WorldWideScience

Sample records for acam2000 smallpox vaccinia

  1. ACAM2000™: The new smallpox vaccine for United States Strategic National Stockpile

    Directory of Open Access Journals (Sweden)

    Aysegul Nalca

    2010-05-01

    Full Text Available Aysegul Nalca, Elizabeth E ZumbrunCenter for Aerobiological Sciences, US Army Medical Research Institute of Infectious Diseases (USAMRIID, Fort Detrick, MD, USAAbstract: Smallpox was eradicated more than 30 years ago, but heightened concerns over bioterrorism have brought smallpox and smallpox vaccination back to the forefront. The previously licensed smallpox vaccine in the United States, Dryvax® (Wyeth Laboratories, Inc., was highly effective, but the supply was insufficient to vaccinate the entire current US population. Additionally, Dryvax® had a questionable safety profile since it consisted of a pool of vaccinia virus strains with varying degrees of virulence, and was grown on the skin of calves, an outdated technique that poses an unnecessary risk of contamination. The US government has therefore recently supported development of an improved live vaccinia virus smallpox vaccine. This initiative has resulted in the development of ACAM2000™ (Acambis, Inc.™, a single plaque-purified vaccinia virus derivative of Dryvax®, aseptically propagated in cell culture. Preclinical and clinical trials reported in 2008 demonstrated that ACAM2000™ has comparable immunogenicity to that of Dryvax®, and causes a similar frequency of adverse events. Furthermore, like Dryvax®, ACAM2000™ vaccination has been shown by careful cardiac screening to result in an unexpectedly high rate of myocarditis and pericarditis. ACAM2000™ received US Food and Drug Administration (FDA approval in August 2007, and replaced Dryvax® for all smallpox vaccinations in February 2008. Currently, over 200 million doses of ACAM2000™ have been produced for the US Strategic National Stockpile. This review of ACAM2000™ addresses the production, characterization, clinical trials, and adverse events associated with this new smallpox vaccine.Keywords: smallpox, vaccinia, variola, vaccine, efficacy, safety

  2. Human antibody responses to the polyclonal Dryvax vaccine for smallpox prevention can be distinguished from responses to the monoclonal replacement vaccine ACAM2000.

    Science.gov (United States)

    Pugh, Christine; Keasey, Sarah; Korman, Lawrence; Pittman, Phillip R; Ulrich, Robert G

    2014-06-01

    Dryvax (Wyeth Laboratories, Inc., Marietta, PA) is representative of the vaccinia virus preparations that were previously used for preventing smallpox. While Dryvax was highly effective, the national supply stocks were depleted, and there were manufacturing concerns regarding sterility and the clonal heterogeneity of the vaccine. ACAM2000 (Acambis, Inc./Sanofi-Pasteur Biologics Co., Cambridge, MA), a single-plaque-purified vaccinia virus derivative of Dryvax, recently replaced the polyclonal smallpox vaccine for use in the United States. A substantial amount of sequence heterogeneity exists within the polyclonal proteome of Dryvax, including proteins that are missing from ACAM2000. Reasoning that a detailed comparison of antibody responses to the polyclonal and monoclonal vaccines may be useful for identifying unique properties of each antibody response, we utilized a protein microarray comprised of approximately 94% of the vaccinia poxvirus proteome (245 proteins) to measure protein-specific antibody responses of 71 individuals receiving a single vaccination with ACAM2000 or Dryvax. We observed robust antibody responses to 21 poxvirus proteins in vaccinated individuals, including 11 proteins that distinguished Dryvax responses from ACAM2000. Analysis of protein sequences from Dryvax clones revealed amino acid level differences in these 11 antigenic proteins and suggested that sequence variation and clonal heterogeneity may contribute to the observed differences between Dryvax and ACAM2000 antibody responses.

  3. Treatment with the smallpox antiviral tecovirimat (ST-246) alone or in combination with ACAM2000 vaccination is effective as a postsymptomatic therapy for monkeypox virus infection.

    Science.gov (United States)

    Berhanu, Aklile; Prigge, Jonathan T; Silvera, Peter M; Honeychurch, Kady M; Hruby, Dennis E; Grosenbach, Douglas W

    2015-07-01

    The therapeutic efficacies of smallpox vaccine ACAM2000 and antiviral tecovirimat given alone or in combination starting on day 3 postinfection were compared in a cynomolgus macaque model of lethal monkeypox virus infection. Postexposure administration of ACAM2000 alone did not provide any protection against severe monkeypox disease or mortality. In contrast, postexposure treatment with tecovirimat alone or in combination with ACAM2000 provided full protection. Additionally, tecovirimat treatment delayed until day 4, 5, or 6 postinfection was 83% (days 4 and 5) or 50% (day 6) effective.

  4. Use of Vaccinia Virus Smallpox Vaccine in Laboratory and Health Care Personnel at Risk for Occupational Exposure to Orthopoxviruses - Recommendations of the Advisory Committee on Immunization Practices (ACIP), 2015.

    Science.gov (United States)

    Petersen, Brett W; Harms, Tiara J; Reynolds, Mary G; Harrison, Lee H

    2016-03-18

    On June 25, 2015, the Advisory Committee on Immunization Practices (ACIP) recommended routine vaccination with live smallpox (vaccinia) vaccine (ACAM2000) for laboratory personnel who directly handle 1) cultures or 2) animals contaminated or infected with replication-competent vaccinia virus, recombinant vaccinia viruses derived from replication-competent vaccinia strains (i.e., those that are capable of causing clinical infection and producing infectious virus in humans), or other orthopoxviruses that infect humans (e.g., monkeypox, cowpox, and variola) (recommendation category: A, evidence type 2 [Box]). Health care personnel (e.g., physicians and nurses) who currently treat or anticipate treating patients with vaccinia virus infections and whose contact with replication-competent vaccinia viruses is limited to contaminated materials (e.g., dressings) and persons administering ACAM2000 smallpox vaccine who adhere to appropriate infection prevention measures can be offered vaccination with ACAM2000 (recommendation category: B, evidence type 2 [Box]). These revised recommendations update the previous ACIP recommendations for nonemergency use of vaccinia virus smallpox vaccine for laboratory and health care personnel at risk for occupational exposure to orthopoxviruses (1). Since 2001, when the previous ACIP recommendations were developed, ACAM2000 has replaced Dryvax as the only smallpox vaccine licensed by the U.S. Food and Drug Administration (FDA) and available for use in the United States (2). These recommendations contain information on ACAM2000 and its use in laboratory and health care personnel at risk for occupational exposure to orthopoxviruses.

  5. Smallpox vaccine, ACAM2000: Sites and duration of viral shedding and effect of povidone iodine on scarification site shedding and immune response.

    Science.gov (United States)

    Pittman, Phillip R; Garman, Patrick M; Kim, Sung-Han; Schmader, Trevor J; Nieding, William J; Pike, Jason G; Knight, Ryan; Johnston, Sara C; Huggins, John W; Kortepeter, Mark G; Korman, Lawrence; Ranadive, Manmohan; Quinn, Xiaofei; Meyers, Mitchell S

    2015-06-12

    The U.S. Department of Defense vaccinates personnel deployed to high-risk areas with the vaccinia virus (VACV)-based smallpox vaccine. Autoinoculations and secondary and tertiary transmissions due to VACV shedding from the vaccination site continue to occur despite education of vaccinees on the risks of such infections. The objectives of this study were to investigate, in naïve smallpox vaccinees, (a) whether the vaccination site can remain contagious after the scab separates and (b) whether the application of povidone iodine ointment (PIO) to the vaccination site inactivates VACV without affecting the immune response. These objectives were tested in 60 individuals scheduled to receive smallpox vaccine. Thirty individuals (control) did not receive PIO; 30 subjects (treatment) received PIO starting on post-vaccination day 7. Counter to current dogma, this study showed that VACV continues to shed from the vaccination site after the scab separates. Overall viral shedding levels in the PIO group were significantly lower than those in the control group (p=0.0045), and PIO significantly reduced the duration of viral shedding (median duration 14.5 days and 21 days in the PIO and control groups, respectively; p=0.0444). At least 10% of control subjects continued to shed VACV at day 28, and 3.4% continued to shed the virus at day 42. PIO reduced the proportion of subjects shedding virus from the vaccination site from day 8 until days 21-23 compared with control subjects. Groups did not differ significantly in the proportion of subjects mounting an immune response, as measured by neutralizing antibodies, IgM, IgG, and interferon-gamma enzyme-linked immunospot assay. When applied to the vaccination site starting on day 7, PIO reduced viral shedding without altering the immune response. The use of PIO in addition to a semipermeable dressing may reduce the rates of autoinoculation and contact transmission originating from the vaccination site in smallpox-vaccinated individuals.

  6. New smallpox vaccines for an ancient scourge.

    Science.gov (United States)

    Frey, Sharon E

    2014-01-01

    The potential use of variola virus, a Class A agent of bioterrorism, remains a concern. In an effort to prepare for a possible smallpox outbreak due to an intentional release of variola, the U.S. government and industry have been evaluating vaccines stored in the National Strategic Stockpile including cell culture grown ACAM2000 and modified vaccinia Ankara, IMVAMUNE, in clinical studies. This paper discusses smallpox vaccines studies conducted at the Saint Louis University Center for Vaccine Development.

  7. Genomic sequence and analysis of a vaccinia virus isolate from a patient with a smallpox vaccine-related complication

    Directory of Open Access Journals (Sweden)

    Damon Inger

    2006-10-01

    Full Text Available Abstract Background Vaccinia virus (VACV-DUKE was isolated from a lesion on a 54 year old female who presented to a doctor at the Duke University Medical Center. She was diagnosed with progressive vaccinia and treated with vaccinia immune globulin. The availability of the VACV-DUKE genome sequence permits a first time genomic comparison of a VACV isolate associated with a smallpox vaccine complication with the sequence of culture-derived clonal isolates of the Dryvax vaccine. Results This study showed that VACV-DUKE is most similar to VACV-ACAM2000 and CLONE3, two VACV clones isolated from the Dryvax® vaccine stock confirming VACV-DUKE as an isolate from Dryvax®. However, VACV-DUKE is unique because it is, to date, the only Dryvax® clone isolated from a patient experiencing a vaccine-associated complication. The 199,960 bp VACV-DUKE genome encodes 225 open reading frames, including 178 intact genes and 47 gene fragments. Between VACV-DUKE and the other Dryvax® isolates, the major genomic differences are in fragmentation of the ankyrin-like, and kelch-like genes, presence of a full-length Interferon-α/β receptor gene, and the absence of a duplication of 12 ORFs in the inverted terminal repeat. Excluding this region, the DNA sequence of VACV-DUKE differs from the other two Dryvax® isolates by less than 0.4%. DNA sequencing also indicated that there was little heterogeneity in the sample, supporting the hypothesis that virus from an individual lesion is clonal in origin despite the fact that the vaccine is a mixed population. Conclusion Virus in lesions that result from progressive vaccinia following vaccination with Dryvax are likely clonal in origin. The genomic sequence of VACV-DUKE is overall very similar to that of Dryvax® cell culture-derived clonal isolates. Furthermore, with the sequences of multiple clones from Dryvax® we can begin to appreciate the diversity of the viral population in the smallpox vaccine.

  8. Analysis of variola and vaccinia virus neutralization assays for smallpox vaccines.

    Science.gov (United States)

    Hughes, Christine M; Newman, Frances K; Davidson, Whitni B; Olson, Victoria A; Smith, Scott K; Holman, Robert C; Yan, Lihan; Frey, Sharon E; Belshe, Robert B; Karem, Kevin L; Damon, Inger K

    2012-07-01

    Possible smallpox reemergence drives research for third-generation vaccines that effectively neutralize variola virus. A comparison of neutralization assays using different substrates, variola and vaccinia (Dryvax and modified vaccinia Ankara [MVA]), showed significantly different 90% neutralization titers; Dryvax underestimated while MVA overestimated variola neutralization. Third-generation vaccines may rely upon neutralization as a correlate of protection.

