WorldWideScience

Sample records for acam2000 smallpox vaccinia

  1. ACAM2000 clonal Vero cell culture vaccinia virus (New York City Board of Health strain)--a second-generation smallpox vaccine for biological defense.

    Science.gov (United States)

    Monath, Thomas P; Caldwell, Joseph R; Mundt, Wolfgang; Fusco, Joan; Johnson, Casey S; Buller, Mark; Liu, Jian; Gardner, Bridget; Downing, Greg; Blum, Paul S; Kemp, Tracy; Nichols, Richard; Weltzin, Richard

    2004-10-01

    The threat of smallpox as a biological weapon has spurred efforts to create stockpiles of vaccine for emergency preparedness. In lieu of preparing vaccine in animal skin (the original method), we cloned vaccinia virus (New York City Board of Health strain, Dryvax by plaque purification and amplified the clone in cell culture. The overarching goal was to produce a modern vaccine that was equivalent to the currently licensed Dryvax in its preclinical and clinical properties, and could thus reliably protect humans against smallpox. A variety of clones were evaluated, and many were unacceptably virulent in animal models. One clonal virus (ACAM1000) was selected and produced at clinical grade in MRC-5 human diploid cells. ACAM1000 was comparable to Dryvax in immunogenicity and protective activity but was less neurovirulent for mice and nonhuman primates. To meet requirements for large quantities of vaccine after the events of September 11th 2001, the ACAM1000 master virus seed was used to prepare vaccine (designated ACAM2000) at large scale in Vero cells under serum-free conditions. The genomes of ACAM1000 and ACAM2000 had identical nucleotide sequences, and the vaccines had comparable biological phenotypes. ACAM1000 and ACAM2000 were evaluated in three Phase 1 clinical trials. The vaccines produced major cutaneous reactions and evoked neutralizing antibody and cell-mediated immune responses in the vast majority of subjects and had a reactogenicity profile similar to that of Dryvax.

  2. ACAM2000™: The new smallpox vaccine for United States Strategic National Stockpile

    Directory of Open Access Journals (Sweden)

    Aysegul Nalca

    2010-05-01

    Full Text Available Aysegul Nalca, Elizabeth E ZumbrunCenter for Aerobiological Sciences, US Army Medical Research Institute of Infectious Diseases (USAMRIID, Fort Detrick, MD, USAAbstract: Smallpox was eradicated more than 30 years ago, but heightened concerns over bioterrorism have brought smallpox and smallpox vaccination back to the forefront. The previously licensed smallpox vaccine in the United States, Dryvax® (Wyeth Laboratories, Inc., was highly effective, but the supply was insufficient to vaccinate the entire current US population. Additionally, Dryvax® had a questionable safety profile since it consisted of a pool of vaccinia virus strains with varying degrees of virulence, and was grown on the skin of calves, an outdated technique that poses an unnecessary risk of contamination. The US government has therefore recently supported development of an improved live vaccinia virus smallpox vaccine. This initiative has resulted in the development of ACAM2000™ (Acambis, Inc.™, a single plaque-purified vaccinia virus derivative of Dryvax®, aseptically propagated in cell culture. Preclinical and clinical trials reported in 2008 demonstrated that ACAM2000™ has comparable immunogenicity to that of Dryvax®, and causes a similar frequency of adverse events. Furthermore, like Dryvax®, ACAM2000™ vaccination has been shown by careful cardiac screening to result in an unexpectedly high rate of myocarditis and pericarditis. ACAM2000™ received US Food and Drug Administration (FDA approval in August 2007, and replaced Dryvax® for all smallpox vaccinations in February 2008. Currently, over 200 million doses of ACAM2000™ have been produced for the US Strategic National Stockpile. This review of ACAM2000™ addresses the production, characterization, clinical trials, and adverse events associated with this new smallpox vaccine.Keywords: smallpox, vaccinia, variola, vaccine, efficacy, safety

  3. Surveillance guidelines for smallpox vaccine (vaccinia) adverse reactions.

    Science.gov (United States)

    Casey, Christine; Vellozzi, Claudia; Mootrey, Gina T; Chapman, Louisa E; McCauley, Mary; Roper, Martha H; Damon, Inger; Swerdlow, David L

    2006-02-03

    CDC and the U.S. Food and Drug Administration rely on state and local health departments, health-care providers, and the public to report the occurrence of adverse events after vaccination to the Vaccine Adverse Event Reporting System. With such data, trends can be accurately monitored, unusual occurrences of adverse events can be detected, and the safety of vaccination intervention activities can be evaluated. On January 24, 2003, the U.S. Department of Health and Human Services (DHHS) implemented a preparedness program in which smallpox (vaccinia) vaccine was administered to federal, state, and local volunteers who might be first responders during a biologic terrorism event. As part of the DHHS Smallpox Preparedness and Response Program, CDC in consultation with experts, established surveillance case definitions for adverse events after smallpox vaccination. Adverse reactions after smallpox vaccination identified during the 1960s surveillance activities were classified on the basis of clinical description and included eczema vaccinatum; fetal vaccinia; generalized vaccinia; accidental autoinoculation, nonocular; ocular vaccinia; progressive vaccinia; erythema multiforme major; postvaccinial encephalitis or encephalomyelitis; and pyogenic infection of the vaccination site. This report provides uniform criteria used for the surveillance case definition and classification for these previously recognized adverse reactions used during the DHHS Smallpox Preparedness and Response Program. Inadvertent inoculation was changed to more precisely describe this event as inadvertent autoinoculation and contact transmission, nonocular and ocular vaccinia. Pyogenic infection also was renamed superinfection of the vaccination site or regional lymph nodes. Finally, case definitions were developed for a new cardiac adverse reaction (myo/pericarditis) and for a cardiac adverse event (dilated cardiomyopathy) and are included in this report. The smallpox vaccine surveillance case

  4. Analysis of variola and vaccinia virus neutralization assays for smallpox vaccines.

    Science.gov (United States)

    Hughes, Christine M; Newman, Frances K; Davidson, Whitni B; Olson, Victoria A; Smith, Scott K; Holman, Robert C; Yan, Lihan; Frey, Sharon E; Belshe, Robert B; Karem, Kevin L; Damon, Inger K

    2012-07-01

    Possible smallpox reemergence drives research for third-generation vaccines that effectively neutralize variola virus. A comparison of neutralization assays using different substrates, variola and vaccinia (Dryvax and modified vaccinia Ankara [MVA]), showed significantly different 90% neutralization titers; Dryvax underestimated while MVA overestimated variola neutralization. Third-generation vaccines may rely upon neutralization as a correlate of protection.

  5. Host range, growth property, and virulence of the smallpox vaccine: Vaccinia virus Tian Tan strain

    International Nuclear Information System (INIS)

    Fang Qing; Yang Lin; Zhu Weijun; Liu Li; Wang Haibo; Yu Wenbo; Xiao Genfu; Tien Po; Zhang Linqi; Chen Zhiwei

    2005-01-01

    Vaccinia Tian Tan (VTT) was used as a vaccine against smallpox in China for millions of people before 1980, yet the biological characteristics of the virus remain unclear. We have characterized VTT with respect to its host cell range, growth properties in vitro, and virulence in vivo. We found that 11 of the 12 mammalian cell lines studied are permissive to VTT infection whereas one, CHO-K1, is non-permissive. Using electron microscopy and sequence analysis, we found that the restriction of VTT replication in CHO-K1 is at a step before viral maturation probably due to the loss of the V025 gene. Moreover, VTT is significantly less virulent than vaccinia WR but remains neurovirulent in mice and causes significant body weight loss after intranasal inoculation. Our data demonstrate the need for further attenuation of VTT to serve either as a safer smallpox vaccine or as a live vaccine vector for other pathogens

  6. 42 CFR 102.21 - Smallpox (Vaccinia) Vaccine Injury Table.

    Science.gov (United States)

    2010-10-01

    ... inflammatory cells in the dermis of the skin at the vaccination or inoculation site. The diagnosis of PV may be... the mother that results from the placental transmission of the vaccinia virus during any time in the... membrane lesion containing an accumulation of white blood cells. (8) Recipient means a person to whom the...

  7. Attenuation and immunogenicity of host-range extended modified vaccinia virus Ankara recombinants.

    Science.gov (United States)

    Melamed, Sharon; Wyatt, Linda S; Kastenmayer, Robin J; Moss, Bernard

    2013-09-23

    Modified vaccinia virus Ankara (MVA) is being widely investigated as a safe smallpox vaccine and as an expression vector to produce vaccines against other infectious diseases and cancer. MVA was isolated following more than 500 passages in chick embryo fibroblasts and suffered several major deletions and numerous small mutations resulting in replication defects in human and most other mammalian cells as well as severe attenuation of pathogenicity. Due to the host range restriction, primary chick embryo fibroblasts are routinely used for production of MVA-based vaccines. While a replication defect undoubtedly contributes to safety of MVA, it is worth considering whether host range and attenuation are partially separable properties. Marker rescue transfection experiments resulted in the creation of recombinant MVAs with extended mammalian cell host range. Here, we characterize two host-range extended rMVAs and show that they (i) have acquired the ability to stably replicate in Vero cells, which are frequently used as a cell substrate for vaccine manufacture, (ii) are severely attenuated in immunocompetent and immunodeficient mouse strains following intranasal infection, (iii) are more pathogenic than MVA but less pathogenic than the ACAM2000 vaccine strain at high intracranial doses, (iv) do not form lesions upon tail scratch in mice in contrast to ACAM2000 and (v) induce protective humoral and cell-mediated immune responses similar to MVA. The extended host range of rMVAs may be useful for vaccine production. Published by Elsevier Ltd.

  8. ACAM2000(TM): The New Smallpox Vaccine for United States Strategic National Stockpile

    Science.gov (United States)

    2010-01-01

    lupus, or infections such as HIV or parvovirus B19.49 Interestingly, patients with lupus or parvovirus B19 infections are predisposed to myocarditis...51. von Landenberg P, Lehmann HW, Modrow S. Human parvovirus B19 infection and antiphospholipid antibodies. Autoimmun Rev. 2007;6(5):278–285. 52

  9. Humoral Immunity to Primary Smallpox Vaccination: Impact of Childhood versus Adult Immunization on Vaccinia Vector Vaccine Development in Military Populations.

    Directory of Open Access Journals (Sweden)

    Bonnie M Slike

    Full Text Available Modified Vaccinia virus has been shown to be a safe and immunogenic vector platform for delivery of HIV vaccines. Use of this vector is of particular importance to the military, with the implementation of a large scale smallpox vaccination campaign in 2002 in active duty and key civilian personnel in response to potential bioterrorist activities. Humoral immunity to smallpox vaccination was previously shown to be long lasting (up to 75 years and protective. However, using vaccinia-vectored vaccine delivery for other diseases on a background of anti-vector antibodies (i.e. pre-existing immunity may limit their use as a vaccine platform, especially in the military. In this pilot study, we examined the durability of vaccinia antibody responses in adult primary vaccinees in a healthy military population using a standard ELISA assay and a novel dendritic cell neutralization assay. We found binding and neutralizing antibody (NAb responses to vaccinia waned after 5-10 years in a group of 475 active duty military, born after 1972, who were vaccinated as adults with Dryvax®. These responses decreased from a geometric mean titer (GMT of 250 to baseline (30 years with a GMT of 210 (range 112-3234. This data suggests limited durability of antibody responses in adult vaccinees compared to those vaccinated in childhood and further that adult vaccinia recipients may benefit similarly from receipt of a vaccinia based vaccine as those who are vaccinia naïve. Our findings may have implications for the smallpox vaccination schedule and support the ongoing development of this promising viral vector in a military vaccination program.

  10. Adverse Events Post Smallpox-Vaccination: Insights from Tail Scarification Infection in Mice with Vaccinia virus

    Science.gov (United States)

    Mota, Bruno E. F.; Gallardo-Romero, Nadia; Trindade, Giliane; Keckler, M. Shannon; Karem, Kevin; Carroll, Darin; Campos, Marco A.; Vieira, Leda Q.; da Fonseca, Flávio G.; Ferreira, Paulo C. P.; Bonjardim, Cláudio A.; Damon, Inger K.; Kroon, Erna G.

    2011-01-01

    Adverse events upon smallpox vaccination with fully-replicative strains of Vaccinia virus (VACV) comprise an array of clinical manifestations that occur primarily in immunocompromised patients leading to significant host morbidity/mortality. The expansion of immune-suppressed populations and the possible release of Variola virus as a bioterrorist act have given rise to concerns over vaccination complications should more widespread vaccination be reinitiated. Our goal was to evaluate the components of the host immune system that are sufficient to prevent morbidity/mortality in a murine model of tail scarification, which mimics immunological and clinical features of smallpox vaccination in humans. Infection of C57BL/6 wild-type mice led to a strictly localized infection, with complete viral clearance by day 28 p.i. On the other hand, infection of T and B-cell deficient mice (Rag1 −/−) produced a severe disease, with uncontrolled viral replication at the inoculation site and dissemination to internal organs. Infection of B-cell deficient animals (µMT) produced no mortality. However, viral clearance in µMT animals was delayed compared to WT animals, with detectable viral titers in tail and internal organs late in infection. Treatment of Rag1 −/− with rabbit hyperimmune anti-vaccinia serum had a subtle effect on the morbidity/mortality of this strain, but it was effective in reduce viral titers in ovaries. Finally, NUDE athymic mice showed a similar outcome of infection as Rag1 −/−, and passive transfer of WT T cells to Rag1 −/− animals proved fully effective in preventing morbidity/mortality. These results strongly suggest that both T and B cells are important in the immune response to primary VACV infection in mice, and that T-cells are required to control the infection at the inoculation site and providing help for B-cells to produce antibodies, which help to prevent viral dissemination. These insights might prove helpful to better identify

  11. Genomic sequence and virulence of clonal isolates of vaccinia virus Tiantan, the Chinese smallpox vaccine strain.

    Directory of Open Access Journals (Sweden)

    Qicheng Zhang

    Full Text Available Despite the worldwide eradication of smallpox in 1979, the potential bioterrorism threat from variola virus and the ongoing use of vaccinia virus (VACV as a vector for vaccine development argue for continued research on VACV. In China, the VACV Tiantan strain (TT was used in the smallpox eradication campaign. Its progeny strain is currently being used to develop a human immunodeficiency virus (HIV vaccine. Here we sequenced the full genomes of five TT clones isolated by plaque purification from the TT (752-1 viral stock. Phylogenetic analysis with other commonly used VACV strains showed that TT (752-1 and its clones clustered and exhibited higher sequence diversity than that found in Dryvax clones. The ∼190 kbp genomes of TT appeared to encode 273 open reading frames (ORFs. ORFs located in the middle of the genome were more conserved than those located at the two termini, where many virulence and immunomodulation associated genes reside. Several patterns of nucleotide changes including point mutations, insertions and deletions were identified. The polymorphisms in seven virulence-associated proteins and six immunomodulation-related proteins were analyzed. We also investigated the neuro- and skin- virulence of TT clones in mice and rabbits, respectively. The TT clones exhibited significantly less virulence than the New York City Board of Health (NYCBH strain, as evidenced by less extensive weight loss and morbidity in mice as well as produced smaller skin lesions and lower incidence of putrescence in rabbits. The complete genome sequences, ORF annotations, and phenotypic diversity yielded from this study aid our understanding of the Chinese historic TT strain and are useful for HIV vaccine projects employing TT as a vector.

  12. Genomic sequence and virulence of clonal isolates of vaccinia virus Tiantan, the Chinese smallpox vaccine strain.

    Science.gov (United States)

    Zhang, Qicheng; Tian, Meijuan; Feng, Yi; Zhao, Kai; Xu, Jing; Liu, Ying; Shao, Yiming

    2013-01-01

    Despite the worldwide eradication of smallpox in 1979, the potential bioterrorism threat from variola virus and the ongoing use of vaccinia virus (VACV) as a vector for vaccine development argue for continued research on VACV. In China, the VACV Tiantan strain (TT) was used in the smallpox eradication campaign. Its progeny strain is currently being used to develop a human immunodeficiency virus (HIV) vaccine. Here we sequenced the full genomes of five TT clones isolated by plaque purification from the TT (752-1) viral stock. Phylogenetic analysis with other commonly used VACV strains showed that TT (752-1) and its clones clustered and exhibited higher sequence diversity than that found in Dryvax clones. The ∼190 kbp genomes of TT appeared to encode 273 open reading frames (ORFs). ORFs located in the middle of the genome were more conserved than those located at the two termini, where many virulence and immunomodulation associated genes reside. Several patterns of nucleotide changes including point mutations, insertions and deletions were identified. The polymorphisms in seven virulence-associated proteins and six immunomodulation-related proteins were analyzed. We also investigated the neuro- and skin- virulence of TT clones in mice and rabbits, respectively. The TT clones exhibited significantly less virulence than the New York City Board of Health (NYCBH) strain, as evidenced by less extensive weight loss and morbidity in mice as well as produced smaller skin lesions and lower incidence of putrescence in rabbits. The complete genome sequences, ORF annotations, and phenotypic diversity yielded from this study aid our understanding of the Chinese historic TT strain and are useful for HIV vaccine projects employing TT as a vector.

  13. Smallpox

    Science.gov (United States)

    ... smallpox could someday be used as a biological warfare agent. No cure or treatment for smallpox exists. ... logo are trademarks of Mayo Foundation for Medical Education and Research. © 1998-2018 Mayo Foundation for Medical ...

  14. Safety and Immunogenicity of Modified Vaccinia Ankara-Bavarian Nordic Smallpox Vaccine in Vaccinia-Naive and Experienced Human Immunodeficiency Virus-Infected Individuals: An Open-Label, Controlled Clinical Phase II Trial

    Science.gov (United States)

    Overton, Edgar Turner; Stapleton, Jack; Frank, Ian; Hassler, Shawn; Goepfert, Paul A.; Barker, David; Wagner, Eva; von Krempelhuber, Alfred; Virgin, Garth; Meyer, Thomas Peter; Müller, Jutta; Bädeker, Nicole; Grünert, Robert; Young, Philip; Rösch, Siegfried; Maclennan, Jane; Arndtz-Wiedemann, Nathaly; Chaplin, Paul

    2015-01-01

    Background. First- and second-generation smallpox vaccines are contraindicated in individuals infected with human immunodeficiency virus (HIV). A new smallpox vaccine is needed to protect this population in the context of biodefense preparedness. The focus of this study was to compare the safety and immunogenicity of a replication-deficient, highly attenuated smallpox vaccine modified vaccinia Ankara (MVA) in HIV-infected and healthy subjects. Methods. An open-label, controlled Phase II trial was conducted at 36 centers in the United States and Puerto Rico for HIV-infected and healthy subjects. Subjects received 2 doses of MVA administered 4 weeks apart. Safety was evaluated by assessment of adverse events, focused physical exams, electrocardiogram recordings, and safety laboratories. Immune responses were assessed using enzyme-linked immunosorbent assay (ELISA) and a plaque reduction neutralization test (PRNT). Results. Five hundred seventy-nine subjects were vaccinated at least once and had data available for analysis. Rates of ELISA seropositivity were comparably high in vaccinia-naive healthy and HIV-infected subjects, whereas PRNT seropositivity rates were higher in healthy compared with HIV-infected subjects. Modified vaccinia Ankara was safe and well tolerated with no adverse impact on viral load or CD4 counts. There were no cases of myo-/pericarditis reported. Conclusions. Modified vaccinia Ankara was safe and immunogenic in subjects infected with HIV and represents a promising smallpox vaccine candidate for use in immunocompromised populations. PMID:26380340

  15. Smallpox

    Science.gov (United States)

    ... two research laboratories in Atlanta, Georgia, and in Russia. Why Is the Study of Smallpox a Priority ... products; and establish platforms that can reduce the time and cost of creating new products. This is ...

  16. Smallpox

    Science.gov (United States)

    ... infection caused by the variola virus. For centuries, epidemics affected people all over the globe, and the ... these stored virus samples with the aim of spreading smallpox infection. Despite talk about the possibility of ...

  17. E3L and F1L Gene Functions Modulate the Protective Capacity of Modified Vaccinia Virus Ankara Immunization in Murine Model of Human Smallpox

    Directory of Open Access Journals (Sweden)

    Asisa Volz

    2018-01-01

    Full Text Available The highly attenuated Modified Vaccinia virus Ankara (MVA lacks most of the known vaccinia virus (VACV virulence and immune evasion genes. Today MVA can serve as a safety-tested next-generation smallpox vaccine. Yet, we still need to learn about regulatory gene functions preserved in the MVA genome, such as the apoptosis inhibitor genes F1L and E3L. Here, we tested MVA vaccine preparations on the basis of the deletion mutant viruses MVA-ΔF1L and MVA-ΔE3L for efficacy against ectromelia virus (ECTV challenge infections in mice. In non-permissive human tissue culture the MVA deletion mutant viruses produced reduced levels of the VACV envelope antigen B5. Upon mousepox challenge at three weeks after vaccination, MVA-ΔF1L and MVA-ΔE3L exhibited reduced protective capacity in comparison to wildtype MVA. Surprisingly, however, all vaccines proved equally protective against a lethal ECTV infection at two days after vaccination. Accordingly, the deletion mutant MVA vaccines induced high levels of virus-specific CD8+ T cells previously shown to be essential for rapidly protective MVA vaccination. These results suggest that inactivation of the anti-apoptotic genes F1L or E3L modulates the protective capacity of MVA vaccination most likely through the induction of distinct orthopoxvirus specific immunity in the absence of these viral regulatory proteins.

  18. 42 CFR 102.54 - Documentation the representative of the estate of a deceased smallpox vaccine recipient or...

    Science.gov (United States)

    2010-10-01

    ... deceased smallpox vaccine recipient or vaccinia contact must submit to be deemed eligible by the Secretary... VACCINES SMALLPOX COMPENSATION PROGRAM Required Documentation To Be Deemed Eligible § 102.54 Documentation the representative of the estate of a deceased smallpox vaccine recipient or vaccinia contact must...

  19. A Randomized, Double-Blind, Placebo-Controlled Phase II Trial Investigating the Safety and Immunogenicity of Modified Vaccinia Ankara Smallpox Vaccine (MVA-BN®) in 56-80-Year-Old Subjects.

    Science.gov (United States)

    Greenberg, Richard N; Hay, Christine M; Stapleton, Jack T; Marbury, Thomas C; Wagner, Eva; Kreitmeir, Eva; Röesch, Siegfried; von Krempelhuber, Alfred; Young, Philip; Nichols, Richard; Meyer, Thomas P; Schmidt, Darja; Weigl, Josef; Virgin, Garth; Arndtz-Wiedemann, Nathaly; Chaplin, Paul

    2016-01-01

    Modified Vaccinia Ankara MVA-BN® is a live, highly attenuated, viral vaccine under advanced development as a non-replicating smallpox vaccine. In this Phase II trial, the safety and immunogenicity of Modified Vaccinia Ankara MVA-BN® (MVA) was assessed in a 56-80 years old population. MVA with a virus titer of 1 x 108 TCID50/dose was administered via subcutaneous injection to 56-80 year old vaccinia-experienced subjects (N = 120). Subjects received either two injections of MVA (MM group) or one injection of Placebo and one injection of MVA (PM group) four weeks apart. Safety was evaluated by assessment of adverse events (AE), focused physical exams, electrocardiogram recordings and safety laboratories. Solicited AEs consisted of a set of pre-defined expected local reactions (erythema, swelling, pain, pruritus, and induration) and systemic symptoms (body temperature, headache, myalgia, nausea and fatigue) and were recorded on a memory aid for an 8-day period following each injection. The immunogenicity of the vaccine was evaluated in terms of humoral immune responses measured with a vaccinia-specific enzyme-linked immunosorbent assay (ELISA) and a plaque reduction neutralization test (PRNT) before and at different time points after vaccination. Vaccinations were well tolerated by all subjects. No serious adverse event related to MVA and no case of myopericarditis was reported. The overall incidence of unsolicited AEs was similar in both groups. For both groups immunogenicity responses two weeks after the final vaccination (i.e. Visit 4) were as follows: Seroconversion (SC) rates (doubling of titers from baseline) in vaccine specific antibody titers measured by ELISA were 83.3% in Group MM and 82.8% in Group PM (difference 0.6% with 95% exact CI [-13.8%, 15.0%]), and 90.0% for Group MM and 77.6% for Group PM measured by PRNT (difference 12.4% with 95% CI of [-1.1%, 27.0%]). Geometric mean titers (GMT) measured by ELISA two weeks after the final vaccination for Group

  20. Smallpox vaccines: targets of protective immunity.

    Science.gov (United States)

    Moss, Bernard

    2011-01-01

    The eradication of smallpox, one of the great triumphs of medicine, was accomplished through the prophylactic administration of live vaccinia virus, a comparatively benign relative of variola virus, the causative agent of smallpox. Nevertheless, recent fears that variola virus may be used as a biological weapon together with the present susceptibility of unimmunized populations have spurred the development of new-generation vaccines that are safer than the original and can be produced by modern methods. Predicting the efficacy of such vaccines in the absence of human smallpox, however, depends on understanding the correlates of protection. This review outlines the biology of poxviruses with particular relevance to vaccine development, describes protein targets of humoral and cellular immunity, compares animal models of orthopoxvirus disease with human smallpox, and considers the status of second- and third-generation smallpox vaccines. Published 2010. This article is a US Government work and is in the public domain in the USA.

  1. Smallpox: clinical highlights and considerations for vaccination.

    Directory of Open Access Journals (Sweden)

    Mahoney M

    2003-01-01

    Full Text Available Smallpox virus has gained considerable attention as a potential bioterrorism agent. Recommendations for smallpox (vaccinia vaccination presume a low risk for use of smallpox as a terrorist biological agent and vaccination is currently recommended for selected groups of individuals such as health care workers, public health authorities, and emergency/rescue workers, among others. Information about adverse reactions to the smallpox vaccine is based upon studies completed during the 1950s and 1960s. The prevalence of various diseases has changed over the last four decades and new disease entities have been described during this period. The smallpox vaccination may be contra-indicated in many of these conditions. This has made pre-screening of potential vaccines necessary. It is believed that at present, the risks of vaccine-associated complications far outweigh the potential benefits of vaccination in the general population.

  2. The immunology of smallpox vaccines

    Science.gov (United States)

    Kennedy, Richard B; Ovsyannikova, Inna G; Jacobson, Robert M; Poland, Gregory A

    2010-01-01

    In spite of the eradication of smallpox over 30 years ago; orthopox viruses such as smallpox and monkeypox remain serious public health threats both through the possibility of bioterrorism and the intentional release of smallpox and through natural outbreaks of emerging infectious diseases such as monkeypox. The eradication effort was largely made possible by the availability of an effective vaccine based on the immunologically cross-protective vaccinia virus. Although the concept of vaccination dates back to the late 1800s with Edward Jenner, it is only in the past decade that modern immunologic tools have been applied toward deciphering poxvirus immunity. Smallpox vaccines containing vaccinia virus elicit strong humoral and cellular immune responses that confer cross-protective immunity against variola virus for decades after immunization. Recent studies have focused on: establishing the longevity of poxvirus-specific immunity, defining key immune epitopes targeted by T and B cells, developing subunit-based vaccines, and developing genotypic and phenotypic immune response profiles that predict either vaccine response or adverse events following immunization. PMID:19524427

  3. Risks of serious complications and death from smallpox vaccination: A systematic review of the United States experience, 1963–1968

    OpenAIRE

    Aragón, Tomás J; Ulrich, Skylar; Fernyak, Susan; Rutherford, George W

    2003-01-01

    Abstract Background The United States (US) has re-instituted smallpox vaccinations to prepare for an intentional release of the smallpox virus into the civilian population. In an outbreak, people of all ages will be vaccinated. To prepare for the impact of large-scale ring and mass vaccinations, we conducted a systematic review of the complication and mortality risks of smallpox vaccination. We summarized these risks for post-vaccinial encephalitis, vaccinia necrosum (progressive vaccinia), e...

  4. Countermeasures and vaccination against terrorism using smallpox: pre-event and post-event smallpox vaccination and its contraindications.

    Science.gov (United States)

    Sato, Hajime

    2011-09-01

    Smallpox, when used as a biological weapon, presents a serious threat to civilian populations. Core components of the public health management of a terrorism attack using smallpox are: vaccination (ring vaccination and mass vaccination), adverse event monitoring, confirmed and suspected smallpox case management, contact management, identifying, tracing, monitoring contacts, and quarantine. Above all, pre-event and post-event vaccination is an indispensable part of the strategies. Since smallpox patients are most infectious from onset of the rash through the first 7-10 days of the rash, vaccination should be administered promptly within a limited time frame. However, vaccination can accompany complications, such as postvaccinial encephalitis, progressive vaccinia, eczema vaccinatum, and generalized vaccinia. Therefore, vaccination is not recommended for certain groups. Public health professionals, as well as physicians and government officials, should also be well equipped with all information necessary for appropriate and effective smallpox management in the face of such a bioterrorism attack.

  5. Brazilian Vaccinia Viruses and Their Origins

    Centers for Disease Control (CDC) Podcasts

    Smallpox was eradicated more than 25 years ago, but live viruses used in vaccines may have survived to cause animal and human illness today. Dr. Inger Damon, Acting Branch Chief of the Poxvirus and Rabies Branch at CDC, discusses efforts to determine origins and spread of vaccinia viruses in Brazil.

  6. Side-by-side comparison of gene-based smallpox vaccine with MVA in nonhuman primates.

    Science.gov (United States)

    Golden, Joseph W; Josleyn, Matthew; Mucker, Eric M; Hung, Chien-Fu; Loudon, Peter T; Wu, T C; Hooper, Jay W

    2012-01-01

    Orthopoxviruses remain a threat as biological weapons and zoonoses. The licensed live-virus vaccine is associated with serious health risks, making its general usage unacceptable. Attenuated vaccines are being developed as alternatives, the most advanced of which is modified-vaccinia virus Ankara (MVA). We previously developed a gene-based vaccine, termed 4pox, which targets four orthopoxvirus antigens, A33, B5, A27 and L1. This vaccine protects mice and non-human primates from lethal orthopoxvirus disease. Here, we investigated the capacity of the molecular adjuvants GM-CSF and Escherichia coli heat-labile enterotoxin (LT) to enhance the efficacy of the 4pox gene-based vaccine. Both adjuvants significantly increased protective antibody responses in mice. We directly compared the 4pox plus LT vaccine against MVA in a monkeypox virus (MPXV) nonhuman primate (NHP) challenge model. NHPs were vaccinated twice with MVA by intramuscular injection or the 4pox/LT vaccine delivered using a disposable gene gun device. As a positive control, one NHP was vaccinated with ACAM2000. NHPs vaccinated with each vaccine developed anti-orthopoxvirus antibody responses, including those against the 4pox antigens. After MPXV intravenous challenge, all control NHPs developed severe disease, while the ACAM2000 vaccinated animal was well protected. All NHPs vaccinated with MVA were protected from lethality, but three of five developed severe disease and all animals shed virus. All five NHPs vaccinated with 4pox/LT survived and only one developed severe disease. None of the 4pox/LT-vaccinated animals shed virus. Our findings show, for the first time, that a subunit orthopoxvirus vaccine delivered by the same schedule can provide a degree of protection at least as high as that of MVA.

  7. Side-by-side comparison of gene-based smallpox vaccine with MVA in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Joseph W Golden

    Full Text Available Orthopoxviruses remain a threat as biological weapons and zoonoses. The licensed live-virus vaccine is associated with serious health risks, making its general usage unacceptable. Attenuated vaccines are being developed as alternatives, the most advanced of which is modified-vaccinia virus Ankara (MVA. We previously developed a gene-based vaccine, termed 4pox, which targets four orthopoxvirus antigens, A33, B5, A27 and L1. This vaccine protects mice and non-human primates from lethal orthopoxvirus disease. Here, we investigated the capacity of the molecular adjuvants GM-CSF and Escherichia coli heat-labile enterotoxin (LT to enhance the efficacy of the 4pox gene-based vaccine. Both adjuvants significantly increased protective antibody responses in mice. We directly compared the 4pox plus LT vaccine against MVA in a monkeypox virus (MPXV nonhuman primate (NHP challenge model. NHPs were vaccinated twice with MVA by intramuscular injection or the 4pox/LT vaccine delivered using a disposable gene gun device. As a positive control, one NHP was vaccinated with ACAM2000. NHPs vaccinated with each vaccine developed anti-orthopoxvirus antibody responses, including those against the 4pox antigens. After MPXV intravenous challenge, all control NHPs developed severe disease, while the ACAM2000 vaccinated animal was well protected. All NHPs vaccinated with MVA were protected from lethality, but three of five developed severe disease and all animals shed virus. All five NHPs vaccinated with 4pox/LT survived and only one developed severe disease. None of the 4pox/LT-vaccinated animals shed virus. Our findings show, for the first time, that a subunit orthopoxvirus vaccine delivered by the same schedule can provide a degree of protection at least as high as that of MVA.

  8. Signs and Symptoms (Smallpox)

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Smallpox Note: Javascript is disabled or is not supported ... message, please visit this page: About CDC.gov . Smallpox About Smallpox History of Smallpox Spread and Eradication ...

  9. Vaccine Basics (Smallpox)

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Smallpox Note: Javascript is disabled or is not supported ... message, please visit this page: About CDC.gov . Smallpox About Smallpox History of Smallpox Spread and Eradication ...

  10. In Vitro Characterization of a Nineteenth-Century Therapy for Smallpox

    OpenAIRE

    Arndt, William; Mitnik, Chandra; Denzler, Karen L.; White, Stacy; Waters, Robert; Jacobs, Bertram L.; Rochon, Yvan; Olson, Victoria A.; Damon, Inger K.; Langland, Jeffrey O.

    2012-01-01

    In the nineteenth century, smallpox ravaged through the United States and Canada. At this time, a botanical preparation, derived from the carnivorous plant Sarracenia purpurea, was proclaimed as being a successful therapy for smallpox infections. The work described characterizes the antipoxvirus activity associated with this botanical extract against vaccinia virus, monkeypox virus and variola virus, the causative agent of smallpox. Our work demonstrates the in vitro characterization of Sarra...

  11. Modified vaccinia virus Ankara protects macaques against respiratory challenge with monkeypox virus.

    NARCIS (Netherlands)

    K.J. Stittelaar (Koert); G. van Amerongen (Geert); I. Kondova (Ivanela); R.F. van Lavieren (Rob); F.H. Pistoor (Frank); H.G.M. Niesters (Bert); G.J.J. van Doornum (Gerard); B.A.M. van der Zeijst (Ben); L. Mateo (Luis); P.J. Chaplin (Paul); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2005-01-01

    textabstractThe use of classical smallpox vaccines based on vaccinia virus (VV) is associated with severe complications in both naive and immune individuals. Modified vaccinia virus Ankara (MVA), a highly attenuated replication-deficient strain of VV, has been proven to be safe in humans and

  12. Genital Autoinoculation with Vaccinia: A Look at Two Cases.

    Science.gov (United States)

    Whittington, Julie R; Rollene, Nanette L; Gist, Richard S

    2018-05-01

    Smallpox, or vaccinia, has been eradicated worldwide as a disease; however, it may be weaponized and is thus a required immunization when military members deploy to certain parts of the world. We report two unusual cases of genital autoinoculation following smallpox vaccination. Both patients' lesions resolved without sequelae within 20 d. We advocate for thorough education on this potential vaccination adverse event. These cases highlight the importance of a broad differential diagnosis when dealing with vulvar lesions, particularly in our military population.

  13. Differential antigen requirements for protection against systemic and intranasal vaccinia virus challenges in mice

    NARCIS (Netherlands)

    Kaufman, David R.; Goudsmit, Jaap; Holterman, Lennart; Ewald, Bonnie A.; Denholtz, Matthew; Devoy, Colleen; Giri, Ayush; Grandpre, Lauren E.; Heraud, Jean-Michel; Franchini, Genoveffa; Seaman, Michael S.; Havenga, Menzo J. E.; Barouch, Dan H.

    2008-01-01

    The development of a subunit vaccine for smallpox represents a potential strategy to avoid the safety concerns associated with replication-competent vaccinia virus. Preclinical studies to date with subunit smallpox vaccine candidates, however, have been limited by incomplete information regarding

  14. Brazilian Vaccinia Viruses and Their Origins

    Centers for Disease Control (CDC) Podcasts

    2007-07-30

    Smallpox was eradicated more than 25 years ago, but live viruses used in vaccines may have survived to cause animal and human illness today. Dr. Inger Damon, Acting Branch Chief of the Poxvirus and Rabies Branch at CDC, discusses efforts to determine origins and spread of vaccinia viruses in Brazil.  Created: 7/30/2007 by Emerging Infectious Diseases.   Date Released: 7/30/2007.

  15. Should remaining stockpiles of smallpox virus (variola) be destroyed?

    Science.gov (United States)

    Weinstein, Raymond S

    2011-04-01

    In 2011, the World Health Organization will recommend the fate of existing smallpox stockpiles, but circumstances have changed since the complete destruction of these cultures was first proposed. Recent studies suggest that variola and its experimental surrogate, vaccinia, have a remarkable ability to modify the human immune response through complex mechanisms that scientists are only just beginning to unravel. Further study that might require intact virus is essential. Moreover, modern science now has the capability to recreate smallpox or a smallpox-like organism in the laboratory in addition to the risk of nature re-creating it as it did once before. These factors strongly suggest that relegating smallpox to the autoclave of extinction would be ill advised.

  16. Frequency of adverse events after vaccination with different vaccinia strains.

    Directory of Open Access Journals (Sweden)

    Mirjam Kretzschmar

    2006-08-01

    Full Text Available BACKGROUND: Large quantities of smallpox vaccine have been stockpiled to protect entire nations against a possible reintroduction of smallpox. Planning for an appropriate use of these stockpiled vaccines in response to a smallpox outbreak requires a rational assessment of the risks of vaccination-related adverse events, compared to the risk of contracting an infection. Although considerable effort has been made to understand the dynamics of smallpox transmission in modern societies, little attention has been paid to estimating the frequency of adverse events due to smallpox vaccination. Studies exploring the consequences of smallpox vaccination strategies have commonly used a frequency of approximately one death per million vaccinations, which is based on a study of vaccination with the New York City Board of Health (NYCBH strain of vaccinia virus. However, a multitude of historical studies of smallpox vaccination with other vaccinia strains suggest that there are strain-related differences in the frequency of adverse events after vaccination. Because many countries have stockpiled vaccine based on the Lister strain of vaccinia virus, a quantitative evaluation of the adverse effects of such vaccines is essential for emergency response planning. We conducted a systematic review and statistical analysis of historical data concerning vaccination against smallpox with different strains of vaccinia virus. METHODS AND FINDINGS: We analyzed historical vaccination data extracted from the literature. We extracted data on the frequency of postvaccinal encephalitis and death with respect to vaccinia strain and age of vaccinees. Using a hierarchical Bayesian approach for meta-analysis, we estimated the expected frequencies of postvaccinal encephalitis and death with respect to age at vaccination for smallpox vaccines based on the NYCBH and Lister vaccinia strains. We found large heterogeneity between findings from different studies and a time-period effect

  17. Immunomodulator-based enhancement of anti smallpox immune responses.

    Science.gov (United States)

    Martínez, Osmarie; Miranda, Eric; Ramírez, Maite; Santos, Saritza; Rivera, Carlos; Vázquez, Luis; Sánchez, Tomás; Tremblay, Raymond L; Ríos-Olivares, Eddy; Otero, Miguel

    2015-01-01

    The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists), and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein. We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation. The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections. These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.

  18. Evaluation of smallpox vaccines using variola neutralization.

    Science.gov (United States)

    Damon, Inger K; Davidson, Whitni B; Hughes, Christine M; Olson, Victoria A; Smith, Scott K; Holman, Robert C; Frey, Sharon E; Newman, Frances; Belshe, Robert B; Yan, Lihan; Karem, Kevin

    2009-08-01

    The search for a 'third'-generation smallpox vaccine has resulted in the development and characterization of several vaccine candidates. A significant barrier to acceptance is the absence of challenge models showing induction of correlates of protective immunity against variola virus. In this light, virus neutralization provides one of few experimental methods to show specific 'in vitro' activity of vaccines against variola virus. Here, we provide characterization of the ability of a modified vaccinia virus Ankara vaccine to induce variola virus-neutralizing antibodies, and we provide comparison with the neutralization elicited by standard Dryvax vaccination.

  19. Antiviral immunity following smallpox virus infection: a case-control study.

    Science.gov (United States)

    Hammarlund, Erika; Lewis, Matthew W; Hanifin, Jon M; Mori, Motomi; Koudelka, Caroline W; Slifka, Mark K

    2010-12-01

    Outbreaks of smallpox (i.e., caused by variola virus) resulted in up to 30% mortality, but those who survived smallpox infection were regarded as immune for life. Early studies described the levels of neutralizing antibodies induced after infection, but smallpox was eradicated before contemporary methods for quantifying T-cell memory were developed. To better understand the levels and duration of immunity after smallpox infection, we performed a case-control study comparing antiviral CD4(+) and CD8(+) T-cell responses and neutralizing antibody levels of 24 smallpox survivors with the antiviral immunity observed in 60 smallpox-vaccinated (i.e., vaccinia virus-immune) control subjects. We found that the duration of immunity following smallpox infection was remarkably similar to that observed after smallpox vaccination, with antiviral T-cell responses that declined slowly over time and antiviral antibody responses that remained stable for decades after recovery from infection. These results indicate that severe, potentially life-threatening disease is not required for the development of sustainable long-term immunity. This study shows that the levels of immunity induced following smallpox vaccination are comparable in magnitude to that achieved through natural variola virus infection, and this may explain the notable success of vaccination in eradicating smallpox, one of the world's most lethal diseases.

  20. Antiviral Immunity following Smallpox Virus Infection: a Case-Control Study▿

    Science.gov (United States)

    Hammarlund, Erika; Lewis, Matthew W.; Hanifin, Jon M.; Mori, Motomi; Koudelka, Caroline W.; Slifka, Mark K.

    2010-01-01

    Outbreaks of smallpox (i.e., caused by variola virus) resulted in up to 30% mortality, but those who survived smallpox infection were regarded as immune for life. Early studies described the levels of neutralizing antibodies induced after infection, but smallpox was eradicated before contemporary methods for quantifying T-cell memory were developed. To better understand the levels and duration of immunity after smallpox infection, we performed a case-control study comparing antiviral CD4+ and CD8+ T-cell responses and neutralizing antibody levels of 24 smallpox survivors with the antiviral immunity observed in 60 smallpox-vaccinated (i.e., vaccinia virus-immune) control subjects. We found that the duration of immunity following smallpox infection was remarkably similar to that observed after smallpox vaccination, with antiviral T-cell responses that declined slowly over time and antiviral antibody responses that remained stable for decades after recovery from infection. These results indicate that severe, potentially life-threatening disease is not required for the development of sustainable long-term immunity. This study shows that the levels of immunity induced following smallpox vaccination are comparable in magnitude to that achieved through natural variola virus infection, and this may explain the notable success of vaccination in eradicating smallpox, one of the world's most lethal diseases. PMID:20926574

  1. In vitro characterization of a nineteenth-century therapy for smallpox.

    Directory of Open Access Journals (Sweden)

    William Arndt

    Full Text Available In the nineteenth century, smallpox ravaged through the United States and Canada. At this time, a botanical preparation, derived from the carnivorous plant Sarracenia purpurea, was proclaimed as being a successful therapy for smallpox infections. The work described characterizes the antipoxvirus activity associated with this botanical extract against vaccinia virus, monkeypox virus and variola virus, the causative agent of smallpox. Our work demonstrates the in vitro characterization of Sarracenia purpurea as the first effective inhibitor of poxvirus replication at the level of early viral transcription. With the renewed threat of poxvirus-related infections, our results indicate Sarracenia purpurea may act as another defensive measure against Orthopoxvirus infections.

  2. In vitro characterization of a nineteenth-century therapy for smallpox.

    Science.gov (United States)

    Arndt, William; Mitnik, Chandra; Denzler, Karen L; White, Stacy; Waters, Robert; Jacobs, Bertram L; Rochon, Yvan; Olson, Victoria A; Damon, Inger K; Langland, Jeffrey O

    2012-01-01

    In the nineteenth century, smallpox ravaged through the United States and Canada. At this time, a botanical preparation, derived from the carnivorous plant Sarracenia purpurea, was proclaimed as being a successful therapy for smallpox infections. The work described characterizes the antipoxvirus activity associated with this botanical extract against vaccinia virus, monkeypox virus and variola virus, the causative agent of smallpox. Our work demonstrates the in vitro characterization of Sarracenia purpurea as the first effective inhibitor of poxvirus replication at the level of early viral transcription. With the renewed threat of poxvirus-related infections, our results indicate Sarracenia purpurea may act as another defensive measure against Orthopoxvirus infections.

  3. Smallpox virus plaque phenotypes: genetic, geographical and case fatality relationships.

    Science.gov (United States)

    Olson, Victoria A; Karem, Kevin L; Smith, Scott K; Hughes, Christine M; Damon, Inger K

    2009-04-01

    Smallpox (infection with Orthopoxvirus variola) remains a feared illness more than 25 years after its eradication. Historically, case-fatality rates (CFRs) varied between outbreaks (<1 to approximately 40 %), the reasons for which are incompletely understood. The extracellular enveloped virus (EEV) form of orthopoxvirus progeny is hypothesized to disseminate infection. Investigations with the closely related Orthopoxvirus vaccinia have associated increased comet formation (EEV production) with increased mouse mortality (pathogenicity). Other vaccinia virus genetic manipulations which affect EEV production inconsistently support this association. However, antisera against vaccinia virus envelope protect mice from lethal challenge, further supporting a critical role for EEV in pathogenicity. Here, we show that the increased comet formation phenotypes of a diverse collection of variola viruses associate with strain phylogeny and geographical origin, but not with increased outbreak-related CFRs; within clades, there may be an association of plaque size with CFR. The mechanisms for variola virus pathogenicity probably involves multiple host and pathogen factors.

  4. Smallpox: can we still learn from the journey to eradication?

    Science.gov (United States)

    Smith, Kendall A

    2013-05-01

    One of the most celebrated achievements of immunology and modern medicine is the eradication of the dreaded plague smallpox. From the introduction of smallpox vaccination by Edward Jenner, to its popularization by Louis Pasteur, to the eradication effort led by Donald Henderson, this story has many lessons for us today, including the characteristics of the disease and vaccine that permitted its eradication, and the obviousness of the vaccine as a vector for other intractable Infectious diseases. The disease itself, interpreted in the light of modern molecular immunology, is an obvious immunopathological disease, which occurs after a latent interval of 1-2 weeks, and manifests as a systemic cell-mediated delayed type hypersensitivity (DTH) syndrome. The vaccine that slayed this dragon was given the name vaccinia, and was thought to have evolved from cowpox virus, but is now known to be most closely related to a poxvirus isolated from a horse. Of interest is the fact that of the various isolates of orthopox viruses, only variola, vaccinia and monkeypox viruses can infect humans. In contrast to the systemic disease of variola, vaccinia only replicates locally at the site of inoculation, and causes a localized DTH response that usually peaks after 7-10 days. This difference in the pathogenicity of variola vs. vaccinia is thought to be due to the capacity of variola to circumvent innate immunity, which allows it to disseminate widely before the adaptive immune response occurs. Thus, the fact that vaccinia virus is attenuated compared to variola, but is still replication competent, makes for its remarkable efficacy as a vaccine, as the localized infection activates all of the cells and molecules of both innate and adaptive immunity. Accordingly vaccinia itself, and not modified replication incompetent vaccina, is the hope for use as a vector in the eradication of additional pathogenic microbes from the globe.

  5. Susceptibility of different leukocyte cell types to Vaccinia virus infection

    Directory of Open Access Journals (Sweden)

    Sánchez-Puig Juana M

    2004-11-01

    Full Text Available Abstract Background Vaccinia virus, the prototype member of the family Poxviridae, was used extensively in the past as the Smallpox vaccine, and is currently considered as a candidate vector for new recombinant vaccines. Vaccinia virus has a wide host range, and is known to infect cultures of a variety of cell lines of mammalian origin. However, little is known about the virus tropism in human leukocyte populations. We report here that various cell types within leukocyte populations have widely different susceptibility to infection with vaccinia virus. Results We have investigated the ability of vaccinia virus to infect human PBLs by using virus recombinants expressing green fluorescent protein (GFP, and monoclonal antibodies specific for PBL subpopulations. Flow cytometry allowed the identification of infected cells within the PBL mixture 1–5 hours after infection. Antibody labeling revealed that different cell populations had very different infection rates. Monocytes showed the highest percentage of infected cells, followed by B lymphocytes and NK cells. In contrast to those cell types, the rate of infection of T lymphocytes was low. Comparison of vaccinia virus strains WR and MVA showed that both strains infected efficiently the monocyte population, although producing different expression levels. Our results suggest that MVA was less efficient than WR in infecting NK cells and B lymphocytes. Overall, both WR and MVA consistently showed a strong preference for the infection of non-T cells. Conclusions When infecting fresh human PBL preparations, vaccinia virus showed a strong bias towards the infection of monocytes, followed by B lymphocytes and NK cells. In contrast, very poor infection of T lymphocytes was detected. These finding may have important implications both in our understanding of poxvirus pathogenesis and in the development of improved smallpox vaccines.

  6. Mozart and smallpox

    NARCIS (Netherlands)

    Zegers, Richard H. C.

    2007-01-01

    In 1767 at 11 years of age, composer Wolfgang Amadeus Mozart contracted smallpox, allegedly causing him temporary blindness. Although now eradicated, smallpox in those days had a high mortality rate, and the history of classical music would have been very different if Mozart had become permanently

  7. Mozart and smallpox.

    Science.gov (United States)

    Zegers, Richard H C

    2007-01-01

    In 1767 at 11 years of age, composer Wolfgang Amadeus Mozart contracted smallpox, allegedly causing him temporary blindness. Although now eradicated, smallpox in those days had a high mortality rate, and the history of classical music would have been very different if Mozart had become permanently blind, or died, as a result of the disease.

  8. What Is Smallpox?

    Science.gov (United States)

    ... and don't need to — get a smallpox vaccine right now, there is a supply of the vaccine in ... become infected with the smallpox virus, getting the vaccine within a few days of becoming infected can lessen the disease's symptoms. ...

  9. Immunomodulator-based enhancement of anti smallpox immune responses.

    Directory of Open Access Journals (Sweden)

    Osmarie Martínez

    Full Text Available The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists, and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein.We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation.The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections.These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.

  10. Immunomodulator-Based Enhancement of Anti Smallpox Immune Responses

    Science.gov (United States)

    Martínez, Osmarie; Miranda, Eric; Ramírez, Maite; Santos, Saritza; Rivera, Carlos; Vázquez, Luis; Sánchez, Tomás; Tremblay, Raymond L.; Ríos-Olivares, Eddy; Otero, Miguel

    2015-01-01

    Background The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists), and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein. Methods We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation. Results The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections. Conclusion These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform. PMID:25875833

  11. Planning for smallpox outbreaks

    Science.gov (United States)

    Ferguson, Neil M.; Keeling, Matt J.; John Edmunds, W.; Gani, Raymond; Grenfell, Bryan T.; Anderson, Roy M.; Leach, Steve

    2003-10-01

    Mathematical models of viral transmission and control are important tools for assessing the threat posed by deliberate release of the smallpox virus and the best means of containing an outbreak. Models must balance biological realism against limitations of knowledge, and uncertainties need to be accurately communicated to policy-makers. Smallpox poses the particular challenge that key biological, social and spatial factors affecting disease spread in contemporary populations must be elucidated largely from historical studies undertaken before disease eradication in 1979. We review the use of models in smallpox planning within the broader epidemiological context set by recent outbreaks of both novel and re-emerging pathogens.

  12. Frequently Asked Questions and Answers on Smallpox

    Science.gov (United States)

    ... with smallpox is still infectious until the last scabs fall off. How fast does smallpox spread? The ... Variola virus research Variola virus repository inspections Synthetic Biology Technology for smallpox Post-eradication of smallpox You ...

  13. The rediscovery of smallpox.

    Science.gov (United States)

    Thèves, C; Biagini, P; Crubézy, E

    2014-03-01

    Smallpox is an infectious disease that is unique to humans, caused by a poxvirus. It is one of the most lethal of diseases; the virus variant Variola major has a mortality rate of 30%. People surviving this disease have life-long consequences, but also assured immunity. Historically, smallpox was recognized early in human populations. This led to prevention attempts--variolation, quarantine, and the isolation of infected subjects--until Jenner's discovery of the first steps of vaccination in the 18th century. After vaccination campaigns throughout the 19th and 20th centuries, the WHO declared the eradication of smallpox in 1980. With the development of microscopy techniques, the structural characterization of the virus began in the early 20th century. In 1990, the genomes of different smallpox viruses were determined; viruses could be classified in order to investigate their origin, diffusion, and evolution. To study the evolution and possible re-emergence of this viral pathogen, however, researchers can only use viral genomes collected during the 20th century. Cases of smallpox in ancient periods are sometimes well documented, so palaeomicrobiology and, more precisely, the study of ancient smallpox viral strains could be an exceptional opportunity. The analysis of poxvirus fragmented genomes could give new insights into the genetic evolution of the poxvirus. Recently, small fragments of the poxvirus genome were detected. With the genetic information obtained, a new phylogeny of smallpox virus was described. The interest in conducting studies on ancient strains is discussed, in order to explore the natural history of this disease. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.

  14. Neurologic Complications of Smallpox Vaccination

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2003-06-01

    Full Text Available Smallpox and smallpox vaccination is reviewed from the Departments of Neurology, Yale University School of Medicine, New Haven, CT, and University of New Mexico School of Medicine, Albuquerque.

  15. Smallpox vaccination and adverse reactions. Guidance for clinicians.

    Science.gov (United States)

    Cono, Joanne; Casey, Christine G; Bell, David M

    2003-02-21

    The guidance in this report is for evaluation and treatment of patients with complications from smallpox vaccination in the preoutbreak setting. Information is also included related to reporting adverse events and seeking specialized consultation and therapies for these events. The frequencies of smallpox vaccine-associated adverse events were identified in studies of the 1960s. Because of the unknown prevalence of risk factors among today's population, precise predictions of adverse reaction rates after smallpox vaccination are unavailable. The majority of adverse events are minor, but the less-frequent serious adverse reactions require immediate evaluation for diagnosis and treatment. Agents for treatment of certain vaccine-associated severe adverse reactions are vaccinia immune globulin (VIG), the first-line therapy, and cidofovir, the second-line therapy. These agents will be available under Investigational New Drug (IND) protocols from CDC and the U.S. Department of Defense (DoD). Smallpox vaccination in the preoutbreak setting is contraindicated for persons who have the following conditions or have a close contact with the following conditions: 1) a history of atopic dermatitis (commonly referred to as eczema), irrespective of disease severity or activity; 2) active acute, chronic, or exfoliative skin conditions that disrupt the epidermis; 3) pregnant women or women who desire to become pregnant in the 28 days after vaccination; and 4) persons who are immunocompromised as a result of human immunodeficiency virus or acquired immunodeficiency syndrome, autoimmune conditions, cancer, radiation treatment, immunosuppressive medications, or other immunodeficiencies. Additional contraindications that apply only to vaccination candidates but do not include their close contacts are persons with smallpox vaccine-component allergies, women who are breastfeeding, those taking topical ocular steroid medications, those with moderate-to-severe intercurrent illness, and

  16. Small(pox) success?

    Science.gov (United States)

    Birn, Anne-Emanuelle

    2011-02-01

    The 30th anniversary of the World Health Organization's (WHO) official certification of smallpox eradication was marked by a slew of events hailing the campaign's dramatic tale of technological and organizational triumph against an ancient scourge. Yet commemorations also serve as moments of critical reflection. This article questions the acclaim showered upon smallpox eradication as the single greatest public health success in history. It examines how and why smallpox eradication and WHO's concurrent social justice-oriented primary health care approach (following from the Declaration of Alma-Ata) became competing paradigms. It synthesizes critiques of eradication's shortcomings and debunks some of the myths surrounding the global eradication campaign as a public health priority and necessity, and as a Cold War victory of cooperation. The article concludes with thoughts on integrating technical and social-political aspects of health within the context of welfare states as the means to achieving widespread and enduring global public health success.

  17. Small(pox success?

    Directory of Open Access Journals (Sweden)

    Anne-Emanuelle Birn

    Full Text Available The 30th anniversary of the World Health Organization's (WHO official certification of smallpox eradication was marked by a slew of events hailing the campaign's dramatic tale of technological and organizational triumph against an ancient scourge. Yet commemorations also serve as moments of critical reflection. This article questions the acclaim showered upon smallpox eradication as the single greatest public health success in history. It examines how and why smallpox eradication and WHO's concurrent social justice-oriented primary health care approach (following from the Declaration of Alma-Ata became competing paradigms. It synthesizes critiques of eradication's shortcomings and debunks some of the myths surrounding the global eradication campaign as a public health priority and necessity, and as a Cold War victory of cooperation. The article concludes with thoughts on integrating technical and social-political aspects of health within the context of welfare states as the means to achieving widespread and enduring global public health success.

  18. GM-CSF production allows the identification of immunoprevalent antigens recognized by human CD4+ T cells following smallpox vaccination.

    Directory of Open Access Journals (Sweden)

    Valeria Judkowski

    Full Text Available The threat of bioterrorism with smallpox and the broad use of vaccinia vectors for other vaccines have led to the resurgence in the study of vaccinia immunological memory. The importance of the role of CD4+ T cells in the control of vaccinia infection is well known. However, more CD8+ than CD4+ T cell epitopes recognized by human subjects immunized with vaccinia virus have been reported. This could be, in part, due to the fact that most of the studies that have identified human CD4+ specific protein-derived fragments or peptides have used IFN-γ production to evaluate vaccinia specific T cell responses. Based on these findings, we reasoned that analyzing a large panel of cytokines would permit us to generate a more complete analysis of the CD4 T cell responses. The results presented provide clear evidence that TNF-α is an excellent readout of vaccinia specificity and that other cytokines such as GM-CSF can be used to evaluate the reactivity of CD4+ T cells in response to vaccinia antigens. Furthermore, using these cytokines as readout of vaccinia specificity, we present the identification of novel peptides from immunoprevalent vaccinia proteins recognized by CD4+ T cells derived from smallpox vaccinated human subjects. In conclusion, we describe a "T cell-driven" methodology that can be implemented to determine the specificity of the T cell response upon vaccination or infection. Together, the single pathogen in vitro stimulation, the selection of CD4+ T cells specific to the pathogen by limiting dilution, the evaluation of pathogen specificity by detecting multiple cytokines, and the screening of the clones with synthetic combinatorial libraries, constitutes a novel and valuable approach for the elucidation of human CD4+ T cell specificity in response to large pathogens.

  19. Oncolytic vaccinia therapy of squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Yu Yong A

    2009-07-01

    Full Text Available Abstract Background Novel therapies are necessary to improve outcomes for patients with squamous cell carcinomas (SCC of the head and neck. Historically, vaccinia virus was administered widely to humans as a vaccine and led to the eradication of smallpox. We examined the therapeutic effects of an attenuated, replication-competent vaccinia virus (GLV-1h68 as an oncolytic agent against a panel of six human head and neck SCC cell lines. Results All six cell lines supported viral transgene expression (β-galactosidase, green fluorescent protein, and luciferase as early as 6 hours after viral exposure. Efficient transgene expression and viral replication (>150-fold titer increase over 72 hrs were observed in four of the cell lines. At a multiplicity of infection (MOI of 1, GLV-1h68 was highly cytotoxic to the four cell lines, resulting in ≥ 90% cytotoxicity over 6 days, and the remaining two cell lines exhibited >45% cytotoxicity. Even at a very low MOI of 0.01, three cell lines still demonstrated >60% cell death over 6 days. A single injection of GLV-1h68 (5 × 106 pfu intratumorally into MSKQLL2 xenografts in mice exhibited localized intratumoral luciferase activity peaking at days 2–4, with gradual resolution over 10 days and no evidence of spread to normal organs. Treated animals exhibited near-complete tumor regression over a 24-day period without any observed toxicity, while control animals demonstrated rapid tumor progression. Conclusion These results demonstrate significant oncolytic efficacy by an attenuated vaccinia virus for infecting and lysing head and neck SCC both in vitro and in vivo, and support its continued investigation in future clinical trials.

  20. Protection of Mice from Lethal Vaccinia Virus Infection by Vaccinia Virus Protein Subunits with a CpG Adjuvant

    Directory of Open Access Journals (Sweden)

    Sarah Reeman

    2017-12-01

    Full Text Available Smallpox vaccination carries a high risk of adverse events in recipients with a variety of contra-indications for live vaccines. Although alternative non-replicating vaccines have been described in the form of replication-deficient vaccine viruses, DNA vaccines, and subunit vaccines, these are less efficacious than replicating vaccines in animal models. DNA and subunit vaccines in particular have not been shown to give equivalent protection to the traditional replicating smallpox vaccine. We show here that combinations of the orthopoxvirus A27, A33, B5 and L1 proteins give differing levels of protection when administered in different combinations with different adjuvants. In particular, the combination of B5 and A27 proteins adjuvanted with CpG oligodeoxynucleotides (ODN gives a level of protection in mice that is equivalent to the Lister traditional vaccine in a lethal vaccinia virus challenge model.

  1. Risks of serious complications and death from smallpox vaccination: A systematic review of the United States experience, 1963–1968

    Directory of Open Access Journals (Sweden)

    Aragón Tomás J

    2003-08-01

    Full Text Available Abstract Background The United States (US has re-instituted smallpox vaccinations to prepare for an intentional release of the smallpox virus into the civilian population. In an outbreak, people of all ages will be vaccinated. To prepare for the impact of large-scale ring and mass vaccinations, we conducted a systematic review of the complication and mortality risks of smallpox vaccination. We summarized these risks for post-vaccinial encephalitis, vaccinia necrosum (progressive vaccinia, eczema vaccinatum, generalized vaccinia, and accidental infection (inadvertant autoinoculation. Methods Using a MEDLINE search strategy, we identified 348 articles, of which seven studies met our inclusion criteria (the number of primary vaccinations and re-vaccinations were reported, sufficient data were provided to calculate complication or case-fatality risks, and comparable case definitions were used. For each complication, we estimated of the complication, death, and case-fatality risks. Results The life-threatening complications of post-vaccinial encephalitis and vaccinia necrosum were at least 3 and 1 per million primary vaccinations, respectively. Twenty-nine percent of vaccinees with post-vaccinial encephalitis died and 15% with vaccinia necrosum died. There were no deaths among vaccinees that developed eczema vaccinatum; however, 2.3% of non-vaccinated contacts with eczema vaccinatum died. Among re-vaccinees, the risk of post-vaccinial encephalitis was reduced 26-fold, the risk of generalized vaccinia was reduced 29-fold, and the risk of eczema vaccinatum was reduced 12-fold. However, the risk reductions of accidental infection and vaccinia necrosum were modest (3.8 and 1.5 fold respectively.

  2. [Development of current smallpox vaccines].

    Science.gov (United States)

    Maksiutov, R A; Gavrilova, E V; Shchelkunov, S N

    2011-01-01

    The review gives data on the history of smallpox vaccination and shows the high topicality of designing the current safe vaccines against orthopoxviruses. Four generations of live smallpox, protein subunit, and DNA vaccines are considered. Analysis of the data published leads to the conclusion that it is promising to use the up-to-date generations of safe smallpox subunit or DNA vaccines for mass primary immunization with possible further revaccination with classical live vaccine.

  3. [Smallpox virus as biological weapon].

    Science.gov (United States)

    Kondrusik, Maciej; Hermanowska-Szpakowicz, Teresa

    2003-02-01

    Smallpox, because of its high case-fatality rate, easy transmission from human to human, lack of specific treatment represents nowadays one of the main threats in bioterrorist attacks. Over the centuries, naturally occurring smallpox with its case-fatality over 30 percent and its ability to spread in any climate and season has been treated as the most dangerous infectious disease. But it is now, 25 years after the last documented case of smallpox and cessation of routine vaccination in present mobile and susceptible population, smallpox virus spread might be rapid and devastating.

  4. Preventing the return of smallpox: molecular modeling studies on thymidylate kinase from Variola virus.

    Science.gov (United States)

    Guimarães, Ana Paula; Ramalho, Teodorico Castro; França, Tanos Celmar Costa

    2014-01-01

    Smallpox was one of the most devastating diseases in the human history and still represents a serious menace today due to its potential use by bioterrorists. Considering this threat and the non-existence of effective chemotherapy, we propose the enzyme thymidylate kinase from Variola virus (VarTMPK) as a potential target to the drug design against smallpox. We first built a homology model for VarTMPK and performed molecular docking studies on it in order to investigate the interactions with inhibitors of Vaccinia virus TMPK (VacTMPK). Subsequently, molecular dynamics (MD) simulations of these compounds inside VarTMPK and human TMPK (HssTMPK) were carried out in order to select the most promising and selective compounds as leads for the design of potential VarTMPK inhibitors. Results of the docking and MD simulations corroborated to each other, suggesting selectivity towards VarTMPK and, also, a good correlation with the experimental data.

  5. Recombinant Vaccinia Virus: Immunization against Multiple Pathogens

    Science.gov (United States)

    Perkus, Marion E.; Piccini, Antonia; Lipinskas, Bernard R.; Paoletti, Enzo

    1985-09-01

    The coding sequences for the hepatitis B virus surface antigen, the herpes simplex virus glycoprotein D, and the influenza virus hemagglutinin were inserted into a single vaccinia virus genome. Rabbits inoculated intravenously or intradermally with this polyvalent vaccinia virus recombinant produced antibodies reactive to all three authentic foreign antigens. In addition, the feasibility of multiple rounds of vaccination with recombinant vaccinia virus was demonstrated.

  6. Transmission of vaccinia virus, possibly through sexual contact, to a woman at high risk for adverse complications.

    Science.gov (United States)

    Said, Maria A; Haile, Charles; Palabindala, Venkataraman; Barker, Naomi; Myers, Robert; Thompson, Ruth; Wilson, Lucy; Allan-Martinez, Frances; Montgomery, Jay; Monroe, Benjamin; Tack, Danielle; Reynolds, Mary; Damon, Inger; Blythe, David

    2013-12-01

    Severe adverse events, including eczema vaccinatum (EV), can result after smallpox vaccination. Persons at risk for EV include those with underlying dermatologic conditions, such as atopic dermatitis. We investigated a case of vaccinia infection, possibly acquired during sexual contact with a recently vaccinated military service member, in a female Maryland resident with atopic dermatitis. The U.S. Department of Defense's Vaccine Healthcare Centers Network (VHCN) and the Centers for Disease Control and Prevention (CDC) worked in conjunction with the patient's physician and the Maryland Department of Health and Mental Hygiene (DHMH) to confirm the diagnosis, ensure treatment, and prevent further transmission. Specimens collected from the patient were tested at the DHMH laboratories and were positive by real-time polymerase chain reaction for nonvariola orthopoxvirus. Testing at the CDC verified the presence of vaccinia-specific DNA signatures. Continuing spread of the patient's lesions led to the administration of vaccinia immune globulin and strict infection control measures to prevent tertiary transmission to vulnerable family members, also with atopic dermatitis. VHCN contacted the service member to reinforce vaccination site care and hygiene. This case underscores the importance of prevaccination education for those receiving the smallpox vaccine to protect contacts at risk for developing severe adverse reactions. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  7. Smallpox and smallpox vaccine: ocular and systemic risks and ethical uncertainties.

    Science.gov (United States)

    Chous, A Paul; Hom, Gregory G

    2003-09-01

    The threat of bioterrorism and use of biological weapons has drawn renewed attention to smallpox, and smallpox vaccinations have been resumed in the United States. Both smallpox and smallpox vaccine carry risk of potentially debilitating or fatal adverse effects. The optometrist must be familiar with the signs and symptoms of smallpox disease and complications of smallpox vaccine for proper management and preservation of vision. The literature on the ocular and systemic effects of smallpox and smallpox vaccination is reviewed to provide the practicing optometrist with an overview of the issues involved in case management. Recent guidelines have placed additional ocular-related contraindications to receiving the smallpox vaccine. Risk factors for complications arising from smallpox vaccination are discussed. A discussion of the ethical implications is also presented. Knowledge of the signs and symptoms of smallpox infection, and of adverse effects caused by smallpox vaccination, can provide the necessary background to help eye care providers make appropriate diagnoses and referrals. Understanding ethical and legal/Constitutional questions surrounding the risk of outbreak and various vaccination containment strategies will help optometrists make informed decisions as health care professionals, patient advocates, and concerned citizens, as well as weigh the risks and benefits of vaccination, if it is offered to them.

  8. Logistics in smallpox: the legacy.

    Science.gov (United States)

    Wickett, John; Carrasco, Peter

    2011-12-30

    Logistics, defined as "the time-related positioning of resources" was critical to the implementation of the smallpox eradication strategy of surveillance and containment. Logistical challenges in the smallpox programme included vaccine delivery, supplies, staffing, vehicle maintenance, and financing. Ensuring mobility was essential as health workers had to travel to outbreaks to contain them. Three examples illustrate a range of logistic challenges which required imagination and innovation. Standard price lists were developed to expedite vehicle maintenance and repair in Bihar, India. Innovative staffing ensured an adequate infrastructure for vehicle maintenance in Bangladesh. The use of disaster relief mechanisms in Somalia provided airlifts, vehicles and funding within 27 days of their initiation. In contrast the Expanded Programme on Immunization (EPI) faces more complex logistical challenges. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. The De Novo Synthesis of Horsepox Virus: Implications for Biosecurity and Recommendations for Preventing the Reemergence of Smallpox.

    Science.gov (United States)

    Koblentz, Gregory D

    In March 2017, the American biotech company Tonix announced that a Canadian scientist had synthesized horsepox virus as part of a project to develop a safer vaccine against smallpox. The first de novo synthesis of an orthopoxvirus, a closely related group of viruses that includes horsepox and the variola virus that causes smallpox, crosses an important Rubicon in the field of biosecurity. The synthesis of horsepox virus takes the world one step closer to the reemergence of smallpox as a threat to global health security. That threat has been held at bay for the past 40 years by the extreme difficulty of obtaining variola virus and the availability of effective medical countermeasures. The techniques demonstrated by the synthesis of horsepox have the potential to erase both of these barriers. The primary risk posed by this research is that it will open the door to the routine and widespread synthesis of other orthopoxviruses, such as vaccinia, for use in research, public health, and medicine. The normalization and globalization of orthopoxvirus synthesis for these beneficial applications will create a cadre of laboratories and scientists that will also have the capability and expertise to create infectious variola virus from synthetic DNA. Unless the safeguards against the synthesis of variola virus are strengthened, the capability to reintroduce smallpox into the human population will be globally distributed and either loosely or completely unregulated, providing the foundation for a disgruntled or radicalized scientist, sophisticated terrorist group, unscrupulous company, or rogue state to recreate one of humanity's most feared microbial enemies. The reemergence of smallpox-because of a laboratory accident or an intentional release-would be a global health disaster. International organizations, national governments, the DNA synthesis industry, and the synthetic biology community all have a role to play in devising new approaches to preventing the reemergence of

  10. Modified Vaccinia Virus Ankara: History, Value in Basic Research, and Current Perspectives for Vaccine Development.

    Science.gov (United States)

    Volz, A; Sutter, G

    2017-01-01

    Safety tested Modified Vaccinia virus Ankara (MVA) is licensed as third-generation vaccine against smallpox and serves as a potent vector system for development of new candidate vaccines against infectious diseases and cancer. Historically, MVA was developed by serial tissue culture passage in primary chicken cells of vaccinia virus strain Ankara, and clinically used to avoid the undesirable side effects of conventional smallpox vaccination. Adapted to growth in avian cells MVA lost the ability to replicate in mammalian hosts and lacks many of the genes orthopoxviruses use to conquer their host (cell) environment. As a biologically well-characterized mutant virus, MVA facilitates fundamental research to elucidate the functions of poxvirus host-interaction factors. As extremely safe viral vectors MVA vaccines have been found immunogenic and protective in various preclinical infection models. Multiple recombinant MVA currently undergo clinical testing for vaccination against human immunodeficiency viruses, Mycobacterium tuberculosis or Plasmodium falciparum. The versatility of the MVA vector vaccine platform is readily demonstrated by the swift development of experimental vaccines for immunization against emerging infections such as the Middle East Respiratory Syndrome. Recent advances include promising results from the clinical testing of recombinant MVA-producing antigens of highly pathogenic avian influenza virus H5N1 or Ebola virus. This review summarizes our current knowledge about MVA as a unique strain of vaccinia virus, and discusses the prospects of exploiting this virus as research tool in poxvirus biology or as safe viral vector vaccine to challenge existing and future bottlenecks in vaccinology. © 2017 Elsevier Inc. All rights reserved.

  11. Evaluating anti-Orthopoxvirus antibodies in individuals from Brazilian rural areas prior to the bovine vaccinia era

    Directory of Open Access Journals (Sweden)

    Poliana de Oliveira Figueiredo

    2015-09-01

    Full Text Available Vaccinia virus naturally circulates in Brazil and is the causative agent of a zoonotic disease known as bovine vaccinia (BV. We retrospectively evaluated two populations from the Amazon and Southeast Regions. BV outbreaks had not been reported in these regions before sample collection. Neutralising antibodies were found in 13 individuals (n = 132 with titres ranging from 100 ≥ 6,400 neutralising units/mL. Univariate analysis identified age and vaccination as statistically significant risk factors in individuals from the Southeast Region. The absence of detectable antibodies in vaccinated individuals raises questions about the protection of smallpox vaccine years after vaccination and reinforces the need for surveillance of Orthopoxvirus in Brazilian populations without evidence of previous outbreaks.

  12. The Smallpox Threat: The School Nurse's Role

    Science.gov (United States)

    Martin, Mary E.; Didion, Judy

    2003-01-01

    Today, with the threat of bioterrorism and war, there is a new dimension to the traditional role of the school nurse. The smallpox threat to public health will invoke the school nurse's role as an educator, liaison, and consultant in the community. This article discusses smallpox, the vaccination process, adverse effects, and postvaccination care.…

  13. Smallpox: A Review for Health Educators

    Science.gov (United States)

    Bungum, Timothy J.

    2003-01-01

    Since the declaration of the eradication of smallpox in May of 1980 concern about this virus has ebbed. However, recent world events, including the destabilization of governments, have raised concerns that smallpox could fall into the hands of nefarious individuals or groups who might attempt to use the virus as a weapon. In Centers for Disease…

  14. Use of a recombinant vaccinia virus expressing interferon gamma for post-exposure protection against vaccinia and ectromelia viruses.

    Directory of Open Access Journals (Sweden)

    Susan A Holechek

    Full Text Available Post-exposure vaccination with vaccinia virus (VACV has been suggested to be effective in minimizing death if administered within four days of smallpox exposure. While there is anecdotal evidence for efficacy of post-exposure vaccination this has not been definitively studied in humans. In this study, we analyzed post-exposure prophylaxis using several attenuated recombinant VACV in a mouse model. A recombinant VACV expressing murine interferon gamma (IFN-γ was most effective for post-exposure protection of mice infected with VACV and ectromelia virus (ECTV. Untreated animals infected with VACV exhibited severe weight loss and morbidity leading to 100% mortality by 8 to 10 days post-infection. Animals treated one day post-infection had milder symptoms, decreased weight loss and morbidity, and 100% survival. Treatment on days 2 or 3 post-infection resulted in 40% and 20% survival, respectively. Similar results were seen in ECTV-infected mice. Despite the differences in survival rates in the VACV model, the viral load was similar in both treated and untreated mice while treated mice displayed a high level of IFN-γ in the serum. These results suggest that protection provided by IFN-γ expressed by VACV may be mediated by its immunoregulatory activities rather than its antiviral effects. These results highlight the importance of IFN-γ as a modulator of the immune response for post-exposure prophylaxis and could be used potentially as another post-exposure prophylaxis tool to prevent morbidity following infection with smallpox and other orthopoxviruses.

