PATIENTS: Eight patients with collagenous colitis, nine with active ulcerative colitis, and 10 with uninflamed bowel were included. METHODS: Expression....../nitrate (NOx) was measured by Griess' reaction. RESULTS: Both in collagenous and ulcerative colitis, expression of iNOS was 10(2)-10(3) higher (p

  9. Expression of Biphenyl Synthase Genes and Formation of Phytoalexin Compounds in Three Fire Blight-Infected Pyrus communis Cultivars

    OpenAIRE

    Cornelia Chizzali; Swiddan, Asya K.; Sahar Abdelaziz; Mariam Gaid; Klaus Richter; Fischer, Thilo C.; Benye Liu; Ludger Beerhues

    2016-01-01

    Pear (Pyrus communis) is an economically important fruit crop. Drops in yield and even losses of whole plantations are caused by diseases, most importantly fire blight which is triggered by the bacterial pathogen Erwinia amylovora. In response to the infection, biphenyls and dibenzofurans are formed as phytoalexins, biosynthesis of which is initiated by biphenyl synthase (BIS). Two PcBIS transcripts were cloned from fire blight-infected leaves and the encoded enzymes were characterized regard...

  10. Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase

    OpenAIRE

    Mahmoud, Soheil S.; Croteau, Rodney B.

    2001-01-01

    Peppermint (Mentha × piperita L.) was independently transformed with a homologous sense version of the 1-deoxy-d-xylulose-5-phosphate reductoisomerase cDNA and with a homologous antisense version of the menthofuran synthase cDNA, both driven by the CaMV 35S promoter. Two groups of transgenic plants were regenerated in the reductoisomerase experiments, one of which remained normal in appearance and development; another was deficient in chlorophyll production and grew slowly. Transgenic plants ...

  11. Genome-wide analysis of the grapevine stilbene synthase multigenic family: genomic organization and expression profiles upon biotic and abiotic stresses

    Directory of Open Access Journals (Sweden)

    Vannozzi Alessandro

    2012-08-01

    Full Text Available Abstract Background Plant stilbenes are a small group of phenylpropanoids, which have been detected in at least 72 unrelated plant species and accumulate in response to biotic and abiotic stresses such as infection, wounding, UV-C exposure and treatment with chemicals. Stilbenes are formed via the phenylalanine/polymalonate-route, the last step of which is catalyzed by the enzyme stilbene synthase (STS, a type III polyketide synthase (PKS. Stilbene synthases are closely related to chalcone synthases (CHS, the key enzymes of the flavonoid pathway, as illustrated by the fact that both enzymes share the same substrates. To date, STSs have been cloned from peanut, pine, sorghum and grapevine, the only stilbene-producing fruiting-plant for which the entire genome has been sequenced. Apart from sorghum, STS genes appear to exist as a family of closely related genes in these other plant species. Results In this study a complete characterization of the STS multigenic family in grapevine has been performed, commencing with the identification, annotation and phylogenetic analysis of all members and integration of this information with a comprehensive set of gene expression analyses including healthy tissues at differential developmental stages and in leaves exposed to both biotic (downy mildew infection and abiotic (wounding and UV-C exposure stresses. At least thirty-three full length sequences encoding VvSTS genes were identified, which, based on predicted amino acid sequences, cluster in 3 principal groups designated A, B and C. The majority of VvSTS genes cluster in groups B and C and are located on chr16 whereas the few gene family members in group A are found on chr10. Microarray and mRNA-seq expression analyses revealed different patterns of transcript accumulation between the different groups of VvSTS family members and between VvSTSs and VvCHSs. Indeed, under certain conditions the transcriptional response of VvSTS and VvCHS genes appears to be

  12. [A novel gene (Aa-accA ) encoding acetyl-CoA carboxyltransferase alpha-subunit of Alkalimonas amylolytica N10 enhances salt and alkali tolerance of Escherichia coli and tobacco BY-2 cells].

    Science.gov (United States)

    Xian, Mingjie; Zhai, Lei; Zhong, Naiqin; Ma, Yiwei; Xue, Yanfen; Ma, Yanhe

    2013-08-04

    Acetyl-CoA carboxylase (ACC) catalyzes the first step of fatty acid synthesis. In most bacteria, ACC is composed of four subunits encoded by accA, accB, accC, and accD. Of them, accA encodes acetyl-CoA carboxyltransferase alpha-subunit. Our prior work on proteomics of Alkalimonas amylolytica N10 showed that the expression of the Aa-accA has a remarkable response to salt and alkali stress. This research aimed to find out the Aa-accA gene contributing to salt and alkali tolerance. The Aa-accA was amplified by PCR from A. amylolytica N10 and expressed in E. coli K12 host. The effects of Aa-accA expression on the growth of transgenic strains were examined under different NaCl concentration and pH conditions. Transgenic tobacco BY-2 cells harboring Aa-accA were also generated via Agrobacterium-mediated transformation. The viability of BY-2 cells was determined with FDA staining method after salt and alkali shock. The Aa-accA gene product has 318 amino acids and is homologous to the carboxyl transferase domain of acyl-CoA carboxylases. It showed 76% identity with AccA (acetyl-CoA carboxylase carboxyltransferase subunit alpha) from E. coli. Compared to the wild-type strains, transgenic E. coli K12 strain containing Aa-accA showed remarkable growth superiority when grown in increased NaCl concentrations and pH levels. The final cell density of the transgenic strains was 2.6 and 3.5 times higher than that of the control type when they were cultivated in LB medium containing 6% (W/V) NaCl and at pH 9, respectively. Complementary expression of Aa-accA in an accA-depletion E. coli can recover the tolerance of K12 delta accA to salt and alkali stresses to some extent. Similar to the transgenic E. coli, transgenic tobacco BY-2 cells showed higher percentages of viability compared to the wild BY-2 cells under the salt or alkali stress condition. We found that Aa-accA from A. amylolytica N10 overexpression enhances the tolerance of both transgenic E. coli and tobacco BY-2 cells to

  13. Effects of melatonin on learning abilities, cholinergic fibers and nitric oxide synthase expression in rat cerebral cortex

    Institute of Scientific and Technical Information of China (English)

    Bin Xu; Junpao Chen; Hailing Zhao

    2006-01-01

    BACKGROUND: Melatonin is a kind of hormones derived from pineal gland. Recent researches demonstrate that melatonin is characterized by anti-oxidation, anti-senility and destroying free radicals. While, effect and pathogenesis of pineal gland on learning ability should be further studied.OBJ ECTIVE: To investigate the effects of pinealectomy on learning abiliy, distribution of cholinesterase and expression of neuronal nitric oxide synthase (nNOS) in cerebral cortex of rats and probe into the effect of melatonin on learning ability, central cholinergic system and nNOS expression.DESIGN: Randomized grouping design and animal study.SETTING: Department of Neurology, the 187 Hospital of Chinese PLA.MATERIALS: A total of 12 male SD rats, of normal learning ability testing with Y-tape maze, of clean grade,weighing 190-210 g, aged 6 weeks, were selected in this study.METHODS: The experiment was carried out in the Department of Neurology, Zhujiang Hospital from July 1997to June 2000. All SD rats were divided into experimental group (n =6,pinealectomy) and control group (n =6, sham operation). Seven days later, rats in both two groups were continuously fed for 33 days. ①Learning ability test: The learning ability of rats was tested by trisection Y-type maze and figured as attempting times. ②Expression of acetylcholinesterase (AchE) was detected by enzyme histochemistry and nNOS was measured by SABC method. ③ Quantitative analysis of AchE fibers: AchE fibers density in unit area (surface density)was surveyed with Leica Diaplan microscope and Leica Quantimet 500+ image analytic apparatus and quantitative parameter was set up for AchE fibers covering density (μm2) per 374 693.656 μm2, moreover, the AchE fibers density was measured in Ⅱ -Ⅳ layers of motor and somatosensory cortex (showing three layers per field of vision at one time), in radiative, lacunaria and molecular layers of CA1, CA2 and CA3 areas, and in lamina multiforms of dentate gyrus. Three tissue slices

  14. Crocin Suppresses LPS-Stimulated Expression of Inducible Nitric Oxide Synthase by Upregulation of Heme Oxygenase-1 via Calcium/Calmodulin-Dependent Protein Kinase 4

    Directory of Open Access Journals (Sweden)

    Ji-Hee Kim

    2014-01-01

    Full Text Available Crocin is a water-soluble carotenoid pigment that is primarily used in various cuisines as a seasoning and coloring agent, as well as in traditional medicines for the treatment of edema, fever, and hepatic disorder. In this study, we demonstrated that crocin markedly induces the expression of heme oxygenase-1 (HO-1 which leads to an anti-inflammatory response. Crocin inhibited inducible nitric oxide synthase (iNOS expression and nitric oxide production via downregulation of nuclear factor kappa B activity in lipopolysaccharide- (LPS- stimulated RAW 264.7 macrophages. These effects were abrogated by blocking of HO-1 expression or activity. Crocin also induced Ca2+ mobilization from intracellular pools and phosphorylation of Ca2+/calmodulin-dependent protein kinase 4 (CAMK4. CAMK4 knockdown and kinase-dead mutant inhibited crocin-mediated HO-1 expression, Nrf2 activation, and phosphorylation of Akt, indicating that HO-1 expression is mediated by CAMK4 and that Akt is a downstream mediator of CAMK4 in crocin signaling. Moreover, crocin-mediated suppression of iNOS expression was blocked by CAMK4 inhibition. Overall, these results suggest that crocin suppresses LPS-stimulated expression of iNOS by inducing HO-1 expression via Ca2+/calmodulin-CAMK4-PI3K/Akt-Nrf2 signaling cascades. Our findings provide a novel molecular mechanism for the inhibitory effects of crocin against endotoxin-mediated inflammation.

  15. Expression of a ferredoxin-dependent glutamate synthase gene in mesophyll and vascular cells and functions of the enzyme in ammonium assimilation in Nicotiana tabacum (L.).

    Science.gov (United States)

    Feraud, Magali; Masclaux-Daubresse, Céline; Ferrario-Méry, Sylvie; Pageau, Karine; Lelandais, Maud; Ziegler, Christine; Leboeuf, Edouard; Jouglet, Tiphaine; Viret, Lauriane; Spampinato, Axelle; Paganelli, Vanina; Hammouda, Mounir Ben; Suzuki, Akira

    2005-11-01

    GLU1 encodes the major ferredoxin-dependent glutamate synthase (Fd-GOGAT, EC 1.4.7.1) in Arabidopsis thaliana (ecotype Columbia). With the aim of providing clues on the role of Fd-GOGAT, we analyzed the expression of Fd-GOGAT in tobacco (Nicotiana tabacum L. cv. Xanthi). The 5' flanking element of GLU1 directed the expression of the uidA reporter gene in the palisade and spongy parenchyma of mesophyll, in the phloem cells of vascular tissue and in the roots of tobacco. White light, red light or sucrose induced GUS expression in the dark-grown seedlings in a pattern similar to the GLU1 mRNA accumulation in Arabidopsis. The levels of GLU2 mRNA encoding the second Fd-GOGAT and NADH-glutamate synthase (NADH-GOGAT, EC 1.4.1.14) were not affected by light. Both in the light and in darkness, (15)NH4(+) was incorporated into [5-(15)N]glutamine and [2-(15)N]glutamate by glutamine synthetase (GS, EC 6.3.1.2) and Fd-GOGAT in leaf disks of transgenic tobacco expressing antisense Fd-GOGAT mRNA and in wild-type tobacco. In the light, low level of Fd-glutamate synthase limited the [2-(15)N]glutamate synthesis in transgenic leaf disks. The efficient dark labeling of [2-(15)N]glutamate in the antisense transgenic tobacco leaves indicates that the remaining Fd-GOGAT (15-20% of the wild-type activity) was not the main limiting factor in the dark ammonium assimilation. The antisense tobacco under high CO2 contained glutamine, glutamate, asparagine and aspartate as the bulk of the nitrogen carriers in leaves (62.5%), roots (69.9%) and phloem exudates (53.2%). The levels of glutamate, asparagine and aspartate in the transgenic phloem exudates were similar to the wild-type levels while the glutamine level increased. The proportion of these amino acids remained unchanged in the roots of the transgenic plants. Expression of GLU1 in mesophyll cells implies that Fd-GOGAT assimilates photorespiratory and primary ammonium. GLU1 expression in vascular cells indicates that Fd-GOGAT provides

  16. Cloning, E. coli Expression and Molecular Analysis of Amorpha-4,11-Diene Synthase from a High-Yield Strain of Artemisia annua L.