  9. Clinical guidance for smallpox vaccine use in a postevent vaccination program.

    Science.gov (United States)

    Petersen, Brett W; Damon, Inger K; Pertowski, Carol A; Meaney-Delman, Dana; Guarnizo, Julie T; Beigi, Richard H; Edwards, Kathryn M; Fisher, Margaret C; Frey, Sharon E; Lynfield, Ruth; Willoughby, Rodney E

    2015-02-20

    This report outlines recommendations for the clinical use of the three smallpox vaccines stored in the U.S. Strategic National Stockpile for persons who are exposed to smallpox virus or at high risk for smallpox infection during a postevent vaccination program following an intentional or accidental release of the virus. No absolute contraindications exist for smallpox vaccination in a postevent setting. However, several relative contraindications exist among persons with certain medical conditions. CDC recommendations for smallpox vaccine use were developed in consideration of the risk for smallpox infection, risk for an adverse event following vaccination, and benefit from vaccination. Smallpox vaccines are made from live vaccinia viruses that protect against smallpox disease. They do not contain variola virus, the causative agent of smallpox. The three smallpox vaccines stockpiled are ACAM2000, Aventis Pasteur Smallpox Vaccine (APSV), and Imvamune. Surveillance and containment activities including vaccination with replication-competent smallpox vaccine (i.e., vaccine viruses capable of replicating in mammalian cells such as ACAM2000 and APSV) will be the primary response strategy for achieving epidemic control. Persons exposed to smallpox virus are at high risk for developing and transmitting smallpox and should be vaccinated with a replication-competent smallpox vaccine unless severely immunodeficient. Because of a high likelihood of a poor immune response and an increased risk for adverse events, smallpox vaccination should be avoided in persons with severe immunodeficiency who are not expected to benefit from vaccine, including bone marrow transplant recipients within 4 months of transplantation, persons infected with HIV with CD4 cell counts smallpox virus exposure in persons with severe immunodeficiency. Persons without a known smallpox virus exposure might still be at high risk for developing smallpox infection depending on the magnitude of the outbreak and

  10. Vaccinia virus induces rapid necrosis in keratinocytes by a STAT3-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Yong He

    Full Text Available Humans with a dominant negative mutation in STAT3 are susceptible to severe skin infections, suggesting an essential role for STAT3 signaling in defense against cutaneous pathogens.To focus on innate antiviral defenses in keratinocytes, we used a standard model of cutaneous infection of severe combined immunodeficient mice with the current smallpox vaccine, ACAM-2000. In parallel, early events post-infection with the smallpox vaccine ACAM-2000 were investigated in cultured keratinocytes of human and mouse origin.Mice treated topically with a STAT3 inhibitor (Stattic developed larger vaccinia lesions with higher virus titers and died more rapidly than untreated controls. Cultured human and murine keratinocytes infected with ACAM-2000 underwent rapid necrosis, but when treated with Stattic or with inhibitors of RIP1 kinase or caspase-1, they survived longer, produced higher titers of virus, and showed reduced activation of type I interferon responses and inflammatory cytokines release. Treatment with inhibitors of RIP1 kinase and STAT3, but not caspase-1, also reduced the inflammatory response of keratinocytes to TLR ligands. Vaccinia growth properties in Vero cells, which are known to be defective in some antiviral responses, were unaffected by inhibition of RIP1K, caspase-1, or STAT3.Our findings indicate that keratinocytes suppress the replication and spread of vaccinia virus by undergoing rapid programmed cell death, in a process requiring STAT3. These data offer a new framework for understanding susceptibility to skin infection in patients with STAT3 mutations. Interventions which promote prompt necroptosis/pyroptosis of infected keratinocytes may reduce risks associated with vaccination with live vaccinia virus.

  11. HLA alleles associated with the adaptive immune response to smallpox vaccine: a replication study.

    Science.gov (United States)

    Ovsyannikova, Inna G; Pankratz, V Shane; Salk, Hannah M; Kennedy, Richard B; Poland, Gregory A

    2014-09-01

    We previously reported HLA allelic associations with vaccinia virus (VACV)-induced adaptive immune responses in a cohort of healthy individuals (n = 1,071 subjects) after a single dose of the licensed smallpox (Dryvax) vaccine. This study demonstrated that specific HLA alleles were significantly associated with VACV-induced neutralizing antibody (NA) titers (HLA-B*13:02, *38:02, *44:03, *48:01, and HLA-DQB1*03:02, *06:04) and cytokine (HLA-DRB1*01:03, *03:01, *10:01, *13:01, *15:01) immune responses. We undertook an independent study of 1,053 healthy individuals and examined associations between HLA alleles and measures of adaptive immunity after a single dose of Dryvax-derived ACAM2000 vaccine to evaluate previously discovered HLA allelic associations from the Dryvax study and determine if these associations are replicated with ACAM2000. Females had significantly higher NA titers than male subjects in both study cohorts [median ID50 discovery cohort 159 (93, 256) vs. 125 (75, 186), p smallpox vaccine-induced adaptive immune responses are significantly influenced by HLA gene polymorphisms. These data provide information for functional studies and design of novel candidate smallpox vaccines.

  12. Smallpox Vaccination

    Science.gov (United States)

    ... Newsletters Events Also Known As Smallpox = Vaccinia Smallpox Vaccination Recommend on Facebook Tweet Share Compartir The smallpox ... like many other vaccines. For that reason, the vaccination site must be cared for carefully to prevent ...

  13. Host range, growth property, and virulence of the smallpox vaccine: vaccinia virus Tian Tan strain.

    Science.gov (United States)

    Fang, Qing; Yang, Lin; Zhu, Weijun; Liu, Li; Wang, Haibo; Yu, Wenbo; Xiao, Genfu; Tien, Po; Zhang, Linqi; Chen, Zhiwei

    2005-05-10

    Vaccinia Tian Tan (VTT) was used as a vaccine against smallpox in China for millions of people before 1980, yet the biological characteristics of the virus remain unclear. We have characterized VTT with respect to its host cell range, growth properties in vitro, and virulence in vivo. We found that 11 of the 12 mammalian cell lines studied are permissive to VTT infection whereas one, CHO-K1, is non-permissive. Using electron microscopy and sequence analysis, we found that the restriction of VTT replication in CHO-K1 is at a step before viral maturation probably due to the loss of the V025 gene. Moreover, VTT is significantly less virulent than vaccinia WR but remains neurovirulent in mice and causes significant body weight loss after intranasal inoculation. Our data demonstrate the need for further attenuation of VTT to serve either as a safer smallpox vaccine or as a live vaccine vector for other pathogens.

  14. Cardiac safety of Modified Vaccinia Ankara for vaccination against smallpox in a young, healthy study population.

    Directory of Open Access Journals (Sweden)

    Eva-Maria Zitzmann-Roth

    Full Text Available Conventional smallpox vaccines based on replicating vaccinia virus (VV strains (e.g. Lister Elstree, NYCBOH are associated with a high incidence of myo-/pericarditis, a severe inflammatory cardiac complication. A new smallpox vaccine candidate based on a non-replicating Modified Vaccinia Ankara (MVA poxvirus has been assessed for cardiac safety in a large placebo-controlled clinical trial.Cardiac safety of one and two doses of MVA compared to placebo was assessed in 745 healthy subjects. Vaccinia-naïve subjects received either one dose of MVA and one dose of placebo, two doses of MVA, or two doses of placebo by subcutaneous injection four weeks apart; vaccinia-experienced subjects received a single dose of MVA. Solicited and unsolicited adverse events (AE and cardiac safety parameters (recorded as Adverse Events of Special Interest, AESI were monitored after each injection.A total of 5 possibly related AESI (3 cases of palpitations, 2 of tachycardia were reported during the study. No case of myo- or pericarditis occurred. One possibly related serious AE (SAE was reported during the 6-month follow-up period (sarcoidosis. The most frequently observed AEs were injection site reactions.Vaccination with MVA was safe and well tolerated and did not increase the risk for development of myo-/pericarditis.ClinicalTrials.gov NCT00316524.

  15. 42 CFR 102.21 - Smallpox (Vaccinia) Vaccine Injury Table.

    Science.gov (United States)

    2010-10-01

    ... or C: 1-21 days. 8. Fetal Vaccinia Maternal R or C: any time in gestation until 7 days after birth. 9..., disorientation, delirium, drowsiness, seizures, language difficulties (aphasia), coma, muscular incoordination..., a Table injury for FV requires one of the following: (A) A maternal history of vaccinial...

  16. A vaccinia virus renaissance: new vaccine and immunotherapeutic uses after smallpox eradication.

    Science.gov (United States)

    Verardi, Paulo H; Titong, Allison; Hagen, Caitlin J

    2012-07-01

    In 1796, Edward Jenner introduced the concept of vaccination with cowpox virus, an Orthopoxvirus within the family Poxviridae that elicits cross protective immunity against related orthopoxviruses, including smallpox virus (variola virus). Over time, vaccinia virus (VACV) replaced cowpox virus as the smallpox vaccine, and vaccination efforts eventually led to the successful global eradication of smallpox in 1979. VACV has many characteristics that make it an excellent vaccine and that were crucial for the successful eradication of smallpox, including (1) its exceptional thermal stability (a very important but uncommon characteristic in live vaccines), (2) its ability to elicit strong humoral and cell-mediated immune responses, (3) the fact that it is easy to propagate, and (4) that it is not oncogenic, given that VACV replication occurs exclusively within the host cell cytoplasm and there is no evidence that the viral genome integrates into the host genome. Since the eradication of smallpox, VACV has experienced a renaissance of interest as a viral vector for the development of recombinant vaccines, immunotherapies, and oncolytic therapies, as well as the development of next-generation smallpox vaccines. This revival is mainly due to the successful use and extensive characterization of VACV as a vaccine during the smallpox eradication campaign, along with the ability to genetically manipulate its large dsDNA genome while retaining infectivity and immunogenicity, its wide mammalian host range, and its natural tropism for tumor cells that allows its use as an oncolytic vector. This review provides an overview of new uses of VACV that are currently being explored for the development of vaccines, immunotherapeutics, and oncolytic virotherapies.

  17. Impaired innate, humoral, and cellular immunity despite a take in smallpox vaccine recipients.

    Science.gov (United States)

    Kennedy, Richard B; Poland, Gregory A; Ovsyannikova, Inna G; Oberg, Ann L; Asmann, Yan W; Grill, Diane E; Vierkant, Robert A; Jacobson, Robert M

    2016-06-14

    Smallpox vaccine is highly effective, inducing protective immunity to smallpox and diseases caused by related orthopoxviruses. Smallpox vaccine efficacy was historically defined by the appearance of a lesion or "take" at the vaccine site, which leaves behind a characteristic scar. Both the take and scar are readily recognizable and were used during the eradication effort to indicate successful vaccination and to categorize individuals as "protected." However, the development of a typical vaccine take may not equate to the successful development of a robust, protective immune response. In this report, we examined two large (>1000) cohorts of recipients of either Dryvax(®) or ACAM2000 using a testing and replication study design and identified subgroups of individuals who had documented vaccine takes, but who failed to develop robust neutralizing antibody titers. Examination of these individuals revealed that they had suboptimal cellular immune responses as well. Further testing indicated these low responders had a diminished innate antiviral gene expression pattern (IFNA1, CXCL10, CXCL11, OASL) upon in vitro stimulation with vaccinia virus, perhaps indicative of a dysregulated innate response. Our results suggest that poor activation of innate antiviral pathways may result in suboptimal immune responses to the smallpox vaccine. These genes and pathways may serve as suitable targets for adjuvants in new attenuated smallpox vaccines and/or effective antiviral therapy targets against poxvirus infections.

  18. Genome Sequence of Vaccinia virus Strain Lister-Butantan, a Lister Vaccine Variant Used during a Smallpox Eradication Campaign in Brazil

    Science.gov (United States)

    Assis, Felipe; Trindade, Giliane; Drumond, Betânia; Frace, Mike; Sammons, Scott; Emerson, Ginny; Li, Yu; Carroll, Darin; Batra, Dhwani; Kroon, Erna

    2016-01-01

    Here, we report the 187.8-kb genome sequence of Vaccinia virus Lister-Butantan, which was used in Brazil during the WHO smallpox eradication campaign. Its genome showed an average similarity of 98.18% with the original Lister isolate, highlighting the low divergence among related Vaccinia virus vaccine strains, even after several passages in animals and cell culture. PMID:27340056

  19. Live Virus Smallpox Vaccine

    Science.gov (United States)

    ... A - Z Index SMALLPOX FACT SHEET The Live Virus Smallpox Vaccine The vaccinia virus is the "live ... it cannot cause smallpox. What is a "live virus" vaccine? A "live virus" vaccine is a vaccine ...

  20. Genomic sequence and virulence of clonal isolates of vaccinia virus Tiantan, the Chinese smallpox vaccine strain.

    Science.gov (United States)

    Zhang, Qicheng; Tian, Meijuan; Feng, Yi; Zhao, Kai; Xu, Jing; Liu, Ying; Shao, Yiming

    2013-01-01

    Despite the worldwide eradication of smallpox in 1979, the potential bioterrorism threat from variola virus and the ongoing use of vaccinia virus (VACV) as a vector for vaccine development argue for continued research on VACV. In China, the VACV Tiantan strain (TT) was used in the smallpox eradication campaign. Its progeny strain is currently being used to develop a human immunodeficiency virus (HIV) vaccine. Here we sequenced the full genomes of five TT clones isolated by plaque purification from the TT (752-1) viral stock. Phylogenetic analysis with other commonly used VACV strains showed that TT (752-1) and its clones clustered and exhibited higher sequence diversity than that found in Dryvax clones. The ∼190 kbp genomes of TT appeared to encode 273 open reading frames (ORFs). ORFs located in the middle of the genome were more conserved than those located at the two termini, where many virulence and immunomodulation associated genes reside. Several patterns of nucleotide changes including point mutations, insertions and deletions were identified. The polymorphisms in seven virulence-associated proteins and six immunomodulation-related proteins were analyzed. We also investigated the neuro- and skin- virulence of TT clones in mice and rabbits, respectively. The TT clones exhibited significantly less virulence than the New York City Board of Health (NYCBH) strain, as evidenced by less extensive weight loss and morbidity in mice as well as produced smaller skin lesions and lower incidence of putrescence in rabbits. The complete genome sequences, ORF annotations, and phenotypic diversity yielded from this study aid our understanding of the Chinese historic TT strain and are useful for HIV vaccine projects employing TT as a vector.

  1. Genomic sequence and virulence of clonal isolates of vaccinia virus Tiantan, the Chinese smallpox vaccine strain.

    Directory of Open Access Journals (Sweden)

    Qicheng Zhang

    Full Text Available Despite the worldwide eradication of smallpox in 1979, the potential bioterrorism threat from variola virus and the ongoing use of vaccinia virus (VACV as a vector for vaccine development argue for continued research on VACV. In China, the VACV Tiantan strain (TT was used in the smallpox eradication campaign. Its progeny strain is currently being used to develop a human immunodeficiency virus (HIV vaccine. Here we sequenced the full genomes of five TT clones isolated by plaque purification from the TT (752-1 viral stock. Phylogenetic analysis with other commonly used VACV strains showed that TT (752-1 and its clones clustered and exhibited higher sequence diversity than that found in Dryvax clones. The ∼190 kbp genomes of TT appeared to encode 273 open reading frames (ORFs. ORFs located in the middle of the genome were more conserved than those located at the two termini, where many virulence and immunomodulation associated genes reside. Several patterns of nucleotide changes including point mutations, insertions and deletions were identified. The polymorphisms in seven virulence-associated proteins and six immunomodulation-related proteins were analyzed. We also investigated the neuro- and skin- virulence of TT clones in mice and rabbits, respectively. The TT clones exhibited significantly less virulence than the New York City Board of Health (NYCBH strain, as evidenced by less extensive weight loss and morbidity in mice as well as produced smaller skin lesions and lower incidence of putrescence in rabbits. The complete genome sequences, ORF annotations, and phenotypic diversity yielded from this study aid our understanding of the Chinese historic TT strain and are useful for HIV vaccine projects employing TT as a vector.