  15. 17th Century Variola Virus Reveals the Recent History of Smallpox.

    Science.gov (United States)

    Duggan, Ana T; Perdomo, Maria F; Piombino-Mascali, Dario; Marciniak, Stephanie; Poinar, Debi; Emery, Matthew V; Buchmann, Jan P; Duchêne, Sebastian; Jankauskas, Rimantas; Humphreys, Margaret; Golding, G Brian; Southon, John; Devault, Alison; Rouillard, Jean-Marie; Sahl, Jason W; Dutour, Olivier; Hedman, Klaus; Sajantila, Antti; Smith, Geoffrey L; Holmes, Edward C; Poinar, Hendrik N

    2016-12-19

    Smallpox holds a unique position in the history of medicine. It was the first disease for which a vaccine was developed and remains the only human disease eradicated by vaccination. Although there have been claims of smallpox in Egypt, India, and China dating back millennia [1-4], the timescale of emergence of the causative agent, variola virus (VARV), and how it evolved in the context of increasingly widespread immunization, have proven controversial [4-9]. In particular, some molecular-clock-based studies have suggested that key events in VARV evolution only occurred during the last two centuries [4-6] and hence in apparent conflict with anecdotal historical reports, although it is difficult to distinguish smallpox from other pustular rashes by description alone. To address these issues, we captured, sequenced, and reconstructed a draft genome of an ancient strain of VARV, sampled from a Lithuanian child mummy dating between 1643 and 1665 and close to the time of several documented European epidemics [1, 2, 10]. When compared to vaccinia virus, this archival strain contained the same pattern of gene degradation as 20 th century VARVs, indicating that such loss of gene function had occurred before ca. 1650. Strikingly, the mummy sequence fell basal to all currently sequenced strains of VARV on phylogenetic trees. Molecular-clock analyses revealed a strong clock-like structure and that the timescale of smallpox evolution is more recent than often supposed, with the diversification of major viral lineages only occurring within the 18 th and 19 th centuries, concomitant with the development of modern vaccination. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Bichat guidelines for the clinical management of smallpox and bioterrorism-related smallpox.

    Science.gov (United States)

    Bossi, Philippe; Tegnell, Anders; Baka, Agoritsa; Van Loock, Frank; Hendriks, J; Werner, Albrecht; Maidhof, Heinrich; Gouvras, Georgios

    2004-12-15

    Smallpox is a viral infection caused by the variola virus. It was declared eradicated worldwide by the Word Health Organization in 1980 following a smallpox eradication campaign. Smallpox is seen as one of the viruses most likely to be used as a biological weapon. The variola virus exists legitimately in only two laboratories in the world. Any new case of smallpox would have to be the result of human accidental or deliberate release. The aerosol infectivity, high mortality, and stability of the variola virus make it a potential and dangerous threat in biological warfare. Early detection and diagnosis are important to limit the spread of the disease. Patients with smallpox must be isolated and managed, if possible, in a negative-pressure room until death or until all scabs have been shed. There is no established antiviral treatment for smallpox. The most effective prevention is vaccination before exposure.

  17. Vaccines and bioterrorism: smallpox and anthrax.

    Science.gov (United States)

    Kimmel, Sanford R; Mahoney, Martin C; Zimmerman, Richard K

    2003-01-01

    Because of the success of vaccination and the ring strategy in eradicating smallpox from the world, smallpox vaccine has not been recommended for the United States civilian populations for decades. Given the low but possible threat of bioterrorism, smallpox vaccination is now recommended for those teams investigating potential smallpox cases and for selected personnel of acute-care hospitals who would be needed to care for victims in the event of a terrorist attack. Treatment and post-exposure prophylaxis for anthrax are ciprofloxacin or doxycycline. Anthrax vaccine alone is not effective for post-exposure prevention of anthrax; vaccination is accompanied by 60 days of antibiotic therapy. In addition to military use, anthrax vaccine is recommended for pre-exposure use in those persons whose work involves repeated exposure to Bacillus anthracis spores.

  18. Smallpox

    Science.gov (United States)

    Symptoms most often occur about 12 to 14 days after you have been infected with the virus. They may include: Backache Delirium Diarrhea Excessive bleeding Fatigue High fever Malaise Raised pink rash, turns into sores that become crusty ...

  19. Systemically administered DNA and fowlpox recombinants expressing four vaccinia virus genes although immunogenic do not protect mice against the highly pathogenic IHD-J vaccinia strain.

    Science.gov (United States)

    Bissa, Massimiliano; Pacchioni, Sole Maria; Zanotto, Carlo; De Giuli Morghen, Carlo; Illiano, Elena; Granucci, Francesca; Zanoni, Ivan; Broggi, Achille; Radaelli, Antonia

    2013-12-26

    The first-generation smallpox vaccine was based on live vaccinia virus (VV) and it successfully eradicated the disease worldwide. Therefore, it was not administered any more after 1980, as smallpox no longer existed as a natural infection. However, emerging threats by terrorist organisations has prompted new programmes for second-generation vaccine development based on attenuated VV strains, which have been shown to cause rare but serious adverse events in immunocompromised patients. Considering the closely related animal poxviruses that might also be used as bioweapons, and the increasing number of unvaccinated young people and AIDS-affected immunocompromised subjects, a safer and more effective smallpox vaccine is still required. New avipoxvirus-based vectors should improve the safety of conventional vaccines, and protect from newly emerging zoonotic orthopoxvirus diseases and from the threat of deliberate release of variola or monkeypox virus in a bioterrorist attack. In this study, DNA and fowlpox recombinants expressing the L1R, A27L, A33R and B5R genes were constructed and evaluated in a pre-clinical trial in mouse, following six prime/boost immunisation regimens, to compare their immunogenicity and protective efficacy against a challenge with the lethal VV IHD-J strain. Although higher numbers of VV-specific IFNγ-producing T lymphocytes were observed in the protected mice, the cytotoxic T-lymphocyte response and the presence of neutralising antibodies did not always correlate with protection. In spite of previous successful results in mice, rabbits and monkeys, where SIV/HIV transgenes were expressed by the fowlpox vector, the immune response elicited by these recombinants was low, and most of the mice were not protected. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Real-Time PCR Assay To Detect Smallpox Virus

    Science.gov (United States)

    Sofi Ibrahim, M.; Kulesh, David A.; Saleh, Sharron S.; Damon, Inger K.; Esposito, Joseph J.; Schmaljohn, Alan L.; Jahrling, Peter B.

    2003-01-01

    We developed a highly sensitive and specific assay for the rapid detection of smallpox virus DNA on both the Smart Cycler and LightCycler platforms. The assay is based on TaqMan chemistry with the orthopoxvirus hemagglutinin gene used as the target sequence. With genomic DNA purified from variola virus Bangladesh 1975, the limit of detection was estimated to be approximately 25 copies on both machines. The assay was evaluated in a blinded study with 322 coded samples that included genomic DNA from 48 different isolates of variola virus; 25 different strains and isolates of camelpox, cowpox, ectromelia, gerbilpox, herpes, monkeypox, myxoma, rabbitpox, raccoonpox, skunkpox, vaccinia, and varicella-zoster viruses; and two rickettsial species at concentrations mostly ranging from 100 fg/μl to 1 ng/μl. Contained within those 322 samples were variola virus DNA, obtained from purified viral preparations, at concentrations of 1 fg/μl to 1 ng/μl. On the Smart Cycler platform, 2 samples with false-positive results were detected among the 116 samples not containing variola virus tested; i.e., the overall specificity of the assay was 98.3%. On the LightCycler platform, five samples with false-positive results were detected (overall specificity, 95.7%). Of the 206 samples that contained variola virus DNA ranging in concentrations from 100 fg/μl to 1 ng/μl, 8 samples were considered negative on the Smart Cycler platform and 1 sample was considered negative on the LightCycler platform. Thus, the clinical sensitivities were 96.1% for the Smart Cycler instrument and 99.5% for the LightCycler instrument. The vast majority of these samples were derived from virus-infected cell cultures and variola virus-infected tissues; thus, the DNA material contained both viral DNA and cellular DNA. Of the 43 samples that contained purified variola virus DNA ranging in concentration from 1 fg/μl to 1 ng/μl, the assay correctly detected the virus in all 43 samples on both the Smart Cycler

  1. Experiences with smallpox eradication in Ethiopia.

    Science.gov (United States)

    de Quadros, Ciro A

    2011-12-30

    The smallpox eradication campaign operated in Ethiopia from 1970 until 1977. During this time Ethiopia had only 84 hospitals, 64 health centres and fewer than 400 physicians in a country of 25 million people. In 1970 smallpox vaccination was relatively unknown in the country, and the government actually contested the fact that smallpox was present in the country. Most of the resources of the Ministry of Health were used for malaria eradication. Initial pessimism from the Ministry of Health and others was eventually overcome as the smallpox eradication campaign continued to pick up steam but many remained unenthusiastic. Ethiopia was the first country in the world to start its smallpox eradication campaign from day one with the strategy of "Surveillance and Containment". Establishing a surveillance system in a country with a limited health infrastructure was a daunting challenge. At the end of the first year of the programme in 1971, 26,000 cases of smallpox had been registered through the growing surveillance system. Throughout revolution of 1974 the smallpox campaign was the only UN program to operate in the country; in fact it expanded with the hire of many locals leading to a "nationalized" program. This development ushered in the most successful final phase of the program. As the program progressed cases were diminishing in most regions, however transmission continued in the Ogaden desert. Over the course of the campaign approximately 14.3 million US dollars was spent. Working conditions were extremely challenging and a variety of chiefs, guerrillas, landowners and governments had to be appeased. The programme was successful due to the dedicated national and international staff on the ground and by having the full support of the WHO HQ in Geneva. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Effect of the deletion of genes encoding proteins of the extracellular virion form of vaccinia virus on vaccine immunogenicity and protective effectiveness in the mouse model.

    Directory of Open Access Journals (Sweden)

    Clement A Meseda

    Full Text Available Antibodies to both infectious forms of vaccinia virus, the mature virion (MV and the enveloped virion (EV, as well as cell-mediated immune response appear to be important for protection against smallpox. EV virus particles, although more labile and less numerous than MV, are important for dissemination and spread of virus in infected hosts and thus important in virus pathogenesis. The importance of the EV A33 and B5 proteins for vaccine induced immunity and protection in a murine intranasal challenge model was evaluated by deletion of both the A33R and B5R genes in a vaccine-derived strain of vaccinia virus. Deletion of either A33R or B5R resulted in viruses with a small plaque phenotype and reduced virus yields, as reported previously, whereas deletion of both EV protein-encoding genes resulted in a virus that formed small infection foci that were detectable and quantifiable only by immunostaining and an even more dramatic decrease in total virus yield in cell culture. Deletion of B5R, either as a single gene knockout or in the double EV gene knockout virus, resulted in a loss of EV neutralizing activity, but all EV gene knockout viruses still induced a robust neutralizing activity against the vaccinia MV form of the virus. The effect of elimination of A33 and/or B5 on the protection afforded by vaccination was evaluated by intranasal challenge with a lethal dose of either vaccinia virus WR or IHD-J, a strain of vaccinia virus that produces relatively higher amounts of EV virus. The results from multiple experiments, using a range of vaccination doses and virus challenge doses, and using mortality, morbidity, and virus dissemination as endpoints, indicate that the absence of A33 and B5 have little effect on the ability of a vaccinia vaccine virus to provide protection against a lethal intranasal challenge in a mouse model.

  3. Comparative Proteomics of Human Monkeypox and Vaccinia Intracellular Mature and Extracellular Enveloped Virions

    Energy Technology Data Exchange (ETDEWEB)

    Manes, Nathan P.; Estep, Ryan D.; Mottaz, Heather M.; Moore, Ronald J.; Clauss, Therese RW; Monroe, Matthew E.; Du, Xiuxia; Adkins, Joshua N.; Wong, Scott; Smith, Richard D.

    2008-03-07

    Orthopoxviruses are the largest and most complex of the animal viruses. In response to the recent emergence of monkeypox in Africa and the threat of smallpox bioterrorism, virulent (monkeypox virus) and benign (vaccinia virus) orthopoxviruses were proteomically compared with the goal of identifying proteins required for pathogenesis. Orthopoxviruses were grown in HeLa cells to two different viral forms (intracellular mature virus and extracellular enveloped virus), purified by sucrose gradient ultracentrifugation, denatured using RapiGest™ surfactant, and digested with trypsin. Unfractionated samples and strong cation exchange HPLC fractions were analyzed by reversed-phase LC-MS/MS, and analyses of the MS/MS spectra using SEQUEST® and X! Tandem resulted in the identification of hundreds of monkeypox, vaccinia, and copurified host proteins. The unfractionated samples were additionally analyzed by LC-MS on an LTQ-Orbitrap™, and the accurate mass and elution time tag approach was used to perform quantitative comparisons. Possible pathophysiological roles of differentially expressed orthopoxvirus genes are discussed.

  4. Innate immune response of human plasmacytoid dendritic cells to poxvirus infection is subverted by vaccinia E3 via its Z-DNA/RNA binding domain.

    Directory of Open Access Journals (Sweden)

    Hua Cao

    Full Text Available Plasmacytoid dendritic cells (pDCs play important roles in antiviral innate immunity by producing type I interferon (IFN. In this study, we assess the immune responses of primary human pDCs to two poxviruses, vaccinia and myxoma virus. Vaccinia, an orthopoxvirus, was used for immunization against smallpox, a contagious human disease with high mortality. Myxoma virus, a Leporipoxvirus, causes lethal disease in rabbits, but is non-pathogenic in humans. We report that myxoma virus infection of human pDCs induces IFN-α and TNF production, whereas vaccinia infection does not. Co-infection of pDCs with myxoma virus plus vaccinia blocks myxoma induction effects. We find that heat-inactivated vaccinia (Heat-VAC; by incubating the virus at 55°C for 1 h gains the ability to induce IFN-α and TNF in primary human pDCs. Induction of IFN-α in pDCs by myxoma virus or Heat-VAC is blocked by chloroquine, which inhibits endosomal acidification required for TLR7/9 signaling, and by inhibitors of cellular kinases PI3K and Akt. Using purified pDCs from genetic knockout mice, we demonstrate that Heat-VAC-induced type I IFN production in pDCs requires the endosomal RNA sensor TLR7 and its adaptor MyD88, transcription factor IRF7 and the type I IFN feedback loop mediated by IFNAR1. These results indicate that (i vaccinia virus, but not myxoma virus, expresses inhibitor(s of the poxvirus sensing pathway(s in pDCs; and (ii Heat-VAC infection fails to produce inhibitor(s but rather produces novel activator(s, likely viral RNA transcripts that are sensed by the TLR7/MyD88 pathway. Using vaccinia gene deletion mutants, we show that the Z-DNA/RNA binding domain at the N-terminus of the vaccinia immunomodulatory E3 protein is an antagonist of the innate immune response of human pDCs to poxvirus infection and TLR agonists. The myxoma virus ortholog of vaccinia E3 (M029 lacks the N-terminal Z-DNA/RNA binding domain, which might contribute to the immunostimulating

  5. Innate Immune Response of Human Plasmacytoid Dendritic Cells to Poxvirus Infection Is Subverted by Vaccinia E3 via Its Z-DNA/RNA Binding Domain

    Science.gov (United States)

    Dai, Peihong; Wang, Weiyi; Li, Hao; Yuan, Jianda; Wang, Fangjin; Fang, Chee-Mun; Pitha, Paula M; Liu, Jia; Condit, Richard C; McFadden, Grant; Merghoub, Taha; Houghton, Alan N; Young, James W; Shuman, Stewart; Deng, Liang

    2012-01-01

    Plasmacytoid dendritic cells (pDCs) play important roles in antiviral innate immunity by producing type I interferon (IFN). In this study, we assess the immune responses of primary human pDCs to two poxviruses, vaccinia and myxoma virus. Vaccinia, an orthopoxvirus, was used for immunization against smallpox, a contagious human disease with high mortality. Myxoma virus, a Leporipoxvirus, causes lethal disease in rabbits, but is non-pathogenic in humans. We report that myxoma virus infection of human pDCs induces IFN-α and TNF production, whereas vaccinia infection does not. Co-infection of pDCs with myxoma virus plus vaccinia blocks myxoma induction effects. We find that heat-inactivated vaccinia (Heat-VAC; by incubating the virus at 55°C for 1 h) gains the ability to induce IFN-α and TNF in primary human pDCs. Induction of IFN-α in pDCs by myxoma virus or Heat-VAC is blocked by chloroquine, which inhibits endosomal acidification required for TLR7/9 signaling, and by inhibitors of cellular kinases PI3K and Akt. Using purified pDCs from genetic knockout mice, we demonstrate that Heat-VAC-induced type I IFN production in pDCs requires the endosomal RNA sensor TLR7 and its adaptor MyD88, transcription factor IRF7 and the type I IFN feedback loop mediated by IFNAR1. These results indicate that (i) vaccinia virus, but not myxoma virus, expresses inhibitor(s) of the poxvirus sensing pathway(s) in pDCs; and (ii) Heat-VAC infection fails to produce inhibitor(s) but rather produces novel activator(s), likely viral RNA transcripts that are sensed by the TLR7/MyD88 pathway. Using vaccinia gene deletion mutants, we show that the Z-DNA/RNA binding domain at the N-terminus of the vaccinia immunomodulatory E3 protein is an antagonist of the innate immune response of human pDCs to poxvirus infection and TLR agonists. The myxoma virus ortholog of vaccinia E3 (M029) lacks the N-terminal Z-DNA/RNA binding domain, which might contribute to the immunostimulating properties of

  6. Smallpox: An eradicated infection with persistent sequels - Case report and a brief on smallpox

    International Nuclear Information System (INIS)

    Jastaneiah, Sabah

    2009-01-01

    Sequelae of smallpox infection on the ocular surface are still seen, including corneal scars adherent leukoma and phthisical globes. This paper will report another sequel of smallpox infection causing inadvertent bleb in a 62-year-old diabetic female with no history of ocular surgery or trauma in either eye. The patient had smallpox infection during her childhood. Her follow up extended from May 1997 until August 2007 with a constant eye examinations including controlled intraocular pressure, avascular cystic inadvertent bleb, and up drown peaked pupil. (author)

  7. L1R, A27L, A33R and B5R vaccinia virus genes expressed by fowlpox recombinants as putative novel orthopoxvirus vaccines.

    Science.gov (United States)

    Pacchioni, Sole Maria; Bissa, Massimiliano; Zanotto, Carlo; Morghen, Carlo De Giuli; Illiano, Elena; Radaelli, Antonia

    2013-04-11

    The traditional smallpox vaccine, administered by scarification, was discontinued in the general population from 1980, because of the absence of new smallpox cases. However, the development of an effective prophylactic vaccine against smallpox is still necessary, to protect from the threat of deliberate release of the variola virus for bioterrorism and from new zoonotic infections, and to improve the safety of the traditional vaccine. Preventive vaccination still remains the most effective control and new vectors have been developed to generate recombinant vaccines against smallpox that induce the same immunogenicity as the traditional one. As protective antibodies are mainly directed against the surface proteins of the two infectious forms of vaccinia, the intracellular mature virions and the extracellular virions, combined proteins from these viral forms can be used to better elicit a complete and protective immunity. Four novel viral recombinants were constructed based on the fowlpox genetic background, which independently express the vaccinia virus L1 and A27 proteins present on the mature virions, and the A33 and B5 proteins present on the extracellular virions. The correct expression of the transgenes was determined by RT-PCR, Western blotting, and immunofluorescence. Using immunoprecipitation and Western blotting, the ability of the proteins expressed by the four novel FPL1R, FPA27L, FPA33R and FPB5R recombinants to be recognized by VV-specific hyperimmune mouse sera was demonstrated. By neutralisation assays, recombinant virus particles released by infected chick embryo fibroblasts were shown not be recognised by hyperimmune sera. This thus demonstrates that the L1R, A27L, A33R and B5R gene products are not inserted into the new viral progeny. Fowlpox virus replicates only in avian species, but it is permissive for entry and transgene expression in mammalian cells, while being immunologically non-cross-reactive with vaccinia virus. These recombinants might

  8. Frequency of Adverse Events after Vaccination with Different Vaccinia Strains.

    NARCIS (Netherlands)

    Kretzschmar, Mirjam; Wallinga, Jacco; Teunis, Peter F M; Xing, Shuqin; Mikolajczyk, Rafael

    2006-01-01

    BACKGROUND: Large quantities of smallpox vaccine have been stockpiled to protect entire nations against a possible reintroduction of smallpox. Planning for an appropriate use of these stockpiled vaccines in response to a smallpox outbreak requires a rational assessment of the risks of

  9. Prospective surveillance for cardiac adverse events in healthy adults receiving modified vaccinia Ankara vaccines: a systematic review.

    Directory of Open Access Journals (Sweden)

    Marnie L Elizaga

    Full Text Available Vaccinia-associated myo/pericarditis was observed during the US smallpox vaccination (DryVax campaign initiated in 2002. A highly-attenuated vaccinia strain, modified vaccinia Ankara (MVA has been evaluated in clinical trials as a safer alternative to DryVax and as a vector for recombinant vaccines. Due to the lack of prospectively collected cardiac safety data, the US Food and Drug Administration required cardiac screening and surveillance in all clinical trials of MVA since 2004. Here, we report cardiac safety surveillance from 6 phase I trials of MVA vaccines.Four clinical research organizations contributed cardiac safety data using common surveillance methods in trials administering MVA or recombinant MVA vaccines to healthy participants. 'Routine cardiac investigations' (ECGs and cardiac enzymes obtained 2 weeks after injections of MVA or MVA-HIV recombinants, or placebo-controls, and 'Symptom-driven cardiac investigations' are reported. The outcome measure is the number of participants who met the CDC-case definition for vaccinia-related myo/pericarditis or who experienced cardiac adverse events from an MVA vaccine.Four hundred twenty-five study participants had post-vaccination safety data analyzed, 382 received at least one MVA-containing vaccine and 43 received placebo; 717 routine ECGs and 930 cardiac troponin assays were performed. Forty-five MVA recipients (12% had additional cardiac testing performed; 22 for cardiac symptoms, 19 for ECG/laboratory changes, and 4 for cardiac symptoms with an ECG/laboratory change. No participant had evidence of symptomatic or asymptomatic myo/pericarditis meeting the CDC-case definition and judged to be related to an MVA vaccine.Prospective surveillance of MVA recipients for myo/pericarditis did not detect cardiac adverse reactions in 382 study participants.ClinicalTrials.gov NCT00082446 NCT003766090 NCT00252148 NCT00083603 NCT00301184 NCT00428337.

  10. Prospective surveillance for cardiac adverse events in healthy adults receiving modified vaccinia Ankara vaccines: a systematic review.

    Science.gov (United States)

    Elizaga, Marnie L; Vasan, Sandhya; Marovich, Mary A; Sato, Alicia H; Lawrence, Dale N; Chaitman, Bernard R; Frey, Sharon E; Keefer, Michael C

    2013-01-01

    Vaccinia-associated myo/pericarditis was observed during the US smallpox vaccination (DryVax) campaign initiated in 2002. A highly-attenuated vaccinia strain, modified vaccinia Ankara (MVA) has been evaluated in clinical trials as a safer alternative to DryVax and as a vector for recombinant vaccines. Due to the lack of prospectively collected cardiac safety data, the US Food and Drug Administration required cardiac screening and surveillance in all clinical trials of MVA since 2004. Here, we report cardiac safety surveillance from 6 phase I trials of MVA vaccines. Four clinical research organizations contributed cardiac safety data using common surveillance methods in trials administering MVA or recombinant MVA vaccines to healthy participants. 'Routine cardiac investigations' (ECGs and cardiac enzymes obtained 2 weeks after injections of MVA or MVA-HIV recombinants, or placebo-controls), and 'Symptom-driven cardiac investigations' are reported. The outcome measure is the number of participants who met the CDC-case definition for vaccinia-related myo/pericarditis or who experienced cardiac adverse events from an MVA vaccine. Four hundred twenty-five study participants had post-vaccination safety data analyzed, 382 received at least one MVA-containing vaccine and 43 received placebo; 717 routine ECGs and 930 cardiac troponin assays were performed. Forty-five MVA recipients (12%) had additional cardiac testing performed; 22 for cardiac symptoms, 19 for ECG/laboratory changes, and 4 for cardiac symptoms with an ECG/laboratory change. No participant had evidence of symptomatic or asymptomatic myo/pericarditis meeting the CDC-case definition and judged to be related to an MVA vaccine. Prospective surveillance of MVA recipients for myo/pericarditis did not detect cardiac adverse reactions in 382 study participants. ClinicalTrials.gov NCT00082446 NCT003766090 NCT00252148 NCT00083603 NCT00301184 NCT00428337.

  11. Smallpox: What the dermatologist should know

    NARCIS (Netherlands)

    Spuls, Phyllis I.; Bos, Jan D.; Rudikoff, Donald

    2004-01-01

    Despite the eradication of naturally occurring smallpox in 1977, stores of the virus have been maintained in laboratories in the United States and Russia. It is feared that certain rogue states and terrorist organizations may have illicitly acquired the virus with the intent of unleashing it as an

  12. One more piece in the VACV ecological puzzle: could peridomestic rodents be the link between wildlife and bovine vaccinia outbreaks in Brazil?

    Science.gov (United States)

    Abrahão, Jônatas S; Guedes, Maria Isabel M; Trindade, Giliane S; Fonseca, Flávio G; Campos, Rafael K; Mota, Bruno F; Lobato, Zélia I P; Silva-Fernandes, André T; Rodrigues, Gisele O L; Lima, Larissa S; Ferreira, Paulo C P; Bonjardim, Cláudio A; Kroon, Erna G

    2009-10-19

    Despite the fact that smallpox eradication was declared by the World Health Organization (WHO) in 1980, other poxviruses have emerged and re-emerged, with significant public health and economic impacts. Vaccinia virus (VACV), a poxvirus used during the WHO smallpox vaccination campaign, has been involved in zoonotic infections in Brazilian rural areas (Bovine Vaccinia outbreaks - BV), affecting dairy cattle and milkers. Little is known about VACV's natural hosts and its epidemiological and ecological characteristics. Although VACV was isolated and/or serologically detected in Brazilian wild animals, the link between wildlife and farms has not yet been elucidated. In this study, we describe for the first time, to our knowledge, the isolation of a VACV (Mariana virus - MARV) from a mouse during a BV outbreak. Genetic data, in association with biological assays, showed that this isolate was the same etiological agent causing exanthematic lesions observed in the cattle and human inhabitants of a particular BV-affected area. Phylogenetic analysis grouped MARV with other VACV isolated during BV outbreaks. These data provide new biological and epidemiological information on VACV and lead to an interesting question: could peridomestic rodents be the link between wildlife and BV outbreaks?

  13. How long ago did smallpox virus emerge?

    Science.gov (United States)

    Shchelkunov, Sergei N

    2009-01-01

    Unlike vertebrates, for which paleontological data are available, and RNA viruses, which display a high rate of genetic variation, an objective estimate of time parameters for the molecular evolution of DNA viruses, which display a low rate of accumulation of mutations, is a complex problem. Genomic studies of a set of smallpox (variola) virus (VARV) isolates demonstrated the patterns of phylogenetic relationships between geographic variants of this virus. Using archival data on smallpox outbreaks and the results of phylogenetic analyses of poxvirus genomes, different research teams have obtained contradictory data on the possible time point of VARV origin. I discuss the approaches used for dating of VARV evolution and adduce the arguments favoring its historically recent origin.

  14. A Multicenter, Open-Label, Controlled Phase II Study to Evaluate Safety and Immunogenicity of MVA Smallpox Vaccine (IMVAMUNE in 18-40 Year Old Subjects with Diagnosed Atopic Dermatitis.

    Directory of Open Access Journals (Sweden)

    Richard N Greenberg

    Full Text Available Replicating smallpox vaccines can cause severe complications in individuals with atopic dermatitis (AD. Prior studies evaluating Modified Vaccinia Ankara virus (MVA, a non-replicating vaccine in humans, showed a favorable safety and immunogenicity profile in healthy volunteers.This Phase II study compared the safety and immunogenicity of MVA enrolling groups of 350 subjects with AD (SCORAD ≤ 30 and 282 healthy subjects.Subjects were vaccinated twice with MVA, each dose given subcutaneously 4 weeks apart. Adverse events, cardiac parameters, and the development of vaccinia virus humoral immune responses were monitored.The overall safety of the vaccine was similar in both groups. Adverse events affecting skin were experienced significantly more often in subjects with AD, but the majority of these events were mild to moderate in intensity. Seroconversion rates and geometric mean titers for total and neutralizing vaccinia-specific antibodies in the AD group were non-inferior compared to the healthy subjects.The size of the study population limited the detection of serious adverse events occurring at a frequency less than 1%.MVA has a favorable safety profile and the ability to elicit vaccinia-specific immune responses in subjects with AD.ClinicalTrials.gov NCT00316602.

  15. Antibodies to the A27 protein of vaccinia virus neutralize and protect against infection but represent a minor component of Dryvax vaccine--induced immunity.

    Science.gov (United States)

    He, Yong; Manischewitz, Jody; Meseda, Clement A; Merchlinsky, Michael; Vassell, Russell A; Sirota, Lev; Berkower, Ira; Golding, Hana; Weiss, Carol D

    2007-10-01

    The smallpox vaccine Dryvax, which consists of replication-competent vaccinia virus, elicits antibodies that play a major role in protection. Several vaccinia proteins generate neutralizing antibodies, but their importance for protection is unknown. We investigated the potency of antibodies to the A27 protein of the mature virion in neutralization and protection experiments and the contributions of A27 antibodies to Dryvax-induced immunity. Using a recombinant A27 protein (rA27), we confirmed that A27 contains neutralizing determinants and that vaccinia immune globulin (VIG) derived from Dryvax recipients contains reactivity to A27. However, VIG neutralization was not significantly reduced when A27 antibodies were removed, and antibodies elicited by an rA27 enhanced the protection conferred by VIG in passive transfer experiments. These findings demonstrate that A27 antibodies do not represent the major fraction of neutralizing activity in VIG and suggest that immunity may be augmented by vaccines and immune globulins that include strong antibody responses to A27.

  16. Inhibition of Vaccinia virus entry by a broad spectrum antiviral peptide

    International Nuclear Information System (INIS)

    Altmann, S.E.; Jones, J.C.; Schultz-Cherry, S.; Brandt, C.R.

    2009-01-01

    Concerns about the possible use of Variola virus, the causative agent of smallpox, as a weapon for bioterrorism have led to renewed efforts to identify new antivirals against orthopoxviruses. We identified a peptide, EB, which inhibited infection by Vaccinia virus with an EC 50 of 15 μM. A control peptide, EBX, identical in composition to EB but differing in sequence, was inactive (EC 50 > 200 μM), indicating sequence specificity. The inhibition was reversed upon removal of the peptide, and EB treatment had no effect on the physical integrity of virus particles as determined by electron microscopy. Viral adsorption was unaffected by the presence of EB, and the addition of EB post-entry had no effect on viral titers or on early gene expression. The addition of EB post-adsorption resulted in the inhibition of β-galactosidase expression from an early viral promoter with an EC 50 of 45 μM. A significant reduction in virus entry was detected in the presence of the peptide when the number of viral cores released into the cytoplasm was quantified. Electron microscopy indicated that 88% of the virions remained on the surface of cells in the presence of EB, compared to 37% in the control (p < 0.001). EB also blocked fusion-from-within, suggesting that virus infection is inhibited at the fusion step. Analysis of EB derivatives suggested that peptide length may be important for the activity of EB. The EB peptide is, to our knowledge, the first known small molecule inhibitor of Vaccinia virus entry.

  17. Protective Effect of Surfactant Protein D in Pulmonary Vaccinia Virus Infection: Implication of A27 Viral Protein

    Directory of Open Access Journals (Sweden)

    Julien Perino

    2013-03-01

    Full Text Available Vaccinia virus (VACV was used as a surrogate of variola virus (VARV (genus Orthopoxvirus, the causative agent of smallpox, to study Orthopoxvirus infection. VARV is principally transmitted between humans by aerosol droplets. Once inhaled, VARV first infects the respiratory tract where it could encounter surfactant components, such as soluble pattern recognition receptors. Surfactant protein D (SP-D, constitutively present in the lining fluids of the respiratory tract, plays important roles in innate host defense against virus infection. We investigated the role of SP-D in VACV infection and studied the A27 viral protein involvement in the interaction with SP-D. Interaction between SP-D and VACV caused viral inhibition in a lung cell model. Interaction of SP-D with VACV was mediated by the A27 viral protein. Binding required Ca2+ and interactions were blocked in the presence of excess of SP-D saccharide ligands. A27, which lacks glycosylation, directly interacted with SP-D. The interaction between SP-D and the viral particle was also observed using electron microscopy. Infection of mice lacking SP-D (SP-D-/- resulted in increased mortality compared to SP-D+/+ mice. Altogether, our data show that SP-D participates in host defense against the vaccinia virus infection and that the interaction occurs with the viral surface protein A27.

  18. Smallpox-Related Knowledge and Beliefs among Recent College Graduates

    Science.gov (United States)

    Bungum, Timothy; Day, Charlene

    2006-01-01

    Recent world events have increased concern and preparations for possible bioterror events. Despite worldwide efforts to limit access to bio-weapons, smallpox is still considered a potential bioterror threat. Americans' understanding of smallpox could prevent panic and enhance the willingness of citizens to receive vaccinations. Objective: The…

  19. The effects of post-exposure smallpox vaccination on clinical disease presentation: addressing the data gaps between historical epidemiology and modern surrogate model data.

    Science.gov (United States)

    Keckler, M Shannon; Reynolds, Mary G; Damon, Inger K; Karem, Kevin L

    2013-10-25

    Decades after public health interventions - including pre- and post-exposure vaccination - were used to eradicate smallpox, zoonotic orthopoxvirus outbreaks and the potential threat of a release of variola virus remain public health concerns. Routine prophylactic smallpox vaccination of the public ceased worldwide in 1980, and the adverse event rate associated with the currently licensed live vaccinia virus vaccine makes reinstatement of policies recommending routine pre-exposure vaccination unlikely in the absence of an orthopoxvirus outbreak. Consequently, licensing of safer vaccines and therapeutics that can be used post-orthopoxvirus exposure is necessary to protect the global population from these threats. Variola virus is a solely human pathogen that does not naturally infect any other known animal species. Therefore, the use of surrogate viruses in animal models of orthopoxvirus infection is important for the development of novel vaccines and therapeutics. Major complications involved with the use of surrogate models include both the absence of a model that accurately mimics all aspects of human smallpox disease and a lack of reproducibility across model species. These complications limit our ability to model post-exposure vaccination with newer vaccines for application to human orthopoxvirus outbreaks. This review seeks to (1) summarize conclusions about the efficacy of post-exposure smallpox vaccination from historic epidemiological reports and modern animal studies; (2) identify data gaps in these studies; and (3) summarize the clinical features of orthopoxvirus-associated infections in various animal models to identify those models that are most useful for post-exposure vaccination studies. The ultimate purpose of this review is to provide observations and comments regarding available model systems and data gaps for use in improving post-exposure medical countermeasures against orthopoxviruses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Activity, specificity, and probe design for the smallpox virus protease K7L.

    Science.gov (United States)

    Aleshin, Alexander E; Drag, Marcin; Gombosuren, Naran; Wei, Ge; Mikolajczyk, Jowita; Satterthwait, Arnold C; Strongin, Alex Y; Liddington, Robert C; Salvesen, Guy S

    2012-11-16

    The K7L gene product of the smallpox virus is a protease implicated in the maturation of viral proteins. K7L belongs to protease Clan CE, which includes distantly related cysteine proteases from eukaryotes, pathogenic bacteria, and viruses. Here, we describe its recombinant high level expression, biochemical mechanism, substrate preference, and regulation. Earlier studies inferred that the orthologous I7L vaccinia protease cleaves at an AG-X motif in six viral proteins. Our data for K7L suggest that the AG-X motif is necessary but not sufficient for optimal cleavage activity. Thus, K7L requires peptides extended into the P7 and P8 positions for efficient substrate cleavage. Catalytic activity of K7L is substantially enhanced by homodimerization, by the substrate protein P25K as well as by glycerol. RNA and DNA also enhance cleavage of the P25K protein but not of synthetic peptides, suggesting that nucleic acids augment the interaction of K7L with its protein substrate. Library-based peptide preference analyses enabled us to design an activity-based probe that covalently and selectively labels K7L in lysates of transfected and infected cells. Our study thus provides proof-of-concept for the design of inhibitors and probes that may contribute both to a better understanding of the role of K7L in the virus life cycle and the design of novel anti-virals.

  1. Vaccinia Virus Infections in a Martial Arts Gym

    Centers for Disease Control (CDC) Podcasts

    This podcast discusses an outbreak of vaccinia virus in Maryland in 2008. Christine Hughes, a health scientist with the Poxvirus and Rabies Branch at CDC, and co-author of a paper in the April 2011 issue of CDC's journal, discusses vaccinia virus infections in a martial arts gym.

  2. On the origin of smallpox: correlating variola phylogenics with historical smallpox records.

    Science.gov (United States)

    Li, Yu; Carroll, Darin S; Gardner, Shea N; Walsh, Matthew C; Vitalis, Elizabeth A; Damon, Inger K

    2007-10-02

    Human disease likely attributable to variola virus (VARV), the etiologic agent of smallpox, has been reported in human populations for >2,000 years. VARV is unique among orthopoxviruses in that it is an exclusively human pathogen. Because VARV has a large, slowly evolving DNA genome, we were able to construct a robust phylogeny of VARV by analyzing concatenated single nucleotide polymorphisms (SNPs) from genome sequences of 47 VARV isolates with broad geographic distributions. Our results show two primary VARV clades, which likely diverged from an ancestral African rodent-borne variola-like virus either approximately 16,000 or approximately 68,000 years before present (YBP), depending on which historical records (East Asian or African) are used to calibrate the molecular clock. One primary clade was represented by the Asian VARV major strains, the more clinically severe form of smallpox, which spread from Asia either 400 or 1,600 YBP. Another primary clade included both alastrim minor, a phenotypically mild smallpox described from the American continents, and isolates from West Africa. This clade diverged from an ancestral VARV either 1,400 or 6,300 YBP, and then further diverged into two subclades at least 800 YBP. All of these analyses indicate that the divergence of alastrim and variola major occurred earlier than previously believed.

  3. Smallpox as a Bioweapon: Should We Be Concerned?

    Science.gov (United States)

    2012-03-01

    73  A.  DOES THIS TYPE OF ATTACK MATCH A PARTICULAR IDEOLOGY ...apply to smallpox. Smallpox is a virus of the Orthopox genus and the Poxviridae family, also known by the scientific name of Variola. It is easy to...they claim to possess, but it is evident that nothing in their stated ideology indicates they would abstain from using those that they could attain

  4. Plasmodium knowlesi Sporozoite Antigen: Expression by Infectious Recombinant Vaccinia Virus

    Science.gov (United States)

    Smith, Geoffrey L.; Godson, G. Nigel; Nussenzweig, Victor; Nussenzweig, Ruth S.; Barnwell, John; Moss, Bernard

    1984-04-01

    The gene coding for the circumsporozoite antigen of the malaria parasite Plasmodium knowlesi was inserted into the vaccinia virus genome under the control of a defined vaccinia virus promoter. Cells infected with the recombinant virus synthesized polypeptides of 53,000 to 56,000 daltons that reacted with monoclonal antibody against the repeating epitope of the malaria protein. Furthermore, rabbits vaccinated with the recombinant virus produced antibodies that bound specifically to sporozoites. These data provide evidence for expression of a cloned malaria gene in mammalian cells and illustrate the potential of vaccinia virus recombinants as live malaria vaccines.

  5. Diagnosing smallpox: would you know it if you saw it?

    Science.gov (United States)

    Woods, Ryan; McCarthy, Tara; Barry, M Anita; Mahon, Barbara

    2004-01-01

    The intentional release of anthrax in the United States in 2001 and other recent acts of terrorism have highlighted the possibility of intentional release of smallpox by terrorists. Little is known about physicians' ability to diagnose smallpox, especially in the critical first days, when the potential for rapid control of transmission is greatest. During December 2002 and January 2003, primary care and emergency physicians at a large urban academic medical center were surveyed regarding the diagnosis and management of patients who present with vesicular rash illness. In addition to demographic and training-related questions, the questionnaire included items about perceived comfort in diagnosing and evaluating rashes, knowledge of the key differential diagnostic characteristics of chickenpox and smallpox, and the diagnostic interpretation of color photographs of patients with smallpox or chickenpox. Responses were summarized as a perceived comfort score, a differential diagnosis score, and a picture score. Of 266 eligible physicians, 178 (67%) responded. Of these, 95% thought clinicians need more education about bioterrorism; only 17% reported comfort in diagnosing smallpox. Although most physicians recognized pictures of smallpox and chickenpox, only 36% correctly answered 3 of 4 questions regarding differential diagnosis, an important aspect of identifying cases early. Those who were comfortable diagnosing rash illnesses had higher differential diagnosis scores. Strategies for bioterrorism-related training could take advantage of physicians' awareness of their own knowledge deficits.

  6. Vaccinia Virus Infections in a Martial Arts Gym

    Centers for Disease Control (CDC) Podcasts

    2011-04-04

    This podcast discusses an outbreak of vaccinia virus in Maryland in 2008. Christine Hughes, a health scientist with the Poxvirus and Rabies Branch at CDC, and co-author of a paper in the April 2011 issue of CDC's journal, discusses vaccinia virus infections in a martial arts gym.  Created: 4/4/2011 by National Center for Emerging Zoonotic and Infectious Diseases (NCEZID).   Date Released: 4/5/2011.

  7. Bovine Vaccinia in dairy cattle and suspicion of vesicular disease on milkers in Brazil

    Directory of Open Access Journals (Sweden)

    Thaís Garcia da Silva

    2018-05-01

    Full Text Available ABSTRACT: Bovine vaccinia (BV is a vesicular disease induced by the Vaccinia virus (VACV that affects milk production and is an occupational zoonosis. This research had the following objectives: (i detection of VACV by qPCR in cattle with clinical suspicion of vesicular disease; (ii symptoms characterization in animals and milkers with clinical suspicion of the disease and virus detection in humans; and (iii identification of risk factors for infections of VACV in herds from several Brazilian states. A total of 471 bovine epithelial samples from dairy farms, in 15 Brazilian states, were evaluated between 2007 and 2012. The samples were tested by quantitative PCR (qPCR using SYBR Green® reagents, validated with a lower limit of detection of 100 TCID50/50µL (1.7x100 viral particles, and 45.1% of VACV positive samples were detected. Using official forms for epidemiological investigation (FORM-IN, the risk factors for VACV infections in cattle were determined to be farms with a lack of technological facilities (P=0.029 and the presence of rodents (P=0.001. There was an effect of seasonality in cattle with a higher occurrence of BV during the dry season. A total of 420 epidemiological questionnaires were applied at public health care centers, where 100% of the milkers had vesicular lesions on their hands (98.1% and on their arms (6.9%. The most frequent clinical symptoms in humans were: local swelling (74.2%, headache (20.7%, fever (10.4% and inguinal lymphadenopathy (74.2%. Only 19.98% of milkers aged between 39 and 58 years were seroreactive to VACV and were immunized with the human anti-smallpox vaccine. There was an increase in the frequency of BV in older individuals due to their natural decrease in specific immunity. It has been shown that the implementation of zootechnical management techniques and health planning are important for the prevention of BV in animals and humans.

  8. The Migration of Smallpox and Its Indelible Footprint on Latin American History. Junior Division Winner.

    Science.gov (United States)

    Thomson, Mark

    1998-01-01

    Addresses the migration of smallpox into the New World where it caused the extinction of entire indigenous civilizations and altered the survivors' cultures. Discusses the historical origins of smallpox and highlights the migration and consequences of smallpox in Central and South America. Includes an annotated bibliography, research description,…

  9. 76 FR 49776 - The Development and Evaluation of Next-Generation Smallpox Vaccines; Public Workshop

    Science.gov (United States)

    2011-08-11

    ...] The Development and Evaluation of Next-Generation Smallpox Vaccines; Public Workshop AGENCY: Food and... Evaluation of Next-Generation Smallpox Vaccines.'' The purpose of the public workshop is to identify and discuss the key issues related to the development and evaluation of next-generation smallpox vaccines. The...

  10. 75 FR 3244 - Prospective Grant of Exclusive License: Monoclonal Antibodies Against Smallpox/Orthopoxviruses

    Science.gov (United States)

    2010-01-20

    ... Exclusive License: Monoclonal Antibodies Against Smallpox/Orthopoxviruses AGENCY: National Institutes of.... SUPPLEMENTARY INFORMATION: Concerns that variola (smallpox) virus might be used as a biological weapon have led... safe and effective for prevention of smallpox, it is well documented that various adverse reactions in...

  11. Smallpox virus destruction and the implications of a new vaccine.

    Science.gov (United States)

    Henderson, D A

    2011-06-01

    The World Health Assembly is scheduled to decide in May 2011 whether the 2 known remaining stockpiles of smallpox virus are to be destroyed or retained. In preparation for this, a WHO-appointed committee undertook a comprehensive review of the status of smallpox virus research from 1999 to 2010. It concluded that, considering the nature of the studies already completed with respect to vaccine, drugs, and diagnostics, there was no reason to retain live smallpox virus except to satisfy restrictive regulatory requirements. The committee advised that researchers and regulators define alternative models for testing the vaccines and drugs. Apart from other considerations, the costs of new products are significant and important. These include prospective expenditures required for the development, manufacture, testing, and storage of new products. This commentary provides approximations of these costs and the incremental contribution that a newly developed vaccine might make in terms of public health security.

  12. Smallpox vaccination and all-cause infectious disease hospitalization

    DEFF Research Database (Denmark)

    Sørup, Signe; Villumsen, Marie; Ravn, Henrik

    2011-01-01

    There is growing evidence from observational studies and randomized trials in low-income countries that vaccinations have non-specific effects. Administration of live vaccines reduces overall child morbidity and mortality, presumably due to protection against non-targeted infections. In Denmark, ......, the live vaccine against smallpox was phased out in the 1970s due to the eradication of smallpox. We used the phasing-out period to investigate the effect of smallpox vaccination on the risk of hospitalization for infections.......There is growing evidence from observational studies and randomized trials in low-income countries that vaccinations have non-specific effects. Administration of live vaccines reduces overall child morbidity and mortality, presumably due to protection against non-targeted infections. In Denmark...

  13. Vaccinia virus vectors: new strategies for producing recombinant vaccines.

    Science.gov (United States)

    Hruby, D E

    1990-01-01

    The development and continued refinement of techniques for the efficient insertion and expression of heterologous DNA sequences from within the genomic context of infectious vaccinia virus recombinants are among the most promising current approaches towards effective immunoprophylaxis against a variety of protozoan, viral, and bacterial human pathogens. Because of its medical relevance, this area is the subject of intense research interest and has evolved rapidly during the past several years. This review (i) provides an updated overview of the technology that exists for assembling recombinant vaccinia virus strains, (ii) discusses the advantages and disadvantages of these approaches, (iii) outlines the areas of outgoing research directed towards overcoming the limitations of current techniques, and (iv) provides some insight (i.e., speculation) about probable future refinements in the use of vaccinia virus as a vector. PMID:2187593

  14. Bioterrorism and Smallpox: Policies, Practices, and Implications for Social Work

    Science.gov (United States)

    Mackelprang, Romel W.; Mackelprang, Romel D.; Thirkill, Ashley D.

    2005-01-01

    Terrorist acts and the fear of terrorism have become a part of everyday life in the early 21st century. Among the threats most feared is bioterrorism, including the intentional release of smallpox. With the invasion of Iraq and toppling of the Saddam Hussein regime, acute bioterrorism fears have abated; however, an ongoing threat remains. This…

  15. Characterization of Two Historic Smallpox Specimens from a Czech Museum

    Czech Academy of Sciences Publication Activity Database

    Pajer, P.; Dresler, J.; Kabickova, H.; Píša, L.; Aganov, P.; Fucik, K.; Elleder, Daniel; Hron, Tomáš; Kuželka, V.; Velemínský, P.; Klimentová, J.; Fučíková, A.; Pejchal, J.; Hrabáková, Rita; Beneš, V.; Rausch, T.; Dundr, P.; Pilin, A.; Čabala, R.; Hubálek, Martin; Stříbrný, J.; Antwerpen, M.H.; Meyer, H.

    2017-01-01

    Roč. 9, č. 8 (2017), č. článku 200. ISSN 1999-4915 Institutional support: RVO:68378050 ; RVO:67985904 ; RVO:61388963 Keywords : smallpox * variola virus * evolution * next generation suquencing * historic specimen * phylogeny Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Virology; Virology (UZFG-Y); Virology (UOCHB-X) Impact factor: 3.465, year: 2016

  16. Immunodomination during peripheral vaccinia virus infection.

    Directory of Open Access Journals (Sweden)

    Leon C W Lin

    Full Text Available Immunodominance is a fundamental property of CD8(+ T cell responses to viruses and vaccines. It had been observed that route of administration alters immunodominance after vaccinia virus (VACV infection, but only a few epitopes were examined and no mechanism was provided. We re-visited this issue, examining a panel of 15 VACV epitopes and four routes, namely intradermal (i.d., subcutaneous (s.c., intraperitoneal (i.p. and intravenous (i.v. injection. We found that immunodominance is sharpened following peripheral routes of infection (i.d. and s.c. compared with those that allow systemic virus dissemination (i.p. and i.v.. This increased immunodominance was demonstrated with native epitopes of VACV and with herpes simplex virus glycoprotein B when expressed from VACV. Responses to some subdominant epitopes were altered by as much as fourfold. Tracking of virus, examination of priming sites, and experiments restricting virus spread showed that priming of CD8(+ T cells in the spleen was necessary, but not sufficient to broaden responses. Further, we directly demonstrated that immunodomination occurs more readily when priming is mainly in lymph nodes. Finally, we were able to reduce immunodominance after i.d., but not i.p. infection, using a VACV expressing the costimulators CD80 (B7-1 and CD86 (B7-2, which is notable because VACV-based vaccines incorporating these molecules are in clinical trials. Taken together, our data indicate that resources for CD8(+ T cell priming are limiting in local draining lymph nodes, leading to greater immunodomination. Further, we provide evidence that costimulation can be a limiting factor that contributes to immunodomination. These results shed light on a possible mechanism of immunodomination and highlight the need to consider multiple epitopes across the spectrum of immunogenicities in studies aimed at understanding CD8(+ T cell immunity to viruses.

  17. The Emergency campaign for smallpox eradication from Somalia (1977-1979)--revisited.

    Science.gov (United States)

    Deria, Abdullahi

    2011-12-30

    The historical significance of smallpox eradication from Somalia lies in the fact that the country was the last to record the last endemic smallpox case in the world. Before 1977 the programme was mismanaged. In the mid-1970s, the programme was plagued with concealment. Confirmation of smallpox outbreak in Mogadishu in September 1976 delayed global smallpox eradication. The Government maintained that there was no ongoing smallpox transmission in the country after the Mogadishu outbreak and frustrated independent attempts to verify its claim. In February 1977 the Government allowed World Health Organization (WHO) epidemiologists to search, unhindered, for smallpox outside Mogadishu. Soon widespread smallpox transmission was detected. The Government appealed for international support. The strategy to stop the smallpox transmission was based on surveillance and containment. The WHO took the leading role of the campaign which, in spite of the Somalia/Ethiopia war of 1977/78, culminated in the eradication of smallpox from the country. Somalia was certified smallpox-free on 19 October 1979. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Vaccinia virus as a subhelper for AAV replication and packaging

    Directory of Open Access Journals (Sweden)

    Andrea R Moore

    Full Text Available Adeno-associated virus (AAV has been widely used as a gene therapy vector to treat a variety of disorders. While these vectors are increasingly popular and successful in the clinic, there is still much to learn about the viruses. Understanding the biology of these viruses is essential in engineering better vectors and generating vectors more efficiently for large-scale use. AAV requires a helper for production and replication making this aspect of the viral life cycle crucial. Vaccinia virus (VV has been widely cited as a helper virus for AAV. However, to date, there are no detailed analyses of its helper function. Here, the helper role of VV was studied in detail. In contrast to common belief, we demonstrated that VV was not a sufficient helper virus for AAV replication. Vaccinia failed to produce rAAV and activate AAV promoters. While this virus could not support rAAV production, Vaccinia could initiate AAV replication and packaging when AAV promoter activation is not necessary. This activity is due to the ability of Vaccinia-driven Rep78 to transcribe in the cytoplasm and subsequently translate in the nucleus and undergo typical functions in the AAV life cycle. As such, VV is subhelper for AAV compared to complete helper functions of adenovirus.

  19. Mapping the active site of vaccinia virus RNA triphosphatase

    International Nuclear Information System (INIS)

    Gong Chunling; Shuman, Stewart

    2003-01-01

    The RNA triphosphatase component of vaccinia virus mRNA capping enzyme (the product of the viral D1 gene) belongs to a family of metal-dependent phosphohydrolases that includes the RNA triphosphatases of fungi, protozoa, Chlorella virus, and baculoviruses. The family is defined by two glutamate-containing motifs (A and C) that form the metal-binding site. Most of the family members resemble the fungal and Chlorella virus enzymes, which have a complex active site located within the hydrophilic interior of a topologically closed eight-stranded β barrel (the so-called ''triphosphate tunnel''). Here we queried whether vaccinia virus capping enzyme is a member of the tunnel subfamily, via mutational mapping of amino acids required for vaccinia triphosphatase activity. We identified four new essential side chains in vaccinia D1 via alanine scanning and illuminated structure-activity relationships by conservative substitutions. Our results, together with previous mutational data, highlight a constellation of six acidic and three basic amino acids that likely compose the vaccinia triphosphatase active site (Glu37, Glu39, Arg77, Lys107, Glu126, Asp159, Lys161, Glu192, and Glu194). These nine essential residues are conserved in all vertebrate and invertebrate poxvirus RNA capping enzymes. We discerned no pattern of clustering of the catalytic residues of the poxvirus triphosphatase that would suggest structural similarity to the tunnel proteins (exclusive of motifs A and C). We infer that the poxvirus triphosphatases are a distinct lineage within the metal-dependent RNA triphosphatase family. Their unique active site, which is completely different from that of the host cell's capping enzyme, recommends the poxvirus RNA triphosphatase as a molecular target for antipoxviral drug discovery

  20. Comparative Pathology of Smallpox and Monkeypox in Man and Macaques

    Science.gov (United States)

    Cann, J. A.; Jahrling, P. B.; Hensley, L. E.; Wahl-Jensen, V.

    2012-01-01

    Summary In the three decades since the eradication of smallpox and cessation of routine vaccination, the collective memory of the devastating epidemics caused by this orthopoxvirus has waned, and the human population has become increasingly susceptible to a disease that remains high on the list of possible bioterrorism agents. Research using surrogate orthopoxviruses in their natural hosts, as well as limited variola virus research in animal models, continues worldwide; however, interpretation of findings is often limited by our relative lack of knowledge about the naturally occurring disease. For modern comparative pathologists, many of whom have no first-hand knowledge of naturally occurring smallpox, this work provides a contemporary review of this historical disease, as well as discussion of how it compares with human monkeypox and the corresponding diseases in macaques. PMID:22884034

  1. History of Smallpox and Its Spread in Human Populations.

    Science.gov (United States)

    Thèves, Catherine; Crubézy, Eric; Biagini, Philippe

    2016-08-01

    Smallpox is considered among the most devastating of human diseases. Its spread in populations, initiated for thousands of years following a probable transmission from an animal host, was concomitant with movements of people across regions and continents, trade and wars. Literature permitted to retrace the occurrence of epidemics from ancient times to recent human history, smallpox having affected all levels of past society including famous monarchs. The disease was officially declared eradicated in 1979 following intensive vaccination campaigns.Paleomicrobiology dedicated to variola virus is restricted to few studies, most unsuccessful, involving ancient material. Only one recent approach allowed the identification of viral DNA fragments from lung tissue of a 300-year-old body excavated from permafrost in Eastern Siberia; phylogenetic analysis revealed that this ancient strain was distinct from those described during the 20th century.

  2. In vitro efficacy of ST246 against smallpox and monkeypox.

    Science.gov (United States)

    Smith, Scott K; Olson, Victoria A; Karem, Kevin L; Jordan, Robert; Hruby, Dennis E; Damon, Inger K

    2009-03-01

    Since the eradication of smallpox and the cessation of routine childhood vaccination for smallpox, the proportion of the world's population susceptible to infection with orthopoxviruses, such as variola virus (the causative agent of smallpox) and monkeypox virus, has grown substantially. In the United States, the only vaccines for smallpox licensed by the Food and Drug Administration (FDA) have been live virus vaccines. Unfortunately, a substantial number of people cannot receive live virus vaccines due to contraindications. Furthermore, no antiviral drugs have been fully approved by the FDA for the prevention or treatment of orthopoxvirus infection. Here, we show the inhibitory effect of one new antiviral compound, ST-246, on the in vitro growth properties of six variola virus strains and seven monkeypox virus strains. We performed multiple assays to monitor the cytopathic effect and to evaluate the reduction of viral progeny production and release in the presence of the compound. ST-246 had 50% effective concentrations of

  3. New insights about host response to smallpox using microarray data

    Directory of Open Access Journals (Sweden)

    Dias Rodrigo A

    2007-08-01

    Full Text Available Abstract Background Smallpox is a lethal disease that was endemic in many parts of the world until eradicated by massive immunization. Due to its lethality, there are serious concerns about its use as a bioweapon. Here we analyze publicly available microarray data to further understand survival of smallpox infected macaques, using systems biology approaches. Our goal is to improve the knowledge about the progression of this disease. Results We used KEGG pathways annotations to define groups of genes (or modules, and subsequently compared them to macaque survival times. This technique provided additional insights about the host response to this disease, such as increased expression of the cytokines and ECM receptors in the individuals with higher survival times. These results could indicate that these gene groups could influence an effective response from the host to smallpox. Conclusion Macaques with higher survival times clearly express some specific pathways previously unidentified using regular gene-by-gene approaches. Our work also shows how third party analysis of public datasets can be important to support new hypotheses to relevant biological problems.

  4. Characterization of Two Historic Smallpox Specimens from a Czech Museum.

    Science.gov (United States)

    Pajer, Petr; Dresler, Jiri; Kabíckova, Hana; Písa, Libor; Aganov, Pavel; Fucik, Karel; Elleder, Daniel; Hron, Tomas; Kuzelka, Vitezslav; Velemínsky, Petr; Klimentova, Jana; Fucikova, Alena; Pejchal, Jaroslav; Hrabakova, Rita; Benes, Vladimir; Rausch, Tobias; Dundr, Pavel; Pilin, Alexander; Cabala, Radomir; Hubalek, Martin; Stríbrny, Jan; Antwerpen, Markus H; Meyer, Hermann

    2017-07-27

    Although smallpox has been known for centuries, the oldest available variola virus strains were isolated in the early 1940s. At that time, large regions of the world were already smallpox-free. Therefore, genetic information of these strains can represent only the very last fraction of a long evolutionary process. Based on the genomes of 48 strains, two clades are differentiated: Clade 1 includes variants of variola major, and clade 2 includes West African and variola minor (Alastrim) strains. Recently, the genome of an almost 400-year-old Lithuanian mummy was determined, which fell basal to all currently sequenced strains of variola virus on phylogenetic trees. Here, we determined two complete variola virus genomes from human tissues kept in a museum in Prague dating back 60 and 160 years, respectively. Moreover, mass spectrometry-based proteomic, chemical, and microscopic examinations were performed. The 60-year-old specimen was most likely an importation from India, a country with endemic smallpox at that time. The genome of the 160-year-old specimen is related to clade 2 West African and variola minor strains. This sequence likely represents a new endemic European variant of variola virus circulating in the midst of the 19th century in Europe.

  5. Challenges and Achievements in Prevention and Treatment of Smallpox

    Directory of Open Access Journals (Sweden)

    Sharon Melamed

    2018-01-01

    Full Text Available Declaration of smallpox eradication by the WHO in 1980 led to discontinuation of the worldwide vaccination campaign. The increasing percentage of unvaccinated individuals, the existence of its causative infectious agent variola virus (VARV, and the recent synthetic achievements increase the threat of intentional or accidental release and reemergence of smallpox. Control of smallpox would require an emergency vaccination campaign, as no other protective measure has been approved to achieve eradication and ensure worldwide protection. Experimental data in surrogate animal models support the assumption, based on anecdotal, uncontrolled historical data, that vaccination up to 4 days postexposure confers effective protection. The long incubation period, and the uncertainty of the exposure status in the surrounding population, call for the development and evaluation of safe and effective methods enabling extension of the therapeutic window, and to reduce the disease manifestations and vaccine adverse reactions. To achieve these goals, we need to evaluate the efficacy of novel and already licensed vaccines as a sole treatment, or in conjunction with immune modulators and antiviral drugs. In this review, we address the available data, recent achievements, and open questions.

  6. Purification and Characterization of Recombinant Vaccinia L1R Protein from Escherichia coli

    Science.gov (United States)

    2016-08-01

    RECOMBINANT VACCINIA L1R PROTEIN FROM ESCHERICHIA COLI 1. INTRODUCTION 1.1 Background Vaccinia virus (VACV) is the active component of the...the preparation of the recombinant VACV L1R protein fragment by denaturing , refolding, and purifying material expressed into inclusion bodies in...PURIFICATION AND CHARACTERIZATION OF RECOMBINANT VACCINIA L1R PROTEIN FROM ESCHERICHIA COLI ECBC-TR-1370

  7. Cytoplasmic ATR Activation Promotes Vaccinia Virus Genome Replication

    Directory of Open Access Journals (Sweden)

    Antonio Postigo

    2017-05-01

    Full Text Available In contrast to most DNA viruses, poxviruses replicate their genomes in the cytoplasm without host involvement. We find that vaccinia virus induces cytoplasmic activation of ATR early during infection, before genome uncoating, which is unexpected because ATR plays a fundamental nuclear role in maintaining host genome integrity. ATR, RPA, INTS7, and Chk1 are recruited to cytoplasmic DNA viral factories, suggesting canonical ATR pathway activation. Consistent with this, pharmacological and RNAi-mediated inhibition of canonical ATR signaling suppresses genome replication. RPA and the sliding clamp PCNA interact with the viral polymerase E9 and are required for DNA replication. Moreover, the ATR activator TOPBP1 promotes genome replication and associates with the viral replisome component H5. Our study suggests that, in contrast to long-held beliefs, vaccinia recruits conserved components of the eukaryote DNA replication and repair machinery to amplify its genome in the host cytoplasm.

  8. 42 CFR 102.51 - Documentation a smallpox vaccine recipient must submit to be deemed eligible by the Secretary.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Documentation a smallpox vaccine recipient must..., DEPARTMENT OF HEALTH AND HUMAN SERVICES VACCINES SMALLPOX COMPENSATION PROGRAM Required Documentation To Be Deemed Eligible § 102.51 Documentation a smallpox vaccine recipient must submit to be deemed eligible by...

  9. Lessons for Implementation from the World's Most Successful Programme: The Global Eradication of Smallpox.

    Science.gov (United States)

    Pratt, David

    1999-01-01

    Focuses on lessons educators might learn from the Intensified Campaign for the Global Eradication of Smallpox. Outlines the history of smallpox eradication. Discusses the eradication effort's obstacles, campaign, and costs and benefits. Considers five factors relevant to the successful implementation of educational programs. (CMK)

  10. Fertility and early-life mortality: Evidence from smallpox vaccination in Sweden

    DEFF Research Database (Denmark)

    Ager, Philipp; Hansen, Casper Worm; Jensen, Peter Sandholt

    2018-01-01

    The smallpox vaccination method was the paramount medical innovation of the late 18th and early 19th centuries. We exploit the introduction of the smallpox vaccine in Sweden to identify the causal effect of early-life mortality on fertility. Our analysis shows that parishes in counties with highe...... a small insignificant effect on the number of surviving children and natural population growth....

  11. Hydroxyurea-resistant vaccinia virus: overproduction of ribonucleotide reductase

    International Nuclear Information System (INIS)

    Slabaugh, M.B.; Mathews, C.K.

    1986-01-01

    Repeated passage of vaccinia virus in increasing concentrations of hydroxyurea followed by plaque purification resulted in the isolation of variants capable of growth in 5 mM hydroxyurea, a drug concentration which inhibited the reproduction of wild-type vaccinia virus 1000-fold. Analyses of viral protein synthesis by using [ 35 S]methionine pulse-labeling at intervals throughout the infection cycle revealed that all isolates overproduced a 34,000-molecular-weight (MW) early polypeptide. Measurement of ribonucleoside-diphosphate reductase activity after infection indicated that 4- to 10-fold more activity was induced by hydroxyurea-resistant viruses than by the wild-type virus. A two-step partial purification resulted in a substantial enrichment for the 34,000-MW protein from extracts of wild-type and hydroxyurea-resistant-virus-infected, but not mock-infected, cells. In the presence of the drug, the isolates incorporated [ 3 H]thymidine into DNA earlier and a rate substantially greater than that of the wild type, although the onset of DNA synthesis was delayed in both cases. The drug resistance trait was markedly unstable in all isolates. In the absence of selective pressure, plaque-purified isolated readily segregated progeny that displayed a wide range of resistance phenotypes. The results of this study indicate that vaccinia virus encodes a subunit of ribonucleotide reductase which is 34,000-MW early protein whose overproduction confers hydroxyurea resistance on reproducing viruses

  12. Clinical signs, diagnosis, and case reports of Vaccinia virus infections

    Directory of Open Access Journals (Sweden)

    Daniela Carla Medeiros Silva

    Full Text Available Vaccinia virus is responsible for a zoonosis that usually affects cattle and human beings in Brazil. The initial clinical signs of the infection are focal red skin areas, fever, and general symptoms similar to those of a cold. Then, pustules and ulcerated lesions surrounded by edema and erythema follow, as well as local lymphadenopathy that can last for weeks. Cure and healing of the lesions occur over several weeks, leaving a typical scar in the skin of people and animals affected. The infection definitive diagnosis is made through morphological characterization of the virus by use of electron microscopy, followed by PCR for specific viral genes. Since 1963, circulating orthopoxviruses in infectious outbreaks in several regions of Brazil have been reported. Later, the etiological agent of those infections was characterized as samples of Vaccinia virus. In addition, the widespread use of those viruses in research laboratories and mass vaccination of militaries have contributed to increase the cases of those infections worldwide. Thus, several epidemiological and clinical studies are required, as well as studies of viral immunology, public health, and economic impact, because little is known about those Vaccinia virus outbreaks in Brazil.

  13. Intrafamilial Transmission of Vaccinia virus during a Bovine Vaccinia Outbreak in Brazil: A New Insight in Viral Transmission Chain

    Science.gov (United States)

    Pereira Oliveira, Graziele; Tavares Silva Fernandes, André; Lopes de Assis, Felipe; Augusto Alves, Pedro; Moreira Franco Luiz, Ana Paula; Barcelos Figueiredo, Leandra; Costa de Almeida, Cláudia Maria; Pires Ferreira Travassos, Carlos Eurico; de Souza Trindade, Giliane; Santos Abrahão, Jônatas; Geessien Kroon, Erna

    2014-01-01

    Bovine vaccinia (BV) is an emerging zoonosis caused by the Vaccinia virus (VACV), genus Orthopoxvirus (OPV), Poxviridae family. In general, human cases are related to direct contact with sick cattle but there is a lack of information about human-to-human transmission of VACV during BV outbreaks. In this study, we epidemiologically and molecularly show a case of VACV transmission between humans in São Francisco de Itabapoana County, Rio de Janeiro state. Our group collected samples from the patients, a 49-year-old patient and his son. Our results showed that patients had developed anti-OPV IgG or IgM antibodies and presented neutralizing antibodies against OPV. The VACV isolates displayed high identity (99.9%) and were grouped in the same phylogenetic tree branch. Our data indicate that human-to-human VACV transmission occurred during a BV outbreak, raising new questions about the risk factors of the VACV transmission chain. PMID:24615135

  14. Unraveling the structure of the variola topoisomerase IB-DNA complex: a possible new twist on smallpox therapy.

    Science.gov (United States)

    Osheroff, Neil

    2006-10-01

    Smallpox is a serious and highly contagious disease that is caused by the variola virus. It is one of the most severe infectious human diseases known, with mortality rates as high as 30%. A successful worldwide vaccination program led to the eradication of smallpox in 1980. However, the high transmission rate of variola virus, coupled with the deadly nature of smallpox, makes this virus a potentially devastating weapon for bioterrorism. Currently, there is no specific treatment for smallpox. However, a recent article on the structure of a variola topoisomerase IB-DNA complex provides an intriguing starting point for the rational design of drugs with potential activity against smallpox.

  15. Vaccinia scars associated with improved survival among adults in rural Guinea-Bissau.

    Directory of Open Access Journals (Sweden)

    Mette Lundsby Jensen

    Full Text Available BACKGROUND: In urban Guinea-Bissau, adults with a vaccinia scar had better survival but also a higher prevalence of HIV-2 infection. We therefore investigated the association between vaccinia scar and survival and HIV infection in a rural area of Guinea-Bissau. METHODOLOGY/PRINCIPAL FINDINGS: In connection with a study of HIV in rural Guinea-Bissau, we assessed vaccinia and BCG scars in 193 HIV-1 or HIV-2 infected and 174 uninfected participants. Mortality was assessed after 2(1/2-3 years of follow-up. The analyses were adjusted for age, sex, village, and HIV status. The prevalence of vaccinia scar was associated with age, village, and HIV-2 status but not with sex and schooling. Compared with individuals without any scar, individuals with a vaccinia scar had better survival (mortality rate ratio (MR = 0.22 (95% CI 0.08-0.61, the MR being 0.19 (95% CI 0.06-0.57 for women and 0.40 (95% CI 0.04-3.74 for men. Estimates were similar for HIV-2 infected and HIV-1 and HIV-2 uninfected individuals. The HIV-2 prevalence was higher among individuals with a vaccinia scar compared to individuals without a vaccinia scar (RR = 1.57 (95% CI 1.02-2.36. CONCLUSION: The present study supports the hypothesis that vaccinia vaccination may have a non-specific beneficial effect on adult survival.

  16. In silico-accelerated identification of conserved and immunogenic variola/vaccinia T-cell epitopes

    DEFF Research Database (Denmark)

    Moise, Leonard; McMurry, Julie A; Buus, Søren

    2009-01-01

    Epitopes shared by the vaccinia and variola viruses underlie the protective effect of vaccinia immunization against variola infection. We set out to identify a subset of cross-reactive epitopes using bioinformatics and immunological methods. Putative T-cell epitopes were computationally predicted...

  17. Development of the small-molecule antiviral ST-246® as a smallpox therapeutic

    Science.gov (United States)

    Grosenbach, Douglas W; Jordan, Robert; Hruby, Dennis E

    2011-01-01

    Naturally occurring smallpox has been eradicated, yet it remains as one of the highest priority pathogens due to its potential as a biological weapon. The majority of the US population would be vulnerable in a smallpox outbreak. SIGA Technologies, Inc. has responded to the call of the US government to develop and supply to the Strategic National Stockpile a smallpox antiviral to be deployed in the event of a smallpox outbreak. ST-246® (tecovirimat) was initially identified via a high-throughput screen in 2002, and in the ensuing years, our drug-development activities have spanned in vitro analysis, preclinical safety, pharmacokinetics and efficacy testing (all according to the ‘animal rule’). Additionally, SIGA has conducted Phase I and II clinical trials to evaluate the safety, tolerability and pharmacokinetics of ST-246, bringing us to our current late stage of clinical development. This article reviews the need for a smallpox therapeutic and our experience in developing ST-246, and provides perspective on the role of a smallpox antiviral during a smallpox public health emergency. PMID:21837250

  18. [The late media emergency of smallpox vaccine, news coverage of Spanish press (1999-2004)].

    Science.gov (United States)

    Martínez-Martínez, Pedro Javier; Tuells, José; Colmenar-Jarillo, Gema

    2015-06-01

    Discussions on the need for smallpox virus preservation in 1999 focused attention on an eradicated disease 20 years ago. Smallpox was replaced as a potential candidate to be used as a bioterrorist weapon because of the international alarm scenario produced after the 11/9 events in USA. The reactivation of a vaccine which remained forgotten was the direct consequence. The initial target groups were the security forces of America. Spain was also among the countries that were interested in acquiring the smallpox vaccine. The aim of this study is to analyze the considerable media coverage of smallpox obtained in our country. Systematic review of published news in the four largest national daily newspapers (ABC, El Mundo, El País and La Vanguardia) for the period 1999-2004 of the Dow Jones Factiva document database. "Smallpox" were used as a key word. From the obtained data, a qualitative and quantitative analysis was done. 416 reviews were analyzed; the newspaper El Mundo was the most interested in these news (158 citations, 37.98%). Most of the news were published in 2003 (152, 36.5%) The year with more news about smallpox (2003) coincides with the purchase of vaccines in Spain. The type of messages in the news was highly changeable over this six-year period. Those related to "politics and diplomacy", "epidemiological risk", "bioterrorism" and "vaccine" were predominant. The alarm raised around the smallpox vaccination was a media phenomenon due to political strategy issues rather than a real public health problem.

  19. [Should the human smallpox virus (variola) be destroyed?].

    Science.gov (United States)

    Tryland, Morten

    2004-10-21

    Smallpox, caused by variola virus, was a terror for civilizations around the world for more than 3000 years. Although the disease is eradicated, hundreds of variola virus isolates are kept in two WHO-collaborating facilities, one in USA and one in Russia. In spite of several agreements on destruction, it is now doubtful that these virus isolates will be destroyed. Variola virus may exist in other places and may be used as a biological weapon in war or for terror. Further research on variola virus is thus essential in order to achieve a better understanding of the pathogenicity of the virus and to develop new anti-variola virus vaccines and antiviral drugs.

  20. The World Health Organization and global smallpox eradication.

    Science.gov (United States)

    Bhattacharya, S

    2008-10-01

    This article examines the multifaceted structures and complex operations of the World Health Organization and its regional offices; it also reassesses the form and the workings of the global smallpox eradication programme with which these bodies were closely linked in the 1960s and 1970s. Using the case study of South Asia, it seeks to highlight the importance of writing nuanced histories of international health campaigns through an assessment of differences between official rhetoric and practice. The article argues that the detailed examination of the implementation of policy in a variety of localities, within and across national borders, allows us to recognise the importance of the agency of field managers and workers. This analytical approach also helps us acknowledge that communities were able to influence the shape and the timing of completion of public health campaigns in myriad ways. This, in turn, can provide useful pointers for the design and management of health programmes in the contemporary world.

  1. A brief history of vaccines: smallpox to the present.

    Science.gov (United States)

    Hsu, Jennifer L

    2013-01-01

    Modern vaccine history began in the late 18th century with the discovery of smallpox immunization by Edward Jenner. This pivotal step led to substantial progress in prevention of infectious diseases with inactivated vaccines for multiple infectious diseases, including typhoid, plague and cholera. Each advance produced significant decreases in infection-associated morbidity and mortality, thus shaping our modem cultures. As knowledge of microbiology and immunology grew through the 20th century, techniques were developed for cell culture of viruses. This allowed for rapid advances in prevention of polio, varicella, influenza and others. Finally, recent research has led to development of alternative vaccine strategies through use of vectored antigens, pathogen subunits (purified proteins or polysaccharides) or genetically engineered antigens. As the science of vaccinology continues to rapidly evolve, knowledge of the past creates added emphasis on the importance of developing safe and effective strategies for infectious disease prevention in the 21st century.