    Institute of Scientific and Technical Information of China (English)

    Zhen-Qiu Li; Yan Liu; Ben-Ye Liu; Hong Wang; He-Chun Ye; Guo-Feng Li

    2006-01-01

    Increasing demand of artemisinin in the treatment of malaria has placed substantial stress on the total artemisinin supplies world-wide, so more attention has been paid to increasing the content of artemisinin in the Artemisia annua L. plant. In this study, amorpha-4, 11-diene synthase (ADS) cDNA (ads1) and genomics gene (gads1) were cloned from a high-yield A. annua strain 001. The activity of ADS1 was confirmed by heterogeneous overexpression of ads1 and in vitro enzymatic incubation. Reverse transcript-polymerase chain reaction results demonstrated that ads1 expressed in leaves, flowers and young stems, but not in roots. This organ-specific expression pattern of ads1 is consistent with that of artemisinin accumulation in the plant. The gads1 has a complex organization including seven exons and six introns, and belongs to class Ⅲ terpene synthase. DNA gel blotting revealed that the ADS gene has at least four copies in the genome of strain 001. The higher copy numbers might be one of the reasons for its high artemisinin content.

  17. Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance.

    Science.gov (United States)

    Gasic, Ksenija; Korban, Schuyler S

    2007-07-01

    Phytochelatins (PCs) are post-translationally synthesized thiol reactive peptides that play important roles in detoxification of heavy metal and metalloids in plants and other living organisms. The overall goal of this study is to develop transgenic plants with increased tolerance for and accumulation of heavy metals and metalloids from soil by expressing an Arabidopsis thaliana AtPCS1 gene, encoding phytochelatin synthase (PCS), in Indian mustard (Brassica juncea L.). A FLAG-tagged AtPCS1 gDNA, under its native promoter, is expressed in Indian mustard, and transgenic pcs lines have been compared with wild-type plants for tolerance to and accumulation of cadmium (Cd) and arsenic (As). Compared to wild type plants, transgenic plants exhibit significantly higher tolerance to Cd and As. Shoots of Cd-treated pcs plants have significantly higher concentrations of PCs and thiols than those of wild-type plants. Shoots of wild-type plants accumulated significantly more Cd than those of transgenic plants, while accumulation of As in transgenic plants was similar to that in wild type plants. Although phytochelatin synthase improves the ability of Indian mustard to tolerate higher levels of the heavy metal Cd and the metalloid As, it does not increase the accumulation potential of these metals in the above ground tissues of Indian mustard plants.

  18. In silico structural and functional analysis of Mesorhizobium ACC deaminase.

    Science.gov (United States)

    Pramanik, Krishnendu; Soren, Tithi; Mitra, Soumik; Maiti, Tushar Kanti

    2017-02-11

    Nodulation is one of the very important processes of legume plants as it is the initiating event of fixing nitrogen. Although ethylene has essential role in normal plant metabolism but it has also negative impact on plants particularly in nodule formation in legume plants. It is also produced due to a variety of biotic or abiotic stresses. 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase is a rhizobial enzyme which cleaves ACC (immediate precursor of ethylene) into α-ketobutyrate and ammonia. As a result, the level of ethylene from the plant cells is decreased and the negative impact of ethylene on nodule formation is reduced. ACC deaminase is widely studied in several plant growth promoting rhizobacterial (PGPR) strains including many legume nodulating bacteria like Mesorhizobium sp. It is an important symbiotic nitrogen fixer belonging to the class - alphaproteobacteria under the order Rhizobiales. ACC deaminase has positive role in Legume-rhizobium symbiosis. Rhizobial ACC deaminase has the potentiality to reduce the adverse effects of ethylene, thereby triggering the nodulation process. The present study describes an in silico comparative structural (secondary structure prediction, homology modeling) and functional analysis of ACC deaminase from Mesorhizobium spp. to explore physico-chemical properties using a number of bio-computational tools. M. loti was selected as a representative species of Mesorhizobium genera for 3D modelling of ACC deaminase protein. Correlation by the phylogenetic relatedness on the basis of both ACC deaminase enzymes and respective acdS genes of different strains of Mesorhizobium has also studied.

  19. Acc homoeoloci and the evolution of wheat genomes

    Science.gov (United States)

    We analyzed the DNA sequences of BACs from many wheat libraries containing the Acc-1 and Acc-2 loci, encoding the plastid and cytosolic forms of the enzyme acetyl-CoA carboxylase, to gain understanding of the evolution of these genes and the origin of the three genomes in modern hexaploid wheat. Mor...

  20. Benzalacetone Synthase

    Directory of Open Access Journals (Sweden)

    Ikuro eAbe

    2012-03-01

    Full Text Available Benzalacetone synthase, from the medicinal plant Rheum palmatum (Polygonaceae (RpBAS, is a plant-specific chalcone synthase (CHS superfamily of type III polyketide synthase (PKS. RpBAS catalyzes the one-step, decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce the C6-C4 benzalacetone scaffold. The X-ray crystal structures of RpBAS confirmed that the diketide-forming activity is attributable to the characteristic substitution of the conserved active-site "gatekeeper" Phe with Leu. Furthermore, the crystal structures suggested that RpBAS employs novel catalytic machinery for the thioester bond cleavage of the enzyme-bound diketide intermediate and the final decarboxylation reaction to produce benzalacetone. Finally, by exploiting the remarkable substrate tolerance and catalytic versatility of RpBAS, precursor-directed biosynthesis efficiently generated chemically and structurally divergent, unnatural novel polyketide scaffolds. These findings provided a structural basis for the functional diversity of the type III PKS enzymes.

  1. An Arabidopsis callose synthase

    DEFF Research Database (Denmark)

    Ostergaard, Lars; Petersen, Morten; Mattsson, Ole

    2002-01-01

    unclear whether callose synthases can also produce cellulose and whether plant cellulose synthases may also produce beta-1,3-glucans. We describe here an Arabidopsis gene, AtGsl5, encoding a plasma membrane-localized protein homologous to yeast beta-1,3-glucan synthase whose expression partially......Beta-1,3-glucan polymers are major structural components of fungal cell walls, while cellulosic beta-1,4-glucan is the predominant polysaccharide in plant cell walls. Plant beta-1,3-glucan, called callose, is produced in pollen and in response to pathogen attack and wounding, but it has been...... in the Arabidopsis mpk4 mutant which exhibits systemic acquired resistance (SAR), elevated beta-1,3-glucan synthase activity, and increased callose levels. In addition, AtGsl5 is a likely target of salicylic acid (SA)-dependent SAR, since AtGsl5 mRNA accumulation is induced by SA in wild-type plants, while...

  2. Modulation of inducible nitric oxide synthase gene expression in RAW 264.7 murine macrophages by Pacific ciguatoxin

    OpenAIRE

    Kumar-Roine, Shilpa; Matsui, Mariko,; Chinain, M.; Laurent, Dominique; Pauillac, S.

    2008-01-01

    To investigate the possible involvement of the nitric oxide radical (NO) in ciguatera fish poisoning (CFP), the in vitro effects of the main Pacific ciguatoxin (P-CTX-1B) and bacterial lipopolysaccharide (LPS) were comparatively studied on neuroblastoma Neuro-2a and on macrophage RAW 264.7 cell lines. NO accumulation was quantified by measuring nitrite levels in cellular supernatant using Griess reagent while the up-regulation of inducible nitric oxide synthase (iNOS) at the mRNA level was qu...

  3. Estrogen administration during superovulation increases oocyte quality and expressions of vascular endothelial growth factor and nitric oxide synthase in the ovary.

    Science.gov (United States)

    Ha, Choong-Sik; Joo, Bo-Sun; Kim, Seung-Chul; Joo, Jong-Kil; Kim, Hwi-Gon; Lee, Kyu-Sup

    2010-08-01

    This study investigated whether estrogen administration during superovulation enhances oocyte quality using a mice model. We also investigated whether this estrogen treatment regulates the expressions of angiogenic factors, such as vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS), in the ovary. Female mice were co-injected with various doses of estrogen (1 microM, 10 microM and 100 microM) and pregnant mare serum gonadotrophin during superovulation, followed by human chorionic gonadotrophin injection 48 hours later. Then they were mated with individual males. After 18 hours, zygotes were flushed and cultured to blastocyst. The expression of VEGF and eNOS in the ovary was examined using Western blot and immunohistochemistry. The control group was superovulated without estrogen. Both numbers of ovulated zygotes and the rate of embryo development to blastocyst were significantly increased in the 1-microM estrogen dose compared to the control group. VEGF and eNOS expressions were stimulated by estrogen treatment. In particular, VEGF expression was significantly increased at 1-microM estrogen concentration, whereas, eNOS expression was significantly increased in all estrogen concentrations compared to controls. The study showed that estrogen co-injection during superovulation increased the ovarian response, embryo developmental competence and expressions of VEGF and eNOS in the ovary.

  4. Glycogen synthase kinase 3 regulates expression of nuclear factor-erythroid-2 related transcription factor-1 (Nrf1) and inhibits pro-survival function of Nrf1

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Madhurima; Kwong, Erick K.; Park, Eujean; Nagra, Parminder; Chan, Jefferson Y., E-mail: jchan@uci.edu

    2013-08-01

    Nuclear factor E2-related factor-1 (Nrf1) is a basic leucine zipper transcription factor that is known to regulate antioxidant and cytoprotective gene expression. It was recently shown that Nrf1 is regulated by SCF–Fbw7 ubiquitin ligase. However our knowledge of upstream signals that targets Nrf1 for degradation by the UPS is not known. We report here that Nrf1 expression is negatively regulated by glycogen synthase kinase 3 (GSK3) in Fbw7-dependent manner. We show that GSK3 interacts with Nrf1 and phosphorylates the Cdc4 phosphodegron domain (CPD) in Nrf1. Mutation of serine residue in the CPD of Nrf1 to alanine (S350A), blocks Nrf1 from phosphorylation by GSK3, and stabilizes Nrf1. Knockdown of Nrf1 and expression of a constitutively active form of GSK3 results in increased apoptosis in neuronal cells in response to ER stress, while expression of the GSK3 phosphorylation resistant S350A–Nrf1 attenuates apoptotic cell death. Together these data suggest that GSK3 regulates Nrf1 expression and cell survival function in response to stress activation. Highlights: • The effect of GSK3 on Nrf1 expression was examined. • GSK3 destabilizes Nrf1 protein via Fbw7 ubiquitin ligase. • GSK3 binds and phosphorylates Nrf1. • Protection from stress-induced apoptosis by Nrf1 is inhibited by GSK3.

  5. Clinical significance of the thymidylate synthase, dihydropyrimidine dehydrogenase, and thymidine phosphorylase mRNA expressions in hepatocellular carcinoma patients receiving 5-fluorouracil-based transarterial chemoembolization treatment

    Directory of Open Access Journals (Sweden)

    Zhao H

    2013-07-01

    Full Text Available Hongyun Zhao,1,* Yuanyuan Zhao,2,* Ying Guo,1 Yan Huang,2 Suxia Lin,3 Cong Xue,2 Fei Xu,2 Yang Zhang,1 Liping Zhao,2 Zhihuang Hu,2 Li Zhang1,2 1State Key Laboratory of Oncology in South China and National Anti-Cancer Drug Clinical Research Centre, 2State Key Laboratory of Oncology in South China and Department of Medical Oncology, 3Department of Pathological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China*These authors contributed equally to this workPurpose: To determine whether 5-fluorouracil (5-FU sensitivity is associated with the mRNA expressions of thymidylate synthase (TS, dihydropyrimidine dehydrogenase (DPD, and thymidine phosphorylase (TP in patients with hepatocellular carcinoma (HCC treated with 5-FU-based transarterial chemoembolization (TACE.Methods: Formalin-fixed, paraffin-embedded tumor specimens from 40 patients treated with 5-FU-based TACE were selected for the examination of TS, DPD, and TP expression level by a quantitative real-time reverse transcription- polymerase chain reaction (PCR technique. Patients were categorized into high and low expression groups according to the median expression level of each enzyme. Associations between the mRNA expression levels of TS, DPD, and TP and clinical parameters including treatment efficacies, clinicopathological factors, and prognosis were assessed.Results: High DPD expression was associated with worse treatment outcome, including intrahepatic disease progression rate (hazard ratio [HR] for high DPD versus low DPD, 2.212; 95% confidence interval [CI], 1.030–4.753; P = 0.042, extrahepatic disease progression rate (HR for high versus low DPD, 3.171; 95% CI, 1.003–10.023; P = 0.049, and progression-free survival (HR for high versus low DPD, 2.308; 95% CI, 1.102–4.836; P = 0.027. No correlation was found between the mRNA expression of TS/TP and treatment outcome.Conclusion: DPD mRNA expression level was negatively correlated with the clinical

  6. Geosmin biosynthesis in Streptomyces avermitilis. Molecular cloning, expression, and mechanistic study of the germacradienol/geosmin synthase.