  2. Adverse events post smallpox-vaccination: insights from tail scarification infection in mice with Vaccinia virus.

    Directory of Open Access Journals (Sweden)

    Bruno E F Mota

    Full Text Available Adverse events upon smallpox vaccination with fully-replicative strains of Vaccinia virus (VACV comprise an array of clinical manifestations that occur primarily in immunocompromised patients leading to significant host morbidity/mortality. The expansion of immune-suppressed populations and the possible release of Variola virus as a bioterrorist act have given rise to concerns over vaccination complications should more widespread vaccination be reinitiated. Our goal was to evaluate the components of the host immune system that are sufficient to prevent morbidity/mortality in a murine model of tail scarification, which mimics immunological and clinical features of smallpox vaccination in humans. Infection of C57BL/6 wild-type mice led to a strictly localized infection, with complete viral clearance by day 28 p.i. On the other hand, infection of T and B-cell deficient mice (Rag1(-/- produced a severe disease, with uncontrolled viral replication at the inoculation site and dissemination to internal organs. Infection of B-cell deficient animals (µMT produced no mortality. However, viral clearance in µMT animals was delayed compared to WT animals, with detectable viral titers in tail and internal organs late in infection. Treatment of Rag1(-/- with rabbit hyperimmune anti-vaccinia serum had a subtle effect on the morbidity/mortality of this strain, but it was effective in reduce viral titers in ovaries. Finally, NUDE athymic mice showed a similar outcome of infection as Rag1(-/-, and passive transfer of WT T cells to Rag1(-/- animals proved fully effective in preventing morbidity/mortality. These results strongly suggest that both T and B cells are important in the immune response to primary VACV infection in mice, and that T-cells are required to control the infection at the inoculation site and providing help for B-cells to produce antibodies, which help to prevent viral dissemination. These insights might prove helpful to better identify

  3. Smallpox

    Science.gov (United States)

    ... the September 11, 2001, terrorist attacks and the anthrax scare that same year, the U.S. government took the precaution of asking several companies to begin making smallpox vaccine again. Today, there's enough vaccine on hand to ...

  4. Mucosal Immunization Induces a Higher Level of Lasting Neutralizing Antibody Response in Mice by a Replication-Competent Smallpox Vaccine: Vaccinia Tiantan Strain

    OpenAIRE

    Bin Lu; Wenbo Yu; Xiaoxing Huang; Haibo Wang; Li Liu; Zhiwei Chen

    2011-01-01

    The possible bioterrorism threat using the variola virus, the causative agent of smallpox, has promoted us to further investigate the immunogenicity profiles of existing vaccines. Here, we study for the first time the immunogenicity profile of a replication-competent smallpox vaccine (vaccinia Tiantan, VTT strain) for inducing neutralizing antibodies (Nabs) through mucosal vaccination, which is noninvasive and has a critical implication for massive vaccination programs. Four different routes ...

  5. Smallpox

    Science.gov (United States)

    ... who do recover may have severe scars. The U.S. stopped routine smallpox vaccinations in 1972. Military and other high-risk groups continue to get the vaccine. The U.S. has increased its supply of the vaccine in ...

  6. Co-administration of the broad-spectrum antiviral, brincidofovir (CMX001), with smallpox vaccine does not compromise vaccine protection in mice challenged with ectromelia virus.

    Science.gov (United States)

    Parker, Scott; Crump, Ryan; Foster, Scott; Hartzler, Hollyce; Hembrador, Ed; Lanier, E Randall; Painter, George; Schriewer, Jill; Trost, Lawrence C; Buller, R Mark

    2014-11-01

    Natural orthopoxvirus outbreaks such as vaccinia, cowpox, cattlepox and buffalopox continue to cause morbidity in the human population. Monkeypox virus remains a significant agent of morbidity and mortality in Africa. Furthermore, monkeypox virus's broad host-range and expanding environs make it of particular concern as an emerging human pathogen. Monkeypox virus and variola virus (the etiological agent of smallpox) are both potential agents of bioterrorism. The first line response to orthopoxvirus disease is through vaccination with first-generation and second-generation vaccines, such as Dryvax and ACAM2000. Although these vaccines provide excellent protection, their widespread use is impeded by the high level of adverse events associated with vaccination using live, attenuated virus. It is possible that vaccines could be used in combination with antiviral drugs to reduce the incidence and severity of vaccine-associated adverse events, or as a preventive in individuals with uncertain exposure status or contraindication to vaccination. We have used the intranasal mousepox (ectromelia) model to evaluate the efficacy of vaccination with Dryvax or ACAM2000 in conjunction with treatment using the broad spectrum antiviral, brincidofovir (BCV, CMX001). We found that co-treatment with BCV reduced the severity of vaccination-associated lesion development. Although the immune response to vaccination was quantifiably attenuated, vaccination combined with BCV treatment did not alter the development of full protective immunity, even when administered two days following ectromelia challenge. Studies with a non-replicating vaccine, ACAM3000 (MVA), confirmed that BCV's mechanism of attenuating the immune response following vaccination with live virus was, as expected, by limiting viral replication and not through inhibition of the immune system. These studies suggest that, in the setting of post-exposure prophylaxis, co-administration of BCV with vaccination should be considered

  7. Extent of Systemic Spread Determines CD8+ T Cell Immunodominance for Laboratory Strains, Smallpox Vaccines, and Zoonotic Isolates of Vaccinia Virus.

    Science.gov (United States)

    Flesch, Inge E A; Hollett, Natasha A; Wong, Yik Chun; Quinan, Bárbara Resende; Howard, Debbie; da Fonseca, Flávio G; Tscharke, David C

    2015-09-01

    CD8(+) T cells that recognize virus-derived peptides presented on MHC class I are vital antiviral effectors. Such peptides presented by any given virus vary greatly in immunogenicity, allowing them to be ranked in an immunodominance hierarchy. However, the full range of parameters that determine immunodominance and the underlying mechanisms remain unknown. In this study, we show across a range of vaccinia virus strains, including the current clonal smallpox vaccine, that the ability of a strain to spread systemically correlated with reduced immunodominance. Reduction in immunodominance was observed both in the lymphoid system and at the primary site of infection. Mechanistically, reduced immunodominance was associated with more robust priming and especially priming in the spleen. Finally, we show this is not just a property of vaccine and laboratory strains of virus, because an association between virulence and immunodominance was also observed in isolates from an outbreak of zoonotic vaccinia virus that occurred in Brazil.

  8. Mucosal immunization induces a higher level of lasting neutralizing antibody response in mice by a replication-competent smallpox vaccine: vaccinia Tiantan strain.

    Science.gov (United States)

    Lu, Bin; Yu, Wenbo; Huang, Xiaoxing; Wang, Haibo; Liu, Li; Chen, Zhiwei

    2011-01-01

    The possible bioterrorism threat using the variola virus, the causative agent of smallpox, has promoted us to further investigate the immunogenicity profiles of existing vaccines. Here, we study for the first time the immunogenicity profile of a replication-competent smallpox vaccine (vaccinia Tiantan, VTT strain) for inducing neutralizing antibodies (Nabs) through mucosal vaccination, which is noninvasive and has a critical implication for massive vaccination programs. Four different routes of vaccination were tested in parallel including intramuscular (i.m.), intranasal (i.n.), oral (i.o.), and subcutaneous (s.c.) inoculations in mice. We found that one time vaccination with an optimal dose of VTT was able to induce anti-VTT Nabs via each of the four routes. Higher levels of antiviral Nabs, however, were induced via the i.n. and i.o. inoculations when compared with the i.m. and s.c. routes. Moreover, the i.n. and i.o. vaccinations also induced higher sustained levels of Nabs overtime, which conferred better protections against homologous or alternating mucosal routes of viral challenges six months post vaccination. The VTT-induced immunity via all four routes, however, was partially effective against the intramuscular viral challenge. Our data have implications for understanding the potential application of mucosal smallpox vaccination and for developing VTT-based vaccines to overcome preexisting antivaccinia immunity.

  9. Mucosal Immunization Induces a Higher Level of Lasting Neutralizing Antibody Response in Mice by a Replication-Competent Smallpox Vaccine: Vaccinia Tiantan Strain

    Directory of Open Access Journals (Sweden)

    Bin Lu

    2011-01-01

    Full Text Available The possible bioterrorism threat using the variola virus, the causative agent of smallpox, has promoted us to further investigate the immunogenicity profiles of existing vaccines. Here, we study for the first time the immunogenicity profile of a replication-competent smallpox vaccine (vaccinia Tiantan, VTT strain for inducing neutralizing antibodies (Nabs through mucosal vaccination, which is noninvasive and has a critical implication for massive vaccination programs. Four different routes of vaccination were tested in parallel including intramuscular (i.m., intranasal (i.n., oral (i.o., and subcutaneous (s.c. inoculations in mice. We found that one time vaccination with an optimal dose of VTT was able to induce anti-VTT Nabs via each of the four routes. Higher levels of antiviral Nabs, however, were induced via the i.n. and i.o. inoculations when compared with the i.m. and s.c. routes. Moreover, the i.n. and i.o. vaccinations also induced higher sustained levels of Nabs overtime, which conferred better protections against homologous or alternating mucosal routes of viral challenges six months post vaccination. The VTT-induced immunity via all four routes, however, was partially effective against the intramuscular viral challenge. Our data have implications for understanding the potential application of mucosal smallpox vaccination and for developing VTT-based vaccines to overcome preexisting antivaccinia immunity.

  10. Development of a highly efficacious vaccinia-based dual vaccine against smallpox and anthrax, two important bioterror entities

    OpenAIRE

    Tod J Merkel; Perera, Pin-Yu; Kelly, Vanessa K.; Verma, Anita; Llewellyn, Zara N.; Waldmann, Thomas A.; Mosca, Joseph D.; Perera, Liyanage P.

    2010-01-01

    Bioterrorism poses a daunting challenge to global security and public health in the 21st century. Variola major virus, the etiological agent of smallpox, and Bacillus anthracis, the bacterial pathogen responsible for anthrax, remain at the apex of potential pathogens that could be used in a bioterror attack to inflict mass casualties. Although licensed vaccines are available for both smallpox and anthrax, because of inadequacies associated with each of these vaccines, serious concerns remain ...

  11. The strategic use of novel smallpox vaccines in the post-eradication world.

    Science.gov (United States)

    Golden, Joseph W; Hooper, Jay W

    2011-07-01

    We still face a threat of orthopoxviruses in the form of biological weapons and emerging zoonoses. Therefore, there is a need to maintain a comprehensive defense strategy to counter the low-probability, high-impact threat of smallpox, as well as the ongoing threat of naturally occurring orthopoxvirus disease. The currently licensed live-virus smallpox vaccine ACAM2000 is effective, but associated with serious and even life-threatening adverse events. The health threat posed by this vaccine, and other previously licensed vaccines, has prevented many first responders, and even many in the military, from receiving a vaccine against smallpox. At the same time, global immunity produced during the smallpox eradication campaign is waning. Here, we review novel subunit/component vaccines and how they might play roles in unconventional strategies to defend against emerging orthopoxvirus diseases throughout the world and against smallpox used as a weapon of mass destruction.

  12. 42 CFR 102.54 - Documentation the representative of the estate of a deceased smallpox vaccine recipient or...

    Science.gov (United States)

    2010-10-01

    ... deceased smallpox vaccine recipient or vaccinia contact must submit to be deemed eligible by the Secretary... VACCINES SMALLPOX COMPENSATION PROGRAM Required Documentation To Be Deemed Eligible § 102.54 Documentation the representative of the estate of a deceased smallpox vaccine recipient or vaccinia contact...

  13. A Randomized, Double-Blind, Placebo-Controlled Phase II Trial Investigating the Safety and Immunogenicity of Modified Vaccinia Ankara Smallpox Vaccine (MVA-BN® in 56-80-Year-Old Subjects.