  2. Vaccinations against smallpox and tuberculosis are associated with better long-term survival

    DEFF Research Database (Denmark)

    Rieckmann, Andreas; Villumsen, Marie; Sørup, Signe

    2017-01-01

    to natural causes of death; those who only received BCG had an aHR of 0.58 (95% CI: 0.39-0.85). Vaccinia and BCG were not associated with any protection against deaths by accidents, suicide or murder, the combined aHR being 0.94 (95% CI: 0.62-1.42). CONCLUSIONS: Vaccinia and BCG vaccinations were associated...

  3. Are We Prepared in Case of a Possible Smallpox-Like Disease Emergence?

    Science.gov (United States)

    Olson, Victoria A.; Shchelkunov, Sergei N.

    2017-01-01

    Smallpox was the first human disease to be eradicated, through a concerted vaccination campaign led by the World Health Organization. Since its eradication, routine vaccination against smallpox has ceased, leaving the world population susceptible to disease caused by orthopoxviruses. In recent decades, reports of human disease from zoonotic orthopoxviruses have increased. Furthermore, multiple reports of newly identified poxviruses capable of causing human disease have occurred. These facts raise concerns regarding both the opportunity for these zoonotic orthopoxviruses to evolve and become a more severe public health issue, as well as the risk of Variola virus (the causative agent of smallpox) to be utilized as a bioterrorist weapon. The eradication of smallpox occurred prior to the development of the majority of modern virological and molecular biological techniques. Therefore, there is a considerable amount that is not understood regarding how this solely human pathogen interacts with its host. This paper briefly recounts the history and current status of diagnostic tools, vaccines, and anti-viral therapeutics for treatment of smallpox disease. The authors discuss the importance of further research to prepare the global community should a smallpox-like virus emerge.

  4. Vaccinia scars associated with better survival for adults. An observational study from Guinea-Bissau

    DEFF Research Database (Denmark)

    Aaby, Peter; Gustafson, Per; Roth, Adam Anders Edvin

    2006-01-01

    Live vaccines including BCG and measles may have non-targeted beneficial effects on childhood survival in areas with high mortality. The authors therefore undertook a survey of vaccinia scars to evaluate subsequent mortality....

  5. Studies on the serological relationships between avian pox, sheep pox, goat pox and vaccinia viruses

    Science.gov (United States)

    Uppal, P. K.; Nilakantan, P. R.

    1970-01-01

    By using neutralization, complement fixation and immunogel-diffusion tests, it has been demonstrated that cross-reactions occur between various avian pox viruses and between sheep pox and goat pox viruses. No such reactions were demonstrated between avian pox viruses and vaccinia virus or between avian pox and sheep pox and goat pox viruses. Furthermore, no serological relationship was demonstrable between vaccinia virus and sheep pox and goat pox viruses. PMID:4989854

  6. Resistance to Two Heterologous Neurotropic Oncolytic Viruses, Semliki Forest Virus and Vaccinia Virus, in Experimental Glioma

    Science.gov (United States)

    Le Boeuf, Fabrice; Lemay, Chantal; De Silva, Naomi; Diallo, Jean-Simon; Cox, Julie; Becker, Michelle; Choi, Youngmin; Ananth, Abhirami; Sellers, Clara; Breton, Sophie; Roy, Dominic; Falls, Theresa; Brun, Jan; Hemminki, Akseli; Hinkkanen, Ari; Bell, John C.

    2013-01-01

    Attenuated Semliki Forest virus (SFV) may be suitable for targeting malignant glioma due to its natural neurotropism, but its replication in brain tumor cells may be restricted by innate antiviral defenses. We attempted to facilitate SFV replication in glioma cells by combining it with vaccinia virus, which is capable of antagonizing such defenses. Surprisingly, we found parenchymal mouse brain tumors to be refractory to both viruses. Also, vaccinia virus appears to be sensitive to SFV-induced antiviral interference. PMID:23221568

  7. Early death after feline infectious peritonitis virus challenge due to recombinant vaccinia virus immunization.

    Science.gov (United States)

    Vennema, H; de Groot, R J; Harbour, D A; Dalderup, M; Gruffydd-Jones, T; Horzinek, M C; Spaan, W J

    1990-01-01

    The gene encoding the fusogenic spike protein of the coronavirus causing feline infectious peritonitis was recombined into the genome of vaccinia virus. The recombinant induced spike-protein-specific, in vitro neutralizing antibodies in mice. When kittens were immunized with the recombinant, low titers of neutralizing antibodies were obtained. After challenge with feline infectious peritonitis virus, these animals succumbed earlier than did the control group immunized with wild-type vaccinia virus (early death syndrome). Images PMID:2154621

  8. Modified vaccinia virus ankara recombinants are as potent as vaccinia recombinants in diversified prime and boost vaccine regimens to elicit therapeutic antitumor responses.

    Science.gov (United States)

    Hodge, James W; Poole, Diane J; Aarts, Wilhelmina M; Gómez Yafal, Alicia; Gritz, Linda; Schlom, Jeffrey

    2003-11-15

    Cancer vaccine regimens use various strategies to enhance immune responses to specific tumor-associated antigens (TAAs), including the increasing use of recombinant poxviruses [vaccinia (rV) and fowlpox (rF)] for delivery of the TAA to the immune system. However, the use of replication competent vectors with the potential of adverse reactions have made attenuation a priority for next-generation vaccine strategies. Modified vaccinia Ankara (MVA) is a replication defective form of vaccinia virus. Here, we investigated the use of MVA encoding a tumor antigen gene, carcinoembryonic antigen (CEA), in addition to multiple costimulatory molecules (B7-1, intercellular adhesion molecule-1, and lymphocyte function-associated antigen-3 designated TRICOM). Vaccination of mice with MVA-CEA/TRICOM induced potent CD4+ and CD8+ T-cell responses specific for CEA. MVA-CEA/TRICOM could be administered twice in vaccinia naïve mice and only a single time in vaccinia-immune mice before being inhibited by antivector-immune responses. The use of MVA-CEA/TRICOM in a diversified prime and boost vaccine regimen with rF-CEA/TRICOM, however, induced significantly greater levels of both CD4+ and CD8+ T-cell responses specific for CEA than that seen with rV-CEA/TRICOM prime and rF-CEA/TRICOM boost. In a self-antigen tumor model, the diversified MVA-CEA/TRICOM/rF-CEA/ TRICOM vaccination regimen resulted in a significant therapeutic antitumor response as measured by increased survival, when compared with the diversified prime and boost regimen, rV-CEA/TRICOM/rF-CEA/TRICOM. The studies reported here demonstrate that MVA, when used as a prime in a diversified vaccination, is clearly comparable with the regimen using the recombinant vaccinia in both the induction of cellular immune responses specific for the "self"-TAA transgene and in antitumor activity.

  9. Efficacy of tecovirimat (ST-246) in nonhuman primates infected with variola virus (Smallpox).

    Science.gov (United States)

    Mucker, Eric M; Goff, Arthur J; Shamblin, Joshua D; Grosenbach, Douglas W; Damon, Inger K; Mehal, Jason M; Holman, Robert C; Carroll, Darin; Gallardo, Nadia; Olson, Victoria A; Clemmons, Cody J; Hudson, Paul; Hruby, Dennis E

    2013-12-01

    Naturally occurring smallpox has been eradicated but remains a considerable threat as a biowarfare/bioterrorist weapon (F. Fleck, Bull. World Health Organ. 81:917-918, 2003). While effective, the smallpox vaccine is currently not recommended for routine use in the general public due to safety concerns (http://www.bt.cdc.gov/agent/smallpox/vaccination). Safe and effective countermeasures, particularly those effective after exposure to smallpox, are needed. Currently, SIGA Technologies is developing the small-molecule oral drug, tecovirimat (previously known as ST-246), as a postexposure therapeutic treatment of orthopoxvirus disease, including smallpox. Tecovirimat has been shown to be efficacious in preventing lethal orthopoxviral disease in numerous animal models (G. Yang, D. C. Pevear, M. H. Davies, M. S. Collett, T. Bailey, et al., J. Virol. 79:13139-13149, 2005; D. C. Quenelle, R. M. Buller, S. Parker, K. A. Keith, D. E. Hruby, et al., Antimicrob. Agents Chemother., 51:689-695, 2007; E. Sbrana, R. Jordan, D. E. Hruby, R. I. Mateo, S. Y. Xiao, et al., Am. J. Trop. Med. Hyg. 76:768-773, 2007). Furthermore, in clinical trials thus far, the drug appears to be safe, with a good pharmacokinetic profile. In this study, the efficacy of tecovirimat was evaluated in both a prelesional and postlesional setting in nonhuman primates challenged intravenously with 1 × 10(8) PFU of Variola virus (VARV; the causative agent of smallpox), a model for smallpox disease in humans. Following challenge, 50% of placebo-treated controls succumbed to infection, while all tecovirimat-treated animals survived regardless of whether treatment was started at 2 or 4 days postinfection. In addition, tecovirimat treatment resulted in dramatic reductions in dermal lesion counts, oropharyngeal virus shedding, and viral DNA circulating in the blood. Although clinical disease was evident in tecovirimat-treated animals, it was generally very mild and appeared to resolve earlier than in placebo

  10. Multifaceted contributions: health workers and smallpox eradication in India.

    Science.gov (United States)

    Bhattacharya, Sanjoy

    2008-01-01

    Smallpox eradication in South Asia was a result of the efforts of many grades of health-workers. Working from within the confines of international organisations and government structures, the role of the field officials, who were of various nationalities and also drawn from the cities and rural enclaves of the countries in these regions, was crucial to the development and deployment of policies. However, the role of these personnel is often downplayed in official histories and academic histories, which highlight instead the roles played by a handful of senior officials within the World Health Organization and the federal governments in the sub-continent. This article attempts to provide a more rounded assessment of the complex situation in the field. In this regard, an effort is made to underline the great usefulness of the operational flexibility displayed by field officers, wherein lessons learnt in the field were made an integral part of deploying local campaigns; careful engagement with the communities being targeted, as well as the employment of short term workers from amongst them, was an important feature of this work.

  11. [The court physician, the clergyman, a learned society and smallpox].

    Science.gov (United States)

    Hillen, H F P

    2017-01-01

    Variolation was introduced in England in the first half of the 18th century. The positive effects of this new method for preventing smallpox were already known in the Netherlands around 1720, one of whom was the Dutch physician Boerhaave. In spite of this, it took another 30 years before variolation was used in the Netherlands. Despite receiving positive advice and information from his learned English friends Sloane and Sherard, Boerhaave did not apply nor advise the use of variolation. There were various arguments for this restrained approach. In 1754 Thomas Schwencke found that conditions were favourable for the introduction of variolation in The Hague. There was support from the House of Orange-Nassau (the current royal family in the Netherlands) and from a learned society; a highly motivated clergyman acted as ambassador for the new technique and the court physician Schwencke was willing to take the lead. A similar combination had previously been effective in England, though the ambassador there was not a clergyman but an influential noble lady.

  12. SIMULTANEOUS BCG AND SMALLPOX VACCINATION ON NEWBORN INFANTS

    Directory of Open Access Journals (Sweden)

    Abdul Rivai

    2012-09-01

    Full Text Available Telah dikemukakan anggapan-anggapan yang terdapat dewasa ini tentang vaksinasi BCG dan cacar secara simultan. Telah dilakukan vaksinasi BCG dan cacar secara simultan pada 729 neonati dengan freeze dried Smallpox vaccine buatan dari Bio Farma dan freeze dried BCG vaccine Tokyo. Pencacaran dilakukan secara multiple puncture dan bifurcated needle dengan suntikan BCG dengan jarum dan spuit khusus intracutan dengan dosis 0,1 ml. Tuberkulin test dilakukan dengan PPD dari Kopenhagen dengan kekuatan 2 TU 9 minggu setelah vaksinasi. Dari 741 bayi yang diikut sertakan dalam survey, 12 menolak, 3 bayi tidak dapat dilakukan pemeriksaan pertama, 35 bayi belum diperiksa, pemeriksaan pertama telah dilakukan pada 691 bayi. Dari 406 bayi yang seharusnya sudah diperiksa untuk pemeriksaan kedua, 23 dapat dilakukan karena tidak dapat dijumpai atau meninggal. Telah dikemukakan bahwa pencatatan alamat yang jelas dan lengkap serta kesungguhan dalam melakukan home visits sangat penting untuk berhasilnya penyelidikan semacam ini. Dari hasil-hasil yang didapatkan sampai sekarang telah dapat diambil kesimpulan sementara, bahwa vaksinasi BCG dan cacar secara simultan memberikan hasil yang memuaskan, juga bila dibandingkan dengan hasil-hasil penyelidikan diluar negeri take pada pencacaran 99.4 percent, test tuberkulin dengan PPD 2 TU 9 minggu setelah vaksinasi memberikan indurasi lebih dari 5 mm pada 99.75 percent dan tidak menimbulkan komplikasi-komplikasi. Pelaksanaan vaksinasi BCG dan cacar dapat dilakukan oleh tenaga paramedis yang telah mendapat latihan khusus dan diawasi oleh dokter yang kompeten. Dianjurkan untuk melakukan follow up pada bayi-bayi yang diikut sertakan dalam survey ini.

  13. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus.

    Science.gov (United States)

    Alejo, Alí; Ruiz-Argüello, M Begoña; Ho, Yin; Smith, Vincent P; Saraiva, Margarida; Alcami, Antonio

    2006-04-11

    Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis.

  14. Tecovirimat, a p37 envelope protein inhibitor for the treatment of smallpox infection.

    Science.gov (United States)

    Duraffour, Sophie; Andrei, Graciela; Snoeck, Robert

    2010-03-01

    Since the eradication of naturally occurring smallpox in 1980, the fear that variola virus could be used as a biological weapon has become real. Over the last 10 years, emergency preparedness programs have been launched to protect populations against a smallpox outbreak or the possible emergence in humans of other orthopoxvirus infections, such as monkeypox. Vaccination against smallpox was responsible for its eradication, but was linked with high rates of adverse events and contraindications. In this context, intensive research in the poxvirus field has led to the development of safer vaccines and to an increase in the number of anti-poxvirus agents in the pipeline. SIGA Technologies Inc, under license from ViroPharma Inc, is developing tecovirimat (ST-246). Tecovirimat is a novel antiviral that inhibits the egress of orthopoxviruses by targeting viral p37 protein orthologs. The development of tecovirimat during the last 5 years for the treatment of smallpox and for its potential use as adjunct to smallpox vaccine is reviewed here.

  15. [Lessons learnt from the German smallpox outbreaks after World War II].

    Science.gov (United States)

    Sasse, Julia; Gelderblom, Hans R

    2015-07-01

    Even though smallpox was declared eradicated by WHO in 1980, it cannot be ruled out that the etiological variola virus could be used as a biological weapon. Undestroyed viruses from biowarfare programmes, virus strains left undetected in a freezer or dangerous recombinant poxvirus constructs could cause dangerous outbreaks in a relatively unprotected population. Despite an abundance of studies performed during the eradication of smallpox, epidemiological data for preparedness planning and outbreak control in modern, industrialized countries are scarce. Full-text hand search for the period from 1945 to 1975 in the main German public health journals. After World War II 12 smallpox outbreaks occurred in Germany. They were studied with the focus on the period of contagiousness, the protective effect of vaccination, booster-effect of revaccination and the place of infection. A total of 95 individuals contracted smallpox, including 10 fatalities. Despite having been previously vaccinated, 81 vaccinated persons came down with smallpox, yet 91% of them developed only mild symptoms. These patients presented a high risk for spreading the infection to contact persons due to misinterpretation of symptoms and the continuing social contacts. Basically, the risk of transmission in the first 2 to 3 days after onset of symptoms was low, thus facilitating antiepidemic measures. The importance of hospital preparedness is emphasized by the fact that most infections occurred in hospitals. The data analyzed provide valuable information for today's outbreak response planning and counter bioterrorism preparedness.

  16. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus

    Science.gov (United States)

    Alejo, Alí; Ruiz-Argüello, M. Begoña; Ho, Yin; Smith, Vincent P.; Saraiva, Margarida; Alcami, Antonio

    2006-01-01

    Variola virus (VaV) is the causative agent of smallpox, one of the most devastating diseases encountered by man, that was eradicated in 1980. The deliberate release of VaV would have catastrophic consequences on global public health. However, the mechanisms that contribute to smallpox pathogenesis are poorly understood at the molecular level. The ability of viruses to evade the host defense mechanisms is an important determinant of viral pathogenesis. Here we show that the tumor necrosis factor receptor (TNFR) homologue CrmB encoded by VaV functions not only as a soluble decoy TNFR but also as a highly specific binding protein for several chemokines that mediate recruitment of immune cells to mucosal surfaces and the skin, sites of virus entry and viral replication at late stages of smallpox. CrmB binds chemokines through its C-terminal domain, which is unrelated to TNFRs, was named smallpox virus-encoded chemokine receptor (SECRET) domain and uncovers a family of poxvirus chemokine inhibitors. An active SECRET domain was found in another viral TNFR (CrmD) and three secreted proteins encoded by orthopoxviruses. These findings identify a previously undescribed chemokine-binding and inhibitory domain unrelated to host chemokine receptors and a mechanism of immune modulation in VaV that may influence smallpox pathogenesis. PMID:16581912

  17. The efficacy and pharmacokinetics of brincidofovir for the treatment of lethal rabbitpox virus infection: a model of smallpox disease.

    Science.gov (United States)

    Trost, Lawrence C; Rose, Michelle L; Khouri, Jody; Keilholz, Laurie; Long, James; Godin, Stephen J; Foster, Scott A

    2015-05-01

    Brincidofovir (BCV) has broad-spectrum in vitro activity against dsDNA viruses, including smallpox, and is being developed as a treatment for smallpox as well as infections caused by other dsDNA viruses. BCV has previously been shown to be active in multiple animal models of smallpox. Here we present the results of a randomized, blinded, placebo-controlled study of the efficacy and pharmacokinetics of a novel, "humanized" regimen of BCV for treatment of New Zealand White rabbits infected with a highly lethal inoculum of rabbitpox virus, a well characterized model of smallpox. Compared with placebo, a dose-dependent increase in survival was observed in all BCV-treatment groups. Concentrations of cidofovir diphosphate (CDV-PP), the active antiviral, in rabbit peripheral blood mononuclear cells (PBMCs) were determined for comparison to those produced in humans at the dose proposed for treatment of smallpox. CDV-PP exposure in PBMCs from rabbits given BCV scaled to human exposures at the dose proposed for treatment of smallpox, which is also currently under evaluation for other indications. The results of this study demonstrate the activity of BCV in the rabbitpox model of smallpox and the feasibility of scaling doses efficacious in the model to a proposed human dose and regimen for treatment of smallpox. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Transmission patterns of smallpox: Systematic review of natural outbreaks in Europe and North America since World War II

    NARCIS (Netherlands)

    V. Bhatnagar (Vibha); M.A. Stoto (Michael); S.C. Morton (Sally); R. Boer (Rob); S.A. Bozzette (Samuel)

    2006-01-01

    textabstractBackground: Because smallpox (variola major) may be used as a biological weapon, we reviewed outbreaks in post-World War II Europe and North America in order to understand smallpox transmission patterns. Methods: A systematic review was used to identify papers from the National Library

  19. The eradication of smallpox: organizational learning and innovation in international health administration.

    Science.gov (United States)

    Hopkins, J W

    1988-04-01

    The WHO smallpox eradication campaign represents perhaps the best example of a successful international health administration. In the 1st year of the campaign (1967), the guiding strategy was to vaccinate people en masse over a 2-3 year period in countries where smallpox was epidemic thereby conquering the disease. In Western Nigeria where 90% of the population had been vaccinated, a smallpox outbreak occurred in a religious sect resisting vaccinations and a delay in delivery of supplies forced a change in strategy. Campaign staff learned to rapidly isolate infected persons and swiftly vaccinate the uninfected in an outbreak area in order to break the transmission of smallpox, even where 1/2 the population had been vaccinated. Technological advancements also contributed to the campaign's success. For example, the jet injector vaccinated 1000 people/hour with efficient, reliable, mass produced potent, stable freeze dried vaccines (often produced in target countries) or the less costly and virtually maintenance free bifurcated needle was used. The most significant contribution to the success of the campaign, however, was the flexible mode of management adopted by the campaign staff at WHO which provided an appropriate environment for organizational learning and innovation. Although management was open and flexible, the campaign did depend on careful planning and setting of goals, continual assessment, and rapid response to field requests for assistance or advice. Trends in the incidence of smallpox was chosen as the indicator of success as opposed to the number of vaccinations. The campaign demonstrated the need for cultural adaptations as it operated in each country and region. This evaluation of the success of the smallpox campaign presents conclusions that serve as guidelines to the organization and administration of international programs designed to solve other health problems.

  20. Navigation and history of science: The smallpox Royal Expedition (Balmis and Salvany

    Directory of Open Access Journals (Sweden)

    Ignacio Jáuregui-Lobera

    2018-02-01

    Full Text Available By the end of 18th Century, smallpox killed about 400,000 citizens per year in Europe with a highest outbreak peak in 1796. This year, Edward Jenner discovered the smallpox vaccine and after being introduced in Spain, the King of Spain was asked to help American people against the disease. The transport of a fluid such delicate as the vaccine from a continent to another in extremely difficult sea voyages, which lasted several months, without electricity for keeping the cold chain, seemed impossible. Nevertheless Balmis and Salvany succeeded, by means of hundreds of orphans. Their bodies served as means of vaccine transport.

  1. Non-coding RNAs and heme oxygenase-1 in vaccinia virus infection

    International Nuclear Information System (INIS)

    Meseda, Clement A.; Srinivasan, Kumar; Wise, Jasen; Catalano, Jennifer; Yamada, Kenneth M.; Dhawan, Subhash

    2014-01-01

    Highlights: • Heme oxygenase-1 (HO-1) induction inhibited vaccinia virus infection of macrophages. • Reduced infectivity inversely correlated with increased expression of non-coding RNAs. • The regulation of HO-1 and ncRNAs suggests a novel host defense response against vaccinia virus infection. - Abstract: Small nuclear RNAs (snRNAs) are <200 nucleotide non-coding uridylate-rich RNAs. Although the functions of many snRNAs remain undetermined, a population of snRNAs is produced during the early phase of infection of cells by vaccinia virus. In the present study, we demonstrate a direct correlation between expression of the cytoprotective enzyme heme oxygenase-1 (HO-1), suppression of selective snRNA expression, and inhibition of vaccinia virus infection of macrophages. Hemin induced HO-1 expression, completely reversed virus-induced host snRNA expression, and suppressed vaccinia virus infection. This involvement of specific virus-induced snRNAs and associated gene clusters suggests a novel HO-1-dependent host-defense pathway in poxvirus infection

  2. New effective chemically synthesized anti-smallpox compound NIOCH-14.

    Science.gov (United States)

    Mazurkov, Oleg Yu; Kabanov, Alexey S; Shishkina, Larisa N; Sergeev, Alexander A; Skarnovich, Maksim O; Bormotov, Nikolay I; Skarnovich, Maria A; Ovchinnikova, Alena S; Titova, Ksenya A; Galahova, Darya O; Bulychev, Leonid E; Sergeev, Artemiy A; Taranov, Oleg S; Selivanov, Boris A; Tikhonov, Alexey Ya; Zavjalov, Evgenii L; Agafonov, Alexander P; Sergeev, Alexander N

    2016-05-01

    Antiviral activity of the new chemically synthesized compound NIOCH-14 (a derivative of tricyclodicarboxylic acid) in comparison with ST-246 (the condensed derivative of pyrroledione) was observed in experiments in vitro and in vivo using orthopoxviruses including highly pathogenic ones. After oral administration of NIOCH-14 to outbred ICR mice infected intranasally with 100 % lethal dose of ectromelia virus, it was shown that 50 % effective doses of NIOCH-14 and ST-246 did not significantly differ. The 'therapeutic window' varied from 1 day before infection to 6 days post-infection (p.i.) to achieve 100-60 % survival rate. The administration of NIOCH-14 and ST-246 to mice resulted in a significant reduction of ectromelia virus titres in organs examined as compared with the control and also reduced pathological changes in the lungs 6 days p.i. Oral administration of NIOCH-14 and ST-246 to ICR mice and marmots challenged with monkeypox virus as compared with the control resulted in a significant reduction of virus production in the lungs and the proportion of infected mice 7 days p.i. as well as the absence of disease in marmots. Significantly lower proportions of infected mice and virus production levels in the lungs as compared with the control were demonstrated in experiments after oral administration of NIOCH-14 and ST-246 to ICR mice and immunodeficient SCID mice challenged with variola virus 3 and 4 days p.i., respectively. The results obtained suggest good prospects for further study of the chemical compound NIOCH-14 to create a new smallpox drug on its basis.

  3. JST Thesaurus Headwords and Synonyms: vaccinia virus [MeCab user dictionary for science technology term[Archive

    Lifescience Database Archive (English)

    Full Text Available MeCab user dictionary for science technology term vaccinia virus 名詞 一般 * * * * ワクシニ...アウイルス ワクシニアウイルス ワクシニアウイルス Thesaurus2015 200906001583798830 C LS07 UNKNOWN_2 vaccinia virus

  4. A novel system for constructing a recombinant highly-attenuated vaccinia virus strain (LC16m8) expressing foreign genes and its application for the generation of LC16m8-based vaccines against herpes simplex virus 2.

    Science.gov (United States)

    Omura, Natsumi; Yoshikawa, Tomoki; Fujii, Hikaru; Shibamura, Miho; Inagaki, Takuya; Kato, Hirofumi; Egawa, Kazutaka; Harada, Shizuko; Yamada, Souichi; Takeyama, Haruko; Saijo, Masayuki

    2018-04-27

    A novel system was developed for generating a highly-attenuated vaccinia virus LC16m8 (m8, third generation smallpox vaccine) that expresses foreign genes. The innovations in this system are its excisable selection marker, specificity of the integration site of a gene of interest, and easy identification of clones with the fluorescent signal. Using this system, recombinant m8s, which expressed either herpes simplex virus 2 (HSV-2) glycoprotein B (gB)-, gD-, or both gB and gD (gB+gD) were developed, and their efficacy was evaluated. First, the induction of a specific IgG against these HSV-2 glycoproteins in mice infected with each of these recombinant m8s was confirmed with an immunofluorescence assay. Next, mice pre-infected with each of the recombinant m8s were infected with HSV-2 at the lethal dose to examine the vaccine efficacy. The fatality rate in mice pre-infected with either of the recombinant gB+gD- or gD-expressing m8s significantly decreased in comparison with that of the control. The survival rate in both male and female mice pre-infected with either of the recombinant gB+gD- and gD-expressing m8s increased to 100 % and 60 %, respectively, while most of the control mice died. In summary, this new system might be applicable for generating a novel m8-based vaccine.

  5. Smallpox in the modern scientific and colonial contexts 1721–1840

    Indian Academy of Sciences (India)

    2011-09-23

    Sep 23, 2011 ... Home; Journals; Journal of Biosciences; Volume 36; Issue 5. Smallpox in the modern scientific and colonial contexts 1721–1840. Rajesh Kochhar. Perspectives Volume 36 Issue 5 December 2011 pp 761-768. Fulltext. Click here to view fulltext PDF. Permanent link:

  6. Les hasards de la variole The hazards of smallpox

    Directory of Open Access Journals (Sweden)

    Jean-Marc Rohrbasser

    2011-12-01

    Full Text Available La nécessité d’un calcul ayant pour fin d’estimer un risque peut être révoquée en doute lorsqu’il s’agit de prendre une décision en situation d’incertitude, a fortiori lorsqu’il s’agit d’une question de vie ou de mort. Dans la controverse engagée sur l’opportunité d’inoculer la variole, la position de D’Alembert constitue un cas exemplaire de scepticisme portant sur l’application des mathématiques, et en l’occurrence du calcul des probabilités, à des décisions relatives à la vie humaine. D’Alembert, en effet, conteste aux mathématiques sociales le pouvoir de rendre compte de phénomènes humains en y cherchant des régularités et des formalisations sans dissocier les dimensions mathématiques et probabilistes des dimensions philosophiques et éthiques. En suivant le débat qui, au milieu du xviiie siècle, se déroule entre le mathématicien français et son homologue suisse Daniel Bernoulli, on assiste à l’un des épisodes de la lente gestation des notions de prise de risque, de décision et de rationalité.The necessity of a calculation aiming to evaluate a risk can be revoked in doubt when the question is to make a decision in a situation of uncertainty, all the more when the question is about life or death. In the controversy opened on the opportunity to inoculate the smallpox, D'Alembert’s position constitutes an exemplary case of scepticism concerning the application of the mathematics, and in this particular case the probability theory, to decisions relative to the human life. D’Alembert, indeed, disputes in the social mathematics the power to describe human phenomena by looking for regularities and for formalizations without separating the mathematical and probability dimensions of the philosophic and ethical ones. By following the debate which, in the middle of the 18th century, takes place between the French mathematician and his Swiss counterpart Daniel Bernoulli, we attend one of the

  7. Attenuation of vaccinia virus by the expression of human Flt3 ligand

    Czech Academy of Sciences Publication Activity Database

    Žurková, K.; Hainz, P.; Kryštofová, J.; Kutinová, L.; Šanda, Miloslav; Němečková, Š.

    2010-01-01

    Roč. 7, č. 1 (2010), 109/1-109/15 ISSN 1743-422X Institutional research plan: CEZ:AV0Z40550506 Keywords : vaccinia virus * antibodies * virulence Subject RIV: CE - Biochemistry Impact factor: 2.546, year: 2010

  8. Relationship between RNA polymerase II and efficiency of vaccinia virus replication

    International Nuclear Information System (INIS)

    Wilton, S.; Dales, S.

    1989-01-01

    It is clear from previous studies that host transcriptase or RNA polymerase II (pol II) has a role in poxvirus replication. To elucidate the participation of this enzyme further, in this study the authors examined several parameters related to pol II during the cycle of vaccinia virus infection in L-strain fibroblasts, HeLa cells, and L 6 H 9 rat myoblasts. Nucleocytoplasmic transposition of pol II into virus factories and virions was assessed by immunofluorescence and immunoblotting by using anti-pol II immunoglobulin G. RNA polymerase activities were compared in nuclear extracts containing cured enzyme preparations. Rates of translation into cellular or viral polypeptides were ascertained by labeling with [ 35 S]methionine. In L and HeLa cells, which produced vaccinia virus more abundantly, the rate of RNA polymerase and translation in controls and following infection were higher than in myoblasts. The data on synthesis and virus formation could be correlated with observations on transmigration of pol II, which was more efficient and complete in L and HeLa cells. The stimulus for pol II to leave the nucleus required the expression of both early and late viral functions. On the basis of current and past information, the authors suggest that mobilization of pol II depends on the efficiency of vaccinia virus replication and furthermore that control over vaccinia virus production by the host is related to the content or availability (or both) of pol II in different cell types

  9. Susceptibility of Marmosets (Callithrix jacchus) to Monkeypox Virus: A Low Dose Prospective Model for Monkeypox and Smallpox Disease.

    Science.gov (United States)

    Mucker, Eric M; Chapman, Jennifer; Huzella, Louis M; Huggins, John W; Shamblin, Joshua; Robinson, Camenzind G; Hensley, Lisa E

    2015-01-01

    Although current nonhuman primate models of monkeypox and smallpox diseases provide some insight into disease pathogenesis, they require a high titer inoculum, use an unnatural route of infection, and/or do not accurately represent the entire disease course. This is a concern when developing smallpox and/or monkeypox countermeasures or trying to understand host pathogen relationships. In our studies, we altered half of the test system by using a New World nonhuman primate host, the common marmoset. Based on dose finding studies, we found that marmosets are susceptible to monkeypox virus infection, produce a high viremia, and have pathological features consistent with smallpox and monkeypox in humans. The low dose (48 plaque forming units) required to elicit a uniformly lethal disease and the extended incubation (preclinical signs) are unique features among nonhuman primate models utilizing monkeypox virus. The uniform lethality, hemorrhagic rash, high viremia, decrease in platelets, pathology, and abbreviated acute phase are reflective of early-type hemorrhagic smallpox.

  10. The Spanish royal philanthropic expedition to bring smallpox vaccination to the New World and Asia in the 19th century.

    Science.gov (United States)

    Franco-Paredes, Carlos; Lammoglia, Lorena; Santos-Preciado, José Ignacio

    2005-11-01

    The New World was ravaged by smallpox for several centuries after the Spanish conquest. Jenner's discovery of the smallpox vaccine made possible the prevention and control of smallpox epidemics. In response to a large outbreak of smallpox in the Spanish colonies, King Charles IV appointed Francisco Xavier de Balmis to lead an expedition that would introduce Jenner's vaccine to these colonies. During the journey, the vaccine was kept viable by passing it from arm to arm in orphaned children, who were brought along expressly for that purpose and remained under the care of the orphanage's director. This expedition was the first large scale mass vaccination of its kind. The historic legacy of this pioneering event in international health should be revisited in the current era of persistent inequalities in global health.

  11. Immune responses to the smallpox vaccine given in combination with ST-246, a small-molecule inhibitor of poxvirus dissemination

    OpenAIRE

    Grosenbach, Douglas W.; Jordan, Robert; King, David S.; Berhanu, Aklile; Warren, Travis K.; Kirkwood-Watts, Dana L.; Tyavanagimatt, Shanthakumar; Tan, Ying; Wilson, Rebecca L.; Jones, Kevin F.; Hruby, Dennis E.

    2007-01-01

    The re-emerging threat of smallpox and the emerging threat of monkeypox highlight the need for effective poxvirus countermeasures. Currently approved smallpox vaccines have unacceptable safety profiles and, consequently, the general populace is no longer vaccinated, leading to an increasingly susceptible population. ST-246, a small-molecule inhibitor of poxvirus dissemination, has been demonstrated in various animal models to be safe and effective in preventing poxviral disease. This suggests...

  12. Dominant negative selection of vaccinia virus using a thymidine kinase/thymidylate kinase fusion gene and the prodrug azidothymidine

    International Nuclear Information System (INIS)

    Holzer, Georg W.; Mayrhofer, Josef; Gritschenberger, Werner; Falkner, Falko G.

    2005-01-01

    The Escherichia coli thymidine kinase/thymidylate kinase (tk/tmk) fusion gene encodes an enzyme that efficiently converts the prodrug 3'-azido-2',3'-dideoxythymidine (AZT) into its toxic triphosphate derivative, a substance which stops DNA chain elongation. Integration of this marker gene into vaccinia virus that normally is not inhibited by AZT allowed the establishment of a powerful selection procedure for recombinant viruses. In contrast to the conventional vaccinia thymidine kinase (tk) selection that is performed in tk-negative cell lines, AZT selection can be performed in normal (tk-positive) cell lines. The technique is especially useful for the generation of replication-deficient vaccinia viruses and may also be used for gene knock-out studies of essential vaccinia genes

  13. Vaccinia virus recombinants expressing chimeric proteins of human immunodeficiency virus and gamma interferon are attenuated for nude mice.

    OpenAIRE

    Giavedoni, L D; Jones, L; Gardner, M B; Gibson, H L; Ng, C T; Barr, P J; Yilma, T

    1992-01-01

    We have developed a method for attenuating vaccinia virus recombinants by expressing a fusion protein of a lymphokine and an immunogen. Chimeric genes were constructed that coded for gamma interferon (IFN-gamma) and structural proteins of the human immunodeficiency virus type 1 (HIV-1). In this study, we describe the biological and immunological properties of vaccinia virus recombinants expressing chimeric genes of murine or human IFN-gamma with glycoprotein gp120, gag, and a fragment of gp41...

  14. The First Smallpox Epidemic on the Canadian Plains: In the Fur-traders' Words

    Directory of Open Access Journals (Sweden)

    C Stuart Houston

    2000-01-01

    Full Text Available William Tomison, in charge of the Hudson's Bay Company's Cumberland House on the Saskatchewan River, described the devastating smallpox epidemic of 1781 and 1782. He understood contagion, practised isolation and disinfection, and provided mortality statistics during a 'virgin soil' epidemic. Above all, he showed remarkable compassion. He and his men took dying Indians into their already crowded quarters, and provided them with food, shelter and 24 h care. This article describes the epidemic and its aftermath.

  15. Risk of Inflammatory Bowel Disease following Bacille Calmette-Guérin and Smallpox Vaccination

    DEFF Research Database (Denmark)

    Villumsen, Anne Marie; Jess, Tine; Sørup, Signe

    2013-01-01

    Childhood immunology has been suggested to play a role in development of inflammatory bowel disease (IBD) based on the studies of childhood vaccinations, infections, and treatment with antibiotics. Bacille Calmette-Guérin (BCG) and smallpox vaccinations were gradually phased-out in Denmark...... for children born between 1965 and 1976, hence allowing the study of subsequent risk of Crohn's disease and ulcerative colitis in a unique prospective design....

  16. Comment: Characterization of Two Historic Smallpox Specimens from a Czech Museum

    OpenAIRE

    Porter, Ashleigh F.; Duggan, Ana T.; Poinar, Hendrik N.; Holmes, Edward C.

    2017-01-01

    The complete genome sequences of two strains of variola virus (VARV) sampled from human smallpox specimens present in the Czech National Museum, Prague, were recently determined, with one of the sequences estimated to date to the mid-19th century. Using molecular clock methods, the authors of this study go on to infer that the currently available strains of VARV share an older common ancestor, at around 1350 AD, than some recent estimates based on other archival human samples. Herein, we show...

  17. Extracting key information from historical data to quantify the transmission dynamics of smallpox

    Directory of Open Access Journals (Sweden)

    Brockmann Stefan O

    2008-08-01

    Full Text Available Abstract Background Quantification of the transmission dynamics of smallpox is crucial for optimizing intervention strategies in the event of a bioterrorist attack. This article reviews basic methods and findings in mathematical and statistical studies of smallpox which estimate key transmission parameters from historical data. Main findings First, critically important aspects in extracting key information from historical data are briefly summarized. We mention different sources of heterogeneity and potential pitfalls in utilizing historical records. Second, we discuss how smallpox spreads in the absence of interventions and how the optimal timing of quarantine and isolation measures can be determined. Case studies demonstrate the following. (1 The upper confidence limit of the 99th percentile of the incubation period is 22.2 days, suggesting that quarantine should last 23 days. (2 The highest frequency (61.8% of secondary transmissions occurs 3–5 days after onset of fever so that infected individuals should be isolated before the appearance of rash. (3 The U-shaped age-specific case fatality implies a vulnerability of infants and elderly among non-immune individuals. Estimates of the transmission potential are subsequently reviewed, followed by an assessment of vaccination effects and of the expected effectiveness of interventions. Conclusion Current debates on bio-terrorism preparedness indicate that public health decision making must account for the complex interplay and balance between vaccination strategies and other public health measures (e.g. case isolation and contact tracing taking into account the frequency of adverse events to vaccination. In this review, we summarize what has already been clarified and point out needs to analyze previous smallpox outbreaks systematically.

  18. [About smallpox and vaccination practices in Minas Gerais (Brazil) in the 19th century].

    Science.gov (United States)

    Silveira, Anny Jackeline Torres; Marques, Rita de Cássia

    2011-02-01

    This article discusses the impact of smallpox and vaccination practices used against the disease used in the province of Minas Gerais, in Brazil, during the Imperial Period (1822-1889). Despite the existence of services responsible for the organization and dissemination of the vaccine in the country since the early 19th century, some administrative and cultural factors, as identified in documents produced by the province's public health authorities at the time, had a negative impact upon the full implementation of both practice and organization of services aimed at the dissemination of smallpox vaccination. Based upon historiographic sources, it is argued that despite the trend towards centralization observed at different governmental spheres during the structuring of the Imperial State, in particular, in the provision of vaccination services, there was a prevailing disharmony between the different agencies responsible for the implementation and management of such services. A further contributor to the difficulties in the service implementation was the resistance of the population to submit to the vaccination, a phenomenon that can be best understood through examination of the social construction of perceptions about diseases and the vaccination method used against the smallpox.

  19. Using ICR and SCID mice as animal models for smallpox to assess antiviral drug efficacy.

    Science.gov (United States)

    Titova, Ksenya A; Sergeev, Alexander A; Zamedyanskaya, Alena S; Galahova, Darya O; Kabanov, Alexey S; Morozova, Anastasia A; Bulychev, Leonid E; Sergeev, Artemiy A; Glotova, Tanyana I; Shishkina, Larisa N; Taranov, Oleg S; Omigov, Vladimir V; Zavjalov, Evgenii L; Agafonov, Alexander P; Sergeev, Alexander N

    2015-09-01

    The possibility of using immunocompetent ICR mice and immunodeficient SCID mice as model animals for smallpox to assess antiviral drug efficacy was investigated. Clinical signs of the disease did not appear following intranasal (i.n.) challenge of mice with strain Ind-3a of variola virus (VARV), even when using the highest possible dose of the virus (5.2 log10 p.f.u.). The 50 % infective doses (ID50) of VARV, estimated by the virus presence or absence in the lungs 3 and 4 days post-infection, were 2.7 ± 0.4 log10 p.f.u. for ICR mice and 3.5 ± 0.7 log10 p.f.u. for SCID mice. After i.n. challenge of ICR and SCID mice with VARV 30 and 50 ID50, respectively, steady reproduction of the virus occurred only in the respiratory tract (lungs and nose). Pathological inflammatory destructive changes were revealed in the respiratory tract and the primary target cells for VARV (macrophages and epithelial cells) in mice, similar to those in humans and cynomolgus macaques. The use of mice to assess antiviral efficacies of NIOCH-14 and ST-246 demonstrated the compliance of results with those described in scientific literature, which opens up the prospect of their use as an animal model for smallpox to develop anti-smallpox drugs intended for humans.

  20. [The real philanthropic expedition of the smallpox vaccine: monarchy and modernity in 1803].

    Science.gov (United States)

    Rigau-Pérez, José G

    2004-09-01

    Smallpox resulted in the death of 30 % of those who acquired it, so the preventive method discovered by Edward Jenner (London, 1798) spread very quickly. At the request in 1803 of Carlos IV, king of Spain, his government evaluated offers to carry smallpox vaccine to the colonies. The selected proposal, by doctor Francisco Xavier de Balmis, sought to take the lymph to America and Asia in a chain of arm to arm vaccination of foundlings. The Expedition set sail from Corunna on November 30, 1803, stopped in the Canary Isles, Puerto Rico, and Venezuela and after Caracas (1804) split in two groups. Balmis led some members of the Expedition to Cuba and Mexico. For the trip to the Philippines, in 1805, parents lent their children in exchange for economic compensation and the promise that the boys would be returned home. The Expedition returned to Mexico in August, 1807, but Balmis separately took vaccine to China and returned to Spain. Another contingent of the Expedition, under vice-director José Salvany, took vaccine to what we know as Colombia, Ecuador, Peru and Bolivia. His assistant Manuel Grajales reached the Chilean Patagonia in 1811. This article also comments on three principal themes - the institutional management of the scientific project, the conflicts that characterized its course, and the children's experience. The Vaccine Expedition was a brave and humanitarian endeavor, but also an extraordinary sanitary and administrative success. It was not until the twentieth century that a global eradication campaign eliminated smallpox in the world.

  1. SWOT analysis: strengths, weaknesses, opportunities and threats of the Israeli Smallpox Revaccination Program.

    Science.gov (United States)

    Huerta, Michael; Balicer, Ran D; Leventhal, Alex

    2003-01-01

    During September 2002, Israel began its current revaccination program against smallpox, targeting previously vaccinated "first responders" among medical and emergency workers. In order to identify the potential strengths and weaknesses of this program and the conditions under which critical decisions were reached, we conducted a SWOT analysis of the current Israeli revaccination program, designed to identify its intrinsic strengths and weaknesses, as well as opportunities for its success and threats against it. SWOT analysis--a practical tool for the study of public health policy decisions and the social and political contexts in which they are reached--revealed clear and substantial strengths and weaknesses of the current smallpox revaccination program, intrinsic to the vaccine itself. A number of threats were identified that may jeopardize the success of the current program, chief among them the appearance of severe complications of vaccination. Our finding of a lack of a generation of knowledge on smallpox vaccination highlights the need for improved physician education and dissipation of misconceptions that are prevalent in the public today.

  2. Introduction: simultaneously global and local: reassessing smallpox vaccination and its spread, 1789-1900.

    Science.gov (United States)

    Bhattacharya, Sanjoy; Brimnes, Niels

    2009-01-01

    The last two decades have seen a reawakening of scholarly interest in the history of smallpox prevention. Accounts of vaccination and others efforts at controlling smallpox have moved away from heroic narratives toward more nuanced and contextualized understandings. It is now accepted that several viruses traveled under the vaccine label from the outset, and it has been demonstrated that a variety of techniques were used to perform vaccination operations. The character of nineteenth century sea voyages that took the vaccine to distant territories has also been re-examined; sometimes the spread of the vaccine was caused by private networks and ad hoc decisions, while at other times it was the result of enterprises with close resemblances to contemporary centralized vaccination campaigns. Looking beyond Europe and North America we encounter a variety of state attitudes toward vaccination, ranging from concentrated efforts to spread the technique to efforts more uncertain and diluted. Although the reluctance to accept vaccination has been amply documented, recent studies emphasize this should not be attributed to simplistic dichotomies of modernity versus tradition or science versus culture; instead, instances of resistance are best studied as specific contextualized interactions. Indeed, factors like favorable geography, strong bureaucratic structures, and the absence of variolation seem to have helped the relatively smooth transfer of vaccination technologies. Perhaps most important, recent research encourages us to continue to study smallpox vaccination as a phenomenon that was simultaneously global and local.

  3. Pre-Clinical Efficacy and Safety of Experimental Vaccines Based on Non-Replicating Vaccinia Vectors against Yellow Fever

    Science.gov (United States)

    Schäfer, Birgit; Holzer, Georg W.; Joachimsthaler, Alexandra; Coulibaly, Sogue; Schwendinger, Michael; Crowe, Brian A.; Kreil, Thomas R.; Barrett, P. Noel; Falkner, Falko G.

    2011-01-01

    Background Currently existing yellow fever (YF) vaccines are based on the live attenuated yellow fever virus 17D strain (YFV-17D). Although, a good safety profile was historically attributed to the 17D vaccine, serious adverse events have been reported, making the development of a safer, more modern vaccine desirable. Methodology/Principal Findings A gene encoding the precursor of the membrane and envelope (prME) protein of the YFV-17D strain was inserted into the non-replicating modified vaccinia virus Ankara and into the D4R-defective vaccinia virus. Candidate vaccines based on the recombinant vaccinia viruses were assessed for immunogenicity and protection in a mouse model and compared to the commercial YFV-17D vaccine. The recombinant live vaccines induced γ-interferon-secreting CD4- and functionally active CD8-T cells, and conferred full protection against lethal challenge already after a single low immunization dose of 105 TCID50. Surprisingly, pre-existing immunity against wild-type vaccinia virus did not negatively influence protection. Unlike the classical 17D vaccine, the vaccinia virus-based vaccines did not cause mortality following intracerebral administration in mice, demonstrating better safety profiles. Conclusions/Significance The non-replicating recombinant YF candidate live vaccines induced a broad immune response after single dose administration, were effective even in the presence of a pre-existing immunity against vaccinia virus and demonstrated an excellent safety profile in mice. PMID:21931732

  4. Pre-clinical efficacy and safety of experimental vaccines based on non-replicating vaccinia vectors against yellow fever.

    Directory of Open Access Journals (Sweden)

    Birgit Schäfer

    Full Text Available BACKGROUND: Currently existing yellow fever (YF vaccines are based on the live attenuated yellow fever virus 17D strain (YFV-17D. Although, a good safety profile was historically attributed to the 17D vaccine, serious adverse events have been reported, making the development of a safer, more modern vaccine desirable. METHODOLOGY/PRINCIPAL FINDINGS: A gene encoding the precursor of the membrane and envelope (prME protein of the YFV-17D strain was inserted into the non-replicating modified vaccinia virus Ankara and into the D4R-defective vaccinia virus. Candidate vaccines based on the recombinant vaccinia viruses were assessed for immunogenicity and protection in a mouse model and compared to the commercial YFV-17D vaccine. The recombinant live vaccines induced γ-interferon-secreting CD4- and functionally active CD8-T cells, and conferred full protection against lethal challenge already after a single low immunization dose of 10(5 TCID(50. Surprisingly, pre-existing immunity against wild-type vaccinia virus did not negatively influence protection. Unlike the classical 17D vaccine, the vaccinia virus-based vaccines did not cause mortality following intracerebral administration in mice, demonstrating better safety profiles. CONCLUSIONS/SIGNIFICANCE: The non-replicating recombinant YF candidate live vaccines induced a broad immune response after single dose administration, were effective even in the presence of a pre-existing immunity against vaccinia virus and demonstrated an excellent safety profile in mice.

  5. L1R, A27L, A33R and B5R vaccinia virus genes expressed by fowlpox recombinants as putative novel orthopoxvirus vaccines

    OpenAIRE

    Pacchioni, Sole Maria; Bissa, Massimiliano; Zanotto, Carlo; Morghen, Carlo De Giuli; Illiano, Elena; Radaelli, Antonia

    2013-01-01

    Background The traditional smallpox vaccine, administered by scarification, was discontinued in the general population from 1980, because of the absence of new smallpox cases. However, the development of an effective prophylactic vaccine against smallpox is still necessary, to protect from the threat of deliberate release of the variola virus for bioterrorism and from new zoonotic infections, and to improve the safety of the traditional vaccine. Preventive vaccination still remains the most e...

  6. Characterization of a new Vaccinia virus isolate reveals the C23L gene as a putative genetic marker for autochthonous Group 1 Brazilian Vaccinia virus.

    Directory of Open Access Journals (Sweden)

    Felipe L Assis

    Full Text Available Since 1999, several Vaccinia virus (VACV isolates, the etiological agents of bovine vaccinia (BV, have been frequently isolated and characterized with various biological and molecular methods. The results from these approaches have grouped these VACV isolates into two different clusters. This dichotomy has elicited debates surrounding the origin of the Brazilian VACV and its epidemiological significance. To ascertain vital information to settle these debates, we and other research groups have made efforts to identify molecular markers to discriminate VACV from other viruses of the genus Orthopoxvirus (OPV and other VACV-BR groups. In this way, some genes have been identified as useful markers to discriminate between the VACV-BR groups. However, new markers are needed to infer ancestry and to correlate each sample or group with its unique epidemiological and biological features. The aims of this work were to characterize a new VACV isolate (VACV DMTV-2005 molecularly and biologically using conserved and non-conserved gene analyses for phylogenetic inference and to search for new genes that would elucidate the VACV-BR dichotomy. The VACV DMTV-2005 isolate reported in this study is biologically and phylogenetically clustered with other strains of Group 1 VACV-BR, the most prevalent VACV group that was isolated during the bovine vaccinia outbreaks in Brazil. Sequence analysis of C23L, the gene that encodes for the CC-chemokine-binding protein, revealed a ten-nucleotide deletion, which is a new Group 1 Brazilian VACV genetic marker. This deletion in the C23L open reading frame produces a premature stop-codon that is shared by all Group 1 VACV-BR strains and may also reflect the VACV-BR dichotomy; the deletion can also be considered to be a putative genetic marker for non-virulent Brazilian VACV isolates and may be used for the detection and molecular characterization of new isolates.

  7. Specific proteins synthesized during the viral lytic cycle in vaccinia virus-infected HeLa cells: analysis by high-resolution, two-dimensional gel electrophoresis

    International Nuclear Information System (INIS)

    Carrasco, L.; Bravo, R.

    1986-01-01

    The proteins synthesized in vaccinia-infected HeLa cells have been analyzed at different times after infection by using two-dimensional gel electrophoresis. Vaccinia-infected cells present up to 198 polypeptides (138 acidic, isoelectric focusing; 60 basic, nonequilibrium pH gradient electrophoresis) not detected in control cells. Cells infected in the presence of cycloheximide show 81 additional polypeptides after cycloheximide removal, resulting in a total estimate of 279 proteins induced after vaccinia infection. The glycoproteins made at various time postinfection were also analyzed. At least 13 proteins labeled with [ 3 H]glucosamine were detected in vaccinia-infected HeLa cells

  8. The primary immune response to Vaccinia virus vaccination includes cells with a distinct cytotoxic effector CD4 T-cell phenotype.

    Science.gov (United States)

    Munier, C Mee Ling; van Bockel, David; Bailey, Michelle; Ip, Susanna; Xu, Yin; Alcantara, Sheilajen; Liu, Sue Min; Denyer, Gareth; Kaplan, Warren; Suzuki, Kazuo; Croft, Nathan; Purcell, Anthony; Tscharke, David; Cooper, David A; Kent, Stephen J; Zaunders, John J; Kelleher, Anthony D

    2016-10-17

    Smallpox was eradicated by a global program of inoculation with Vaccinia virus (VV). Robust VV-specific CD4 T-cell responses during primary infection are likely essential to controlling VV replication. Although there is increasing interest in cytolytic CD4 T-cells across many viral infections, the importance of these cells during acute VV infection is unclear. We undertook a detailed functional and genetic characterization of CD4 T-cells during acute VV-infection of humans. VV-specific T-cells were identified by up-regulation of activation markers directly ex vivo and through cytokine and co-stimulatory molecule expression. At day-13-post primary inoculation with VV, CD38highCD45RO+ CD4 T-cells were purified by cell sorting, RNA isolated and analysed by microarray. Differential expression of up-regulated genes in activated CD4 T-cells was confirmed at the mRNA and protein levels. We compared analyses of VV-specific CD4 T-cells to studies on 12 subjects with primary HIV infection (PHI). VV-specific T-cells lines were established from PBMCs collected post vaccination and checked for cytotoxicity potential. A median 11.9% CD4 T-cells were CD38highCD45RO+ at day-13 post-VV inoculation, compared to 3.0% prior and 10.4% during PHI. Activated CD4 T-cells had an up-regulation of genes related to cytolytic function, including granzymes K and A, perforin, granulysin, TIA-1, and Rab27a. No difference was seen between CD4 T-cell expression of perforin or TIA-1 to VV and PHI, however granzyme k was more dominant in the VV response. At 25:1 effector to target ratio, two VV-specific T-cell lines exhibited 62% and 30% cytotoxicity respectively and CD107a degranulation. We show for the first time that CD4 CTL are prominent in the early response to VV. Understanding the role of CD4 CTL in the generation of an effective anti-viral memory may help develop more effective vaccines for diseases such as HIV. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  9. Development and evaluation of single domain antibodies for vaccinia and the L1 antigen.

    Directory of Open Access Journals (Sweden)

    Scott A Walper

    Full Text Available There is ongoing interest to develop high affinity, thermal stable recognition elements to replace conventional antibodies in biothreat detection assays. As part of this effort, single domain antibodies that target vaccinia virus were developed. Two llamas were immunized with killed viral particles followed by boosts with the recombinant membrane protein, L1, to stimulate the immune response for envelope and membrane proteins of the virus. The variable domains of the induced heavy chain antibodies were selected from M13 phage display libraries developed from isolated RNA. Selection via biopanning on the L1 antigen produced single domain antibodies that were specific and had affinities ranging from 4×10(-9 M to 7.0×10(-10 M, as determined by surface plasmon resonance. Several showed good ability to refold after heat denaturation. These L1-binding single domain antibodies, however, failed to recognize the killed vaccinia antigen. Useful vaccinia binding single domain antibodies were isolated by a second selection using the killed virus as the target. The virus binding single domain antibodies were incorporated in sandwich assays as both capture and tracer using the MAGPIX system yielding limits of detection down to 4×10(5 pfu/ml, a four-fold improvement over the limit obtained using conventional antibodies. This work demonstrates the development of anti-vaccinia single domain antibodies and their incorporation into sandwich assays for viral detection. It also highlights the properties of high affinity and thermal stability that are hallmarks of single domain antibodies.

  10. Initial characterization of Vaccinia Virus B4 suggests a role in virus spread

    International Nuclear Information System (INIS)

    Burles, Kristin; Irwin, Chad R.; Burton, Robyn-Lee; Schriewer, Jill; Evans, David H.; Buller, R. Mark; Barry, Michele

    2014-01-01

    Currently, little is known about the ankyrin/F-box protein B4. Here, we report that B4R-null viruses exhibited reduced plaque size in tissue culture, and decreased ability to spread, as assessed by multiple-step growth analysis. Electron microscopy indicated that B4R-null viruses still formed mature and extracellular virions; however, there was a slight decrease of virions released into the media following deletion of B4R. Deletion of B4R did not affect the ability of the virus to rearrange actin; however, VACV811, a large vaccinia virus deletion mutant missing 55 open reading frames, had decreased ability to produce actin tails. Using ectromelia virus, a natural mouse pathogen, we demonstrated that virus devoid of EVM154, the B4R homolog, showed decreased spread to organs and was attenuated during infection. This initial characterization suggests that B4 may play a role in virus spread, and that other unidentified mediators of actin tail formation may exist in vaccinia virus. - Highlights: • B4R-null viruses show reduced plaque size, and decreased ability to spread. • B4R-null viruses formed mature and extracellular virions; and rearranged actin. • Virus devoid of EVM154, the B4R homolog, was attenuated during infection. • Initial characterization suggests that B4 may play a role in virus spread. • Unidentified mediators of actin tail formation may exist in vaccinia virus

  11. Initial characterization of Vaccinia Virus B4 suggests a role in virus spread

    Energy Technology Data Exchange (ETDEWEB)

    Burles, Kristin; Irwin, Chad R.; Burton, Robyn-Lee [Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada T6G 2S2 (Canada); Schriewer, Jill [Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO (United States); Evans, David H. [Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada T6G 2S2 (Canada); Buller, R. Mark [Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO (United States); Barry, Michele, E-mail: michele.barry@ualberta.ca [Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada T6G 2S2 (Canada)

    2014-05-15

    Currently, little is known about the ankyrin/F-box protein B4. Here, we report that B4R-null viruses exhibited reduced plaque size in tissue culture, and decreased ability to spread, as assessed by multiple-step growth analysis. Electron microscopy indicated that B4R-null viruses still formed mature and extracellular virions; however, there was a slight decrease of virions released into the media following deletion of B4R. Deletion of B4R did not affect the ability of the virus to rearrange actin; however, VACV811, a large vaccinia virus deletion mutant missing 55 open reading frames, had decreased ability to produce actin tails. Using ectromelia virus, a natural mouse pathogen, we demonstrated that virus devoid of EVM154, the B4R homolog, showed decreased spread to organs and was attenuated during infection. This initial characterization suggests that B4 may play a role in virus spread, and that other unidentified mediators of actin tail formation may exist in vaccinia virus. - Highlights: • B4R-null viruses show reduced plaque size, and decreased ability to spread. • B4R-null viruses formed mature and extracellular virions; and rearranged actin. • Virus devoid of EVM154, the B4R homolog, was attenuated during infection. • Initial characterization suggests that B4 may play a role in virus spread. • Unidentified mediators of actin tail formation may exist in vaccinia virus.

  12. Permissivity of the NCI-60 cancer cell lines to oncolytic Vaccinia Virus GLV-1h68

    International Nuclear Information System (INIS)

    Ascierto, Maria Libera; Bedognetti, Davide; Uccellini, Lorenzo; Rossano, Fabio; Ascierto, Paolo A; Stroncek, David F; Restifo, Nicholas P; Wang, Ena; Szalay, Aladar A; Marincola, Francesco M; Worschech, Andrea; Yu, Zhiya; Adams, Sharon; Reinboth, Jennifer; Chen, Nanhai G; Pos, Zoltan; Roychoudhuri, Rahul; Di Pasquale, Giovanni

    2011-01-01

    Oncolytic viral therapy represents an alternative therapeutic strategy for the treatment of cancer. We previously described GLV-1h68, a modified Vaccinia Virus with exclusive tropism for tumor cells, and we observed a cell line-specific relationship between the ability of GLV-1h68 to replicate in vitro and its ability to colonize and eliminate tumor in vivo. In the current study we surveyed the in vitro permissivity to GLV-1h68 replication of the NCI-60 panel of cell lines. Selected cell lines were also tested for permissivity to another Vaccinia Virus and a vesicular stomatitis virus (VSV) strain. In order to identify correlates of permissity to viral infection, we measured transcriptional profiles of the cell lines prior infection. We observed highly heterogeneous permissivity to VACV infection amongst the cell lines. The heterogeneity of permissivity was independent of tissue with the exception of B cell derivation. Cell lines were also tested for permissivity to another Vaccinia Virus and a vesicular stomatitis virus (VSV) strain and a significant correlation was found suggesting a common permissive phenotype. While no clear transcriptional pattern could be identified as predictor of permissivity to infection, some associations were observed suggesting multifactorial basis permissivity to viral infection. Our findings have implications for the design of oncolytic therapies for cancer and offer insights into the nature of permissivity of tumor cells to viral infection

  13. Vaccinia-based influenza vaccine overcomes previously induced immunodominance hierarchy for heterosubtypic protection.

    Science.gov (United States)

    Kwon, Ji-Sun; Yoon, Jungsoon; Kim, Yeon-Jung; Kang, Kyuho; Woo, Sunje; Jung, Dea-Im; Song, Man Ki; Kim, Eun-Ha; Kwon, Hyeok-Il; Choi, Young Ki; Kim, Jihye; Lee, Jeewon; Yoon, Yeup; Shin, Eui-Cheol; Youn, Jin-Won

    2014-08-01

    Growing concerns about unpredictable influenza pandemics require a broadly protective vaccine against diverse influenza strains. One of the promising approaches was a T cell-based vaccine, but the narrow breadth of T-cell immunity due to the immunodominance hierarchy established by previous influenza infection and efficacy against only mild challenge condition are important hurdles to overcome. To model T-cell immunodominance hierarchy in humans in an experimental setting, influenza-primed C57BL/6 mice were chosen and boosted with a mixture of vaccinia recombinants, individually expressing consensus sequences from avian, swine, and human isolates of influenza internal proteins. As determined by IFN-γ ELISPOT and polyfunctional cytokine secretion, the vaccinia recombinants of influenza expanded the breadth of T-cell responses to include subdominant and even minor epitopes. Vaccine groups were successfully protected against 100 LD50 challenges with PR/8/34 and highly pathogenic avian influenza H5N1, which contained the identical dominant NP366 epitope. Interestingly, in challenge with pandemic A/Cal/04/2009 containing mutations in the dominant epitope, only the group vaccinated with rVV-NP + PA showed improved protection. Taken together, a vaccinia-based influenza vaccine expressing conserved internal proteins improved the breadth of influenza-specific T-cell immunity and provided heterosubtypic protection against immunologically close as well as distant influenza strains. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Transmission patterns of smallpox: systematic review of natural outbreaks in Europe and North America since World War II

    Directory of Open Access Journals (Sweden)

    Boer Rob

    2006-05-01

    Full Text Available Abstract Background Because smallpox (variola major may be used as a biological weapon, we reviewed outbreaks in post-World War II Europe and North America in order to understand smallpox transmission patterns. Methods A systematic review was used to identify papers from the National Library of Medicine, Embase, Biosis, Cochrane Library, Defense Technical Information Center, WorldCat, and reference lists of included publications. Two authors reviewed selected papers for smallpox outbreaks. Results 51 relevant outbreaks were identified from 1,389 publications. The median for the effective first generation reproduction rate (initial R was 2 (range 0–38. The majority outbreaks were small (less than 5 cases and contained within one generation. Outbreaks with few hospitalized patients had low initial R values (median of 1 and were prolonged if not initially recognized (median of 3 generations; outbreaks with mostly hospitalized patients had higher initial R values (median 12 and were shorter (median of 3 generations. Index cases with an atypical presentation of smallpox were less likely to have been diagnosed with smallpox; outbreaks in which the index case was not correctly diagnosed were larger (median of 27.5 cases and longer (median of 3 generations compared to outbreaks in which the index case was correctly diagnosed (median of 3 cases and 1 generation. Conclusion Patterns of spread during Smallpox outbreaks varied with circumstances, but early detection and implementation of control measures is a most important influence on the magnitude of outbreaks. The majority of outbreaks studied in Europe and North America were controlled within a few generations if detected early.

  15. High-dimensional gene expression profiling studies in high and low responders to primary smallpox vaccination.

    Science.gov (United States)

    Haralambieva, Iana H; Oberg, Ann L; Dhiman, Neelam; Ovsyannikova, Inna G; Kennedy, Richard B; Grill, Diane E; Jacobson, Robert M; Poland, Gregory A

    2012-11-15

    The mechanisms underlying smallpox vaccine-induced variations in immune responses are not well understood, but are of considerable interest to a deeper understanding of poxvirus immunity and correlates of protection. We assessed transcriptional messenger RNA expression changes in 197 recipients of primary smallpox vaccination representing the extremes of humoral and cellular immune responses. The 20 most significant differentially expressed genes include a tumor necrosis factor-receptor superfamily member, an interferon (IFN) gene, a chemokine gene, zinc finger protein genes, nuclear factors, and histones (P ≤ 1.06E(-20), q ≤ 2.64E(-17)). A pathway analysis identified 4 enriched pathways with cytokine production by the T-helper 17 subset of CD4+ T cells being the most significant pathway (P = 3.42E(-05)). Two pathways (antiviral actions of IFNs, P = 8.95E(-05); and IFN-α/β signaling pathway, P = 2.92E(-04)), integral to innate immunity, were enriched when comparing high with low antibody responders (false discovery rate, < 0.05). Genes related to immune function and transcription (TLR8, P = .0002; DAPP1, P = .0003; LAMP3, P = 9.96E(-05); NR4A2, P ≤ .0002; EGR3, P = 4.52E(-05)), and other genes with a possible impact on immunity (LNPEP, P = 3.72E(-05); CAPRIN1, P = .0001; XRN1, P = .0001), were found to be expressed differentially in high versus low antibody responders. We identified novel and known immunity-related genes and pathways that may account for differences in immune response to smallpox vaccination.

  16. Genome sequence diversity and clues to the evolution of variola (smallpox) virus.

    Science.gov (United States)

    Esposito, Joseph J; Sammons, Scott A; Frace, A Michael; Osborne, John D; Olsen-Rasmussen, Melissa; Zhang, Ming; Govil, Dhwani; Damon, Inger K; Kline, Richard; Laker, Miriam; Li, Yu; Smith, Geoffrey L; Meyer, Hermann; Leduc, James W; Wohlhueter, Robert M

    2006-08-11

    Comparative genomics of 45 epidemiologically varied variola virus isolates from the past 30 years of the smallpox era indicate low sequence diversity, suggesting that there is probably little difference in the isolates' functional gene content. Phylogenetic clustering inferred three clades coincident with their geographical origin and case-fatality rate; the latter implicated putative proteins that mediate viral virulence differences. Analysis of the viral linear DNA genome suggests that its evolution involved direct descent and DNA end-region recombination events. Knowing the sequences will help understand the viral proteome and improve diagnostic test precision, therapeutics, and systems for their assessment.

  17. Host range restriction of vaccinia virus in Chinese hamster ovary cells: relationship to shutoff of protein synthesis

    International Nuclear Information System (INIS)

    Drillien, R.; Spehner, D.; Kirn, A.

    1978-01-01

    Chinese hamster ovary cells were found to be nonpermissive for vaccinia virus. Although early virus-induced events occurred in these cells (RNA and polypeptide synthesis), subsequent events appeared to be prevented by a very rapid and nonselective shutoff of protein synthesis. Within less than 2 h after infection, both host and viral protein syntheses were arrested. At low multiplicities of infection, inhibition of RNA synthesis with cordycepin resulted in failure of the virus to block protein synthesis. Moreover, infection of the cells in the presence of cycloheximide prevented the immediate onset of shutoff after reversal of cycloheximide. Inactivation of virus particles by uv irradiation also impaired the capacity of the virus to inhibit protein synthesis. These results suggested that an early vaccinia virus-coded product was implicated in the shutoff of protein synthesis. Either the nonpermissive Chinese hamster ovary cells were more sensitive to this inhibition than permissive cells, or a regulatory control of the vaccinia shutoff function was defective

  18. Effect of Interferon, Polyacrylic Acid, and Polymethacrylic Acid on Tail Lesions in Mice Infected with Vaccinia Virus

    Science.gov (United States)

    De Clercq, E.; De Somer, P.

    1968-01-01

    Intravenous inoculation of mice with vaccinia virus produced characteristic lesions of the tail surface which were suppressed by intraperitoneal administration of interferon and polyacrylic acid (PAA). Polymethacrylic acid (PMAA) stimulated the formation of vaccinia virus lesions. For full activity, both interferon and PAA must be given prior to infection. PAA was still significantly effective at small dose levels (3 mg/kg) and achieved protection for at least 4 weeks. Protection increased with increasing molecular weight of the polymer. The mode of action of PAA is discussed. PMID:5676405

  19. Can vaccinia virus be replaced by MVA virus for testing virucidal activity of chemical disinfectants?

    Directory of Open Access Journals (Sweden)

    Rapp Ingrid

    2010-06-01

    Full Text Available Abstract Background Vaccinia virus strain Lister Elstree (VACV is a test virus in the DVV/RKI guidelines as representative of the stable enveloped viruses. Since the potential risk of laboratory-acquired infections with VACV persists and since the adverse effects of vaccination with VACV are described, the replacement of VACV by the modified vaccinia Ankara strain (MVA was studied by testing the activity of different chemical biocides in three German laboratories. Methods The inactivating properties of different chemical biocides (peracetic acid, aldehydes and alcohols were tested in a quantitative suspension test according to the DVV/RKI guideline. All tests were performed with a protein load of 10% fetal calf serum with both viruses in parallel using different concentrations and contact times. Residual virus was determined by endpoint dilution method. Results The chemical biocides exhibited similar virucidal activity against VACV and MVA. In three cases intra-laboratory differences were determined between VACV and MVA - 40% (v/v ethanol and 30% (v/v isopropanol are more active against MVA, whereas MVA seems more stable than VACV when testing with 0.05% glutardialdehyde. Test accuracy across the three participating laboratories was high. Remarkably inter-laboratory differences in the reduction factor were only observed in two cases. Conclusions Our data provide valuable information for the replacement of VACV by MVA for testing chemical biocides and disinfectants. Because MVA does not replicate in humans this would eliminate the potential risk of inadvertent inoculation with vaccinia virus and disease in non-vaccinated laboratory workers.

  20. Cambios en virus vaccinia durante la síntesis de RNA in vitro

    Directory of Open Access Journals (Sweden)

    Julio Enrique Ospina

    1971-01-01

    Full Text Available Observaciones al microscopio electrónico de virus vaccinia previamente incubados en una mezcla para la reacción de RNA polimerasa in vitro, demuestran características alteraciones morfológicas en los virus. Estructuras similares a vesículas y ocasionalmente túbulos se formaron a partir de la membrana externa del virus. Uno de los sustituyentes de la reacción de RNA polimerasa in vitro, mercaptoetanol 0.007M, es el causante de esta alteración. El cambio morfológico se acompaña de pérdida de la infectividad viral. La presencia de grupos sulfhidrilo en la mezcla de la reacción enzimática es esencial para la ocurrencia de la síntesis de RNA de vaccinia in vitro. Esta condición no se pudo sustituir por choque térmico a 70C. ni por digestión parcial del virus por tripsina. Una gran variedad de compuestos con grupos sulfhidrilo pueden reemplazar el mercaptoetanol con efectividad variable. El más activo de ellos fué el ditiotreitol. Un período de latencia de 8 minutos ocurre entre la adición de vaccinia a la mezcla completa para la reacción de RNA polimerasa y la detección de síntesis de RNA. Los datos recolectados sugieren que cambios dependientes del mercaptoetanol ocurren durante este período.

  1. Smallpox virus resequencing GeneChips can also rapidly ascertain species status for some zoonotic non-variola orthopoxviruses.

    Science.gov (United States)

    Sulaiman, Irshad M; Sammons, Scott A; Wohlhueter, Robert M

    2008-04-01

    We recently developed a set of seven resequencing GeneChips for the rapid sequencing of Variola virus strains in the WHO Repository of the Centers for Disease Control and Prevention. In this study, we attempted to hybridize these GeneChips with some known non-Variola orthopoxvirus isolates, including monkeypox, cowpox, and vaccinia viruses, for rapid detection.

  2. Vectores recombinantes basados en el virus Vaccinia modificado de Ankara (MVA) como vacunas contra la leishmaniasis

    OpenAIRE

    Pérez Jiménez, Eva; Larraga, Vicente; Esteban, Mariano

    2005-01-01

    Vectores recombinantes basados en el virus vaccinia modificado de Ankara (MVA) como vacunas contra la leishmaniasis. Los vectores de la invención contienen secuencias codificantes de la proteína LACK, preferentemente insertadas en el locus de hemaglutinina del virus y bajo el control de un promotor que permite su expresión a lo largo del ciclo de infección del virus. Son vectores seguros, estables, que dan lugar a una potente respuesta inmune que confiere protección frente a la leishmaniasis,...

  3. The prevention and eradication of smallpox: a commentary on Sloane (1755) ‘An account of inoculation’

    Science.gov (United States)

    Weiss, Robin A.; Esparza, José

    2015-01-01

    Sir Hans Sloane's account of inoculation as a means to protect against smallpox followed several earlier articles published in Philosophical Transactions on this procedure. Inoculation (also called ‘variolation’) involved the introduction of small amounts of infectious material from smallpox vesicles into the skin of healthy subjects, with the goal of inducing mild symptoms that would result in protection against the more severe naturally acquired disease. It began to be practised in England in 1721 thanks to the efforts of Lady Mary Wortley Montagu who influenced Sloane to promote its use, including the inoculation of the royal family's children. When Edward Jenner's inoculation with the cow pox (‘vaccination’) followed 75 years later as a safer yet equally effective procedure, the scene was set for the eventual control of smallpox epidemics culminating in the worldwide eradication of smallpox in 1977, officially proclaimed by WHO in 1980. Here, we discuss the significance of variolation and vaccination with respect to scientific, public health and ethical controversies concerning these ‘weapons of mass protection’. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750241

  4. From smallpox eradication to contemporary global health initiatives: enhancing human capacity towards a global public health goal.