    Science.gov (United States)

    Cane, David E; He, Xiaofei; Kobayashi, Seiji; Omura, Satoshi; Ikeda, Haruo

    2006-08-01

    Geosmin (1) is responsible for the characteristic odor of moist soil. The Gram-positive soil bacterium Streptomyces avermitilis produces geosmin (1) as well as its precursor germacradienol (3). The S. avermitilis gene SAV2163 (geoA) is extremely similar to the S. coelicolor A3(2) SCO6073 gene that encodes a germacradienol/geosmin synthase. S. avermitilis mutants with a deleted geoA were unable to produce either germacradienol (3) or geosmin (1). Biosynthesis of both compounds was restored by introducing an intact geoA gene into the mutants. Incubation of recombinant GeoA, encoded by the SAV2163 gene of S. avermitilis, with farnesyl diphosphate (2) in the presence of Mg2+ gave a mixture of (4S,7R)-germacra-1(10)E,5E-diene-11-ol (3) (66%), (7S)-germacrene D (4) (24%), geosmin (1) (8%), and a hydrocarbon, tentatively assigned the structure of octalin 5 (2%). Incubation of this germacradienol/geosmin synthase with [1,1-(2)H2] FPP (2a) gave geosmin-d1 (1a), as predicted. When recombinant GeoA from either S. avermitilis or S. coelicolor A3(2) was incubated with nerolidyl diphosphate (8), only the acyclic elimination products beta3-farnesene (10), (Z)-alpha-farnesene (11), and (E)-alpha-farnesene (12) were formed, thereby ruling out nerolidyl diphosphate as an intermediate in the conversion of farnesyl diphosphate to geosmin, germacradienol, and germacrene D.

  7. Molecular cloning and expression of an encoding galactinol synthase gene (AnGolS1) in seedling of Ammopiptanthus nanus

    Science.gov (United States)

    Liu, YuDong; Zhang, Li; Chen, LiJing; Ma, Hui; Ruan, YanYe; Xu, Tao; Xu, ChuanQiang; He, Yi; Qi, MingFang

    2016-01-01

    Based on the galactinol synthase (AnGolS1) fragment sequence from a cold-induced Suppression Subtractive Hybridization (SSH) library derived from Ammopiptanthus nanus (A. nanus) seedlings, AnGolS1 mRNA (including the 5′ UTR and 3′ UTR) (GenBank accession number: GU942748) was isolated and characterized by rapid amplification of cDNA ends polymerase chain reaction (RACE–PCR). A substrate reaction test revealed that AnGolS1 possessed galactinol synthase activity in vitro and could potentially be an early-responsive gene. Furthermore, quantitative real-time PCR (qRT-PCR) indicated that AnGolS1 was responded to cold, salts and drought stresses, however, significantly up-regulated in all origans by low temperatures, especially in plant stems. In addition, the hybridization signals in the fascicular cambium were strongest in all cells under low temperature. Thus, we propose that AnGolS1 plays critical roles in A. nanus low-temperature stress resistance and that fascicular cambium cells could be involved in AnGolS1 mRNA transcription, galactinol transportation and coordination under low-temperature stress. PMID:27786294

  8. Expression of a mutant form of cellulose synthase AtCesA7 causes dominant negative effect on cellulose biosynthesis.

    Science.gov (United States)

    Zhong, Ruiqin; Morrison, W Herbert; Freshour, Glenn D; Hahn, Michael G; Ye, Zheng-Hua

    2003-06-01

    Cellulose synthase catalytic subunits (CesAs) have been implicated in catalyzing the biosynthesis of cellulose, the major component of plant cell walls. Interactions between CesA subunits are thought to be required for normal cellulose synthesis, which suggests that incorporation of defective CesA subunits into cellulose synthase complex could potentially cause a dominant effect on cellulose synthesis. However, all CesA mutants so far reported have been shown to be recessive in terms of cellulose synthesis. In the course of studying the molecular mechanisms regulating secondary wall formation in fibers, we have found that a mutant allele of AtCesA7 gene in the fra5 (fragile fiber 5) mutant causes a semidominant phenotype in the reduction of fiber cell wall thickness and cellulose content. The fra5 missense mutation occurred in a conserved amino acid located in the second cytoplasmic domain of AtCesA7. Overexpression of the fra5 mutant cDNA in wild-type plants not only reduced secondary wall thickness and cellulose content but also decreased primary wall thickness and cell elongation. In contrast, overexpression of the fra6 mutant form of AtCesA8 did not cause any reduction in cell wall thickness and cellulose content. These results suggest that the fra5 mutant protein may interfere with the function of endogenous wild-type CesA proteins, thus resulting in a dominant negative effect on cellulose biosynthesis.

  9. Sex Differences in mRNA Expression of Reduced Folate Carrier-1, Folypolyformyl Glutamate Synthase, and γ-Glutamyl Hydrolase in a Healthy Japanese Population.

    Science.gov (United States)

    Hashiguchi, Masayuki; Tanaka, Takanori; Shimizu, Mikiko; Tsuru, Tomomi; Chiyoda, Takeshi; Miyawaki, Kumika; Irie, Shin; Takeuchi, Osamu; Hakamata, Jun; Mochizuki, Mayumi

    2016-12-01

    Sex differences in the prevalence of autoimmune diseases such as rheumatoid arthritis (RA) are well known, but little is known about those differences in relation to therapeutic response. Reduced folate carrier-1 (RFC-1), folypolyformyl glutamate synthase (FPGS), and γ-glutamyl hydrolase (GGH) are important transporters and enzymes that convert methotrexate (MTX) in the body. This study investigated the sex differences in mRNA expression of RFC-1, FPGS, and GGH in 190 unrelated healthy Japanese people. The genotypes and mRNA expression were determined using the real-time PCR method. Significant differences between men and women were observed in RFC-1, FPGS, and GGH mRNA expression. The mRNA expression of FPGS and GGH was greater in women than that in men, but the expression of RFC-1 was less in the former than the latter. In stratified analysis by genotype, significant differences in sex-specific mRNA expression were observed in G/G of FPGS, C/C of GGH 452, and C/C of GGH -401. All showed greater mRNA expression in women than in men. In the 5 single-nucleotide polymorphisms RFC-1 80G>A, RFC-1 -43T>C, FPGS 1994G>A, GGH 452C>T, and GGH -401C>T examined, the FPGS 1994 G/G (1.46-fold), GGH 452 C/C (2.16-fold), and GGH -401 C/C (2.68-fold) genotypes showed significantly higher mRNA expression in women than in men. Healthy Japanese adults in this study showed sex-specific differences in mRNA expression that differed among RFC-1, FPGS, and GGH. Therefore, the relationship between genetic polymorphisms and mRNA expression including sex differences might contribute to the variation in the efficacy/toxicity of MTX in patients with RA.

  10. Relationship between Expression of Chalcone Synthase Genes and Chromones in Artificial Agarwood induced by Formic Acid Stimulation Combined with Fusarium sp. A2 Inoculation.

    Science.gov (United States)

    Chen, Xiaodong; Zhu, Xiaoling; Feng, Meirou; Zhong, Zhaojian; Zhou, Xin; Chen, Xiaoying; Ye, Wei; Zhang, Weimin; Gao, Xiaoxia

    2017-04-25

    Agarwood (gaharu) is a fragrant resin produced in the heartwood of resinous Gyrinops and Aquilaria species. Artificial agarwood samples were obtained from Aquilaria sinensis (Lour.) Gilg using formic acid (FA) stimulation combined with Fusarium sp. A2 inoculation. The relationship between the expression of chalcone synthase genes (CHS) and dynamic changes in chromone content was explored in resin-deposited parts of the trunks of A. sinensis. CHS gene expression levels were detected by qRT-PCR analysis. The chemical composition of agarwood obtained from the heartwood of A. sinensis before and within 1 year after induction was determined by GC-MS. After induction with FA stimulation combined with F. sp. A2 inoculation, the CHS1 gene showed relatively high expression, whereas the CHS2 gene showed low expression. The relative gene expression level of CHS1 peaked at 12 months, with a 153.1-fold increase, and the dominant period of the CHS2 gene expression was 10 months with a 14.13-fold increase. Moreover, chromones were not detected until after 2 months, and a large proportion of chromone compounds were detected after 4 months. Chromone content increased with time and peaked at 12 months. CHS1 gene expression was significantly correlated with 6-hydroxy-2-(2-phenylethyl)chromone accumulation, and CHS2 gene expression was significantly correlated with 5-hydroxy-6-methoxy-2-(2-phenylethyl)chromone accumulation. CHS gene expression was extremely sensitive to FA stimulation combined with F. sp. A2 inoculation and responded to late-onset injury. CHS genes expression also preceded the chromone accumulation. This work laid the foundation for studies on the mechanism by which genes regulate chromone biosynthesis pathways during the formation of agarwood resin in A. sinensis.

  11. Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha x piperita, L.) that produces the aphid alarm pheromone (E)-β-farnesene

    Science.gov (United States)

    Crock, John; Wildung, Mark; Croteau, Rodney

    1997-01-01

    (E)-β-Farnesene is a sesquiterpene semiochemical that is used extensively by both plants and insects for communication. This acyclic olefin is found in the essential oil of peppermint (Mentha x piperita) and can be synthesized from farnesyl diphosphate by a cell-free extract of peppermint secretory gland cells. A cDNA from peppermint encoding (E)-β-farnesene synthase was cloned by random sequencing of an oil gland library and was expressed in Escherichia coli. The corresponding synthase has a deduced size of 63.8 kDa and requires a divalent cation for catalysis (Km for Mg2+ ≈ 150 μM; Km for Mn2+ ≈ 7 μM). The sesquiterpenoids produced by the recombinant enzyme, as determined by radio-GC and GC-MS, are (E)-β-farnesene (85%), (Z)-β-farnesene (8%), and δ-cadinene (5%) with the native C15 substrate farnesyl diphosphate (Km ≈ 0.6 μM; Vrel = 100) and Mg2+ as cofactor, and (E)-β-farnesene (98%) and (Z)-β-farnesene (2%) with Mn2+ as cofactor (Vrel = 80). With the C10 analog, GDP, as substrate (Km = 1.5 μM; Vrel = 3 with Mg2+ as cofactor), the monoterpenes limonene (48%), terpinolene (15%), and myrcene (15%) are produced. PMID:9371761

  12. The expression of inducible nitric oxide synthase (iNOS) in the testis and epididymis of rats with a dihydrotestosterone (DHT) deficiency.

    Science.gov (United States)

    Kolasa, Agnieszka; Marchlewicz, Mariola; Kurzawa, Rafał; Głabowski, Wojciech; Trybek, Grzegorz; Wenda-Rózewicka, Lidia; Wiszniewska, Barbara

    2009-01-01

    In our previous studies, we showed that a finasteride-induced DHT deficiency may cause changes in the morphology of the seminiferous epithelium without any morphological alteration of the epididymis. In this study, we demonstrated the constitutive immunoexpression of inducible nitric oxide synthase (iNOS) in the testis and epididymis of Wistar rats treated with finasteride for 28 days (the duration of two cycles of the seminiferous epithelium) and 56 days (the duration of one spermatogenesis). We noted that a 56-day finasteride treatment mainly caused a decrease in the level of circulating DHT, as well as a statistically insignificant decrease in the level of T. The hormone deficiency also led to a change in the iNOS immnoexpression in the testis and epididymis of the finasteride-treated rats. In vitro, DHT did not modify NO production by the epithelial cells of the caput epididymis even when stimulated with LPS and IFNgamma, but it did give rise to an increase in NO production by the epithelial cells of the cauda epididymis without the stimulation. DHT did not have a statistically significant influence on estradiol production by cultured, LPS- and IFNgamma-stimulated epithelial cells from the caput and cauda epididymis. In conclusion, our data clearly indicates that a finasterideinduced DHT deficiency intensifies the constitutive expression of iNOS in most rat testicular and epididymal cells, so it can be expected that the expression of inducible nitric oxide synthase (iNOS) could be regulated by DHT. On the other hand, the profile of the circulating DHT and T levels strongly suggests that the regulation of constitutive iNOS expression is complex and needs more detailed study.