    Directory of Open Access Journals (Sweden)

    Richard N Greenberg

    Full Text Available Modified Vaccinia Ankara MVA-BN® is a live, highly attenuated, viral vaccine under advanced development as a non-replicating smallpox vaccine. In this Phase II trial, the safety and immunogenicity of Modified Vaccinia Ankara MVA-BN® (MVA was assessed in a 56-80 years old population.MVA with a virus titer of 1 x 108 TCID50/dose was administered via subcutaneous injection to 56-80 year old vaccinia-experienced subjects (N = 120. Subjects received either two injections of MVA (MM group or one injection of Placebo and one injection of MVA (PM group four weeks apart. Safety was evaluated by assessment of adverse events (AE, focused physical exams, electrocardiogram recordings and safety laboratories. Solicited AEs consisted of a set of pre-defined expected local reactions (erythema, swelling, pain, pruritus, and induration and systemic symptoms (body temperature, headache, myalgia, nausea and fatigue and were recorded on a memory aid for an 8-day period following each injection. The immunogenicity of the vaccine was evaluated in terms of humoral immune responses measured with a vaccinia-specific enzyme-linked immunosorbent assay (ELISA and a plaque reduction neutralization test (PRNT before and at different time points after vaccination.Vaccinations were well tolerated by all subjects. No serious adverse event related to MVA and no case of myopericarditis was reported. The overall incidence of unsolicited AEs was similar in both groups. For both groups immunogenicity responses two weeks after the final vaccination (i.e. Visit 4 were as follows: Seroconversion (SC rates (doubling of titers from baseline in vaccine specific antibody titers measured by ELISA were 83.3% in Group MM and 82.8% in Group PM (difference 0.6% with 95% exact CI [-13.8%, 15.0%], and 90.0% for Group MM and 77.6% for Group PM measured by PRNT (difference 12.4% with 95% CI of [-1.1%, 27.0%]. Geometric mean titers (GMT measured by ELISA two weeks after the final vaccination for

  14. A Randomized, Double-Blind, Placebo-Controlled Phase II Trial Investigating the Safety and Immunogenicity of Modified Vaccinia Ankara Smallpox Vaccine (MVA-BN®) in 56-80-Year-Old Subjects

    Science.gov (United States)

    Greenberg, Richard N.; Hay, Christine M.; Stapleton, Jack T.; Marbury, Thomas C.; Wagner, Eva; Kreitmeir, Eva; von Krempelhuber, Alfred; Young, Philip; Nichols, Richard; Meyer, Thomas P.; Weigl, Josef; Virgin, Garth; Arndtz-Wiedemann, Nathaly; Chaplin, Paul

    2016-01-01

    Background Modified Vaccinia Ankara MVA-BN® is a live, highly attenuated, viral vaccine under advanced development as a non-replicating smallpox vaccine. In this Phase II trial, the safety and immunogenicity of Modified Vaccinia Ankara MVA-BN® (MVA) was assessed in a 56–80 years old population. Methods MVA with a virus titer of 1 x 108 TCID50/dose was administered via subcutaneous injection to 56–80 year old vaccinia-experienced subjects (N = 120). Subjects received either two injections of MVA (MM group) or one injection of Placebo and one injection of MVA (PM group) four weeks apart. Safety was evaluated by assessment of adverse events (AE), focused physical exams, electrocardiogram recordings and safety laboratories. Solicited AEs consisted of a set of pre-defined expected local reactions (erythema, swelling, pain, pruritus, and induration) and systemic symptoms (body temperature, headache, myalgia, nausea and fatigue) and were recorded on a memory aid for an 8-day period following each injection. The immunogenicity of the vaccine was evaluated in terms of humoral immune responses measured with a vaccinia-specific enzyme-linked immunosorbent assay (ELISA) and a plaque reduction neutralization test (PRNT) before and at different time points after vaccination. Results Vaccinations were well tolerated by all subjects. No serious adverse event related to MVA and no case of myopericarditis was reported. The overall incidence of unsolicited AEs was similar in both groups. For both groups immunogenicity responses two weeks after the final vaccination (i.e. Visit 4) were as follows: Seroconversion (SC) rates (doubling of titers from baseline) in vaccine specific antibody titers measured by ELISA were 83.3% in Group MM and 82.8% in Group PM (difference 0.6% with 95% exact CI [-13.8%, 15.0%]), and 90.0% for Group MM and 77.6% for Group PM measured by PRNT (difference 12.4% with 95% CI of [-1.1%, 27.0%]). Geometric mean titers (GMT) measured by ELISA two weeks after

  15. Vaccinia virus infections in martial arts gym, Maryland, USA, 2008.

    Science.gov (United States)

    Hughes, Christine M; Blythe, David; Li, Yu; Reddy, Ramani; Jordan, Carol; Edwards, Cindy; Adams, Celia; Conners, Holly; Rasa, Catherine; Wilby, Sue; Russell, Jamaal; Russo, Kelly S; Somsel, Patricia; Wiedbrauk, Danny L; Dougherty, Cindy; Allen, Christopher; Frace, Mike; Emerson, Ginny; Olson, Victoria A; Smith, Scott K; Braden, Zachary; Abel, Jason; Davidson, Whitni; Reynolds, Mary; Damon, Inger K

    2011-04-01

    Vaccinia virus is an orthopoxvirus used in the live vaccine against smallpox. Vaccinia virus infections can be transmissible and can cause severe complications in those with weakened immune systems. We report on a cluster of 4 cases of vaccinia virus infection in Maryland, USA, likely acquired at a martial arts gym.

  16. Antiviral treatment is more effective than smallpox vaccination upon lethal monkeypox virus infection

    NARCIS (Netherlands)

    Stittelaar, Koert J; Neyts, Johan; Naesens, Lieve; van Amerongen, Geert; van Lavieren, Rob F; Holý, Antonin; De Clercq, Erik; Niesters, Hubert G M; Fries, Edwin; Maas, Chantal; Mulder, Paul G H; van der Zeijst, Ben A M; Osterhaus, Albert D M E

    2006-01-01

    There is concern that variola virus, the aetiological agent of smallpox, may be used as a biological weapon. For this reason several countries are now stockpiling (vaccinia virus-based) smallpox vaccine. Although the preventive use of smallpox vaccination has been well documented, little is known ab

  17. Smallpox: clinical highlights and considerations for vaccination.

    Directory of Open Access Journals (Sweden)

    Mahoney M

    2003-01-01

    Full Text Available Smallpox virus has gained considerable attention as a potential bioterrorism agent. Recommendations for smallpox (vaccinia vaccination presume a low risk for use of smallpox as a terrorist biological agent and vaccination is currently recommended for selected groups of individuals such as health care workers, public health authorities, and emergency/rescue workers, among others. Information about adverse reactions to the smallpox vaccine is based upon studies completed during the 1950s and 1960s. The prevalence of various diseases has changed over the last four decades and new disease entities have been described during this period. The smallpox vaccination may be contra-indicated in many of these conditions. This has made pre-screening of potential vaccines necessary. It is believed that at present, the risks of vaccine-associated complications far outweigh the potential benefits of vaccination in the general population.

  18. Smallpox vaccines: targets of protective immunity.

    Science.gov (United States)

    Moss, Bernard

    2011-01-01

    The eradication of smallpox, one of the great triumphs of medicine, was accomplished through the prophylactic administration of live vaccinia virus, a comparatively benign relative of variola virus, the causative agent of smallpox. Nevertheless, recent fears that variola virus may be used as a biological weapon together with the present susceptibility of unimmunized populations have spurred the development of new-generation vaccines that are safer than the original and can be produced by modern methods. Predicting the efficacy of such vaccines in the absence of human smallpox, however, depends on understanding the correlates of protection. This review outlines the biology of poxviruses with particular relevance to vaccine development, describes protein targets of humoral and cellular immunity, compares animal models of orthopoxvirus disease with human smallpox, and considers the status of second- and third-generation smallpox vaccines.

  19. Complete Genome Sequence of Vaccinia Virus Strain L-IVP

    Science.gov (United States)

    Shvalov, Alexander N.; Sivolobova, Galina F.; Kuligina, Elena V.

    2016-01-01

    Most of the live vaccine doses of vaccinia virus donated to the Intensified Smallpox Eradication Programme after 1971 were prepared using the L-IVP strain. A mixture of three clones of the L-IVP strain was sequenced using MySEQ. Consensus sequence similarity with the vaccinia virus Lister strain is 99.5%. PMID:27174282

  20. Recent advances in the study of live attenuated cell-cultured smallpox vaccine LC16m8.

    Science.gov (United States)

    Eto, Akiko; Saito, Tomoya; Yokote, Hiroyuki; Kurane, Ichiro; Kanatani, Yasuhiro

    2015-11-01

    LC16m8 is a live, attenuated, cell-cultured smallpox vaccine that was developed and licensed in Japan in the 1970s, but was not used in the campaign to eradicate smallpox. In the early 2000s, the potential threat of bioterrorism led to reconsideration of the need for a smallpox vaccine. Subsequently, LC16m8 production was restarted in Japan in 2002, requiring re-evaluation of its safety and efficacy. Approximately 50,000 children in the 1970s and about 3500 healthy adults in the 2000s were vaccinated with LC16m8 in Japan, and 153 adults have been vaccinated with LC16m8 or Dryvax in phase I/II clinical trials in the USA. These studies confirmed the safety and efficacy of LC16m8, while several studies in animal models have shown that LC16m8 protects the host against viral challenge. The World Health Organization Strategic Advisory Group of Experts on Immunization recommended LC16m8, together with ACAM2000, as a stockpile vaccine in 2013. In addition, LC16m8 is expected to be a viable alternative to first-generation smallpox vaccines to prevent human monkeypox.

  1. Side-by-side comparison of gene-based smallpox vaccine with MVA in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Joseph W Golden

    Full Text Available Orthopoxviruses remain a threat as biological weapons and zoonoses. The licensed live-virus vaccine is associated with serious health risks, making its general usage unacceptable. Attenuated vaccines are being developed as alternatives, the most advanced of which is modified-vaccinia virus Ankara (MVA. We previously developed a gene-based vaccine, termed 4pox, which targets four orthopoxvirus antigens, A33, B5, A27 and L1. This vaccine protects mice and non-human primates from lethal orthopoxvirus disease. Here, we investigated the capacity of the molecular adjuvants GM-CSF and Escherichia coli heat-labile enterotoxin (LT to enhance the efficacy of the 4pox gene-based vaccine. Both adjuvants significantly increased protective antibody responses in mice. We directly compared the 4pox plus LT vaccine against MVA in a monkeypox virus (MPXV nonhuman primate (NHP challenge model. NHPs were vaccinated twice with MVA by intramuscular injection or the 4pox/LT vaccine delivered using a disposable gene gun device. As a positive control, one NHP was vaccinated with ACAM2000. NHPs vaccinated with each vaccine developed anti-orthopoxvirus antibody responses, including those against the 4pox antigens. After MPXV intravenous challenge, all control NHPs developed severe disease, while the ACAM2000 vaccinated animal was well protected. All NHPs vaccinated with MVA were protected from lethality, but three of five developed severe disease and all animals shed virus. All five NHPs vaccinated with 4pox/LT survived and only one developed severe disease. None of the 4pox/LT-vaccinated animals shed virus. Our findings show, for the first time, that a subunit orthopoxvirus vaccine delivered by the same schedule can provide a degree of protection at least as high as that of MVA.

  2. Smallpox vaccine: the good, the bad, and the ugly.

    Science.gov (United States)

    Belongia, Edward A; Naleway, Allison L

    2003-04-01

    Smallpox inarguably shaped the course of human history by killing countless millions in both the Old World and the New World. Dr. Edward Jenner's discovery of vaccination in the late 18th century, and the global eradication of smallpox in the 1970s, rank among the greatest achievements in human history. Amidst recent growing concerns about bioterrorism, smallpox vaccination has resurfaced from the history books to become a topic of major importance. Inoculation with vaccinia virus is highly effective for the prevention of smallpox infection, but it is associated with several known side effects that range from mild and self-limited to severe and life-threatening. As the United States moves forward with plans to vaccinate selected health care workers and the military, and perhaps offer the vaccination to all citizens in the future, it is important to fully understand and appreciate the history, risks, and benefits of smallpox vaccination.

  3. Modified Vaccinia Ankara Virus Vaccination Provides Long-Term Protection against Nasal Rabbitpox Virus Challenge.

    Science.gov (United States)

    Jones, Dorothy I; McGee, Charles E; Sample, Christopher J; Sempowski, Gregory D; Pickup, David J; Staats, Herman F

    2016-07-01

    Modified vaccinia Ankara virus (MVA) is a smallpox vaccine candidate. This study was performed to determine if MVA vaccination provides long-term protection against rabbitpox virus (RPXV) challenge, an animal model of smallpox. Two doses of MVA provided 100% protection against a lethal intranasal RPXV challenge administered 9 months after vaccination. PMID:27146001

  4. Modified vaccinia virus Ankara protects macaques against respiratory challenge with monkeypox virus

    NARCIS (Netherlands)

    Stittelaar, Koert J; van Amerongen, Geert; Kondova, Ivanela; Kuiken, Thijs; van Lavieren, Rob F; Pistoor, Frank H M; Niesters, Hubert G M; van Doornum, Gerard; van der Zeijst, Ben A M; Mateo, Luis; Chaplin, Paul J; Osterhaus, Albert D M E

    2005-01-01

    The use of classical smallpox vaccines based on vaccinia virus (VV) is associated with severe complications in both naive and immune individuals. Modified vaccinia virus Ankara (MVA), a highly attenuated replication-deficient strain of VV, has been proven to be safe in humans and immunocompromised a

  5. Modified vaccinia virus Ankara protects macaques against respiratory challenge with monkeypox virus.

    NARCIS (Netherlands)

    K.J. Stittelaar (Koert); G. van Amerongen (Geert); I. Kondova (Ivanela); R.F. van Lavieren (Rob); F.H. Pistoor (Frank); H.G.M. Niesters (Bert); G.J.J. van Doornum (Gerard); B.A.M. van der Zeijst (Ben); L. Mateo (Luis); P.J. Chaplin (Paul); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2005-01-01

    textabstractThe use of classical smallpox vaccines based on vaccinia virus (VV) is associated with severe complications in both naive and immune individuals. Modified vaccinia virus Ankara (MVA), a highly attenuated replication-deficient strain of VV, has been proven to be safe in humans and immunoc

  6. Smallpox vaccine revisited.

    Science.gov (United States)

    Capriotti, Teri

    2002-12-01

    Smallpox is a serious contagious disease which is back in the public eye. Yet, most health care providers are unprepared for its return. Nurses will be key health care professionals in a smallpox outbreak or vaccination program.