    Science.gov (United States)

    Tarantola, Daniel; Foster, Stanley O

    2011-12-30

    The eradication of smallpox owes its success first and foremost to the thousands of lay health workers and community members who, throughout the campaign and across continents, took on the roles of advocates, educators, vaccinators, care providers and contributors to epidemic surveillance and containment. Bangladesh provides a good example where smallpox eradication and the capacity enhancement needed to achieve this goal resulted in a two-way mutually beneficial process. Smallpox-dedicated staff provided community members with information guidance, support and tools. In turn, communities not only created the enabling environment for smallpox program staff to perform their work but acquired the capacity to perform essential eradication tasks. Contemporary global health programmes can learn much from these core lessons including: the pivotal importance of supporting community aspirations, capacity and resilience; the critical need to enhance commitment, capacity and accountability across the workforce; and the high value of attentive human resources management and support. We owe to subsequent global disease control, elimination and eradication ventures recognition of the need for social and behavioural science to inform public health strategies; the essential roles that civil society organizations and public-private partnerships can play in public health discourse and action; the overall necessity of investing in broad-based health system strengthening; and the utility of applying human rights principles, norms and standards to public health policy and practice. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  5. Intracellular Transport of Vaccinia Virus in HeLa Cells Requires WASH-VPEF/FAM21-Retromer Complexes and Recycling Molecules Rab11 and Rab22

    Science.gov (United States)

    Hsiao, Jye-Chian; Chu, Li-Wei; Lo, Yung-Tsun; Lee, Sue-Ping; Chen, Tzu-Jung; Huang, Cheng-Yen

    2015-01-01

    ABSTRACT Vaccinia virus, the prototype of the Orthopoxvirus genus in the family Poxviridae, infects a wide range of cell lines and animals. Vaccinia mature virus particles of the WR strain reportedly enter HeLa cells through fluid-phase endocytosis. However, the intracellular trafficking process of the vaccinia mature virus between cellular uptake and membrane fusion remains unknown. We used live imaging of single virus particles with a combination of various cellular vesicle markers, to track fluorescent vaccinia mature virus particle movement in cells. Furthermore, we performed functional interference assays to perturb distinct vesicle trafficking processes in order to delineate the specific route undertaken by vaccinia mature virus prior to membrane fusion and virus core uncoating in cells. Our results showed that vaccinia virus traffics to early endosomes, where recycling endosome markers Rab11 and Rab22 are recruited to participate in subsequent virus trafficking prior to virus core uncoating in the cytoplasm. Furthermore, we identified WASH-VPEF/FAM21-retromer complexes that mediate endosome fission and sorting of virus-containing vesicles prior to virus core uncoating in the cytoplasm. IMPORTANCE Vaccinia mature virions of the WR strain enter HeLa cells through fluid phase endocytosis. We previously demonstrated that virus-containing vesicles are internalized into phosphatidylinositol 3-phosphate positive macropinosomes, which are then fused with Rab5-positive early endosomes. However, the subsequent process of sorting the virion-containing vesicles prior to membrane fusion remains unclear. We dissected the intracellular trafficking pathway of vaccinia mature virions in cells up to virus core uncoating in cytoplasm. We show that vaccinia mature virions first travel to early endosomes. Subsequent trafficking events require the important endosome-tethered protein VPEF/FAM21, which recruits WASH and retromer protein complexes to the endosome. There, the complex

  6. Long-lasting stability of vaccinia virus (orthopoxvirus) in food and environmental samples.

    Science.gov (United States)

    Essbauer, S; Meyer, H; Porsch-Ozcürümez, M; Pfeffer, M

    2007-01-01

    Poxviruses are known to remain infectious in the scabs of patients for months to years. The aim of this study was to investigate viral stability in storm water, food or gauze spiked with vaccinia virus strain Munich 1 (VACV M1). Storm water, storm water supplemented with either fetal calf serum (FCS) or potting soil was stored at two different temperatures (refrigerator, room temperature; 4 degrees C/25 degrees C). In addition, we analysed the viability of VACV M1 on the surface of bread, salad, sausages and gauze bandages stored at 4 degrees C. Samples were titrated in MA 104 cells and the presence of viral DNA was demonstrated by orthopoxvirus-specific PCRs. After 2 weeks, reisolation of VACV M1 from all kinds of food, bandage and water samples except for storm water supplemented with potting soil was possible. Viral DNA was detected in almost all samples by PCR. Prolonged experiments with VACV M1-spiked storm water and storm water supplemented with FCS revealed that samples kept at 4.5 degrees C are infectious for up to 166 days. Our data demonstrate that VACV M1 has a longlasting stability in water and food. The results obtained during this study should be taken into account for risk assessment calculations for poxvirus transmission. Implying that variola virus and vaccinia virus behave in a similar way, our data call for sophisticated countermeasures in cases of a variola release in biological warfare.

  7. Molecular genetic analysis of a vaccinia virus gene with an essential role in DNA replication

    International Nuclear Information System (INIS)

    Evans, E.V.A.

    1989-01-01

    The poxvirus, vaccinia, is large DNA virus which replicates in the cytoplasma of the host cell. The virus is believed to encode most or all of the functions required for the temporally regulated transcription and replication of its 186 kilobase genome. Physical and genetic autonomy from the host make vaccinia a useful eukaryotic organism in which to study replication genes and proteins, using a combination of biochemical and genetic techniques. Essential viral functions for replication are identified by conditional lethal mutants that fail to synthesize DNA at the non-permissive temperatures. One such group contains the non-complementing alleles ts17, ts24, ts69 (WR strain). Studies were undertaken to define the phenotype of ts mutants, and to identify and characterize the affected gene and protein. Mutant infection was essentially normal at 32 degree C, but at 39 degree C the mutants did not incorporate 3 H-thymidine into nascent viral DNA or synthesize late viral proteins. If mutant cultures were shifted to non-permissive conditions at the height of replication, DNA synthesis was halted rapidly, implying that the mutants are defective in DNA elongation. The gene affected in the WR mutants and in ts6389, a DNA-minus mutant of the IHD strain, was mapped by marker rescue and corresponds to open reading frame 5 (orfD5) of the viral HindIII D fragment

  8. Preclinical evaluation of oncolytic vaccinia virus for therapy of canine soft tissue sarcoma.

    Directory of Open Access Journals (Sweden)

    Ivaylo Gentschev

    Full Text Available Virotherapy using oncolytic vaccinia virus (VACV strains is one promising new strategy for canine cancer therapy. In this study we describe the establishment of an in vivo model of canine soft tissue sarcoma (CSTS using the new isolated cell line STSA-1 and the analysis of the virus-mediated oncolytic and immunological effects of two different Lister VACV LIVP1.1.1 and GLV-1h68 strains against CSTS. Cell culture data demonstrated that both tested VACV strains efficiently infected and destroyed cells of the canine soft tissue sarcoma line STSA-1. In addition, in our new canine sarcoma tumor xenograft mouse model, systemic administration of LIVP1.1.1 or GLV-1h68 viruses led to significant inhibition of tumor growth compared to control mice. Furthermore, LIVP1.1.1 mediated therapy resulted in almost complete tumor regression and resulted in long-term survival of sarcoma-bearing mice. The replication of the tested VACV strains in tumor tissues led to strong oncolytic effects accompanied by an intense intratumoral infiltration of host immune cells, mainly neutrophils. These findings suggest that the direct viral oncolysis of tumor cells and the virus-dependent activation of tumor-associated host immune cells could be crucial parts of anti-tumor mechanism in STSA-1 xenografts. In summary, the data showed that both tested vaccinia virus strains and especially LIVP1.1.1 have great potential for effective treatment of CSTS.

  9. Microbiota is an essential element for mice to initiate a protective immunity against Vaccinia virus.

    Science.gov (United States)

    Lima, Maurício T; Andrade, Ana C S P; Oliveira, Graziele P; Calixto, Rafael S; Oliveira, Danilo B; Souza, Éricka L S; Trindade, Giliane S; Nicoli, Jacques R; Kroon, Erna G; Martins, Flaviano S; Abrahão, Jônatas S

    2016-02-01

    The gastrointestinal tract of vertebrates harbors one of the most complex ecosystems known in microbial ecology and this indigenous microbiota almost always has a profound influence on host-parasite relationships, which can enhance or reduce the pathology of the infection. In this context, the impact of the microbiota during the infection of several viral groups remains poorly studied, including the family Poxviridae. Vaccinia virus (VACV) is a member of this family and is the causative agent of bovine vaccinia, responsible for outbreaks that affect bovines and humans. To determine the influence of the microbiota in the development of the disease caused by VACV, a comparative study using a murine model was performed. Germ-free and conventional, 6- to 7-week-old Swiss NIH mice were infected by tail scarification and intranasally with VACV. Moreover, immunosuppression and microbiota reposition were performed, to establish the interactions among the host's immune system, microbiota and VACV. The data demonstrate that the microbiota is essential for the effective immune response of mice against VACV in intranasal inoculation and to control the virus at the primary site of infection. Furthermore, this study is the first to show that Swiss conventional mice are refractory to the intranasal infection of VACV. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Fine structure of the vaccinia virion determined by controlled degradation and immunolocalization

    International Nuclear Information System (INIS)

    Moussatche, Nissin; Condit, Richard C.

    2015-01-01

    The vaccinia virion is a membraned, slightly flattened, barrel-shaped particle, with a complex internal structure featuring a biconcave core flanked by lateral bodies. Although the architecture of the purified mature virion has been intensely characterized by electron microscopy, the distribution of the proteins within the virion has been examined primarily using biochemical procedures. Thus, it has been shown that non-ionic and ionic detergents combined or not with a sulfhydryl reagent can be used to disrupt virions and, to a limited degree, separate the constituent proteins in different fractions. Applying a controlled degradation technique to virions adsorbed on EM grids, we were able to immuno-localize viral proteins within the virion particle. Our results show after NP40 and DTT treatment, membrane proteins are removed from the virion surface revealing proteins that are associated with the lateral bodies and the outer layer of the core wall. Combined treatment using high salt and high DTT removed lateral body proteins and exposed proteins of the internal core wall. Cores treated with proteases could be disrupted and the internal components were exposed. Cts8, a mutant in the A3 protein, produces aberrant virus that, when treated with NP-40 and DTT, releases to the exterior the virus DNA associated with other internal core proteins. With these results, we are able to propose a model for the structure the vaccinia virion

  11. Middle east respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus ankara efficiently induces virus-neutralizing antibodies

    NARCIS (Netherlands)

    F. Song (Fei); R. Fux (Robert); L.B.V. Provacia (Lisette); A. Volz (Asisa); M. Eickmann; S. Becker (Stephan); A.D.M.E. Osterhaus (Albert); B.L. Haagmans (Bart); G. Suttera (Gerd)

    2013-01-01

    textabstractMiddle East respiratory syndrome coronavirus (MERS-CoV) has recently emerged as a causative agent of severe respiratory disease in humans. Here, we constructed recombinant modified vaccinia virus Ankara (MVA) expressing full-length MERS-CoV spike (S) protein (MVA-MERS-S). The genetic

  12. Mutations Conferring Resistance to Viral DNA Polymerase Inhibitors in Camelpox Virus Give Different Drug-Susceptibility Profiles in Vaccinia Virus

    Czech Academy of Sciences Publication Activity Database

    Duraffour, S.; Andrei, G.; Topalis, D.; Krečmerová, Marcela; Crance, J. M.; Garin, D.; Snoeck, R.

    2012-01-01

    Roč. 86, č. 13 (2012), s. 7310-7325 ISSN 0022-538X Institutional support: RVO:61388963 Keywords : camelpox virus * CMLV * vaccinia virus VACV * acyclic nucleoside phosphonates * HPMPDAP * cidofovir * drug resistance Subject RIV: CC - Organic Chemistry Impact factor: 5.076, year: 2012

  13. Improved protection conferred by vaccination with a recombinant vaccinia virus that incorporates a foreign antigen into the extracellular enveloped virion

    International Nuclear Information System (INIS)

    Kwak, Heesun; Mustafa, Waleed; Speirs, Kendra; Abdool, Asha J.; Paterson, Yvonne; Isaacs, Stuart N.

    2004-01-01

    Recombinant poxviruses have shown promise as vaccine vectors. We hypothesized that improved cellular immune responses could be developed to a foreign antigen by incorporating it as part of the extracellular enveloped virion (EEV). We therefore constructed a recombinant vaccinia virus that replaced the cytoplasmic domain of the B5R protein with a test antigen, HIV-1 Gag. Mice immunized with the virus expressing Gag fused to B5R had significantly better primary CD4 T-cell responses than recombinant virus expressing HIV-Gag from the TK-locus. The CD8 T-cell responses were less different between the two groups. Importantly, although we saw differences in the immune response to the test antigen, the vaccinia virus-specific immune responses were similar with both constructs. When groups of vaccinated mice were challenged 30 days later with a recombinant Listeria monocytogenes that expresses HIV-Gag, mice inoculated with the virus that expresses the B5R-Gag fusion protein had lower colony counts of Listeria in the liver and spleen than mice vaccinated with the standard recombinant. Thus, vaccinia virus expressing foreign antigen incorporated into EEV may be a better vaccine strategy than standard recombinant vaccinia virus

  14. Immunogenicity and protective efficacy of recombinant Modified Vaccinia virus Ankara candidate vaccines delivering West Nile virus envelope antigens

    NARCIS (Netherlands)

    Volz, Asisa; Lim, Stephanie; Kaserer, Martina; Pijlman, Gorben P.

    2016-01-01

    West Nile virus (WNV) cycles between insects and wild birds, and is transmitted via mosquito vectors to horses and humans, potentially causing severe neuroinvasive disease. Modified Vaccinia virus Ankara (MVA) is an advanced viral vector for developing new recombinant vaccines against infectious

  15. The Effect of Smallpox and Bacillus Calmette-Guérin Vaccination on the Risk of Human Immunodeficiency Virus-1 Infection in Guinea-Bissau and Denmark

    DEFF Research Database (Denmark)

    Rieckmann, Andreas; Villumsen, Marie; Jensen, Mette Lundsby

    2017-01-01

    : The studies from Guinea-Bissau and Denmark, 2 very different settings, both suggest that the BCG and smallpox vaccines could be associated with a decreased risk of sexually transmitted HIV-1. It might be informative to pursue this observation and explore possible protective mechanisms as part of the search......BACKGROUND: The live smallpox and Bacillus Calmette-Guérin (BCG) vaccinations have been associated with better adult survival in both Guinea-Bissau and Denmark. In Guinea-Bissau, human immunodeficiency virus (HIV)-1 became an important cause of death after smallpox vaccination was phased out...... globally in 1980. We hypothesised that smallpox and BCG vaccinations were associated with a lower prevalence of HIV-1 infection, and we tested this hypothesis in both Guinea-Bissau and Denmark. METHODS: We conducted 2 studies: (1) a cross-sectional study of HIV infection and vaccination scars in Guinea...

  16. Design of inhibitors of thymidylate kinase from Variola virus as new selective drugs against smallpox.

    Science.gov (United States)

    Guimarães, Ana P; de Souza, Felipe R; Oliveira, Aline A; Gonçalves, Arlan S; de Alencastro, Ricardo B; Ramalho, Teodorico C; França, Tanos C C

    2015-02-16

    Recently we constructed a homology model of the enzyme thymidylate kinase from Variola virus (VarTMPK) and proposed it as a new target to the drug design against smallpox. In the present work, we used the antivirals cidofovir and acyclovir as reference compounds to choose eleven compounds as leads to the drug design of inhibitors for VarTMPK. Docking and molecular dynamics (MD) studies of the interactions of these compounds inside VarTMPK and human TMPK (HssTMPK) suggest that they compete for the binding region of the substrate and were used to propose the structures of ten new inhibitors for VarTMPK. Further docking and MD simulations of these compounds, inside VarTMPK and HssTMPK, suggest that nine among ten are potential selective inhibitors of VarTMPK. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. RESPONSE OF VOLTA CHILDREN TO JET INOCULATION OF COMBINED LIVE MEASLES, SMALLPOX AND YELLOW FEVER VACCINES.

    Science.gov (United States)

    MEYER, H M; HOSTETLER, D D; BERNHEIN, B C; ROGERS, N G; LAMBIN, P; CHASSARY, A; LABUSQUIERE, R; SMADEL, J E

    1964-01-01

    An earlier study established that Upper Volta children respond to vaccination with the Enders live attenuated measles strain in the same general fashion as do children in the USA. The present report describes a second pilot project carried out in Ouagadougou, Upper Volta. During this investigation various mixtures of live measles, smallpox and 17D yellow fever vaccines were introduced into susceptible infants by jet injection. Combining the attenuated virus vaccines did not alter or accentuate the characteristic clinical reactions elicited by the individual components, nor was there evidence of significant immunological interference. From this experience it is concluded that combined vaccination with these agents may be safely and effectively employed in larger programmes as the need dictates.

  18. Comment: Characterization of Two Historic Smallpox Specimens from a Czech Museum.

    Science.gov (United States)

    Porter, Ashleigh F; Duggan, Ana T; Poinar, Hendrik N; Holmes, Edward C

    2017-09-28

    The complete genome sequences of two strains of variola virus (VARV) sampled from human smallpox specimens present in the Czech National Museum, Prague, were recently determined, with one of the sequences estimated to date to the mid-19th century. Using molecular clock methods, the authors of this study go on to infer that the currently available strains of VARV share an older common ancestor, at around 1350 AD, than some recent estimates based on other archival human samples. Herein, we show that the two Czech strains exhibit anomalous branch lengths given their proposed age, and by assuming a constant rate of evolutionary change across the rest of the VARV phylogeny estimate that their true age in fact lies between 1918 and 1937. We therefore suggest that the age of the common ancestor of currently available VARV genomes most likely dates to late 16th and early 17th centuries and not ~1350 AD.

  19. Comment: Characterization of Two Historic Smallpox Specimens from a Czech Museum

    Directory of Open Access Journals (Sweden)

    Ashleigh F. Porter

    2017-09-01

    Full Text Available The complete genome sequences of two strains of variola virus (VARV sampled from human smallpox specimens present in the Czech National Museum, Prague, were recently determined, with one of the sequences estimated to date to the mid-19th century. Using molecular clock methods, the authors of this study go on to infer that the currently available strains of VARV share an older common ancestor, at around 1350 AD, than some recent estimates based on other archival human samples. Herein, we show that the two Czech strains exhibit anomalous branch lengths given their proposed age, and by assuming a constant rate of evolutionary change across the rest of the VARV phylogeny estimate that their true age in fact lies between 1918 and 1937. We therefore suggest that the age of the common ancestor of currently available VARV genomes most likely dates to late 16th and early 17th centuries and not ~1350 AD.

  20. Buccal viral DNA as a trigger for brincidofovir therapy in the mousepox model of smallpox.

    Science.gov (United States)

    Crump, Ryan; Korom, Maria; Buller, R Mark; Parker, Scott

    2017-03-01

    Orthopoxviruses continue to pose a significant threat to the population as potential agents of bioterrorism. An intentional release of natural or engineered variola virus (VARV) or monkeypox viruses would cause mortality and morbidity in the target population. To address this, antivirals have been developed and evaluated in animal models of smallpox and monkeypox. One such antiviral, brincidofovir (BCV, previously CMX001), has demonstrated high levels of efficacy against orthopoxviruses in animal models and is currently under clinical evaluation for prevention and treatment of diseases caused by cytomegaloviruses and adenoviruses. In this study we use the mousepox model of smallpox to evaluate the relationship between the magnitude of the infectious virus dose and an efficacious BCV therapy outcome when treatment is initiated concomitant with detection of ectromelia virus viral DNA (vDNA) in mouse buccal swabs. We found that vDNA could be detected in buccal swabs of some, but not all infected mice over a range of challenge doses by day 3 or 4 postexposure, when initiation of BCV treatment was efficacious, suggesting that detection of vDNA in buccal swabs could be used as a trigger to initiate BCV treatment of an entire potentially exposed population. However, buccal swabs of some mice did not become positive until 5 days postexposure, when initiation of BCV therapy failed to protect mice that received high doses of virus. And finally, the data suggest that the therapeutic window for efficacious BCV treatment decreases as the virus infectious dose increases. Extrapolating these findings to VARV, the data suggest that treatment should be initiated as soon as possible after exposure and not rely on a diagnostic tool such as the measurement of vDNA in buccal cavity swabs; however, consideration should be given to the fact that the behavior/disease-course of VARV in humans is different from that of ectromelia virus in the mouse. Copyright © 2016 Elsevier B.V. All

  1. The Florey lecture, 1983. Biological control, as exemplified by smallpox eradication and myxomatosis.

    Science.gov (United States)

    Fenner, F

    1983-06-22

    Biological control is an important method of dealing with plant and insect pests. The control of rabbits by myxomatosis and the eradication of smallpox by vaccination are unusual examples of biological control, in that they involve a vertebrate and a viral pest respectively. Myxomatosis is a benign disease in Sylvilagus rabbits in South America which is transmitted mechanically by mosquitoes. In the European rabbit, Oryctolagus, which is a pest in Australia and England, the virus from Sylvilagus produces a generalized disease that is almost always lethal. Myxomatosis was deliberately introduced into Australia in 1950 and into Europe in 1952. It was at first spectacularly successful in controlling the rabbit pest, but biological adjustments occurred in the virulence of the virus and the genetic resistances of rabbits. After 30 years of interaction, natural selection has resulted in a balance at a fairly high level of viral virulence. Smallpox has been a major scourge of mankind for over 1500 years. It spread from Asia to Europe in the Middle ages and from Europe to Africa and the Americas in the 15th and 16th centuries. Jenner's cowpox vaccine provided a method of control that reduced the severity of the disease during the 19th century but failed to eliminate the disease from many countries before the 1930s. Thereafter it was eradicated from Europe and North America, but remained endemic in South America, Africa and Asia. In 1967 it was still endemic in 33 countries and W.H.O. established a programme for global eradication within 10 years. The goal was achieved in 1977. Problems of the eradication programme and reasons for its success will be described.

  2. Thy1+ NK [corrected] cells from vaccinia virus-primed mice confer protection against vaccinia virus challenge in the absence of adaptive lymphocytes.

    Directory of Open Access Journals (Sweden)

    Geoffrey O Gillard

    2011-08-01

    Full Text Available While immunological memory has long been considered the province of T- and B-lymphocytes, it has recently been reported that innate cell populations are capable of mediating memory responses. We now show that an innate memory immune response is generated in mice following infection with vaccinia virus, a poxvirus for which no cognate germline-encoded receptor has been identified. This immune response results in viral clearance in the absence of classical adaptive T and B lymphocyte populations, and is mediated by a Thy1(+ subset of natural killer (NK cells. We demonstrate that immune protection against infection from a lethal dose of virus can be adoptively transferred with memory hepatic Thy1(+ NK cells that were primed with live virus. Our results also indicate that, like classical immunological memory, stronger innate memory responses form in response to priming with live virus than a highly attenuated vector. These results demonstrate that a defined innate memory cell population alone can provide host protection against a lethal systemic infection through viral clearance.

  3. Myxoma and vaccinia viruses exploit different mechanisms to enter and infect human cancer cells

    International Nuclear Information System (INIS)

    Villa, Nancy Y.; Bartee, Eric; Mohamed, Mohamed R.; Rahman, Masmudur M.; Barrett, John W.; McFadden, Grant

    2010-01-01

    Myxoma (MYXV) and vaccinia (VACV) viruses have recently emerged as potential oncolytic agents that can infect and kill different human cancer cells. Although both are structurally similar, it is unknown whether the pathway(s) used by these poxviruses to enter and cause oncolysis in cancer cells are mechanistically similar. Here, we compared the entry of MYXV and VACV-WR into various human cancer cells and observed significant differences: 1 - low-pH treatment accelerates fusion-mediated entry of VACV but not MYXV, 2 - the tyrosine kinase inhibitor genistein inhibits entry of VACV, but not MYXV, 3 - knockdown of PAK1 revealed that it is required for a late stage event downstream of MYXV entry into cancer cells, whereas PAK1 is required for VACV entry into the same target cells. These results suggest that VACV and MYXV exploit different mechanisms to enter into human cancer cells, thus providing some rationale for their divergent cancer cell tropisms.

  4. Factors influencing the vaccinia-specific cytotoxic response of thymocytes from normal and chimeric mice

    International Nuclear Information System (INIS)

    Doherty, P.C.; Schwartz, D.H.; Bennink, J.R.; Korngold, R.

    1981-01-01

    Following adoptive transfer into irradiated recipients, thymocytes can be induced to respond strongly to vaccinia virus. High levels of cytotoxic T-lymphocyte (CTL) activity may be generated from thymus, but not from spleen, of 3-day-old mice. The capacity of thymocytes to differentiate into effector CTL tends to be lost with age. Some of this loss may reflect positive suppression: a single, low dose of cyclophosphamide allows the reemergence of responsiveness in at least one mouse strain. Thymocytes from [A leads to (A x B)F1] and [(A x B)F1 leads to A] chimeras show the response patterns that would by predicted from previous studies of lymph node and spleen cells. However, thymic function seems to be rapidly lost in the [A leads to (A x B)F1] Chimeras

  5. ATP-independent DNA synthesis in Vaccinia-infected L cells

    International Nuclear Information System (INIS)

    Berger, N.A.; Kauff, R.A.; Sikorski, G.W.

    1978-01-01

    Mouse L cells can be made permeable to exogenous nucleotides by a cold shock in 0.01 M Tris . HCl pH 7.8, 0.25 M sucrose, 1 mM EDTA, 30 mM 2-mercaptoethanol and 4 mM MgCl 2 . DNA synthesis in permeabilized L cells requires ATP whereas DNA synthesis in permeabilized L cells that are infected with Vaccinia virus is ATP-independent. Permeabilized L cells that are infected with ultraviolet-irradiated virus show a marked suppression of DNA synthesis which is not corrected by an excess of deoxynucleoside triphosphates and ATP. The ATP-dependent and ATP-independent processes of DNA synthesis are inhibited to the same extent by Mal-Net, pHMB, ara CTP and phosphonoacetate. Concentrations of daunorubicin and cytembena, which cause marked inhibition of the ATP-dependent enzymes, only cause partial inhibition of the ATP-independent enzymes. (Auth.)

  6. Subclinical bovine vaccinia: An important risk factor in the epidemiology of this zoonosis in cattle.

    Science.gov (United States)

    Rehfeld, Izabelle Silva; Matos, Ana Carolina Diniz; Guedes, Maria Isabel Maldonado Coelho; Costa, Aristóteles Gomes; Fraiha, Ana Luiza Soares; Lobato, Zélia Inês Portela

    2017-10-01

    Bovine vaccinia (BV) is a zoonosis caused by Vaccinia virus (VACV) that mainly affects lactating cows and dairy farm milkers. The epidemiological role(s) of other cattle categories such as dry cows, bulls, and heifers in BV remains unclear. This study was performed to investigate VACV in affected dairy cattle herds and perifocal farms during an outbreak in Brazil. Crusts from lesions of cows' teats were collected from all farms with BV outbreaks. Milk, feces, blood, and serum were collected from symptomatic and asymptomatic lactating cows. Blood and serum were also sampled from other cattle categories (calves, heifers, dry cows, and bulls). The samples were tested for VACV by PCR, and to confirm VACV viability, VACV-positive samples were inoculated in BSC-40 cells and stained using immunoperoxidase. Neutralizing antibodies were investigated using plaque reduction neutralization test. Viral DNA was detected in milk, blood, and feces samples of symptomatic and asymptomatic dairy cows and in blood samples from other cattle categories on farms with and without confirmed BV outbreak. In affected farms, viable virus was identified in feces and milk samples from lactating cows and in blood samples from asymptomatic dry cows. Viable VACV was also identified in feces from lactating cows and one bull's blood sample from perifocal farms. Neutralizing antibodies were detected in 81.6% of the herds affected by BV and in 53.8% of the herds on perifocal farms. The presented data indicate a potential source of viral dissemination, which contributes to the persistence and spread of VACV in the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Modulation of gene expression in a human cell line caused by poliovirus, vaccinia virus and interferon

    Directory of Open Access Journals (Sweden)

    Hoddevik Gunnar

    2007-03-01

    Full Text Available Abstract Background The project was initiated to describe the response of a human embryonic fibroblast cell line to the replication of two different viruses, and, more specifically, to look for candidate genes involved in viral defense. For this purpose, the cells were synchronously infected with poliovirus in the absence or presence of interferon-alpha, or with vaccinia virus, a virus that is not inhibited by interferon. By comparing the changes in transcriptosome due to these different challenges, it should be possible to suggest genes that might be involved in defense. Results The viral titers were sufficient to yield productive infection in a majority of the cells. The cells were harvested in triplicate at various time-points, and the transcriptosome compared with mock infected cells using oligo-based, global 35 k microarrays. While there was very limited similarities in the response to the different viruses, a large proportion of the genes up-regulated by interferon-alpha were also up-regulated by poliovirus. Interferon-alpha inhibited poliovirus replication, but there were no signs of any interferons being induced by poliovirus. The observations suggest that the cells do launch an antiviral response to poliovirus in the absence of interferon. Analyses of the data led to a list of candidate antiviral genes. Functional information was limited, or absent, for most of the candidate genes. Conclusion The data are relevant for our understanding of how the cells respond to poliovirus and vaccinia virus infection. More annotations, and more microarray studies with related viruses, are required in order to narrow the list of putative defence-related genes.

  8. [Experiments on disinfection of vaccinia virus embedded in scabs and/or at the hand].

    Science.gov (United States)

    Schümann, K; Grossgebauer, K

    1977-01-01

    Vaccinia viruses embedded in rabbit dermal scabs were subjected to physical and chemical disinfection procedures. Scabs were suspended in vitro without saline or in physiological saline, and left for 1 hour at 70 to 90 degrees C. A complete inactivation was achived only in those scab samples which had been incubated at 90 degrees C for 1 hour and suspended in physiological saline. Scabs which had been placed in a disinfecting apparatus (Vacudes 4000) filled with mattrasses consistently proved to be free of infectious vaccinia viruses in each of the chosen programs. In addition scabs were subjected to disinfection by means of chemical disinfecting agents. The scabs had been placed in a chemical disinfecting suspension and left there for 90 minutes. Complete disinfection was obtained with glutaraldehyde 2%, formaldehyde 2%, Lysoformin 2% or 3%, phenol 5% and chloramine T 2%. Complete disinfection was likewise achieved after 3 hours treatment with some alchohols (ethylalcohol 80%, isopropylalcohol 7%, n-propylalcohol 60%), Amocid 5% and formaldehyde 1%.0.5% formaldehyde caused complete disinfection when applied for 6 hours. The only exception was a Quat which did not disinfect fully even after 18 hours application. Concerning the tests to disinfect the hands complete disinfection occurs when using chloramine T (1.5%) or isopropylalcohol (70%) in 2 to 5 minutes. Further tests were performed with scabs which were placed in sick rooms that were terminally disinfected with formaline vapor. It could be confirmed that the usual terminal disinfection with formaldehyde vapor was unable to completely disinfect the scabs. It is necessary to double the amount of formaldehyde (10 g formaldehyde per cubic metre of space) and prolong the period of treatment to 24 hours to achieve a greater degree of disinfection rate.

  9. Patent landscape of countermeasures against smallpox and estimation of grant attraction capability through patent landscape data.

    Science.gov (United States)

    Mayburd, Anatoly L; Kedia, Govind; Evans, Haydn W; Kaslival, Pritesh C

    2010-11-01

    The study was concerned with countermeasures against a possible smallpox outbreak. In the process of assessment 18 landscaping sectors were defined and described, the advantages and drawbacks of the corresponding countermeasures being reviewed. The data of the previously published influenza landscape were revisited. The current economic climate of deficit cutting (austerity) also puts emphasis on the optimization of capital investment. We used the materials of the landscape to define and analyze metrics of capital placement optimization. Value score was obtained by fitting patent landscape internals to the sale price of individual patents. Success score was obtained as a product of a-priori parameters that measure likelihood of emergence of a marketable product in a technological sector. Both scores were combined in a qualitative metric. Our methodology defined weight as a product of the sector size by the success score. We hypothesized - based on the material of two landscapes- that a life cycle of a technology begins in IP space with a high patent quality low volume "bud" of low weight, reaches maximum weight and then weight falls again when the technology becomes outdated. The weight and the annual dynamic of weight can serve a measure of investment risk and return. In this report we modeled investment by issue of government grants or purchase of patents by government. In the smallpox landscape the number of patents purchased by government agencies was the highest in the sectors with the highest weight and the trend was confirmed by the count of NIH grants issued in support of the technological sectors. In the influenza landscape only grant issue count was statistically meaningful and the trend was also confirmed. To better fit the grant support levels, the weight expression was optimized by using training coefficients. We propose to use value scores for evaluation of individual patent publications/company portfolios and to use weights for assessment of

  10. Sensitization with vaccinia virus encoding H5N1 hemagglutinin restores immune potential against H5N1 influenza virus.

    Science.gov (United States)

    Yasui, Fumihiko; Itoh, Yasushi; Ikejiri, Ai; Kitabatake, Masahiro; Sakaguchi, Nobuo; Munekata, Keisuke; Shichinohe, Shintaro; Hayashi, Yukiko; Ishigaki, Hirohito; Nakayama, Misako; Sakoda, Yoshihiro; Kida, Hiroshi; Ogasawara, Kazumasa; Kohara, Michinori

    2016-11-28

    H5N1 highly pathogenic avian influenza (H5N1 HPAI) virus causes elevated mortality compared with seasonal influenza viruses like H1N1 pandemic influenza (H1N1 pdm) virus. We identified a mechanism associated with the severe symptoms seen with H5N1 HPAI virus infection. H5N1 HPAI virus infection induced a decrease of dendritic cell number in the splenic extrafollicular T-cell zone and impaired formation of the outer layers of B-cell follicles, resulting in insufficient levels of antibody production after infection. However, in animals vaccinated with a live recombinant vaccinia virus expressing the H5 hemagglutinin, infection with H5N1 HPAI virus induced parafollicular dendritic cell accumulation and efficient antibody production. These results indicate that a recombinant vaccinia encoding H5 hemagglutinin gene does not impair dendritic cell recruitment and can be a useful vaccine candidate.

  11. Extracts from rabbit skin inflamed by the vaccinia virus attenuate bupivacaine-induced spinal neurotoxicity in pregnant rats

    Institute of Scientific and Technical Information of China (English)

    Rui Cui; Shiyuan Xu; Liang Wang; Hongyi Lei; Qingxiang Cai; Hongfei Zhang; Dongmei Wang

    2013-01-01

    Extracts from rabbit skin inflamed by the vaccinia virus can relieve pain and promote repair of nerve injury. The present study intraperitoneally injected extracts from rabbit skin inflamed by the vaccinia virus for 3 and 4 days prior to and following intrathecal injection of bupivacaine into pregnant rats. The pain threshold test after bupivacaine injection showed that the maximum possible effect of tail-flick latency peaked 1 day after intrathecal injection of bupivacaine in the extract-pretreatment group, and gradually decreased, while the maximum possible effect in the bupivacaine group continued to increase after intrathecal injection of bupivacaine. Histological observation showed that after 4 days of intrathecal injection of bupivacaine, the number of shrunken, vacuolated, apoptotic and caspase-9-positive cells in the dorsal root ganglion in the extract-pretreatment group was significantly reduced compared with the bupivacaine group. These findings indicate that extracts from rabbit skin inflamed by the vaccinia virus can attenuate neurotoxicity induced by intrathecal injection of bupivacaine in pregnant rats, possibly by inhibiting caspase-9 protein expression and suppressing nerve cell apoptosis.

  12. Analysis of canine herpesvirus gB, gC and gD expressed by a recombinant vaccinia virus.

    Science.gov (United States)

    Xuan, X; Kojima, A; Murata, T; Mikami, T; Otsuka, H

    1997-01-01

    The genes encoding the canine herpesvirus (CHV) glycoprotein B (gB), gC and gD homologues have been reported already. However, products of these genes have not been identified yet. Previously, we have identified three CHV glycoproteins, gp 145/112, gp80 and gp47 using a panel of monoclonal antibodies (MAbs). To determine which CHV glycoprotein corresponds to gB, gC or gD, the putative genes of gB, gC, and gD of CHV were inserted into the thymidine kinase gene of vaccinia virus LC16mO strain under the control of the early-late promoter for the vaccinia virus 7.5-kilodalton polypeptide. We demonstrated here that gp145/112, gp80 and gp47 were the translation products of the CHV gB, gC and gD genes, respectively. The antigenic authenticity of recombinant gB, gC and gD were confirmed by a panel of MAbs specific for each glycoprotein produced in CHV-infected cells. Immunization of mice with these recombinants produced high titers of neutralizing antibodies against CHV. These results suggest that recombinant vaccinia viruses expressing CHV gB, gC and gD may be useful to develop a vaccine to control CHV infection.

  13. Serological studies on an outbreak of smallpox in the State of Bahia - Brazil in 1969

    Directory of Open Access Journals (Sweden)

    Eduardo de Azeredo Costa

    1972-01-01

    Full Text Available Four weeks after Containment Vaccination undertaken against the largest outbreak of smallpox occured in Brazil in 1969, that of the municipality of Utinga, Bahia, 99 samples of serum were collected from the local population. These samples were classified in four groups: a - Individuals with a history of variola prior to the beginning of present outbreak in town (15 sera; "Previous smallpox group"; b - Individuals with primary vaccination, with no record variola, at the time of containment measures (15 sera. "Primary vaccinated group"; c - Individuals with no previous record of variola revaccinated with "take" at the time of containment (15 sera0, "Revaccinated group"; d - Individuals who contracted variola in present outbreak (54 sera these were subdivided in four sub-groups, according to dates on which cases ocurred, "Variola in outbreak group". Serological study of samples was done by tests of hemagglutination inhibition, neutralization, and complement fixation. It was observed that HI titers were significantly lower in cases of previous smallpox than in other groups. Although they were slightly higher on revaccinated individuals than on primary vaccinated group and than in the group of variola in outbreak, this difference was not significant. Those same antibodies were present in all cases of variola in outbreak, and it was found that titers decreased in direct proportion to time elapsed from occurrence of cases. Neutralizing antibodies proved to be significantly higher on the revaccinated group than on variola in outbreak group, and higher on these than on primary vaccinated and on the previous smallpox groups. In cases from the variola in outbreak it was verified that neutralizing antibodies remained stable, although with great variation in titers. Tests of complement fixation could not be undertaken on all samples, because many of them proved to have anticomplementarity. However, it was found that complement fixing antibodies diminished

  14. Game theory of pre-emptive vaccination before bioterrorism or accidental release of smallpox.

    Science.gov (United States)

    Molina, Chai; Earn, David J D

    2015-06-06

    Smallpox was eradicated in the 1970s, but new outbreaks could be seeded by bioterrorism or accidental release. Substantial vaccine-induced morbidity and mortality make pre-emptive mass vaccination controversial, and if vaccination is voluntary, then there is a conflict between self- and group interests. This conflict can be framed as a tragedy of the commons, in which herd immunity plays the role of the commons, and free-riding (i.e. not vaccinating pre-emptively) is analogous to exploiting the commons. This game has been analysed previously for a particular post-outbreak vaccination scenario. We consider several post-outbreak vaccination scenarios and compare the expected increase in mortality that results from voluntary versus imposed vaccination. Below a threshold level of post-outbreak vaccination effort, expected mortality is independent of the level of response effort. A lag between an outbreak starting and a response being initiated increases the post-outbreak vaccination effort necessary to reduce mortality. For some post-outbreak vaccination scenarios, even modest response lags make it impractical to reduce mortality by increasing post-outbreak vaccination effort. In such situations, if decreasing the response lag is impossible, the only practical way to reduce mortality is to make the vaccine safer (greater post-outbreak vaccination effort leads only to fewer people vaccinating pre-emptively). © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. The eradication of smallpox--an overview of the past, present, and future.

    Science.gov (United States)

    Henderson, Donald A

    2011-12-30

    The 30th anniversary of the declaration of smallpox eradication is a propitious time to look back on the evolutionary history of the program, its execution, and its legacy for the future. The eradication of history's most feared disease culminated a decade-long World Health Organization campaign which began despite skepticism and doubt and succeeded despite a never ending array of obstacles occasioned by floods, civil war, famine, and bureaucratic inertia. New concepts in public health management, surveillance, and the application of large-scale programs for vaccination were fostered and matured. A new generation of young health workers emerged who applied new approaches and experienced the gratification of public health achievement. A definitive legacy for the future was the extension of the program into an "Expanded Program on Immunization", now functioning world-wide and resulting in dramatic improvements in health through control of vaccine-preventable diseases. No less important are the growing number of multi-national programs whose foundations rest on the development of active case surveillance to measure achievement and to guide progress - poliomyelitis, measles, guinea worm, and rubella. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Reverse genetics of SARS-related coronavirus using vaccinia virus-based recombination.

    Directory of Open Access Journals (Sweden)

    Sjoerd H E van den Worm

    Full Text Available Severe acute respiratory syndrome (SARS is a zoonotic disease caused by SARS-related coronavirus (SARS-CoV that emerged in 2002 to become a global health concern. Although the original outbreak was controlled by classical public health measures, there is a real risk that another SARS-CoV could re-emerge from its natural reservoir, either in its original form or as a more virulent or pathogenic strain; in which case, the virus would be difficult to control in the absence of any effective antiviral drugs or vaccines. Using the well-studied SARS-CoV isolate HKU-39849, we developed a vaccinia virus-based SARS-CoV reverse genetic system that is both robust and biosafe. The SARS-CoV genome was cloned in separate vaccinia virus vectors, (vSARS-CoV-5prime and vSARS-CoV-3prime as two cDNAs that were subsequently ligated to create a genome-length SARS-CoV cDNA template for in vitro transcription of SARS-CoV infectious RNA transcripts. Transfection of the RNA transcripts into permissive cells led to the recovery of infectious virus (recSARS-CoV. Characterization of the plaques produced by recSARS-CoV showed that they were similar in size to the parental SARS-CoV isolate HKU-39849 but smaller than the SARS-CoV isolate Frankfurt-1. Comparative analysis of replication kinetics showed that the kinetics of recSARS-CoV replication are similar to those of SARS-CoV Frankfurt-1, although the titers of virus released into the culture supernatant are approximately 10-fold less. The reverse genetic system was finally used to generate a recSARS-CoV reporter virus expressing Renilla luciferase in order to facilitate the analysis of SARS-CoV gene expression in human dendritic cells (hDCs. In parallel, a Renilla luciferase gene was also inserted into the genome of human coronavirus 229E (HCoV-229E. Using this approach, we demonstrate that, in contrast to HCoV-229E, SARS-CoV is not able to mediate efficient heterologous gene expression in hDCs.

  17. Risk of lymphoma and leukaemia after bacille Calmette-Guérin and smallpox vaccination: a Danish case-cohort study

    DEFF Research Database (Denmark)

    Villumsen, Marie; Sørup, Signe; Jess, Tine

    2009-01-01

    Vaccines may have non-specific effects as suggested mainly in mortality studies from low-income countries. The objective was to examine the effects of BCG and smallpox vaccinations on subsequent risk of lymphoma and leukaemia in a Danish population experiencing rapid out-phasing of these vaccines...... cohort and analysed in a case-cohort design. BCG vaccination reduced the risk of lymphomas (HR=0.49 (95% CI: 0.26-0.93)), whereas smallpox vaccination did not (HR=1.32 (0.56-3.08)). With the small number of leukaemia cases, the analysis of leukaemia had limited power (BCG vaccination HR=0.81 (0.......31-2.16); smallpox vaccination HR=1.32 (0.49-3.53)). The present study with very reliable vaccine history information indicates a beneficial effect of BCG vaccination on the risk of lymphomas....

  18. Vaccinia virus, herpes simplex virus, and carcinogens induce DNA amplification in a human cell line and support replication of a helpervirus dependent parvovirus

    International Nuclear Information System (INIS)

    Schlehofer, J.R.; Ehrbar, M.; zur Hausen, H.

    1986-01-01

    The SV40-transformed human kidney cell line, NB-E, amplifies integrated as well as episomal SV40 DNA upon treatment with chemical (DMBA) or physical (uv irradiation) carcinogens (initiators) as well as after infection with herpes simplex virus (HSV) type 1 or with vaccinia virus. In addition it is shown that vaccinia virus induces SV40 DNA amplification also in the SV40-transformed Chinese hamster embryo cell line, CO631. These findings demonstrate that human cells similar to Chinese hamster cells amplify integrated DNA sequences after treatment with carcinogens or infection with specific viruses. Furthermore, a poxvirus--vaccinia virus--similar to herpes group viruses induces DNA amplification. As reported for other systems, the vaccinia virus-induced DNA amplification in NB-E cells is inhibited by coinfection with adeno-associated virus (AAV) type 5. This is in line with previous studies on inhibition of carcinogen- or HSV-induced DNA amplification in CO631 cells. The experiments also demonstrate that vaccinia virus, in addition to herpes and adenoviruses acts as a helper virus for replication and structural antigen synthesis of AAV-5 in NB-E cells

  19. US Military Service Members Vaccinated Against Smallpox in 2003 and 2004 Experience a Slightly Higher Risk of Hospitalization Postvaccination

    Science.gov (United States)

    2008-01-01

    vaccination on the health of young adults . Published by Elsevier Ltd. 1. Introduction Through extensive vaccination efforts [1], smallpoxwas globally...Disorders of lipoid metabolism 74 0.1 17 0.0 2.43 1.42, 4.18 250 Diabetes mellitus 23 0.0 2 0.0 244 Acquired hypothyroidism 19 0.0 2 0.0 278 Obesity and...and influenza elicited during primary versus recent or distant secondary smallpox vaccination of adults . Vaccine 2006;24:6913–23. REPORT DOCUMENTATION

  20. Mapping vaccinia virus DNA replication origins at nucleotide level by deep sequencing.

    Science.gov (United States)

    Senkevich, Tatiana G; Bruno, Daniel; Martens, Craig; Porcella, Stephen F; Wolf, Yuri I; Moss, Bernard

    2015-09-01

    Poxviruses reproduce in the host cytoplasm and encode most or all of the enzymes and factors needed for expression and synthesis of their double-stranded DNA genomes. Nevertheless, the mode of poxvirus DNA replication and the nature and location of the replication origins remain unknown. A current but unsubstantiated model posits only leading strand synthesis starting at a nick near one covalently closed end of the genome and continuing around the other end to generate a concatemer that is subsequently resolved into unit genomes. The existence of specific origins has been questioned because any plasmid can replicate in cells infected by vaccinia virus (VACV), the prototype poxvirus. We applied directional deep sequencing of short single-stranded DNA fragments enriched for RNA-primed nascent strands isolated from the cytoplasm of VACV-infected cells to pinpoint replication origins. The origins were identified as the switching points of the fragment directions, which correspond to the transition from continuous to discontinuous DNA synthesis. Origins containing a prominent initiation point mapped to a sequence within the hairpin loop at one end of the VACV genome and to the same sequence within the concatemeric junction of replication intermediates. These findings support a model for poxvirus genome replication that involves leading and lagging strand synthesis and is consistent with the requirements for primase and ligase activities as well as earlier electron microscopic and biochemical studies implicating a replication origin at the end of the VACV genome.

  1. Study of Vaccinia and Cowpox viruses' replication in Rac1-N17 dominant-negative cells

    Directory of Open Access Journals (Sweden)

    Ana Paula Carneiro Salgado

    2013-08-01

    Full Text Available Interfering with cellular signal transduction pathways is a common strategy used by many viruses to create a propitious intracellular environment for an efficient replication. Our group has been studying cellular signalling pathways activated by the orthopoxviruses Vaccinia (VACV and Cowpox (CPXV and their significance to viral replication. In the present study our aim was to investigate whether the GTPase Rac1 was an upstream signal that led to the activation of MEK/ERK1/2, JNK1/2 or Akt pathways upon VACV or CPXV' infections. Therefore, we generated stable murine fibroblasts exhibiting negative dominance to Rac1-N17 to evaluate viral growth and the phosphorylation status of ERK1/2, JNK1/2 and Akt. Our results demonstrated that VACV replication, but not CPXV, was affected in dominant-negative (DN Rac1-N17 cell lines in which viral yield was reduced in about 10-fold. Viral late gene expression, but not early, was also reduced. Furthermore, our data showed that Akt phosphorylation was diminished upon VACV infection in DN Rac1-N17 cells, suggesting that Rac1 participates in the phosphoinositide-3 kinase pathway leading to the activation of Akt. In conclusion, our results indicate that while Rac1 indeed plays a role in VACV biology, perhaps another GTPase may be involved in CPXV replication.

  2. Increased ATP generation in the host cell is required for efficient vaccinia virus production

    Directory of Open Access Journals (Sweden)

    Hsu Che-Fang

    2009-09-01

    Full Text Available Abstract To search for cellular genes up-regulated by vaccinia virus (VV infection, differential display-reverse transcription-polymerase chain reaction (ddRT-PCR assays were used to examine the expression of mRNAs from mock-infected and VV-infected HeLa cells. Two mitochondrial genes for proteins that are part of the electron transport chain that generates ATP, ND4 and CO II, were up-regulated after VV infection. Up-regulation of ND4 level by VV infection was confirmed by Western blotting analysis. Up-regulation of ND4 was reduced by the MAPK inhibitor, apigenin, which has been demonstrated elsewhere to inhibit VV replication. The induction of ND4 expression occurred after viral DNA replication since ara C, an inhibitor of poxviral DNA replication, could block this induction. ATP production was increased in the host cells after VV infection. Moreover, 4.5 μM oligomycin, an inhibitor of ATP production, reduced the ATP level 13 hr after virus infection to that of mock-infected cells and inhibited viral protein expression and virus production, suggesting that increased ATP production is required for efficient VV production. Our results further suggest that induction of ND4 expression is through a Bcl-2 independent pathway.

  3. Silk-elastin-like protein polymer matrix for intraoperative delivery of an oncolytic vaccinia virus.

    Science.gov (United States)

    Price, Daniel L; Li, Pingdong; Chen, Chun-Hao; Wong, Danni; Yu, Zhenkun; Chen, Nanhai G; Yu, Yong A; Szalay, Aladar A; Cappello, Joseph; Fong, Yuman; Wong, Richard J

    2016-02-01

    Oncolytic viral efficacy may be limited by the penetration of the virus into tumors. This may be enhanced by intraoperative application of virus immediately after surgical resection. Oncolytic vaccinia virus GLV-1h68 was delivered in silk-elastin-like protein polymer (SELP) in vitro and in vivo in anaplastic thyroid carcinoma cell line 8505c in nude mice. GLV-1h68 in SELP infected and lysed anaplastic thyroid cancer cells in vitro equally as effectively as in phosphate-buffered saline (PBS), and at 1 week retains a thousand fold greater infectious plaque-forming units. In surgical resection models of residual tumor, GLV-1h68 in SELP improves tumor control and shows increased viral β-galactosidase expression as compared to PBS. The use of SELP matrix for intraoperative oncolytic viral delivery protects infectious viral particles from degradation, facilitates sustained viral delivery and transgene expression, and improves tumor control. Such optimization of methods of oncolytic viral delivery may enhance therapeutic outcomes. © 2014 Wiley Periodicals, Inc.

  4. RAB1A promotes Vaccinia virus replication by facilitating the production of intracellular enveloped virions

    Energy Technology Data Exchange (ETDEWEB)

    Pechenick Jowers, Tali; Featherstone, Rebecca J.; Reynolds, Danielle K.; Brown, Helen K. [The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian EH25 9RG, Scotland (United Kingdom); James, John; Prescott, Alan [Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland (United Kingdom); Haga, Ismar R. [The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian EH25 9RG, Scotland (United Kingdom); Beard, Philippa M., E-mail: pip.beard@roslin.ed.ac.uk [The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian EH25 9RG, Scotland (United Kingdom)

    2015-01-15

    Vaccinia virus (VACV) is a large double-stranded DNA virus with a complex cytoplasmic replication cycle that exploits numerous cellular proteins. This work characterises the role of a proviral cellular protein, the small GTPase RAB1A, in VACV replication. Using siRNA, we identified RAB1A as required for the production of extracellular enveloped virions (EEVs), but not intracellular mature virions (IMVs). Immunofluorescence and electron microscopy further refined the role of RAB1A as facilitating the wrapping of IMVs to become intracellular enveloped virions (IEVs). This is consistent with the known function of RAB1A in maintenance of ER to Golgi transport. VACV can therefore be added to the growing list of viruses which require RAB1A for optimal replication, highlighting this protein as a broadly proviral host factor. - Highlights: • Characterisation of the role of the small GTPase RAB1A in VACV replication. • RAB1A is not required for production of the primary virion form (IMV). • RAB1A is required for production of processed virion forms (IEVs, CEVs and EEVs). • Consistent with known role of RAB1A in ER to Golgi transport.

  5. ISG15 governs mitochondrial function in macrophages following vaccinia virus infection.

    Directory of Open Access Journals (Sweden)

    Sara Baldanta

    2017-10-01

    Full Text Available The interferon (IFN-stimulated gene 15 (ISG15 encodes one of the most abundant proteins induced by interferon, and its expression is associated with antiviral immunity. To identify protein components implicated in IFN and ISG15 signaling, we compared the proteomes of ISG15-/- and ISG15+/+ bone marrow derived macrophages (BMDM after vaccinia virus (VACV infection. The results of this analysis revealed that mitochondrial dysfunction and oxidative phosphorylation (OXPHOS were pathways altered in ISG15-/- BMDM treated with IFN. Mitochondrial respiration, Adenosine triphosphate (ATP and reactive oxygen species (ROS production was higher in ISG15+/+ BMDM than in ISG15-/- BMDM following IFN treatment, indicating the involvement of ISG15-dependent mechanisms. An additional consequence of ISG15 depletion was a significant change in macrophage polarization. Although infected ISG15-/- macrophages showed a robust proinflammatory cytokine expression pattern typical of an M1 phenotype, a clear blockade of nitric oxide (NO production and arginase-1 activation was detected. Accordingly, following IFN treatment, NO release was higher in ISG15+/+ macrophages than in ISG15-/- macrophages concomitant with a decrease in viral titer. Thus, ISG15-/- macrophages were permissive for VACV replication following IFN treatment. In conclusion, our results demonstrate that ISG15 governs the dynamic functionality of mitochondria, specifically, OXPHOS and mitophagy, broadening its physiological role as an antiviral agent.

  6. Hazard Characterization of Modified Vaccinia Virus Ankara Vector: What Are the Knowledge Gaps?

    Directory of Open Access Journals (Sweden)

    Malachy I. Okeke

    2017-10-01

    Full Text Available Modified vaccinia virus Ankara (MVA is the vector of choice for human and veterinary applications due to its strong safety profile and immunogenicity in vivo. The use of MVA and MVA-vectored vaccines against human and animal diseases must comply with regulatory requirements as they pertain to environmental risk assessment, particularly the characterization of potential adverse effects to humans, animals and the environment. MVA and recombinant MVA are widely believed to pose low or negligible risk to ecosystem health. However, key aspects of MVA biology require further research in order to provide data needed to evaluate the potential risks that may occur due to the use of MVA and MVA-vectored vaccines. The purpose of this paper is to identify knowledge gaps in the biology of MVA and recombinant MVA that are of relevance to its hazard characterization and discuss ongoing and future experiments aimed at providing data necessary to fill in the knowledge gaps. In addition, we presented arguments for the inclusion of uncertainty analysis and experimental investigation of verifiable worst-case scenarios in the environmental risk assessment of MVA and recombinant MVA. These will contribute to improved risk assessment of MVA and recombinant MVA vaccines.

  7. Optical detection and virotherapy of live metastatic tumor cells in body fluids with vaccinia strains.

    Directory of Open Access Journals (Sweden)

    Huiqiang Wang

    Full Text Available Metastatic tumor cells in body fluids are important targets for treatment, and critical surrogate markers for evaluating cancer prognosis and therapeutic response. Here we report, for the first time, that live metastatic tumor cells in blood samples from mice bearing human tumor xenografts and in blood and cerebrospinal fluid samples from patients with cancer were successfully detected using a tumor cell-specific recombinant vaccinia virus (VACV. In contrast to the FDA-approved CellSearch system, VACV detects circulating tumor cells (CTCs in a cancer biomarker-independent manner, thus, free of any bias related to the use of antibodies, and can be potentially a universal system for detection of live CTCs of any tumor type, not limited to CTCs of epithelial origin. Furthermore, we demonstrate for the first time that VACV was effective in preventing and reducing circulating tumor cells in mice bearing human tumor xenografts. Importantly, a single intra-peritoneal delivery of VACV resulted in a dramatic decline in the number of tumor cells in the ascitic fluid from a patient with gastric cancer. Taken together, these results suggest VACV to be a useful tool for quantitative detection of live tumor cells in liquid biopsies as well as a potentially effective treatment for reducing or eliminating live tumor cells in body fluids of patients with metastatic disease.

  8. Safety mechanism assisted by the repressor of tetracycline (SMART) vaccinia virus vectors for vaccines and therapeutics.

    Science.gov (United States)

    Grigg, Patricia; Titong, Allison; Jones, Leslie A; Yilma, Tilahun D; Verardi, Paulo H

    2013-09-17

    Replication-competent viruses, such as Vaccinia virus (VACV), are powerful tools for the development of oncolytic viral therapies and elicit superior immune responses when used as vaccine and immunotherapeutic vectors. However, severe complications from uncontrolled viral replication can occur, particularly in immunocompromised individuals or in those with other predisposing conditions. VACVs constitutively expressing interferon-γ (IFN-γ) replicate in cell culture indistinguishably from control viruses; however, they replicate in vivo to low or undetectable levels, and are rapidly cleared even in immunodeficient animals. In an effort to develop safe and highly effective replication-competent VACV vectors, we established a system to inducibly express IFN-γ. Our SMART (safety mechanism assisted by the repressor of tetracycline) vectors are designed to express the tetracycline repressor under a constitutive VACV promoter and IFN-γ under engineered tetracycline-inducible promoters. Immunodeficient SCID mice inoculated with VACVs not expressing IFN-γ demonstrated severe weight loss, whereas those given VACVs expressing IFN-γ under constitutive VACV promoters showed no signs of infection. Most importantly, mice inoculated with a VACV expressing the IFN-γ gene under an inducible promoter remained healthy in the presence of doxycycline, but exhibited severe weight loss in the absence of doxycycline. In this study, we developed a safety mechanism for VACV based on the conditional expression of IFN-γ under a tightly controlled tetracycline-inducible VACV promoter for use in vaccines and oncolytic cancer therapies.

  9. Stunned Silence: Gene Expression Programs in Human Cells Infected with Monkeypox or Vaccinia Virus

    Science.gov (United States)

    Rubins, Kathleen H.; Hensley, Lisa E.; Relman, David A.; Brown, Patrick O.

    2011-01-01

    Poxviruses use an arsenal of molecular weapons to evade detection and disarm host immune responses. We used DNA microarrays to investigate the gene expression responses to infection by monkeypox virus (MPV), an emerging human pathogen, and Vaccinia virus (VAC), a widely used model and vaccine organism, in primary human macrophages, primary human fibroblasts and HeLa cells. Even as the overwhelmingly infected cells approached their demise, with extensive cytopathic changes, their gene expression programs appeared almost oblivious to poxvirus infection. Although killed (gamma-irradiated) MPV potently induced a transcriptional program characteristic of the interferon response, no such response was observed during infection with either live MPV or VAC. Moreover, while the gene expression response of infected cells to stimulation with ionomycin plus phorbol 12-myristate 13-acetate (PMA), or poly (I-C) was largely unimpaired by infection with MPV, a cluster of pro-inflammatory genes were a notable exception. Poly(I-C) induction of genes involved in alerting the innate immune system to the infectious threat, including TNF-alpha, IL-1 alpha and beta, CCL5 and IL-6, were suppressed by infection with live MPV. Thus, MPV selectively inhibits expression of genes with critical roles in cell-signaling pathways that activate innate immune responses, as part of its strategy for stealthy infection. PMID:21267444

  10. Stunned silence: gene expression programs in human cells infected with monkeypox or vaccinia virus.

    Directory of Open Access Journals (Sweden)

    Kathleen H Rubins

    2011-01-01

    Full Text Available Poxviruses use an arsenal of molecular weapons to evade detection and disarm host immune responses. We used DNA microarrays to investigate the gene expression responses to infection by monkeypox virus (MPV, an emerging human pathogen, and Vaccinia virus (VAC, a widely used model and vaccine organism, in primary human macrophages, primary human fibroblasts and HeLa cells. Even as the overwhelmingly infected cells approached their demise, with extensive cytopathic changes, their gene expression programs appeared almost oblivious to poxvirus infection. Although killed (gamma-irradiated MPV potently induced a transcriptional program characteristic of the interferon response, no such response was observed during infection with either live MPV or VAC. Moreover, while the gene expression response of infected cells to stimulation with ionomycin plus phorbol 12-myristate 13-acetate (PMA, or poly (I-C was largely unimpaired by infection with MPV, a cluster of pro-inflammatory genes were a notable exception. Poly(I-C induction of genes involved in alerting the innate immune system to the infectious threat, including TNF-alpha, IL-1 alpha and beta, CCL5 and IL-6, were suppressed by infection with live MPV. Thus, MPV selectively inhibits expression of genes with critical roles in cell-signaling pathways that activate innate immune responses, as part of its strategy for stealthy infection.

  11. [EVALUATION OF THE HUMAN SENSITIVITY TO SMALLPOX VIRUS BY THE PRIMARY CULTURES OF THE MONOCYTE-MACROPHAGES].

    Science.gov (United States)

    Zamedyanskaya, A S; Titova, K A; Sergeev, Al A; Kabanov, A S; Bulychev, L E; Sergeev, Ar A; Galakhova, D O; Nesterov, A E; Nosareva, O V; Shishkina, L N; Taranov, O S; Omigov, V V; Agafonov, A P; Sergeev, A N

    2016-01-01

    Studies of the primary cultures of granulocytes, mononuclear, and monocyte-macrophage cells derived from human blood were performed using variola virus (VARV) in the doses of 0.001-0.021 PFU/cell (plaques-forming units per cell). Positive dynamics of the virus accumulation was observed only in the monocyte-macrophages with maximum values of virus concentration (5.0-5.5 Ig PFU/ml) mainly within six days after the infection. The fact of VARV replication in the monocyte-macrophages was confirmed by the data of electron microscopy. At the same time, virus vaccines when tested in doses 3.3 and 4.2 Ig PFU/ml did not show the ability to reproduce in these human cells. The people sensitivity to VARV as assessed from the data obtained on human monocyte-macrophages corresponded to -1 PFU (taking into account the smooth interaction of the virus in the body to the cells of this type), which is consistent to previously found theoretical data on the virus sensitivity. The human susceptibility to VARV assessed experimentally can be used to predict the adequacy of developed smallpox models (in vivo) based on susceptible animals. This is necessary for reliable assessment of the efficiency of development of drugs for treatment and prophylaxis of the smallpox.

  12. De novo fatty acid biosynthesis contributes significantly to establishment of a bioenergetically favorable environment for vaccinia virus infection.

    Directory of Open Access Journals (Sweden)

    Matthew D Greseth

    2014-03-01

    Full Text Available The poxvirus life cycle, although physically autonomous from the host nucleus, is nevertheless dependent upon cellular functions. A requirement for de novo fatty acid biosynthesis was implied by our previous demonstration that cerulenin, a fatty acid synthase inhibitor, impaired vaccinia virus production. Here we show that additional inhibitors of this pathway, TOFA and C75, reduce viral yield significantly, with partial rescue provided by exogenous palmitate, the pathway's end-product. Palmitate's major role during infection is not for phospholipid synthesis or protein palmitoylation. Instead, the mitochondrial import and β-oxidation of palmitate are essential, as shown by the impact of etomoxir and trimetazidine, which target these two processes respectively. Moreover, the impact of these inhibitors is exacerbated in the absence of exogenous glucose, which is otherwise dispensable for infection. In contrast to glucose, glutamine is essential for productive viral infection, providing intermediates that sustain the TCA cycle (anaplerosis. Cumulatively, these data suggest that productive infection requires the mitochondrial β-oxidation of palmitate which drives the TCA cycle and energy production. Additionally, infection causes a significant rise in the cellular oxygen consumption rate (ATP synthesis that is ablated by etomoxir. The biochemical progression of the vaccinia life cycle is not impaired in the presence of TOFA, C75, or etomoxir, although the levels of viral DNA and proteins synthesized are somewhat diminished. However, by reversibly arresting infections at the onset of morphogenesis, and then monitoring virus production after release of the block, we determined that virion assembly is highly sensitive to TOFA and C75. Electron microscopic analysis of cells released into C75 revealed fragmented aggregates of viroplasm which failed to be enclosed by developing virion membranes. Taken together, these data indicate that vaccinia

  13. De novo fatty acid biosynthesis contributes significantly to establishment of a bioenergetically favorable environment for vaccinia virus infection.

    Science.gov (United States)

    Greseth, Matthew D; Traktman, Paula

    2014-03-01

    The poxvirus life cycle, although physically autonomous from the host nucleus, is nevertheless dependent upon cellular functions. A requirement for de novo fatty acid biosynthesis was implied by our previous demonstration that cerulenin, a fatty acid synthase inhibitor, impaired vaccinia virus production. Here we show that additional inhibitors of this pathway, TOFA and C75, reduce viral yield significantly, with partial rescue provided by exogenous palmitate, the pathway's end-product. Palmitate's major role during infection is not for phospholipid synthesis or protein palmitoylation. Instead, the mitochondrial import and β-oxidation of palmitate are essential, as shown by the impact of etomoxir and trimetazidine, which target these two processes respectively. Moreover, the impact of these inhibitors is exacerbated in the absence of exogenous glucose, which is otherwise dispensable for infection. In contrast to glucose, glutamine is essential for productive viral infection, providing intermediates that sustain the TCA cycle (anaplerosis). Cumulatively, these data suggest that productive infection requires the mitochondrial β-oxidation of palmitate which drives the TCA cycle and energy production. Additionally, infection causes a significant rise in the cellular oxygen consumption rate (ATP synthesis) that is ablated by etomoxir. The biochemical progression of the vaccinia life cycle is not impaired in the presence of TOFA, C75, or etomoxir, although the levels of viral DNA and proteins synthesized are somewhat diminished. However, by reversibly arresting infections at the onset of morphogenesis, and then monitoring virus production after release of the block, we determined that virion assembly is highly sensitive to TOFA and C75. Electron microscopic analysis of cells released into C75 revealed fragmented aggregates of viroplasm which failed to be enclosed by developing virion membranes. Taken together, these data indicate that vaccinia infection, and in

  14. In vitro susceptibility to ST-246 and Cidofovir corroborates the phylogenetic separation of Brazilian Vaccinia virus into two clades.

    Science.gov (United States)

    Pires, Mariana A; Rodrigues, Nathália F S; de Oliveira, Danilo B; de Assis, Felipe L; Costa, Galileu B; Kroon, Erna G; Mota, Bruno E F

    2018-04-01

    The Orthopoxvirus (OPV) genus of the Poxviridae family contains several human pathogens, including Vaccinia virus (VACV), which have been implicating in outbreaks of a zoonotic disease called Bovine Vaccinia in Brazil. So far, no approved treatment exists for OPV infections, but ST-246 and Cidofovir (CDV) are now in clinical development. Therefore, the objective of this work was to evaluate the susceptibility of five strains of Brazilian VACV (Br-VACV) to ST-246 and Cidofovir. The susceptibility of these strains to both drugs was evaluated by plaque reduction assay, extracellular virus's quantification in the presence of ST-246 and one-step growth curve in cells treated with CDV. Besides that, the ORFs F13L and E9L were sequenced for searching of polymorphisms associated with drug resistance. The effective concentration of 50% (EC 50 ) from both drugs varies significantly for different strains (from 0.0054 to 0.051 μM for ST-246 and from 27.14 to 61.23 μM for CDV). ST-246 strongly inhibits the production of extracellular virus for all isolates in concentrations as low as 0.1 μM and it was observed a relevant decrease of progeny production for all Br-VACV after CDV treatment. Sequencing of the F13L and E9L ORFs showed that Br-VACV do not present the polymorphism(s) associated with resistance to ST-246 and CDV. Taken together, our results showed that ST-246 and CDV are effective against diverse, wild VACV strains and that the susceptibility of Br-VACV to these drugs mirrored the phylogenetic split of these isolates into two groups. Thus, both ST-246 and CDV are of great interest as compounds to treat individuals during Bovine Vaccinia outbreaks in Brazil. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Interaction between the G3 and L5 proteins of the vaccinia virus entry–fusion complex

    OpenAIRE

    Wolfe, Cindy L.; Moss, Bernard

    2011-01-01

    The vaccinia virus entry-fusion complex (EFC) consists of 10 to 12 proteins that are embedded in the viral membrane and individually required for fusion with the cell and entry of the core into the cytoplasm. The architecture of the EFC is unknown except for information regarding two pair-wise interactions: A28 with H2 and A16 with G9. Here we used a technique to destabilize the EFC by repressing the expression of individual components and identified a third pair-wise interaction: G3 with L5....

  16. Post-transcription cleavage generates the 3' end of F17R transcripts in vaccinia virus

    International Nuclear Information System (INIS)

    D'Costa, Susan M.; Antczak, James B.; Pickup, David J.; Condit, Richard C.

    2004-01-01

    Most vaccinia virus intermediate and late mRNAs possess 3' ends that are extremely heterogeneous in sequence. However, late mRNAs encoding the cowpox A-type inclusion protein (ATI), the second largest subunit of the RNA polymerase, and the late telomeric transcripts possess homogeneous 3' ends. In the case of the ATI mRNA, it has been shown that the homogeneous 3' end is generated by a post-transcriptional endoribonucleolytic cleavage event. We have determined that the F17R gene also produces homogeneous transcripts generated by a post-transcriptional cleavage event. Mapping of in vivo mRNA shows that the major 3' end of the F17R transcript maps 1262 nt downstream of the F17R translational start site. In vitro transcripts spanning the in vivo 3' end are cleaved in an in vitro reaction using extracts from virus infected cells, and the site of cleavage is the same both in vivo and in vitro. Cleavage is not observed using extract from cells infected in the presence of hydroxyurea; therefore, the cleavage factor is either virus-coded or virus-induced during the post-replicative phase of virus replication. The cis-acting sequence responsible for cleavage is orientation specific and the factor responsible for cleavage activity has biochemical properties similar to the factor required for cleavage of ATI transcripts. Partially purified cleavage factor generates cleavage products of expected size when either the ATI or F17R substrates are used in vitro, strongly suggesting that cleavage of both transcripts is mediated by the same factor

  17. Luteolin suppresses cancer cell proliferation by targeting vaccinia-related kinase 1.

    Directory of Open Access Journals (Sweden)

    Ye Seul Kim

    Full Text Available Uncontrolled proliferation, a major feature of cancer cells, is often triggered by the malfunction of cell cycle regulators such as protein kinases. Recently, cell cycle-related protein kinases have become attractive targets for anti-cancer therapy, because they play fundamental roles in cellular proliferation. However, the protein kinase-targeted drugs that have been developed so far do not show impressive clinical results and also display severe side effects; therefore, there is undoubtedly a need to investigate new drugs targeting other protein kinases that are critical in cell cycle progression. Vaccinia-related kinase 1 (VRK1 is a mitotic kinase that functions in cell cycle regulation by phosphorylating cell cycle-related substrates such as barrier-to-autointegration factor (BAF, histone H3, and the cAMP response element (CRE-binding protein (CREB. In our study, we identified luteolin as the inhibitor of VRK1 by screening a small-molecule natural compound library. Here, we evaluated the efficacy of luteolin as a VRK1-targeted inhibitor for developing an effective anti-cancer strategy. We confirmed that luteolin significantly reduces VRK1-mediated phosphorylation of the cell cycle-related substrates BAF and histone H3, and directly interacts with the catalytic domain of VRK1. In addition, luteolin regulates cell cycle progression by modulating VRK1 activity, leading to the suppression of cancer cell proliferation and the induction of apoptosis. Therefore, our study suggests that luteolin-induced VRK1 inhibition may contribute to establish a novel cell cycle-targeted strategy for anti-cancer therapy.

  18. A loss of function analysis of host factors influencing Vaccinia virus replication by RNA interference.

    Directory of Open Access Journals (Sweden)

    Philippa M Beard

    Full Text Available Vaccinia virus (VACV is a large, cytoplasmic, double-stranded DNA virus that requires complex interactions with host proteins in order to replicate. To explore these interactions a functional high throughput small interfering RNA (siRNA screen targeting 6719 druggable cellular genes was undertaken to identify host factors (HF influencing the replication and spread of an eGFP-tagged VACV. The experimental design incorporated a low multiplicity of infection, thereby enhancing detection of cellular proteins involved in cell-to-cell spread of VACV. The screen revealed 153 pro- and 149 anti-viral HFs that strongly influenced VACV replication. These HFs were investigated further by comparisons with transcriptional profiling data sets and HFs identified in RNAi screens of other viruses. In addition, functional and pathway analysis of the entire screen was carried out to highlight cellular mechanisms involved in VACV replication. This revealed, as anticipated, that many pro-viral HFs are involved in translation of mRNA and, unexpectedly, suggested that a range of proteins involved in cellular transcriptional processes and several DNA repair pathways possess anti-viral activity. Multiple components of the AMPK complex were found to act as pro-viral HFs, while several septins, a group of highly conserved GTP binding proteins with a role in sequestering intracellular bacteria, were identified as strong anti-viral VACV HFs. This screen has identified novel and previously unexplored roles for cellular factors in poxvirus replication. This advancement in our understanding of the VACV life cycle provides a reliable knowledge base for the improvement of poxvirus-based vaccine vectors and development of anti-viral theraputics.

  19. Use of Bioclimatic Factors to Determine Potential Niche of Vaccinia Virus, an Emerging and Zoonotic Pathogen

    Science.gov (United States)

    Quiner, C. A.; Nakazawa, Y.

    2017-12-01

    Emerging and understudied pathogens often lack information that most commonly used analytical tools require, such as negative controls or baseline data making public health control of emerging pathogens challenging. In lieu of opportunities to collect more data from larger outbreaks or formal epidemiological studies, new analytical strategies, merging case data with publically available datasets, can be used to understand transmission patterns and drivers of disease emergence. Zoonotic infections with Vaccinia virus (VACV) were first reported in Brazil in 1999, VACV is an emerging zoonotic Orthopoxvirus, which primarily infects dairy cattle and farmers in close contact with infected cows. Prospective studies of emerging pathogens could provide critical data that would inform public health planning and response to outbreaks. By using the location of 87-recorded outbreaks and publicly available bioclimatic data we demonstrate one such approach. Using an Ecological Niche Model (ENM), we identify the environmental conditions under which VACV outbreaks have occurred, and determine additional locations in two affected South American countries that may be susceptible to transmission. Further, we show how suitability for the virus responds to different levels of various environmental factors and highlight the most important climatic factors in determining its transmission. The final ENM predicted all areas where Brazilian outbreaks occurred, two out of five Colombian outbreaks and identified new regions within Brazil that are suitable for transmission based on bioclimatic factors. Further, the most important factors in determining transmission suitability are precipitation of the wettest quarter, annual precipitation, mean temperature of the coldest quarter and mean diurnal range. The analyses here provide a means by which to study patterns of an emerging infectious disease, and regions that are potentially at risk for it, in spite of the paucity of critical data. Policy

  20. Isolation and identification of compounds from Kalanchoe pinnata having human alphaherpesvirus and vaccinia virus antiviral activity.

    Science.gov (United States)

    Cryer, Matthew; Lane, Kyle; Greer, Mary; Cates, Rex; Burt, Scott; Andrus, Merritt; Zou, Jiping; Rogers, Paul; Hansen, Marc D H; Burgado, Jillybeth; Panayampalli, Subbian Satheshkumar; Day, Craig W; Smee, Donald F; Johnson, Brent F

    2017-12-01

    Kalanchoe pinnata (Lam.) Pers. (Crassulaceae) is a succulent plant that is known for its traditional antivirus and antibacterial usage. This work examines two compounds identified from the K. pinnata plant for their antivirus activity against human alphaherpesvirus (HHV) 1 and 2 and vaccinia virus (VACV). Compounds KPB-100 and KPB-200 were isolated using HPLC and were identified using NMR and MS. Both compounds were tested in plaque reduction assay of HHV-2 wild type (WT) and VACV. Both compounds were then tested in virus spread inhibition and virus yield reduction (VYR) assays of VACV. KPB-100 was further tested in viral cytopathic effect (CPE) inhibition assay of HHV-2 TK-mutant and VYR assay of HHV-1 WT. KPB-100 and KPB-200 inhibited HHV-2 at IC 50 values of 2.5 and 2.9 μg/mL, respectively, and VACV at IC 50 values of 3.1 and 7.4 μg/mL, respectively, in plaque reduction assays. In virus spread inhibition assay of VACV KPB-100 and KPB-200 yielded IC 50 values of 1.63 and 13.2 μg/mL, respectively, and KPB-100 showed a nearly 2-log reduction in virus in VYR assay of VACV at 20 μg/mL. Finally, KPB-100 inhibited HHV-2 TK- at an IC 50 value of 4.5 μg/mL in CPE inhibition assay and HHV-1 at an IC 90 of 3.0 μg/mL in VYR assay. Both compounds are promising targets for synthetic optimization and in vivo study. KPB-100 in particular showed strong inhibition of all viruses tested.