  13. Alteration of flower color in Iris germanica L. 'Fire Bride' through ectopic expression of phytoene synthase gene (crtB) from Pantoea agglomerans.

    Science.gov (United States)

    Jeknić, Zoran; Jeknić, Stevan; Jevremović, Slađana; Subotić, Angelina; Chen, Tony H H

    2014-08-01

    Genetic modulation of the carotenogenesis in I. germanica 'Fire Bride' by ectopic expression of a crtB gene causes several flower parts to develop novel orange and pink colors. Flower color in tall bearded irises (Iris germanica L.) is determined by two distinct biochemical pathways; the carotenoid pathway, which imparts yellow, orange and pink hues and the anthocyanin pathway, which produces blue, violet and maroon flowers. Red-flowered I. germanica do not exist in nature and conventional breeding methods have thus far failed to produce them. With a goal of developing iris cultivars with red flowers, we transformed a pink iris I. germanica, 'Fire Bride', with a bacterial phytoene synthase gene (crtB) from Pantoea agglomerans under the control of the promoter region of a gene for capsanthin-capsorubin synthase from Lilium lancifolium (Llccs). This approach aimed to increase the flux of metabolites into the carotenoid biosynthetic pathway and lead to elevated levels of lycopene and darker pink or red flowers. Iris callus tissue ectopically expressing the crtB gene exhibited a color change from yellow to pink-orange and red, due to accumulation of lycopene. Transgenic iris plants, regenerated from the crtB-transgenic calli, showed prominent color changes in the ovaries (green to orange), flower stalk (green to orange), and anthers (white to pink), while the standards and falls showed no significant differences in color when compared to control plants. HPLC and UHPLC analysis confirmed that the color changes were primarily due to the accumulation of lycopene. In this study, we showed that ectopic expression of a crtB can be used to successfully alter the color of certain flower parts in I. germanica 'Fire Bride' and produce new flower traits.

  14. Blunted flow-mediated responses and diminished nitric oxide synthase expression in lymphatic thoracic ducts of a rat model of metabolic syndrome.

    Science.gov (United States)

    Zawieja, Scott D; Gasheva, Olga; Zawieja, David C; Muthuchamy, Mariappan

    2016-02-01

    Shear-dependent inhibition of lymphatic thoracic duct (TD) contractility is principally mediated by nitric oxide (NO). Endothelial dysfunction and poor NO bioavailability are hallmarks of vasculature dysfunction in states of insulin resistance and metabolic syndrome (MetSyn). We tested the hypothesis that flow-dependent regulation of lymphatic contractility is impaired under conditions of MetSyn. We utilized a 7-wk high-fructose-fed male Sprague-Dawley rat model of MetSyn and determined the stretch- and flow-dependent contractile responses in an isobaric ex vivo TD preparation. TD diameters were tracked and contractile parameters were determined in response to different transmural pressures, imposed flow, exogenous NO stimulation by S-nitro-N-acetylpenicillamine (SNAP), and inhibition of NO synthase (NOS) by l-nitro-arginine methyl ester (l-NAME) and the reactive oxygen species (ROS) scavenging molecule 4-hydroxy-tempo (tempol). Expression of endothelial NO synthase (eNOS) in TD was determined using Western blot. Approximately 25% of the normal flow-mediated inhibition of contraction frequency was lost in TDs isolated from MetSyn rats despite a comparable SNAP response. Inhibition of NOS with l-NAME abolished the differences in the shear-dependent contraction frequency regulation between control and MetSyn TDs, whereas tempol did not restore the flow responses in MetSyn TDs. We found a significant reduction in eNOS expression in MetSyn TDs suggesting that diminished NO production is partially responsible for impaired flow response. Thus our data provide the first evidence that MetSyn conditions diminish eNOS expression in TD endothelium, thereby affecting the flow-mediated changes in TD lymphatic function.

  15. Expression of Ribonucleotide Reductase Subunit-2 and Thymidylate Synthase Correlates with Poor Prognosis in Patients with Resected Stages I–III Non-Small Cell Lung Cancer

    Science.gov (United States)

    Grossi, Francesco; Dal Bello, Maria Giovanna; Salvi, Sandra; Puzone, Roberto; Pfeffer, Ulrich; Fontana, Vincenzo; Alama, Angela; Rijavec, Erika; Barletta, Giulia; Genova, Carlo; Sini, Claudio; Ratto, Giovanni Battista; Taviani, Mario; Truini, Mauro; Merlo, Domenico Franco

    2015-01-01

    Biomarkers can help to identify patients with early-stages or locally advanced non-small cell lung cancer (NSCLC) who have high risk of relapse and poor prognosis. To correlate the expression of seven biomarkers involved in DNA synthesis and repair and in cell division with clinical outcome, we consecutively collected 82 tumour tissues from radically resected NSCLC patients. The following biomarkers were investigated using IHC and qRT-PCR: excision repair cross-complementation group 1 (ERCC1), breast cancer 1 (BRCA1), ribonucleotide reductase subunits M1 and M2 (RRM1 and RRM2), subunit p53R2, thymidylate synthase (TS), and class III beta-tubulin (TUBB3). Gene expression levels were also validated in an available NSCLC microarray dataset. Multivariate analysis identified the protein overexpression of RRM2 and TS as independent prognostic factors of shorter overall survival (OS). Kaplan-Meier analysis showed a trend in shorter OS for patients with RRM2, TS, and ERCC1, BRCA1 overexpressed tumours. For all of the biomarkers except TUBB3, the OS trends relative to the gene expression levels were in agreement with those relative to the protein expression levels. The NSCLC microarray dataset showed RRM2 and TS as biomarkers significantly associated with OS. This study suggests that high expression levels of RRM2 and TS might be negative prognostic factors for resected NSCLC patients. PMID:26663950

  16. Evidence for a spatial and temporal regulation of prostaglandin-endoperoxide synthase 2 expression in human amnion in term and preterm parturition.

    Science.gov (United States)

    Lee, Deug-Chan; Romero, Roberto; Kim, Jung-Sun; Yoo, Wonsuk; Lee, JoonHo; Mittal, Pooja; Kusanovic, Juan Pedro; Hassan, Sonia S; Yoon, Bo Hyun; Kim, Chong Jai

    2010-09-01

    Prostaglandin-endoperoxide synthase 2 (PTGS2) is a key enzyme involved in parturition. PTGS2 mRNA was found to be differentially expressed between placental amnion (amnion overlying the placental disc) and reflected amnion (amnion of the extraplacental chorioamniotic membranes) in term placentas. The aim was to evaluate the spatial and temporal regulation of PTGS2 expression in the amnion and the chorion-decidua. PTGS2 expression was analyzed in the amnion and chorion-decidua obtained from 32 women: term not in labor (n = 12), term in labor (n = 12), and preterm labor (n = 8), by immunoblotting and densitometry. Prostaglandin E(2) (PGE(2)) in the amnion and chorion-decidua was measured by a specific immunoassay. Compared to preterm labor cases, PTGS2 expression increased at term before the onset of labor far more prominently in placental amnion (4.5-fold; P = 0.002) than in reflected amnion (1.4-fold; P = 0.007). There was a significant increase in PTGS2 expression in reflected amnion (2.9-fold; P human parturition.

  17. Salinomycin enhances cisplatin-induced cytotoxicity in human lung cancer cells via down-regulation of AKT-dependent thymidylate synthase expression.

    Science.gov (United States)

    Ko, Jen-Chung; Zheng, Hao-Yu; Chen, Wen-Ching; Peng, Yi-Shuan; Wu, Chia-Hung; Wei, Chia-Li; Chen, Jyh-Cheng; Lin, Yun-Wei

    2016-12-15

    Salinomycin, a polyether antibiotic, acts as a highly selective potassium ionophore and has anticancer activity on various cancer cell lines. Cisplatin has been proved as chemotherapy drug for advanced human non-small cell lung cancer (NSCLC). Thymidylate synthase (TS) is a key enzyme in the pyrimidine salvage pathway, and increased expression of TS is thought to be associated with resistance to cisplatin. In this study, we showed that salinomycin (0.5-2μg/mL) treatment down-regulating of TS expression in an AKT inactivation manner in two NSCLC cell lines, human lung adenocarcinoma A549 and squamous cell carcinoma H1703 cells. Knockdown of TS using small interfering RNA (siRNA) or inhibiting AKT activity with PI3K inhibitor LY294002 enhanced the cytotoxicity and cell growth inhibition of salinomycin. A combination of cisplatin and salinomycin resulted in synergistic enhancement of cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced activation of phospho-AKT, and TS expression. Overexpression of a constitutive active AKT (AKT-CA) expression vector reversed the salinomycin and cisplatin-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in salinomycin and cisplatin cotreated cells. Our findings suggested that the down-regulation of AKT-mediated TS expression by salinomycin enhanced the cisplatin-induced cytotoxicity in NSCLC cells. These results may provide a rationale to combine salinomycin with cisplatin for lung cancer treatment.

  18. Expression of Ribonucleotide Reductase Subunit-2 and Thymidylate Synthase Correlates with Poor Prognosis in Patients with Resected Stages I–III Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Francesco Grossi

    2015-01-01

    Full Text Available Biomarkers can help to identify patients with early-stages or locally advanced non-small cell lung cancer (NSCLC who have high risk of relapse and poor prognosis. To correlate the expression of seven biomarkers involved in DNA synthesis and repair and in cell division with clinical outcome, we consecutively collected 82 tumour tissues from radically resected NSCLC patients. The following biomarkers were investigated using IHC and qRT-PCR: excision repair cross-complementation group 1 (ERCC1, breast cancer 1 (BRCA1, ribonucleotide reductase subunits M1 and M2 (RRM1 and RRM2, subunit p53R2, thymidylate synthase (TS, and class III beta-tubulin (TUBB3. Gene expression levels were also validated in an available NSCLC microarray dataset. Multivariate analysis identified the protein overexpression of RRM2 and TS as independent prognostic factors of shorter overall survival (OS. Kaplan-Meier analysis showed a trend in shorter OS for patients with RRM2, TS, and ERCC1, BRCA1 overexpressed tumours. For all of the biomarkers except TUBB3, the OS trends relative to the gene expression levels were in agreement with those relative to the protein expression levels. The NSCLC microarray dataset showed RRM2 and TS as biomarkers significantly associated with OS. This study suggests that high expression levels of RRM2 and TS might be negative prognostic factors for resected NSCLC patients.

  19. Comparison of Bayesian Sample Size Criteria: ACC, ALC, and WOC.

    Science.gov (United States)

    Cao, Jing; Lee, J Jack; Alber, Susan

    2009-12-01

    A challenge for implementing performance based Bayesian sample size determination is selecting which of several methods to use. We compare three Bayesian sample size criteria: the average coverage criterion (ACC) which controls the coverage rate of fixed length credible intervals over the predictive distribution of the data, the average length criterion (ALC) which controls the length of credible intervals with a fixed coverage rate, and the worst outcome criterion (WOC) which ensures the desired coverage rate and interval length over all (or a subset of) possible datasets. For most models, the WOC produces the largest sample size among the three criteria, and sample sizes obtained by the ACC and the ALC are not the same. For Bayesian sample size determination for normal means and differences between normal means, we investigate, for the first time, the direction and magnitude of differences between the ACC and ALC sample sizes. For fixed hyperparameter values, we show that the difference of the ACC and ALC sample size depends on the nominal coverage, and not on the nominal interval length. There exists a threshold value of the nominal coverage level such that below the threshold the ALC sample size is larger than the ACC sample size, and above the threshold the ACC sample size is larger. Furthermore, the ACC sample size is more sensitive to changes in the nominal coverage. We also show that for fixed hyperparameter values, there exists an asymptotic constant ratio between the WOC sample size and the ALC (ACC) sample size. Simulation studies are conducted to show that similar relationships among the ACC, ALC, and WOC may hold for estimating binomial proportions. We provide a heuristic argument that the results can be generalized to a larger class of models.

  20. Chitinase-like (CTL) and cellulose synthase (CESA) gene expression in gelatinous-type cellulosic walls of flax (Linum usitatissimum L.) bast fibers.