  7. Brazilian Vaccinia Viruses and Their Origins

    Centers for Disease Control (CDC) Podcasts

    2007-07-30

    Smallpox was eradicated more than 25 years ago, but live viruses used in vaccines may have survived to cause animal and human illness today. Dr. Inger Damon, Acting Branch Chief of the Poxvirus and Rabies Branch at CDC, discusses efforts to determine origins and spread of vaccinia viruses in Brazil.  Created: 7/30/2007 by Emerging Infectious Diseases.   Date Released: 7/30/2007.

  8. A Novel High-Throughput Vaccinia Virus Neutralization Assay and Preexisting Immunity in Populations from Different Geographic Regions in China

    OpenAIRE

    Qiang Liu; Weijin Huang; Jianhui Nie; Rong Zhu; Dongying Gao; Aijing Song; Shufang Meng; Xuemei Xu; Youchun Wang

    2012-01-01

    BACKGROUND: Pre-existing immunity to Vaccinia Tian Tan virus (VTT) resulting from a large vaccination campaign against smallpox prior to the early 1980s in China, has been a major issue for application of VTT-vector based vaccines. It is essential to establish a sensitive and high-throughput neutralization assay to understand the epidemiology of Vaccinia-specific immunity in current populations in China. METHODOLOGY/PRINCIPAL FINDINGS: A new anti-Vaccinia virus (VACV) neutralization assay tha...

  9. Frequency of adverse events after vaccination with different vaccinia strains.

    Directory of Open Access Journals (Sweden)

    Mirjam Kretzschmar

    2006-08-01

    Full Text Available BACKGROUND: Large quantities of smallpox vaccine have been stockpiled to protect entire nations against a possible reintroduction of smallpox. Planning for an appropriate use of these stockpiled vaccines in response to a smallpox outbreak requires a rational assessment of the risks of vaccination-related adverse events, compared to the risk of contracting an infection. Although considerable effort has been made to understand the dynamics of smallpox transmission in modern societies, little attention has been paid to estimating the frequency of adverse events due to smallpox vaccination. Studies exploring the consequences of smallpox vaccination strategies have commonly used a frequency of approximately one death per million vaccinations, which is based on a study of vaccination with the New York City Board of Health (NYCBH strain of vaccinia virus. However, a multitude of historical studies of smallpox vaccination with other vaccinia strains suggest that there are strain-related differences in the frequency of adverse events after vaccination. Because many countries have stockpiled vaccine based on the Lister strain of vaccinia virus, a quantitative evaluation of the adverse effects of such vaccines is essential for emergency response planning. We conducted a systematic review and statistical analysis of historical data concerning vaccination against smallpox with different strains of vaccinia virus. METHODS AND FINDINGS: We analyzed historical vaccination data extracted from the literature. We extracted data on the frequency of postvaccinal encephalitis and death with respect to vaccinia strain and age of vaccinees. Using a hierarchical Bayesian approach for meta-analysis, we estimated the expected frequencies of postvaccinal encephalitis and death with respect to age at vaccination for smallpox vaccines based on the NYCBH and Lister vaccinia strains. We found large heterogeneity between findings from different studies and a time-period effect

  10. Smallpox vaccines for biodefense.

    Science.gov (United States)

    Kennedy, Richard B; Ovsyannikova, Inna; Poland, Gregory A

    2009-11-01

    Few diseases can match the enormous impact that smallpox has had on mankind. Its influence can be seen in the earliest recorded histories of ancient civilizations in Egypt and Mesopotamia. With fatality rates up to 30%, smallpox left its survivors with extensive scarring and other serious sequelae. It is estimated that smallpox killed 500 million people in the 19th and 20th centuries. Given the ongoing concerns regarding the use of variola as a biological weapon, this review will focus on the licensed vaccines as well as current research into next-generation vaccines to protect against smallpox and other poxviruses. PMID:19837292

  11. Mucosal Vaccination Overcomes the Barrier to Recombinant Vaccinia Immunization Caused by Preexisting Poxvirus Immunity

    Science.gov (United States)

    Belyakov, Igor M.; Moss, Bernard; Strober, Warren; Berzofsky, Jay A.

    1999-04-01

    Overcoming preexisting immunity to vaccinia virus in the adult population is a key requirement for development of otherwise potent recombinant vaccinia vaccines. Based on our observation that s.c. immunization with vaccinia induces cellular and antibody immunity to vaccinia only in systemic lymphoid tissue and not in mucosal sites, we hypothesized that the mucosal immune system remains naive to vaccinia and therefore amenable to immunization with recombinant vaccinia vectors despite earlier vaccinia exposure. We show that mucosal immunization of vaccinia-immune BALB/c mice with recombinant vaccinia expressing HIV gp160 induced specific serum antibody and strong HIV-specific cytotoxic T lymphocyte responses. These responses occurred not only in mucosal but also in systemic lymphoid tissue, whereas systemic immunization was ineffective under these circumstances. In this context, intrarectal immunization was more effective than intranasal immunization. Boosting with a second dose of recombinant vaccinia was also more effective via the mucosal route. The systemic HIV-specific cytotoxic T lymphocyte response was enhanced by coadministration of IL-12 at the mucosal site. These results also demonstrate the independent compartmentalization of the mucosal versus systemic immune systems and the asymmetric trafficking of lymphocytes between them. This approach to circumvent previous vaccinia immunity may be useful for induction of protective immunity against infectious diseases and cancer in the sizable populations with preexisting immunity to vaccinia from smallpox vaccination.

  12. Mozart and smallpox.

    Science.gov (United States)

    Zegers, Richard H C

    2007-01-01

    In 1767 at 11 years of age, composer Wolfgang Amadeus Mozart contracted smallpox, allegedly causing him temporary blindness. Although now eradicated, smallpox in those days had a high mortality rate, and the history of classical music would have been very different if Mozart had become permanently blind, or died, as a result of the disease.

  13. Potential virulence determinants in terminal regions of variola smallpox virus genome.

    Science.gov (United States)

    Massung, R F; Esposito, J J; Liu, L I; Qi, J; Utterback, T R; Knight, J C; Aubin, L; Yuran, T E; Parsons, J M; Loparev, V N

    Smallpox eradication culminated the most successful antimicrobial campaign in medical history. To characterize further the linear double-stranded DNA genome of the aetiological agent of smallpox, we have determined the entire nucleotide sequence of the highly virulent variola major virus, strain Bangladesh-1975 (VAR-BSH; 186,102 base pairs, 33.7% G + C; Genbank accession number, L22579). Here we highlight features of the molecule and focus on a few of the 187 putative proteins that probably contribute to pathogenicity and virus host-range properties. One hundred and fifty proteins were markedly similar to those of vaccinia virus (smallpox vaccine), for which a complete sequence has been reported for strain Copenhagen (VAC-CPN; 191,636 base pairs, 33.3% G + C). The remaining 37 proteins reflected variola-specific sequences or open reading frame divergences for variant proteins, which are often truncated or elongated compared with their vaccinia counterparts.

  14. In silico-accelerated identification of conserved and immunogenic variola/vaccinia T-cell epitopes

    DEFF Research Database (Denmark)

    Moise, Leonard; McMurry, Julie A; Buus, Søren;

    2009-01-01

    Epitopes shared by the vaccinia and variola viruses underlie the protective effect of vaccinia immunization against variola infection. We set out to identify a subset of cross-reactive epitopes using bioinformatics and immunological methods. Putative T-cell epitopes were computationally predicted....... This experimental validation of computational predictions illustrates the potential for immunoinformatics methods to identify candidate immunogens for a new, safer smallpox vaccine....

  15. Immunomodulator-based enhancement of anti smallpox immune responses.

    Directory of Open Access Journals (Sweden)

    Osmarie Martínez

    Full Text Available The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists, and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein.We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation.The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections.These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.

  16. Susceptibility of different leukocyte cell types to Vaccinia virus infection

    Directory of Open Access Journals (Sweden)

    Sánchez-Puig Juana M

    2004-11-01

    Full Text Available Abstract Background Vaccinia virus, the prototype member of the family Poxviridae, was used extensively in the past as the Smallpox vaccine, and is currently considered as a candidate vector for new recombinant vaccines. Vaccinia virus has a wide host range, and is known to infect cultures of a variety of cell lines of mammalian origin. However, little is known about the virus tropism in human leukocyte populations. We report here that various cell types within leukocyte populations have widely different susceptibility to infection with vaccinia virus. Results We have investigated the ability of vaccinia virus to infect human PBLs by using virus recombinants expressing green fluorescent protein (GFP, and monoclonal antibodies specific for PBL subpopulations. Flow cytometry allowed the identification of infected cells within the PBL mixture 1–5 hours after infection. Antibody labeling revealed that different cell populations had very different infection rates. Monocytes showed the highest percentage of infected cells, followed by B lymphocytes and NK cells. In contrast to those cell types, the rate of infection of T lymphocytes was low. Comparison of vaccinia virus strains WR and MVA showed that both strains infected efficiently the monocyte population, although producing different expression levels. Our results suggest that MVA was less efficient than WR in infecting NK cells and B lymphocytes. Overall, both WR and MVA consistently showed a strong preference for the infection of non-T cells. Conclusions When infecting fresh human PBL preparations, vaccinia virus showed a strong bias towards the infection of monocytes, followed by B lymphocytes and NK cells. In contrast, very poor infection of T lymphocytes was detected. These finding may have important implications both in our understanding of poxvirus pathogenesis and in the development of improved smallpox vaccines.

  17. Human CD4+ T cell epitopes from vaccinia virus induced by vaccination or infection.

    Directory of Open Access Journals (Sweden)

    J Mauricio Calvo-Calle

    2007-10-01

    Full Text Available Despite the importance of vaccinia virus in basic and applied immunology, our knowledge of the human immune response directed against this virus is very limited. CD4(+ T cell responses are an important component of immunity induced by current vaccinia-based vaccines, and likely will be required for new subunit vaccine approaches, but to date vaccinia-specific CD4(+ T cell responses have been poorly characterized, and CD4(+ T cell epitopes have been reported only recently. Classical approaches used to identify T cell epitopes are not practical for large genomes like vaccinia. We developed and validated a highly efficient computational approach that combines prediction of class II MHC-peptide binding activity with prediction of antigen processing and presentation. Using this approach and screening only 36 peptides, we identified 25 epitopes recognized by T cells from vaccinia-immune individuals. Although the predictions were made for HLA-DR1, eight of the peptides were recognized by donors of multiple haplotypes. T cell responses were observed in samples of peripheral blood obtained many years after primary vaccination, and were amplified after booster immunization. Peptides recognized by multiple donors are highly conserved across the poxvirus family, including variola, the causative agent of smallpox, and may be useful in development of a new generation of smallpox vaccines and in the analysis of the immune response elicited to vaccinia virus. Moreover, the epitope identification approach developed here should find application to other large-genome pathogens.

  18. Traditional Smallpox Vaccines and Atopic Dermatitis

    Science.gov (United States)

    ... Grant Request DONATE Traditional Smallpox Vaccines and Atopic Dermatitis Frequently Asked Questions Eczema Living with Eczema Get ... News Research Donate Traditional Smallpox Vaccines and Atopic Dermatitis Frequently Asked Questions What is the traditional smallpox ...

  19. GM-CSF production allows the identification of immunoprevalent antigens recognized by human CD4+ T cells following smallpox vaccination.

    Directory of Open Access Journals (Sweden)

    Valeria Judkowski

    Full Text Available The threat of bioterrorism with smallpox and the broad use of vaccinia vectors for other vaccines have led to the resurgence in the study of vaccinia immunological memory. The importance of the role of CD4+ T cells in the control of vaccinia infection is well known. However, more CD8+ than CD4+ T cell epitopes recognized by human subjects immunized with vaccinia virus have been reported. This could be, in part, due to the fact that most of the studies that have identified human CD4+ specific protein-derived fragments or peptides have used IFN-γ production to evaluate vaccinia specific T cell responses. Based on these findings, we reasoned that analyzing a large panel of cytokines would permit us to generate a more complete analysis of the CD4 T cell responses. The results presented provide clear evidence that TNF-α is an excellent readout of vaccinia specificity and that other cytokines such as GM-CSF can be used to evaluate the reactivity of CD4+ T cells in response to vaccinia antigens. Furthermore, using these cytokines as readout of vaccinia specificity, we present the identification of novel peptides from immunoprevalent vaccinia proteins recognized by CD4+ T cells derived from smallpox vaccinated human subjects. In conclusion, we describe a "T cell-driven" methodology that can be implemented to determine the specificity of the T cell response upon vaccination or infection. Together, the single pathogen in vitro stimulation, the selection of CD4+ T cells specific to the pathogen by limiting dilution, the evaluation of pathogen specificity by detecting multiple cytokines, and the screening of the clones with synthetic combinatorial libraries, constitutes a novel and valuable approach for the elucidation of human CD4+ T cell specificity in response to large pathogens.

  20. Pre-event Smallpox Vaccination for Healthcare Workers Revisited – the Need for a Carefully Screened Multidisciplinary Cadre

    Energy Technology Data Exchange (ETDEWEB)

    Malone, JD D.