  1. Expression of DAI by an oncolytic vaccinia virus boosts the immunogenicity of the virus and enhances antitumor immunity

    Directory of Open Access Journals (Sweden)

    Mari Hirvinen

    2016-01-01

    Full Text Available In oncolytic virotherapy, the ability of the virus to activate the immune system is a key attribute with regard to long-term antitumor effects. Vaccinia viruses bear one of the strongest oncolytic activities among all oncolytic viruses. However, its capacity for stimulation of antitumor immunity is not optimal, mainly due to its immunosuppressive nature. To overcome this problem, we developed an oncolytic VV that expresses intracellular pattern recognition receptor DNA-dependent activator of IFN-regulatory factors (DAI to boost the innate immune system and to activate adaptive immune cells in the tumor. We showed that infection with DAI-expressing VV increases expression of several genes related to important immunological pathways. Treatment with DAI-armed VV resulted in significant reduction in the size of syngeneic melanoma tumors in mice. When the mice were rechallenged with the same tumor, DAI-VV-treated mice completely rejected growth of the new tumor, which indicates immunity established against the tumor. We also showed enhanced control of growth of human melanoma tumors and elevated levels of human T-cells in DAI-VV-treated mice humanized with human peripheral blood mononuclear cells. We conclude that expression of DAI by an oncolytic VV is a promising way to amplify the vaccine potency of an oncolytic vaccinia virus to trigger the innate—and eventually the long-lasting adaptive immunity against cancer.

  2. Role of the vaccinia virus O3 protein in cell entry can be fulfilled by its Sequence flexible transmembrane domain

    Energy Technology Data Exchange (ETDEWEB)

    Satheshkumar, P.S.; Chavre, James; Moss, Bernard, E-mail: bmoss@nih.gov

    2013-09-15

    The vaccinia virus O3 protein, a component of the entry–fusion complex, is encoded by all chordopoxviruses. We constructed truncation mutants and demonstrated that the transmembrane domain, which comprises two-thirds of this 35 amino acid protein, is necessary and sufficient for interaction with the entry–fusion complex and function in cell entry. Nevertheless, neither single amino acid substitutions nor alanine scanning mutagenesis revealed essential amino acids within the transmembrane domain. Moreover, replication-competent mutant viruses were generated by randomization of 10 amino acids of the transmembrane domain. Of eight unique viruses, two contained only two amino acids in common with wild type and the remainder contained one or none within the randomized sequence. Although these mutant viruses formed normal size plaques, the entry–fusion complex did not co-purify with the mutant O3 proteins suggesting a less stable interaction. Thus, despite low specific sequence requirements, the transmembrane domain is sufficient for function in entry. - Highlights: • The 35 amino acid O3 protein is required for efficient vaccinia virus entry. • The transmembrane domain of O3 is necessary and sufficient for entry. • Mutagenesis demonstrated extreme sequence flexibility compatible with function.

  3. Safety and biodistribution of a double-deleted oncolytic vaccinia virus encoding CD40 ligand in laboratory Beagles

    Directory of Open Access Journals (Sweden)

    Karoliina Autio

    2014-01-01

    Full Text Available We evaluated adverse events, biodistribution and shedding of oncolytic vaccinia virus encoding CD40 ligand in two Beagles, in preparation for a phase 1 trial in canine cancer patients. Dog 1 received one dose of vaccinia virus and was euthanized 24 hours afterwards, while dog 2 received virus four times once weekly and was euthanized 7 days after that. Dogs were monitored for adverse events and underwent a detailed postmortem examination. Blood, saliva, urine, feces, and organs were collected for virus detection. Dog 1 had mild fever and lethargy while dog 2 experienced a possible seizure 5.5 hours after first virus administration. Viral DNA declined quickly in the blood after virus administration in both dogs but was still detectable 1 week later by quantitative polymerase chain reaction. Only samples taken directly after virus infusion contained infectious virus. Small amounts of viral DNA, but no infectious virus, were detected in a few saliva and urine samples. Necropsies did not reveal any relevant pathological changes and virus DNA was detected mainly in the spleen. The dogs in the study did not have cancer, and thus adverse events could be more common and viral load higher in dogs with tumors which allow viral amplification.

  4. Gel-eletroforese no diagnóstico da varíola Gel-electrophoresis in the smallpox diagnosis

    Directory of Open Access Journals (Sweden)

    Julio A. Mesquita

    1972-01-01

    Full Text Available O emprego de gel-eletroforese no diagnóstico da varíola, demonstrou ser ao menos trinta vezes (30X mais sensível que o teste de agar-gel, nas condições descritas (tabela I. Doze (12 espécimes, cujos testes convencionais de inoculação em ovos embrionados e de agar-gel resultaram positivos, foram testados em suas diluições originais congeladas por mais de um ano, sendo seis deles revelados por gel-eletroforese enquanto nenhum o foi por agar-gel (tabela II. Trinta e três (33 amostras isoladas no laboratório, foram testadas com material colhido de membrana cório-alantóica da primeira inoculação para o diagnóstico, conservado em glicerina 50%, resultando 15 positivas em gel-eletroforese e apenas 3 em agar-gel (tabela II. Os últimos 60 espécimes recebidos para diagnóstico, através a Campanha de Erradicação da Varíola, também resultaram negativos em gel-eletroforese, que não mostrou falsos-positivos nas condições descritas.The test of gel-electrophoresis applied to the pox virus group showed to be at least thirth times (30X more sensitive than agar-gel test on the described conditions (Table I. Twelve specimens, which were positives form Smallpox in the conventional tests of egg inoculation and agar-gel difusion test, have been screened in their original dilutions frozen for more than 1 year and six of them were still detectable by gel-eletrophoresis, while by agar-gel test any of them was positive (Table II. Thirty three Smallpox isolates have been tested with material from first egg inoculation (chorioallantoic membranes which have been stored in glycerin 50%, at - 15ºC. Fifteen of them were still positive by gel-electrophoresis and only 3 by agar-gel (Table II. The last 60 specimens received for diagnosis from Smallpox Erradication Campaign (CEV, were negatives by both tests. The gel-electrophoresis, did not show false-positives on described conditions.

  5. High-affinity human leucocyte antigen class I binding variola-derived peptides induce CD4(+) T cell responses more than 30 years post-vaccinia virus vaccination

    DEFF Research Database (Denmark)

    Wang, M.; Tang, Sheila Tuyet; Lund, Ole

    2009-01-01

    Interferon-gamma secreting T lymphocytes against pox virus-derived synthetic 9-mer peptides were tested by enzyme-linked immunospot in peripheral blood of individuals vaccinated with vaccinia virus more than 30 years ago. The peptides were characterized biochemically as high-affinity human leucoc...

  6. Molecular network, pathway, and functional analysis of time-dependent gene changes associated with pancreatic cancer susceptibility to oncolytic vaccinia virotherapy

    Directory of Open Access Journals (Sweden)

    Dana Haddad

    2016-01-01

    Conclusions: Our study reveals the ability to assess time-dependent changes in gene expression patterns in pancreatic cancer cells associated with infection and susceptibility to vaccinia viruses. This suggests that molecular assays may be useful to develop safer and more efficacious oncolyticvirotherapies and support the idea that these treatments may target pathways implicated in pancreatic cancer resistance to conventional therapies.

  7. Biophysical analysis of bacterial and viral systems. A shock tube study of bio-aerosols and a correlated AFM/nanosims investigation of vaccinia virus

    Energy Technology Data Exchange (ETDEWEB)

    Gates, Sean Damien [Stanford Univ., CA (United States)

    2013-05-01

    The work presented herein is concerned with the development of biophysical methodology designed to address pertinent questions regarding the behavior and structure of select pathogenic agents. Two distinct studies are documented: a shock tube analysis of endospore-laden bio-aerosols and a correlated AFM/NanoSIMS study of the structure of vaccinia virus.

  8. Structure and function of A41, a vaccinia virus chemokine binding protein.

    Directory of Open Access Journals (Sweden)

    Mohammad W Bahar

    2008-01-01

    Full Text Available The vaccinia virus (VACV A41L gene encodes a secreted 30 kDa glycoprotein that is nonessential for virus replication but affects the host response to infection. The A41 protein shares sequence similarity with another VACV protein that binds CC chemokines (called vCKBP, or viral CC chemokine inhibitor, vCCI, and strains of VACV lacking the A41L gene induced stronger CD8+ T-cell responses than control viruses expressing A41. Using surface plasmon resonance, we screened 39 human and murine chemokines and identified CCL21, CCL25, CCL26 and CCL28 as A41 ligands, with Kds of between 8 nM and 118 nM. Nonetheless, A41 was ineffective at inhibiting chemotaxis induced by these chemokines, indicating it did not block the interaction of these chemokines with their receptors. However the interaction of A41 and chemokines was inhibited in a dose-dependent manner by heparin, suggesting that A41 and heparin bind to overlapping sites on these chemokines. To better understand the mechanism of action of A41 its crystal structure was solved to 1.9 A resolution. The protein has a globular beta sandwich structure similar to that of the poxvirus vCCI family of proteins, but there are notable structural differences, particularly in surface loops and electrostatic charge distribution. Structural modelling suggests that the binding paradigm as defined for the vCCI-chemokine interaction is likely to be conserved between A41 and its chemokine partners. Additionally, sequence analysis of chemokines binding to A41 identified a signature for A41 binding. The biological and structural data suggest that A41 functions by forming moderately strong (nM interactions with certain chemokines, sufficient to interfere with chemokine-glycosaminoglycan interactions at the cell surface (microM-nM and thereby to destroy the chemokine concentration gradient, but not strong enough to disrupt the (pM chemokine-chemokine receptor interactions.

  9. Evaluation of radiation effects against C6 glioma in combination with vaccinia virus-p53 gene therapy

    Science.gov (United States)

    Gridley, D. S.; Andres, M. L.; Li, J.; Timiryasova, T.; Chen, B.; Fodor, I.; Nelson, G. A. (Principal Investigator)

    1998-01-01

    The primary objective of this study was to evaluate the antitumor effects of recombinant vaccinia virus-p53 (rVV-p53) in combination with radiation therapy against the C6 rat glioma, a p53 deficient tumor that is relatively radioresistant. VV-LIVP, the parental virus (Lister strain), was used as a control. Localized treatment of subcutaneous C6 tumors in athymic mice with either rVV-p53 or VV-LIVP together with tumor irradiation resulted in low tumor incidence and significantly slower tumor progression compared to the agents given as single modalities. Assays of blood and spleen indicated that immune system activation may account, at least partly, for the enhance tumor inhibition seen with combined treatment. No overt signs of treatment-related toxicity were noted.

  10. Effect of Vaccinia virus infection on poly(ADP-ribose)synthesis and DNA metabolism in different cells

    Energy Technology Data Exchange (ETDEWEB)

    Topaloglou, A.; Ott, E.; Altmann, H. (Oesterreichisches Forschungszentrum Seibersdorf G.m.b.H. Inst. fuer Biologie); Zashukhina, G.D.; Sinelschikova, T.A. (AN SSSR, Moscow. Inst. Obshchej Genetiki)

    1983-07-14

    In Chang liver cells and rat spleen cells infected with Vaccinia virus, DNA synthesis, repair replication after UV irradiation and poly(ADP-ribose)(PAR) synthesis were determined. In the time post infection semiconservative DNA synthesis showed only a slight reduction. DNA repair replication was not very different from controls 4 hours p.i. but was enhanced 24 hours after infection compared to noninfected cells. PAR synthesis was also not changed very much 4 hours p.i. but was decreased significantly after 24 hours. The determination of radioactivity resulting from /sup 3/H-NAD, showed a marked reduction of PAR in the spacer region of chromatin 24 hours p.i., but in addition, PAR located in the core region, was reduced, too.

  11. Absence of vaccinia virus detection in a remote region of the Northern Amazon forests, 2005-2015.

    Science.gov (United States)

    Costa, Galileu Barbosa; Lavergne, Anne; Darcissac, Edith; Lacoste, Vincent; Drumond, Betânia Paiva; Abrahão, Jônatas Santos; Kroon, Erna Geessien; de Thoisy, Benoît; de Souza Trindade, Giliane

    2017-08-01

    Vaccinia virus (VACV) circulates in Brazil and other South America countries and is responsible for a zoonotic disease that usually affects dairy cattle and humans, causing economic losses and impacting animal and human health. Furthermore, it has been detected in wild areas in the Brazilian Amazon. To better understand the natural history of VACV, we investigated its circulation in wildlife from French Guiana, a remote region in the Northern Amazon forest. ELISA and plaque reduction neutralization tests were performed to detect anti-orthopoxvirus antibodies. Real-time and standard PCR targeting C11R, A56R and A26L were applied to detect VACV DNA in serum, saliva and tissue samples. No evidence of VACV infection was found in any of the samples tested. These findings provide additional information on the VACV epidemiological puzzle. The virus could nevertheless be circulating at low levels that were not detected in areas where no humans or cattle are present.

  12. Lister vaccine strain of vaccinia virus armed with the endostatin-angiostatin fusion gene: an oncolytic virus superior to dl1520 (ONYX-015) for human head and neck cancer.

    Science.gov (United States)

    Tysome, James R; Wang, Pengju; Alusi, Ghassan; Briat, Arnaud; Gangeswaran, Rathi; Wang, Jiwei; Bhakta, Vipul; Fodor, Istvan; Lemoine, Nick R; Wang, Yaohe

    2011-09-01

    Oncolytic viral therapy represents a promising strategy for the treatment of head and neck squamous cell carcinoma (HNSCC), with dl1520 (ONYX-015) the most widely used oncolytic adenovirus in clinical trials. This study aimed to determine the effectiveness of the Lister vaccine strain of vaccinia virus as well as a vaccinia virus armed with the endostatin-angiostatin fusion gene (VVhEA) as a novel therapy for HNSCC and to compare them with dl1520. The potency and replication of the Lister strain and VVhEA and the expression and function of the fusion protein were determined in human HNSCC cells in vitro and in vivo. Finally, the efficacy of VVhEA was compared with dl1520 in vivo in a human HNSCC model. The Lister vaccine strain of vaccinia virus was more effective than the adenovirus against all HNSCC cell lines tested in vitro. Although the potency of VVhEA was attenuated in vitro, the expression and function of the endostatin-angiostatin fusion protein was confirmed in HNSCC models both in vitro and in vivo. This novel vaccinia virus (VVhEA) demonstrated superior antitumor potency in vivo compared with both dl1520 and the control vaccinia virus. This study suggests that the Lister strain vaccinia virus armed with an endostatin-angiostatin fusion gene may be a potential therapeutic agent for HNSCC.

  13. Improvement of In Vivo Expression of Genes Delivered by Self-Amplifying RNA Using Vaccinia Virus Immune Evasion Proteins

    Science.gov (United States)

    Beissert, Tim; Koste, Lars; Perkovic, Mario; Walzer, Kerstin C.; Erbar, Stephanie; Selmi, Abderraouf; Diken, Mustafa; Kreiter, Sebastian; Türeci, Özlem; Sahin, Ugur

    2017-01-01

    Among nucleic acid–based delivery platforms, self-amplifying RNA (saRNA) vectors are of increasing interest for applications such as transient expression of recombinant proteins and vaccination. saRNA is safe and, due to its capability to amplify intracellularly, high protein levels can be produced from even minute amounts of transfected templates. However, it is an obstacle to full exploitation of this platform that saRNA induces a strong innate host immune response. In transfected cells, pattern recognition receptors sense double-stranded RNA intermediates and via activation of protein kinase R (PKR) and interferon signaling initiate host defense measures including a translational shutdown. To reduce pattern recognition receptor stimulation and unleash suppressed saRNA translation, this study co-delivered non-replicating mRNA encoding vaccinia virus immune evasion proteins E3, K3, and B18. It was shown that E3 is far superior to K3 or B18 as a highly potent blocker of PKR activation and of interferon (IFN)-β upregulation. B18, in contrast, is superior in controlling OAS1, a key IFN-inducible gene involved in viral RNA degradation. By combining all three vaccinia proteins, the study achieved significant suppression of PKR and IFN pathway activation in vitro and enhanced expression of saRNA-encoded genes of interest both in vitro and in vivo. This approach promises to overcome key hurdles of saRNA gene delivery. Its application may improve the bioavailability of the encoded protein, and reduce the effective dose and correspondingly the cost of goods of manufacture in the various fields where saRNA utilization is envisioned. PMID:28877647

  14. Unpolarized release of vaccinia virus and HIV antigen by colchicine treatment enhances intranasal HIV antigen expression and mucosal humoral responses.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available The induction of a strong mucosal immune response is essential to building successful HIV vaccines. Highly attenuated recombinant HIV vaccinia virus can be administered mucosally, but even high doses of immunization have been found unable to induce strong mucosal antibody responses. In order to solve this problem, we studied the interactions of recombinant HIV vaccinia virus Tiantan strain (rVTT-gagpol in mucosal epithelial cells (specifically Caco-2 cell layers and in BALB/c mice. We evaluated the impact of this virus on HIV antigen delivery and specific immune responses. The results demonstrated that rVTT-gagpol was able to infect Caco-2 cell layers and both the nasal and lung epithelia in BALB/c mice. The progeny viruses and expressed p24 were released mainly from apical surfaces. In BALB/c mice, the infection was limited to the respiratory system and was not observed in the blood. This showed that polarized distribution limited antigen delivery into the whole body and thus limited immune response. To see if this could be improved upon, we stimulated unpolarized budding of the virus and HIV antigens by treating both Caco-2 cells and BALB/c mice with colchicine. We found that, in BALB/c mice, the degree of infection and antigen expression in the epithelia went up. As a result, specific immune responses increased correspondingly. Together, these data suggest that polarized budding limits antigen delivery and immune responses, but unpolarized distribution can increase antigen expression and delivery and thus enhance specific immune responses. This conclusion can be used to optimize mucosal HIV vaccine strategies.

  15. Improving the Care and Treatment of Monkeypox Patients in Low-Resource Settings: Applying Evidence from Contemporary Biomedical and Smallpox Biodefense Research

    Directory of Open Access Journals (Sweden)

    Mary G. Reynolds

    2017-12-01

    Full Text Available Monkeypox is a smallpox-like illness that can be accompanied by a range of significant medical complications. To date there are no standard or optimized guidelines for the clinical management of monkeypox (MPX patients, particularly in low-resource settings. Consequently, patients can experience protracted illness and poor outcomes. Improving care necessitates developing a better understanding of the range of clinical manifestations—including complications and sequelae—as well as of features of illness that may be predictive of illness severity and poor outcomes. Experimental and natural infection of non-human primates with monkeypox virus can inform the approach to improving patient care, and may suggest options for pharmaceutical intervention. These studies have traditionally been performed to address the threat of smallpox bioterrorism and were designed with the intent of using MPX as a disease surrogate for smallpox. In many cases this necessitated employing high-dose, inhalational or intravenous challenge to recapitulate the severe manifestations of illness seen with smallpox. Overall, these data—and data from biomedical research involving burns, superficial wounds, herpes, eczema vaccinatum, and so forth—suggest that MPX patients could benefit from clinical support to mitigate the consequences of compromised skin and mucosa. This should include prevention and treatment of secondary bacterial infections (and other complications, ensuring adequate hydration and nutrition, and protecting vulnerable anatomical locations such as the eyes and genitals. A standard of care that considers these factors should be developed and assessed in different settings, using clinical metrics specific for MPX alongside consideration of antiviral therapies.

  16. Variola minor in coalfield areas of England and Wales, 1921-34: Geographical determinants of a national smallpox epidemic that spread out of effective control.

    Science.gov (United States)

    Smallman-Raynor, Matthew R; Rafferty, Sarah; Cliff, Andrew D

    2017-05-01

    This paper uses techniques of binary logistic regression to identify the spatial determinants of the last national epidemic of smallpox to spread in England and Wales, the variola minor epidemic of 1921-34. Adjusting for age and county-level variations in vaccination coverage in infancy, the analysis identifies a dose-response gradient with increasing odds of elevated smallpox rates in local government areas with (i) medium (odds ratio [OR] = 5.32, 95% Confidence Interval [95% CI] 1.96-14.41) and high (OR = 11.32, 95% CI 4.20-31.59) coal mining occupation rates and (ii) medium (OR = 16.74, 95% CI 2.24-125.21) and high (OR = 63.43, 95% CI 7.82-497.21) levels of residential density. The results imply that the spatial transmission of variola virus was facilitated by the close spatial packing of individuals, with a heightened transmission risk in coal mining areas of the country. A syndemic interaction between common respiratory conditions arising from exposure to coal dust and smallpox virus transmission is postulated to have contributed to the findings. We suggest that further studies of the geographical intersection of coal mining and acute infections that are transmitted via respiratory secretions are warranted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Small(pox success? Erradicação da varíola: medida do sucesso?

    Directory of Open Access Journals (Sweden)

    Anne-Emanuelle Birn

    2011-02-01

    Full Text Available The 30th anniversary of the World Health Organization's (WHO official certification of smallpox eradication was marked by a slew of events hailing the campaign's dramatic tale of technological and organizational triumph against an ancient scourge. Yet commemorations also serve as moments of critical reflection. This article questions the acclaim showered upon smallpox eradication as the single greatest public health success in history. It examines how and why smallpox eradication and WHO's concurrent social justice-oriented primary health care approach (following from the Declaration of Alma-Ata became competing paradigms. It synthesizes critiques of eradication's shortcomings and debunks some of the myths surrounding the global eradication campaign as a public health priority and necessity, and as a Cold War victory of cooperation. The article concludes with thoughts on integrating technical and social-political aspects of health within the context of welfare states as the means to achieving widespread and enduring global public health success.O 30º aniversário da certificação oficial da Organização Mundial da Saúde (OMS da erradicação da varíola foi marcado por uma série de eventos que saudaram a dramática história do triunfo tecnológico e organizacional contra este antigo flagelo. Todavia, as comemorações também servem como momentos para uma reflexão crítica. Este artigo questiona os aplausos excessivos para a erradicação da varíola como o único e absoluto sucesso na história da saúde pública. Examina como e por que a erradicação da varíola e a abordagem da atenção básica de saúde orientada para a justiça social (de acordo com a Declaração de Alma-Ata se tornaram paradigmas concorrentes. Sintetiza críticas sobre as deficiências da erradicação e busca desvelar alguns dos mitos que envolvem a campanha de erradicação global como uma prioridade e necessidade da saúde pública, e como uma vitória da

  18. Prime/boost immunotherapy of HPV16-induced tumors with E7 protein delivered by Bordetella adenylate cyclase and modified vaccinia virus Ankara

    Czech Academy of Sciences Publication Activity Database

    Macková, J.; Stasíková, J.; Kutinová, L.; Mašín, Jiří; Hainz, P.; Šimšová, Marcela; Gabriel, P.; Šebo, Peter; Němečková, P.

    2006-01-01

    Roč. 55, - (2006), s. 39-46 ISSN 0340-7004 R&D Projects: GA AV ČR IBS5020311; GA ČR GA310/04/0004; GA MZd NR8004 Grant - others:GA MZd NC6570 Institutional research plan: CEZ:AV0Z50200510 Keywords : vaccine * hpv-e7 * vaccinia virus Subject RIV: EE - Microbiology, Virology Impact factor: 4.313, year: 2006

  19. Comparative Immunogenicity in Rhesus Monkeys of DNA Plasmid, Recombinant Vaccinia Virus, and Replication-Defective Adenovirus Vectors Expressing a Human Immunodeficiency Virus Type 1 gag Gene

    OpenAIRE

    Casimiro, Danilo R.; Chen, Ling; Fu, Tong-Ming; Evans, Robert K.; Caulfield, Michael J.; Davies, Mary-Ellen; Tang, Aimin; Chen, Minchun; Huang, Lingyi; Harris, Virginia; Freed, Daniel C.; Wilson, Keith A.; Dubey, Sheri; Zhu, De-Min; Nawrocki, Denise

    2003-01-01

    Cellular immune responses, particularly those associated with CD3+ CD8+ cytotoxic T lymphocytes (CTL), play a primary role in controlling viral infection, including persistent infection with human immunodeficiency virus type 1 (HIV-1). Accordingly, recent HIV-1 vaccine research efforts have focused on establishing the optimal means of eliciting such antiviral CTL immune responses. We evaluated several DNA vaccine formulations, a modified vaccinia virus Ankara vector, and a replication-defecti...

  20. The sequence of camelpox virus shows it is most closely related to variola virus, the cause of smallpox.

    Science.gov (United States)

    Gubser, Caroline; Smith, Geoffrey L

    2002-04-01

    Camelpox virus (CMPV) and variola virus (VAR) are orthopoxviruses (OPVs) that share several biological features and cause high mortality and morbidity in their single host species. The sequence of a virulent CMPV strain was determined; it is 202182 bp long, with inverted terminal repeats (ITRs) of 6045 bp and has 206 predicted open reading frames (ORFs). As for other poxviruses, the genes are tightly packed with little non-coding sequence. Most genes within 25 kb of each terminus are transcribed outwards towards the terminus, whereas genes within the centre of the genome are transcribed from either DNA strand. The central region of the genome contains genes that are highly conserved in other OPVs and 87 of these are conserved in all sequenced chordopoxviruses. In contrast, genes towards either terminus are more variable and encode proteins involved in host range, virulence or immunomodulation. In some cases, these are broken versions of genes found in other OPVs. The relationship of CMPV to other OPVs was analysed by comparisons of DNA and predicted protein sequences, repeats within the ITRs and arrangement of ORFs within the terminal regions. Each comparison gave the same conclusion: CMPV is the closest known virus to variola virus, the cause of smallpox.

  1. A case of exemplarity: C. F. Rottböll's history of smallpox inoculation in Denmark-Norway, 1766.

    Science.gov (United States)

    Eriksen, Anne

    2010-01-01

    Smallpox inoculation was one of the great discoveries of the 18th century and has been written into the grand narrative of medical progress, describing the taming of epidemic disease. Setting the perspective of progress aside, the article explores how this medical innovation was situated in 18th-century society and culture. The aim is to investigate how medical practice was intertwined with social structure and cultural patterns. The article takes its case from a book published in Copenhagen in 1766 by Professor C. F. Rottböll, former Head Physician of the Royal Inoculation House in Copenhagen. Being the first medical treatise on inoculation in Denmark-Norway, the book also has a historical section followed by a collection of reports and letters written by a number of other authors from various parts of the kingdom. Through close reading, the article explores how the introduction of the new technique was described in the texts. The reports were written to present practice and discuss cases. In doing so, they also presented a variety of other concerns so that a diversity of aims and intentions are added to the medical ones. The social and rhetorical strategies employed illuminate social ambition and systems of patronage, as well as understandings of history and of truth.

  2. Political epidemiology: strengthening socio-political analysis for mass immunisation - lessons from the smallpox and polio programmes.

    Science.gov (United States)

    Taylor, S

    2009-01-01

    Control and reduction of infectious diseases is a key to attaining the Millennium Development Goals. An important element of this work is the successful immunisation, especially in resource-poor countries. Mass immunisation, most intensively in the case of eradication, depends on a combination of reliable demand (e.g. public willingness to comply with the vaccine protocol) and effective supply (e.g. robust, generally state-led, vaccine delivery). This balance of compliance and enforceability is, quintessentially, socio-political in nature - conditioned by popular perceptions of disease and risk, wider conditions of economic development and poverty, technical aspects of vaccine delivery, and the prevailing international norms regarding power relations between states and peoples. In the past 100 years, three out of six disease eradication programmes have failed. The explanations for failure have focused on biotechnical and managerial or financial issues. Less attention is paid to socio-political aspects. Yet socio-political explanations are key. Eradication is neither inherently prone to failure, nor necessarily doomed in the case of polio. However, eradication, and similar mass immunisation initiatives, which fail to address social and political realities of intervention may be. A comparison of the smallpox and polio eradication programmes illustrates the importance of disease-specific socio-political analysis in programme conceptualisation, design, and management.

  3. Recombination-mediated genetic engineering of a bacterial artificial chromosome clone of modified vaccinia virus Ankara (MVA.

    Directory of Open Access Journals (Sweden)

    Matthew G Cottingham

    2008-02-01

    Full Text Available The production, manipulation and rescue of a bacterial artificial chromosome clone of Vaccinia virus (VAC-BAC in order to expedite construction of expression vectors and mutagenesis of the genome has been described (Domi & Moss, 2002, PNAS99 12415-20. The genomic BAC clone was 'rescued' back to infectious virus using a Fowlpox virus helper to supply transcriptional machinery. We apply here a similar approach to the attenuated strain Modified Vaccinia virus Ankara (MVA, now widely used as a safe non-replicating recombinant vaccine vector in mammals, including humans. Four apparently full-length, rescuable clones were obtained, which had indistinguishable immunogenicity in mice. One clone was shotgun sequenced and found to be identical to the parent. We employed GalK recombination-mediated genetic engineering (recombineering of MVA-BAC to delete five selected viral genes. Deletion of C12L, A44L, A46R or B7R did not significantly affect CD8(+ T cell immunogenicity in BALB/c mice, but deletion of B15R enhanced specific CD8(+ T cell responses to one of two endogenous viral epitopes (from the E2 and F2 proteins, in accordance with published work (Staib et al., 2005, J. Gen. Virol.86, 1997-2006. In addition, we found a higher frequency of triple-positive IFN-gamma, TNF-alpha and IL-2 secreting E3-specific CD8+ T-cells 8 weeks after vaccination with MVA lacking B15R. Furthermore, a recombinant vaccine capable of inducing CD8(+ T cells against an epitope from Plasmodium berghei was created using GalK counterselection to insert an antigen expression cassette lacking a tandem marker gene into the traditional thymidine kinase locus of MVA-BAC. MVA continues to feature prominently in clinical trials of recombinant vaccines against diseases such as HIV-AIDS, malaria and tuberculosis. Here we demonstrate in proof-of-concept experiments that MVA-BAC recombineering is a viable route to more rapid and efficient generation of new candidate mutant and recombinant

  4. Recombinant Vaccinia Viruses Coding Transgenes of Apoptosis-Inducing Proteins Enhance Apoptosis But Not Immunogenicity of Infected Tumor Cells

    Science.gov (United States)

    Tkachenko, Anastasiya; Richter, Vladimir

    2017-01-01

    Genetic modifications of the oncolytic vaccinia virus (VV) improve selective tumor cell infection and death, as well as activation of antitumor immunity. We have engineered a double recombinant VV, coding human GM-CSF, and apoptosis-inducing protein apoptin (VV-GMCSF-Apo) for comparing with the earlier constructed double recombinant VV-GMCSF-Lact, coding another apoptosis-inducing protein, lactaptin, which activated different cell death pathways than apoptin. We showed that both these recombinant VVs more considerably activated a set of critical apoptosis markers in infected cells than the recombinant VV coding GM-CSF alone (VV-GMCSF-dGF): these were phosphatidylserine externalization, caspase-3 and caspase-7 activation, DNA fragmentation, and upregulation of proapoptotic protein BAX. However, only VV-GMCSF-Lact efficiently decreased the mitochondrial membrane potential of infected cancer cells. Investigating immunogenic cell death markers in cancer cells infected with recombinant VVs, we demonstrated that all tested recombinant VVs were efficient in calreticulin and HSP70 externalization, decrease of cellular HMGB1, and ATP secretion. The comparison of antitumor activity against advanced MDA-MB-231 tumor revealed that both recombinants VV-GMCSF-Lact and VV-GMCSF-Apo efficiently delay tumor growth. Our results demonstrate that the composition of GM-CSF and apoptosis-inducing proteins in the VV genome is very efficient tool for specific killing of cancer cells and for activation of antitumor immunity. PMID:28951871

  5. Interaction between the G3 and L5 proteins of the vaccinia virus entry-fusion complex

    International Nuclear Information System (INIS)

    Wolfe, Cindy L.; Moss, Bernard

    2011-01-01

    The vaccinia virus entry-fusion complex (EFC) consists of 10 to 12 proteins that are embedded in the viral membrane and individually required for fusion with the cell and entry of the core into the cytoplasm. The architecture of the EFC is unknown except for information regarding two pair-wise interactions: A28 with H2 and A16 with G9. Here we used a technique to destabilize the EFC by repressing the expression of individual components and identified a third pair-wise interaction: G3 with L5. These two proteins remained associated under several different EFC destabilization conditions and in each case were immunopurified together as demonstrated by Western blotting. Further evidence for the specific interaction of G3 and L5 was obtained by mass spectrometry. This interaction also occurred when G3 and L5 were expressed in uninfected cells, indicating that no other viral proteins were required. Thus, the present study extends our knowledge of the protein interactions important for EFC assembly and stability.

  6. RNA-Seq Based Transcriptome Analysis of the Type I Interferon Host Response upon Vaccinia Virus Infection of Mouse Cells

    Directory of Open Access Journals (Sweden)

    Bruno Hernáez

    2017-01-01

    Full Text Available Vaccinia virus (VACV encodes the soluble type I interferon (IFN binding protein B18 that is secreted from infected cells and also attaches to the cell surface, as an immunomodulatory strategy to inhibit the host IFN response. By using next generation sequencing technologies, we performed a detailed RNA-seq study to dissect at the transcriptional level the modulation of the IFN based host response by VACV and B18. Transcriptome profiling of L929 cells after incubation with purified recombinant B18 protein showed that attachment of B18 to the cell surface does not trigger cell signalling leading to transcriptional activation. Consistent with its ability to bind type I IFN, B18 completely inhibited the IFN-mediated modulation of host gene expression. Addition of UV-inactivated virus particles to cell cultures altered the expression of a set of 53 cellular genes, including genes involved in innate immunity. Differential gene expression analyses of cells infected with replication competent VACV identified the activation of a broad range of host genes involved in multiple cellular pathways. Interestingly, we did not detect an IFN-mediated response among the transcriptional changes induced by VACV, even after the addition of IFN to cells infected with a mutant VACV lacking B18. This is consistent with additional viral mechanisms acting at different levels to block IFN responses during VACV infection.

  7. Daily ingestion of the probiotic Lactobacillus paracasei ST11 decreases Vaccinia virus dissemination and lethality in a mouse model.

    Science.gov (United States)

    Dos Santos Pereira Andrade, A C; Lima, M Teixeira; Oliveira, G Pereira; Calixto, R Silva; de Sales E Souza, É Lorenna; da Glória de Souza, D; de Almeida Leite, C M; Ferreira, J M Siqueira; Kroon, E G; de Oliveira, D Bretas; Dos Santos Martins, F; Abrahão, J S

    2017-02-07

    Vaccinia virus (VACV) is an important pathogen. Although studies have shown relationships between probiotics and viruses, the effect of probiotics on VACV infection is unknown. Therefore, this work aims to investigate the probiotics effects on VACV infection. Mice were divided into four groups, two non-infected groups, one receiving the probiotic, the other one not receiving it, and two groups infected intranasally with VACV Western Reserve (VACV-WR) receiving or not receiving the probiotic. Viral titres in organs and cytokine production in the lungs were analysed. Lung samples were also subjected to histological analysis. The intake of probiotic results in reduction in viral spread with a significant decrease of VACV titer on lung, liver and brain of treated group. In addition,treatment with the probiotic results in attenuated mice lung inflammation showing fewer lesions on histological findings and decreased lethality in mice infected with VACV. The ingestion of Lactobacillus paracasei ST11 (LPST11) after VACV infection resulted in 2/9 animal lethality compared with 4/9 in the VACV group. This is the first study on probiotics and VACV interactions, providing not only information about this interaction, but also proposing a model for future studies involving probiotics and other poxvirus.

  8. The Effect of Smallpox and Bacillus Calmette-Guérin Vaccination on the Risk of Human Immunodeficiency Virus-1 Infection in Guinea-Bissau and Denmark

    DEFF Research Database (Denmark)

    Rieckmann, Andreas; Villumsen, Marie; Jensen, Mette Lundsby

    2017-01-01

    -Bissau including 1751 individuals and (2) a case-base study with a background population of 46239 individuals in Denmark. In Guinea-Bissau, HIV-1 transmission was almost exclusively sexually transmitted. In Denmark, we excluded intravenous drug users. Data were analyzed using logistic regression. RESULTS: Bacillus......: The studies from Guinea-Bissau and Denmark, 2 very different settings, both suggest that the BCG and smallpox vaccines could be associated with a decreased risk of sexually transmitted HIV-1. It might be informative to pursue this observation and explore possible protective mechanisms as part of the search...

  9. Human vaccinia-like virus outbreaks in São Paulo and Goiás States, Brazil: virus detection, isolation and identification Surtos de vírus Vaccinia-like nos Estados de São Paulo e Goiás, Brasil: detecção, isolamento e identificação viral

    Directory of Open Access Journals (Sweden)

    Teresa Keico Nagasse-Sugahara

    2004-04-01

    Full Text Available Since October 2001, the Adolfo Lutz Institute has been receiving vesicular fluids and scab specimens of patients from Paraíba Valley region in the São Paulo and Minas Gerais States and from São Patricio Valley, in the Goiás State. Epidemiological data suggested that the outbreaks were caused by Cowpox virus or Vaccinia virus. Most of the patients are dairy milkers that had vesiculo-pustular lesions on the hands, arms, forearms, and some of them, on the face. Virus particles with orthopoxvirus morphology were detected by direct electron microscopy (DEM in samples of 49 (66.21% patients of a total of 74 analyzed. Viruses were isolated in Vero cell culture and on chorioallantoic membrane (CAM of embryonated chicken eggs. Among 21 samples submitted to PCR using primers for hemagglutinin (HA gene, 19 were positive. Restriction digestion with TaqI resulted in four characteristic Vaccinia virus fragments. HA nucleotide sequences showed 99.9% similarity with Cantagalo virus, described as a strain of Vaccinia virus. The only difference observed was the substitution of one nucleotide in the position 616 leading to change in one amino acid of the protein in the position 206. The phylogenetic analysis showed that the isolates clustered together with Cantagalo virus, other Vaccinia strains and Rabbitpox virus.A partir de outubro de 2001, o Instituto Adolfo Lutz tem recebido amostras de líquido vesicular e crostas de lesões de pele de pacientes das regiões do Vale do Paraíba, Estado de São Paulo e do Vale do São Patricio, Estado de Goiás. Os dados clínicos e epidemiológicos sugeriam que os surtos poderiam ser causados por Cowpox virus ou Vaccinia virus. A maioria dos pacientes era ordenhadores que tinham lesões vesicopustulares nas mãos, braços, antebraços e alguns na face. A análise por microscopia eletrônica direta (MED detectou partículas com morfologia de vírus do gênero Orthopoxvirus em amostras de 49 (66,21% pacientes dos 74

  10. Three-Year Durability of Immune Responses Induced by HIV-DNA and HIV-Modified Vaccinia Virus Ankara and Effect of a Late HIV-Modified Vaccinia Virus Ankara Boost in Tanzanian Volunteers.

    Science.gov (United States)

    Joachim, Agricola; Munseri, Patricia J; Nilsson, Charlotta; Bakari, Muhammad; Aboud, Said; Lyamuya, Eligius F; Tecleab, Teghesti; Liakina, Valentina; Scarlatti, Gabriella; Robb, Merlin L; Earl, Patricia L; Moss, Bernard; Wahren, Britta; Mhalu, Fred; Ferrari, Guido; Sandstrom, Eric; Biberfeld, Gunnel

    2017-08-01

    We explored the duration of immune responses and the effect of a late third HIV-modified vaccinia virus Ankara (MVA) boost in HIV-DNA primed and HIV-MVA boosted Tanzanian volunteers. Twenty volunteers who had previously received three HIV-DNA and two HIV-MVA immunizations were given a third HIV-MVA immunization 3 years after the second HIV-MVA boost. At the time of the third HIV-MVA, 90% of the vaccinees had antibodies to HIV-1 subtype C gp140 (median titer 200) and 85% to subtype B gp160 (median titer 100). The majority of vaccinees had detectable antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies, 70% against CRF01_AE virus-infected cells (median titer 239) and 84% against CRF01_AE gp120-coated cells (median titer 499). A high proportion (74%) of vaccinees had IFN-γ ELISpot responses, 63% to Gag and 42% to Env, 3 years after the second HIV-MVA boost. After the third HIV-MVA, there was an increase in Env-binding antibodies and ADCC-mediating antibodies relative to the response seen at the time of the third HIV-MVA vaccination, p < .0001 and p < .05, respectively. The frequency of IFN-γ ELISpot responses increased to 95% against Gag or Env and 90% to both Gag and Env, p = .064 and p = .002, respectively. In conclusion, the HIV-DNA prime/HIV-MVA boost regimen elicited potent antibody and cellular immune responses with remarkable durability, and a third HIV-MVA immunization significantly boosted both antibody and cellular immune responses relative to the levels detected at the time of the third HIV-MVA, but not to higher levels than after the second HIV-MVA.

  11. Deletion of C7L and K1L genes leads to significantly decreased virulence of recombinant vaccinia virus TianTan.

    Directory of Open Access Journals (Sweden)

    Zheng Liu

    Full Text Available The vaccinia virus TianTan (VTT has been modified as an HIV vaccine vector in China and has shown excellent performance in immunogenicity and safety. However, its adverse effects in immunosuppressed individuals warrant the search for a safer vector in the following clinic trails. In this study, we deleted the C7L and K1L genes of VTT and constructed six recombinant vaccinia strains VTT△C7L, VTT△K1L, VTT△C7LK1L, VTKgpe△C7L, VTKgpe△K1L and VTT△C7LK1L-gag. The pathogenicity and immunogenicity of these recombinants were evaluated in mouse and rabbit models. Comparing to parental VTT, VTT△C7L and VTT△K1L showed significantly decreased replication capability in CEF, Vero, BHK-21 and HeLa cell lines. In particular, replication of VTT△C7LK1L decreased more than 10-fold in all four cell lines. The virulence of all these mutants were decreased in BALB/c mouse and rabbit models; VTT△C7LK1L once again showed the greatest attenuation, having resulted in no evident damage in mice and erythema of only 0.4 cm diameter in rabbits, compared to 1.48 cm for VTT. VTKgpe△C7L, VTKgpe△K1L and VTT△C7LK1L-gag elicited as strong cellular and humoral responses against HIV genes as did VTKgpe, while humoral immune response against the vaccinia itself was reduced by 4-8-fold. These data show that deletion of C7L and K1L genes leads to significantly decreased virulence without compromising animal host immunogenicity, and may thus be key to creating a more safe and effective HIV vaccine vector.

  12. The Integration of Epistasis Network and Functional Interactions in a GWAS Implicates RXR Pathway Genes in the Immune Response to Smallpox Vaccine.

    Directory of Open Access Journals (Sweden)

    Brett A McKinney

    Full Text Available Although many diseases and traits show large heritability, few genetic variants have been found to strongly separate phenotype groups by genotype. Complex regulatory networks of variants and expression of multiple genes lead to small individual-variant effects and difficulty replicating the effect of any single variant in an affected pathway. Interaction network modeling of GWAS identifies effects ignored by univariate models, but population differences may still cause specific genes to not replicate. Integrative network models may help detect indirect effects of variants in the underlying biological pathway. In this study, we used gene-level functional interaction information from the Integrative Multi-species Prediction (IMP tool to reveal important genes associated with a complex phenotype through evidence from epistasis networks and pathway enrichment. We test this method for augmenting variant-based network analyses with functional interactions by applying it to a smallpox vaccine immune response GWAS. The integrative analysis spotlights the role of genes related to retinoid X receptor alpha (RXRA, which has been implicated in a previous epistasis network analysis of smallpox vaccine.

  13. Immunization of Pigs by DNA Prime and Recombinant Vaccinia Virus Boost To Identify and Rank African Swine Fever Virus Immunogenic and Protective Proteins.

    Science.gov (United States)

    Jancovich, James K; Chapman, Dave; Hansen, Debra T; Robida, Mark D; Loskutov, Andrey; Craciunescu, Felicia; Borovkov, Alex; Kibler, Karen; Goatley, Lynnette; King, Katherine; Netherton, Christopher L; Taylor, Geraldine; Jacobs, Bertram; Sykes, Kathryn; Dixon, Linda K

    2018-04-15

    African swine fever virus (ASFV) causes an acute hemorrhagic fever in domestic pigs, with high socioeconomic impact. No vaccine is available, limiting options for control. Although live attenuated ASFV can induce up to 100% protection against lethal challenge, little is known of the antigens which induce this protective response. To identify additional ASFV immunogenic and potentially protective antigens, we cloned 47 viral genes in individual plasmids for gene vaccination and in recombinant vaccinia viruses. These antigens were selected to include proteins with different functions and timing of expression. Pools of up to 22 antigens were delivered by DNA prime and recombinant vaccinia virus boost to groups of pigs. Responses of immune lymphocytes from pigs to individual recombinant proteins and to ASFV were measured by interferon gamma enzyme-linked immunosorbent spot (ELISpot) assays to identify a subset of the antigens that consistently induced the highest responses. All 47 antigens were then delivered to pigs by DNA prime and recombinant vaccinia virus boost, and pigs were challenged with a lethal dose of ASFV isolate Georgia 2007/1. Although pigs developed clinical and pathological signs consistent with acute ASFV, viral genome levels were significantly reduced in blood and several lymph tissues in those pigs immunized with vectors expressing ASFV antigens compared with the levels in control pigs. IMPORTANCE The lack of a vaccine limits the options to control African swine fever. Advances have been made in the development of genetically modified live attenuated ASFV that can induce protection against challenge. However, there may be safety issues relating to the use of these in the field. There is little information about ASFV antigens that can induce a protective immune response against challenge. We carried out a large screen of 30% of ASFV antigens by delivering individual genes in different pools to pigs by DNA immunization prime and recombinant vaccinia

  14. Expression of the A56 and K2 proteins is sufficient to inhibit vaccinia virus entry and cell fusion.

    Science.gov (United States)

    Wagenaar, Timothy R; Moss, Bernard

    2009-02-01

    Many animal viruses induce cells to fuse and form syncytia. For vaccinia virus, this phenomenon is associated with mutations affecting the A56 and K2 proteins, which form a multimer (A56/K2) on the surface of infected cells. Recent evidence that A56/K2 interacts with the entry/fusion complex (EFC) and that the EFC is necessary for syncytium formation furnishes a strong connection between virus entry and cell fusion. Among the important remaining questions are whether A56/K2 can prevent virus entry as well as cell-cell fusion and whether these two viral proteins are sufficient as well as necessary for this. To answer these questions, we transiently and stably expressed A56 and K2 in uninfected cells. Uninfected cells expressing A56 and K2 exhibited resistance to fusing with A56 mutant virus-infected cells, whereas expression of A56 or K2 alone induced little or no resistance, which fits with the need for both proteins to bind the EFC. Furthermore, transient or stable expression of A56/K2 interfered with virus entry and replication as determined by inhibition of early expression of a luciferase reporter gene, virus production, and plaque formation. The specificity of this effect was demonstrated by restoring entry after enzymatically removing a chimeric glycophosphatidylinositol-anchored A56/K2 or by binding a monoclonal antibody to A56. Importantly, the antibody disrupted the interaction between A56/K2 and the EFC without disrupting the A56-K2 interaction itself. Thus, we have shown that A56/K2 is sufficient to prevent virus entry and fusion as well as formation of syncytia through interaction with the EFC.

  15. Vaccinia Virus Immunomodulator A46: A Lipid and Protein-Binding Scaffold for Sequestering Host TIR-Domain Proteins.

    Directory of Open Access Journals (Sweden)

    Sofiya Fedosyuk

    2016-12-01

    Full Text Available Vaccinia virus interferes with early events of the activation pathway of the transcriptional factor NF-kB by binding to numerous host TIR-domain containing adaptor proteins. We have previously determined the X-ray structure of the A46 C-terminal domain; however, the structure and function of the A46 N-terminal domain and its relationship to the C-terminal domain have remained unclear. Here, we biophysically characterize residues 1-83 of the N-terminal domain of A46 and present the X-ray structure at 1.55 Å. Crystallographic phases were obtained by a recently developed ab initio method entitled ARCIMBOLDO_BORGES that employs tertiary structure libraries extracted from the Protein Data Bank; data analysis revealed an all β-sheet structure. This is the first such structure solved by this method which should be applicable to any protein composed entirely of β-sheets. The A46(1-83 structure itself is a β-sandwich containing a co-purified molecule of myristic acid inside a hydrophobic pocket and represents a previously unknown lipid-binding fold. Mass spectrometry analysis confirmed the presence of long-chain fatty acids in both N-terminal and full-length A46; mutation of the hydrophobic pocket reduced the lipid content. Using a combination of high resolution X-ray structures of the N- and C-terminal domains and SAXS analysis of full-length protein A46(1-240, we present here a structural model of A46 in a tetrameric assembly. Integrating affinity measurements and structural data, we propose how A46 simultaneously interferes with several TIR-domain containing proteins to inhibit NF-κB activation and postulate that A46 employs a bipartite binding arrangement to sequester the host immune adaptors TRAM and MyD88.

  16. Quantitative Analysis of MicroRNAs in Vaccinia virus Infection Reveals Diversity in Their Susceptibility to Modification and Suppression.

    Directory of Open Access Journals (Sweden)

    Amy H Buck

    Full Text Available Vaccinia virus (VACV is a large cytoplasmic DNA virus that causes dramatic alterations to many cellular pathways including microRNA biogenesis. The virus encodes a poly(A polymerase which was previously shown to add poly(A tails to the 3' end of cellular miRNAs, resulting in their degradation by 24 hours post infection (hpi. Here we used small RNA sequencing to quantify the impact of VACV infection on cellular miRNAs in human cells at both early (6 h and late (24 h times post infection. A detailed quantitative analysis of individual miRNAs revealed marked diversity in the extent of their modification and relative change in abundance during infection. Some miRNAs became highly modified (e.g. miR-29a-3p, miR-27b-3p whereas others appeared resistant (e.g. miR-16-5p. Furthermore, miRNAs that were highly tailed at 6 hpi were not necessarily among the most reduced at 24 hpi. These results suggest that intrinsic features of human cellular miRNAs cause them to be differentially polyadenylated and altered in abundance during VACV infection. We also demonstrate that intermediate and late VACV gene expression are required for optimal repression of some miRNAs including miR-27-3p. Overall this work reveals complex and varied consequences of VACV infection on host miRNAs and identifies miRNAs which are largely resistant to VACV-induced polyadenylation and are therefore present at functional levels during the initial stages of infection and replication.

  17. Transforming growth factor alpha, Shope fibroma growth factor, and vaccinia growth factor can replace myxoma growth factor in the induction of myxomatosis in rabbits.

    Science.gov (United States)

    Opgenorth, A; Nation, N; Graham, K; McFadden, G

    1993-02-01

    The epidermal growth factor (EGF) homologues encoded by vaccinia virus, myxoma virus, and malignant rabbit fibroma virus have been shown to contribute to the pathogenicity of virus infection upon inoculation of susceptible hosts. However, since the primary structures of these growth factors and the disease profiles induced by different poxvirus genera vary substantially, the degree to which the various EGF homologues perform similar roles in viral pathogenesis remains unclear. In order to determine whether different EGF-like growth factors can perform qualitatively similar functions in the induction of myxomatosis in rabbits, we created recombinant myxoma virus variants in which the native growth factor, myxoma growth factor (MGF), was disrupted and replaced with either vaccinia virus growth factor, Shope fibroma growth factor, or rat transforming growth factor alpha. Unlike the control virus containing an inactivated MGF gene, which caused marked attenuation of the disease syndrome and substantially less proliferation of the epithelial cell layers in the conjunctiva and respiratory tract, the recombinant myxoma virus strains expressing heterologous growth factors produced infections which were both clinically and histopathologically indistinguishable from wild-type myxomatosis. We conclude that these poxviral and cellular EGF-like growth factors, which are diverse with respect to primary structure and origin, have similar biological functions in the context of myxoma virus pathogenesis and are mitogenic for the same target cells.

  18. A heterologous prime-boosting strategy with replicating Vaccinia virus vectors and plant-produced HIV-1 Gag/dgp41 virus-like particles

    Energy Technology Data Exchange (ETDEWEB)

    Meador, Lydia R. [Ira A. Fulton School of Engineering, Arizona State University, Tempe, AZ (United States); Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); Kessans, Sarah A. [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States); Kilbourne, Jacquelyn; Kibler, Karen V. [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); Pantaleo, Giuseppe [Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne (Switzerland); Swiss Vaccine Research Institute, Lausanne (Switzerland); Roderiguez, Mariano Esteban [Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia – CSIC, Madrid (Spain); Blattman, Joseph N. [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States); Jacobs, Bertram L., E-mail: bjacobs@asu.edu [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States); Mor, Tsafrir S., E-mail: tsafrir.mor@asu.edu [Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ (United States); School of Life Sciences, Arizona State University, Tempe, AZ (United States)

    2017-07-15

    Showing modest efficacy, the RV144 HIV-1 vaccine clinical trial utilized a non-replicating canarypox viral vector and a soluble gp120 protein boost. Here we built upon the RV144 strategy by developing a novel combination of a replicating, but highly-attenuated Vaccinia virus vector, NYVAC-KC, and plant-produced HIV-1 virus-like particles (VLPs). Both components contained the full-length Gag and a membrane anchored truncated gp41 presenting the membrane proximal external region with its conserved broadly neutralizing epitopes in the pre-fusion conformation. We tested different prime/boost combinations of these components in mice and showed that the group primed with NYVAC-KC and boosted with both the viral vectors and plant-produced VLPs have the most robust Gag-specific CD8 T cell responses, at 12.7% of CD8 T cells expressing IFN-γ in response to stimulation with five Gag epitopes. The same immunization group elicited the best systemic and mucosal antibody responses to Gag and dgp41 with a bias towards IgG1. - Highlights: • We devised a prime/boost anti HIV-1 vaccination strategy modeled after RV144. • We used plant-derived virus-like particles (VLPs) consisting of Gag and dgp41. • We used attenuated, replicating vaccinia virus vectors expressing the same antigens. • The immunogens elicited strong cellular and humoral immune responses.

  19. Priming-boosting vaccination with recombinant Mycobacterium bovis bacillus Calmette-Guérin and a nonreplicating vaccinia virus recombinant leads to long-lasting and effective immunity.

    Science.gov (United States)

    Ami, Yasushi; Izumi, Yasuyuki; Matsuo, Kazuhiro; Someya, Kenji; Kanekiyo, Masaru; Horibata, Shigeo; Yoshino, Naoto; Sakai, Koji; Shinohara, Katsuaki; Matsumoto, Sohkichi; Yamada, Takeshi; Yamazaki, Shudo; Yamamoto, Naoki; Honda, Mitsuo

    2005-10-01

    Virus-specific T-cell responses can limit immunodeficiency virus type 1 (HIV-1) transmission and prevent disease progression and so could serve as the basis for an affordable, safe, and effective vaccine in humans. To assess their potential for a vaccine, we used Mycobacterium bovis bacillus Calmette-Guérin (BCG)-Tokyo and a replication-deficient vaccinia virus strain (DIs) as vectors to express full-length gag from simian immunodeficiency viruses (SIVs) (rBCG-SIVgag and rDIsSIVgag). Cynomolgus macaques were vaccinated with either rBCG-SIVgag dermally as a single modality or in combination with rDIsSIVgag intravenously. When cynomologus macaques were primed with rBCG-SIVgag and then boosted with rDIsSIVgag, high levels of gamma interferon (IFN-gamma) spot-forming cells specific for SIV Gag were induced. This combination regimen elicited effective protective immunity against mucosal challenge with pathogenic simian-human immunodeficiency virus for the 1 year the macaques were under observation. Antigen-specific intracellular IFN-gamma activity was similarly induced in each of the macaques with the priming-boosting regimen. Other groups receiving the opposite combination or the single-modality vaccines were not effectively protected. These results suggest that a recombinant M. bovis BCG-based vector may have potential as an HIV/AIDS vaccine when administered in combination with a replication-deficient vaccinia virus DIs vector in a priming-boosting strategy.

  20. Live vaccinia-rabies virus recombinants, but not an inactivated rabies virus cell culture vaccine, protect B-lymphocyte-deficient A/WySnJ mice against rabies: considerations of recombinant defective poxviruses for rabies immunization of immunocompromised individuals.

    Science.gov (United States)

    Lodmell, Donald L; Esposito, Joseph J; Ewalt, Larry C

    2004-09-03

    Presently, commercially available cell culture rabies vaccines for humans and animals consist of the five inactivated rabies virus proteins. The vaccines elicit a CD4+ helper T-cell response and a humoral B-cell response against the viral glycoprotein (G) resulting in the production of virus neutralizing antibody. Antibody against the viral nucleoprotein (N) is also present, but the mechanism(s) of its protection is unclear. HIV-infected individuals with low CD4+ T-lymphocyte counts and individuals undergoing treatment with immunosuppressive drugs have an impaired neutralizing antibody response after pre- and post-exposure immunization with rabies cell culture vaccines. Here we show the efficacy of live vaccinia-rabies virus recombinants, but not a cell culture vaccine consisting of inactivated rabies virus, to elicit elevated levels of neutralizing antibody in B-lymphocyte deficient A/WySnJ mice. The cell culture vaccine also failed to protect the mice, whereas a single immunization of a vaccinia recombinant expressing the rabies virus G or co-expressing G and N equally protected the mice up to 18 months after vaccination. The data suggest that recombinant poxviruses expressing the rabies virus G, in particular replication defective poxviruses such as canarypox or MVA vaccinia virus that undergo abortive replication in non-avian cells, or the attenuated vaccinia virus NYVAC, should be evaluated as rabies vaccines in immunocompromised individuals.

  1. Combination of intratumoral injections of vaccinia virus MVA expressing GM-CSF and immunization with DNA vaccine prolongs the survival of mice bearing HPV16 induced tumors with downregulated expression of MHC class I molecules

    Czech Academy of Sciences Publication Activity Database

    Němečková, Š.; Šmahel, M.; Hainz, P.; Macková, J.; Zurková, K.; Gabriel, P.; Indrová, Marie; Kutinová, L.

    2007-01-01

    Roč. 54, č. 4 (2007), s. 326-333 ISSN 0028-2685 R&D Projects: GA MZd NR8004 Institutional research plan: CEZ:AV0Z50520514 Keywords : vaccinia virus MVA expressing GM- CSF * DNA vaccine * HPV16 induced tumors Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.208, year: 2007

  2. Imaging characteristics, tissue distribution, and spread of a novel oncolytic vaccinia virus carrying the human sodium iodide symporter.

    Directory of Open Access Journals (Sweden)

    Dana Haddad

    Full Text Available INTRODUCTION: Oncolytic viruses show promise for treating cancer. However, to assess therapy and potential toxicity, a noninvasive imaging modality is needed. This study aims to determine the in vivo biodistribution, and imaging and timing characteristics of a vaccinia virus, GLV-1h153, encoding the human sodium iodide symporter (hNIS. METHODS: GLV-1h153 was modified from GLV-1h68 to encode the hNIS gene. Timing of cellular uptake of radioiodide (131I in human pancreatic carcinoma cells PANC-1 was assessed using radiouptake assays. Viral biodistribution was determined in nude mice bearing PANC-1 xenografts, and infection in tumors confirmed histologically and optically via Green Fluorescent Protein (GFP and bioluminescence. Timing characteristics of enhanced radiouptake in xenografts were assessed via (124I-positron emission tomography (PET. Detection of systemic administration of virus was investigated with both (124I-PET and 99m-technecium gamma-scintigraphy. RESULTS: GLV-1h153 successfully facilitated time-dependent intracellular uptake of (131I in PANC-1 cells with a maximum uptake at 24 hours postinfection (P<0.05. In vivo, biodistribution profiles revealed persistence of virus in tumors 5 weeks postinjection at 10(9 plaque-forming unit (PFU/gm tissue, with the virus mainly cleared from all other major organs. Tumor infection by GLV-1h153 was confirmed via optical imaging and histology. GLV-1h153 facilitated imaging virus replication in tumors via PET even at 8 hours post radiotracer injection, with a mean %ID/gm of 3.82 ± 0.46 (P<0.05 2 days after intratumoral administration of virus, confirmed via tissue radiouptake assays. One week post systemic administration, GLV-1h153-infected tumors were detected via (124I-PET and 99m-technecium-scintigraphy. CONCLUSION: GLV-1h153 is a promising oncolytic agent against pancreatic cancer with a promising biosafety profile. GLV-1h153 facilitated time-dependent hNIS-specific radiouptake in pancreatic

  3. Oral vaccination of wildlife using a vaccinia-rabies-glycoprotein recombinant virus vaccine (RABORAL V-RG®): a global review.

    Science.gov (United States)

    Maki, Joanne; Guiot, Anne-Laure; Aubert, Michel; Brochier, Bernard; Cliquet, Florence; Hanlon, Cathleen A; King, Roni; Oertli, Ernest H; Rupprecht, Charles E; Schumacher, Caroline; Slate, Dennis; Yakobson, Boris; Wohlers, Anne; Lankau, Emily W

    2017-09-22

    RABORAL V-RG ® is an oral rabies vaccine bait that contains an attenuated ("modified-live") recombinant vaccinia virus vector vaccine expressing the rabies virus glycoprotein gene (V-RG). Approximately 250 million doses have been distributed globally since 1987 without any reports of adverse reactions in wildlife or domestic animals since the first licensed recombinant oral rabies vaccine (ORV) was released into the environment to immunize wildlife populations against rabies. V-RG is genetically stable, is not detected in the oral cavity beyond 48 h after ingestion, is not shed by vaccinates into the environment, and has been tested for thermostability under a range of laboratory and field conditions. Safety of V-RG has been evaluated in over 50 vertebrate species, including non-human primates, with no adverse effects observed regardless of route or dose. Immunogenicity and efficacy have been demonstrated under laboratory and field conditions in multiple target species (including fox, raccoon, coyote, skunk, raccoon dog, and jackal). The liquid vaccine is packaged inside edible baits (i.e., RABORAL V-RG, the vaccine-bait product) which are distributed into wildlife habitats for consumption by target species. Field application of RABORAL V-RG has contributed to the elimination of wildlife rabies from three European countries (Belgium, France and Luxembourg) and of the dog/coyote rabies virus variant from the United States of America (USA). An oral rabies vaccination program in west-central Texas has essentially eliminated the gray fox rabies virus variant from Texas with the last case reported in a cow during 2009. A long-term ORV barrier program in the USA using RABORAL V-RG is preventing substantial geographic expansion of the raccoon rabies virus variant. RABORAL V-RG has also been used to control wildlife rabies in Israel for more than a decade. This paper: (1) reviews the development and historical use of RABORAL V-RG; (2) highlights wildlife rabies control

  4. Effects of nasal or pulmonary delivered treatments with an adenovirus vectored interferon (mDEF201 on respiratory and systemic infections in mice caused by cowpox and vaccinia viruses.

    Directory of Open Access Journals (Sweden)

    Donald F Smee

    Full Text Available An adenovirus 5 vector encoding for mouse interferon alpha, subtype 5 (mDEF201 was evaluated for efficacy against lethal cowpox (Brighton strain and vaccinia (WR strain virus respiratory and systemic infections in mice. Two routes of mDEF201 administration were used, nasal sinus (5-µl and pulmonary (50-µl, to compare differences in efficacy, since the preferred treatment of humans would be in a relatively small volume delivered intranasally. Lower respiratory infections (LRI, upper respiratory infections (URI, and systemic infections were induced by 50-µl intranasal, 10-µl intranasal, and 100-µl intraperitoneal virus challenges, respectively. mDEF201 treatments were given prophylactically either 24 h (short term or 56d (long-term prior to virus challenge. Single nasal sinus treatments of 10(6 and 10(7 PFU/mouse of mDEF201 protected all mice from vaccinia-induced LRI mortality (comparable to published studies with pulmonary delivered mDEF201. Systemic vaccinia infections responded significantly better to nasal sinus delivered mDEF201 than to pulmonary treatments. Cowpox LRI infections responded to 10(7 mDEF201 treatments, but a 10(6 dose was only weakly protective. Cowpox URI infections were equally treatable by nasal sinus and pulmonary delivered mDEF201 at 10(7 PFU/mouse. Dose-responsive prophylaxis with mDEF201, given one time only 56 d prior to initiating a vaccinia virus LRI infection, was 100% protective from 10(5 to 10(7 PFU/mouse. Improvements in lung hemorrhage score and lung weight were evident, as were decreases in liver, lung, and spleen virus titers. Thus, mDEF201 was able to treat different vaccinia and cowpox virus infections using both nasal sinus and pulmonary treatment regimens, supporting its development for humans.

  5. [Strategies, actors, promises and fears in the smallpox vaccinations campaigns in Mexico: from the Porfiriato to the Post-revolution (1880-1940)].

    Science.gov (United States)

    Agostoni, Claudia

    2011-02-01

    The article examines some of the strategies employed by the Mexican health authorities that led to the organization of massive and obligatory smallpox vaccination campaigns from the late 1880s to the 1940s, a period of Mexican history that corresponds to the Porfirio Díaz regime (1877-1911), to the armed phase of the Mexican Revolution (1910-1920), and to the first two decades of the Post-revolutionary governments (1920-1940). Attention will be placed of the vaccination programs in the main urban settings, notably in Mexico City, as well as the gradual but decisive organization and regulation of vaccination campaigns in the heterogeneous rural milieu. Furthermore, the importance that hygienic education acquired will be explored, as well as the divergent and contested responses that emerged due to the obligatory vaccination campaigns, responses that included resistance, fear, uncertainty and widespread acceptance.

  6. Smallpox Antiviral Drug

    Science.gov (United States)

    2007-01-01

    Candida albicans] A G1L (590 aa) Flag VV(WR) 30/ENDIDEILGIAHLLEHLLISF/50 107/HIKELENEYYFRNEVFH/123 H41A 30/ENDIDEILGIAALLEHLLISF/50 107...RSV) (Table 1). Additional antiviral drug examples include the use of interferon for human papilloma virus ( HPV ) [Cantell, 1995]. Antivirals are most...low oral bioavailability, and quick elimination from plasma [Ghosn et al., 2004; Hostetler et al., 1994; Kempf et al., 1991; Matsumoto et al., 2001

  7. Insertion of the human sodium iodide symporter to facilitate deep tissue imaging does not alter oncolytic or replication capability of a novel vaccinia virus

    Directory of Open Access Journals (Sweden)

    Mittra Arjun

    2011-03-01

    Full Text Available Abstract Introduction Oncolytic viruses show promise for treating cancer. However, to assess therapeutic efficacy and potential toxicity, a noninvasive imaging modality is needed. This study aimed to determine if insertion of the human sodium iodide symporter (hNIS cDNA as a marker for non-invasive imaging of virotherapy alters the replication and oncolytic capability of a novel vaccinia virus, GLV-1h153. Methods GLV-1h153 was modified from parental vaccinia virus GLV-1h68 to carry hNIS via homologous recombination. GLV-1h153 was tested against human pancreatic cancer cell line PANC-1 for replication via viral plaque assays and flow cytometry. Expression and transportation of hNIS in infected cells was evaluated using Westernblot and immunofluorescence. Intracellular uptake of radioiodide was assessed using radiouptake assays. Viral cytotoxicity and tumor regression of treated PANC-1tumor xenografts in nude mice was also determined. Finally, tumor radiouptake in xenografts was assessed via positron emission tomography (PET utilizing carrier-free 124I radiotracer. Results GLV-1h153 infected, replicated within, and killed PANC-1 cells as efficiently as GLV-1h68. GLV-1h153 provided dose-dependent levels of hNIS expression in infected cells. Immunofluorescence detected transport of the protein to the cell membrane prior to cell lysis, enhancing hNIS-specific radiouptake (P In vivo, GLV-1h153 was as safe and effective as GLV-1h68 in regressing pancreatic cancer xenografts (P 124I-PET. Conclusion Insertion of the hNIS gene does not hinder replication or oncolytic capability of GLV-1h153, rendering this novel virus a promising new candidate for the noninvasive imaging and tracking of oncolytic viral therapy.

  8. A vaccinia virus recombinant transcribing an alphavirus replicon and expressing alphavirus structural proteins leads to packaging of alphavirus infectious single cycle particles.

    Directory of Open Access Journals (Sweden)

    Juana M Sánchez-Puig

    Full Text Available Poxviruses and Alphaviruses constitute two promising viral vectors that have been used extensively as expression systems, or as vehicles for vaccine purposes. Poxviruses, like vaccinia virus (VV are well-established vaccine vectors having large insertion capacity, excellent stability, and ease of administration. In turn, replicons derived from Alphaviruses like Semliki Forest virus (SFV are potent protein expression and immunization vectors but stocks are difficult to produce and maintain. In an attempt to demonstrate the use of a Poxvirus as a means for the delivery of small vaccine vectors, we have constructed and characterized VV/SFV hybrid vectors. A SFV replicon cDNA was inserted in the VV genome and placed under the control of a VV early promoter. The replicon, transcribed from the VV genome as an early transcript, was functional, and thus capable of initiating its own replication and transcription. Further, we constructed a VV recombinant additionally expressing the SFV structural proteins under the control of a vaccinia synthetic early/late promoter. Infection with this recombinant produced concurrent transcription of the replicon and expression of SFV structural proteins, and led to the generation of replicon-containing SFV particles that were released to the medium and were able to infect additional cells. This combined VV/SFV system in a single virus allows the use of VV as a SFV delivery vehicle in vivo. The combination of two vectors, and the possibility of generating in vivo single-cycle, replicon containing alphavirus particles, may open new strategies in vaccine development or in the design of oncolytic viruses.

  9. The 3'-to-5' exonuclease activity of vaccinia virus DNA polymerase is essential and plays a role in promoting virus genetic recombination.

    Science.gov (United States)

    Gammon, Don B; Evans, David H

    2009-05-01

    Poxviruses are subjected to extraordinarily high levels of genetic recombination during infection, although the enzymes catalyzing these reactions have never been identified. However, it is clear that virus-encoded DNA polymerases play some unknown yet critical role in virus recombination. Using a novel, antiviral-drug-based strategy to dissect recombination and replication reactions, we now show that the 3'-to-5' proofreading exonuclease activity of the viral DNA polymerase plays a key role in promoting recombination reactions. Linear DNA substrates were prepared containing the dCMP analog cidofovir (CDV) incorporated into the 3' ends of the molecules. The drug blocked the formation of concatemeric recombinant molecules in vitro in a process that was catalyzed by the proofreading activity of vaccinia virus DNA polymerase. Recombinant formation was also blocked when CDV-containing recombination substrates were transfected into cells infected with wild-type vaccinia virus. These inhibitory effects could be overcome if CDV-containing substrates were transfected into cells infected with CDV-resistant (CDV(r)) viruses, but only when resistance was linked to an A314T substitution mutation mapping within the 3'-to-5' exonuclease domain of the viral polymerase. Viruses encoding a CDV(r) mutation in the polymerase domain still exhibited a CDV-induced recombination deficiency. The A314T substitution also enhanced the enzyme's capacity to excise CDV molecules from the 3' ends of duplex DNA and to recombine these DNAs in vitro, as judged from experiments using purified mutant DNA polymerase. The 3'-to-5' exonuclease activity appears to be an essential virus function, and our results suggest that this might be because poxviruses use it to promote genetic exchange.

  10. Modified vaccinia virus Ankara triggers type I IFN production in murine conventional dendritic cells via a cGAS/STING-mediated cytosolic DNA-sensing pathway.

    Directory of Open Access Journals (Sweden)

    Peihong Dai

    2014-04-01

    Full Text Available Modified vaccinia virus Ankara (MVA is an attenuated poxvirus that has been engineered as a vaccine against infectious agents and cancers. Our goal is to understand how MVA modulates innate immunity in dendritic cells (DCs, which can provide insights to vaccine design. In this study, using murine bone marrow-derived dendritic cells, we assessed type I interferon (IFN gene induction and protein secretion in response to MVA infection. We report that MVA infection elicits the production of type I IFN in murine conventional dendritic cells (cDCs, but not in plasmacytoid dendritic cells (pDCs. Transcription factors IRF3 (IFN regulatory factor 3 and IRF7, and the positive feedback loop mediated by IFNAR1 (IFN alpha/beta receptor 1, are required for the induction. MVA induction of type I IFN is fully dependent on STING (stimulator of IFN genes and the newly discovered cytosolic DNA sensor cGAS (cyclic guanosine monophosphate-adenosine monophosphate synthase. MVA infection of cDCs triggers phosphorylation of TBK1 (Tank-binding kinase 1 and IRF3, which is abolished in the absence of cGAS and STING. Furthermore, intravenous delivery of MVA induces type I IFN in wild-type mice, but not in mice lacking STING or IRF3. Treatment of cDCs with inhibitors of endosomal and lysosomal acidification or the lysosomal enzyme Cathepsin B attenuated MVA-induced type I IFN production, indicating that lysosomal enzymatic processing of virions is important for MVA sensing. Taken together, our results demonstrate a critical role of the cGAS/STING-mediated cytosolic DNA-sensing pathway for type I IFN induction in cDCs by MVA. We present evidence that vaccinia virulence factors E3 and N1 inhibit the activation of IRF3 and the induction of IFNB gene in MVA-infected cDCs.

  11. A vaccinia virus recombinant transcribing an alphavirus replicon and expressing alphavirus structural proteins leads to packaging of alphavirus infectious single cycle particles.

    Science.gov (United States)

    Sánchez-Puig, Juana M; Lorenzo, María M; Blasco, Rafael

    2013-01-01

    Poxviruses and Alphaviruses constitute two promising viral vectors that have been used extensively as expression systems, or as vehicles for vaccine purposes. Poxviruses, like vaccinia virus (VV) are well-established vaccine vectors having large insertion capacity, excellent stability, and ease of administration. In turn, replicons derived from Alphaviruses like Semliki Forest virus (SFV) are potent protein expression and immunization vectors but stocks are difficult to produce and maintain. In an attempt to demonstrate the use of a Poxvirus as a means for the delivery of small vaccine vectors, we have constructed and characterized VV/SFV hybrid vectors. A SFV replicon cDNA was inserted in the VV genome and placed under the control of a VV early promoter. The replicon, transcribed from the VV genome as an early transcript, was functional, and thus capable of initiating its own replication and transcription. Further, we constructed a VV recombinant additionally expressing the SFV structural proteins under the control of a vaccinia synthetic early/late promoter. Infection with this recombinant produced concurrent transcription of the replicon and expression of SFV structural proteins, and led to the generation of replicon-containing SFV particles that were released to the medium and were able to infect additional cells. This combined VV/SFV system in a single virus allows the use of VV as a SFV delivery vehicle in vivo. The combination of two vectors, and the possibility of generating in vivo single-cycle, replicon containing alphavirus particles, may open new strategies in vaccine development or in the design of oncolytic viruses.