    Science.gov (United States)

    Mokshina, Natalia; Gorshkova, Tatyana; Deyholos, Michael K

    2014-01-01

    Plant chitinases (EC 3.2.1.14) and chitinase-like (CTL) proteins have diverse functions including cell wall biosynthesis and disease resistance. We analyzed the expression of 34 chitinase and chitinase-like genes of flax (collectively referred to as LusCTLs), belonging to glycoside hydrolase family 19 (GH19). Analysis of the transcript expression patterns of LusCTLs in the stem and other tissues identified three transcripts (LusCTL19, LusCTL20, LusCTL21) that were highly enriched in developing bast fibers, which form cellulose-rich gelatinous-type cell walls. The same three genes had low relative expression in tissues with primary cell walls and in xylem, which forms a xylan type of secondary cell wall. Phylogenetic analysis of the LusCTLs identified a flax-specific sub-group that was not represented in any of other genomes queried. To provide further context for the gene expression analysis, we also conducted phylogenetic and expression analysis of the cellulose synthase (CESA) family genes of flax, and found that expression of secondary wall-type LusCESAs (LusCESA4, LusCESA7 and LusCESA8) was correlated with the expression of two LusCTLs (LusCTL1, LusCTL2) that were the most highly enriched in xylem. The expression of LusCTL19, LusCTL20, and LusCTL21 was not correlated with that of any CESA subgroup. These results defined a distinct type of CTLs that may have novel functions specific to the development of the gelatinous (G-type) cellulosic walls.

  1. Chitinase-like (CTL and cellulose synthase (CESA gene expression in gelatinous-type cellulosic walls of flax (Linum usitatissimum L. bast fibers.

    Directory of Open Access Journals (Sweden)

    Natalia Mokshina

    Full Text Available Plant chitinases (EC 3.2.1.14 and chitinase-like (CTL proteins have diverse functions including cell wall biosynthesis and disease resistance. We analyzed the expression of 34 chitinase and chitinase-like genes of flax (collectively referred to as LusCTLs, belonging to glycoside hydrolase family 19 (GH19. Analysis of the transcript expression patterns of LusCTLs in the stem and other tissues identified three transcripts (LusCTL19, LusCTL20, LusCTL21 that were highly enriched in developing bast fibers, which form cellulose-rich gelatinous-type cell walls. The same three genes had low relative expression in tissues with primary cell walls and in xylem, which forms a xylan type of secondary cell wall. Phylogenetic analysis of the LusCTLs identified a flax-specific sub-group that was not represented in any of other genomes queried. To provide further context for the gene expression analysis, we also conducted phylogenetic and expression analysis of the cellulose synthase (CESA family genes of flax, and found that expression of secondary wall-type LusCESAs (LusCESA4, LusCESA7 and LusCESA8 was correlated with the expression of two LusCTLs (LusCTL1, LusCTL2 that were the most highly enriched in xylem. The expression of LusCTL19, LusCTL20, and LusCTL21 was not correlated with that of any CESA subgroup. These results defined a distinct type of CTLs that may have novel functions specific to the development of the gelatinous (G-type cellulosic walls.

  2. Patterns of osteocytic endothelial nitric oxide synthase expression in the femoral neck cortex: differences between cases of intracapsular hip fracture and controls.

    Science.gov (United States)

    Loveridge, N; Fletcher, S; Power, J; Caballero-Alías, A M; Das-Gupta, V; Rushton, N; Parker, M; Reeve, J; Pitsillides, A A

    2002-06-01

    Evidence indicates that extensive amalgamation of adjacent resorbing osteons is responsible for destroying the microstructural integrity of the femoral neck's inferior cortex in osteoporotic hip fracture. Such osteonal amalgamation is likely to involve a failure to limit excessive resorption, but its mechanistic basis remains enigmatic. Nitric oxide (NO) inhibits osteoclastic bone destruction, and in normal bone cells its generation by endothelial nitric oxide synthase (eNOS, the predominant bone isoform) is enhanced by mechanical stimuli and estrogen, which both protect against fracture. To determine whether eNOS expression in osteocytes reflects their proposed role in regulating remodeling, we have examined patterns of osteocyte eNOS immunolabeling in the femoral neck cortex of seven cases of hip fracture and seven controls (females aged 68-96 years). The density of eNOS+ cells (mm(-2)) was 53% lower in the inferior cortex of the fracture cases (p bone.

  3. Isolation of a (+)-δ-cadinene synthase gene CAD1-A and analysis of its expression pattern in seedlings of Gossypium arboreum L.

    Institute of Scientific and Technical Information of China (English)

    梁婉琪; 谭晓萍; 陈晓亚; Takashi; Hashimoto; Yasuyuki; Yamada; Peter; Heinstein

    2000-01-01

    The cotton sesquiterpene cyclase, (+)-δ-cadinene synthase.is encoded by a gene family, which can be divided into two subfamilies: CAD1-A and CAD1-C. The gene CAD1-A was isolated from G. arboreum. In situ hybridization performed on seven-day-old cotton seedlings localized transcripts of both the CAD1-A and CAD1-C mainly in lateral root primordium and apical ground meristem, vascular tissues of emerging lateral roots, and also in procambium and some subepidermal cells of the hypocotyl. The CAD1-A promoter showed a similar tissue-specificity in transgenic tobacco plants. Histochemistry showed occurrence of sesquiterpene aldehydes in outer cells of the lateral root tips, as well as in pigment glands. The CAD1 gene expression in G. arboreum seedlings and the spatial pattern of sesquiterpene biosynthesis constitute a chemical defense machinery in cotton seedlings.

  4. Isolation of a (+)-δ-cadinene synthase gene CAD1-A and analysis of its expression pattern in seedlings of Gossypium arboreum L.

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The cotton sesquiterpene cyclase,(+)-δ-cadinene synthase,is encoded by a gene family,which can be divided into two subfamilies:CAD1-A and CAD1-C.The gene CAD1-A was isolated from G.arboreum.In situ hybridization performed on seven-day-old cotton seedlings localized transcripts of both the CAD1-A and CAD1-C mainly in lateral root primordium and apical ground meristem,vascular tissues of emerging lateral roots,and also in procambium and some subepidermal cells of the hypocotyl.The CAD1-A promoter showed a similar tissue-specificity in transgenic tobacco plants.Histochemistry showed occurrence of sesquiterpene aldehydes in outer cells of the lateral root tips,as well as in pigment glands.The CAD1 gene expression in G.arboreum seedlings and the spatial pattern of sesquiterpene biosynthesis constitute a chemical defense machinery in cotton seedlings.

  5. Sesamin modulates tyrosine hydroxylase, superoxide dismutase, catalase, inducible NO synthase and interleukin-6 expression in dopaminergic cells under MPP+-induced oxidative stress.

    Science.gov (United States)

    Lahaie-Collins, Vicky; Bournival, Julie; Plouffe, Marilyn; Carange, Julie; Martinoli, Maria-Grazia

    2008-01-01

    Oxidative stress is regarded as a mediator of nerve cell death in several neurodegenerative disorders, such as Parkinson's disease. Sesamin, a lignan mainly found in sesame oil, is currently under study for its anti-oxidative and possible neuroprotective properties. We used 1-methyl-4-phenyl-pyridine (MPP(+)) ion, the active metabolite of the potent parkinsonism-causing toxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine, to produce oxidative stress and neurodegeneration in neuronal PC12 cells, which express dopamine, as well as neurofilaments. Our results show that picomolar doses of sesamin protected neuronal PC12 cells from MPP(+)-induced cellular death, as revealed by colorimetric measurements and production of reactive oxygen species. We also demonstrated that sesamin acted by rescuing tyrosine hydroxylase levels from MPP(+)-induced depletion. Sesamin, however, did not modulate dopamine transporter levels, and estrogen receptor-alpha and -beta protein expression. By examining several parameters of cell distress, we found that sesamin also elicited a strong increase in superoxide dismutase activity as well as protein expression and decreased catalase activity and the MPP(+) stimulated inducible nitric oxide synthase protein expression, in neuronal PC12 cells. Finally, sesamin possessed significant anti-inflammatory properties, as disclosed by its potential to reduce MPP(+)-induced interleukin-6 mRNA levels in microglia. From these studies, we determined the importance of the lignan sesamin as a neuroprotective molecule and its possible role in complementary and/or preventive therapies of neurodegenerative diseases.

  6. cDNA cloning and expression analyses of phytoene synthase 1, phytoene desaturase and ζ-carotene desaturase genes from Solanum lycopersicum KKU-T34003

    Directory of Open Access Journals (Sweden)

    Krittaya Supathaweewat

    2013-10-01

    Full Text Available We report on the cloning of Psy1, Pds and Zds cDNAs encoding the enzymes responsible for lycopene biosynthesis,namely phytoene synthase 1 (PSY1, phytoene desaturase (PDS and -carotene desaturase (ZDS, respectively, from high-lycopene tomato cultivar, Solanum lycopersicum KKU-T34003. DNA sequence analyses showed that the complete openreading frames of Psy1, Pds and Zds cDNAs were 1,239, 1,752 and 1,767 base pairs in length and encoded proteins of 412,583 and 588 amino acids, respectively. Phylogenetic and the conserved domain analyses suggest that PSY1, PDS and ZDSfrom S. lycopersicum KKU-T34003 potentially have similar structures and biological functions to the corresponding proteinsfrom other plants. Gene expression studies showed that Psy1 was expressed only in the petal and the breaker fruit, whereasthe expressions of Pds and Zds were observed in the petal, the breaker fruit and the leaf. The highest expression level for allgenes was detected in the breaker-stage fruit, suggesting that carotenoid accumulation was developmentally regulated inthe chromoplast-containing tissues.

  7. EFFECT OF TNF-( AND IFN-( ON THE EXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE AND PROLIFERATION INHIBITION OF HUMAN COLON CANCER CELL LINE

    Institute of Scientific and Technical Information of China (English)

    庞希宁; 王芸庆; 宋今丹

    2002-01-01

    Objective: To study the expression of the inducible nitric oxide synthase (iNOS) gene and the effects of tumor necrosis factor-α(TNF-α) and interferon-γ(IFN-γ)on proliferation of the continuous cultured human colon cancer cell line CCL229. Methods: Using the molecular and biochemical techniques and electron microscopy to analyze the expression of iNOS, production of NO and growth characteristics of human colon cancer cells. Results: cytokine treatment can induce expression of the iNOS gene and production of nitric oxide was significantly higher after treatment of CCL229 cells with TNF-αor IFN-γ. Treatment with either cytokine or a combination of both significantly increased levels of Malondialdehyde (MDA) over control. Furthermore, cytokine treatment increased the proliferation inhibition rate as assessed in vitro and decreased the cell proliferation index on flow cytometry. Electron microscopy showed that cells treated with cytokines had fewer pseudopodia or cell processes than control cells and that cytokine treated cells had dilatation of the mitochondria and endoplasmic reticulum and dilated vesicular or tubular cisternae. Conclusion: Our findings indicate that TNF-α and IFN-γ induce the expression of iNOS gene in CCL229 cells, which increases the production of nitric oxide, inhibits proliferation, causes lipid peroxidation, and results in ultrastructural changes. 

  8. Nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase expression and activity in response to different nitrogen sources in nitrogen-starved wheat seedlings.

    Science.gov (United States)

    Balotf, Sadegh; Kavoosi, Gholamreza; Kholdebarin, Bahman

    2016-01-01

    The objective of this study was to examine the expression and activity of nitrate reductase (NR, EC 1.7.1.1), nitrite reductase (NiR, EC 1.7.2.2), glutamine synthetase (GS, EC 6.3.1.2), and glutamate synthase (GOGAT, EC 1.4.7.1) in response to potassium nitrate, ammonium chloride, and ammonium nitrate in nitrogen-starved wheat seedlings. Plants were grown in standard nutrient solution for 17 days and then subjected to nitrogen starvation for 7 days. The starved plants were supplied with potassium nitrate ammonium nitrate and ammonium chloride (50 mM) for 4 days and the leaves were harvested. The relative expression of NR, NiR, GS, and GOGAT as well as the enzyme activities were investigated. Nitrogen starvation caused a significant decrease both in transcript levels and in NR, NiR, GS, and GOGAT activities. Potassium nitrate and ammonium nitrate treatments restored NR, NiR, GS, and GOGAT expressions and activities. Ammonium chloride increased only the expressions and activities of GS and GOGAT in a dose-dependent manner. The results of our study highlight the differential effects between the type and the amount of nitrogen salts on NR, NiR, GS, and GOGAT activities in wheat seedlings while potassium nitrate being more effective.

  9. Phylogeny of type I polyketide synthases (PKSs) in fungal entomopathogens and expression analysis of PKS genes in Beauveria bassiana BCC 2660.