    2007-03-01

    Abstract As healthcare institutions are a focus of smallpox transmission early in an epidemic, several mathematical models support pre-event smallpox vaccination of healthcare workers (HCWs). The deciding factor for HCW voluntary vaccination is the risk of disease exposure versus the risk of vaccine adverse events. In a United States military population, with careful screening to exclude atopic dermatitis/eczema and immunosuppression, over 1 million vaccinia vaccinations were delivered with 1 fatality attributed to vaccination. Among 37,901 U.S. civilian volunteer healthcare workers vaccinated, 100 serious adverse events were reported including 10 ischemic cardiac episodes and six myocardial infarctions – 2 were fatal. This older population had a higher rate of adverse events due to age related coronary artery disease. T-cell mediated inflammatory processes, induced by live vaccinia vaccination, may have a role in the observed acute coronary artery events. With exclusion of individuals at risk for coronary artery disease, atopic dermatitis/eczema, and immunosuppression, HCWs can be smallpox vaccinated with minimal risk. A smallpox pre-vaccinated multidisciplinary cadre (physician, nurse, infection control practitioner, technician) will supply leadership to deal with fear and uncertainty while limiting spread and initial mortality of smallpox. Stochastic – from the Greek meaning “skillful in aiming” – is currently interpreted as arising from chance and involving probability. This issue’s article “Containing a large bioterrorist smallpox attack: a computer simulation approach” by Longini et al. is a discrete time, stochastic computer simulation model that offers additional planning guidance for a smallpox (variola virus) outbreak (1). Although interpretation of the model’s information may differ, Longini’s article concludes “Given that surveillance and containment measures are in place, preemptive vaccination of hospital workers would further

  1. Highly immunogenic variant of attenuated vaccinia virus.

    Science.gov (United States)

    Yakubitskyi, S N; Kolosova, I V; Maksyutov, R A; Shchelkunov, S N

    2016-01-01

    The LIVPΔ6 strain of vaccinia virus (VACV) was created by genetic engineering on the basis of previously obtained attenuated 1421ABJCN strain by target deletion of the A35R gene encoding an inhibitor of antigen presentation by the major histocompatibility complex class II. 1421ABJCN is the LIVP strain of VACV with five inactivated virulence genes encoding hemagglutinin (A56R), γ-interferon-binding protein (B8R), thymidine kinase (J2R), complement-binding protein (C3L), and Bcl2-like inhibitor of apoptosis (N1L). The highly immunogenic LIVPΔ6 strain could be an efficient fourth-generation attenuated vaccine against smallpox and other orthopoxvirus infections. PMID:27025484

  2. From Crescent to Mature Virion: Vaccinia Virus Assembly and Maturation

    Directory of Open Access Journals (Sweden)

    Liang Liu

    2014-10-01

    Full Text Available Vaccinia virus (VACV has achieved unprecedented success as a live viral vaccine for smallpox which mitigated eradication of the disease. Vaccinia virus has a complex virion morphology and recent advances have been made to answer some of the key outstanding questions, in particular, the origin and biogenesis of the virion membrane, the transformation from immature virion (IV to mature virus (MV, and the role of several novel genes, which were previously uncharacterized, but have now been shown to be essential for VACV virion formation. This new knowledge will undoubtedly contribute to the rational design of safe, immunogenic vaccine candidates, or effective antivirals in the future. This review endeavors to provide an update on our current knowledge of the VACV maturation processes with a specific focus on the initiation of VACV replication through to the formation of mature virions.

  3. Oncolytic vaccinia therapy of squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Yu Yong A

    2009-07-01

    Full Text Available Abstract Background Novel therapies are necessary to improve outcomes for patients with squamous cell carcinomas (SCC of the head and neck. Historically, vaccinia virus was administered widely to humans as a vaccine and led to the eradication of smallpox. We examined the therapeutic effects of an attenuated, replication-competent vaccinia virus (GLV-1h68 as an oncolytic agent against a panel of six human head and neck SCC cell lines. Results All six cell lines supported viral transgene expression (β-galactosidase, green fluorescent protein, and luciferase as early as 6 hours after viral exposure. Efficient transgene expression and viral replication (>150-fold titer increase over 72 hrs were observed in four of the cell lines. At a multiplicity of infection (MOI of 1, GLV-1h68 was highly cytotoxic to the four cell lines, resulting in ≥ 90% cytotoxicity over 6 days, and the remaining two cell lines exhibited >45% cytotoxicity. Even at a very low MOI of 0.01, three cell lines still demonstrated >60% cell death over 6 days. A single injection of GLV-1h68 (5 × 106 pfu intratumorally into MSKQLL2 xenografts in mice exhibited localized intratumoral luciferase activity peaking at days 2–4, with gradual resolution over 10 days and no evidence of spread to normal organs. Treated animals exhibited near-complete tumor regression over a 24-day period without any observed toxicity, while control animals demonstrated rapid tumor progression. Conclusion These results demonstrate significant oncolytic efficacy by an attenuated vaccinia virus for infecting and lysing head and neck SCC both in vitro and in vivo, and support its continued investigation in future clinical trials.

  4. Defending against smallpox: a focus on vaccines.

    Science.gov (United States)

    Voigt, Emily A; Kennedy, Richard B; Poland, Gregory A

    2016-09-01

    Smallpox has shaped human history, from the earliest human civilizations well into the 20th century. With high mortality rates, rapid transmission, and serious long-term effects on survivors, smallpox was a much-feared disease. The eradication of smallpox represents an unprecedented medical victory for the lasting benefit of human health and prosperity. Concerns remain, however, about the development and use of the smallpox virus as a biological weapon, which necessitates the need for continued vaccine development. Smallpox vaccine development is thus a much-reviewed topic of high interest. This review focuses on the current state of smallpox vaccines and their context in biodefense efforts.

  5. Defending against smallpox: a focus on vaccines.

    Science.gov (United States)

    Voigt, Emily A; Kennedy, Richard B; Poland, Gregory A

    2016-09-01

    Smallpox has shaped human history, from the earliest human civilizations well into the 20th century. With high mortality rates, rapid transmission, and serious long-term effects on survivors, smallpox was a much-feared disease. The eradication of smallpox represents an unprecedented medical victory for the lasting benefit of human health and prosperity. Concerns remain, however, about the development and use of the smallpox virus as a biological weapon, which necessitates the need for continued vaccine development. Smallpox vaccine development is thus a much-reviewed topic of high interest. This review focuses on the current state of smallpox vaccines and their context in biodefense efforts. PMID:27049653

  6. Tecovirimat for smallpox infections.

    Science.gov (United States)

    Bolken, T C; Hruby, D E

    2010-02-01

    SIGA Technologies, Inc. is a small biotech company committed to developing novel products for the prevention and treatment of serious viral diseases, with an emphasis on products to combat outbreaks that could result from bioterrorism. With government support, SIGA has developed the necessary infrastructure to successfully advance new antiviral drugs from the discovery stage through to licensing. Currently, there is a need to develop safe and effective inhibitors for poxvirus-induced diseases such as smallpox caused by variola, which is a potential biological warfare agent. Likewise emerging zoonotic infections due to cowpox virus and monkeypox virus require the development of effective countermeasures. Tecovirimat, also known as ST-246, has shown efficacy in all small animal and nonhuman primate prophylaxis and therapeutic efficacy models of poxvirus-induced disease tested to date. Phase I clinical trials and new drug application-enabling toxicology studies have been completed with tecovirimat. A phase II clinical study is being run and SIGA has initiated commercial scale-up manufacturing and preparation for the pivotal safety and efficacy studies. SIGA is committed to getting approval for tecovirimat and supplying it to the Strategic National Stockpile, the Department of Defense and global health authorities. PMID:20393639

  7. 76 FR 81918 - Submission for OMB Review; Comment Request

    Science.gov (United States)

    2011-12-29

    ... designed to study the natural history of myopericarditis following receipt of the ACAM2000 vaccine... studies to evaluate the long term safety of ACAM2000 smallpox vaccine. Among the required post licensure... requirement and ensuring the continued licensing of this vaccine. Affected Public: Individuals or...

  8. TLR3 and TLR9 agonists improve postexposure vaccination efficacy of live smallpox vaccines.

    Science.gov (United States)

    Israely, Tomer; Melamed, Sharon; Achdout, Hagit; Erez, Noam; Politi, Boaz; Waner, Trevor; Lustig, Shlomo; Paran, Nir

    2014-01-01

    Eradication of smallpox and discontinuation of the vaccination campaign resulted in an increase in the percentage of unvaccinated individuals, highlighting the need for postexposure efficient countermeasures in case of accidental or deliberate viral release. Intranasal infection of mice with ectromelia virus (ECTV), a model for human smallpox, is curable by vaccination with a high vaccine dose given up to 3 days postexposure. To further extend this protective window and to reduce morbidity, mice were vaccinated postexposure with Vaccinia-Lister, the conventional smallpox vaccine or Modified Vaccinia Ankara, a highly attenuated vaccine in conjunction with TLR3 or TLR9 agonists. We show that co-administration of the TLR3 agonist poly(I:C) even 5 days postexposure conferred protection, avoiding the need to increase the vaccination dose. Efficacious treatments prevented death, ameliorated disease symptoms, reduced viral load and maintained tissue integrity of target organs. Protection was associated with significant elevation of serum IFNα and anti-vaccinia IgM antibodies, modulation of IFNγ response, and balanced activation of NK and T cells. TLR9 agonists (CpG ODNs) were less protective than the TLR3 agonist poly(I:C). We show that activation of type 1 IFN by poly(I:C) and protection is achievable even without co-vaccination, requiring sufficient amount of the viral antigens of the infective agent or the vaccine. This study demonstrated the therapeutic potential of postexposure immune modulation by TLR activation, allowing to alleviate the disease symptoms and to further extend the protective window of postexposure vaccination.

  9. TLR3 and TLR9 agonists improve postexposure vaccination efficacy of live smallpox vaccines.

    Directory of Open Access Journals (Sweden)

    Tomer Israely

    Full Text Available Eradication of smallpox and discontinuation of the vaccination campaign resulted in an increase in the percentage of unvaccinated individuals, highlighting the need for postexposure efficient countermeasures in case of accidental or deliberate viral release. Intranasal infection of mice with ectromelia virus (ECTV, a model for human smallpox, is curable by vaccination with a high vaccine dose given up to 3 days postexposure. To further extend this protective window and to reduce morbidity, mice were vaccinated postexposure with Vaccinia-Lister, the conventional smallpox vaccine or Modified Vaccinia Ankara, a highly attenuated vaccine in conjunction with TLR3 or TLR9 agonists. We show that co-administration of the TLR3 agonist poly(I:C even 5 days postexposure conferred protection, avoiding the need to increase the vaccination dose. Efficacious treatments prevented death, ameliorated disease symptoms, reduced viral load and maintained tissue integrity of target organs. Protection was associated with significant elevation of serum IFNα and anti-vaccinia IgM antibodies, modulation of IFNγ response, and balanced activation of NK and T cells. TLR9 agonists (CpG ODNs were less protective than the TLR3 agonist poly(I:C. We show that activation of type 1 IFN by poly(I:C and protection is achievable even without co-vaccination, requiring sufficient amount of the viral antigens of the infective agent or the vaccine. This study demonstrated the therapeutic potential of postexposure immune modulation by TLR activation, allowing to alleviate the disease symptoms and to further extend the protective window of postexposure vaccination.

  10. Eradicating smallpox in Indonesia: the archipelagic challenge.

    Science.gov (United States)

    Neelakantan, Vivek

    2010-01-01

    From 1804 to 1974, the colonial Dutch East Indies government and the postcolonial Indonesian state attempted to tackle the problem of smallpox. The vaccination efforts in the colonial era virtually eliminated smallpox by 1940. Unfortunately, as a consequence of the war smallpox was reintroduced into the archipelago in 1947. Indonesia finally succeeded in eradicating smallpox in 1974 through campaigns of mass vaccination and surveillance. In the last few years of the fight against smallpox, a detection system was set up in order to have every suspected case of smallpox isolated and investigated by the health authorities until verified in the government laboratory at Bandung. This paper looks at the impact of the archipelagic nature of Indonesia on the smallpox eradication campaigns. PMID:20973337

  11. Protective effect of Toll-like receptor 4 in pulmonary vaccinia infection.

    Directory of Open Access Journals (Sweden)

    Martha A Hutchens

    Full Text Available Innate immune responses are essential for controlling poxvirus infection. The threat of a bioterrorist attack using Variola major, the smallpox virus, or zoonotic transmission of other poxviruses has renewed interest in understanding interactions between these viruses and their hosts. We recently determined that TLR3 regulates a detrimental innate immune response that enhances replication, morbidity, and mortality in mice in response to vaccinia virus, a model pathogen for studies of poxviruses. To further investigate Toll-like receptor signaling in vaccinia infection, we first focused on TRIF, the only known adapter protein for TLR3. Unexpectedly, bioluminescence imaging showed that mice lacking TRIF are more susceptible to vaccinia infection than wild-type mice. We then focused on TLR4, the other Toll-like receptor that signals through TRIF. Following respiratory infection with vaccinia, mice lacking TLR4 signaling had greater viral replication, hypothermia, and mortality than control animals. The mechanism of TLR4-mediated protection was not due to increased release of proinflammatory cytokines or changes in total numbers of immune cells recruited to the lung. Challenge of primary bone marrow macrophages isolated from TLR4 mutant and control mice suggested that TLR4 recognizes a viral ligand rather than an endogenous ligand. These data establish that TLR4 mediates a protective innate immune response against vaccinia virus, which informs development of new vaccines and therapeutic agents targeted against poxviruses.