  12. A complex of seven vaccinia virus proteins conserved in all chordopoxviruses is required for the association of membranes and viroplasm to form immature virions

    International Nuclear Information System (INIS)

    Szajner, Patricia; Jaffe, Howard; Weisberg, Andrea S.; Moss, Bernard

    2004-01-01

    Early events in vaccinia virus (VAC) morphogenesis, particularly the formation of viral membranes and their association with viroplasm, are poorly understood. Recently, we showed that repression of A30 or G7 expression results in the accumulation of normal viral membranes that form empty-looking immature virions (IV), which are separated from large masses of electron-dense viroplasm. In addition, A30 and G7 physically and functionally interact with each other and with the F10 protein kinase. To identify other proteins involved in early morphogenesis, proteins from cells that had been infected with vaccinia virus expressing an epitope-tagged copy of F10 were purified by immunoaffinity chromatography and analyzed by gel electrophoresis. In addition to F10, A30, and G7, viral proteins A15, D2, D3, and J1 were identified by mass spectrometry of tryptic peptides. Further evidence for the complex was obtained by immunopurification of proteins associated with epitope-tagged A15, D2, and D3. The previously unstudied A15, like other proteins in the complex, was expressed late in infection, associated with virus cores, and required for the stability and kinase activity of F10. Biochemical and electron microscopic analyses indicated that mutants in which A15 or D2 expression was regulated by the Escherichia coli lac operator system exhibited phenotypes characterized by the presence of large numbers of empty immature virions, similar to the results obtained with inducible A30 and G7 mutants. Empty immature virions were also seen by electron microscopy of cells infected with temperature-sensitive mutants of D2 or D3, though the numbers of membrane forms were reduced perhaps due to additional effects of high temperature

  13. 42 CFR 102.50 - Medical records necessary to establish that a covered injury was sustained.

    Science.gov (United States)

    2010-10-01

    ... HEALTH AND HUMAN SERVICES VACCINES SMALLPOX COMPENSATION PROGRAM Required Documentation To Be Deemed... to establish that a smallpox vaccine recipient or vaccinia contact sustained a covered injury, a... records, including the admission history and physical examination, the discharge summary, all physician...

  14. Deletion of the Vaccinia Virus I2 Protein Interrupts Virion Morphogenesis, Leading to Retention of the Scaffold Protein and Mislocalization of Membrane-Associated Entry Proteins.

    Science.gov (United States)

    Hyun, Seong-In; Weisberg, Andrea; Moss, Bernard

    2017-08-01

    The I2L open reading frame of vaccinia virus (VACV) encodes a conserved 72-amino-acid protein with a putative C-terminal transmembrane domain. Previous studies with a tetracycline-inducible mutant demonstrated that I2-deficient virions are defective in cell entry. The purpose of the present study was to determine the step of replication or entry that is affected by loss of the I2 protein. Fluorescence microscopy experiments showed that I2 colocalized with a major membrane protein of immature and mature virions. We generated a cell line that constitutively expressed I2 and allowed construction of the VACV I2L deletion mutant vΔI2. As anticipated, vΔI2 was unable to replicate in cells that did not express I2. Unexpectedly, morphogenesis was interrupted at a stage after immature virion formation, resulting in the accumulation of dense spherical particles instead of brick-shaped mature virions with well-defined core structures. The abnormal particles retained the D13 scaffold protein of immature virions, were severely deficient in the transmembrane proteins that comprise the entry fusion complex (EFC), and had increased amounts of unprocessed membrane and core proteins. Total lysates of cells infected with vΔI2 also had diminished EFC proteins due to instability attributed to their hydrophobicity and failure to be inserted into viral membranes. A similar instability of EFC proteins had previously been found with unrelated mutants blocked earlier in morphogenesis that also accumulated viral membranes retaining the D13 scaffold. We concluded that I2 is required for virion morphogenesis, release of the D13 scaffold, and the association of EFC proteins with viral membranes. IMPORTANCE Poxviruses comprise a large family that infect vertebrates and invertebrates, cause disease in both in humans and in wild and domesticated animals, and are being engineered as vectors for vaccines and cancer therapy. In addition, investigations of poxviruses have provided insights into

  15. Phase 1 safety and immunogenicity evaluation of ADMVA, a multigenic, modified vaccinia Ankara-HIV-1 B'/C candidate vaccine.

    Directory of Open Access Journals (Sweden)

    Sandhya Vasan

    Full Text Available BACKGROUND: We conducted a Phase I dose-escalation trial of ADMVA, a Clade-B'/C-based HIV-1 candidate vaccine expressing env, gag, pol, nef, and tat in a modified vaccinia Ankara viral vector. Sequences were derived from a prevalent circulating HIV-1 recombinant form in Yunnan, China, an area of high HIV incidence. The objective was to evaluate the safety and immunogenicity of ADMVA in human volunteers. METHODOLOGY/PRINCIPAL FINDINGS: ADMVA or placebo was administered intramuscularly at months 0, 1 and 6 to 50 healthy adult volunteers not at high risk for HIV-1. In each dosage group [1x10(7 (low, 5x10(7 (mid, or 2.5x10(8 pfu (high] volunteers were randomized in a 3:1 ratio to receive ADMVA or placebo in a double-blinded design. Subjects were followed for local and systemic reactogenicity, adverse events including cardiac adverse events, and clinical laboratory parameters. Study follow up was 18 months. Humoral immunogenicity was evaluated by anti-gp120 binding ELISA, immunoflourescent staining, and HIV-1 neutralization. Cellular immunogenicity was assessed by a validated IFNgamma ELISpot assay and intracellular cytokine staining. Anti-vaccinia binding titers were measured by ELISA. ADMVA was generally well-tolerated, with no vaccine-related serious adverse events or cardiac adverse events. Local or systemic reactogenicity events were reported by 77% and 78% of volunteers, respectively. The majority of events were of mild intensity. The IFNgamma ELISpot response rate to any HIV antigen was 0/12 (0% in the placebo group, 3/12 (25% in the low dosage group, 6/12 (50% in the mid dosage group, and 8/13 (62% in the high dosage group. Responses were often multigenic and occasionally persisted up to one year post vaccination. Antibodies to gp120 were detected in 0/12 (0%, 8/13 (62%, 6/12 (50% and 10/13 (77% in the placebo, low, mid, and high dosage groups, respectively. Antibodies persisted up to 12 months after vaccination, with a trend toward agreement

  16. Mucosal immunization with PLGA-microencapsulated DNA primes a SIV-specific CTL response revealed by boosting with cognate recombinant modified vaccinia virus Ankara

    International Nuclear Information System (INIS)

    Sharpe, Sally; Hanke, Tomas; Tinsley-Bown, Anne; Dennis, Mike; Dowall, Stuart; McMichael, Andrew; Cranage, Martin

    2003-01-01

    Systemically administered DNA encoding a recombinant human immunodeficiency virus (HIV) derived immunogen effectively primes a cytotoxic T lymphocyte (CTL) response in macaques. In this further pilot study we have evaluated mucosal delivery of DNA as an alternative priming strategy. Plasmid DNA, pTH.HW, encoding a multi-CTL epitope gene, was incorporated into poly(D,L-lactic-co-glycolic acid) microparticles of less than 10 μm in diameter. Five intrarectal immunizations failed to stimulate a circulating vaccine-specific CTL response in 2 Mamu-A*01 + rhesus macaques. However, 1 week after intradermal immunization with a cognate modified vaccinia virus Ankara vaccine MVA.HW, CTL responses were detected in both animals that persisted until analysis postmortem, 12 weeks after the final boost. In contrast, a weaker and less durable response was seen in an animal vaccinated with the MVA construct alone. Analysis of lymphoid tissues revealed a disseminated CTL response in peripheral and regional lymph nodes but not the spleen of both mucosally primed animals

  17. Multisubunit DNA-Dependent RNA Polymerases from Vaccinia Virus and Other Nucleocytoplasmic Large-DNA Viruses: Impressions from the Age of Structure.

    Science.gov (United States)

    Mirzakhanyan, Yeva; Gershon, Paul D

    2017-09-01

    The past 17 years have been marked by a revolution in our understanding of cellular multisubunit DNA-dependent RNA polymerases (MSDDRPs) at the structural level. A parallel development over the past 15 years has been the emerging story of the giant viruses, which encode MSDDRPs. Here we link the two in an attempt to understand the specialization of multisubunit RNA polymerases in the domain of life encompassing the large nucleocytoplasmic DNA viruses (NCLDV), a superclade that includes the giant viruses and the biochemically well-characterized poxvirus vaccinia virus. The first half of this review surveys the recently determined structural biology of cellular RNA polymerases for a microbiology readership. The second half discusses a reannotation of MSDDRP subunits from NCLDV families and the apparent specialization of these enzymes by virus family and by subunit with regard to subunit or domain loss, subunit dissociability, endogenous control of polymerase arrest, and the elimination/customization of regulatory interactions that would confer higher-order cellular control. Some themes are apparent in linking subunit function to structure in the viral world: as with cellular RNA polymerases I and III and unlike cellular RNA polymerase II, the viral enzymes seem to opt for speed and processivity and seem to have eliminated domains associated with higher-order regulation. The adoption/loss of viral RNA polymerase proofreading functions may have played a part in matching intrinsic mutability to genome size. Copyright © 2017 American Society for Microbiology.

  18. Molecular and Cellular Dynamics in the Skin, the Lymph Nodes, and the Blood of the Immune Response to Intradermal Injection of Modified Vaccinia Ankara Vaccine

    Directory of Open Access Journals (Sweden)

    Pierre Rosenbaum

    2018-04-01

    Full Text Available New vaccine design approaches would be greatly facilitated by a better understanding of the early systemic changes, and those that occur at the site of injection, responsible for the installation of a durable and oriented protective response. We performed a detailed characterization of very early infection and host response events following the intradermal administration of the modified vaccinia virus Ankara as a live attenuated vaccine model in non-human primates. Integrated analysis of the data obtained from in vivo imaging, histology, flow cytometry, multiplex cytokine, and transcriptomic analysis using tools derived from systems biology, such as co-expression networks, showed a strong early local and systemic inflammatory response that peaked at 24 h, which was then progressively replaced by an adaptive response during the installation of the host response to the vaccine. Granulocytes, macrophages, and monocytoid cells were massively recruited during the local innate response in association with local productions of GM-CSF, IL-1β, MIP1α, MIP1β, and TNFα. We also observed a rapid and transient granulocyte recruitment and the release of IL-6 and IL-1RA, followed by a persistent phase involving inflammatory monocytes. This systemic inflammation was confirmed by molecular signatures, such as upregulations of IL-6 and TNF pathways and acute phase response signaling. Such comprehensive approaches improve our understanding of the spatiotemporal orchestration of vaccine-elicited immune response, in a live-attenuated vaccine model, and thus contribute to rational vaccine development.

  19. Modified Vaccinia Virus Ankara Vector Induces Specific Cellular and Humoral Responses in the Female Reproductive Tract, the Main HIV Portal of Entry.

    Science.gov (United States)

    Marlin, Romain; Nugeyre, Marie-Thérèse; Tchitchek, Nicolas; Parenti, Matteo; Hocini, Hakim; Benjelloun, Fahd; Cannou, Claude; Dereuddre-Bosquet, Nathalie; Levy, Yves; Barré-Sinoussi, Françoise; Scarlatti, Gabriella; Le Grand, Roger; Menu, Elisabeth

    2017-09-01

    The female reproductive tract (FRT) is one of the major mucosal invasion sites for HIV-1. This site has been neglected in previous HIV-1 vaccine studies. Immune responses in the FRT after systemic vaccination remain to be characterized. Using a modified vaccinia virus Ankara (MVA) as a vaccine model, we characterized specific immune responses in all compartments of the FRT of nonhuman primates after systemic vaccination. Memory T cells were preferentially found in the lower tract (vagina and cervix), whereas APCs and innate lymphoid cells were mainly located in the upper tract (uterus and fallopian tubes). This compartmentalization of immune cells in the FRT was supported by transcriptomic analyses and a correlation network. Polyfunctional MVA-specific CD8 + T cells were detected in the blood, lymph nodes, vagina, cervix, uterus, and fallopian tubes. Anti-MVA IgG and IgA were detected in cervicovaginal fluid after a second vaccine dose. Thus, systemic vaccination with an MVA vector elicits cellular and Ab responses in the FRT. Copyright © 2017 by The American Association of Immunologists, Inc.

  20. Transient dominant host-range selection using Chinese hamster ovary cells to generate marker-free recombinant viral vectors from vaccinia virus.

    Science.gov (United States)

    Liu, Liang; Cooper, Tamara; Eldi, Preethi; Garcia-Valtanen, Pablo; Diener, Kerrilyn R; Howley, Paul M; Hayball, John D

    2017-04-01

    Recombinant vaccinia viruses (rVACVs) are promising antigen-delivery systems for vaccine development that are also useful as research tools. Two common methods for selection during construction of rVACV clones are (i) co-insertion of drug resistance or reporter protein genes, which requires the use of additional selection drugs or detection methods, and (ii) dominant host-range selection. The latter uses VACV variants rendered replication-incompetent in host cell lines by the deletion of host-range genes. Replicative ability is restored by co-insertion of the host-range genes, providing for dominant selection of the recombinant viruses. Here, we describe a new method for the construction of rVACVs using the cowpox CP77 protein and unmodified VACV as the starting material. Our selection system will expand the range of tools available for positive selection of rVACV during vector construction, and it is substantially more high-fidelity than approaches based on selection for drug resistance.

  1. Vaccinia protein F12 has structural similarity to kinesin light chain and contains a motor binding motif required for virion export.

    Directory of Open Access Journals (Sweden)

    Gareth W Morgan

    2010-02-01

    Full Text Available Vaccinia virus (VACV uses microtubules for export of virions to the cell surface and this process requires the viral protein F12. Here we show that F12 has structural similarity to kinesin light chain (KLC, a subunit of the kinesin-1 motor that binds cargo. F12 and KLC share similar size, pI, hydropathy and cargo-binding tetratricopeptide repeats (TPRs. Moreover, molecular modeling of F12 TPRs upon the crystal structure of KLC2 TPRs showed a striking conservation of structure. We also identified multiple TPRs in VACV proteins E2 and A36. Data presented demonstrate that F12 is critical for recruitment of kinesin-1 to virions and that a conserved tryptophan and aspartic acid (WD motif, which is conserved in the kinesin-1-binding sequence (KBS of the neuronal protein calsyntenin/alcadein and several other cellular kinesin-1 binding proteins, is essential for kinesin-1 recruitment and virion transport. In contrast, mutation of WD motifs in protein A36 revealed they were not required for kinesin-1 recruitment or IEV transport. This report of a viral KLC-like protein containing a KBS that is conserved in several cellular proteins advances our understanding of how VACV recruits the kinesin motor to virions, and exemplifies how viruses use molecular mimicry of cellular components to their advantage.

  2. Rapid Generation of Multiple Loci-Engineered Marker-free Poxvirus and Characterization of a Clinical-Grade Oncolytic Vaccinia Virus

    Directory of Open Access Journals (Sweden)

    Zong Sheng Guo

    2017-12-01

    Full Text Available Recombinant poxviruses, utilized as vaccine vectors and oncolytic viruses, often require manipulation at multiple genetic loci in the viral genome. It is essential for viral vectors to possess no adventitious mutations and no (antibiotic selection marker in the final product for human patients in order to comply with the guidance from the regulatory agencies. Rintoul et al. have previously developed a selectable and excisable marker (SEM system for the rapid generation of recombinant vaccinia virus. In the current study, we describe an improved methodology for rapid creation and selection of recombinant poxviruses with multiple genetic manipulations solely based on expression of a fluorescent protein and with no requirement for drug selection that can lead to cellular stress and the risk of adventitious mutations throughout the viral genome. Using this improved procedure combined with the SEM system, we have constructed multiple marker-free oncolytic poxviruses expressing different cytokines and other therapeutic genes. The high fidelity of inserted DNA sequences validates the utility of this improved procedure for generation of therapeutic viruses for human patients. We have created an oncolytic poxvirus expressing human chemokine CCL5, designated as vvDD-A34R-hCCL5, with manipulations at two genetic loci in a single virus. Finally, we have produced and purified this virus in clinical grade for its use in a phase I clinical trial and presented data on initial in vitro characterization of the virus.

  3. Mutagenic repair of double-stranded DNA breaks in vaccinia virus genomes requires cellular DNA ligase IV activity in the cytosol.

    Science.gov (United States)

    Luteijn, Rutger David; Drexler, Ingo; Smith, Geoffrey L; Lebbink, Robert Jan; Wiertz, Emmanuel J H J

    2018-04-20

    Poxviruses comprise a group of large dsDNA viruses that include members relevant to human and animal health, such as variola virus, monkeypox virus, cowpox virus and vaccinia virus (VACV). Poxviruses are remarkable for their unique replication cycle, which is restricted to the cytoplasm of infected cells. The independence from the host nucleus requires poxviruses to encode most of the enzymes involved in DNA replication, transcription and processing. Here, we use the CRISPR/Cas9 genome engineering system to induce DNA damage to VACV (strain Western Reserve) genomes. We show that targeting CRISPR/Cas9 to essential viral genes limits virus replication efficiently. Although VACV is a strictly cytoplasmic pathogen, we observed extensive viral genome editing at the target site; this is reminiscent of a non-homologous end-joining DNA repair mechanism. This pathway was not dependent on the viral DNA ligase, but critically involved the cellular DNA ligase IV. Our data show that DNA ligase IV can act outside of the nucleus to allow repair of dsDNA breaks in poxvirus genomes. This pathway might contribute to the introduction of mutations within the genome of poxviruses and may thereby promote the evolution of these viruses.

  4. Fusion-Expressed CTB Improves Both Systemic and Mucosal T-Cell Responses Elicited by an Intranasal DNA Priming/Intramuscular Recombinant Vaccinia Boosting Regimen

    Directory of Open Access Journals (Sweden)

    Sugan Qiu

    2014-01-01

    Full Text Available Previous study showed that CTB (Cholera toxin subunit B can be used as a genetic adjuvant to enhance the systemic immune responses. To further investigate whether it can also be used as a genetic adjuvant to improve mucosal immune responses, we constructed DNA and recombinant Tiantan vaccinia (rTTV vaccines expressing OVA-CTB fusion antigen. Female C57BL/6 mice were immunized with an intranasal DNA priming/intramuscular rTTV boosting regimen. OVA specific T-cell responses were measured by IFN-γ ELISPOT and specific antibody responses were determined by ELISA. Compared to the nonadjuvant group (pSV-OVA intranasal priming/rTTV-OVA intramuscular boosting, pSV-OVA-CTB intranasal priming/rTTV-OVA-CTB intramuscular boosting group significantly improved the magnitudes of T-cell responses at spleen (1562±567 SFCs/106 splenocytes versus 330±182 SFCs/106 splenocytes, P<0.01, mesenteric LN (96±83 SFCs/106 lymphocytes versus 1±2 SFCs/106 lymphocytes, P<0.05, draining LNs of respiratory tract (109±60 SFCs/106 lymphocytes versus 2±2 SFCs/106 lymphocytes, P<0.01 and female genital tract (89±48 SFCs/106 lymphocytes versus 23±21 SFCs/106 lymphocytes, P<0.01. These results collectively demonstrated that fusion-expressed CTB could act as a potent adjuvant to improve both systemic and mucosal T-cell responses.

  5. Disease, religion and medicine: smallpox in nineteenth-century Benin Doenças, religião e medicina: a varíola no Benim, século XIX

    Directory of Open Access Journals (Sweden)

    Elisée Soumonni

    2012-12-01

    Full Text Available The essay examines, with special reference to smallpox, the perception and interpretation of disease in pre-colonial Dahomey, present-day Republic of Benin. Because disease is seen primarily as a punishment from the gods and not just as a medical problem or a bodily disorder, traditional cult priests play a leading role in making diagnoses and prescribing remedies, mostly based on medicinal plants. The prominence of Sakpata, god of smallpox, coupled with the influence of its priests is evaluated within the context of Dahomey's political history and the spread of the disease. This pivotal position was to constitute a challenge to the French colonial campaign to vaccinate against smallpox.O ensaio examina - com especial atenção à varíola - as percepções e interpretações das doenças no Daomé pré-colonial, atual República do Benim. Uma vez que as doenças eram vistas antes de tudo como punição divina, e não como problema ou distúrbio do corpo, os sacerdotes tradicionais exerciam papel central no seu diagnóstico e na prescrição de remédios, com base principalmente em plantas medicinais. A importância do culto a Sakpata, deus da varíola, juntamente com a influência dos sacerdotes é avaliada dentro do contexto da história política do Daomé e da disseminação das doenças. A posição crucial desse culto constituiu-se como um desafio para a campanha colonial francesa de vacinação contra a varíola.

  6. Smallpox still haunts scientists: results of a questionnaire-based inquiry on the views of health care and life science experts and students on preserving the remaining variola virus stocks.

    Science.gov (United States)

    Srinivasan, Thangavelu; Dedeepiya, Vidyasagar Devaprasad; John, Sudhakar; Senthilkumar, Rajappa; Reena, Helen C; Rajendran, Paramasivam; Balamurugan, Madasamy; Kurosawa, Gene; Iwasaki, Masaru; Preethy, Senthilkumar; Abraham, Samuel J K

    2013-01-01

    The World Health Organization (WHO) declared eradication of the dreadful disease "smallpox" in 1980. Though the disease has died down, the causative virus "variola" has not, as it has been well preserved in two high security laboratories-one in USA and another in Russia. The debate on whether the remaining stocks of the smallpox virus should be destroyed or not is ongoing, and the World Health Assembly (WHA) in 2011 has decided to postpone the review on this debate to the 67th WHA in 2014. A short questionnaire-based inquiry was organized during a one-day stem cell meeting to explore the views of various health care and life science specialists especially students on this aspect. Among the 200 participants of the meeting, only 66 had answered the questionnaire. 60.6% of participants who responded to the questionnaire were for preserving the virus for future reference, while 36.4% of the participants were for destroying the virus considering the magnitude with which it killed millions. However, 3% of the respondents were not able to decide on any verdict. Therefore, this inquiry expresses the view that "what we cannot create, we do not have the right to destroy."

  7. The Orf virus E3L homologue is able to complement deletion of the vaccinia virus E3L gene in vitro but not in vivo

    International Nuclear Information System (INIS)

    Vijaysri, Sangeetha; Talasela, Latha; Mercer, Andrew A.; Mcinnes, Colin J.; Jacobs, Bertram L.; Langland, Jeffrey O.

    2003-01-01

    Orf virus (OV), the prototypic parapoxvirus, is resistant to the effects of interferon (IFN) and this function of OV has been mapped to the OV20.0L gene. The protein product of this gene shares 31% amino acid identity to the E3L-encoded protein of vaccinia virus (VV) that is required for the broad host range and IFN-resistant phenotype of VV in cells in culture and for virulence of the virus in vivo. In this study we investigated whether the distantly related OV E3L homologue could complement the deletion of E3L in VV. The recombinant VV (VV/ORF-E3L) expressing the OV E3L homologue in place of VV E3L was indistinguishable from wt VV in its cell-culture phenotype. But VV/ORF-E3L was over a 1000-fold less pathogenic than wt VV (LD 50 > 5 x 10 6 PFU, compared to LD 50 of wtVV = 4 x 10 3 PFU) following intranasal infection of mice. While wt VV spread to the lungs and brain and replicated to high titers in the brain of infected mice, VV/ORF-E3L could not be detected in the lungs or brain following intranasal infection. VV/ORF-E3L was at least 100,000-fold less pathogenic than wt VV on intracranial injection. Domain swap experiments demonstrate that the difference in pathogenesis maps to the C-terminal domain of these proteins. This domain has been shown to be required for the dsRNA binding function of the VV E3L

  8. Vaccine efficacy against malaria by the combination of porcine parvovirus-like particles and vaccinia virus vectors expressing CS of Plasmodium.

    Directory of Open Access Journals (Sweden)

    Dolores Rodríguez

    Full Text Available With the aim to develop an efficient and cost-effective approach to control malaria, we have generated porcine parvovirus-like particles (PPV-VLPs carrying the CD8(+ T cell epitope (SYVPSAEQI of the circumsporozoite (CS protein from Plasmodium yoelii fused to the PPV VP2 capsid protein (PPV-PYCS, and tested in prime/boost protocols with poxvirus vectors for efficacy in a rodent malaria model. As a proof-of concept, we have characterized the anti-CS CD8(+ T cell response elicited by these hybrid PPV-VLPs in BALB/c mice after immunizations with the protein PPV-PYCS administered alone or in combination with recombinant vaccinia virus (VACV vectors from the Western Reserve (WR and modified virus Ankara (MVA strains expressing the entire P. yoelii CS protein. The results of different immunization protocols showed that the combination of PPV-PYCS prime/poxvirus boost was highly immunogenic, inducing specific CD8+ T cell responses to CS resulting in 95% reduction in liver stage parasites two days following sporozoite challenge. In contrast, neither the administration of PPV-PYCS alone nor the immunization with the vectors given in the order poxvirus/VLPs was as effective. The immune profile induced by VLPs/MVA boost was associated with polyfunctional and effector memory CD8+ T cell responses. These findings highlight the use of recombinant parvovirus PPV-PYCS particles as priming agents and poxvirus vectors, like MVA, as booster to enhance specific CD8+ T cell responses to Plasmodium antigens and to control infection. These observations are relevant in the design of T cell-inducing vaccines against malaria.

  9. Vaccine efficacy against malaria by the combination of porcine parvovirus-like particles and vaccinia virus vectors expressing CS of Plasmodium.

    Science.gov (United States)

    Rodríguez, Dolores; González-Aseguinolaza, Gloria; Rodríguez, Juan R; Vijayan, Aneesh; Gherardi, Magdalena; Rueda, Paloma; Casal, J Ignacio; Esteban, Mariano

    2012-01-01

    With the aim to develop an efficient and cost-effective approach to control malaria, we have generated porcine parvovirus-like particles (PPV-VLPs) carrying the CD8(+) T cell epitope (SYVPSAEQI) of the circumsporozoite (CS) protein from Plasmodium yoelii fused to the PPV VP2 capsid protein (PPV-PYCS), and tested in prime/boost protocols with poxvirus vectors for efficacy in a rodent malaria model. As a proof-of concept, we have characterized the anti-CS CD8(+) T cell response elicited by these hybrid PPV-VLPs in BALB/c mice after immunizations with the protein PPV-PYCS administered alone or in combination with recombinant vaccinia virus (VACV) vectors from the Western Reserve (WR) and modified virus Ankara (MVA) strains expressing the entire P. yoelii CS protein. The results of different immunization protocols showed that the combination of PPV-PYCS prime/poxvirus boost was highly immunogenic, inducing specific CD8+ T cell responses to CS resulting in 95% reduction in liver stage parasites two days following sporozoite challenge. In contrast, neither the administration of PPV-PYCS alone nor the immunization with the vectors given in the order poxvirus/VLPs was as effective. The immune profile induced by VLPs/MVA boost was associated with polyfunctional and effector memory CD8+ T cell responses. These findings highlight the use of recombinant parvovirus PPV-PYCS particles as priming agents and poxvirus vectors, like MVA, as booster to enhance specific CD8+ T cell responses to Plasmodium antigens and to control infection. These observations are relevant in the design of T cell-inducing vaccines against malaria.

  10. Phase II trial of Modified Vaccinia Ankara (MVA virus expressing 5T4 and high dose Interleukin-2 (IL-2 in patients with metastatic renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Mitcham Josephine

    2009-01-01

    Full Text Available Abstract Background Interleukin-2 (IL-2 induces durable objective responses in a small cohort of patients with metastatic renal cell carcinoma (RCC but the antigen(s responsible for tumor rejection are not known. 5T4 is a non-secreted membrane glycoprotein expressed on clear cell and papillary RCCs. A modified vaccinia virus Ankara (MVA encoding 5T4 was tested in combination with high-dose IL-2 to determine the safety, objective response rate and effect on humoral and cell-mediated immunity. Methods 25 patients with metastatic RCC who qualified for IL-2 were eligible and received three immunizations every three weeks followed by IL-2 (600,000 IU/kg after the second and third vaccinations. Blood was collected for analysis of humoral, effector and regulatory T cell responses. Results There were no serious vaccine-related adverse events. While no objective responses were observed, three patients (12% were rendered disease-free after nephrectomy or resection of residual metastatic disease. Twelve patients (48% had stable disease which was associated with improved median overall survival compared to patients with progressive disease (not reached vs. 28 months, p = 0.0261. All patients developed 5T4-specific antibody responses and 13 patients had an increase in 5T4-specific T cell responses. Although the baseline frequency of Tregs was elevated in all patients, those with stable disease showed a trend toward increased effector CD8+ T cells and a decrease in Tregs. Conclusion Vaccination with MVA-5T4 did not improve objective response rates of IL-2 therapy but did result in stable disease associated with an increase in the ratio of 5T4-specific effector to regulatory T cells in selected patients. Trial registration number ISRCTN83977250

  11. Drosophila S2 cells are non-permissive for vaccinia virus DNA replication following entry via low pH-dependent endocytosis and early transcription.

    Directory of Open Access Journals (Sweden)

    Zain Bengali

    Full Text Available Vaccinia virus (VACV, a member of the chordopox subfamily of the Poxviridae, abortively infects insect cells. We have investigated VACV infection of Drosophila S2 cells, which are useful for protein expression and genome-wide RNAi screening. Biochemical and electron microscopic analyses indicated that VACV entry into Drosophila S2 cells depended on the VACV multiprotein entry-fusion complex but appeared to occur exclusively by a low pH-dependent endocytic mechanism, in contrast to both neutral and low pH entry pathways used in mammalian cells. Deep RNA sequencing revealed that the entire VACV early transcriptome, comprising 118 open reading frames, was robustly expressed but neither intermediate nor late mRNAs were made. Nor was viral late protein synthesis or inhibition of host protein synthesis detected by pulse-labeling with radioactive amino acids. Some reduction in viral early proteins was noted by Western blotting. Nevertheless, synthesis of the multitude of early proteins needed for intermediate gene expression was demonstrated by transfection of a plasmid containing a reporter gene regulated by an intermediate promoter. In addition, expression of a reporter gene with a late promoter was achieved by cotransfection of intermediate genes encoding the late transcription factors. The requirement for transfection of DNA templates for intermediate and late gene expression indicated a defect in viral genome replication in VACV-infected S2 cells, which was confirmed by direct analysis. Furthermore, VACV-infected S2 cells did not support the replication of a transfected plasmid, which occurs in mammalian cells and is dependent on all known viral replication proteins, indicating a primary restriction of DNA synthesis.

  12. Local HPV Recombinant Vaccinia Boost Following Priming with an HPV DNA Vaccine Enhances Local HPV-Specific CD8+ T Cell Mediated Tumor Control in the Genital Tract

    Science.gov (United States)

    Sun, Yun-Yan; Peng, Shiwen; Han, Liping; Qiu, Jin; Song, Liwen; Tsai, Yachea; Yang, Benjamin; Roden, Richard B.S.; Trimble, Cornelia L.; Hung, Chien-Fu; Wu, T-C

    2015-01-01

    Purpose Two viral oncoproteins, E6 and E7, are expressed in all human papillomavirus (HPV)-infected cells, from initial infection in the genital tract to metastatic cervical cancer. Intramuscular vaccination of women with high grade cervical intraepithelial neoplasia (CIN2/3) twice with a naked DNA vaccine, pNGVL4a-sig/E7(detox)/HSP70, and a single boost with HPVE6/E7 recombinant vaccinia vaccine (TA-HPV) elicited systemic HPV-specific CD8 T cell responses that could traffic to the lesion and was associated with regression in some patients (NCT00788164). Experimental Design Here we examine whether alteration of this vaccination regimen by administration of TA-HPV vaccination in the cervicovaginal tract, rather than IM delivery, can more effectively recruit antigen-specific T cells in an orthotopic syngeneic mouse model of HPV16+ cervical cancer (TC-1 luc). Results We found that pNGVL4a-sig/E7(detox)/HSP70 vaccination followed by cervicovaginal vaccination with TA-HPV increased accumulation of total and E7-specific CD8+ T cells in the cervicovaginal tract and better controlled E7-expressing cervicovaginal TC-1 luc tumor than IM administration of TA-HPV. Furthermore, the E7-specific CD8+ T cells in the cervicovaginal tract generated through the cervicovaginal route of vaccination expressed the α4β7 integrin and CCR9, which are necessary for the homing of the E7-specific CD8+ T cells to the cervicovaginal tract. Finally, we show that cervicovaginal vaccination with TA-HPV can induce potent local HPV-16 E7 antigen-specific CD8+ T cell immune responses regardless of whether an HPV DNA vaccine priming vaccination was administered IM or within the cervicovaginal tract. Conclusions Our results support future clinical translation using cervicovaginal TA-HPV vaccination. PMID:26420854

  13. Immunization with a recombinant vaccinia virus that encodes nonstructural proteins of the hepatitis C virus suppresses viral protein levels in mouse liver.

    Science.gov (United States)

    Sekiguchi, Satoshi; Kimura, Kiminori; Chiyo, Tomoko; Ohtsuki, Takahiro; Tobita, Yoshimi; Tokunaga, Yuko; Yasui, Fumihiko; Tsukiyama-Kohara, Kyoko; Wakita, Takaji; Tanaka, Toshiyuki; Miyasaka, Masayuki; Mizuno, Kyosuke; Hayashi, Yukiko; Hishima, Tsunekazu; Matsushima, Kouji; Kohara, Michinori

    2012-01-01

    Chronic hepatitis C, which is caused by infection with the hepatitis C virus (HCV), is a global health problem. Using a mouse model of hepatitis C, we examined the therapeutic effects of a recombinant vaccinia virus (rVV) that encodes an HCV protein. We generated immunocompetent mice that each expressed multiple HCV proteins via a Cre/loxP switching system and established several distinct attenuated rVV strains. The HCV core protein was expressed consistently in the liver after polyinosinic acid-polycytidylic acid injection, and these mice showed chronic hepatitis C-related pathological findings (hepatocyte abnormalities, accumulation of glycogen, steatosis), liver fibrosis, and hepatocellular carcinoma. Immunization with one rVV strain (rVV-N25), which encoded nonstructural HCV proteins, suppressed serum inflammatory cytokine levels and alleviated the symptoms of pathological chronic hepatitis C within 7 days after injection. Furthermore, HCV protein levels in liver tissue also decreased in a CD4 and CD8 T-cell-dependent manner. Consistent with these results, we showed that rVV-N25 immunization induced a robust CD8 T-cell immune response that was specific to the HCV nonstructural protein 2. We also demonstrated that the onset of chronic hepatitis in CN2-29((+/-))/MxCre((+/-)) mice was mainly attributable to inflammatory cytokines, (tumor necrosis factor) TNF-α and (interleukin) IL-6. Thus, our generated mice model should be useful for further investigation of the immunological processes associated with persistent expression of HCV proteins because these mice had not developed immune tolerance to the HCV antigen. In addition, we propose that rVV-N25 could be developed as an effective therapeutic vaccine.

  14. Immunization with a recombinant vaccinia virus that encodes nonstructural proteins of the hepatitis C virus suppresses viral protein levels in mouse liver.

    Directory of Open Access Journals (Sweden)

    Satoshi Sekiguchi

    Full Text Available Chronic hepatitis C, which is caused by infection with the hepatitis C virus (HCV, is a global health problem. Using a mouse model of hepatitis C, we examined the therapeutic effects of a recombinant vaccinia virus (rVV that encodes an HCV protein. We generated immunocompetent mice that each expressed multiple HCV proteins via a Cre/loxP switching system and established several distinct attenuated rVV strains. The HCV core protein was expressed consistently in the liver after polyinosinic acid-polycytidylic acid injection, and these mice showed chronic hepatitis C-related pathological findings (hepatocyte abnormalities, accumulation of glycogen, steatosis, liver fibrosis, and hepatocellular carcinoma. Immunization with one rVV strain (rVV-N25, which encoded nonstructural HCV proteins, suppressed serum inflammatory cytokine levels and alleviated the symptoms of pathological chronic hepatitis C within 7 days after injection. Furthermore, HCV protein levels in liver tissue also decreased in a CD4 and CD8 T-cell-dependent manner. Consistent with these results, we showed that rVV-N25 immunization induced a robust CD8 T-cell immune response that was specific to the HCV nonstructural protein 2. We also demonstrated that the onset of chronic hepatitis in CN2-29((+/-/MxCre((+/- mice was mainly attributable to inflammatory cytokines, (tumor necrosis factor TNF-α and (interleukin IL-6. Thus, our generated mice model should be useful for further investigation of the immunological processes associated with persistent expression of HCV proteins because these mice had not developed immune tolerance to the HCV antigen. In addition, we propose that rVV-N25 could be developed as an effective therapeutic vaccine.

  15. A recombinant modified vaccinia ankara vaccine encoding Epstein-Barr Virus (EBV) target antigens: a phase I trial in UK patients with EBV-positive cancer.

    Science.gov (United States)

    Taylor, Graham S; Jia, Hui; Harrington, Kevin; Lee, Lip Wai; Turner, James; Ladell, Kristin; Price, David A; Tanday, Manjit; Matthews, Jen; Roberts, Claudia; Edwards, Ceri; McGuigan, Lesley; Hartley, Andrew; Wilson, Steve; Hui, Edwin P; Chan, Anthony T C; Rickinson, Alan B; Steven, Neil M

    2014-10-01

    Epstein-Barr virus (EBV) is associated with several cancers in which the tumor cells express EBV antigens EBNA1 and LMP2. A therapeutic vaccine comprising a recombinant vaccinia virus, MVA-EL, was designed to boost immunity to these tumor antigens. A phase I trial was conducted to demonstrate the safety and immunogenicity of MVA-EL across a range of doses. Sixteen patients in the United Kingdom (UK) with EBV-positive nasopharyngeal carcinoma (NPC) received three intradermal vaccinations of MVA-EL at 3-weekly intervals at dose levels between 5 × 10(7) and 5 × 10(8) plaque-forming units (pfu). Blood samples were taken at screening, after each vaccine cycle, and during the post-vaccination period. T-cell responses were measured using IFNγ ELISpot assays with overlapping EBNA1/LMP2 peptide mixes or HLA-matched epitope peptides. Polychromatic flow cytometry was used to characterize functionally responsive T-cell populations. Vaccination was generally well tolerated. Immunity increased after vaccination to at least one antigen in 8 of 14 patients (7/14, EBNA1; 6/14, LMP2), including recognition of epitopes that vary between EBV strains associated with different ethnic groups. Immunophenotypic analysis revealed that vaccination induced differentiation and functional diversification of responsive T-cell populations specific for EBNA1 and LMP2 within the CD4 and CD8 compartments, respectively. MVA-EL is safe and immunogenic across diverse ethnicities and thus suitable for use in trials against different EBV-positive cancers globally as well as in South-East Asia where NPC is most common. The highest dose (5 × 10(8) pfu) is recommended for investigation in current phase IB and II trials. ©2014 American Association for Cancer Research.

  16. Activation of cross-reactive mucosal T and B cell responses in human nasopharynx-associated lymphoid tissue in vitro by Modified Vaccinia Ankara-vectored influenza vaccines.

    Science.gov (United States)

    Mullin, Jennifer; Ahmed, Muhammed S; Sharma, Ravi; Upile, Navdeep; Beer, Helen; Achar, Priya; Puksuriwong, Suttida; Ferrara, Francesca; Temperton, Nigel; McNamara, Paul; Lambe, Teresa; Gilbert, Sarah C; Zhang, Qibo

    2016-03-29

    Recent efforts have been focused on the development of vaccines that could induce broad immunity against influenza virus, either through T cell responses to conserved internal antigens or B cell response to cross-reactive haemagglutinin (HA). We studied the capacity of Modified Vaccinia Ankara (MVA)-vectored influenza vaccines to induce cross-reactive immunity to influenza virus in human nasopharynx-associated lymphoid tissue (NALT) in vitro. Adenotonsillar cells were isolated and stimulated with MVA vaccines expressing either conserved nucleoprotein (NP) and matrix protein 1 (M1) (MVA-NP-M1) or pandemic H1N1 HA (MVA-pdmH1HA). The MVA vaccine uptake and expression, and T and B cell responses were analyzed. MVA-vectored vaccines were highly efficient infecting NALT and vaccine antigens were highly expressed by B cells. MVA-NP-M1 elicited T cell response with greater numbers of IFNγ-producing CD4+ T cells and tissue-resident memory T cells than controls. MVA-pdmH1HA induced cross-reactive anti-HA antibodies to a number of influenza subtypes, in an age-dependent manner. The cross-reactive antibodies include anti-avian H5N1 and mainly target HA2 domain. MVA vaccines are efficient in infecting NALT and the vaccine antigen is highly expressed by B cells. MVA vaccines expressing conserved influenza antigens induce cross-reactive T and B cell responses in human NALT in vitro, suggesting the potential as mucosal vaccines for broader immunity against influenza. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Nucleoside Triphosphate Phosphohydrolase I (NPH I) Functions as a 5′ to 3′ Translocase in Transcription Termination of Vaccinia Early Genes*

    Science.gov (United States)

    Hindman, Ryan; Gollnick, Paul

    2016-01-01

    Vaccinia virus early genes are transcribed immediately upon infection. Nucleoside triphosphate phosphohydrolase I (NPH I) is an essential component of the early gene transcription complex. NPH I hydrolyzes ATP to release transcripts during transcription termination. The ATPase activity of NPH I requires single-stranded (ss) DNA as a cofactor; however, the source of this cofactor within the transcription complex is not known. Based on available structures of transcription complexes it has been hypothesized that the ssDNA cofactor is obtained from the unpaired non-template strand within the transcription bubble. In vitro transcription on templates that lack portions of the non-template strand within the transcription bubble showed that the upstream portion of the transcription bubble is required for efficient NPH I-mediated transcript release. Complementarity between the template and non-template strands in this region is also required for NPH I-mediated transcript release. This observation complicates locating the source of the ssDNA cofactor within the transcription complex because removal of the non-template strand also disrupts transcription bubble reannealing. Prior studies have shown that ssRNA binds to NPH I, but it does not activate ATPase activity. Chimeric transcription templates with RNA in the non-template strand confirm that the source of the ssDNA cofactor for NPH I is the upstream portion of the non-template strand in the transcription bubble. Consistent with this conclusion we also show that isolated NPH I acts as a 5′ to 3′ translocase on single-stranded DNA. PMID:27189950

  18. Vaccinia virus protein C6 is a virulence factor that binds TBK-1 adaptor proteins and inhibits activation of IRF3 and IRF7.

    Directory of Open Access Journals (Sweden)

    Leonie Unterholzner

    2011-09-01

    Full Text Available Recognition of viruses by pattern recognition receptors (PRRs causes interferon-β (IFN-β induction, a key event in the anti-viral innate immune response, and also a target of viral immune evasion. Here the vaccinia virus (VACV protein C6 is identified as an inhibitor of PRR-induced IFN-β expression by a functional screen of select VACV open reading frames expressed individually in mammalian cells. C6 is a member of a family of Bcl-2-like poxvirus proteins, many of which have been shown to inhibit innate immune signalling pathways. PRRs activate both NF-κB and IFN regulatory factors (IRFs to activate the IFN-β promoter induction. Data presented here show that C6 inhibits IRF3 activation and translocation into the nucleus, but does not inhibit NF-κB activation. C6 inhibits IRF3 and IRF7 activation downstream of the kinases TANK binding kinase 1 (TBK1 and IκB kinase-ε (IKKε, which phosphorylate and activate these IRFs. However, C6 does not inhibit TBK1- and IKKε-independent IRF7 activation or the induction of promoters by constitutively active forms of IRF3 or IRF7, indicating that C6 acts at the level of the TBK1/IKKε complex. Consistent with this notion, C6 immunoprecipitated with the TBK1 complex scaffold proteins TANK, SINTBAD and NAP1. C6 is expressed early during infection and is present in both nucleus and cytoplasm. Mutant viruses in which the C6L gene is deleted, or mutated so that the C6 protein is not expressed, replicated normally in cell culture but were attenuated in two in vivo models of infection compared to wild type and revertant controls. Thus C6 contributes to VACV virulence and might do so via the inhibition of PRR-induced activation of IRF3 and IRF7.

  19. Vaccinia Virus Protein C6 Inhibits Type I IFN Signalling in the Nucleus and Binds to the Transactivation Domain of STAT2.

    Directory of Open Access Journals (Sweden)

    Jennifer H Stuart

    2016-12-01

    Full Text Available The type I interferon (IFN response is a crucial innate immune signalling pathway required for defense against viral infection. Accordingly, the great majority of mammalian viruses possess means to inhibit this important host immune response. Here we show that vaccinia virus (VACV strain Western Reserve protein C6, is a dual function protein that inhibits the cellular response to type I IFNs in addition to its published function as an inhibitor of IRF-3 activation, thereby restricting type I IFN production from infected cells. Ectopic expression of C6 inhibits the induction of interferon stimulated genes (ISGs in response to IFNα treatment at both the mRNA and protein level. C6 inhibits the IFNα-induced Janus kinase/signal transducer and activator of transcription (JAK/STAT signalling pathway at a late stage, downstream of STAT1 and STAT2 phosphorylation, nuclear translocation and binding of the interferon stimulated gene factor 3 (ISGF3 complex to the interferon stimulated response element (ISRE. Mechanistically, C6 associates with the transactivation domain of STAT2 and this might explain how C6 inhibits the type I IFN signalling very late in the pathway. During virus infection C6 reduces ISRE-dependent gene expression despite the presence of the viral protein phosphatase VH1 that dephosphorylates STAT1 and STAT2. The ability of a cytoplasmic replicating virus to dampen the immune response within the nucleus, and the ability of viral immunomodulators such as C6 to inhibit multiple stages of the innate immune response by distinct mechanisms, emphasizes the intricacies of host-pathogen interactions and viral immune evasion.

  20. Phase I safety and immunogenicity evaluation of MVA-CMDR, a multigenic, recombinant modified vaccinia Ankara-HIV-1 vaccine candidate.

    Science.gov (United States)

    Currier, Jeffrey R; Ngauy, Viseth; de Souza, Mark S; Ratto-Kim, Silvia; Cox, Josephine H; Polonis, Victoria R; Earl, Patricia; Moss, Bernard; Peel, Sheila; Slike, Bonnie; Sriplienchan, Somchai; Thongcharoen, Prasert; Paris, Robert M; Robb, Merlin L; Kim, Jerome; Michael, Nelson L; Marovich, Mary A

    2010-11-15

    We conducted a Phase I randomized, dose-escalation, route-comparison trial of MVA-CMDR, a candidate HIV-1 vaccine based on a recombinant modified vaccinia Ankara viral vector expressing HIV-1 genes env/gag/pol. The HIV sequences were derived from circulating recombinant form CRF01_AE, which predominates in Thailand. The objective was to evaluate safety and immunogenicity of MVA-CMDR in human volunteers in the US and Thailand. MVA-CMDR or placebo was administered intra-muscularly (IM; 10(7) or 10(8) pfu) or intradermally (ID; 10(6) or 10(7) pfu) at months 0, 1 and 3, to 48 healthy volunteers at low risk for HIV-1 infection. Twelve volunteers in each dosage group were randomized to receive MVA-CMDR or placebo (10∶2). Volunteers were actively monitored for local and systemic reactogenicity and adverse events post vaccination. Cellular immunogenicity was assessed by a validated IFNγ Elispot assay, an intracellular cytokine staining assay, lymphocyte proliferation and a (51)Cr-release assay. Humoral immunogenicity was assessed by ADCC for gp120 and binding antibody ELISAs for gp120 and p24. MVA-CMDR was safe and well tolerated with no vaccine related serious adverse events. Cell-mediated immune responses were: (i) moderate in magnitude (median IFNγ Elispot of 78 SFC/10(6) PBMC at 10(8) pfu IM), but high in response rate (70% (51)Cr-release positive; 90% Elispot positive; 100% ICS positive, at 10(8) pfu IM); (ii) predominantly HIV Env-specific CD4(+) T cells, with a high proliferative capacity and durable for at least 6 months (100% LPA response rate by the IM route); (iv) dose- and route-dependent with 10(8) pfu IM being the most immunogenic treatment. Binding antibodies against gp120 and p24 were detectable in all vaccination groups with ADCC capacity detectable at the highest dose (40% positive at 10(8) pfu IM). MVA-CMDR delivered both intramuscularly and intradermally was safe, well-tolerated and elicited durable cell-mediated and humoral immune responses

  1. A pandemic influenza H1N1 live vaccine based on modified vaccinia Ankara is highly immunogenic and protects mice in active and passive immunizations.

    Directory of Open Access Journals (Sweden)

    Annett Hessel

    Full Text Available BACKGROUND: The development of novel influenza vaccines inducing a broad immune response is an important objective. The aim of this study was to evaluate live vaccines which induce both strong humoral and cell-mediated immune responses against the novel human pandemic H1N1 influenza virus, and to show protection in a lethal animal challenge model. METHODOLOGY/PRINCIPAL FINDINGS: For this purpose, the hemagglutinin (HA and neuraminidase (NA genes of the influenza A/California/07/2009 (H1N1 strain (CA/07 were inserted into the replication-deficient modified vaccinia Ankara (MVA virus--a safe poxviral live vector--resulting in MVA-H1-Ca and MVA-N1-Ca vectors. These live vaccines, together with an inactivated whole virus vaccine, were assessed in a lung infection model using immune competent Balb/c mice, and in a lethal challenge model using severe combined immunodeficient (SCID mice after passive serum transfer from immunized mice. Balb/c mice vaccinated with the MVA-H1-Ca virus or the inactivated vaccine were fully protected from lung infection after challenge with the influenza H1N1 wild-type strain, while the neuraminidase virus MVA-N1-Ca induced only partial protection. The live vaccines were already protective after a single dose and induced substantial amounts of neutralizing antibodies and of interferon-gamma-secreting (IFN-gamma CD4- and CD8 T-cells in lungs and spleens. In the lungs, a rapid increase of HA-specific CD4- and CD8 T cells was observed in vaccinated mice shortly after challenge with influenza swine flu virus, which probably contributes to the strong inhibition of pulmonary viral replication observed. In addition, passive transfer of antisera raised in MVA-H1-Ca vaccinated immune-competent mice protected SCID mice from lethal challenge with the CA/07 wild-type virus. CONCLUSIONS/SIGNIFICANCE: The non-replicating MVA-based H1N1 live vaccines induce a broad protective immune response and are promising vaccine candidates for

  2. Outbreaks of vesicular disease caused by Vaccinia virus in dairy cattle from Goiás State, Brazil (2010-2012

    Directory of Open Access Journals (Sweden)

    Fabiano J.F. de Sant'Ana

    2013-07-01

    Full Text Available Cases of vesicular and exanthematic disease by Vaccinia virus (VACV have been reported in dairy herds of several Brazilian regions, occasionally also affecting humans. The present article describes eight outbreaks of vesicular disease caused by VACV in dairy herds of six counties of Goiás state, Midwestern Brazil (2010-2012, involving a total of 122 cows, 12 calves and 11 people. Dairy cows (3 to 9 years old were affected in all cases and calves (2 to 9 months old were affected in five outbreaks, presenting oral lesions. The morbidity ranged between 8 and 100% in cows, and 1.5 to 31% in calves. In the cows, the clinical signs started with vesicles (2-7mm, painful and coalescent papules (3-8 mm, which resulted in ulcers (5-25mm and scabs in teats, and, occasionally, in the muzzle. The clinical course lasted from 16 to 26 days. The histopathology of bovine skin samples revealed superficial perivascular inflammatory infiltrate of lymphocytes, plasma cells, neutrophils, macrophages and multifocal areas of acanthosis, spongiosis, hipergranulosis and parakeratotic or orthokeratotic hyperkeratosis with adjacent focally extensive ulcers. Eosinophilic inclusion bodies were noted in the cytoplasm of the keratinocytes. PCR to vgf gene of Orthopoxvirus was positive in samples collected from all outbreaks, and in some cases, genomic VACV sequences were identified by nucleotide sequencing of the PCR amplicons. Infectious virus was isolated in cell culture from scabs from one outbreak. Antibodies to Orthopoxvirus were detected in at least 3 or 4 animals in most outbreaks, by ELISA (outbreaks 1, 2, 3, 4, 5 and 7 or virus-neutralization (outbreak 6. Neutralizing titers ranging from 8 to 64 in outbreak 6. In all outbreaks, VACV infection was suspected based on the clinical and pathological findings and it was confirmed by laboratory tests. Upon the etiological confirmation, other agents associated with vesicular disease were discarded. In all outbreaks, at least

  3. Anti-tumoral effect of recombinant vaccinia virus through US guided injection in a rabbit model of hepatic VX2 carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jong Young; Park, Byeong Ho; Kang, Myong Jin; Cho, Jin Han; Choi, Jong Cheol; Choi, Sun Seob; Nam, Kyung Jin; Hwang, Tae Ho; Jeong, Jin Sook [College of Medicine, Dong-A University, Busan (Korea, Republic of)

    2006-02-15

    The purpose of this study was to evaluate the anti-tumoral effect of recombinant vaccinia virus (rVV) (Thymidine kinase (-)/GM-CSF (+)) that was administered as a US guided intratumoral injection in a rabbit model of hepatic VX2 carcinoma. VX2 carcinoma was implanted in the livers of 12 rabbits. US was performed at every week interval to detect hepatic mass after the implantation of VX2 carcinoma. The accurate tumor size and volume was evaluated with CT when the tumor was detected on US. US guided injection of rVV (10{sup 9} pfu/ml) was preformed in three rabbits, intravenous injection of the same dose of rVV was done in two rabbits and another seven rabbits that were without any treatment were selected as a control group. We evaluated the change of the hepatic tumor size and extrahepatic metastasis on serial CT. Tumor specimens were harvested from rabbits that were killed at 8 weeks after VX2 implantation. These tissues were histoimmuopathologically compared to each other (the virus injection group and the control group). The differences between these groups were statistically assessed with student t-tests. Tumor growth was significantly suppressed in the US guided injection group compared with the intravenous injection group or the control group ({rho} < 0.01). The intravenous injection group showed statistically significant tumor suppression compared to the control group ({rho} < 0.01) until 2 weeks after virus injection. Quantification of the pulmonary metastatic nodules was performed in view of both the number and volume. The average number or volume of the pulmonary metastatic nodules in the US injection group was much smaller than these in the control group. Histopathologically, the tumors of the US guided injection group showed less extensive necrosis than those of the control group. Immunohistochemically, the tumor of the US guided injection group showed more prominent infiltration of CD4 (+) and CD8 (+) lymphocytes than did the tumors of the other group

  4. Phase I safety and immunogenicity evaluation of MVA-CMDR, a multigenic, recombinant modified vaccinia Ankara-HIV-1 vaccine candidate.

    Directory of Open Access Journals (Sweden)

    Jeffrey R Currier

    2010-11-01

    Full Text Available We conducted a Phase I randomized, dose-escalation, route-comparison trial of MVA-CMDR, a candidate HIV-1 vaccine based on a recombinant modified vaccinia Ankara viral vector expressing HIV-1 genes env/gag/pol. The HIV sequences were derived from circulating recombinant form CRF01_AE, which predominates in Thailand. The objective was to evaluate safety and immunogenicity of MVA-CMDR in human volunteers in the US and Thailand.MVA-CMDR or placebo was administered intra-muscularly (IM; 10(7 or 10(8 pfu or intradermally (ID; 10(6 or 10(7 pfu at months 0, 1 and 3, to 48 healthy volunteers at low risk for HIV-1 infection. Twelve volunteers in each dosage group were randomized to receive MVA-CMDR or placebo (10∶2. Volunteers were actively monitored for local and systemic reactogenicity and adverse events post vaccination. Cellular immunogenicity was assessed by a validated IFNγ Elispot assay, an intracellular cytokine staining assay, lymphocyte proliferation and a (51Cr-release assay. Humoral immunogenicity was assessed by ADCC for gp120 and binding antibody ELISAs for gp120 and p24. MVA-CMDR was safe and well tolerated with no vaccine related serious adverse events. Cell-mediated immune responses were: (i moderate in magnitude (median IFNγ Elispot of 78 SFC/10(6 PBMC at 10(8 pfu IM, but high in response rate (70% (51Cr-release positive; 90% Elispot positive; 100% ICS positive, at 10(8 pfu IM; (ii predominantly HIV Env-specific CD4(+ T cells, with a high proliferative capacity and durable for at least 6 months (100% LPA response rate by the IM route; (iv dose- and route-dependent with 10(8 pfu IM being the most immunogenic treatment. Binding antibodies against gp120 and p24 were detectable in all vaccination groups with ADCC capacity detectable at the highest dose (40% positive at 10(8 pfu IM.MVA-CMDR delivered both intramuscularly and intradermally was safe, well-tolerated and elicited durable cell-mediated and humoral immune responses

  5. Immunogenicity of oncolytic vaccinia viruses JX-GFP and TG6002 in a human melanoma in vitro model: studying immunogenic cell death, dendritic cell maturation and interaction with cytotoxic T lymphocytes

    Directory of Open Access Journals (Sweden)

    Heinrich B

    2017-05-01

    Full Text Available B Heinrich,1 J Klein,1 M Delic,1 K Goepfert,1 V Engel,1 L Geberzahn,1 M Lusky,2 P Erbs,2 X Preville,3 M Moehler1 1First Department of Internal Medicine, University Medical Center Mainz, Mainz, Germany; 2Transgene SA, Illkirch-Graffenstaden, 3Amoneta Diagnostics, Huningue, France Abstract: Oncolytic virotherapy is an emerging immunotherapeutic modality for cancer treatment. Oncolytic viruses with genetic modifications can further enhance the oncolytic effects on tumor cells and stimulate antitumor immunity. The oncolytic vaccinia viruses JX-594-GFP+/hGM-CSF (JX-GFP and TG6002 are genetically modified by secreting granulocyte-macrophage colony-stimulating factor (GM-CSF or transforming 5-fluorocytosine (5-FC into 5-fluorouracil (5-FU. We compared their properties to kill tumor cells and induce an immunogenic type of cell death in a human melanoma cell model using SK29-MEL melanoma cells. Their influence on human immune cells, specifically regarding the activation of dendritic cells (DCs and the interaction with the autologous cytotoxic T lymphocyte (CTL clone, was investigated. Melanoma cells were infected with either JX-GFP or TG6002 alone or in combination with 5-FC and 5-FU. The influence of viral infection on cell viability followed a time- and multiplicity of infection dependent manner. Combination of virus treatment with 5-FU resulted in stronger reduction of cell viability. TG6002 in combination with 5-FC did not significantly strengthen the reduction of cell viability in this setting. Expression of calreticulin and high mobility group 1 protein (HMGB1, markers of immunogenic cell death (ICD, could be detected after viral infection. Accordingly, DC maturation was noted after viral oncolysis. DCs presented stronger expression of activation and maturation markers. The autologous CTL clone IVSB expressed the activation marker CD69, but viral treatment failed to enhance cytotoxicity marker. In summary, vaccinia viruses JX-GFP and TG6002 lyse

  6. Diseño y construcción de vectores de transferencia para la obtención de virus vaccinia Ankara modificado (MVA recombinantes Design and construction of transfer vectors in order to obtain recombinant modified vaccinia virus Ankara (MVA

    Directory of Open Access Journals (Sweden)

    M. F. Ferrer

    2007-09-01

    Full Text Available El virus vaccinia Ankara modificado (MVA constituye un buen candidato para el desarrollo de vectores virales de expresión no replicativos porque no replica en la mayoría de las células de mamíferos. Para la producción de MVA recombinantes es fundamental disponer de vectores de transferencia que, por recombinación homóloga con el genoma viral, permitan introducir los genes de interés en regiones no esenciales para la replicación in vitro. En este trabajo se diseñaron y obtuvieron los vectores de transferencia denominados VT-MHA y VT-MTK que portan las regiones correspondientes a las posiciones 1-303 y 608-948 del gen MVA165R y 1-244 y 325-534 del gen MVA086R, respectivamente, las que flanquean un sitio de clonado múltiple para la inserción de los genes foráneos. En dichos vectores se clonaron los casetes para la expresión de los genes lac Z o uid A, y la actividad de las enzimas marcadoras b-galactosidasa y b-glucuronidasa se confirmó in situ. Además, utilizando el vector denominado VT-MTK-GUS, se obtuvieron y aislaron MVA recombinantes puros que portan y expresan el gen uid A. Los resultados obtenidos constituyen las herramientas básicas para establecer la metodología de obtención de MVA recombinantes, con el propósito de desarrollar localmente vectores virales no replicativos candidatos a vacunas.Modified Vaccinia virus Ankara (MVA constitutes a good candidate for the development of non-replicative expression viral vectors because it does not replicate in most of mammalian cells. It is essential, for the production of recombinant MVA, the availability of transfer vectors which allow the introduction of desired genes into non-essential regions for in vitro viral replication, by homologous recombination with the viral genome. In the present work, the transfer vectors named VT-MHA and VT-MTK were designed and obtained. They carried genomic regions corresponding to 1- 303 and 608-948 positions of the MVA165R gene and 1-244 and

  7. Vectorization in an oncolytic vaccinia virus of an antibody, a Fab and a scFv against programmed cell death -1 (PD-1) allows their intratumoral delivery and an improved tumor-growth inhibition.

    Science.gov (United States)

    Kleinpeter, Patricia; Fend, Laetitia; Thioudellet, Christine; Geist, Michel; Sfrontato, Nathalie; Koerper, Véronique; Fahrner, Catherine; Schmitt, Doris; Gantzer, Murielle; Remy-Ziller, Christelle; Brandely, Renée; Villeval, Dominique; Rittner, Karola; Silvestre, Nathalie; Erbs, Philippe; Zitvogel, Laurence; Quéméneur, Eric; Préville, Xavier; Marchand, Jean-Baptiste

    2016-01-01

    We report here the successful vectorization of a hamster monoclonal IgG (namely J43) recognizing the murine Programmed cell death-1 (mPD-1) in Western Reserve (WR) oncolytic vaccinia virus. Three forms of mPD-1 binders have been inserted into the virus: whole antibody (mAb), Fragment antigen-binding (Fab) or single-chain variable fragment (scFv). MAb, Fab and scFv were produced and assembled with the expected patterns in supernatants of cells infected by the recombinant viruses. The three purified mPD-1 binders were able to block the binding of mPD-1 ligand to mPD-1 in vitro . Moreover, mAb was detected in tumor and in serum of C57BL/6 mice when the recombinant WR-mAb was injected intratumorally (IT) in B16F10 and MCA 205 tumors. The concentration of circulating mAb detected after IT injection was up to 1,900-fold higher than the level obtained after a subcutaneous (SC) injection (i.e., without tumor) confirming the virus tropism for tumoral cells and/or microenvironment. Moreover, the overall tumoral accumulation of the mAb was higher and lasted longer after IT injection of WR-mAb1, than after IT administration of 10 µg of J43. The IT injection of viruses induced a massive infiltration of immune cells including activated lymphocytes (CD8 + and CD4 + ). Interestingly, in the MCA 205 tumor model, WR-mAb1 and WR-scFv induced a therapeutic control of tumor growth similar to unarmed WR combined to systemically administered J43 and superior to that obtained with an unarmed WR. These results pave the way for next generation of oncolytic vaccinia armed with immunomodulatory therapeutic proteins such as mAbs.

  8. Development of an animal model of progressive vaccinia in nu/nu mice and the use of bioluminescence imaging for assessment of the efficacy of monoclonal antibodies against vaccinial B5 and L1 proteins.

    Science.gov (United States)

    Zaitseva, Marina; Thomas, Antonia; Meseda, Clement A; Cheung, Charles Y K; Diaz, Claudia G; Xiang, Yan; Crotty, Shane; Golding, Hana

    2017-08-01

    Bioluminescence imaging (BLI) was used to follow dissemination of recombinant vaccinia virus (VACV) expressing luciferase (IHD-J-Luc) in BALB/c nu/nu mice treated post-challenge with monoclonal antibodies (MAbs) against L1 and B5 VACV proteins in a model of Progressive Vaccinia (PV). Areas Under the flux Curve (AUC) were calculated for viral loads in multiple organs in individual mice. Following scarification with 10 5  pfu, IHD-J-Luc VACV undergoes fast replication at the injection site and disseminates rapidly to the inguinal lymph nodes followed by spleen, liver, and axillary lymph nodes within 2-3 days and before primary lesions are visible at the site of scarification. Extension of survival in nude mice treated with a combination of anti-B5 and anti-L1 MAbs 24 h post challenge correlated with a significant reduction in viral load at the site of scarification and delayed systemic dissemination. Nude mice reconstituted with 10 4  T cells prior to challenge with IHD-J-Luc, and treated with MAbs post-challenge, survived infection, cleared the virus from all organs and scarification site, and developed anti-VACV IgG and VACV-specific polyfunctional CD8 + T cells that co-expressed the degranulation marker CD107a, and IFNγ and TNFα cytokines. All T cell reconstituted mice survived intranasal re-challenge with IHD-J-Luc (10 4  pfu) two months after the primary infection. Thus, using BLI to monitor VACV replication in a PV model, we showed that anti-VACV MAbs administered post challenge extended survival of nude mice and protected T cell reconstituted nude mice from lethality by reducing replication at the site of scarification and systemic dissemination of VACV. Published by Elsevier B.V.

  9. Smallpox and pan-orthopox virus detection by real-time 3'-minor groove binder TaqMan assays on the roche LightCycler and the Cepheid smart Cycler platforms.

    Science.gov (United States)

    Kulesh, David A; Baker, Robert O; Loveless, Bonnie M; Norwood, David; Zwiers, Susan H; Mucker, Eric; Hartmann, Chris; Herrera, Rafael; Miller, David; Christensen, Deanna; Wasieloski, Leonard P; Huggins, John; Jahrling, Peter B

    2004-02-01

    We designed, optimized, and extensively tested several sensitive and specific real-time PCR assays for rapid detection of both smallpox and pan-orthopox virus DNAs. The assays are based on TaqMan 3'-minor groove binder chemistry and were performed on both the rapid-cycling Roche LightCycler and the Cepheid Smart Cycler platforms. The hemagglutinin (HA) J7R, B9R, and B10R genes were used as targets for the variola virus-specific assays, and the HA and DNA polymerase-E9L genes were used as targets for the pan-orthopox virus assays. The five orthopox virus assays were tested against a panel of orthopox virus DNAs (both genomic and cloned) at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID). The results indicated that each assay was capable of detecting both the appropriate cloned gene and genomic DNA. The assays showed no cross-reactivity to the 78 DNAs in the USAMRIID bacterial cross-reactivity panel. The limit of detection (LOD) of each assay was determined to be between 12 and 25 copies of target DNA. The assays were also run against a blind panel of DNAs at the Centers for Disease Control and Prevention (CDC) on both the LightCycler and the Smart Cycler. The panel consisted of eight different variola virus isolates, five non-variola virus orthopox virus isolates, two varicella-zoster virus isolates, and one herpes simplex virus isolate. Each sample was tested in triplicate at 2.5 ng, 25 pg, 250 fg, and 2.5 fg, which represent 1.24 x 10(7), 1.24 x 10(5), 1.24 x 10(3), and 1.24 x 10(1) genome equivalents, respectively. The results indicated that each of the five assays was 100% specific (no false positives) when tested against both the USAMRIID panels and the CDC blind panel. With the CDC blind panel, the LightCycler was capable of detecting 96.2% of the orthopox virus DNAs and 93.8% of the variola virus DNAs. The Smart Cycler was capable of detecting 92.3% of the orthopox virus DNAs and between 75 and 93.8% of the variola virus DNAs

  10. Smallpox and pan-Orthopox Virus Detection by Real-Time 3′-Minor Groove Binder TaqMan Assays on the Roche LightCycler and the Cepheid Smart Cycler Platforms

    Science.gov (United States)

    Kulesh, David A.; Baker, Robert O.; Loveless, Bonnie M.; Norwood, David; Zwiers, Susan H.; Mucker, Eric; Hartmann, Chris; Herrera, Rafael; Miller, David; Christensen, Deanna; Wasieloski, Leonard P.; Huggins, John; Jahrling, Peter B.

    2004-01-01

    We designed, optimized, and extensively tested several sensitive and specific real-time PCR assays for rapid detection of both smallpox and pan-orthopox virus DNAs. The assays are based on TaqMan 3′-minor groove binder chemistry and were performed on both the rapid-cycling Roche LightCycler and the Cepheid Smart Cycler platforms. The hemagglutinin (HA) J7R, B9R, and B10R genes were used as targets for the variola virus-specific assays, and the HA and DNA polymerase-E9L genes were used as targets for the pan-orthopox virus assays. The five orthopox virus assays were tested against a panel of orthopox virus DNAs (both genomic and cloned) at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID). The results indicated that each assay was capable of detecting both the appropriate cloned gene and genomic DNA. The assays showed no cross-reactivity to the 78 DNAs in the USAMRIID bacterial cross-reactivity panel. The limit of detection (LOD) of each assay was determined to be between 12 and 25 copies of target DNA. The assays were also run against a blind panel of DNAs at the Centers for Disease Control and Prevention (CDC) on both the LightCycler and the Smart Cycler. The panel consisted of eight different variola virus isolates, five non-variola virus orthopox virus isolates, two varicella-zoster virus isolates, and one herpes simplex virus isolate. Each sample was tested in triplicate at 2.5 ng, 25 pg, 250 fg, and 2.5 fg, which represent 1.24 × 107, 1.24 × 105, 1.24 × 103, and 1.24 × 101 genome equivalents, respectively. The results indicated that each of the five assays was 100% specific (no false positives) when tested against both the USAMRIID panels and the CDC blind panel. With the CDC blind panel, the LightCycler was capable of detecting 96.2% of the orthopox virus DNAs and 93.8% of the variola virus DNAs. The Smart Cycler was capable of detecting 92.3% of the orthopox virus DNAs and between 75 and 93.8% of the variola virus DNAs. However

  11. Antigenicity of Leishmania-Activated C-Kinase Antigen (LACK in Human Peripheral Blood Mononuclear Cells, and Protective Effect of Prime-Boost Vaccination With pCI-neo-LACK Plus Attenuated LACK-Expressing Vaccinia Viruses in Hamsters

    Directory of Open Access Journals (Sweden)

    Laura Fernández

    2018-04-01

    Full Text Available Leishmania-activated C-kinase antigen (LACK is a highly conserved protein among Leishmania species and is considered a viable vaccine candidate for human leishmaniasis. In animal models, prime-boost vaccination with LACK-expressing plasmids plus attenuated vaccinia viruses (modified vaccinia Ankara [MVA] and mutant M65 expressing LACK, has been shown to protect against cutaneous leishmaniasis (CL. Further, LACK demonstrated to induce the production of protective cytokines in patients with active CL or cured visceral leishmaniasis, as well as in asymptomatic individuals from endemic areas. However, whether LACK is capable to trigger cytokine release by peripheral blood mononuclear cells from patients cured of CL due to Leishmania infantum (L. infantum or induce protection in L. infantum-infected hamsters [visceral leishmaniasis (VL model], has not yet been analyzed. The present work examines the ex vivo immunogenicity of LACK in cured VL and CL patients, and asymptomatic subjects from an L. infantum area. It also evaluates the vaccine potential of LACK against L. infantum infection in hamsters, in a protocol of priming with plasmid pCI-neo-LACK (DNA-LACK followed by a booster with the poxvirus vectors MVA-LACK or M65-LACK. LACK-stimulated PBMC from both asymptomatic and cured subjects responded by producing IFN-γ, TNF-α, and granzyme B (Th1-type response. Further, 78% of PBMC samples that responded to soluble Leishmania antigen showed IFN-γ secretion following stimulation with LACK. In hamsters, the protocol of DNA-LACK prime/MVA-LACK or M65-LACK virus boost vaccination significantly reduced the amount of Leishmania DNA in the liver and bone marrow, with no differences recorded between the use of MVA or M65 virus vector options. In summary, the Th1-type and cytotoxic responses elicited by LACK in PBMC from human subjects infected with L. infantum, and the parasite protective effect of prime/boost vaccination in hamsters with DNA

  12. Improved survival in rhesus macaques immunized with modified vaccinia virus Ankara recombinants expressing simian immunodeficiency virus envelope correlates with reduction in memory CD4+ T-cell loss and higher titers of neutralizing antibody.

    Science.gov (United States)

    Ourmanov, Ilnour; Kuwata, Takeo; Goeken, Robert; Goldstein, Simoy; Iyengar, Ranjani; Buckler-White, Alicia; Lafont, Bernard; Hirsch, Vanessa M

    2009-06-01

    Previous studies demonstrated that immunization of macaques with simian immunodeficiency virus (SIV) Gag-Pol and Env recombinants of the attenuated poxvirus modified vaccinia virus Ankara (MVA) provided protection from high viremia and AIDS following challenge with a pathogenic strain of SIV. Although all animals became infected, plasma viremia was significantly reduced in animals that received the MVA-SIV recombinant vaccines compared with animals that received nonrecombinant MVA. Most importantly, the reduction in viremia resulted in a significant increase in median and cumulative survival. Continued analysis of these animals over the subsequent 9 years has shown that they maintain a survival advantage, although all but two of the macaques have progressed to AIDS. Importantly, improved survival correlated with preservation of memory CD4(+) T cells in the peripheral blood. The greatest survival advantage was observed in macaques immunized with regimens containing SIV Env, and the titer of neutralizing antibodies to the challenge virus prior to or shortly following challenge correlated with preservation of CD4(+) T cells. These data are consistent with a role for neutralizing antibodies in nonsterilizing protection from high viremia and associated memory CD4(+) T-cell loss.

  13. Development of a novel, guinea pig-specific IFN-γ ELISPOT assay and characterization of guinea pig cytomegalovirus GP83-specific cellular immune responses following immunization with a modified vaccinia virus Ankara (MVA)-vectored GP83 vaccine.

    Science.gov (United States)

    Gillis, Peter A; Hernandez-Alvarado, Nelmary; Gnanandarajah, Josephine S; Wussow, Felix; Diamond, Don J; Schleiss, Mark R

    2014-06-30

    The guinea pig (Cavia porcellus) provides a useful animal model for studying the pathogenesis of many infectious diseases, and for preclinical evaluation of vaccines. However, guinea pig models are limited by the lack of immunological reagents required for characterization and quantification of antigen-specific T cell responses. To address this deficiency, an enzyme-linked immunospot (ELISPOT) assay for guinea pig interferon (IFN)-γ was developed to measure antigen/epitope-specific T cell responses to guinea pig cytomegalovirus (GPCMV) vaccines. Using splenocytes harvested from animals vaccinated with a modified vaccinia virus Ankara (MVA) vector encoding the GPCMV GP83 (homolog of human CMV pp65 [gpUL83]) protein, we were able to enumerate and map antigen-specific responses, both in vaccinated as well as GPCMV-infected animals, using a panel of GP83-specific peptides. Several potential immunodominant GP83-specific peptides were identified, including one epitope, LGIVHFFDN, that was noted in all guinea pigs that had a detectable CD8+ response to GP83. Development of a guinea pig IFN-γ ELISPOT should be useful in characterization of additional T cell-specific responses to GPCMV, as well as other pathogens. This information in turn can help focus future experimental evaluation of immunization strategies, both for GPCMV as well as for other vaccine-preventable illnesses studied in the guinea pig model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Varíola e vacina no Brasil no século XX: institucionalização da educação sanitária Smallpox and vaccine in Brazil at 20th century: institutionalization of health education

    Directory of Open Access Journals (Sweden)

    Tania Maria Dias Fernandes

    2011-02-01

    Full Text Available O objetivo deste texto é discutir algumas ações que possibilitaram a erradicação da varíola no Brasil, considerando os principais contextos e as políticas adotadas para as doenças entre 1920 e 1970, assumindo como destaque as medidas educativas no campo da saúde e estabelecendo uma discussão acerca do conteúdo educacional dos programas adotados. Observam-se, ao longo deste período, a configuração de políticas de saúde e a criação de organismos estatais direcionados a doenças e ações específicas, o que no caso da varíola somente ocorreu na década de 1960, quando foram criadas a Campanha Nacional contra a Varíola e a Campanha Nacional de Erradicação da Varíola. A educação sanitária e as relações com estas instituições foram de fundamental importância para a divulgação e implementação de ações estatais que possibilitaram ampliação da cobertura vacinal com a aceitação de seu uso pela população, o alcance do controle e a erradicação da doença.The aim of this paper is to discuss some actions that made possible the eradication of smallpox in Brazil, considering the main contexts and policies adopted for the disease between 1920 and 1970, assuming as contrast educational measures in the field of health and establishing a discussion on the educational content of the programs adopted. It can be observed that, during this period, the setting of the health policies and the creation of state agencies that target specific diseases and actions, which in the case of the smallpox, only occurred in the 1960s, when the National Campaign against the Smallpox and the National Campaign for Eradication of Smallpox were created. Health education and the relations with these institutions were of fundamental importance to the dissemination and implementation of state actions that allowed the expansion of the vaccinal coverage with acceptance of its use by the population and the range of control and eradication of the

  15. Smallpox and polio eradication in India: comparative histories and lessons for contemporary policy Erradicação da varíola e da pólio na Índia: histórias comparativas e lições para políticas contemporâneas

    Directory of Open Access Journals (Sweden)

    Sanjoy Bhattacharya

    2011-02-01

    Full Text Available This article argues that a detailed examination of factors contributing to the development of complex structures and strategies for smallpox eradication in South Asia in the 1970s can provide fruitful indications for the reformulation of the national chapters of the global polio eradication programme in this region. There is a magnificent archive in the WHO's Geneva offices, which details how smallpox eradication outbreaks were located and then contained in cities, small towns and remote rural areas in this region, by teams of international workers working closely with local officials. A systematic assessment of the global smallpox eradication efforts indicates parallels between the early stages of the global smallpox eradication programme and the present situation of the polio campaign; as we will see here, it can also provide useful indicators for future action in South Asia and beyond.O artigo argumenta que um exame detalhado dos fatores que contribuíram para o desenvolvimento de estruturas e estratégias complexas para a erradicação da varíola no Sul da Ásia nos anos 70 pode fornecer indicações proveitosas para a reformulação dos capítulos nacionais do programa global de erradicação da pólio nesta região. Existe um impressionante arquivo nos escritórios da OMS em Genebra que detalha como os ataques para a erradicação da varíola foram localizados e então contidos em cidades, pequenas vilas e áreas rurais remotas desta região, por equipes de profissionais internacionais trabalhando em conjunto com as autoridades locais. Uma avaliação sistemática dos esforços globais de erradicação da varíola indicam paralelos entre os estágios iniciais do programa global de erradicação da varíola e a atual situação da campanha contra a pólio. Como veremos aqui, o artigo também pode fornecer indicadores úteis para ações futuras no Sul da Ásia e em outros locais.