    Science.gov (United States)

    Punya, Juntira; Swangmaneecharern, Pratchya; Pinsupa, Suparat; Nitistaporn, Pornpen; Phonghanpot, Suranat; Kunathigan, Viyada; Cheevadhanarak, Supapon; Tanticharoen, Morakot; Amnuaykanjanasin, Alongkorn

    2015-06-01

    Entomopathogenic fungi are able to invade and kill insects. Various secondary metabolites can mediate the interaction of a fungal pathogen with an insect host and also help the fungus compete with other microbes. Here we screened 23 isolates of entomopathogenic fungi for polyketide synthase (PKS) genes and amplified 72 PKS gene fragments using degenerate PCR. We performed a phylogenetic analysis of conserved ketosynthase and acyltransferase regions in these 72 sequences and 72 PKSs identified from four insect fungal genome sequences. The resulting genealogy indicated 47 orthologous groups with 99-100 % bootstrap support, suggesting shared biosynthesis of identical or closely related compounds from different fungi. Three insect-specific groups were identified among the PKSs in reducing clades IIa, IIb, and III, which comprised PKSs from 12, 9, and 30 fungal isolates, respectively. A IIa-IIb pair could be found in seven fungi. Expression analyses revealed that eleven out of twelve PKS genes identified in Beauveria bassiana BCC 2660 were expressed in culture. PKS genes from insect-specific clades IIa and IIb were expressed only in insect-containing medium, while others were expressed only in PDB or in CYB, PDB and SDY. The data suggest the potential production of several polyketides in culture.

  10. Sesamin Modulates Tyrosine Hydroxylase, Superoxide Dismutase, Catalase, Inducible No Synthase and Interleukin-6 Expression in Dopaminergic Cells Under Mpp+-Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Vicky Lahaie-Collins

    2008-01-01

    Full Text Available Oxidative stress is regarded as a mediator of nerve cell death in several neurodegenerative disorders, such as Parkinson's disease. Sesamin, a lignan mainly found in sesame oil, is currently under study for its anti-oxidative and possible neuroprotective properties. We used 1-methyl-4-phenyl-pyridine (MPP+ ion, the active metabolite of the potent parkinsonism-causing toxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine, to produce oxidative stress and neurodegeneration in neuronal PC12 cells, which express dopamine, as well as neurofilaments. Our results show that picomolar doses of sesamin protected neuronal PC12 cells from MPP+-induced cellular death, as revealed by colorimetric measurements and production of reactive oxygen species. We also demonstrated that sesamin acted by rescuing tyrosine hydroxylase levels from MPP+-induced depletion. Sesamin, however, did not modulate dopamine transporter levels, and estrogen receptor-alpha and -beta protein expression. By examining several parameters of cell distress, we found that sesamin also elicited a strong increase in superoxide dismutase activity as well as protein expression and decreased catalase activity and the MPP+ stimulated inducible nitric oxide synthase protein expression, in neuronal PC12 cells. Finally, sesamin possessed significant anti-inflammatory properties, as disclosed by its potential to reduce MPP+-induced interleukin-6 mRNA levels in microglia. From these studies, we determined the importance of the lignan sesamin as a neuroprotective molecule and its possible role in complementary and/or preventive therapies of neurodegenerative diseases.

  11. Increase in flavan-3-ols by silencing flavonol synthase mRNA affects the transcript expression and activity levels of antioxidant enzymes in tobacco.

    Science.gov (United States)

    Mahajan, M; Joshi, R; Gulati, A; Yadav, S K

    2012-09-01

    Flavonoids are plant secondary metabolites widespread throughout the plant kingdom involved in many physiological and biochemical functions. Amongst the flavonoids, flavan-3-ols (catechin and epicatechin) are known for their direct free radical scavenging activity in vitro, but studies on their antioxidant potential and interaction with antioxidant enzymes in vivo are lacking. Here, the flavonoid pathway was engineered by silencing a gene encoding flavonol synthase (FLS) in tobacco to direct the flow of metabolites towards production of flavan-3-ols. FLS silencing reduced flavonol content 17-53%, while it increased catechin and epicatechin content 51-93% and 18-27%, respectively. The silenced lines showed a significant increase in expression of genes for dihydroflavonol reductase and anthocyanidin synthase, a downstream gene towards epicatechin production, with no significant change in expression of other genes of the flavonoid pathway. Effects of accumulation of flavan-3-ols in FLS silenced lines on transcript level and activities of antioxidant enzymes were studied. Transcripts of the antioxidant enzymes glutathione reductase (GR), ascorbate peroxidase (APx), and catalase (CAT) increased, while glutathione-S-transferase (GST), decreased in FLS silenced lines. Enhanced activity of all the antioxidant enzymes was observed in silenced tobacco lines. To validate the affect of flavan-3-ols on the antioxidant system, in vitro experiments were conducted with tobacco seedlings exposed to two concentrations of catechin (10  and 50 μm) for 2 days. In vitro exposed seedlings produced similar levels of transcripts and activity of antioxidant enzymes as FLS silenced seedlings. Results suggest that flavan-3-ols (catechin) might be increasing activity of GR, Apx and CAT by elevating their mRNAs levels. Since these enzymes are involved in scavenging of reactive oxygen species, this strategy would help in tailoring crops for enhanced catechin production as well as making

  12. Ectopic Terpene Synthase Expression Enhances Sesquiterpene Emission in Nicotiana attenuata without Altering Defense or Development of Transgenic Plants or Neighbors1[W

    Science.gov (United States)

    Schuman, Meredith C.; Palmer-Young, Evan C.; Schmidt, Axel; Gershenzon, Jonathan; Baldwin, Ian T.

    2014-01-01

    Sesquiterpenoids, with approximately 5,000 structures, are the most diverse class of plant volatiles with manifold hypothesized functions in defense, stress tolerance, and signaling between and within plants. These hypotheses have often been tested by transforming plants with sesquiterpene synthases expressed behind the constitutively active 35S promoter, which may have physiological costs measured as inhibited growth and reduced reproduction or may require augmentation of substrate pools to achieve enhanced emission, complicating the interpretation of data from affected transgenic lines. Here, we expressed maize (Zea mays) terpene synthase10 (ZmTPS10), which produces (E)-α-bergamotene and (E)-β-farnesene, or a point mutant ZmTPS10M, which produces primarily (E)-β-farnesene, under control of the 35S promoter in the ecological model plant Nicotiana attenuata. Transgenic N. attenuata plants had specifically enhanced emission of target sesquiterpene(s) with no changes detected in their emission of any other volatiles. Treatment with herbivore or jasmonate elicitors induces emission of (E)-α-bergamotene in wild-type plants and also tended to increase emission of (E)-α-bergamotene and (E)-β-farnesene in transgenics. However, transgenics did not differ from the wild type in defense signaling or chemistry and did not alter defense chemistry in neighboring wild-type plants. These data are inconsistent with within-plant and between-plant signaling functions of (E)-β-farnesene and (E)-α-bergamotene in N. attenuata. Ectopic sesquiterpene emission was apparently not costly for transgenics, which were similar to wild-type plants in their growth and reproduction, even when forced to compete for common resources. These transgenics would be well suited for field experiments to investigate indirect ecological effects of sesquiterpenes for a wild plant in its native habitat. PMID:25187528

  13. Alkylresorcinol Synthases Expressed in Sorghum bicolor Root Hairs Play an Essential Role in the Biosynthesis of the Allelopathic Benzoquinone Sorgoleone[W][OA

    Science.gov (United States)

    Cook, Daniel; Rimando, Agnes M.; Clemente, Thomas E.; Schröder, Joachim; Dayan, Franck E.; Nanayakkara, N.P. Dhammika; Pan, Zhiqiang; Noonan, Brice P.; Fishbein, Mark; Abe, Ikuro; Duke, Stephen O.; Baerson, Scott R.

    2010-01-01

    Sorghum bicolor is considered to be an allelopathic crop species, producing phytotoxins such as the lipid benzoquinone sorgoleone, which likely accounts for many of the allelopathic properties of Sorghum spp. Current evidence suggests that sorgoleone biosynthesis occurs exclusively in root hair cells and involves the production of an alkylresorcinolic intermediate (5-[(Z,Z)-8′,11′,14′-pentadecatrienyl]resorcinol) derived from an unusual 16:3Δ9,12,15 fatty acyl-CoA starter unit. This led to the suggestion of the involvement of one or more alkylresorcinol synthases (ARSs), type III polyketide synthases (PKSs) that produce 5-alkylresorcinols using medium to long-chain fatty acyl-CoA starter units via iterative condensations with malonyl-CoA. In an effort to characterize the enzymes responsible for the biosynthesis of the pentadecyl resorcinol intermediate, a previously described expressed sequence tag database prepared from isolated S. bicolor (genotype BTx623) root hairs was first mined for all PKS-like sequences. Quantitative real-time RT-PCR analyses revealed that three of these sequences were preferentially expressed in root hairs, two of which (designated ARS1 and ARS2) were found to encode ARS enzymes capable of accepting a variety of fatty acyl-CoA starter units in recombinant enzyme studies. Furthermore, RNA interference experiments directed against ARS1 and ARS2 resulted in the generation of multiple independent transformant events exhibiting dramatically reduced sorgoleone levels. Thus, both ARS1 and ARS2 are likely to participate in the biosynthesis of sorgoleone in planta. The sequences of ARS1 and ARS2 were also used to identify several rice (Oryza sativa) genes encoding ARSs, which are likely involved in the production of defense-related alkylresorcinols. PMID:20348430

  14. Cigarette Smoke Extract Changes Expression of Endothelial Nitric Oxide Synthase (eNOS) and p16(INK4a) and is Related to Endothelial Progenitor Cell Dysfunction.

    Science.gov (United States)

    He, Zhihui; Chen, Yan; Hou, Can; He, Wenfang; Chen, Ping

    2017-07-02

    BACKGROUND Endothelial dysfunction is an important pathophysiologic feature in many smoke-related diseases. Endothelial progenitor cells (EPCs) are the precursors of endothelial cells and play a fundamental role in the maintenance of endothelial integrity and function. Endothelial nitric oxide synthase (eNOS) is the dominant NOS isoform in the vasculature and plays a central role in the maintenance of endothelial homeostasis. p16(INK4a) is a cyclin-dependent kinase inhibitor and could be regarded as a major dominant senescence gene. The present study aimed to determine whether the expression of eNOS and p16(INK4a) in EPCs is related to EPCs function and the possible epigenetic mechanism, if any. MATERIAL AND METHODS We investigated EPCs capacity for proliferation, adhesion, and secretion, and the expression of eNOS and p16(INK4a) in EPCs which were altered by cigarette smoke extract (CSE) in vitro. Furthermore, Decitabine (Dec), an agent of demethylation, was used to examine whether it could alter the changes induced by CSE. RESULTS The present study demonstrated that EPCs altered by CSE in vitro displayed decreased capacities of proliferation, adhesion, and secretion, which was accompanied by decreased eNOS expression and increased p16(INK4a) expression in EPCs. Furthermore, Dec could alleviate the changes in the expression of eNOS and p16(INK4a), and protect against the EPCs dysfunction caused by CSE. CONCLUSIONS The decreased eNOS expression and increased p16(INK4a) expression was associated with dysfunction of EPCs caused by CSE. The mechanism of methylation, one of the most common epigenetic mechanism, may be involved in the EPCs dysfunction caused by CSE.

  15. Effects of over-expressing a native gene encoding 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) on glyphosate resistance in Arabidopsis thaliana

    Science.gov (United States)

    Beres, Zachery T.; Jin, Lin; Parrish, Jason T.; Zhao, Wanying; Mackey, David; Snow, Allison A.