  12. Attitudes of healthcare workers in U.S. hospitals regarding smallpox vaccination

    Directory of Open Access Journals (Sweden)

    O'Brien Megan A

    2003-06-01

    Full Text Available Abstract Background The United States is implementing plans to immunize 500,000 hospital-based healthcare workers against smallpox. Vaccination is voluntary, and it is unknown what factors drive vaccine acceptance. This study's aims were to estimate the proportion of workers willing to accept vaccination and to identify factors likely to influence their decisions. Methods The survey was conducted among physicians, nurses, and others working primarily in emergency departments or intensive care units at 21 acute-care hospitals in 10 states during the two weeks before the U.S. national immunization program for healthcare workers was announced in December 2002. Of the questionnaires distributed, 1,165 were returned, for a response rate of 81%. The data were analyzed by logistic regression and were adjusted for clustering within hospital and for different number of responses per hospital, using generalized linear mixed models and SAS's NLMIXED procedure. Results Sixty-one percent of respondents said they would definitely or probably be vaccinated, while 39% were undecided or inclined against it. Fifty-three percent rated the risk of a bioterrorist attack using smallpox in the United States in the next two years as either intermediate or high. Forty-seven percent did not feel well-informed about the risks and benefits of vaccination. Principal concerns were adverse reactions and the risk of transmitting vaccinia. In multivariate analysis, four variables were associated with willingness to be vaccinated: perceived risk of an attack, self-assessed knowledge about smallpox vaccination, self-assessed previous smallpox vaccination status, and gender. Conclusions The success of smallpox vaccination efforts will ultimately depend on the relative weight in people's minds of the risk of vaccine adverse events compared with the risk of being exposed to the disease. Although more than half of the respondents thought the likelihood of a bioterrorist smallpox

  13. Cytokine production associated with smallpox vaccine responses.

    Science.gov (United States)

    Simon, Whitney L; Salk, Hannah M; Ovsyannikova, Inna G; Kennedy, Richard B; Poland, Gregory A

    2014-01-01

    Smallpox was eradicated 34 years ago due to the success of the smallpox vaccine; yet, the vaccine continues to be studied because of its importance in responding to potential biological warfare and the adverse events associated with current smallpox vaccines. Interindividual variations in vaccine response are observed and are, in part, due to genetic variation. In some cases, these varying responses lead to adverse events, which occur at a relatively high rate for the smallpox vaccine compared with other vaccines. Here, we aim to summarize the cytokine responses associated with smallpox vaccine response to date. Along with a description of each of these cytokines, we describe the genetic and adverse event data associated with cytokine responses to smallpox vaccination.

  14. Incongruencies in Vaccinia Virus Phylogenetic Trees

    Directory of Open Access Journals (Sweden)

    Chad Smithson

    2014-10-01

    Full Text Available Over the years, as more complete poxvirus genomes have been sequenced, phylogenetic studies of these viruses have become more prevalent. In general, the results show similar relationships between the poxvirus species; however, some inconsistencies are notable. Previous analyses of the viral genomes contained within the vaccinia virus (VACV-Dryvax vaccine revealed that their phylogenetic relationships were sometimes clouded by low bootstrapping confidence. To analyze the VACV-Dryvax genomes in detail, a new tool-set was developed and integrated into the Base-By-Base bioinformatics software package. Analyses showed that fewer unique positions were present in each VACV-Dryvax genome than expected. A series of patterns, each containing several single nucleotide polymorphisms (SNPs were identified that were counter to the results of the phylogenetic analysis. The VACV genomes were found to contain short DNA sequence blocks that matched more distantly related clades. Additionally, similar non-conforming SNP patterns were observed in (1 the variola virus clade; (2 some cowpox clades; and (3 VACV-CVA, the direct ancestor of VACV-MVA. Thus, traces of past recombination events are common in the various orthopoxvirus clades, including those associated with smallpox and cowpox viruses.

  15. A randomized, double-blind, dose-finding Phase II study to evaluate immunogenicity and safety of the third generation smallpox vaccine candidate IMVAMUNE®

    OpenAIRE

    von Krempelhuber, Alfred; Vollmar, Jens; Pokorny, Rolf; Rapp, Petra; Wulff, Niels; Petzold, Barbara; Handley, Amanda; Mateo, Lyn; Siersbol, Henriette; Kollaritsch, Herwig; Chaplin, Paul

    2009-01-01

    IMVAMUNE® is a Modified Vaccinia Ankara-based virus that is being developed as a safer 3rd generation smallpox vaccine. In order to determine the optimal dose for further development, a double-blind, randomized Phase II trial was performed testing three different doses of IMVAMUNE® in 164 healthy volunteers. All three IMVAMUNE® doses displayed a favourable safety profile, with local reactions as the most frequent observation. The 1×108 TCID50 IMVAMUNE® dose induced a total antibody response i...

  16. Smallpox - Multiple Languages: MedlinePlus

    Science.gov (United States)

    ... Hmong) PDF Minnesota Department of Health Khmer (Khmer) Smallpox Vaccine English វ៉ាក់សាំង smallpox - Khmer (Khmer) PDF ... Centers for Disease Control and Prevention Russian (Русский) Smallpox Vaccine English Вакцина против оспы - Русский (Russian) PDF Immunization ...

  17. Logistics in smallpox: the legacy.

    Science.gov (United States)

    Wickett, John; Carrasco, Peter

    2011-12-30

    Logistics, defined as "the time-related positioning of resources" was critical to the implementation of the smallpox eradication strategy of surveillance and containment. Logistical challenges in the smallpox programme included vaccine delivery, supplies, staffing, vehicle maintenance, and financing. Ensuring mobility was essential as health workers had to travel to outbreaks to contain them. Three examples illustrate a range of logistic challenges which required imagination and innovation. Standard price lists were developed to expedite vehicle maintenance and repair in Bihar, India. Innovative staffing ensured an adequate infrastructure for vehicle maintenance in Bangladesh. The use of disaster relief mechanisms in Somalia provided airlifts, vehicles and funding within 27 days of their initiation. In contrast the Expanded Programme on Immunization (EPI) faces more complex logistical challenges.

  18. A novel high-throughput vaccinia virus neutralization assay and preexisting immunity in populations from different geographic regions in China.

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    Full Text Available BACKGROUND: Pre-existing immunity to Vaccinia Tian Tan virus (VTT resulting from a large vaccination campaign against smallpox prior to the early 1980s in China, has been a major issue for application of VTT-vector based vaccines. It is essential to establish a sensitive and high-throughput neutralization assay to understand the epidemiology of Vaccinia-specific immunity in current populations in China. METHODOLOGY/PRINCIPAL FINDINGS: A new anti-Vaccinia virus (VACV neutralization assay that used the attenuated replication-competent VTT carrying the firefly luciferase gene of Photinus pyralis (rTV-Fluc was established and standardized for critical parameters that included the choice of cell line, viral infection dose, and the infection time. The current study evaluated the maintenance of virus-specific immunity after smallpox vaccination by conducting a non-randomized, cross-sectional analysis of antiviral antibody-mediated immune responses in volunteers examined 30-55 years after vaccination. The rTV-Fluc neutralization assay was able to detect neutralizing antibodies (NAbs against Vaccinia virus without the ability to differentiate strains of Vaccinia virus. We showed that the neutralizing titers measured by our assay were similar to those obtained by the traditional plaque reduction neutralization test (PRNT. Using this assay, we found a low prevalence of NAb to VTT (7.6% in individuals born before 1980 from Beijing and Anhui provinces in China, and when present, anti-VTT NAb titers were low. No NAbs were detected in all 222 samples from individuals born after 1980. There was no significant difference observed for titer or prevalence by gender, age range and geographic origin. CONCLUSION: A simplified, sensitive, standardized, reproducible, and high-throughput assay was developed for the quantitation of NAbs against different Vaccinia strains. The current study provides useful insights for the future development of VTT-based vaccination in

  19. Emergence and reemergence of smallpox: the need for development of a new generation smallpox vaccine.

    Science.gov (United States)

    Shchelkunov, Sergei N

    2011-12-30

    The review summarizes the archive data on smallpox, history of ancient civilizations, and the most recent data on the genome organization of orthopoxviruses, their evolutionary relationships, and the time points of smallpox emergence. The performed analysis provides the grounds for the hypothesis that smallpox could have emerged several times as a result of evolutionary changes in the zoonotic ancestor virus and disappeared due to insufficient population size of ancient civilizations. Smallpox reemerged in the Indian subcontinent approximately 2500-3000 years before present, which resulted in endemization of this anthroponotic infection, which had been preserved until the smallpox eradication in the 20th century AD. The conclusion suggests a potential possibility of future variola virus reemergence, presenting a great menace for mankind, as well as the need for development of new safe smallpox vaccines, design of anti-smallpox drugs, and activation of the control of zoonotic human orthopoxvirus infections.

  20. Smallpox: a disease of the past? Consideration for midwives.

    Science.gov (United States)

    Constantin, Carolyn M; Martinelli, Angela M; Foster, Stanley O; Bonney, Elizabeth A; Strickland, Ora L

    2003-01-01

    Smallpox infection was often more severe in pregnant women than in non-pregnant women or in men, regardless of vaccination status. Women with smallpox infection during pregnancy have higher rates of abortions, stillbirths, and preterm deliveries than women without the disease. Pregnant women have high incidences of hemorrhagic-type and flat-type smallpox, which are associated with extremely high fatality rates. Although smallpox was eradicated in the late 1970s, current international concern exists regarding the potential use of smallpox virus as an agent for bioterrorism. This manuscript reviews clinical aspects of smallpox, smallpox immunization, and outcomes in pregnant women.

  1. Recommendations for using smallpox vaccine in a pre-event vaccination program. Supplemental recommendations of the Advisory Committee on Immunization Practices (ACIP) and the Healthcare Infection Control Practices Advisory Committee (HICPAC).

    Science.gov (United States)

    Wharton, Melinda; Strikas, Raymond A; Harpaz, Rafael; Rotz, Lisa D; Schwartz, Benjamin; Casey, Christine G; Pearson, Michele L; Anderson, Larry J

    2003-04-01

    This report supplements the 2001 statement by the Advisory Committee on Immunization Practices (ACIP) (CDC. Vaccinia [smallpox] vaccine: recommendations of the Advisory Committee on Immunization Practices [ACIP], 2001. MMWR 2001;50[No. RR-10]:1-25). This supplemental report provides recommendations for using smallpox vaccine in the pre-event vaccination program in the United States. To facilitate preparedness and response, smallpox vaccination is recommended for persons designated by public health authorities to conduct investigation and follow-up of initial smallpox cases that might necessitate direct patient contact. ACIP recommends that each state and territory establish and maintain > or = 1 smallpox response team. ACIP and the Healthcare Infection Control Practices Advisory Committee (HICPAC) recommend that each acute-care hospital identify health-care workers who can be vaccinated and trained to provide direct medical care for the first smallpox patients requiring hospital admission and to evaluate and manage patients who are suspected as having smallpox. When feasible, the first-stage vaccination program should include previously vaccinated health-care personnel to decrease the potential for adverse events. Additionally persons administering smallpox vaccine in this pre-event vaccination program should be vaccinated. Smallpox vaccine is administered by using the multiple-puncture technique with a bifurcated needle, packaged with the vaccine and diluent. According to the product labeling, 2-3 punctures are recommended for primary vaccination and 15 punctures for revaccination. A trace of blood should appear at the vaccination site after 15-20 seconds; if no trace of blood is visible, an additional 3 insertions should be made by using the same bifurcated needle without reinserting the needle into the vaccine vial. If no evidence of vaccine take is apparent after 7 days, the person can be vaccinated again. Optimal infection-control practices and appropriate

  2. Chronic inhibition of cyclooxygenase-2 attenuates antibody responses against vaccinia infection.

    Science.gov (United States)

    Bernard, Matthew P; Bancos, Simona; Chapman, Timothy J; Ryan, Elizabeth P; Treanor, John J; Rose, Robert C; Topham, David J; Phipps, Richard P

    2010-02-01

    Generation of optimal humoral immunity to vaccination is essential to protect against devastating infectious agents such as the variola virus that causes smallpox. Vaccinia virus (VV), employed as a vaccine against smallpox, provides an important model of infection. Herein, we evaluated the importance cyclooxygenase-2 (Cox-2) in immunity to VV using Cox-2 deficient mice and Cox-2 selective inhibitory drugs. The effects of Cox-2 inhibition on antibody responses to live viruses such as vaccinia have not been previously described. Here, we used VV infection in Cox-2 deficient mice and in mice chronically treated with Cox-2 selective inhibitors and show that the frequency of VV-specific B cells was reduced, as well as the production of neutralizing IgG. VV titers were approximately 70 times higher in mice treated with a Cox-2 selective inhibitor. Interestingly, Cox-2 inhibition also reduced the frequency of IFN-gamma producing CD4(+) T helper cells, important for class switching. The significance of these results is that the chronic use of non-steroidal anti-inflammatory drugs (NSAIDs), and other drugs that inhibit Cox-2 activity or expression, blunt the ability of B cells to produce anti-viral antibodies, thereby making vaccines less effective and possibly increasing susceptibility to viral infection. These new findings support an essential role for Cox-2 in regulating humoral immunity.

  3. Poxviruses: smallpox vaccine, its complications and chemotherapy

    Directory of Open Access Journals (Sweden)

    Mimi Remichkova

    2010-04-01

    Full Text Available Mimi RemichkovaDepartment of Pathogenic Bacteria, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, BulgariaAbstract: The threat of bioterrorism in the recent years has once again posed to mankind the unresolved problems of contagious diseases, well forgotten in the past. Smallpox (variola is among the most dangerous and highly contagious viral infections affecting humans. The last natural case in Somalia marked the end of a successful World Health Organization campaign for smallpox eradication by vaccination on worldwide scale. Smallpox virus still exists today in some laboratories, specially designated for that purpose. The contemporary response in the treatment of the post-vaccine complications, which would occur upon enforcing new programs for mass-scale smallpox immunization, includes application of effective chemotherapeutics and their combinations. The goals are to provide the highest possible level of protection and safety of the population in case of eventual terrorist attack. This review describes the characteristic features of the poxviruses, smallpox vaccination, its adverse reactions, and poxvirus chemotherapy.Keywords: poxvirus, smallpox vaccine, post vaccine complications, inhibitors

  4. Passatempo Virus, a Vaccinia Virus Strain, Brazil

    OpenAIRE

    Leite, Juliana A.; Drumond, Betânia P.; Trindade, Giliane S; Zélia I P Lobato; da Fonseca, Flávio G.; dos Santos, João R.; Madureira, Marieta C.; Guedes, Maria I.M.C.; Ferreira, Jaqueline M. S.; Bonjardim, Cláudio A.; Ferreira, Paulo C. P.; Kroon, Erna G.