  16. Modified vaccinia virus Ankara expressing the hemagglutinin of pandemic (H1N1) 2009 virus induces cross-protective immunity against Eurasian 'avian-like' H1N1 swine viruses in mice.

    Science.gov (United States)

    Castrucci, Maria R; Facchini, Marzia; Di Mario, Giuseppina; Garulli, Bruno; Sciaraffia, Ester; Meola, Monica; Fabiani, Concetta; De Marco, Maria A; Cordioli, Paolo; Siccardi, Antonio; Kawaoka, Yoshihiro; Donatelli, Isabella

    2014-05-01

    To examine cross-reactivity between hemagglutinin (HA) derived from A/California/7/09 (CA/09) virus and that derived from representative Eurasian "avian-like" (EA) H1N1 swine viruses isolated in Italy between 1999 and 2008 during virological surveillance in pigs. Modified vaccinia virus Ankara (MVA) expressing the HA gene of CA/09 virus (MVA-HA-CA/09) was used as a vaccine to investigate cross-protective immunity against H1N1 swine viruses in mice. Two classical swine H1N1 (CS) viruses and four representative EA-like H1N1 swine viruses previously isolated during outbreaks of respiratory disease in pigs on farms in Northern Italy were used in this study. Female C57BL/6 mice were vaccinated with MVA/HA/CA/09 and then challenged intranasally with H1N1 swine viruses. Cross-reactive antibody responses were determined by hemagglutination- inhibition (HI) and virus microneutralizing (MN) assays of sera from MVA-vaccinated mice. The extent of protective immunity against infection with H1N1 swine viruses was determined by measuring lung viral load on days 2 and 4 post-challenge. Systemic immunization of mice with CA/09-derived HA, vectored by MVA, elicited cross-protective immunity against recent EA-like swine viruses. This immune protection was related to the levels of cross-reactive HI antibodies in the sera of the immunized mice and was dependent on the similarity of the antigenic site Sa of H1 HAs. Our findings suggest that the herd immunity elicited in humans by the pandemic (H1N1) 2009 virus could limit the transmission of recent EA-like swine HA genes into the influenza A virus gene pool in humans. © 2013 The Authors Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  17. Local HPV Recombinant Vaccinia Boost Following Priming with an HPV DNA Vaccine Enhances Local HPV-Specific CD8+ T-cell-Mediated Tumor Control in the Genital Tract.

    Science.gov (United States)

    Sun, Yun-Yan; Peng, Shiwen; Han, Liping; Qiu, Jin; Song, Liwen; Tsai, Yachea; Yang, Benjamin; Roden, Richard B S; Trimble, Cornelia L; Hung, Chien-Fu; Wu, T-C

    2016-02-01

    Two viral oncoproteins, E6 and E7, are expressed in all human papillomavirus (HPV)-infected cells, from initial infection in the genital tract to metastatic cervical cancer. Intramuscular vaccination of women with high-grade cervical intraepithelial neoplasia (CIN2/3) twice with a naked DNA vaccine, pNGVL4a-sig/E7(detox)/HSP70, and a single boost with HPVE6/E7 recombinant vaccinia vaccine (TA-HPV) elicited systemic HPV-specific CD8 T-cell responses that could traffic to the lesion and was associated with regression in some patients (NCT00788164). Here, we examine whether alteration of this vaccination regimen by administration of TA-HPV vaccination in the cervicovaginal tract, rather than intramuscular (IM) delivery, can more effectively recruit antigen-specific T cells in an orthotopic syngeneic mouse model of HPV16(+) cervical cancer (TC-1 luc). We found that pNGVL4a-sig/E7(detox)/HSP70 vaccination followed by cervicovaginal vaccination with TA-HPV increased accumulation of total and E7-specific CD8(+) T cells in the cervicovaginal tract and better controlled E7-expressing cervicovaginal TC-1 luc tumor than IM administration of TA-HPV. Furthermore, the E7-specific CD8(+) T cells in the cervicovaginal tract generated through the cervicovaginal route of vaccination expressed the α4β7 integrin and CCR9, which are necessary for the homing of the E7-specific CD8(+) T cells to the cervicovaginal tract. Finally, we show that cervicovaginal vaccination with TA-HPV can induce potent local HPV-16 E7 antigen-specific CD8(+) T-cell immune responses regardless of whether an HPV DNA vaccine priming vaccination was administered IM or within the cervicovaginal tract. Our results support future clinical translation using cervicovaginal TA-HPV vaccination. ©2015 American Association for Cancer Research.

  18. Clustered epitopes within the Gag-Pol fusion protein DNA vaccine enhance immune responses and protection against challenge with recombinant vaccinia viruses expressing HIV-1 Gag and Pol antigens

    International Nuclear Information System (INIS)

    Bolesta, Elizabeth; Gzyl, Jaroslaw; Wierzbicki, Andrzej; Kmieciak, Dariusz; Kowalczyk, Aleksandra; Kaneko, Yutaro; Srinivasan, Alagarsamy; Kozbor, Danuta

    2005-01-01

    We have generated a codon-optimized hGagp17p24-Polp51 plasmid DNA expressing the human immunodeficiency virus type 1 (HIV-1) Gag-Pol fusion protein that consists of clusters of highly conserved cytotoxic T lymphocyte (CTL) epitopes presented by multiple MHC class I alleles. In the hGagp17p24-Polp51 construct, the ribosomal frameshift site had been deleted together with the potentially immunosuppressive Gag nucleocapsid (p15) as well as Pol protease (p10) and integrase (p31). Analyses of the magnitude and breadth of cellular responses demonstrated that immunization of HLA-A2/K b transgenic mice with the hGagp17p24-Polp51 construct induced 2- to 5-fold higher CD8 + T-cell responses to Gag p17-, p24-, and Pol reverse transcriptase (RT)-specific CTL epitopes than the full-length hGag-PolΔFsΔPr counterpart. The increases were correlated with higher protection against challenge with recombinant vaccinia viruses (rVVs) expressing gag and pol gene products. Consistent with the profile of Gag- and Pol-specific CD8 + T cell responses, an elevated level of type 1 cytokine production was noted in p24- and RT-stimulated splenocyte cultures established from hGagp17p24-Polp51-immunized mice compared to responses induced with the hGag-PolΔFsΔPr vaccine. Sera of mice immunized with the hGagp17p24-Polp51 vaccine also exhibited an increased titer of p24- and RT-specific IgG2 antibody responses. The results from our studies provide insights into approaches for boosting the breadth of Gag- and Pol-specific immune responses

  19. Combined Cytolytic Effects of a Vaccinia Virus Encoding a Single Chain Trimer of MHC-I with a Tax-Epitope and Tax-Specific CTLs on HTLV-I-Infected Cells in a Rat Model

    Directory of Open Access Journals (Sweden)

    Takashi Ohashi

    2014-01-01

    Full Text Available Adult T cell leukemia (ATL is a malignant lymphoproliferative disease caused by human T cell leukemia virus type I (HTLV-I. To develop an effective therapy against the disease, we have examined the oncolytic ability of an attenuated vaccinia virus (VV, LC16m8Δ (m8Δ, and an HTLV-I Tax-specific cytotoxic T lymphocyte (CTL line, 4O1/C8, against an HTLV-I-infected rat T cell line, FPM1. Our results demonstrated that m8Δ was able to replicate in and lyse tumorigenic FPM1 cells but was incompetent to injure 4O1/C8 cells, suggesting the preferential cytolytic activity toward tumor cells. To further enhance the cytolysis of HTLV-I-infected cells, we modified m8Δ and obtained m8Δ/RT1AlSCTax180L, which can express a single chain trimer (SCT of rat major histocompatibility complex class I with a Tax-epitope. Combined treatment with m8Δ/RT1AlSCTax180L and 4O1/C8 increased the cytolysis of FPM1V.EFGFP/8R cells, a CTL-resistant subclone of FPM1, compared with that using 4O1/C8 and m8Δ presenting an unrelated peptide, suggesting that the activation of 4O1/C8 by m8Δ/RT1AlSCTax180L further enhanced the killing of the tumorigenic HTLV-I-infected cells. Our results indicate that combined therapy of oncolytic VVs with SCTs and HTLV-I-specific CTLs may be effective for eradication of HTLV-I-infected cells, which evade from CTL lysis and potentially develop ATL.

  20. A replicating modified vaccinia tiantan strain expressing an avian-derived influenza H5N1 hemagglutinin induce broadly neutralizing antibodies and cross-clade protective immunity in mice.

    Directory of Open Access Journals (Sweden)

    Haixia Xiao

    Full Text Available To combat the possibility of a zoonotic H5N1 pandemic in a timely fashion, it is necessary to develop a vaccine that would confer protection against homologous and heterologous human H5N1 influenza viruses. Using a replicating modified vaccinia virus Tian Tan strain (MVTT as a vaccine vector, we constructed MVTTHA-QH and MVTTHA-AH, which expresses the H5 gene of a goose-derived Qinghai strain A/Bar-headed Goose/Qinghai/1/2005 or human-derived Anhui Strain A/Anhui/1/2005. The immunogenicity profiles of both vaccine candidates were evaluated. Vaccination with MVTTHA-QH induced a significant level of neutralizing antibodies (Nabs against a homologous strain and a wide range of H5N1 pseudoviruses (clades 1, 2.1, 2.2, 2.3.2, and 2.3.4. Neutralization tests (NT and Haemagglutination inhibition (HI antibodies inhibit the live autologous virus as well as a homologous A/Xingjiang/1/2006 and a heterologous A/Vietnam/1194/2004, representing two human isolates from clade 2.2 and clade 1, respectively. Importantly, mice vaccinated with intranasal MVTTHA-QH were completely protected from challenge with lethal dosages of A/Bar-headed Goose/Qinghai/1/2005 and the A/Viet Nam/1194/2004, respectively, but not control mice that received a mock MVTTS vaccine. However, MVTTHA-AH induced much lower levels of NT against its autologous strain. Our results suggest that it is feasible to use the H5 gene from A/Bar-headed Goose/Qinghai/1/2005 to construct an effective vaccine, when using MVTT as a vector, to prevent infections against homologous and genetically divergent human H5N1 influenza viruses.

  1. Therapeutic Vaccines and Antibodies for Treatment of Orthopoxvirus Infections

    Directory of Open Access Journals (Sweden)

    Stuart N. Isaacs

    2010-10-01

    Full Text Available Despite the eradication of smallpox several decades ago, variola and monkeypox viruses still have the potential to become significant threats to public health. The current licensed live vaccinia virus-based smallpox vaccine is extremely effective as a prophylactic vaccine to prevent orthopoxvirus infections, but because of safety issues, it is no longer given as a routine vaccine to the general population. In the event of serious human orthopoxvirus infections, it is important to have treatments available for individual patients as well as their close contacts. The smallpox vaccine and vaccinia immune globulin (VIG were used in the past as therapeutics for patients exposed to smallpox. VIG was also used in patients who were at high risk of developing complications from smallpox vaccination. Thus post-exposure vaccination and VIG treatments may again become important therapeutic modalities. This paper summarizes some of the historic use of the smallpox vaccine and immunoglobulins in the post-exposure setting in humans and reviews in detail the newer animal studies that address the use of therapeutic vaccines and immunoglobulins in orthopoxvirus infections as well as the development of new therapeutic monoclonal antibodies.

  2. Sementes contra a varíola: Joaquim Vás e a tradução científica das pevides de bananeira brava em Goa, Índia (1894-1930 Seeds against smallpox: Joaquim Vás and the scientific translation of bananeira brava seeds in Goa, India (1894-1930

    Directory of Open Access Journals (Sweden)

    Ricardo Roque

    2004-01-01

    Full Text Available Em 1914, em Goa, antiga colônia portuguesa na Índia, o médico António Joaquim Vás anunciou a descoberta de um fabuloso tratamento contra a varíola: a aplicação clínica das pevides, ou sementes, de bananeira brava, medicamento de origem vegetal extraído das práticas médicas indianas. Este artigo investiga as circunstâncias do sucesso e insucesso dessa descoberta. A constituição das pevides de bananeira brava como medicamento contra a varíola, no início do século XX, é interpretada com base no conceito de tradução científica. Argumenta-se que a tradução das pevides - de atividade indígena a terapêutica científica - constitui um caso de criação de quasi-medicamentos, uma tradução média. Embora habitando um lugar problemático no programa de tradução científica, as pevides circularam ativamente no interior da própria ciência, persistindo contra a varíola nas práticas médicas.In 1914, in the former Portuguese colony of Goa, India, the physician António Joaquim Vás announced the discovery of a wonderful treatment for smallpox, entailing clinical application of seeds from the bananeira brava (Heliconia biahi Sw.m., a plant remedy allegedly derived from Indian medical practices. The present article explores the circumstances surrounding the successes and failures of this discovery. The concept of scientific translation is used to interpret the transformation of bananeira bravaseeds into an early twentieth-century remedy for smallpox. This transfer from indigenous use to scientific therapeutics constitutes the creation of a quasi-medicine, that is, a case of 'medium translation'. Although these seeds occupy a problematic place within the program of scientific translation, they enjoyed active circulation within science and remained a part of medical practices for combating smallpox.

  3. Safety and tolerability of conserved region vaccines vectored by plasmid DNA, simian adenovirus and modified vaccinia virus ankara administered to human immunodeficiency virus type 1-uninfected adults in a randomized, single-blind phase I trial.

    Directory of Open Access Journals (Sweden)

    Emma-Jo Hayton

    Full Text Available HIV-1 vaccine development has advanced slowly due to viral antigenic diversity, poor immunogenicity and recently, safety concerns associated with human adenovirus serotype-5 vectors. To tackle HIV-1 variation, we designed a unique T-cell immunogen HIVconsv from functionally conserved regions of the HIV-1 proteome, which were presented to the immune system using a heterologous prime-boost combination of plasmid DNA, a non-replicating simian (chimpanzee adenovirus ChAdV-63 and a non-replicating poxvirus, modified vaccinia virus Ankara. A block-randomized, single-blind, placebo-controlled phase I trial HIV-CORE 002 administered for the first time candidate HIV-1- vaccines or placebo to 32 healthy HIV-1/2-uninfected adults in Oxford, UK and elicited high frequencies of HIV-1-specific T cells capable of inhibiting HIV-1 replication in vitro. Here, detail safety and tolerability of these vaccines are reported.Local and systemic reactogenicity data were collected using structured interviews and study-specific diary cards. Data on all other adverse events were collected using open questions. Serum neutralizing antibody titres to ChAdV-63 were determined before and after vaccination.Two volunteers withdrew for vaccine-unrelated reasons. No vaccine-related serious adverse events or reactions occurred during 190 person-months of follow-up. Local and systemic events after vaccination occurred in 27/32 individuals and most were mild (severity grade 1 and predominantly transient (<48 hours. Myalgia and flu-like symptoms were more strongly associated with MVA than ChAdV63 or DNA vectors and more common in vaccine recipients than in placebo. There were no intercurrent HIV-1 infections during follow-up. 2/24 volunteers had low ChAdV-63-neutralizing titres at baseline and 7 increased their titres to over 200 with a median (range of 633 (231-1533 post-vaccination, which is of no safety concern.These data demonstrate safety and good tolerability of the pSG2

  4. Establishing elements of a synthetic biology platform for Vaccinia virus production: BioBrick™ design, serum-free virus production and microcarrier-based cultivation of CV-1 cells.

    Science.gov (United States)

    Liu, Shuchang; Ruban, Ludmila; Wang, Yaohe; Zhou, Yuhong; Nesbeth, Darren N

    2017-02-01

    Vaccinia virus (VACV) is an established vector for vaccination and is beginning to prove effective as an oncolytic agent. Industrial production of VACV stands to benefit in future from advances made by synthetic biology in genome engineering and standardisation. The CV-1 cell line can be used for VACV propagation and has been used extensively with the CRISPR/Cas9 system for making precise edits of the VACV genome. Here we take first steps toward establishing a scalable synthetic biology platform for VACV production with CV-1 cells featuring standardised biological tools and serum free cell cultivation. We propose a new BioBrick™ plasmid backbone format for inserting transgenes into VACV. We then test the performance of CV-1 cells in propagation of a conventional recombinant Lister strain VACV, VACVL-15 RFP, in a serum-free process. CV-1 cells grown in 5% foetal bovine serum (FBS) Dulbecco's Modified Eagle Medium (DMEM) were adapted to growth in OptiPRO and VP-SFM brands of serum-free media. Specific growth rates of 0.047 h -1 and 0.044 h -1 were observed for cells adapted to OptiPRO and VP-SFM respectively, compared to 0.035 h -1 in 5% FBS DMEM. Cells adapted to OptiPRO and to 5% FBS DMEM achieved recovery ratios of over 96%, an indication of their robustness to cryopreservation. Cells adapted to VP-SFM showed a recovery ratio of 82%. Virus productivity in static culture, measured as plaque forming units (PFU) per propagator cell, was 75 PFU/cell for cells in 5% FBS DMEM. VP-SFM and OptiPRO adaptation increased VACV production to 150 PFU/cell and 350 PFU/cell respectively. Boosted PFU/cell from OptiPRO-adapted cells persisted when 5% FBS DMEM or OptiPRO medium was observed during the infection step and when titre was measured using cells adapted to 5% FBS DMEM or OptiPRO medium. Finally, OptiPRO-adapted CV-1 cells were successfully cultivated using Cytodex-1 microcarriers to inform future scale up studies.

  5. Establishing elements of a synthetic biology platform for Vaccinia virus production: BioBrick™ design, serum-free virus production and microcarrier-based cultivation of CV-1 cells

    Directory of Open Access Journals (Sweden)

    Shuchang Liu

    2017-02-01

    Full Text Available Vaccinia virus (VACV is an established vector for vaccination and is beginning to prove effective as an oncolytic agent. Industrial production of VACV stands to benefit in future from advances made by synthetic biology in genome engineering and standardisation. The CV-1 cell line can be used for VACV propagation and has been used extensively with the CRISPR/Cas9 system for making precise edits of the VACV genome. Here we take first steps toward establishing a scalable synthetic biology platform for VACV production with CV-1 cells featuring standardised biological tools and serum free cell cultivation. We propose a new BioBrick™ plasmid backbone format for inserting transgenes into VACV. We then test the performance of CV-1 cells in propagation of a conventional recombinant Lister strain VACV, VACVL-15 RFP, in a serum-free process. CV-1 cells grown in 5% foetal bovine serum (FBS Dulbecco’s Modified Eagle Medium (DMEM were adapted to growth in OptiPRO and VP-SFM brands of serum-free media. Specific growth rates of 0.047 h−1 and 0.044 h−1 were observed for cells adapted to OptiPRO and VP-SFM respectively, compared to 0.035 h−1 in 5% FBS DMEM. Cells adapted to OptiPRO and to 5% FBS DMEM achieved recovery ratios of over 96%, an indication of their robustness to cryopreservation. Cells adapted to VP-SFM showed a recovery ratio of 82%. Virus productivity in static culture, measured as plaque forming units (PFU per propagator cell, was 75 PFU/cell for cells in 5% FBS DMEM. VP-SFM and OptiPRO adaptation increased VACV production to 150 PFU/cell and 350 PFU/cell respectively. Boosted PFU/cell from OptiPRO-adapted cells persisted when 5% FBS DMEM or OptiPRO medium was observed during the infection step and when titre was measured using cells adapted to 5% FBS DMEM or OptiPRO medium. Finally, OptiPRO-adapted CV-1 cells were successfully cultivated using Cytodex-1 microcarriers to inform future scale up studies.

  6. Contribuições multifacetadas: trabalhadores da saúde e a erradicação da varíola na Índia Multifaceted contributions: health workers and smallpox eradication in India

    Directory of Open Access Journals (Sweden)

    Sanjoy Bhattacharya

    2008-06-01

    Full Text Available A erradicação da varíola no Sul da Ásia resultou dos múltiplos esforços de trabalhadores da saúde de vários níveis. Trabalhando a partir do interior de organizações internacionais e estruturas governamentais, o papel dos funcionários de campo, originários de várias nacionalidades e também provenientes de cidades e enclaves rurais dos países dessas regiões, foi crucial para o desenvolvimento e a distribuição de planos de ação. Entretanto, o papel desses funcionários é geralmente minimizado em histórias oficiais e acadêmicas que ressaltam, ao invés, os papéis desempenhados por um reduzido número de funcionários seniores dentro da Organização Mundial da Saúde e dos governos federais do subcontinente. Este artigo busca oferecer uma avaliação mais integral da complexa situação da erradicação da varíola. Nesse sentido, faz-se um esforço para sublinhar a grande utilidade da flexibilidade operacional apresentada pelos funcionários de campo, na qual as lições aprendidas no trabalho de campo tornaram-se parte integrante da distribuição de campanhas locais. Uma importante característica foi o cuidadoso engajamento com as comunidades-alvo, bem como a contratação por curtos períodos de pessoal dessas mesmas comunidades.Smallpox eradication in South Asia was a result of the efforts of many grades of health-workers. Working from within the confines of international organisations and government structures, the role of the field officials, who were of various nationalities and also drawn from the cities and rural enclaves of the countries in these regions, was crucial to the development and deployment of policies. However, the role of these personnel is often downplayed in official histories and academic histories, which highlight instead the roles played by a handful of senior officials within the World Health Organization and the federal governments in the sub-continent. This article attempts to provide a more

  7. A New Document on Smallpox Vaccination.

    Science.gov (United States)

    Tayarani-Najaran, Zahra; Tayarani-Najaran, Nilufar; Sahebkar, Amirhossein; Emami, Seyed Ahmad

    2016-12-01

    Modern medicine owes much to the invaluable heritage of the practices of past generations and their achievements that have now become medical rules. In the case of vaccination, there is evidence that the nomads of Baluchistan (Southeast Iran) demonstrated natural immunization against cowpox, a practice that was later introduced to the medical community by Edward Jenner. Although the discoveries of scientists cannot be ignored, they are certainly based on the traditional and indigenous experiences that have been transferred from generation to generation until reaching us. Copyright © 2016. Published by Elsevier B.V.

  8. A New Document on Smallpox Vaccination

    Directory of Open Access Journals (Sweden)

    Zahra Tayarani-Najaran

    2016-12-01

    Full Text Available Modern medicine owes much to the invaluable heritage of the practices of past generations and their achievements that have now become medical rules. In the case of vaccination, there is evidence that the nomads of Baluchistan (Southeast Iran demonstrated natural immunization against cowpox, a practice that was later introduced to the medical community by Edward Jenner. Although the discoveries of scientists cannot be ignored, they are certainly based on the traditional and indigenous experiences that have been transferred from generation to generation until reaching us.

  9. Cutaneous leiomyosarcoma arising in a smallpox scar

    NARCIS (Netherlands)

    Pol, Robert A.; Dannenberg, Hilde; Robertus, Jan-Lukas; van Ginkel, Robert J.

    2012-01-01

    Background: Cutaneous leiomyosarcoma (CLM) is a very rare smooth muscle tumour that accounts for about 2-3% of all superficial soft tissue sarcomas. Although the development of various malignancies in scar tissue is well known, we report the first case of a CLM developing in a small pox scar. Case

  10. Cutaneous leiomyosarcoma arising in a smallpox scar.

    Science.gov (United States)

    Pol, Robert A; Dannenberg, Hilde; Robertus, Jan-Lukas; van Ginkel, Robert J

    2012-07-16

    Cutaneous leiomyosarcoma (CLM) is a very rare smooth muscle tumour that accounts for about 2-3% of all superficial soft tissue sarcomas. Although the development of various malignancies in scar tissue is well known, we report the first case of a CLM developing in a small pox scar. A 66-year-old man presented with a painless, slow-growing lump in a small pox scar on his left shoulder. Histological biopsies showed the lesion to be a primary, well-differentiated cutaneous leiomyosarcoma. A CT scan of the thorax was conducted, which showed no signs of metastases. The complete lesion was then surgically excised, and histopathological examination revealed a radically excised cutaneous type leiomyosarcoma After 13 months' review the patient was doing well with no evidence of tumour recurrence. This is the first report of a CLM arising in a small pox scar. Although the extended time interval between scarring and malignant changes makes it difficult to advise strict follow-up for patients with small pox scars, one should be aware that atypical changes and/or symptoms occurring in a small pox scar could potentially mean malignant transformation.

  11. Cutaneous leiomyosarcoma arising in a smallpox scar

    Directory of Open Access Journals (Sweden)

    Pol Robert A

    2012-07-01

    Full Text Available Abstract Background Cutaneous leiomyosarcoma (CLM is a very rare smooth muscle tumour that accounts for about 2–3% of all superficial soft tissue sarcomas. Although the development of various malignancies in scar tissue is well known, we report the first case of a CLM developing in a small pox scar. Case presentation A 66-year-old man presented with a painless, slow-growing lump in a small pox scar on his left shoulder. Histological biopsies showed the lesion to be a primary, well-differentiated cutaneous leiomyosarcoma. A CT scan of the thorax was conducted, which showed no signs of metastases. The complete lesion was then surgically excised, and histopathological examination revealed a radically excised cutaneous type leiomyosarcoma After 13 months’ review the patient was doing well with no evidence of tumour recurrence. Conclusions This is the first report of a CLM arising in a small pox scar. Although the extended time interval between scarring and malignant changes makes it difficult to advise strict follow-up for patients with small pox scars, one should be aware that atypical changes and/or symptoms occurring in a small pox scar could potentially mean malignant transformation.

  12. Safety and immunogenicity of a modified-vaccinia-virus-Ankara-based influenza A H5N1 vaccine: a randomised, double-blind phase 1/2a clinical trial.

    Science.gov (United States)

    Kreijtz, Joost H C M; Goeijenbier, Marco; Moesker, Fleur M; van den Dries, Lennert; Goeijenbier, Simone; De Gruyter, Heidi L M; Lehmann, Michael H; Mutsert, Gerrie de; van de Vijver, David A M C; Volz, Asisa; Fouchier, Ron A M; van Gorp, Eric C M; Rimmelzwaan, Guus F; Sutter, Gerd; Osterhaus, Albert D M E

    2014-12-01

    Modified vaccinia virus Ankara (MVA) is a promising viral vector platform for the development of an H5N1 influenza vaccine. Preclinical assessment of MVA-based H5N1 vaccines showed their immunogenicity and safety in different animal models. We aimed to assess the safety and immunogenicity of the MVA-haemagglutinin-based H5N1 vaccine MVA-H5-sfMR in healthy individuals. In a single-centre, double-blind phase 1/2a study, young volunteers (aged 18-28 years) were randomly assigned with a computer-generated list in equal numbers to one of eight groups and were given one injection or two injections intramuscularly at an interval of 4 weeks of a standard dose (10(8) plaque forming units [pfu]) or a ten times lower dose (10(7) pfu) of the MVA-H5-sfMR (vector encoding the haemagglutinin gene of influenza A/Vietnam/1194/2004 virus [H5N1 subtype]) or MVA-F6-sfMR (empty vector) vaccine. Volunteers and physicians who examined and administered the vaccine were masked to vaccine assignment. Individuals who received the MVA-H5-sfMR vaccine were eligible for a booster immunisation 1 year after the first immunisation. Primary endpoint was safety. Secondary outcome was immunogenicity. The trial is registered with the Dutch Trial Register, number NTR3401. 79 of 80 individuals who were enrolled completed the study. No serious adverse events were identified. 11 individuals reported severe headache and lightheadedness, erythema nodosum, respiratory illness (accompanied by influenza-like symptoms), sore throat, or injection-site reaction. Most of the volunteers had one or more local (itch, pain, redness, and swelling) and systemic reactions (rise in body temperature, headache, myalgia, arthralgia, chills, malaise, and fatigue) after the first, second, and booster immunisations. Individuals who received the 10(7) dose had fewer systemic reactions. The MVA-H5-sfMR vaccine at 10(8) pfu induced significantly higher antibody responses after one and two immunisations than did 10(7) pfu when

  13. Estudo comparativo das inclusões do alastrim e da vacina no macaco (Macacus rhesus A comparison of the inclusion bodies of alastrim and vaccinia in the monkey (Macacus rhesus

    Directory of Open Access Journals (Sweden)

    C. Magarinos Torres

    1934-02-01

    Full Text Available Vesiculas e pustulas contendo numerosas inclusões citoplasmicas nas celulas epidermicas, foram regularmente produzidas no macaco (Macacus rhesus, quer com o virus do alastrim, quer com o da vacina, após inoculação endovenosa e sem previa escarificação. O virus do alastrim parece menos virulento para essa especie de macaco que o da vacina. Ao passo que 12 macacos rhesus injetados por via endovenosa com sete amostras diferentes de virus do alastrim, após apresentarem com regularidade um infecção experimental, sobreviveram e se conservaram em boa saúde, a injecção endovenosa do virus da vacina recentemente preparado (polpa bruta produziu a morte em 2, dentre 4 animais experimentados. 2. - Foram notadas diferenças pequenas, mas nitidas, na morfologia das inclusões do alastrim e da vacina, em material fixado no liquido de Helly, incluido em parafina e corado pela hematoxilina-eosina. Dizem elas respeito ao numero de inclusões encontradas em cada celula epidermica e às suas reações de coloração. 3. - As inclusões do alastrim, quando apresentam grandes dimensões, conservam-se unicas ou solitarias no citoplasma das celulas epidermicas do macaco rhesus, e coram-se em tonalidade que varia do azul escuro ao cinzento-azulado. Comtudo, em celulas que sofreram necrose, ou naquelas contendo 2 a 4 inclusões de pequenas dimensões, por vezes elas se mostram coradas em roseo. 4. - As inclusões da vacina, quando em faze adeantada de desenvolvimento, são multiplas nas celulas epidermicas do macaco rhesus e mostram, regularmente, uma policromatofilia caracteristica.1. - Vesicles and pustules containing numerous cytoplasmic inclusion bodies within the epidermal cells were regularly produced in monkeys (Macacus rhesus by intravenous inoculation either of alastrim virus or of recently prepared vaccine emulsion, no previous scarifications being required. Alastrim virus seems less virulent for this species of monkey than the virus of vaccinia is

  14. Human Immune Responses to Experimental Vaccinia Vaccines

    National Research Council Canada - National Science Library

    Ennis, Francis

    1996-01-01

    .... During the two years of this contract we have: (1) obtained, separated and cryopreserved peripheral blood mononuclear cells from 92 vaccinees in a clinical study to compare the standard and an experimental small pox vaccine, (2...

  15. Sobre a varíola e as práticas da vacinação em Minas Gerais (Brasil no século XIX About smallpox and vaccination practices in Minas Gerais (Brazil in the 19th century

    Directory of Open Access Journals (Sweden)

    Anny Jackeline Torres Silveira

    2011-02-01

    Full Text Available Este artigo analisa o impacto da varíola e da prática da vacinação antivariólica em Minas Gerais durante o período imperial brasileiro (1822-1889. Apesar da presença de órgãos que visavam à organização e à propagação da vacina no país desde o início do século XIX, identifica-se, pela documentação relativa à saúde pública produzida pelas autoridades provinciais, uma série de fatores de natureza administrativa e cultural que influenciaram negativamente na plena implementação quer da vacina quer da estrutura organizada no período visando à sua difusão. Seguindo as proposições da historiografia dedicada ao tema, discute-se que, apesar da tendência à centralização observada em diferentes esferas da administração no processo de estruturação do Estado Imperial, no âmbito da saúde e, particularmente, no âmbito do serviço de vacinação antivariólica, prevaleceu uma desarticulação entre os diferentes agentes responsáveis pela implementação e o controle desse serviço. Outro aspecto que contribuiu para as dificuldades relativas à implementação desse serviço foi a grande resistência da população em submeter-se à vacina e que pode ser entendida pela análise das percepções sociais construídas sobre a doença e o método da vacinação.This article discusses the impact of smallpox and vaccination practices used against the disease used in the province of Minas Gerais, in Brazil, during the Imperial Period (1822-1889. Despite the existence of services responsible for the organization and dissemination of the vaccine in the country since the early 19th century, some administrative and cultural factors, as identified in documents produced by the province's public health authorities at the time, had a negative impact upon the full implementation of both practice and organization of services aimed at the dissemination of smallpox vaccination. Based upon historiographic sources, it is argued that despite

  16. "A wild and wondrous ride": CDC field epidemiologists in the east Pakistan smallpox and cholera epidemics of 1958 "Uma louca e maravilhosa jornada": epidemiologistas de campo do CDC nas epidemias de varíola e cólera do Paquistão Oriental em 1958

    Directory of Open Access Journals (Sweden)

    Paul Greenough

    2011-02-01

    Full Text Available In mid-April of 1958 the Government of Pakistan summoned the press to announce a grave need for international aid to cope with smallpox and cholera epidemics in East Pakistan. In response, and with the backing of the US State Department, Dr. Alexander D. Langmuir, chief epidemiologist of the CDC, led a team of epidemiologists to assist authorities in Dacca strengthen their immunization programs. Langmuir's superiors hoped for a Cold War advantage, but he saw an opportunity for trainees in the Epidemic Intelligence Service to learn about public health in a developing country. Langmuir later described the episode as a "wild and wondrous ride," but it had been more like a nightmare: the East Pakistan health department had collapsed; a popular movement had taken over vaccination and squandered vaccine supplies; hostile journalists had questioned the Americans' deeper motives; and a professional rivalry opened between the Americans and a British epidemiologist named Aidan Cockburn. By the time the epidemic subsided in July 1958, 30 million Bengalis had been vaccinated for smallpox but another 20,000 had succumbed to the disease. This episode was CDC's first sustained foreign intervention, a precursor to its extensive role in the 1970s helping WHO eradicate smallpox from Bangladesh.Em meados de abril de 1958, o Governo do Paquistão convocou a imprensa para anunciar a urgente necessidade de auxílio internacional para lidar com epidemias de varíola e cólera no Paquistão Oriental. Em resposta, e com o apoio do Departamento de Estado dos Estados Unidos, Dr. Alexander D. Langmuir, chefe de epidemiologia do CDC em Atlanta, liderou um time de epidemiologistas para auxiliar as autoridades em Dacca a reforçar seus programas de imunização. Os superiores de Langmuir ansiavam por demonstrações de capacidade dos EUA na Guerra Fria, mas ele vislumbrou uma chance para o Serviço de Inteligência Epidemiológica aprender sobre saúde pública em países em

  17. Percutaneous Vaccination as an Effective Method of Delivery of MVA and MVA-Vectored Vaccines.

    Directory of Open Access Journals (Sweden)

    Clement A Meseda

    Full Text Available The robustness of immune responses to an antigen could be dictated by the route of vaccine inoculation. Traditional smallpox vaccines, essentially vaccinia virus strains, that were used in the eradication of smallpox were administered by percutaneous inoculation (skin scarification. The modified vaccinia virus Ankara is licensed as a smallpox vaccine in Europe and Canada and currently undergoing clinical development in the United States. MVA is also being investigated as a vector for the delivery of heterologous genes for prophylactic or therapeutic immunization. Since MVA is replication-deficient, MVA and MVA-vectored vaccines are often inoculated through the intramuscular, intradermal or subcutaneous routes. Vaccine inoculation via the intramuscular, intradermal or subcutaneous routes requires the use of injection needles, and an estimated 10 to 20% of the population of the United States has needle phobia. Following an observation in our laboratory that a replication-deficient recombinant vaccinia virus derived from the New York City Board of Health strain elicited protective immune responses in a mouse model upon inoculation by tail scarification, we investigated whether MVA and MVA recombinants can elicit protective responses following percutaneous administration in mouse models. Our data suggest that MVA administered by percutaneous inoculation, elicited vaccinia-specific antibody responses, and protected mice from lethal vaccinia virus challenge, at levels comparable to or better than subcutaneous or intramuscular inoculation. High titers of specific neutralizing antibodies were elicited in mice inoculated with a recombinant MVA expressing the herpes simplex type 2 glycoprotein D after scarification. Similarly, a recombinant MVA expressing the hemagglutinin of attenuated influenza virus rgA/Viet Nam/1203/2004 (H5N1 elicited protective immune responses when administered at low doses by scarification. Taken together, our data suggest that

  18. Percutaneous Vaccination as an Effective Method of Delivery of MVA and MVA-Vectored Vaccines.

    Science.gov (United States)

    Meseda, Clement A; Atukorale, Vajini; Kuhn, Jordan; Schmeisser, Falko; Weir, Jerry P

    2016-01-01

    The robustness of immune responses to an antigen could be dictated by the route of vaccine inoculation. Traditional smallpox vaccines, essentially vaccinia virus strains, that were used in the eradication of smallpox were administered by percutaneous inoculation (skin scarification). The modified vaccinia virus Ankara is licensed as a smallpox vaccine in Europe and Canada and currently undergoing clinical development in the United States. MVA is also being investigated as a vector for the delivery of heterologous genes for prophylactic or therapeutic immunization. Since MVA is replication-deficient, MVA and MVA-vectored vaccines are often inoculated through the intramuscular, intradermal or subcutaneous routes. Vaccine inoculation via the intramuscular, intradermal or subcutaneous routes requires the use of injection needles, and an estimated 10 to 20% of the population of the United States has needle phobia. Following an observation in our laboratory that a replication-deficient recombinant vaccinia virus derived from the New York City Board of Health strain elicited protective immune responses in a mouse model upon inoculation by tail scarification, we investigated whether MVA and MVA recombinants can elicit protective responses following percutaneous administration in mouse models. Our data suggest that MVA administered by percutaneous inoculation, elicited vaccinia-specific antibody responses, and protected mice from lethal vaccinia virus challenge, at levels comparable to or better than subcutaneous or intramuscular inoculation. High titers of specific neutralizing antibodies were elicited in mice inoculated with a recombinant MVA expressing the herpes simplex type 2 glycoprotein D after scarification. Similarly, a recombinant MVA expressing the hemagglutinin of attenuated influenza virus rgA/Viet Nam/1203/2004 (H5N1) elicited protective immune responses when administered at low doses by scarification. Taken together, our data suggest that MVA and MVA

  19. Virological investigations of specimens from buffaloes affected by buffalopox in Maharashtra State, India between 1985 and 1987.

    Science.gov (United States)

    Dumbell, K; Richardson, M

    1993-01-01

    Isolates of poxviruses were made from thirteen of eighteen specimens of scabs taken from pox lesions on buffaloes in five different districts of Maharashtra State, India, between December, 1985 and February, 1987. The biological characters of twelve of the isolates resembled those of the Hissar strain of buffalopox virus; the thirteenth isolate appeared to be vaccinia. The Hin dIII restriction profiles of DNA from all 13 isolates and from the Hissar strain were typical of those given by vaccinia strains. DNA from all twelve Maharashtra buffalopox (BPV) isolates gave identical profiles with each of three additional endonucleases; these viruses appear to be repeated isolations of a single strain of BPV. The DNA profile of this strain was not the same as that of the Hissar strain of BPV and both could readily be distinguished from each of the three strains of vaccinia virus which had been used in India. The thirteenth Maharashtra isolate was indistinguishable from vaccinia in its biological properties, but the restriction profile of its DNA differed from those of three vaccinia strains and the BPV isolates. These observations, made 6-8 years after cessation of smallpox vaccination indicate that BPV is an emerging enzootic virus and is a subspecies of vaccinia virus.

  20. Estrategias, actores, promesas y temores en las campañas de vacunación antivariolosa en México: del Porfiriato a la Posrevolución (1880-1940 Strategies, actors, promises and fears in the smallpox vaccinations campaigns in Mexico: from the Porfiriato to the Post-revolution (1880-1940

    Directory of Open Access Journals (Sweden)

    Claudia Agostoni

    2011-02-01

    Full Text Available El artículo estudia algunas de las estrategias a las que recurrieron las autoridades de salud durante la puesta en marcha de programas vacunación antivariolosa durante los años de 1880 a 1940, periodo que corresponde al gobierno encabezado por Porfirio Díaz (1877-1911, a la fase armada de la Revolución Mexicana (1910-1920, y a las dos primeras décadas del estado posrevolucionario (1920-1940. Por una parte se prestará atención a la preeminencia que tuvo la vacunación en los centros urbanos, notablemente en la ciudad de México; y por la otra, se destacará la gradual, pero decisiva, organización y reglamentación de la vacunación antivariolosa en los programas destinados para el heterogéneo y desigual ámbito rural. Asimismo, se analizará la importancia que adquirió la educación higiénica, y se prestará atención a las divergentes respuestas que la aplicación masiva y cotidiana de la vacuna suscitó en las ciudades principales y en pequeños pueblos y municipios rurales, respuestas que incluyeron la resistencia, el temor, la incredulidad y la franca aceptación.The article examines some of the strategies employed by the Mexican health authorities that led to the organization of massive and obligatory smallpox vaccination campaigns from the late 1880s to the 1940s, a period of Mexican history that corresponds to the Porfirio Díaz regime (1877-1911, to the armed phase of the Mexican Revolution (1910-1920, and to the first two decades of the Post-revolutionary governments (1920-1940. Attention will be placed of the vaccination programs in the main urban settings, notably in Mexico City, as well as the gradual but decisive organization and regulation of vaccination campaigns in the heterogeneous rural milieu. Furthermore, the importance that hygienic education acquired will be explored, as well as the divergent and contested responses that emerged due to the obligatory vaccination campaigns, responses that included resistance, fear

  1. SIMULTANEOUS SMALLPOX AND B.C.G. VACCINATION IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Nyoman Kumara Rai

    2012-09-01

    Full Text Available Vaksinasi cacar dan BCG mulai diberikan secara simultan di Jawa dan Bali pada bulan April 1972 vaksinasi cacar diberikan pada lengan kiri dan BCG pada lengan kanan. Secara berangsur-angsur prograi ini kemudian diperluas kedaerah luar Jawa-Bali, sehingga pada akhir tahun 1973 sudah mencakup seluruh Indonesia. Tenaga yang digunakan adalah para juru cacar yang sudah ada dalam rangka proyek pembasmian penyakit cacar yang dimulai tahun 1968, dan terdapat hampir disemua kecamatan diseluru Indonesia. Ide untuk menggabungkan kedua jenis vaksinasi ini yang kebetulan mempunyai target sam (anak2 0 - 14 thn  timbul setelah penderita cacar tidak dilaporkan lagi dibulan September 1971 (ternyata kemudian letusan cacar terakhir adalah dibulan Desember 1971. Sampai saat itu vaksina BCG dilakukan oleh petugas Puskesmas dan tenaga part timer. Ternyata target tidak pernah tercapa hal ini mungkin disebabkan oleh terbatasnya waktu yang tersedia untuk melakukan vaksinasi BCC sehingga para tenaga part timer tsb. hanya mampu mencakup daerah disekitar Puskesmas dan sekolah dasar. Sebelumnya telah diadakan dua trial; yang pertama diadakan di Bandung untuk melihat at tidaknya saling pengaruh mempengaruhi antara kedua jenis vaksin cacar dan BCG bila diberikan pat saat yang bersamaan, sedangkain trial kedua dilakukan untuk menilai kemampuan juru cacar dala melaksanakan vaksinasi BCG serta kesukaran! yang dijumpai dilapangan (masing2 didua kabupaten (Jawa Tengah, Timur dan Yogyakarta. Disamping keuntungan yang diperoleh dari penggabungan kedua jenis vaksinasi ini yakni penghematan tenaga, biaya dan waktu, dijumpai juga beberapa kesukaran antara lain pengumpulan anak2, supply vaksin BCG yang tidak teratur dll. Walaupun demikian, di Jawa dan Bali hasil vaksinasi BCG antara April 1972 sampai dengan April 1973 menunjukkan kenaikan out-put leb dari 4 kali lipat bila dibandingkan dengan out-put sebelum penggabungan, meskipun out-put prin vaksinasi cacar mempunyai tendensi menurun. Disini hanya akan dibahas pelaksanaan vaksinasi cacar dan BCG secara simultan di Jawa dan Bali, mengingat pelaksanaannya yang sudah memasuki tahun kedua.

  2. [Differentiation of geographic biovariants of smallpox virus by PCR].

    Science.gov (United States)

    Babkin, I V; Babkina, I N

    2010-01-01

    Comparative analysis of amino acid and nucleotides sequences of ORFs located in extended segments of the terminal variable regions in variola virus genome detected a promising locus for viral genotyping according to the geographic origin. This is ORF O1L of VARV. The primers were calculated for synthesis of this ORF fragment by PCR, which makes it possible to distinguish South America-Western Africa genotype from other VARV strains. Subsequent RFLP analysis reliably differentiated Asian strains from African strains (except Western Africa isolates). This method has been tested using 16 VARV strains from various geographic regions. The developed approach is simple, fast and reliable.

  3. Why You'll Never Catch Smallpox

    Science.gov (United States)

    Cutler, Marianne; Lawrence, Liz

    2016-01-01

    In this article, Marianne Cutler and Liz Lawrence describe in more detail the opportunities for "working scientifically" provided by this new Association for Science Education (ASE) resource, which was introduced in the previous issue, along with some of the feedback from teachers who have trialled the resources. [This article was…

  4. Guinea pigs experimentally infected with vaccinia virus replicate and shed, but do not transmit the virus Cobaias infectadas experimentalmente com vírus vaccínia replicam e excretam, porém não transmitem o vírus

    Directory of Open Access Journals (Sweden)

    Juliana Felipetto Cargnelutti

    2012-06-01

    Full Text Available The origin of vaccinia viruses (VACV associated with vesicular disease in cattle and humans in Southeast Brazil remains uncertain, yet the role of wild species in virus transmission has been suggested. This study investigated the susceptibility and transmission potential by guinea pigs (Cavia porcellus - phylogenetically close to an abundant Brazilian rodent (Cavia aperea - to two VACV strains (P1V and P2V isolated from an outbreak of cutaneous disease in horses in Southern Brazil. Eight guinea pigs inoculated intranasally with P1V and P2V (10(6 TCID50.ml-1 did not develop clinical signs, but six animals shed virus in nasal secretions (day 1 to 9 post-inoculation - pi, developed viremia (between days 1 and 10 pi and seroconverted to VACV. In spite of virus replication and shedding, the virus was not transmitted to sentinel animals by direct or indirect contact (aerosols or through food and water contaminated with virus. These results demonstrate that, in spite of replicating and shedding the virus, guinea pigs do not transmit the virus upon experimental inoculation. This finding makes unlikely a possible participation of related species in VACV maintenance and transmission in nature.A origem dos vírus vaccínia (VACV, envolvidos em surtos de doença vesicular em bovinos e humanos no Sudeste do Brasil, permanece desconhecida, e a participação de espécies silvestres na manutenção e transmissão do vírus tem sido sugerida. O objetivo deste trabalho foi investigar a susceptibilidade e o potencial de transmissão por cobaias (Cavia porcellus - filogeneticamente relacionada a uma espécie de roedor, conhecido por preá (Cavia aperea, bastante abundante no país - a duas cepas de VACV (P1V e P2V isoladas de um surto de doença cutânea em equinos no Rio Grande do Sul. Oito cobaias inoculadas pela via intranasal com uma mistura das amostras P1V e P2V (10(6 DICC50.ml-1 não apresentaram sinais clínicos, porém seis animais excretaram o vírus nas

  5. Vaccinia complement control protein: Multi-functional protein and a ...

    Indian Academy of Sciences (India)

    Unknown

    naturally occurring antagonist of the proinflammatory cytokine IL-18. Another strategy used by ... receptors or binding proteins for tumour necrosis factor. (TNF) ... immune regulators, such as the viral IL-10 and vascular endothelial growth factor ...

  6. Review of Vaccinia Virus and Baculovirus Viability Versus Virucides

    Science.gov (United States)

    2008-03-01

    25 6.4 Lignin ......................................................................................... 25 6.5...a lower pH (4.83 - 5.22), the virus rapidly inactivated over a month (Tomas et al., 1973). 16 The effects of alkalis on baculoviruses are important...of antioxidant and oxidative enzymes on UV inactivation by inhibiting the generation of highly reactive free radicals within HzSNPV. Water suspensions

  7. Functional characterization of the vaccinia virus I5 protein

    Directory of Open Access Journals (Sweden)

    Stanitsa Eleni S

    2008-12-01

    Full Text Available The I5L gene is one of ~90 genes that are conserved throughout the chordopoxvirus family, and hence are presumed to play vital roles in the poxvirus life cycle. Previous work had indicated that the VP13 protein, a component of the virion membrane, was encoded by the I5L gene, but no additional studies had been reported. Using a recombinant virus that encodes an I5 protein fused to a V5 epitope tag at the endogenous locus (vI5V5, we show here that the I5 protein is expressed as a post-replicative gene and that the ~9 kDa protein does not appear to be phosphorylated in vivo. I5 does not appear to traffic to any cellular organelle, but ultrastructural and biochemical analyses indicate that I5 is associated with the membranous components of assembling and mature virions. Intact virions can be labeled with anti-V5 antibody as assessed by immunoelectron microscopy, indicating that the C' terminus of the protein is exposed on the virion surface. Using a recombinant virus which encodes only a TET-regulated copy of the I5V5 gene (vΔindI5V5, or one in which the I5 locus has been deleted (vΔI5, we also show that I5 is dispensable for replication in tissue culture. Neither plaque size nor the viral yield produced in BSC40 cells or primary human fibroblasts are affected by the absence of I5 expression.

  8. Purification, crystallization and preliminary diffraction studies of an ectromelia virus glutaredoxin

    International Nuclear Information System (INIS)

    Bacik, John-Paul; Brigley, Angela M.; Channon, Lisa D.; Audette, Gerald F.; Hazes, Bart

    2005-01-01

    Ectromelia virus glutaredoxin has been crystallized in the presence of the reducing agent DTT. A diffraction data set has been collected and processed to 1.8 Å resolution. Ectromelia, vaccinia, smallpox and other closely related viruses of the orthopoxvirus genus encode a glutaredoxin gene that is not present in poxviruses outside of this genus. The vaccinia glutaredoxin O2L has been implicated as the reducing agent for ribonucleotide reductase and may thus play an important role in viral deoxyribonucleotide synthesis. As part of an effort to understand nucleotide metabolism by poxviruses, EVM053, the O2L ortholog of the ectromelia virus, has been crystallized. EVM053 crystallizes in space group C222 1 , with unit-cell parameters a = 61.98, b = 67.57, c = 108.55 Å. Diffraction data have been processed to 1.8 Å resolution and a self-rotation function indicates that there are two molecules per asymmetric unit

  9. Non-Human Primate Models of Orthopoxvirus Infections

    Directory of Open Access Journals (Sweden)

    Anne Schmitt

    2014-06-01

    Full Text Available Smallpox, one of the most destructive diseases, has been successfully eradicated through a worldwide vaccination campaign. Since immunization programs have been stopped, the number of people with vaccinia virus induced immunity is declining. This leads to an increase in orthopoxvirus (OPXV infections in humans, as well as in animals. Additionally, potential abuse of Variola virus (VARV, the causative agent of smallpox, or monkeypox virus, as agents of bioterrorism, has renewed interest in development of antiviral therapeutics and of safer vaccines. Due to its high risk potential, research with VARV is restricted to two laboratories worldwide. Therefore, numerous animal models of other OPXV infections have been developed in the last decades. Non-human primates are especially suitable due to their close relationship to humans. This article provides a review about on non-human primate models of orthopoxvirus infections.

  10. ALTERNATE MECHANISMS OF INITIAL PATTERN RECOGNITION DRIVE DIFFERENTIAL IMMUNE RESPONSES TO RELATED POXVIRUSES

    Science.gov (United States)

    O’Gorman, William E.; Sampath, Padma; Simonds, Erin F.; Sikorski, Rachel; O’Malley, Mark; Krutzik, Peter O.; Chen, Hannah; Panchanathan, Vijay; Chaudhri, Geeta; Karupiah, Gunasegaran; Lewis, David B.; Thorne, Steve H.; Nolan, Garry P.

    2010-01-01

    Summary Although vaccinia virus infection results in induction of a robust immunizing response, many closely related poxviruses such as variola (smallpox) and ectromelia (mousepox) are highly pathogenic in their natural hosts. We developed a strategy to map the activation of key signaling networks in vivo and applied this approach to define and compare the earliest signaling events elicited by poxvirus infections in mice. Vaccinia induced rapid TLR2-dependent responses leading to IL-6 production, which then initiated STAT3 signaling in dendritic cells and T cells. In contrast, ectromelia did not induce TLR2 activation and profound mouse strain-dependent responses were observed. In resistant C57BL/6 mice, the STAT1 and STAT3 pathways were rapidly activated, whereas in susceptible BALB/c mice, IL-6-dependent STAT3 activation did not occur. These results indicate that vaccination with vaccinia is dependent on rapid TLR2 and IL-6 driven responses and link the earliest immune signaling events to the outcome of infection. PMID:20709294

  11. PCR strategy for identification and differentiation of small pox and other orthopoxviruses.

    Science.gov (United States)

    Ropp, S L; Jin, Q; Knight, J C; Massung, R F; Esposito, J J

    1995-08-01

    Rapid identification and differentiation of orthopoxviruses by PCR were achieved with primers based on genome sequences encoding the hemagglutinin (HA) protein, an infected-cell membrane antigen that distinguishes orthopoxviruses from other poxvirus genera. The initial identification step used a primer pair of consensus sequences for amplifying an HA DNA fragment from the three known North American orthopoxviruses (raccoonpox, skunkpox, and volepox viruses), and a second pair for amplifying virtually the entire HA open reading frame of the Eurasian-African orthopoxviruses (variola, vaccinia, cowpox, monkeypox, camelpox, ectromelia, and gerbilpox viruses). RsaI digest electropherograms of the amplified DNAs of the former subgroup provided species differentiation, and TaqI digests differentiated the Eurasian-African orthopoxviruses, including vaccinia virus from the vaccinia virus subspecies buffalopox virus. Endonuclease HhaI digest patterns distinguished smallpox variola major viruses from alastrim variola minor viruses. For the Eurasian-African orthopoxviruses, a confirmatory step that used a set of higher-sequence-homology primers was developed to provide sensitivity to discern individual virus HA DNAs from cross-contaminated orthopoxvirus DNA samples; TaqI and HhaI digestions of the individual amplified HA DNAs confirmed virus identity. Finally, a set of primers and modified PCR conditions were developed on the basis of base sequence differences within the HA genes of the 10 species, which enabled production of a single DNA fragment of a particular size that indicated the specific species.

  12. MHC-I-restricted epitopes conserved among variola and other related orthopoxviruses are recognized by T cells 30 years after vaccination

    DEFF Research Database (Denmark)

    Tang, Sheila Tuyet; Wang, M.; Lamberth, K.

    2008-01-01

    It is many years since the general population has been vaccinated against smallpox virus. Here, we report that human leukocyte antigen (HLA) class I restricted T cell epitopes can be recognized more than 30 years after vaccination. Using bioinformatic methods, we predicted 177 potential cytotoxic T...... lymphocyte epitopes. Eight epitopes were confirmed to stimulate IFN-gamma release by T cells in smallpox-vaccinated subjects. The epitopes were restricted by five supertypes (HLA-A1, -A2, -A24 -A26 and -B44). Significant T cell responses were detected against 8 of 45 peptides with an HLA class I affinity...... of K(D) less than or equal to 5 nM, whereas no T cell responses were detected against 60 peptides with an HLA affinity of K(D) more than 5 nM. All epitopes were fully conserved in seven variola, vaccinia and cowpox strains. Knowledge of the long-term response to smallpox vaccination may lead...

  13. Cidofovir Activity against Poxvirus Infections

    Directory of Open Access Journals (Sweden)

    Robert Snoeck

    2010-12-01

    Full Text Available Cidofovir [(S-1-(3-hydroxy-2-phosphonylmethoxypropylcytosine, HPMPC] is an acyclic nucleoside analog approved since 1996 for clinical use in the treatment of cytomegalovirus (CMV retinitis in AIDS patients. Cidofovir (CDV has broad-spectrum activity against DNA viruses, including herpes-, adeno-, polyoma-, papilloma- and poxviruses. Among poxviruses, cidofovir has shown in vitro activity against orthopox [vaccinia, variola (smallpox, cowpox, monkeypox, camelpox, ectromelia], molluscipox [molluscum contagiosum] and parapox [orf] viruses. The anti-poxvirus activity of cidofovir in vivo has been shown in different models of infection when the compound was administered either intraperitoneal, intranasal (aerosolized or topically. In humans, cidofovir has been successfully used for the treatment of recalcitrant molluscum contagiosum virus and orf virus in immunocompromised patients. CDV remains a reference compound against poxviruses and holds potential for the therapy and short-term prophylaxis of not only orthopox- but also parapox- and molluscipoxvirus infections.

  14. Suppression of Poxvirus Replication by Resveratrol.

    Science.gov (United States)

    Cao, Shuai; Realegeno, Susan; Pant, Anil; Satheshkumar, Panayampalli S; Yang, Zhilong

    2017-01-01

    Poxviruses continue to cause serious diseases even after eradication of the historically deadly infectious human disease, smallpox. Poxviruses are currently being developed as vaccine vectors and cancer therapeutic agents. Resveratrol is a natural polyphenol stilbenoid found in plants that has been shown to inhibit or enhance replication of a number of viruses, but the effect of resveratrol on poxvirus replication is unknown. In the present study, we found that resveratrol dramatically suppressed the replication of vaccinia virus (VACV), the prototypic member of poxviruses, in various cell types. Resveratrol also significantly reduced the replication of monkeypox virus, a zoonotic virus that is endemic in Western and Central Africa and causes human mortality. The inhibitory effect of resveratrol on poxviruses is independent of VACV N1 protein, a potential resveratrol binding target. Further experiments demonstrated that resveratrol had little effect on VACV early gene expression, while it suppressed VACV DNA synthesis, and subsequently post-replicative gene expression.

  15. Suppression of Poxvirus Replication by Resveratrol

    Directory of Open Access Journals (Sweden)

    Shuai Cao

    2017-11-01

    Full Text Available Poxviruses continue to cause serious diseases even after eradication of the historically deadly infectious human disease, smallpox. Poxviruses are currently being developed as vaccine vectors and cancer therapeutic agents. Resveratrol is a natural polyphenol stilbenoid found in plants that has been shown to inhibit or enhance replication of a number of viruses, but the effect of resveratrol on poxvirus replication is unknown. In the present study, we found that resveratrol dramatically suppressed the replication of vaccinia virus (VACV, the prototypic member of poxviruses, in various cell types. Resveratrol also significantly reduced the replication of monkeypox virus, a zoonotic virus that is endemic in Western and Central Africa and causes human mortality. The inhibitory effect of resveratrol on poxviruses is independent of VACV N1 protein, a potential resveratrol binding target. Further experiments demonstrated that resveratrol had little effect on VACV early gene expression, while it suppressed VACV DNA synthesis, and subsequently post-replicative gene expression.

  16. p53 and the Viral Connection: Back into the Future ‡

    Directory of Open Access Journals (Sweden)

    Ronit Aloni-Grinstein

    2018-06-01

    Full Text Available The discovery of the tumor suppressor p53, through its interactions with proteins of tumor-promoting viruses, paved the way to the understanding of p53 roles in tumor virology. Over the years, accumulating data suggest that WTp53 is involved in the viral life cycle of non-tumor-promoting viruses as well. These include the influenza virus, smallpox and vaccinia viruses, the Zika virus, West Nile virus, Japanese encephalitis virus, Human Immunodeficiency Virus Type 1, Human herpes simplex virus-1, and more. Viruses have learned to manipulate WTp53 through different strategies to improve their replication and spreading in a stage-specific, bidirectional way. While some viruses require active WTp53 for efficient viral replication, others require reduction/inhibition of WTp53 activity. A better understanding of WTp53 functionality in viral life may offer new future clinical approaches, based on WTp53 manipulation, for viral infections.

  17. Antiviral treatment is more effective than smallpox vaccination upon lethal monkeypox virus infection

    Czech Academy of Sciences Publication Activity Database

    Stittelaar, K. J.; Neyts, J.; Naesens, L.; Amerongen van, G.; Lavieren van, R. F.; Holý, Antonín; De Clercq, E.; Niesters, H. G. M.; Fries, E.; Maas, Ch.; Mulder, P. G. H.; Zeijst van der, B. A. M.; Osterhaus, D. M. E.

    2006-01-01

    Roč. 439, č. 7077 (2006), s. 745-748 ISSN 0028-0836 Institutional research plan: CEZ:AV0Z40550506 Keywords : monkeypox virus * vaccination * HPMPC * HPMPO-DAPy Subject RIV: CC - Organic Chemistry Impact factor: 26.681, year: 2006

  18. Insights from the structure of a smallpox virus topoisomerase-DNA transition state mimic

    Science.gov (United States)

    Perry, Kay; Hwang, Young; Bushman, Frederic D.; Van Duyne, Gregory D.

    2010-01-01

    Summary Poxviruses encode their own type IB topoisomerases (TopIBs) which release superhelical tension generated by replication and transcription of their genomes. To investigate the reaction catalyzed viral TopIBs, we have determined the structure of a variola virus topoisomerase-DNA complex trapped as a vanadate transition state mimic. The structure reveals how the viral TopIB enzymes are likely to position the DNA duplex for ligation following relaxation of supercoils and identifies the sources of friction observed in single molecule experiments that argue against free rotation. The structure also identifies a conformational change in the leaving group sugar that must occur prior to cleavage and reveals a mechanism for promoting ligation following relaxation of supercoils that involves a novel Asp-minor groove interaction. Overall, the new structural data support a common catalytic mechanism for the TopIB superfamily but indicate distinct methods for controlling duplex rotation in the small vs. large enzyme subfamilies. PMID:20152159

  19. [History of Smallpox Vaccination and of the Vaccine Supply in Hungary, up to 1890].

    Science.gov (United States)

    Kiss, László

    2015-01-01

    One of the preconditions for the spread of vaccination against pox diseases was making vaccination available. The first vaccinations were carried out using original cowpox lymph sent by Jenner. For further vaccinations the vaccine was extracted from the blisters of those who had been successfully inoculated. In order to provide vaccine continuously six vaccine centres were set up in 1804 in the following cities: Pest, Buda, Kassa, Gyula, Pozsony and Zágráb (Croatia). Detailed information is available only about the centre in Pest which operated in Rókus Hospital under the leadership of the hospital director András Bossányi. Besides regular vaccination they also provided vaccine for the countryside. From 1824 the vaccine was relocated to the medical faculty of the university in Pest and Ferenc Gebhardt, an instructor of surgeons, became its head. The centre operated in the building of the medical faculty and vaccinations were given on Thursdays and Sundays. After the retirement of Gebhardt in 1860, the centre was taken over by the dermatologist Ferenc Poor for a short time, then by Ignác Semmelweis. From 1863 Gergely Patrubány was responsible for managing the centre. In 1874 the central vaccine institution moved to the Hospital for Poor Children in Pest where it was led first by Lázár Wittman, then by Géza Hainiss. In the 1880s private institutions appeared, the best known were Dani Pécsi's centre in Pest and Béla Intze's one in Tirgu Lapus (Romania). Between 1873 an 1889 András Kreichel ran a vaccine centre in Nálepkovo (Slovakia).

  20. Biological Warfare Improved Response Program (BW-IRP) CDC/DoD Smallpox Workshop

    Science.gov (United States)

    2005-01-01

    attack. In April 2000, the container of virus is smuggled across the boarder, overland from Mexico . It is released on April 15th aboard Fat Chance...them give a firm history of childhood chicken pox, she becomes concerned and sends specimens to a lab to rule out varicella (Chicken Pox). She checks...hands and notes the students history of childhood chickenpox. Laboratory testing to rule out varicella is also ordered. When that result is negative

  1. Critical Factors for Parameterisation of Disease Diagnosis Modelling for Anthrax, Plague and Smallpox

    Science.gov (United States)

    2012-09-01

    which could potentially differentiate the occurrence of a bio - weapon induced illness from the more common and prevailing endemic diseases that show... weapon of choice by terrorists to inflict casualties and disrupt daily life of the general populace. The Amerithrax incident has highlighted the...are no widely available rapid diagnostic tests for plague. A rapid antigen detection of soluble F1 capsular antigen in many clinical specimens of

  2. A Social Structure Model for Evaluating the Effect of Response Measures on the Spread of Smallpox

    National Research Council Canada - National Science Library

    Kress, Moshe

    2004-01-01

    ... such as schools and offices, on the other hand. In this paper, we develop a dynamic two-level social interaction model where individuals move back and forth between home and daily meeting sites, possibly passing through a general meeting site...

  3. Height, income, nutrition, and smallpox in the Netherlands : the (second half of the) 19th century

    NARCIS (Netherlands)

    Jacobs, Jan; Tassenaar, Vincent

    2002-01-01

    Recent contributions to growth theory stress the importance of localized innovation for the performance of more backward countries. In earlier papers, analyses by means of DEA techniques confirmed this intuition. In this paper, we extend this type of analysis by relaxing the macroeconomic viewpoint

  4. Integrated Analysis of Genetic and Proteomic Data Identifies Biomarkers Associated with Adverse Events Following Smallpox Vaccination

    Science.gov (United States)

    Complex clinical outcomes, such as adverse reaction to vaccination, arise from the concerted interactions among the myriad components of a biological system. Therefore, comprehensive etiological models can be developed only through the integrated study of multiple types of experi...

  5. Strategies to obtain multiple recombinant modified vaccinia Ankara vectors. Applications to influenza vaccines.

    Science.gov (United States)

    Barbieri, Andrea; Panigada, Maddalena; Soprana, Elisa; Di Mario, Giuseppina; Gubinelli, Francesco; Bernasconi, Valentina; Recagni, Marta; Donatelli, Isabella; Castrucci, Maria R; Siccardi, Antonio G

    2018-01-01

    As a vaccination vector, MVA has been widely investigated both in animal models and humans. The construction of recombinant MVA (rMVA) relies on homologous recombination between an acceptor virus and a donor plasmid in infected/transfected permissive cells. Our construction strategy "Red-to-Green gene swapping" - based on the exchange of two fluorescent markers within the flanking regions of MVA deletion ΔIII, coupled to fluorescence activated cell sorting - is here extended to a second insertion site, within the flanking regions of MVA deletion ΔVI. Exploiting this strategy, both double and triple rMVA were constructed, expressing as transgenes the influenza A proteins HA, NP, M1, and PB1. Upon validation of the harbored transgenes co-expression, double and triple recombinants rMVA(ΔIII)-NP-P2A-M1 and rMVA(ΔIII)-NP-P2A-M1-(ΔVI)-PB1 were assayed for in vivo immunogenicity and protection against lethal challenge. In vivo responses were identical to those obtained with the reported combinations of single recombinants, supporting the feasibility and reliability of the present improvement and the extension of Red-to-Green gene swapping to insertion sites other than ΔIII. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Viral exploitation of the MEK/ERK pathway - A tale of vaccinia virus and other viruses.

    Science.gov (United States)

    Bonjardim, Cláudio A

    2017-07-01

    The VACV replication cycle is remarkable in the sense that it is performed entirely in the cytoplasmic compartment of vertebrate cells, due to its capability to encode enzymes required either for regulating the macromolecular precursor pool or the biosynthetic processes. Although remarkable, this gene repertoire is not sufficient to confer the status of a free-living microorganism to the virus, and, consequently, the virus relies heavily on the host to successfully generate its progeny. During the complex virus-host interaction, viruses must deal not only with the host pathways to accomplish their temporal demands but also with pathways that counteract viral infection, including the inflammatory, innate and acquired immune responses. This review focuses on VACV and other DNA or RNA viruses that stimulate the MEK (MAPK - Mitogen Activated Protein Kinase)/ERK- Extracellular signal-Regulated Kinase) pathway as part of their replication cycle. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Expression of Brucella Antigens in Vaccinia Virus to Prevent Brucellosis in Humans: Protection Studies in Mice

    National Research Council Canada - National Science Library

    Schurig, Gerhardt

    2000-01-01

    .... Based on our present studies and the finding that Brucella Cu/ZN SOD and L7/Ll2 proteins are protective antigens and that the presence of IL-12 is necessary at the moment of immunization, we conclude...

  8. Expression of the ’Bacillus anthracis’ Protective Antigen Gene by Baculovirus and Vaccinia Virus Recombinants

    Science.gov (United States)

    1990-02-01

    procaryotic systems (12. 45). Certain eucaryotic ically cleaved by a trypsin-like proteas: ito produce a recep- viruses are currently being explored as...19847. Proteolytic activation of anthrax toxin bound to cellular recep- ACKN()WEIX;NMNTS tor%.. p. 111-112. In F. Fehrenbach et al. ifed.). Bacterial

  9. The vaccinia virus DNA polymerase structure provides insights into the mode of processivity factor binding

    Czech Academy of Sciences Publication Activity Database

    Tarbouriech, N.; Ducournau, C.; Hutin, S.; Mas, P.J.; Man, Petr; Forest, E.; Hart, D.J.; Peyrefitte, Ch.N.; Burmeister, W.P.; Iseni, F.

    2017-01-01

    Roč. 8, NOV 13 (2017), s. 1-12, č. článku 1455. ISSN 2041-1723 R&D Projects: GA MŠk(CZ) LQ1604 Institutional support: RVO:61388971 Keywords : PROTEIN SECONDARY STRUCTURE * CRYSTAL-STRUCTURE * GENETIC-CHARACTERIZATION Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 12.124, year: 2016

  10. The Structure of the Poxvirus A33 Protein Reveals a Dimer of Unique C-Type Lectin-Like Domains

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hua-Poo; Singh, Kavita; Gittis, Apostolos G.; Garboczi, David N. (NIH)

    2010-11-03

    The current vaccine against smallpox is an infectious form of vaccinia virus that has significant side effects. Alternative vaccine approaches using recombinant viral proteins are being developed. A target of subunit vaccine strategies is the poxvirus protein A33, a conserved protein in the Chordopoxvirinae subfamily of Poxviridae that is expressed on the outer viral envelope. Here we have determined the structure of the A33 ectodomain of vaccinia virus. The structure revealed C-type lectin-like domains (CTLDs) that occur as dimers in A33 crystals with five different crystal lattices. Comparison of the A33 dimer models shows that the A33 monomers have a degree of flexibility in position within the dimer. Structural comparisons show that the A33 monomer is a close match to the Link module class of CTLDs but that the A33 dimer is most similar to the natural killer (NK)-cell receptor class of CTLDs. Structural data on Link modules and NK-cell receptor-ligand complexes suggest a surface of A33 that could interact with viral or host ligands. The dimer interface is well conserved in all known A33 sequences, indicating an important role for the A33 dimer. The structure indicates how previously described A33 mutations disrupt protein folding and locates the positions of N-linked glycosylations and the epitope of a protective antibody.

  11. SECRET domain of variola virus CrmB protein can be a member of poxviral type II chemokine-binding proteins family

    Directory of Open Access Journals (Sweden)

    Shchelkunov Sergei N

    2010-10-01

    Full Text Available Abstract Background Variola virus (VARV the causative agent of smallpox, eradicated in 1980, have wide spectrum of immunomodulatory proteins to evade host immunity. Recently additional biological activity was discovered for VARV CrmB protein, known to bind and inhibit tumour necrosis factor (TNF through its N-terminal domain homologous to cellular TNF receptors. Besides binding TNF, this protein was also shown to bind with high affinity several chemokines which recruit B- and T-lymphocytes and dendritic cells to sites of viral entry and replication. Ability to bind chemokines was shown to be associated with unique C-terminal domain of CrmB protein. This domain named SECRET (Smallpox virus-Encoded Chemokine Receptor is unrelated to the host proteins and lacks significant homology with other known viral chemokine-binding proteins or any other known protein. Findings De novo modelling of VARV-CrmB SECRET domain spatial structure revealed its apparent structural homology with cowpox virus CC-chemokine binding protein (vCCI and vaccinia virus A41 protein, despite low sequence identity between these three proteins. Potential ligand-binding surface of modelled VARV-CrmB SECRET domain was also predicted to bear prominent electronegative charge which is characteristic to known orthopoxviral chemokine-binding proteins. Conclusions Our results suggest that SECRET should be included into the family of poxviral type II chemokine-binding proteins and that it might have been evolved from the vCCI-like predecessor protein.

  12. Efficacy of oral active ether lipid analogs of cidofovir in a lethal mousepox model

    International Nuclear Information System (INIS)

    Buller, R. Mark; Owens, Gelita; Schriewer, Jill; Melman, Lora; Beadle, James R.; Hostetler, Karl Y.

    2004-01-01

    Cidofovir (CDV) is a highly effective inhibitor of orthopoxvirus replication and may be used intravenously to treat smallpox or complications arising from the smallpox vaccine under an investigational new drug application (IND). However, CDV is absorbed poorly following oral administration and is inactive orally. To improve the bioavailability of CDV, others synthesized alkoxyalkanol esters of CDV and observed >100-fold more activity than unmodified CDV against cowpox, vaccinia, and variola virus (VARV) replication. These ether lipid analogs of CDV have high oral bioavailability in mice. In this study, we compared the oral activity of CDV with the hexadecyloxypropyl (HDP)-, octadecyloxyethyl-, oleyloxypropyl-, and oleyloxyethyl-esters of CDV in a lethal, aerosol ectromelia virus (ECTV) challenge model in A/NCR mice. Octadecyloxyethyl-CDV appeared to be the most potent CDV analog as a dose regimen of 5 mg/kg started 4 h following challenge completely blocked virus replication in spleen and liver, and protected 100% of A/NCR mice, although oral, unmodified CDV was inactive. These results suggest that this family of compounds deserves further evaluation as poxvirus antiviral

  13. Transmissibility of the monkeypox virus clades via respiratory transmission: investigation using the prairie dog-monkeypox virus challenge system.