    2017-01-01

    Widespread overuse of the herbicide glyphosate, the active ingredient in RoundUp®, has led to the evolution of glyphosate-resistant weed biotypes, some of which persist by overproducing the herbicide’s target enzyme, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). EPSPS is a key enzyme in the shikimic acid pathway for biosynthesis of aromatic amino acids, lignin, and defensive compounds, but little is known about how overproducing EPSPS affects downstream metabolites, growth, or lifetime fitness in the absence of glyphosate. We are using Arabidopsis as a model system for investigating phenotypic effects of overproducing EPSPS, thereby avoiding confounding effects of genetic background or other mechanisms of herbicide resistance in agricultural weeds. Here, we report results from the first stage of this project. We designed a binary vector expressing a native EPSPS gene from Arabidopsis under control of the CaMV35S promoter (labelled OX, for over-expression). For both OX and the empty vector (labelled EV), we obtained nine independent T3 lines. Subsets of these lines were used to characterize glyphosate resistance in greenhouse experiments. Seven of the nine OX lines exhibited enhanced glyphosate resistance when compared to EV and wild-type control lines, and one of these was discarded due to severe deformities. The remaining six OX lines exhibited enhanced EPSPS gene expression and glyphosate resistance compared to controls. Glyphosate resistance was correlated with the degree of EPSPS over-expression for both vegetative and flowering plants, indicating that glyphosate resistance can be used as a surrogate for EPSPS expression levels in this system. These findings set the stage for examination of the effects of EPSPS over-expression on fitness-related traits in the absence of glyphosate. We invite other investigators to contact us if they wish to study gene expression, downstream metabolic effects, and other questions with these particular lines. PMID

  16. Characterization of a Decapentapletic Gene (AccDpp from Apis cerana cerana and Its Possible Involvement in Development and Response to Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Guilin Li

    Full Text Available To tolerate many acute and chronic oxidative stress-producing agents that exist in the environment, organisms have evolved many classes of signal transduction pathways, including the transforming growth factor β (TGFβ signal pathway. Decapentapletic gene (Dpp belongs to the TGFβ superfamily, and studies on Dpp have mainly focused on its role in the regulation of development. No study has investigated the response of Dpp to oxidative pressure in any organism, including Apis cerana cerana (A. cerana cerana. In this study, we identified a Dpp gene from A. cerana cerana named AccDpp. The 5΄ flanking region of AccDpp had many transcription factor binding sites that relevant to development and stress response. AccDpp was expressed at all stages of A. cerana cerana, with its highest expression in 15-day worker bees. The mRNA level of AccDpp was higher in the poison gland and midgut than other tissues. Furthermore, the transcription of AccDpp could be repressed by 4°C and UV, but induced by other treatments, according to our qRT-PCR analysis. It is worth noting that the expression level of AccDpp protein was increased after a certain time when A. cerana cerana was subjected to all simulative oxidative stresses, a finding that was not completely consistent with the result from qRT-PCR. It is interesting that recombinant AccDpp restrained the growth of Escherichia coli, a function that might account for the role of the antimicrobial peptides of AccDpp. In conclusion, these results provide evidence that AccDpp might be implicated in the regulation of development and the response of oxidative pressure. The findings may lay a theoretical foundation for further genetic studies of Dpp.

  17. Effects of wintertime fasting and seasonal adaptation on AMPK and ACC in hypothalamus, adipose tissue and liver of the raccoon dog (Nyctereutes procyonoides).

    Science.gov (United States)

    Kinnunen, Sanni; Mänttäri, Satu; Herzig, Karl-Heinz; Nieminen, Petteri; Mustonen, Anne-Mari; Saarela, Seppo

    2016-02-01

    The raccoon dog (Nyctereutes procyonoides) is a canid with autumnal fattening and passive wintering strategy. We examined the effects of wintertime fasting and seasonality on AMP-activated protein kinase (AMPK), a regulator of metabolism, and its target, acetyl-CoA carboxylase (ACC) on the species. Twelve farmed raccoon dogs (eleven females/one male) were divided into two groups: half were fasted for ten weeks in December-March (winter fasted) and the others were fed ad libitum (winter fed). A third group (autumn fed, eight females) was fed ad libitum and sampled in December. Total AMPK, ACC and their phosphorylated forms (pAMPK, pACC) were measured from hypothalamus, liver, intra-abdominal (iWAT) and subcutaneous white adipose tissues (sWAT). The fasted animals lost 32% and the fed 20% of their body mass. Hypothalamic AMPK expression was lower and pACC levels higher in the winter groups compared to the autumn fed group. Liver pAMPK was lower in the winter fasted group, with consistently decreased ACC and pACC. AMPK and pAMPK were down-regulated in sWAT and iWAT of both winter groups, with a parallel decline in pACC in sWAT. The responses of AMPK and ACC to fasting were dissimilar to the effects observed previously in non-seasonal mammals and hibernators. Differences between the winter fed and autumn fed groups indicate that the functions of AMPK and ACC could be regulated in a season-dependent manner. Furthermore, the distinctive effects of prolonged fasting and seasonal adaptation on AMPK-ACC pathway could contribute to the wintering strategy of the raccoon dog.

  18. Cyclooxygenase 2 and neuronal nitric oxide synthase expression in the renal cortex are not interdependent in states of salt deficiency

    DEFF Research Database (Denmark)

    Castrop, H; Kammerl, M; Mann, Birgitte

    2000-01-01

    NOS and COX-2 expression, we have examined whether there is a functional interrelationship between the expression of the two enzymes. Male Sprague Dawley rats were fed for 1 week either a low-salt diet (0.02% w/w) which produced moderate increases of nNOS and COX-2 expression, or low salt combined...

  19. Induction of inducible nitric oxide synthase expression in ammonia-exposed cultured astrocytes is coupled to increased arginine transport by upregulated y(+)LAT2 transporter.

    Science.gov (United States)

    Zielińska, Magdalena; Milewski, Krzysztof; Skowrońska, Marta; Gajos, Anna; Ziemińska, Elżbieta; Beręsewicz, Andrzej; Albrecht, Jan

    2015-12-01

    One of the aspects of ammonia toxicity to brain cells is increased production of nitric oxide (NO) by NO synthases (NOSs). Previously we showed that ammonia increases arginine (Arg) uptake in cultured rat cortical astrocytes specifically via y(+)L amino acid transport system, by activation of its member, a heteromeric y(+)LAT2 transporter. Here, we tested the hypothesis that up-regulation of y(+)LAT2 underlies ammonia-dependent increase of NO production via inducible NOS (iNOS) induction, and protein nitration. Treatment of rat cortical astrocytes for 48 with 5 mM ammonium chloride ('ammonia') (i) increased the y(+)L-mediated Arg uptake, (ii) raised the expression of iNOS and endothelial NOS (eNOS), (iii) stimulated NO production, as manifested by increased nitrite+nitrate (Griess) and/or nitrite alone (chemiluminescence), and consequently, (iv) evoked nitration of tyrosine residues of proteins in astrocytes. Except for the increase of eNOS, all the above described effects of ammonia were abrogated by pre-treatment of astrocytes with either siRNA silencing of the Slc7a6 gene coding for y(+)LAT2 protein, or antibody to y(+)LAT2, indicating their strict coupling to y(+)LAT2 activity. Moreover, induction of y(+)LAT2 expression by ammonia was sensitive to Nf-κB inhibitor, BAY 11-7085, linking y(+)LAT2 upregulation to the Nf-κB activation in this experimental setting as reported earlier and here confirmed. Importantly, ammonia did not affect y(+)LAT2 expression nor y(+)L-mediated Arg uptake activity in the cultured cerebellar neurons, suggesting astroglia-specificity of the above described mechanism. The described coupling of up-regulation of y(+)LAT2 transporter with iNOS in ammonia-exposed astrocytes may be considered as a mechanism to ensure NO supply for protein nitration. Ammonia (NH4(+)) increases the expression and activity of the L-arginine (Arg) transporter (Arg/neutral amino acids [NAA] exchanger) y(+)LAT2 in cultured rat cortical astrocytes by a mechanism

  20. Adrenocortical cancer (ACC) - literature overview and own experience.

    Science.gov (United States)

    Dworakowska, Dorota; Drabarek, Agata; Wenzel, Ingrid; Babińska, Anna; Świątkowska-Stodulska, Renata; Sworczak, Krzysztof

    2014-01-01

    Adrenocortical carcinoma (ACC) is a malignant endocrine tumour. The rarity of the disease has stymied therapeutic development. Age distribution shows two peaks: the first and fifth decades of life, with children and women more frequently affected. Although 60-70% of ACCs are biochemically found to overproduce hormones, it is not clinically apparent in many cases. If present, endocrine symptoms include signs of hypercortisolaemia, virilisation or gynaecomastia. ACC carries a poor prognosis, and a cure can be achieved only by complete surgical resection. Mitotane is used both as an adjuvant treatment and also in non-operative patients. The role of radio- and chemotherapy is still controversial. The post-operative disease free survival is low and oscillates around 30% due to high tumour recurrence rate. The diagnosis is based on tumour histological assessment with the use of the Weiss score, however urinary steroid profiling (if available) can serve to differentiate between ACC and other adrenal tumours. Conventional prognostic markers in ACC include stage and grade of disease, and, as currently reported, the presence of hypercortisolaemia. Molecular analysis has had a significant impact on the understanding of the pathogenetic mechanism of ACC development and the evaluation of prognostic and predictive markers, among which alterations of the IGF system, the Wnt pathway, p53 and molecules involved in cancer cell invasion properties and angiogenesis seem to be very promising. We here summarise our own experience related to the management of ACC and present a literature overview. We have not aimed to include a detailed summary of the molecular alterations biology described in ACC, as this has already been addressed in other papers.

  1. Expression of Inducible Nitric Oxide Synthase, p53 and Bcl-2 in Gastric Precancerous and Cancerous Lesions: Correlation with Clinical Features

    Institute of Scientific and Technical Information of China (English)

    Tao Cui; Zu'an Zhu; Ying Liu; Qingyan Kong; Sujuan Fei

    2006-01-01

    OBJECTIVE To explore the expression of inducible nitric oxide synthase(iNOS), p53 and bcl-2 in gastric precancerous and cancerous lesions and to examine the expression of these proteins in relation to clinical features.METHODS The expressions of iNOS, p53 and bcl-2 proteins in gastric precancerous and cancerous lesions and their correlations with the clinical features were determined using immunohistochemical assays (Power VisionTM two-step method) on 84 gastric carcinomas and 54 gastric atypical hyperplastic tissues. Apoptotic cells were evaluated by terminal deoxynucleotidyl transferase- mediated dUTP-biotin nick-end labeling (TUNEL).RESULTS Expression of iNOS, p53 and bcl-2 was significantly higher in gastric carcinoma (GC) tissues than in gastric atypical hyperplastic tissues. Among the 84 carcinomas, the expression of p53 was observed in 50 (59.52%), bcl-2 in 43 (51.19%), and iNOS in 65 (77.58%). Overexpression of iNOS and bcl-2 in gastrlc carcinoma was related to tumor size and iNOS was related to the presence of lymph node metastasis (P<0.05). The expression of proteins did not correlate with age, sex, stage of disease, or differentiation. Expression of iNOS in gastric carcinoma tissues was positively correlated with bcl-2 expression (χ2=8.926, P=0.003),and also with p53 expression (χ2= 5.2430, P= 0.022). The mean apoptotic indexes (Al) were 1.29%±0.50 in low-grade atypical hyperplasia (LG),0.96%±0.36 in high-grade atypical hyperplasia (HG) and 0.70%±0.43 in GC, with the difference being significant between LG, HG and GC (P<0.05). There was a significant positive correlation between iNOS expression and the Al in GC (t=3.0815, P=0.0028).CONCLUSION iNOS was expressed in the majority of gastric carcinoma tissues and correlated with cellular apoptosis associated with p53 and bcl-2 expression. iNOS overexpression is closely associated with p53 and bcl-2 accumulation status. iNOS may play a synergistic role in the pathogenesis of GC.

  2. Biochemistry and Genetics of ACC deaminase: A weapon to 'stress ethylene' produced in plants

    Directory of Open Access Journals (Sweden)

    Rajnish Prakash Singh

    2015-09-01

    Full Text Available 1-aminocyclopropane-1-carboxylate deaminase (ACCD, a pyridoxal phosphate dependent enzyme, is widespread in diverse bacterial and fungal species. Owing to ACCD activity, certain plant associated bacteria help plant to grow under biotic and abiotic stresses by decreasing level of 'stress ethylene' which is inhibitory to plant growth. ACCD breaks down ACC, an immediate precursor of ethylene, to ammonia and α-ketobutyrate which can be further metabolized by bacteria for their growth. ACC deaminase is an inducible enzyme whose synthesis is induced in presence of its substrate ACC. This enzyme, encoded by gene AcdS, is under tight regulation and regulated differentilly under different environmental conditions. Regulatory elements of gene AcdS are comprised of regulatory gene encoding LRP protein and other regulator elements which are activated differentially under aerobic and anaerobic conditions. Role of some additional regulatory genes such as AcdB or LysR may also be required for expression of AcdS. Phylogenetic analysis of AcdS has revealed that distribution of this gene among different bacteria might have resulted from vertical gene transfer with occasional horizontal gene transfer. Application of bacterial AcdS gene has been extended by developing transgenic plants with ACCD gene which showed increased tolerance to biotic and abiotic stresses in plants. Moreover, distribution of ACCD gene or its homologs in wide range of species belonging to all three domains indicate alternative role of ACCD in physiology of an organism. Therefore, this review is an attempt to explore current knowledge of bacterial ACC deaminase mediated physiological effects in plants, mode of enzyme action, genetics, and distribution in different species and ecological role of ACCD and, future research avenues to develop transgenic plants expressing foreign AcdS gene to cope with biotic and abiotic stressors. Systemic identification of regulatory circuits would be highly

  3. Properties of phosphorylated thymidylate synthase

    DEFF Research Database (Denmark)

    Frączyk, Tomasz; Ruman, Tomasz; Wilk, Piotr;

    2015-01-01

    Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat, Trichin......Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat...