    Directory of Open Access Journals (Sweden)

    Christina L Hutson

    Full Text Available Monkeypox virus (MPXV is endemic within Africa where it sporadically is reported to cause outbreaks of human disease. In 2003, an outbreak of human MPXV occurred in the US after the importation of infected African rodents. Since the eradication of smallpox (caused by an orthopoxvirus (OPXV related to MPXV and cessation of routine smallpox vaccination (with the live OPXV vaccinia, there is an increasing population of people susceptible to OPXV diseases. Previous studies have shown that the prairie dog MPXV model is a functional animal model for the study of systemic human OPXV illness. Studies with this model have demonstrated that infected animals are able to transmit the virus to naive animals through multiple routes of exposure causing subsequent infection, but were not able to prove that infected animals could transmit the virus exclusively via the respiratory route. Herein we used the model system to evaluate the hypothesis that the Congo Basin clade of MPXV is more easily transmitted, via respiratory route, than the West African clade. Using a small number of test animals, we show that transmission of viruses from each of the MPXV clade was minimal via respiratory transmission. However, transmissibility of the Congo Basin clade was slightly greater than West African MXPV clade (16.7% and 0% respectively. Based on these findings, respiratory transmission appears to be less efficient than those of previous studies assessing contact as a mechanism of transmission within the prairie dog MPXV animal model.

  14. Live attenuated vaccines: Historical successes and current challenges

    Energy Technology Data Exchange (ETDEWEB)

    Minor, Philip D., E-mail: Philip.Minor@nibsc.org

    2015-05-15

    Live attenuated vaccines against human viral diseases have been amongst the most successful cost effective interventions in medical history. Smallpox was declared eradicated in 1980; poliomyelitis is nearing global eradication and measles has been controlled in most parts of the world. Vaccines function well for acute diseases such as these but chronic infections such as HIV are more challenging for reasons of both likely safety and probable efficacy. The derivation of the vaccines used has in general not been purely rational except in the sense that it has involved careful clinical trials of candidates and subsequent careful follow up in clinical use; the identification of the candidates is reviewed. - Highlights: • Live vaccines against human diseases caused by viruses have been very successful. • They have been developed by empirical clinical studies and problems identified in later use. • It can be difficult to balance ability to cause disease and ability to immunise for a strain. • There is currently no reliable basis for predicting success from pure virological studies. • Vaccinia, which eradicated smallpox, is the paradigm for all successes and issues.

  15. SECRET domain of variola virus CrmB protein can be a member of poxviral type II chemokine-binding proteins family.

    Science.gov (United States)

    Antonets, Denis V; Nepomnyashchikh, Tatyana S; Shchelkunov, Sergei N

    2010-10-27

    Variola virus (VARV) the causative agent of smallpox, eradicated in 1980, have wide spectrum of immunomodulatory proteins to evade host immunity. Recently additional biological activity was discovered for VARV CrmB protein, known to bind and inhibit tumour necrosis factor (TNF) through its N-terminal domain homologous to cellular TNF receptors. Besides binding TNF, this protein was also shown to bind with high affinity several chemokines which recruit B- and T-lymphocytes and dendritic cells to sites of viral entry and replication. Ability to bind chemokines was shown to be associated with unique C-terminal domain of CrmB protein. This domain named SECRET (Smallpox virus-Encoded Chemokine Receptor) is unrelated to the host proteins and lacks significant homology with other known viral chemokine-binding proteins or any other known protein. De novo modelling of VARV-CrmB SECRET domain spatial structure revealed its apparent structural homology with cowpox virus CC-chemokine binding protein (vCCI) and vaccinia virus A41 protein, despite low sequence identity between these three proteins. Potential ligand-binding surface of modelled VARV-CrmB SECRET domain was also predicted to bear prominent electronegative charge which is characteristic to known orthopoxviral chemokine-binding proteins. Our results suggest that SECRET should be included into the family of poxviral type II chemokine-binding proteins and that it might have been evolved from the vCCI-like predecessor protein.

  16. Live attenuated vaccines: Historical successes and current challenges

    International Nuclear Information System (INIS)

    Minor, Philip D.

    2015-01-01

    Live attenuated vaccines against human viral diseases have been amongst the most successful cost effective interventions in medical history. Smallpox was declared eradicated in 1980; poliomyelitis is nearing global eradication and measles has been controlled in most parts of the world. Vaccines function well for acute diseases such as these but chronic infections such as HIV are more challenging for reasons of both likely safety and probable efficacy. The derivation of the vaccines used has in general not been purely rational except in the sense that it has involved careful clinical trials of candidates and subsequent careful follow up in clinical use; the identification of the candidates is reviewed. - Highlights: • Live vaccines against human diseases caused by viruses have been very successful. • They have been developed by empirical clinical studies and problems identified in later use. • It can be difficult to balance ability to cause disease and ability to immunise for a strain. • There is currently no reliable basis for predicting success from pure virological studies. • Vaccinia, which eradicated smallpox, is the paradigm for all successes and issues

  17. Glycosaminoglycans mediate retention of the poxvirus type I interferon binding protein at the cell surface to locally block interferon antiviral responses

    Science.gov (United States)

    Montanuy, Imma; Alejo, Ali; Alcami, Antonio

    2011-01-01

    Eradication of smallpox was accomplished 30 yr ago, but poxviral infections still represent a public health concern due to the potential release of variola virus or the emergence of zoonotic poxviruses, such as monkeypox virus. A critical determinant of poxvirus virulence is the inhibition of interferons (IFNs) by the virus-encoded type I IFN-binding protein (IFNα/βBP). This immunomodulatory protein is secreted and has the unique property of interacting with the cell surface in order to prevent IFN-mediated antiviral responses. However, the mechanism of its attachment to the cell surface remains unknown. Using surface plasmon resonance and cell-binding assays, we report that the IFNα/βBP from vaccinia virus, the smallpox vaccine, interacts with cell surface glycosaminoglycans (GAGs). Analysis of the contribution of different regions of the protein to cell surface binding demonstrated that clusters of basic residues in the first immunoglobulin domain mediate GAG interactions. Furthermore, mutation of the GAG-interaction motifs does not affect its IFN-binding and -blocking capacity. Functional conservation of GAG-binding sites is demonstrated for the IFNα/βBP from variola and monkeypox viruses, extending our understanding of immune modulation by the most virulent human poxviruses. These results are relevant for the design of improved vaccines and intervention strategies.—Montanuy, I., Alejo, A., Alcami, A. Glycosaminoglycans mediate retention of the poxvirus type I interferon binding protein at the cell surface to locally block interferon antiviral responses. PMID:21372110

  18. Protection of mice against the highly pathogenic VVIHD-J by DNA and fowlpox recombinant vaccines, administered by electroporation and intranasal routes, correlates with serum neutralizing activity.

    Science.gov (United States)

    Bissa, Massimiliano; Quaglino, Elena; Zanotto, Carlo; Illiano, Elena; Rolih, Valeria; Pacchioni, Sole; Cavallo, Federica; De Giuli Morghen, Carlo; Radaelli, Antonia

    2016-10-01

    The control of smallpox was achieved using live vaccinia virus (VV) vaccine, which successfully eradicated the disease worldwide. As the variola virus no longer exists as a natural infection agent, mass vaccination was discontinued after 1980. However, emergence of smallpox outbreaks caused by accidental or deliberate release of variola virus has stimulated new research for second-generation vaccine development based on attenuated VV strains. Considering the closely related animal poxviruses that also arise as zoonoses, and the increasing number of unvaccinated or immunocompromised people, a safer and more effective vaccine is still required. With this aim, new vectors based on avian poxviruses that cannot replicate in mammals should improve the safety of conventional vaccines, and protect from zoonotic orthopoxvirus diseases, such as cowpox and monkeypox. In this study, DNA and fowlpox (FP) recombinants that expressed the VV L1R, A27L, A33R, and B5R genes were generated (4DNAmix, 4FPmix, respectively) and tested in mice using novel administration routes. Mice were primed with 4DNAmix by electroporation, and boosted with 4FPmix applied intranasally. The lethal VV IHD-J strain was then administered by intranasal challenge. All of the mice receiving 4DNAmix followed by 4FPmix, and 20% of the mice immunized only with 4FPmix, were protected. The induction of specific humoral and cellular immune responses directly correlated with this protection. In particular, higher anti-A27 antibodies and IFNγ-producing T lymphocytes were measured in the blood and spleen of the protected mice, as compared to controls. VV IHD-J neutralizing antibodies in sera from the protected mice suggest that the prime/boost vaccination regimen with 4DNAmix plus 4FPmix may be an effective and safe mode to induce protection against smallpox and poxvirus zoonotic infections. The electroporation/intranasal administration routes contributed to effective immune responses and mouse survival. Copyright

  19. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus.

    Directory of Open Access Journals (Sweden)

    Sanchita Das

    Full Text Available CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR. The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively. The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus.

  20. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus.

    Science.gov (United States)

    Das, Sanchita; Rundell, Mark S; Mirza, Aashiq H; Pingle, Maneesh R; Shigyo, Kristi; Garrison, Aura R; Paragas, Jason; Smith, Scott K; Olson, Victoria A; Larone, Davise H; Spitzer, Eric D; Barany, Francis; Golightly, Linnie M

    2015-01-01

    CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF) syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR). The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus) as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively). The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus).

  1. Evaluation of disease and viral biomarkers as triggers for therapeutic intervention in respiratory mousepox - an animal model of smallpox.

    Science.gov (United States)

    Parker, Scott; Chen, Nanhai G; Foster, Scott; Hartzler, Hollyce; Hembrador, Ed; Hruby, Dennis; Jordan, Robert; Lanier, Randall; Painter, George; Painter, Wesley; Sagartz, John E; Schriewer, Jill; Mark Buller, R

    2012-04-01

    The human population is currently faced with the potential use of natural or recombinant variola and monkeypox viruses as biological weapons. Furthermore, the emergence of human monkeypox in Africa and its expanding environs poses a significant natural threat. Such occurrences would require therapeutic and prophylactic intervention with antivirals to minimize morbidity and mortality of exposed populations. Two orally-bioavailable antivirals are currently in clinical trials; namely CMX001, an ether-lipid analog of cidofovir with activity at the DNA replication stage and ST-246, a novel viral egress inhibitor. Both of these drugs have previously been evaluated in the ectromelia/mousepox system; however, the trigger for intervention was not linked to a disease biomarker or a specific marker of virus replication. In this study we used lethal, intranasal, ectromelia virus infections of C57BL/6 and hairless SKH1 mice to model human disease and evaluate exanthematous rash (rash) as an indicator to initiate antiviral treatment. We show that significant protection can be provided to C57BL/6 mice by CMX001 or ST-246 when therapy is initiated on day 6 post infection or earlier. We also show that significant protection can be provided to SKH1 mice treated with CMX001 at day 3 post infection or earlier, but this is four or more days before detection of rash (ST-246 not tested). Although in this model rash could not be used as a treatment trigger, viral DNA was detected in blood by day 4 post infection and in the oropharyngeal secretions (saliva) by day 2-3 post infection - thus providing robust and specific markers of virus replication for therapy initiation. These findings are discussed in the context of current respiratory challenge animal models in use for the evaluation of poxvirus antivirals. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Self-reported Adverse Health Events Following Smallpox Vaccination in a Large Prospective Study of US Military Service Members

    Science.gov (United States)

    2007-08-27

    depression, panic disorder, other anxiety disorders, bulimia nervosa, binge‑eating disorders, and PTSD are reported in one mental health variable...22. 42. Wright KM, Huffman AH, Adler AB, Castro CA. Psychological screening program over‑ view. Mil Med 2002; 167:853‑61. 43. Brewin CR. Systematic

  3. Disease: H00372 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available H00372 Smallpox; Variola Smallpox is a contagious disease caused by the variola vi...al varieties of smallpox: variola major with a case fatality rate of 30% and variola minor with milder severity. Smallpox... millions of people. Infectious disease ... Variola virus [GN:T40082] ... Smallpox vaccine [DR:D05295] ... ICD-10: ...URNAL ... Dev Biol Stand 100:31-7 (1999) ... PMID:9795781 (description, env_factor) ... AUTHORS ... Ellner PD ... TITLE ... Smallpox

  4. Virulent poxviruses inhibit DNA sensing by preventing STING activation.

    Science.gov (United States)

    Georgana, Iliana; Sumner, Rebecca P; Towers, Greg J; Maluquer de Motes, Carlos

    2018-02-28

    Cytosolic recognition of DNA has emerged as a critical cellular mechanism of host immune activation upon pathogen invasion. The central cytosolic DNA sensor cGAS activates STING, which is phosphorylated, dimerises and translocates from the ER to a perinuclear region to mediate IRF-3 activation. Poxviruses are dsDNA viruses replicating in the cytosol and hence likely to trigger cytosolic DNA sensing. Here we investigated the activation of innate immune signalling by 4 different strains of the prototypic poxvirus vaccinia virus (VACV) in a cell line proficient in DNA sensing. Infection with the attenuated VACV strain MVA activated IRF-3 via cGAS and STING, and accordingly STING dimerised and was phosphorylated during MVA infection. Conversely, VACV strains Copenhagen and Western Reserve inhibited STING dimerisation and phosphorylation during infection and in response to transfected DNA and cGAMP, thus efficiently suppressing DNA sensing and IRF-3 activation. A VACV deletion mutant lacking protein C16, thought to be the only viral DNA sensing inhibitor acting upstream of STING, retained the ability to block STING activation. Similar inhibition of DNA-induced STING activation was also observed for cowpox and ectromelia viruses. Our data demonstrate that virulent poxviruses possess mechanisms for targeting DNA sensing at the level of the cGAS-STING axis and that these mechanisms do not operate in replication-defective strains such as MVA. These findings shed light on the role of cellular DNA sensing in poxvirus-host interactions and will open new avenues to determine its impact on VACV immunogenicity and virulence. IMPORTANCE Poxviruses are dsDNA viruses infecting a wide range of vertebrates and include the causative agent of smallpox (variola virus) and its vaccine vaccinia virus (VACV). Despite smallpox eradication VACV remains of interest as a therapeutic. Attenuated strains are popular vaccine candidates, whereas replication-competent strains are emerging as

  5. Use of a Vaccinia Construct Expressing the Circumsporozoite Protein in the Analysis of Protective Immunity to Plasmodium yoelii

    Science.gov (United States)

    1988-01-01

    William R. Majarian, 2 ,5 Frank A. Robey, 3 Walter Weiss, 1 and Stephen L. Hoffman 1 lInfectious Diseases Department, Naval Medical Research Institute...autoradiography. Recombinant viruses which were positive in this assay were subject to 3 rounds of plaque purification. Finally, plaque purified virus was...mechanisms in the protective immunity elicited by inmunization with irradiated sporozoites (3,7,8,9). In an attempt to induce a protective cellular immune

  6. Recombination-mediated genetic engineering of a bacterial artificial chromosome clone of modified vaccinia virus Ankara (MVA)

    DEFF Research Database (Denmark)

    Cottingham, Matthew G; Andersen, Rikke F; Spencer, Alexandra J

    2008-01-01

    -length, rescuable clones were obtained, which had indistinguishable immunogenicity in mice. One clone was shotgun sequenced and found to be identical to the parent. We employed GalK recombination-mediated genetic engineering (recombineering) of MVA-BAC to delete five selected viral genes. Deletion of C12L, A44L, A...

  7. Progress toward a universal H5N1 vaccine: a recombinant modified vaccinia virus Ankara-expressing trivalent hemagglutinin vaccine.

    Directory of Open Access Journals (Sweden)

    Mookkan Prabakaran

    Full Text Available The rapid evolution of new sublineages of H5N1 influenza poses the greatest challenge in control of H5N1 infection by currently existing vaccines. To overcome this, an MVAtor vector expressing three H5HA antigens A/Vietnam/1203/04, A/Indonesia/669/06 and A/Anhui/01/05 (MVAtor-tri-HA vector was developed to elicit broad cross-protection against diverse clades by covering amino acid variations in the major neutralizing epitopes of HA among H5N1 subtypes.BALB/c mice and guinea pigs were immunized i.m. with 8×107 TCID50/animal of MVAtor-tri-HA vector. The immunogenicity and cross-protective immunity of the MVAtor-tri-HA vector was evaluated against diverse clades of H5N1 strains.The results showed that mice immunized with MVAtor-tri-HA vector induced robust cross-neutralizing immunity to diverse H5N1 clades. In addition, the MVAtor-tri-HA vector completely protected against 10 MLD50 of a divergent clade of H5N1 infection (clade 7. Importantly, the serological surveillance of post-vaccinated guinea pig sera demonstrated that MVAtor-tri-HA vector was able to elicit strong cross-clade neutralizing immunity against twenty different H5N1 strains from six clades that emerged between 1997 and 2012.The present findings revealed that incorporation of carefully selected HA genes from divergent H5N1 strains within a single vector could be an effective approach in developing a vaccine with broad coverage to prevent infection during a pandemic situation.

  8. Genome-wide comparison of cowpox viruses reveals a new clade related to Variola virus.

    Directory of Open Access Journals (Sweden)

    Piotr Wojtek Dabrowski

    Full Text Available Zoonotic infections caused by several orthopoxviruses (OPV like monkeypox virus or vaccinia virus have a significant impact on human health. In Europe, the number of diagnosed infections with cowpox viruses (CPXV is increasing in animals as well as in humans. CPXV used to be enzootic in cattle; however, such infections were not being diagnosed over the last decades. Instead, individual cases of cowpox are being found in cats or exotic zoo animals that transmit the infection to humans. Both animals and humans reveal local exanthema on arms and legs or on the face. Although cowpox is generally regarded as a self-limiting disease, immunosuppressed patients can develop a lethal systemic disease resembling smallpox. To date, only limited information on the complex and, compared to other OPV, sparsely conserved CPXV genomes is available. Since CPXV displays the widest host range of all OPV known, it seems important to comprehend the genetic repertoire of CPXV which in turn may help elucidate specific mechanisms of CPXV pathogenesis and origin. Therefore, 22 genomes of independent CPXV strains from clinical cases, involving ten humans, four rats, two cats, two jaguarundis, one beaver, one elephant, one marah and one mongoose, were sequenced by using massive parallel pyrosequencing. The extensive phylogenetic analysis showed that the CPXV strains sequenced clearly cluster into several distinct clades, some of which are closely related to Vaccinia viruses while others represent different clades in a CPXV cluster. Particularly one CPXV clade is more closely related to Camelpox virus, Taterapox virus and Variola virus than to any other known OPV. These results support and extend recent data from other groups who postulate that CPXV does not form a monophyletic clade and should be divided into multiple lineages.

  9. The genomic sequence of ectromelia virus, the causative agent of mousepox

    International Nuclear Information System (INIS)

    Chen Nanhai; Danila, Maria I.; Feng Zehua; Buller, R. Mark L.; Wang Chunlin; Han Xiaosi; Lefkowitz, Elliot J.; Upton, Chris

    2003-01-01

    Ectromelia virus is the causative agent of mousepox, an acute exanthematous disease of mouse colonies in Europe, Japan, China, and the U.S. The Moscow, Hampstead, and NIH79 strains are the most thoroughly studied with the Moscow strain being the most infectious and virulent for the mouse. In the late 1940s mousepox was proposed as a model for the study of the pathogenesis of smallpox and generalized vaccinia in humans. Studies in the last five decades from a succession of investigators have resulted in a detailed description of the virologic and pathologic disease course in genetically susceptible and resistant inbred and out-bred mice. We report the DNA sequence of the left-hand end, the predicted right-hand terminal repeat, and central regions of the genome of the Moscow strain of ectromelia virus (approximately 177,500 bp), which together with the previously sequenced right-hand end, yields a genome of 209,771 bp. We identified 175 potential genes specifying proteins of between 53 and 1924 amino acids, and 29 regions containing sequences related to genes predicted in other poxviruses, but unlikely to encode for functional proteins in ectromelia virus. The translated protein sequences were compared with the protein database for structure/function relationships, and these analyses were used to investigate poxvirus evolution and to attempt to explain at the cellular and molecular level the well-characterized features of the ectromelia virus natural life cycle

  10. In vitro inhibition of monkeypox virus production and spread by Interferon-β

    Directory of Open Access Journals (Sweden)

    Johnston Sara C

    2012-01-01

    Full Text Available Abstract Background The Orthopoxvirus genus contains numerous virus species that are capable of causing disease in humans, including variola virus (the etiological agent of smallpox, monkeypox virus, cowpox virus, and vaccinia virus (the prototypical member of the genus. Monkeypox is a zoonotic disease that is endemic in the Democratic Republic of the Congo and is characterized by systemic lesion development and prominent lymphadenopathy. Like variola virus, monkeypox virus is a high priority pathogen for therapeutic development due to its potential to cause serious disease with significant health impacts after zoonotic, accidental, or deliberate introduction into a naïve population. Results The purpose of this study was to investigate the prophylactic and therapeutic potential of interferon-β (IFN-β for use against monkeypox virus. We found that treatment with human IFN-β results in a significant decrease in monkeypox virus production and spread in vitro. IFN-β substantially inhibited monkeypox virus when introduced 6-8 h post infection, revealing its potential for use as a therapeutic. IFN-β induced the expression of the antiviral protein MxA in infected cells, and constitutive expression of MxA was shown to inhibit monkeypox virus infection. Conclusions Our results demonstrate the successful inhibition of monkeypox virus using human IFN-β and suggest that IFN-β could potentially serve as a novel safe therapeutic for human monkeypox disease.

  11. EPIPOX: Immunoinformatic Characterization of the Shared T-Cell Epitome between Variola Virus and Related Pathogenic Orthopoxviruses

    Directory of Open Access Journals (Sweden)

    Magdalena Molero-Abraham

    2015-01-01

    developing new and safer smallpox vaccines. Variola virus genomes are now widely available, allowing computational characterization of the entire T-cell epitome and the use of such information to develop safe and yet effective vaccines. To this end, we identified 124 proteins shared between various species of pathogenic orthopoxviruses including variola minor and major, monkeypox, cowpox, and vaccinia viruses, and we targeted them for T-cell epitope prediction. We recognized 8,106, and 8,483 unique class I and class II MHC-restricted T-cell epitopes that are shared by all mentioned orthopoxviruses. Subsequently, we developed an immunological resource, EPIPOX, upon the predicted T-cell epitome. EPIPOX is freely available online and it has been designed to facilitate reverse vaccinology. Thus, EPIPOX includes key epitope-focused protein annotations: time point expression, presence of leader and transmembrane signals, and known location on outer membrane structures of the infective viruses. These features can be used to select specific T-cell epitopes suitable for experimental validation restricted by single MHC alleles, as combinations thereof, or by MHC supertypes.

  12. The Evolution of Poxvirus Vaccines

    Science.gov (United States)

    Sánchez-Sampedro, Lucas; Perdiguero, Beatriz; Mejías-Pérez, Ernesto; García-Arriaza, Juan; Di Pilato, Mauro; Esteban, Mariano

    2015-01-01

    After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases. PMID:25853483

  13. Mathematical modeling provides kinetic details of the human immune response to vaccination

    Directory of Open Access Journals (Sweden)

    Dustin eLe

    2015-01-01

    Full Text Available With major advances in experimental techniques to track antigen-specific immune responses many basic questions on the kinetics of virus-specific immunity in humans remain unanswered. To gain insights into kinetics of T and B cell responses in human volunteers we combine mathematical models and experimental data from recent studies employing vaccines against yellow fever and smallpox. Yellow fever virus-specific CD8 T cell population expanded slowly with the average doubling time of 2 days peaking 2.5 weeks post immunization. Interestingly, we found that the peak of the yellow fever-specific CD8 T cell response is determined by the rate of T cell proliferation and not by the precursor frequency of antigen-specific cells as has been suggested in several studies in mice. We also found that while the frequency of virus-specific T cells increases slowly, the slow increase can still accurately explain clearance of yellow fever virus in the blood. Our additional mathematical model describes well the kinetics of virus-specific antibody-secreting cell and antibody response to vaccinia virus in vaccinated individuals suggesting that most of antibodies in 3 months post immunization are derived from the population of circulating antibody-secreting cells. Taken together, our analysis provides novel insights into mechanisms by which live vaccines induce immunity to viral infections and highlight challenges of applying methods of mathematical modeling to the current, state-of-the-art yet limited immunological data.

  14. Mathematical modeling provides kinetic details of the human immune response to vaccination.

    Science.gov (United States)

    Le, Dustin; Miller, Joseph D; Ganusov, Vitaly V

    2014-01-01

    With major advances in experimental techniques to track antigen-specific immune responses many basic questions on the kinetics of virus-specific immunity in humans remain unanswered. To gain insights into kinetics of T and B cell responses in human volunteers we combined mathematical models and experimental data from recent studies employing vaccines against yellow fever and smallpox. Yellow fever virus-specific CD8 T cell population expanded slowly with the average doubling time of 2 days peaking 2.5 weeks post immunization. Interestingly, we found that the peak of the yellow fever-specific CD8 T cell response was determined by the rate of T cell proliferation and not by the precursor frequency of antigen-specific cells as has been suggested in several studies in mice. We also found that while the frequency of virus-specific T cells increased slowly, the slow increase could still accurately explain clearance of yellow fever virus in the blood. Our additional mathematical model described well the kinetics of virus-specific antibody-secreting cell and antibody response to vaccinia virus in vaccinated individuals suggesting that most of antibodies in 3 months post immunization were derived from the population of circulating antibody-secreting cells. Taken together, our analysis provided novel insights into mechanisms by which live vaccines induce immunity to viral infections and highlighted challenges of applying methods of mathematical modeling to the current, state-of-the-art yet limited immunological data.

  15. Gateways to clinical trials.

    Science.gov (United States)

    Tomillero, A; Moral, M A

    2009-05-01

    (-)-Gossypol; Abacavir sulfate/lamivudine, ACAM-1000, ACE-011, Agomelatine, AGS-004, Alemtuzumab, Alvocidib hydrochloride, AMG-317, Amlodipine, Aripiprazole, Atazanavir sulfate, Azacitidine; Becatecarin, Belinostat, Bevacizumab, BMS-387032, BMS-690514, Bortezomib; Casopitant mesylate, Cetuximab, Choline fenofibrate, CK-1827452, Clofarabine, Conivaptan hydrochloride; Dabigatran etexilate, DADMe-Immucillin-H, Darbepoetin alfa, Darunavir, Dasatinib, DC-WT1, Decitabine, Deferasirox, Degarelix acetate, Denenicokin, Denosumab, Dienogest, Duloxetine hydrochloride; Ecogramostim, Eculizumab, Edoxaban tosilate, Elacytarabine, Elesclomol, Eltrombopag olamine, Enfuvirtide, Enzastaurin hydrochloride, Eribulin mesilate, Erlotinib hydrochloride, Escitalopram oxalate, Eszopiclone, Etravirine; Flibanserin, Fludarabine, Fondaparinux sodium, Fosamprenavir calcium; Gefitinib, Genistein; I-131-L19-SIP, Idrabiotaparinux sodium, Imatinib mesylate, IMGN-901, Ipilimumab; Laromustine, Lenalidomide, Liposomal cisplatin, Liraglutide, Lisdexamfetamine mesilate, Lopinavir, Lopinavir/ritonavir; Maraviroc, MDV-3100, Mecasermin rinfabate, MP-470, Mycophenolic acid sodium salt; Naproxcinod, NB-002, Nesiritide, Nilotinib hydrochloride monohydrate, NK-012; Palonosetron hydrochloride, Panobinostat, Pegfilgrastim, Peginterferon alfa-2a, Pitavastatin calcium, PL-3994, Plerixafor hydrochloride, Plitidepsin, PM-10450; Raltegravir potassium, Recombinant human soluble thrombomodulin, ReoT3D, RHAMM R3 peptide, Rivaroxaban, Romiplostim, Rosuvastatin calcium, Rozrolimupab; Sabarubicin hydrochloride, Salinosporamide A, Sirolimus-eluting stent, Smallpox (Vaccinia) Vaccine, Live, Sorafenib; Tenofovir disoproxil fumarate, Tenofovir disoproxil fumarate/emtricitabine, Teriparatide, Tipifarnib, Tipranavir, Trabectedin, Trifluridine/TPI; Vardenafil hydrochloride hydrate, Vinflunine, Volociximab, Vorinostat; Ximelagatran; Yttrium 90 (90Y) ibritumomab tiuxetan; Ziprasidone hydrochloride, Zoledronic acid monohydrate

  16. Use of antigens labelled with radioisotopes in serological epidemiology. Part of a coordinated programme

    International Nuclear Information System (INIS)

    Felsenfeld, O.

    1976-01-01

    A brief status report of intended cooperative projects is presented. Some sera were available for testing diptheria, tetanus, smallpox and typhoid antibody formation. Some very preliminary work was carried out on the diagnosis of staphyloenterotoxicosis. A preliminary report on radioisotope-labelled cercarial antigens has been published elsewhere. Lipopolysaccharide complexes were labelled with 14 C-sodium acetate for studying sera in diseases caused by gram-negative cocci (meningococci and gonococci). Leptospiral antigens were studied using 14 C-glucose. Of the other Trepanomataceae, borreliae and the cultivable syphilis T. pallidum were tested, using 14 C-amino acid mixture. The study of trypanosomes was continued. Labelling with 125 I proved effective but the antigens could also be labelled with 14 C (borohydrate- 14 C-formaldehyde). In schistosomiasis, defatted cercariae were used as antigen. Malarial diagnosis with the aid of Plasmodium knowlesi and Pl. gallinarum as antigens for human Plasmodia proved inconclusive. Pseudomonas aeruginosa toxin was successfully labelled with 125 I. Progress was achieved in viral diagnosis by using the inhibition test (influenza A virus and vaccinia virus being used as models for RNA and DNA viruses, respectively)

  17. The Evolution of Poxvirus Vaccines

    Directory of Open Access Journals (Sweden)

    Lucas Sánchez-Sampedro

    2015-04-01

    Full Text Available After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV, the causative agent of smallpox. Cowpox virus (CPXV and horsepox virus (HSPV were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV, which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases.

  18. [Comparison of protective properties of the smallpox DNA-vaccine based on the variola virus A30L gene and its variant with modified codon usage].

    Science.gov (United States)

    Maksiutov, R A; Shchelkunov, S N

    2011-01-01

    Efficacy of candidate DNA-vaccines based on the variola virus natural gene A30L and artificial gene A30Lopt with modified codon usage, optimized for expression in mammalian cells, was tested. The groups of mice were intracutaneously immunized three times with three-week intervals with candidate DNA-vaccines: pcDNA_A30L or pcDNA_A30Lopt, and in three weeks after the last immunization all mice in the groups were intraperitoneally infected by the ectromelia virus K1 strain in 10 LD50 dose for the estimation of protection. It was shown that the DNA-vaccines based on natural gene A30L and codon-optimized gene A30Lopt elicited virus, thereby neutralizing the antibody response and protected mice from lethal intraperitoneal challenge with the ectromelia virus with lack of statistically significant difference.

  19. Sequential Immunization with gp140 Boosts Immune Responses Primed by Modified Vaccinia Ankara or DNA in HIV-Uninfected South African Participants.

    Directory of Open Access Journals (Sweden)

    Gavin Churchyard

    Full Text Available The safety and immunogenicity of SAAVI DNA-C2 (4 mg IM, SAAVI MVA-C (2.9 x 109 pfu IM and Novartis V2-deleted subtype C gp140 (100 mcg with MF59 adjuvant in various vaccination regimens was evaluated in HIV-uninfected adults in South Africa.Participants at three South African sites were randomized (1:1:1:1 to one of four vaccine regimens: MVA prime, sequential gp140 protein boost (M/M/P/P; concurrent MVA/gp140 (MP/MP; DNA prime, sequential MVA boost (D/D/M/M; DNA prime, concurrent MVA/gp140 boost (D/D/MP/MP or placebo. Peak HIV specific humoral and cellular responses were measured.184 participants were enrolled: 52% were female, all were Black/African, median age was 23 years (range, 18-42 years and 79% completed all vaccinations. 159 participants reported at least one adverse event, 92.5% were mild or moderate. Five, unrelated, serious adverse events were reported. The M/M/P/P and D/D/MP/MP regimens induced the strongest peak neutralizing and binding antibody responses and the greatest CD4+ T-cell responses to Env. All peak neutralizing and binding antibody responses decayed with time. The MVA, but not DNA, prime contributed to the humoral and cellular immune responses. The D/D/M/M regimen was poorly immunogenic overall but did induce modest CD4+ T-cell responses to Gag and Pol. CD8+ T-cell responses to any antigen were low for all regimens.The SAAVI DNA-C2, SAAVI MVA-C and Novartis gp140 with MF59 adjuvant in various combinations were safe and induced neutralizing and binding antibodies and cellular immune responses. Sequential immunization with gp140 boosted immune responses primed by MVA or DNA. The best overall immune responses were seen with the M/M/P/P regimen.ClinicalTrials.gov NCT01418235.

  20. Alphavirus replicon DNA expressing HIV antigens is an excellent prime for boosting with recombinant modified vaccinia Ankara (MVA or with HIV gp140 protein antigen.

    Directory of Open Access Journals (Sweden)

    Maria L Knudsen

    Full Text Available Vaccination with DNA is an attractive strategy for induction of pathogen-specific T cells and antibodies. Studies in humans have shown that DNA vaccines are safe, but their immunogenicity needs further improvement. As a step towards this goal, we have previously demonstrated that immunogenicity is increased with the use of an alphavirus DNA-launched replicon (DREP vector compared to conventional DNA vaccines. In this study, we investigated the effect of varying the dose and number of administrations of DREP when given as a prime prior to a heterologous boost with poxvirus vector (MVA and/or HIV gp140 protein formulated in glucopyranosyl lipid A (GLA-AF adjuvant. The DREP and MVA vaccine constructs encoded Env and a Gag-Pol-Nef fusion protein from HIV clade C. One to three administrations of 0.2 μg DREP induced lower HIV-specific T cell and IgG responses than the equivalent number of immunizations with 10 μg DREP. However, the two doses were equally efficient as a priming component in a heterologous prime-boost regimen. The magnitude of immune responses depended on the number of priming immunizations rather than the dose. A single low dose of DREP prior to a heterologous boost resulted in greatly increased immune responses compared to MVA or protein antigen alone, demonstrating that a mere 0.2 μg DREP was sufficient for priming immune responses. Following a DREP prime, T cell responses were expanded greatly by an MVA boost, and IgG responses were also expanded when boosted with protein antigen. When MVA and protein were administered simultaneously following multiple DREP primes, responses were slightly compromised compared to administering them sequentially. In conclusion, we have demonstrated efficient priming of HIV-specific T cell and IgG responses with a low dose of DREP, and shown that the priming effect depends on number of primes administered rather than dose.

  1. Comparing adjuvanted H28 and modified vaccinia virus ankara expressingH28 in a mouse and a non-human primate tuberculosis model

    DEFF Research Database (Denmark)

    Billeskov, Rolf; Christensen, Jan Pravsgaard; Aagaard, Claus

    2013-01-01

    a significant positive correlation with protection at week 6 post infection, whereas the opposite was observed for post infection CD4 T cells producing only IFN-γ. Moreover, as a BCG booster vaccine in a clinically relevant non-human primate TB model, the H28/H28 vaccine strategy induced a slightly more......-γ single producing CD4 T cell subsets correlated with protection in the mouse TB model. Moreover, our data demonstrated that the H28 vaccine antigen was able to induce strong protection in both a mouse and a non-human primate TB model....

  2. A single cidofovir treatment rescues animals at progressive stages of lethal orthopoxvirus disease

    Directory of Open Access Journals (Sweden)

    Israely Tomer

    2012-06-01

    Full Text Available Abstract Background In an event of a smallpox outbreak in humans, the window for efficacious treatment by vaccination with vaccinia viruses (VACV is believed to be limited to the first few days post-exposure (p.e.. We recently demonstrated in a mouse model for human smallpox, that active immunization 2–3 days p.e. with either VACV-Lister or modified VACV Ankara (MVA vaccines, can rescue animals from lethal challenge of ectromelia virus (ECTV, the causative agent of mousepox. The present study was carried out in order to determine whether a single dose of the anti-viral cidofovir (CDV, administered at different times and doses p.e. either alone or in conjunction with active vaccination, can rescue ECTV infected mice. Methods Animals were infected intranasally with ECTV, treated on different days with various single CDV doses and monitored for morbidity, mortality and humoral response. In addition, in order to determine the influence of CDV on the immune response following vaccination, both the "clinical take”, IFN-gamma and IgG Ab levels in the serum were evaluated as well as the ability of the mice to withstand a lethal challenge of ECTV. Finally the efficacy of a combined treatment regime of CDV and vaccination p.e. was determined. Results A single p.e. CDV treatment is sufficient for protection depending on the initiation time and dose (2.5 – 100 mg/kg of treatment. Solid protection was achieved by a low dose (5 mg/kg CDV treatment even if given at day 6 p.e., approximately 4 days before death of the control infected untreated mice (mean time to death (MTTD 10.2. At the same time point complete protection was achieved by single treatment with higher doses of CDV (25 or 100 mg/kg. Irrespective of treatment dose, all surviving animals developed a protective immune response even when the CDV treatment was initiated one day p.e.. After seven days post treatment with the highest dose (100 mg/kg, virus was still detected in some

  3. History of Bioterrorism: Botulism

    Medline Plus

    Full Text Available ... Compartir This video describes the Category A diseases: smallpox, anthrax, botulism, plague, tularemia, and viral hemorrhagic fevers. ... Specific Segments of the Program Overview Anthrax Plague Smallpox Botulism Viral Hemorrhagic Fevers Tularemia Note: Parts of ...

  4. History of Bioterrorism: Botulism

    Medline Plus

    Full Text Available ... describes the Category A diseases: smallpox, anthrax, botulism, plague, tularemia, and viral hemorrhagic fevers. If these germs ... Watch Specific Segments of the Program Overview Anthrax Plague Smallpox Botulism Viral Hemorrhagic Fevers Tularemia Note: Parts ...

  5. History of Bioterrorism: Botulism

    Medline Plus

    Full Text Available ... the Category A diseases: smallpox, anthrax, botulism, plague, tularemia, and viral hemorrhagic fevers. If these germs were ... Overview Anthrax Plague Smallpox Botulism Viral Hemorrhagic Fevers Tularemia Note: Parts of this video were adapted from " ...

  6. [Spread of Chinese variolation art to the western world and its influence].

    Science.gov (United States)

    Xie, S; Zhang, D

    2000-07-01

    Smallpox inoculation or variolation is a great invention of medicine in ancient China. In this paper, we introduced the process of spread of smallpox inoculation technique from China to western world (mainly to England), and reviewed the royal experiment of smallpox inoculation on human being and its influence on the prevention of smallpox in western countries. The spread and practice of smallpox inoculation in western world was an important event in the history of intercommunication between eastern and western medicines, which is worth emphasizing and further studying.

  7. Smallpox and pan-Orthodox Virus Detection by Real-Time 3’-Minor Groove Binder TaqMan Assays Oil the Roche LightCycler and the Cepheid Smart Cycler Platforms

    Science.gov (United States)

    2003-11-08

    Bacillus anthracis BA0068 Ames Sterne SPS 97.13.213 Bacillus cereus Bacillus coagulans Bacillus licheniformis Bacillus macerans Bacillus ...megaterium Bacillus polymyxa Bacillus sphaericus Bacillus stearothermophilus Bacillus subtilis subsp. niger Bacillus thuringiensis Bacillus popilliae...varicella- zoster virus, and Bacillus anthracis DNA by LightCycler polymerase chain reaction after autoclaving:

  8. [Not Available].

    Science.gov (United States)

    Kordelas, L; Grond-Ginsbach, C

    2000-01-01

    Kant's discussion of the ethical implications of smallpox inoculation is presented here. In four fragments Kant analyzes the moral legitimacy of endangering other people in medical practice and especially endangering people who are incapable of giving consent. In addition, we re-evaluate the alleged "success story" of the development of smallpox prevention and review the technical and theoretical difficulties of smallpox inoculation at the time of Kant.

  9. Intradermal HIV-1 DNA Immunization Using Needle-Free Zetajet Injection Followed by HIV-Modified Vaccinia Virus Ankara Vaccination Is Safe and Immunogenic in Mozambican Young Adults: A Phase I Randomized Controlled Trial.

    Science.gov (United States)

    Viegas, Edna Omar; Tembe, Nelson; Nilsson, Charlotta; Meggi, Bindiya; Maueia, Cremildo; Augusto, Orvalho; Stout, Richard; Scarlatti, Gabriella; Ferrari, Guido; Earl, Patricia L; Wahren, Britta; Andersson, Sören; Robb, Merlin L; Osman, Nafissa; Biberfeld, Gunnel; Jani, Ilesh; Sandström, Eric

    2017-11-27

    We assessed the safety and immunogenicity of HIV-DNA priming using Zetajet™, a needle-free device intradermally followed by intramuscular HIV-MVA boosts, in 24 healthy Mozambicans. Volunteers were randomized to receive three immunizations of 600 μg (n = 10; 2 × 0.1 ml) or 1,200 μg (n = 10; 2 × 0.2 ml) of HIV-DNA (3 mg/ml), followed by two boosts of 10 8 pfu HIV-MVA. Four subjects received placebo saline injections. Vaccines and injections were safe and well tolerated with no difference between the two priming groups. After three HIV-DNA immunizations, IFN-γ ELISpot responses to Gag were detected in 9/17 (53%) vaccinees, while none responded to Envelope (Env). After the first HIV-MVA, the overall response rate to Gag and/or Env increased to 14/15 (93%); 14/15 (93%) to Gag and 13/15 (87%) to Env. There were no significant differences between the immunization groups in frequency of response to Gag and Env or magnitude of Gag responses. Env responses were significantly higher in the higher dose group (median 420 vs. 157.5 SFC/million peripheral blood mononuclear cell, p = .014). HIV-specific antibodies to subtype C gp140 and subtype B gp160 were elicited in all vaccinees after the second HIV-MVA, without differences in titers between the groups. Neutralizing antibody responses were not detected. Two (13%) of 16 vaccinees, one in each of the priming groups, exhibited antibodies mediating antibody-dependent cellular cytotoxicity to CRF01_AE. In conclusion, HIV-DNA vaccine delivered intradermally in volumes of 0.1-0.2 ml using Zetajet was safe and well tolerated. Priming with the 1,200 μg dose of HIV-DNA generated higher magnitudes of ELISpot responses to Env.

  10. Analgecine, the extracts of Vaccinia-inoculated rabbit skin, effectively alleviates the chronic low back pain with little side effect – A randomized multi-center double-blind placebo-controlled phase 3 clinical trial

    Directory of Open Access Journals (Sweden)

    Jian Dong

    2016-04-01

    Conclusion: Analgecine (AGC, 8 units twice daily effectively alleviates chronic low back pain due to degenerative vertebral disorders when compared to placebo and is well tolerated by tested individuals, and can be considered as a first-line treatment for chronic low pain due to degenerative vertebral diseases.

  11. Deletion of A44L, A46R and C12L Vaccinia Virus Genes from the MVA Genome Improved the Vector Immunogenicity by Modifying the Innate Immune Response Generating Enhanced and Optimized Specific T-Cell Responses

    Directory of Open Access Journals (Sweden)

    María Pía Holgado

    2016-05-01

    Full Text Available MVA is an attenuated vector that still retains immunomodulatory genes. We have previously reported its optimization after deleting the C12L gene, coding for the IL-18 binding-protein. Here, we analyzed the immunogenicity of MVA vectors harboring the simultaneous deletion of A44L, related to steroid synthesis and A46R, a TLR-signaling inhibitor (MVAΔA44L-A46R; or also including a deletion of C12L (MVAΔC12L/ΔA44L-A46R. The absence of biological activities of the deleted genes in the MVA vectors was demonstrated. Adaptive T-cell responses against VACV epitopes, evaluated in spleen and draining lymph-nodes of C57Bl/6 mice at acute/memory phases, were of higher magnitude in those animals that received deleted MVAs compared to MVAwt. MVAΔC12L/ΔA44L-A46R generated cellular specific memory responses of higher quality characterized by bifunctionality (CD107a/b+/IFN-γ+ and proliferation capacity. Deletion of selected genes from MVA generated innate immune responses with higher levels of determining cytokines related to T-cell response generation, such as IL-12, IFN-γ, as well as IL-1β and IFN-β. This study describes for the first time that simultaneous deletion of the A44L, A46R and C12L genes from MVA improved its immunogenicity by enhancing the host adaptive and innate immune responses, suggesting that this approach comprises an appropriate strategy to increase the MVA vaccine potential.

  12. Immunochromatographic Assays for Identification of Biological Agents: NATO SIBCA Exercise I

    National Research Council Canada - National Science Library

    Fulton, R

    2000-01-01

    ...: Bacillus anthracis, Yersinia pestis, Vibrio cholerae, Venezuelan Equine Encephalitis (VEE) virus, Francisella tularensis, Brucella melitensis, Burkholderia mallei, Yellow Fever virus, Vaccinia virus, or Coxiella burnetii...

  13. ReliefSeq: a gene-wise adaptive-K nearest-neighbor feature selection tool for finding gene-gene interactions and main effects in mRNA-Seq gene expression data.

    Directory of Open Access Journals (Sweden)

    Brett A McKinney

    Full Text Available Relief-F is a nonparametric, nearest-neighbor machine learning method that has been successfully used to identify relevant variables that may interact in complex multivariate models to explain phenotypic variation. While several tools have been developed for assessing differential expression in sequence-based transcriptomics, the detection of statistical interactions between transcripts has received less attention in the area of RNA-seq analysis. We describe a new extension and assessment of Relief-F for feature selection in RNA-seq data. The ReliefSeq implementation adapts the number of nearest neighbors (k for each gene to optimize the Relief-F test statistics (importance scores for finding both main effects and interactions. We compare this gene-wise adaptive-k (gwak Relief-F method with standard RNA-seq feature selection tools, such as DESeq and edgeR, and with the popular machine learning method Random Forests. We demonstrate performance on a panel of simulated data that have a range of distributional properties reflected in real mRNA-seq data including multiple transcripts with varying sizes of main effects and interaction effects. For simulated main effects, gwak-Relief-F feature selection performs comparably to standard tools DESeq and edgeR for ranking relevant transcripts. For gene-gene interactions, gwak-Relief-F outperforms all comparison methods at ranking relevant genes in all but the highest fold change/highest signal situations where it performs similarly. The gwak-Relief-F algorithm outperforms Random Forests for detecting relevant genes in all simulation experiments. In addition, Relief-F is comparable to the other methods based on computational time. We also apply ReliefSeq to an RNA-Seq study of smallpox vaccine to identify gene expression changes between vaccinia virus-stimulated and unstimulated samples. ReliefSeq is an attractive tool for inclusion in the suite of tools used for analysis of mRNA-Seq data; it has power to

  14. Research in Drug Development against Viral Diseases of Military Importance (Biological Testing). Volume 1

    Science.gov (United States)

    1991-03-01

    Rhabdoviridae family. Vaccinia Virus is currently employed as a representation of the DNA Virus (Poxviridae). This agent poses a threat to the military...Arenaviridae, Rhabdoviridae , Poxviridae, Adenoviridae and Retroviridae families. The test viruses consist of the following: (1) Vaccinia (VV) Virus, (2

  15. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences. Girish J Kotwal. Articles written in Journal of Biosciences. Volume 28 Issue 3 April 2003 pp 265-271 Articles. Vaccinia complement control protein: Multi-functional protein and a potential wonder drug · Purushottam Jha Girish J Kotwal · More Details Abstract Fulltext PDF. Vaccinia ...

  16. Progression of pathogenic events in cynomolgus macaques infected with variola virus.

    Directory of Open Access Journals (Sweden)

    Victoria Wahl-Jensen

    Full Text Available Smallpox, caused by variola virus (VARV, is a devastating human disease that affected millions worldwide until the virus was eradicated in the 1970 s. Subsequent cessation of vaccination has resulted in an immunologically naive human population that would be at risk should VARV be used as an agent of bioterrorism. The development of antivirals and improved vaccines to counter this threat would be facilitated by the development of animal models using authentic VARV. Towards this end, cynomolgus macaques were identified as adequate hosts for VARV, developing ordinary or hemorrhagic smallpox in a dose-dependent fashion. To further refine this model, we performed a serial sampling study on macaques exposed to doses of VARV strain Harper calibrated to induce ordinary or hemorrhagic disease. Several key differences were noted between these models. In the ordinary smallpox model, lymphoid and myeloid hyperplasias were consistently found whereas lymphocytolysis and hematopoietic necrosis developed in hemorrhagic smallpox. Viral antigen accumulation, as assessed immunohistochemically, was mild and transient in the ordinary smallpox model. In contrast, in the hemorrhagic model antigen distribution was widespread and included tissues and cells not involved in the ordinary model. Hemorrhagic smallpox developed only in the presence of secondary bacterial infections - an observation also commonly noted in historical reports of human smallpox. Together, our results support the macaque model as an excellent surrogate for human smallpox in terms of disease onset, acute disease course, and gross and histopathological lesions.

  17. De vreselijkste aller harpijen : pokkenepidemieen en pokkenbestrijding in Nederland in de achttiende en negentiende eeuw : een sociaal-historische en historisch-demografische studie

    NARCIS (Netherlands)

    Rutten, W.

    1997-01-01

    This study examines the fight against smallpox in the Netherlands in the 18th and 19th centuries. Smallpox mortality dropped in an unprecedented way from about 1810, generating a substantial reduction in the urban child mortality rate. The impact of vaccination on the acceleration of the Dutch

  18. CDC's 29th Annual Joseph W. Mountin Lecture

    Centers for Disease Control (CDC) Podcasts

    In this podcast, William H. Foege, MD, MPH delivers the 29th Annual Joseph W. Mountin Lecture. Dr. Foege was a key leader in the smallpox effort and worked as an epidemiologist in the successful eradication campaign in the 1970s. Dr. Foege became chief of the Smallpox Eradication Program at CDC, and was appointed director of CDC in 1977.

  19. 77 FR 57567 - Single Source Cooperative Agreement Award for World Health Organization

    Science.gov (United States)

    2012-09-18

    ... Organization AGENCY: Department of Health and Human Services (HHS), Assistant Secretary for Preparedness and... Organization for a grant titled: ``Smallpox Research Oversight Activities: WHO Advisory Committee on Variola... notification to World Health Organization (WHO) as soon as possible, and any confirmed smallpox case would...

  20. 2018-04-21T09:26:25Z https://www.ajol.info/index.php/all/oai oai:ojs ...

    African Journals Online (AJOL)

    article/92486 2018-04-21T09:26:25Z lhr:ART Beyond “The Way of God:” Missionaries, Colonialism and Smallpox in Abeokuta Oduntan, BO Abeokuta, Colonial Medicine, Smallpox, Sopono. This article explores the ways the people of Abeokuta ...

  1. Bioactivity of marine organisms. 6. Antiviral evaluation of marine algal extracts from the Indian coast

    Digital Repository Service at National Institute of Oceanography (India)

    Kamat, S.Y.; Wahidullah, S.; DeSouza, L.; Naik, C.G.; Ambiye, V.; Bhakuni, D.S.; Goel, A.K.; Garg, H.S.; Srimal, R.C.

    Ethanolic extracts of Indian marine algae belonging to the Rhodophyceae, Phaeophyceae and Chlorophyceae were tested for anti-semiliki Forest (SFV), Ranikhet Disease (RDV) and Vaccinia (VV) viruses. In the primary screening of 31 seaweeds, 17...

  2. Wiskundige modellering voor bestrijding van infectieziekten

    NARCIS (Netherlands)

    Kretzschmar, Mirjam; Wallinga, Jacco; Coutinho, Roel A

    2006-01-01

    When determining interventions against threatening infectious diseases such as HIV-infection, severe acute respiratory syndrome (SARS), smallpox and pandemic influenza, the use of mathematical models of the spread of infectious diseases is becoming increasingly popular. These models contribute to

  3. Swimming Pools and Molluscum Contagiosum

    Science.gov (United States)

    ... Travelers’ Health: Smallpox & Other Orthopoxvirus-Associated Infections Poxvirus Swimming Pools Recommend on Facebook Tweet Share Compartir The ... often ask if molluscum virus can spread in swimming pools. There is also concern that it can ...

  4. History of Bioterrorism: Botulism

    Medline Plus

    Full Text Available ... Response Worker Health and Safety Reaching At-Risk Populations Health Alert Network (HAN) Laboratory Information Social Media ... Share Compartir This video describes the Category A diseases: smallpox, anthrax, botulism, plague, tularemia, and viral hemorrhagic ...

  5. ELEVENm WORLD HEALTH ASSEMBLY

    African Journals Online (AJOL)

    of malaria, followed by smallpox, tuberculosis, syphilis and yaws, permitting WHO ... the world, and the initiation of eradication programmes in certain communicable .... Guatemala, India, Iran, Italy, Liberia, Mexico, Tunisia, USSR,'. United Arab ...

  6. cost-benefit analysis of anti-retroviral therapy (art) for hiv/aids

    African Journals Online (AJOL)

    user

    HIV/AIDS is high and that is why most patients cannot access HIV/AIDS treatment even though these drugs are supposed to .... Laboratory in New Mexico, Dr. Gerald Myers, and ... tuberculosis, and vaccinations against smallpox represented ...

  7. Fulltext PDF

    Indian Academy of Sciences (India)

    Unknown

    items produced by the international media also tend to annoy me: most of them refer to the disease ... Smallpox Eradication Archives of the World Health Organization. ... governmental standpoints and, sometimes, oppose vaccination, and the ...

  8. Evaluation of Orally Delivered ST-246 as Postexposure Prophylactic and Antiviral Therapeutic in an Aerosolized Rabbitpox Rabbit Model

    National Research Council Canada - National Science Library

    Nalca, Aysegul; Hatkin, Josh M; Garza, Nicole L; Nichols, Donald K; Norris, Sarah W; Hruby, Dennis E; Jordan, Robert

    2008-01-01

    ...) to treat smallpox or monkeypox infection. In this study, we showed that administration of the antiviral compound ST-246 to rabbits by oral gavage, once daily for 14 days beginning 1h postexposure (p.e.), resulted in 100...

  9. Vaccines for the 21st century: a tool for decisionmaking

    National Research Council Canada - National Science Library

    Stratton, Kathleen R; Durch, Jane; Lawrence, Robert S

    Vaccines have made it possible to eradicate the scourge of smallpox, promise the same for polio, and have profoundly reduced the threat posed by other diseases such as whooping cough, measles, and meningitis. What is next...

  10. History of Bioterrorism: Botulism

    Medline Plus

    Full Text Available ... Facebook Tweet Share Compartir This video describes the Category A diseases: smallpox, anthrax, botulism, plague, tularemia, and ... Medical Research Institute of Infectious Diseases (USAMRIID), the Food and Drug Administration (FDA), and the Centers for ...

  11. Fulltext PDF

    Indian Academy of Sciences (India)

    Smallpox in the modern scientific and colonial contexts 1721–1840. RAJESH KOCHHAR. Indian Institute of Science Education and Research, Sector 26, Chandigarh 160 019, India ... An outstanding example of traditional knowledge from the.

  12. Mushrooms as a source of substances with antiviral activity

    Directory of Open Access Journals (Sweden)

    Martyna Kandefer-Szerszeń

    2014-08-01

    Full Text Available Water extracts the fructifications of 56 species of fungi were examined as a source of antiviral substances with activity against VS and vaccinia viruses. Extracts from 16 fungal species exhibited the antiviral activity. Water extracts from Boletus edulis active against vaccinia virus and extract from Armillariella mellea active against VS virus are particularly worth nothing. Both of them in applied concentrations were not toxic in chick embryo fibroblasts tissue culture.

  13. [Small pox--infection, therapy and anaesthesiological management (part 1)].

    Science.gov (United States)

    Langefeld, T W; Engel, J; Menges, T; Hempelmann, G

    2003-07-01

    Smallpox is an acute contagious and sometimes fatal infectious disease. It is caused by the variola-virus. Smallpox is characterized by a typical disease form with a progressive distinctive skin rash, especially at face, arms and legs. Smallpox has a fatality rate of about 30 % and the therapy of infected patients is only symptomatically. As prevention the WHO initiated worldwide vaccination programs in the year 1967. The last naturally occurring case of smallpox in the world was in Somalia in 1977. Since then the only known cases of smallpox happened from an outbreak in Birmingham, England caused by a laboratory accident in the year of 1979. On May the 8 th 1980 the disease was declared as eliminated from the world by the WHO (WHO-Resolution 33.33). A natural occurrence of the variola-virus seems to be not given. Nevertheless the virus exists for research in two laboratories, the American Centers of Disease Control and Prevention in Atlanta, Georgia and in the Russian Research Center for Virology and Biotechnics in Kolzowo, Sibiria. Threatening infections with smallpox or other microorganisms, used as bioweapons, get a new dimension through global terrorism. The variola-virus represents an optimal candidate for bioweapons. It is easy to replicate, it is highly contagious and the transmission over aerosol or direct contact from man to man is easy to handle. After the disease was eliminated from the world, routine vaccination among general public was stopped. Therefore younger people don't possess any vaccination protection. Older formerly vaccinated people probably have only a non-sufficient protection. Because of the smallpox elimination a lot of physicians have no experience with this disease. An outbreak of this smallpox isn't only controlled by new vaccination. In our times we need adapted prevention-standards, pox-alarm plans and quarantine standards.

  14. A Study of Waste Management within the COL Florence A. Blanchfield Army Community Hospital, Fort Campbell, Kentucky.

    Science.gov (United States)

    1981-08-01

    besnoiti Borna disease virus Bovine infectious petechial fever virus Camel pox virus Ephemeral fever virus Fowl plague virus Goat pox virus Hog...Varicella virus Vole rickettsia Yellow fever virus, 17D vaccine strain 69 Class 3 Alastrun, smallpox, monkeypox, and whitepox, when used in vitro Arbovirus...animal inoculation experiments Vesicular stomatitis virus Yellow fever virus - wild when used in vitro Class 4 Alastrun, smallpox, monkeypox, and

  15. [The world is free of pox - Implementation and success of a grandiose program].

    Science.gov (United States)

    Dittmann, S

    1980-12-15

    At the beginning of this century the compulsory vaccination and revaccination which was legally founded after the introduction of the vaccination by Jenner (1796) led to the removal of the smallpox in Europe and Northern America. However, up to the sixties in the developing countries of Asia, Africa as well as of Southern America and Middle America still fell ill and died of small-pox millions of people. Between 1953 and 1973 importations into countries of Europe and Northern America took place in 51 cases. In 1959 on the motion of the USSR the WHO decided performance of a world-wide eradication programme of small-pox which could be led to success with comprehensive personal, material and financial support of many countries. Flanking scientific, technological and methodical measures were of essential importance. In May 1980 the World Health Assembly in Geneva announced in solemn form the world-wide eradication of the small-pox and gave recommendations to the member countries for concluding measures concerning the small-pox vaccination, the foundation of vaccine reserves and the control of the epidemiological situation in the world. Also in the GDR the small-pox vaccination in childhood could be abolished.

  16. The Royal Philanthropic Expedition of the Vaccine: a landmark in the history of public health.

    Science.gov (United States)

    Soto-Pérez-de-Celis, E

    2008-11-01

    In 1979, smallpox officially became the first disease ever to be eradicated by mankind. The global efforts to defeat this dreadful pandemic, however, started almost two centuries before. One of the most important, and sometimes forgotten, events in the fight against smallpox was the Royal Philanthropic Expedition of the Vaccine, commissioned by Charles IV of Spain to physicians Francisco Xavier Balmis y Berenguer and Jose Salvany in 1804. The aim of this expedition was to take the smallpox vaccine, discovered by Jenner, to Spain's territories in the Americas and in the Far East. After several years of vaccination in modern day Puerto Rico, Cuba, Venezuela, Ecuador, Peru, Bolivia, Chile, Mexico and the Philippines, the expedition returned to Europe. To this day, the Balmis and Salvany expedition remains a great example of international cooperation, and a landmark in the history of public health.

  17. Surfing pathogens and the lessons learned for actin polymerization.

    Science.gov (United States)

    Frischknecht, F; Way, M

    2001-01-01

    A number of unrelated bacterial species as well as vaccinia virus (ab)use the process of actin polymerization to facilitate and enhance their infection cycle. Studies into the mechanism by which these pathogens hijack and control the actin cytoskeleton have provided many interesting insights into the regulation of actin polymerization in migrating cells. This review focuses on what we have learnt from the actin-based motilities of Listeria, Shigella and vaccinia and discusses what we would still like to learn from our nasty friends, including enteropathogenic Escherichia coli and Rickettsia

  18. Structural Basis for the Binding of the Neutralizing Antibody, 7D11, to the Poxvirus L1 Protein

    Science.gov (United States)

    2007-08-01

    pCR- 7D11-vHC and pCR-7D11- vLC , respectively. Crystallization of the complex between L1 and 7D11-Fab VACV L1 protein was expressed and purified as...2005. Vaccinia virus H3L envelope protein is a major target of neutralizing antibodies in humans and elicits protection against lethal challenge in...D.M., Schmaljohn, C., Schmaljohn, A., 2000. DNA vaccination with vaccinia virus L1R and A33R genes protects mice against a lethal poxvirus challenge

  19. Joseph Mountin Lecture

    Centers for Disease Control (CDC) Podcasts

    2009-10-26

    In this podcast, William H. Foege, MD, MPH delivers the 29th Annual Joseph W. Mountin Lecture. Dr. Foege was a key leader in the smallpox effort and worked as an epidemiologist in the successful eradication campaign in the 1970s. Dr. Foege became chief of the Smallpox Eradication Program at CDC, and was appointed director of CDC in 1977.  Created: 10/26/2009 by Centers for Disease Control and Prevention (CDC).   Date Released: 10/29/2009.

  20. Revaccination with Live Attenuated Vaccines Confer Additional Beneficial Nonspecific Effects on Overall Survival

    DEFF Research Database (Denmark)

    Benn, Christine S; Fisker, Ane B; Whittle, Hilton C

    2016-01-01

    BACKGROUND: Live vaccines against measles (MV), tuberculosis (BCG), polio (OPV) and smallpox reduce mortality more than explained by target-disease prevention. The beneficial nonspecific effects (NSEs) of MV are strongest when MV is given in presence of maternal antibodies. We therefore hypothesi......BACKGROUND: Live vaccines against measles (MV), tuberculosis (BCG), polio (OPV) and smallpox reduce mortality more than explained by target-disease prevention. The beneficial nonspecific effects (NSEs) of MV are strongest when MV is given in presence of maternal antibodies. We therefore...

  1. Cloning of a cDNA encoding a novel human nuclear phosphoprotein belonging to the WD-40 family

    DEFF Research Database (Denmark)

    Honoré, B; Leffers, H; Madsen, Peder

    1994-01-01

    We have cloned and expressed in vaccinia virus a cDNA encoding an ubiquitous 501-amino-acid (aa) phosphoprotein that corresponds to protein IEF SSP 9502 (79,400 Da, pI 4.5) in the master 2-D-gel keratinocyte protein database [Celis et al., Electrophoresis 14 (1993) 1091-1198]. The deduced aa...

  2. Enhancement of feline immunodeficiency virus infection after immunization with envelope glycoprotein subunit vaccines.

    NARCIS (Netherlands)

    C.H.J. Siebelink (Kees); E.J. Tijhaar (Edwin); R.C. Huisman (Robin); W. Huisman (Willem); A. de Ronde; I.H. Darby; M.J. Francis; G.F. Rimmelzwaan (Guus); A.D.M.E. Osterhaus (Albert)

    1995-01-01

    textabstractCats were immunized three times with different recombinant feline immunodeficiency virus (FIV) candidate vaccines. Recombinant vaccinia virus (rVV)-expressed envelope glycoprotein with (vGR657) or without (vGR657 x 15) the cleavage site and an FIV envelope bacterial fusion protein

  3. Differential biodistribution of oncolytic poxvirus administered systemically in an autochthonous model of hepatocellular carcinoma.

    Science.gov (United States)

    Baril, Patrick; Touchefeu, Yann; Cany, Jeannette; Cherel, Yan; Thorne, Steve H; Tran, Lucile; Conchon, Sophie; Vassaux, Georges

    2011-12-01

    Preclinical studies have demonstrated that, unlike oncolytic adenoviruses, oncolytic vaccinia viruses can reach implanted tumors upon systemic injection. However, the biodistribution of this oncolytic agent in in situ autochthonous tumor models remains poorly characterized. In the present study, we assessed this biodistribution in a model of mouse hepatocellular carcinoma (HCC) obtained after injection of the carcinogen diethylnitrosamine (DEN). Twelve months after DEN administration, histology, quantitative reverse transcription-polymerase chain reaction, in situ hybridization and viral titration were used to characterize tumors, as well as to assess the viral load of the livers upon either intravenous or intraperitoineal injection. The results obtained showed that the architecture of the liver was lost, with a noticeable absence of sinusoids, as well as the presence of steatosis and α-fetoprotein-positive HCC tumor nodules. Bioluminescence imaging and measures of the infective virus load demonstrated that intravenous injection of 10(8)  plaque-forming units of the recombinant vaccinia virus led to a predominant transduction of the liver, whereas intraperitoneal injection resulted in a lower level of liver transduction accompanied by an increased infection of the lungs, spleen, kidneys and bowels. Immunohistochemical analysis of liver sections of animals injected intravenously with the virus revealed a preferential localization of vaccinia-specific immunoreactivity in the tumors. The findings of the present study emphasize the importance of the route of administration of the vector and highlight the relevance of systemic injection of oncolytic vaccinia virus in the context of hepatocellular carcinoma. Copyright © 2011 John Wiley & Sons, Ltd.

  4. Department of Defense Chemical and Biological Defense Program. Volume 1: Annual Report to Congress

    Science.gov (United States)

    2003-04-01

    Albuquerque Operations Office at Kirtland AFB, New Mexico , conducts a Radiological Emergency Team Operations Course; Radiological Emer- gency Medical...Nevada, and Kirtland Air Force Base, New Mexico . • MARFORPAC sponsored a force protection initiative funded by DTRA. DTRA will conduct an independent...strains and isolates from camelpox, cowpox, ectromelia, gerbilpox, Herpes, monkeypox, myxoma, rabbitpox, raccoonpox, skunkpox, vaccinia and varicella

  5. 77 FR 48165 - Cooperative Research and Development Agreement (CRADA) Opportunity With the Department of...

    Science.gov (United States)

    2012-08-13

    ... perform in-place decontamination of heating, ventilation, and cooling (HVAC) HEPA filtration systems. The... target agents (FMDV and ASFV) and test microorganisms (Bacillus subtilis, Vaccinia Virus, Geobacillius stearothermophilus, and potentially other commercially available spore strips) will be used to test the efficacy of...

  6. Viral Vectors for Use in the Development of Biodefense Vaccines

    National Research Council Canada - National Science Library

    Lee, John S; Hadjipanayis, Angela G; Parker, Michael D

    2005-01-01

    ... agents of bioterrorism or biowarfare. The use of viruses, for example adenovirus, vaccinia virus, and Venezuelan equine encephalitis virus, as vaccine-vectors has enabled researchers to develop effective means for countering the threat of bioterrorism and biowarfare. An overview of the different viral vectors and the threats they counter will be discussed.

  7. Role of interferon in lymphocyte recruitment into the skin

    International Nuclear Information System (INIS)

    Issekutz, T.B.; Stoltz, J.M.; Webster, D.M.

    1986-01-01

    Large numbers of lymphocytes are recruited from the blood into sites of cutaneous DTH reactions. Our goal was to investigate the factors controlling this recruitment. 111 In-labeled peritoneal exudate lymphocytes were injected iv and the accumulation of these cells in skin sites injected with a variety of stimuli, was used to measure lymphocyte recruitment in rats. Large numbers of lymphocytes migrated into vaccinia- and KLH-injected sites in sensitized animals, but only into the viral and not the KLH lesions in non-immune animals. Lymphocytes also migrated efficiently into sites injected with the alpha-interferon (IFN) inducers, uv-inactivated vaccinia virus and poly I:C, as well as into sites injected with IFN. In each case there was a dose-response relationship. Analysis of the kinetics of lymphocyte recruitment demonstrated that the peak rate of migration occurred most rapidly after the injection of IFN, later after poly I:C, and was slowest to be reached after vaccinia virus. Rabbit anti-IFN blocked the recruitment of lymphocytes by uv-inactivated vaccinia and by IFN. Histologically, all of these sites demonstrated a dense mononuclear cell infiltrate in the dermis. It is suggested that IFN may be an important mediator in the recruitment of lymphocytes into inflammatory reactions

  8. The inhibitor of cyclin-dependent kinases, olomoucine II, exhibits potent antiviral properties

    Czech Academy of Sciences Publication Activity Database

    Holčáková, J.; Tomašec, P.; Burget, J. J.; Wang, E. C. Y.; Wilkinson, G. W. G.; Hrstka, R.; Kryštof, Vladimír; Strnad, Miroslav; Vojtešek, B.

    2010-01-01

    Roč. 20, č. 3 (2010), s. 133-142 ISSN 0956-3202 R&D Projects: GA ČR GA301/08/1649 Institutional research plan: CEZ:AV0Z50380511 Keywords : Cyclin-dependent Kinase * Olomoucine II * vaccinia Subject RIV: EE - Microbiology, Virology

  9. Immunogenicity of recombinant feline infectious peritonitis virus spike protein in mice and kittens

    NARCIS (Netherlands)

    Horzinek, M.C.; Vennema, H.; Groot, R. de; Harbour, D.A.; Dalderup, M.; Gruffydd-Jones, T.; Spaan, W.J.M.

    1990-01-01

    The gene encoding the fusogenic spike protein of the coronavirus causing feline infectious peritonitis (FIVP) was recombined into the genome of vaccinia virus, strain WR. The recombinant induced spike protein specific, in vitro neutralizing antibodies in mkice. When kittens were immunized with the

  10. Enhanced and sustained CD8+ T cell responses with an adenoviral vector-based hepatitis C virus vaccine encoding NS3 linked to the MHC class II chaperone protein invariant chain

    DEFF Research Database (Denmark)

    Mikkelsen, Marianne; Holst, Peter Johannes; Bukh, Jens

    2011-01-01

    memory. Functionally, the AdIiNS3-vaccinated mice had a significantly increased cytotoxic capacity compared with the AdNS3 group. The AdIiNS3-induced CD8(+) T cells protected mice from infection with recombinant vaccinia virus expressing HCV NS3 of heterologous 1b strains, and studies in knockout mice...

  11. Spinocellulært karcinom opstået ved cikatrice efter Calmette-vaccination

    DEFF Research Database (Denmark)

    Nielsen, Rikke Maria; Andersen, F.; Salskov-Iversen, Maria Luise

    2014-01-01

    Marjolin's ulcer is an aggressive squamous cell carcinoma (SCC) found in chronically inflamed skin. SCC has been reported in smallpox vaccination sites, whereas basal cell carcinomas are more common in scar after bacille Calmette-Guerin (BCG) vaccination. A 72-year-old man presented with a chronic...

  12. 42 CFR 102.3 - Definitions.

    Science.gov (United States)

    2010-10-01

    ...) Benefits means benefits and/or compensation. (e) Child means any natural, illegitimate, adopted, or... means the workers' compensation benefits program for civilian officers and employees of the Federal... Smallpox Vaccine Injury Compensation Program. (r) Public Safety Officers' Benefits Program (PSOB Program...

  13. 77 FR 24210 - Proposed Data Collections Submitted for Public Comment and Recommendations

    Science.gov (United States)

    2012-04-23

    ...; Diphtheria; Infectious Tuberculosis; Smallpox; Yellow fever; and Viral Hemorrhagic Fevers), as well as most... days of this notice. Proposed Project Quarantine Station Illness and Death Investigation Forms--Airline, Maritime, Land/Border Crossing Illness and Death Investigation Forms-- Revision--National Center for...

  14. 77 FR 40360 - Agency Forms Undergoing Paperwork Reduction Act Review

    Science.gov (United States)

    2012-07-09

    ... Tuberculosis; Smallpox; Yellow fever; and Viral Hemorrhagic Fevers), as well as most communicable diseases in... Death Investigation Forms--Airline, Maritime, Land/Border Crossing Illness and Death Investigation Forms... arrival in the United States. An ``ill person'' is defined in statute by: --Fever (>=100 [deg]F or 38 [deg...

  15. 78 FR 49757 - Notification of an Expansion to the Cooperative Agreement Award to the World Health Organization

    Science.gov (United States)

    2013-08-15

    ... Award to the World Health Organization AGENCY: Biomedical Advanced Research and Development Authority... requires notification to World Health Organization (WHO) as soon as possible, and any confirmed smallpox... Services (HHS). ACTION: Notification of an expansion to the Cooperative Agreement Award to the World Health...

  16. 78 FR 49756 - Notification of a Cooperative Agreement Award to the World Health Organization

    Science.gov (United States)

    2013-08-15

    ...: Notification of a sole source Cooperative Agreement Award to the World Health Organization for a grant titled... World Health Organization (WHO) as soon as possible, and any confirmed smallpox case would generate an... DEPARTMENT OF HEALTH AND HUMAN SERVICES Notification of a Cooperative Agreement Award to the World...

  17. 76 FR 36019 - Amendments to Sterility Test Requirements for Biological Products

    Science.gov (United States)

    2011-06-21

    ... the biologics regulations. DATES: Submit either electronic or written comments on this proposed rule... No. FDA-2011- N-0080, by any of the following methods: Electronic Submissions Submit electronic... Factor (AHF), Platelets, Red Blood Cells, Plasma, Source Plasma, Smallpox Vaccine, Reagent Red Blood...

  18. U.S. CWMD Coordination

    Science.gov (United States)

    2012-12-11

    coordination. For example, it conducted joint vehicle inspection training for Pakistani Customs and Border Guard personnel at a US- Mexico border...biological material, including such hazards as: anthrax, botulism, cholera , Ebola virus hemorrhagic fever, E. coli, Plague, and smallpox 79

  19. The Origin of the Variola Virus

    Directory of Open Access Journals (Sweden)

    Igor V. Babkin

    2015-03-01

    Full Text Available The question of the origin of smallpox, one of the major menaces to humankind, is a constant concern for the scientific community. Smallpox is caused by the agent referred to as the variola virus (VARV, which belongs to the genus Orthopoxvirus. In the last century, smallpox was declared eradicated from the human community; however, the mechanisms responsible for the emergence of new dangerous pathogens have yet to be unraveled. Evolutionary analyses of the molecular biological genomic data of various orthopoxviruses, involving a wide range of epidemiological and historical information about smallpox, have made it possible to date the emergence of VARV. Comparisons of the VARV genome to the genomes of the most closely related orthopoxviruses and the examination of the distribution their natural hosts’ ranges suggest that VARV emerged 3000 to 4000 years ago in the east of the African continent. The VARV evolution rate has been estimated to be approximately 2 × 10−6 substitutions/site/year for the central conserved genomic region and 4 × 10−6 substitutions/site/year for the synonymous substitutions in the genome. Presumably, the introduction of camels to Africa and the concurrent changes to the climate were the particular factors that triggered the divergent evolution of a cowpox-like ancestral virus and thereby led to the emergence of VARV.

  20. Training of the American Soldier During World War I and World War II.

    Science.gov (United States)

    1987-06-05

    smallpox, chicken pox , meningitis, typhoid, diptheria and other diseases resulted in the deaths of between 17,000 to 19,000 men during the course of...lessons of previous wars in both periods. The Spanish-American War and the United States’ incursion into Mexico provided valuable experience in