  4. Interleukin-4 and interleukin-10 modulate nuclear factor kappaB activity and nitric oxide synthase-2 expression in Theiler's virus-infected brain astrocytes.

    Science.gov (United States)

    Molina-Holgado, Eduardo; Arévalo-Martín, Angel; Castrillo, Antonio; Boscá, Lisardo; Vela, José M; Guaza, Carmen

    2002-06-01

    In brain astrocytes, nuclear factor kappaB (NF-kappaB) is activated by stimuli that produce cellular stress causing the expression of genes involved in defence, including the inducible nitric oxide synthase (NOS-2). Theiler's murine encephalomyelitis virus (TMEV) induces a persistent CNS infection and chronic immune-mediated demyelination, similar to human multiple sclerosis. The cytokines interleukin (IL)-4 and IL-10 inhibit the expression of proinflammatory cytokines, counteracting the inflammatory process. Our study reports that infection of cultured astrocytes with TMEV resulted in a time-dependent phosphorylation of IkappaBalpha, degradation of IkappaBalpha and IkappaBbeta, activation of NF-kappaB and expression of NOS-2. The proteasome inhibitor MG-132 blocked TMEV-induced nitrite accumulation, NOS-2 mRNA expression and phospho-IkappaBalpha degradation, suggesting NF-kappaB-dependent NOS-2 expression. Pretreatment of astrocytes with IL-4 or IL-10 decreased p65 nuclear translocation, NF-kappaB binding activity and NOS-2 transcription. IL-4 and IL-10 caused an accumulation of IkappaBalpha in TMEV-infected astrocytes without affecting IkappaBbeta levels. The IkappaB kinase activity and the degradation rate of both IkappaBs were not modified by either cytokine, suggesting de novo synthesis of IkappaBalpha. Indeed, IL-4 or IL-10 up-regulated IkappaBalpha mRNA levels after TMEV infection. Therefore, the accumulation of IkappaBalpha might impair the translocation of the NF-kappaB to the nucleus, mediating the inhibition of NF-kappaB activity. Overall, these data suggest a novel mechanism of action of IL-4 and IL-10, which abrogates NOS-2 expression in viral-infected glial cells.

  5. Inhibition of glycogen synthase kinase-3 by SB 216763 affects acquisition at lower doses than expression of amphetamine-conditioned place preference in rats.

    Science.gov (United States)

    Wickens, Rebekah H; Quartarone, Susan E; Beninger, Richard J

    2016-12-14

    Dopamine (DA) drives incentive learning, whereby neutral stimuli acquire the ability to elicit responses. DA influences the signaling molecule glycogen synthase kinase-3 (GSK3). Inhibition of GSK3 attenuates the development of behavioral sensitization to stimulant drugs and conditioned place preference (CPP), a measure of incentive learning. We examined the role of GSK3 in the nucleus accumbens (NAc) of rats in CPP produced by amphetamine (1.5 mg/kg, i.p. or 20.0 μg/0.5 μl/side intra-NAc) by administering the inhibitor SB 216763 (1.0, 2.0, and 2.5 mg/kg, i.p. or 0.03, 0.30, 3.00, and 5.00 μg/0.5 μl/side intra-NAc) during acquisition or expression. We hypothesized a dose-dependent effect of SB 216763 and that acquisition would be affected by smaller doses than expression. For the systemic groups, 1.0 mg/kg of SB 216763 did not block CPP; 2.0 mg/kg administered in acquisition but not expression blocked CPP; and 2.5 mg/kg administered in either phase blocked CPP. For the central groups, 0.03 μg/0.5 μl/side of SB 216763 prevented acquisition but not expression, whereas larger doses administered in either phase blocked CPP. Thus, systemic or NAc inhibition of GSK3 by SB 216763 during acquisition or expression blocks amphetamine-produced CPP and acquisition is sensitive to lower doses than expression.

  6. Production of reactive oxygen species and expression of inducible nitric oxide synthase in rat isolated Kupffer cells stimulated by Leptospira interrogans and Borrelia burgdorferi

    Institute of Scientific and Technical Information of China (English)

    Antonella Marangoni; Silvia Accardo; Rita Aldini; Massimo Guardigli; Francesca Cavrini; Vittorio Sambri; Marco Montagnani; Aldo Roda; Roberto Cevenini

    2006-01-01

    AIM: To evaluate the production of reactive oxygen species (ROS) and the expression of indudble nitric oxide synthase (iNOS) in rat isolated Kupffer cells (KCs) stimulated by Leptospira interrogans and Borrelia burgdorferi.METHODS: Rat Kupffer cells were separated by perfusion of the liver with 0.05% collagenase, and purified by Percoll gradients. Purified Kupffer cells were tested in vitro with alive L.interogans and B. burgdorferi preparations. The production of ROS was determined by chemiluminescence, whereas iNOS protein expression was evaluated by Western blot assay using anti-iNOS antibodies.RESULTS: B. burgdorferi and to a less extent L. interrogans induced ROS production with a peak 35 min after infection. The chemiluminescence signal progressively diminished and was undetectable by 180 min of incubation. Leptospirae and borreliae induced an increased iNOS expression in Kupffer cells that peaked at 6 hours and was still evident 22 h after infection.CONCLUSION: Both genera of spirochetes induced ROS and iNOS production in rat Kupffer cells. Since the cause of liver damage both in leptospiral as well as in borrelial infections are still unknown, we suggest that leptospira and borrelia damage of the liver can be initially mediated by oxygen radicals, and is then maintained at least in part by nitric oxide.

  7. Expression of the Multimeric and Highly Immunogenic Brucella spp. Lumazine Synthase Fused to Bovine Rotavirus VP8d as a Scaffold for Antigen Production in Tobacco Chloroplasts

    Science.gov (United States)

    Alfano, E. Federico; Lentz, Ezequiel M.; Bellido, Demian; Dus Santos, María J.; Goldbaum, Fernando A.; Wigdorovitz, Andrés; Bravo-Almonacid, Fernando F.

    2015-01-01

    Lumazine synthase from Brucella spp. (BLS) is a highly immunogenic decameric protein which can accommodate foreign polypeptides or protein domains fused to its N-termini, markedly increasing their immunogenicity. The inner core domain (VP8d) of VP8 spike protein from bovine rotavirus is responsible for viral adhesion to sialic acid residues and infection. It also displays neutralizing epitopes, making it a good candidate for vaccination. In this work, the BLS scaffold was assessed for the first time in plants for recombinant vaccine development by N-terminally fusing BLS to VP8d and expressing the resulting fusion (BLSVP8d) in tobacco chloroplasts. Transplastomic plants were obtained and characterized by Southern, northern and western blot. BLSVP8d was highly expressed, representing 40% of total soluble protein (4.85 mg/g fresh tissue). BLSVP8d remained soluble and stable during all stages of plant development and even in lyophilized leaves stored at room temperature. Soluble protein extracts from fresh and lyophilized leaves were able to induce specific neutralizing IgY antibodies in a laying hen model. This work presents BLS as an interesting platform for highly immunogenic injectable, or even oral, subunit vaccines. Lyophilization of transplastomic leaves expressing stable antigenic fusions to BLS would further reduce costs and simplify downstream processing, purification and storage, allowing for more practical vaccines. PMID:26779198

  8. Expression of the multimeric and highly immunogenic Brucella spp. lumazine synthase fused to bovine rotavirus VP8d as a scaffold for antigen production in tobacco chloroplasts

    Directory of Open Access Journals (Sweden)

    Edgardo Federico Alfano

    2015-12-01

    Full Text Available Lumazine synthase from Brucella spp. (BLS is a highly immunogenic decameric protein which can accommodate foreign polypeptides or protein domains fused to its N-termini, markedly increasing their immunogenicity.The inner core domain (VP8d of VP8 spike protein from bovine rotavirus (BRV is responsible for viral adhesion to sialic acid residues and infection. It also displays neutralizing epitopes, making it a good candidate for vaccination.In this work, the BLS scaffold was assessed for the first time in plants for recombinant vaccine development by N-terminally fusing BLS to VP8d and expressing the resulting fusion (BLSVP8d in tobacco chloroplasts. Transplastomic plants were obtained and characterized by Southern, northern and western blot. BLSVP8d was highly expressed, representing 40% of total soluble protein (TSP (4.85 mg/g fresh tissue. BLSVP8d remained soluble and stable during all stages of plant development and even in lyophilized leaves stored at room temperature. Soluble protein extracts from fresh and lyophilized leaves were able to induce specific neutralizing IgY antibodies in a laying hen model. This work presents BLS as an interesting platform for highly immunogenic injectable, or even oral, subunit vaccines. Lyophilization of transplastomic leaves expressing stable antigenic fusions to BLS would further reduce costs and simplify downstream processing, purification and storage, allowing for more practical vaccines.

  9. Cloning, Expression Profiling and Functional Analysis of CnHMGS, a Gene Encoding 3-hydroxy-3-Methylglutaryl Coenzyme A Synthase from Chamaemelum nobile.

    Science.gov (United States)

    Cheng, Shuiyuan; Wang, Xiaohui; Xu, Feng; Chen, Qiangwen; Tao, Tingting; Lei, Jing; Zhang, Weiwei; Liao, Yongling; Chang, Jie; Li, Xingxiang

    2016-03-08

    Roman chamomile (Chamaemelum nobile L.) is renowned for its production of essential oils, which major components are sesquiterpenoids. As the important enzyme in the sesquiterpenoid biosynthesis pathway, 3-hydroxy-3-methylglutaryl coenzyme A synthase (HMGS) catalyze the crucial step in the mevalonate pathway in plants. To isolate and identify the functional genes involved in the sesquiterpene biosynthesis of C. nobile L., a HMGS gene designated as CnHMGS (GenBank Accession No. KU529969) was cloned from C. nobile. The cDNA sequence of CnHMGS contained a 1377 bp open reading frame encoding a 458-amino-acid protein. The sequence of the CnHMGS protein was highly homologous to those of HMGS proteins from other plant species. Phylogenetic tree analysis revealed that CnHMGS clustered with the HMGS of Asteraceae in the dicotyledon clade. Further functional complementation of CnHMGS in the mutant yeast strain YSC6274 lacking HMGS activity demonstrated that the cloned CnHMGS cDNA encodes a functional HMGS. Transcript profile analysis indicated that CnHMGS was preferentially expressed in flowers and roots of C. nobile. The expression of CnHMGS could be upregulated by exogenous elicitors, including methyl jasmonate and salicylic acid, suggesting that CnHMGS was elicitor-responsive. The characterization and expression analysis of CnHMGS is helpful to understand the biosynthesis of sesquiterpenoid in C. nobile at the molecular level and also provides molecular wealth for the biotechnological improvement of this important medicinal plant.

  10. 酵母胱硫醚β-合成酶的表达及酶活鉴定%Expression and Characterization of Yeast Cystathionine β-Synthase

    Institute of Scientific and Technical Information of China (English)

    王利群; 奚学志; 曹利民; 顾雅萍; 孙培培

    2013-01-01

    将重组质粒pET45b-yCBS转入E.coli BL21中,构建高效表达酵母胱硫醚β-合成酶(yeast cystathionine β-synthase,1)的重组菌.研究诱导时菌体浓度、诱导剂IPTG浓度、诱导时间和温度,以及在培养基中添加不同浓度的山梨醇、葡萄糖、甘油对1表达量的影响.使用Ni2+亲和色谱柱纯化重组蛋白,再经His-Trap脱盐柱脱盐,以茚三酮法检测蛋白活性.结果表明,培养基中添加0.05%的山梨醇,重组菌在37℃培养3h后,添加终浓度为0.1 mmo/L的IPTG于20℃诱导培养15h,可溶性1表达量达到110 mg/L;纯化后比活为1 320 u/mg.%The recombinant vector pET45b-yCBS was constructed and transformed into E.coli BL21 to over-express yeast cystathionine β-synthase (1).The effects of various factors on the protein expression were studied,including strain density,the concentration of the inducer IPTG and inducing temperature and time,as well as the cosubstrates such as sorbitol,glucose and glycerin.The expressed protein was purified by Ni2+ chelating affinity chromatography and desalted by His-Trap desalting column,and its activity w