    2005-01-01

    Passatempo virus was isolated during a zoonotic outbreak. Biologic features and molecular characterization of hemagglutinin, thymidine kinase, and vaccinia growth factor genes suggested a vaccinia virus infection, which strengthens the idea of the reemergence and circulation of vaccinia virus in Brazil. Molecular polymorphisms indicated that Passatempo virus is a different isolate.

  5. Engineering the vaccinia virus L1 protein for increased neutralizing antibody response after DNA immunization

    Directory of Open Access Journals (Sweden)

    Moss Bernard

    2009-03-01

    Full Text Available Abstract Background The licensed smallpox vaccine, comprised of infectious vaccinia virus, has associated adverse effects, particularly for immunocompromised individuals. Therefore, safer DNA and protein vaccines are being investigated. The L1 protein, a component of the mature virion membrane that is conserved in all sequenced poxviruses, is required for vaccinia virus entry into host cells and is a target for neutralizing antibody. When expressed by vaccinia virus, the unglycosylated, myristoylated L1 protein attaches to the viral membrane via a C-terminal transmembrane anchor without traversing the secretory pathway. The purpose of the present study was to investigate modifications of the gene expressing the L1 protein that would increase immunogenicity in mice when delivered by a gene gun. Results The L1 gene was codon modified for optimal expression in mammalian cells and potential N-glycosylation sites removed. Addition of a signal sequence to the N-terminus of L1 increased cell surface expression as shown by confocal microscopy and flow cytometry of transfected cells. Removal of the transmembrane domain led to secretion of L1 into the medium. Induction of binding and neutralizing antibodies in mice was enhanced by gene gun delivery of L1 containing the signal sequence with or without the transmembrane domain. Each L1 construct partially protected mice against weight loss caused by intranasal administration of vaccinia virus. Conclusion Modifications of the vaccinia virus L1 gene including codon optimization and addition of a signal sequence with or without deletion of the transmembrane domain can enhance the neutralizing antibody response of a DNA vaccine.

  6. What We Learn about Smallpox from Movies - Fact or Fiction

    Science.gov (United States)

    ... Health Matters What's New A - Z Index What We Learn About Smallpox from Movies - Fact or Fiction ... Disease Fiction: In the F/X movie Smallpox , we see a police composite sketch of a supposed ...

  7. Basal cell carcinoma arising in a smallpox vaccination site.

    OpenAIRE

    Rich, J D; Shesol, B F; Horne, D W

    1980-01-01

    A case of pigmented basal cell carcinoma developing in a smallpox revaccination site is presented. Any progressive change within a smallpox vaccination scar should be thoroughly evaluated and treated appropriately after tissue diagnosis.

  8. Evaluating anti-Orthopoxvirus antibodies in individuals from Brazilian rural areas prior to the bovine vaccinia era

    Directory of Open Access Journals (Sweden)

    Poliana de Oliveira Figueiredo

    2015-09-01

    Full Text Available Vaccinia virus naturally circulates in Brazil and is the causative agent of a zoonotic disease known as bovine vaccinia (BV. We retrospectively evaluated two populations from the Amazon and Southeast Regions. BV outbreaks had not been reported in these regions before sample collection. Neutralising antibodies were found in 13 individuals (n = 132 with titres ranging from 100 ≥ 6,400 neutralising units/mL. Univariate analysis identified age and vaccination as statistically significant risk factors in individuals from the Southeast Region. The absence of detectable antibodies in vaccinated individuals raises questions about the protection of smallpox vaccine years after vaccination and reinforces the need for surveillance of Orthopoxvirus in Brazilian populations without evidence of previous outbreaks.

  9. Potent T cell Responses Induced by Single DNA Vaccine Boosted with Recombinant Vaccinia Vaccine

    Institute of Scientific and Technical Information of China (English)

    Lianxing Liu; Chao Qiu; Yang Huang; Jianqing Xu; Yiming Shao

    2013-01-01

    Plasmid DNA,an effective vaccine vector,can induce both cellular and humoral immune responses.However,plasmid DNA raises issues concerning potential genomic integration after injection.This issue should be considered in preclinical studies.Tiantan vaccinia virus (TV) has been most widely utilized in eradicating smallpox in China.This virus has also been considered as a successful vaccine vector against a few infectious diseases.Potent T cell responses through T-cell receptor (TCR) could be induced by three injections of the DNA prime vaccine followed by a single injection of recombinant vaccinia vaccine.To develop a safer immunization strategy,a single DNA prime followed by a single recombinant Tiantan vaccinia (rTV) AIDS vaccine was used to immunize mice.Our data demonstrated that one DNA prime/rTV boost regimen induced mature TCR activation with high functional avidity,preferential T cell Vβ receptor usage and high sensitivity to anti-CD3 antibody stimulation.No differences in T cell responses were observed among one,two or three DNA prime/rTV boost regimens.This study shows that one DNA prime/rTV boost regimen is sufficient to induce potent T cell responses against HIV.

  10. Analysis of the complete genome of smallpox variola major virus strain Bangladesh-1975.

    Science.gov (United States)

    Massung, R F; Liu, L I; Qi, J; Knight, J C; Yuran, T E; Kerlavage, A R; Parsons, J M; Venter, J C; Esposito, J J

    1994-06-01

    We analyzed the 186,102 base pairs (bp) that constitute the entire DNA genome of a highly virulent variola virus isolated from Bangladesh in 1975. The linear, double-stranded molecule has relatively small (725 bp) inverted terminal repeat (ITR) sequences containing three 69-bp direct repeat elements, a 54-bp partial repeat element, and a 105-base telomeric end-loop that can be maximally base-paired to contain 17 mismatches. Proximal to the right-end ITR sequences are another seven 69-bp elements and a 53- and a 27-bp partial element. Sequence analysis showed 187 closely spaced open reading frames specifying putative major proteins containing > or = 65 amino acids. Most of the virus proteins correspond to proteins in current databases, including 150 proteins that have > 90% identity to major gene products encoded by vaccinia virus, the smallpox vaccine. Variola virus has a group of proteins that are truncated compared with vaccinia virus counterparts and a smaller group of proteins that are elongated. The terminal regions encode several novel proteins and variants of other poxvirus proteins that potentially augment variola virus transmissibility and virulence for its only natural host, humans.

  11. A randomized, double-blind, dose-finding Phase II study to evaluate immunogenicity and safety of the third generation smallpox vaccine candidate IMVAMUNE®

    Science.gov (United States)

    von Krempelhuber, Alfred; Vollmar, Jens; Pokorny, Rolf; Rapp, Petra; Wulff, Niels; Petzold, Barbara; Handley, Amanda; Mateo, Lyn; Siersbol, Henriette; Kollaritsch, Herwig; Chaplin, Paul

    2009-01-01

    IMVAMUNE® is a Modified Vaccinia Ankara-based virus that is being developed as a safer 3rd generation smallpox vaccine. In order to determine the optimal dose for further development, a double-blind, randomized Phase II trial was performed testing three different doses of IMVAMUNE® in 164 healthy volunteers. All three IMVAMUNE® doses displayed a favourable safety profile, with local reactions as the most frequent observation. The 1×108 TCID50 IMVAMUNE® dose induced a total antibody response in 94% of the subjects following the first vaccination and the highest peak seroconversion rates by ELISA (100%) and PRNT (71%). This IMVAMUNE® dose was considered to be optimal for the further clinical development of this highly attenuated poxvirus as a safer smallpox vaccine. PMID:19944151

  12. Recommendations for using smallpox vaccine in a pre-event vaccination program. Supplemental recommendations of the Advisory Committee on Immunization Practices (ACIP) and the Healthcare Infection Control Practices Advisory Committee (HICPAC).

    Science.gov (United States)

    Wharton, Melinda; Strikas, Raymond A; Harpaz, Rafael; Rotz, Lisa D; Schwartz, Benjamin; Casey, Christine G; Pearson, Michele L; Anderson, Larry J

    2003-04-01

    This report supplements the 2001 statement by the Advisory Committee on Immunization Practices (ACIP) (CDC. Vaccinia [smallpox] vaccine: recommendations of the Advisory Committee on Immunization Practices [ACIP], 2001. MMWR 2001;50[No. RR-10]:1-25). This supplemental report provides recommendations for using smallpox vaccine in the pre-event vaccination program in the United States. To facilitate preparedness and response, smallpox vaccination is recommended for persons designated by public health authorities to conduct investigation and follow-up of initial smallpox cases that might necessitate direct patient contact. ACIP recommends that each state and territory establish and maintain > or = 1 smallpox response team. ACIP and the Healthcare Infection Control Practices Advisory Committee (HICPAC) recommend that each acute-care hospital identify health-care workers who can be vaccinated and trained to provide direct medical care for the first smallpox patients requiring hospital admission and to evaluate and manage patients who are suspected as having smallpox. When feasible, the first-stage vaccination program should include previously vaccinated health-care personnel to decrease the potential for adverse events. Additionally persons administering smallpox vaccine in this pre-event vaccination program should be vaccinated. Smallpox vaccine is administered by using the multiple-puncture technique with a bifurcated needle, packaged with the vaccine and diluent. According to the product labeling, 2-3 punctures are recommended for primary vaccination and 15 punctures for revaccination. A trace of blood should appear at the vaccination site after 15-20 seconds; if no trace of blood is visible, an additional 3 insertions should be made by using the same bifurcated needle without reinserting the needle into the vaccine vial. If no evidence of vaccine take is apparent after 7 days, the person can be vaccinated again. Optimal infection-control practices and appropriate

  13. Demographic and clinical factors associated with response to smallpox vaccine in preimmunized volunteers.

    Directory of Open Access Journals (Sweden)

    Philippe Bossi

    Full Text Available CONTEXT: In March 2003, the French Ministry of Health implemented a program on preparedness and response to a biological attack using smallpox as weapon. This program included the establishment of a preoutbreak national team that could be revaccinated against smallpox. OBJECTIVE: To identify demographic and clinical factors associated with vaccination success defined as the presence of a pustule at the inoculation site at day 8 (days 7-9, with an undiluted vaccinia virus derived from a Lister strain among preimmunized volunteers. VOLUNTEERS AND METHODS: From March 2003 to November 2006, we have studied prospectively 226 eligible volunteers. Demographic data were recorded for each volunteer (age, sex, number of previously smallpox vaccinations and date of the last vaccination. Smallpox vaccine adverse reactions were diagnosed on the basis of clinical examination performed at days 0, 7, 14, 21 and 28 after revaccination. RESULTS: A total of 226 volunteers (sex ratio H/F = 2.7 were revaccinated. Median age was 45 years (range: 27-63 yrs. All volunteers completed follow-up. Median number of vaccinations before revaccination was 2 (range: 1-8. The median delay between time of the study and the last vaccination was 29 years (range; 18-60 yrs. Sixty-one volunteers (27% experienced one (n = 40 or more (n = 21 minor side effects during the 2-14 days after revaccination. Successful vaccination was noted in 216/226 volunteers (95.6% at day 8 and the median of the pustule diameter was 5 mm (range: 1-20 mm. Size of the pustule at day 8 was correlated with age (p = 0.03 and with the presence of axillary adenopathy after revaccination (p = 0.007. Sex, number of prior vaccinations, delay between the last vaccination and revaccination, and local or systemic side effects with the exception of axillary adenopathy, were not correlated with the size of the pustule at day 8. CONCLUSIONS: Previously vaccinated volunteers can be successfully revaccinated with the

  14. One time intranasal vaccination with a modified vaccinia Tiantan strain MVTT(ZCI) protects animals against pathogenic viral challenge.

    Science.gov (United States)

    Yu, Wenbo; Fang, Qing; Zhu, Weijun; Wang, Haibo; Tien, Po; Zhang, Linqi; Chen, Zhiwei

    2010-02-25

    To combat variola virus in bioterrorist attacks, it is desirable to develop a noninvasive vaccine. Based on the vaccinia Tiantan (VTT) strain, which was historically used to eradicate the smallpox in China, we generated a modified VTT (MVTT(ZCI)) by removing the hemagglutinin gene and an 11,944bp genomic region from HindIII fragment C2L to F3L. MVTT(ZCI) was characterized for its host cell range in vitro and preclinical safety and efficacy profiles in mice. Despite replication-competency in some cell lines, unlike VTT, MVTT(ZCI) did not cause death after intracranial injection or body weight loss after intranasal inoculation. MVTT(ZCI) did not replicate in mouse brain and was safe in immunodeficient mice. MVTT(ZCI) induced neutralizing antibodies via the intranasal route of immunization. One time intranasal immunization protected animals from the challenge of the pathogenic vaccinia WR strain. This study established proof-of-concept that the attenuated replicating MVTT(ZCI) may serve as a safe noninvasive smallpox vaccine candidate.

  15. Comparison of the replication characteristics of vaccinia virus strains Guang 9 and Tian Tan in vivo and in vitro.

    Science.gov (United States)

    Zhu, Rong; Liu, Qiang; Huang, Weijin; Yu, Yongxin; Wang, Youchun

    2014-10-01

    Vaccinia virus is widely used as a vector in the development of recombinant vaccines. Vaccinia virus strain Guang 9 (VG9), which was derived from vaccinia virus strain Tian Tan (VTT) by successive plaque-cloning purification, was more attenuated than VTT. In this study, the host cell range and the growth and replication of VG9 were compared with those of VTT. The results showed that both VG9 and VTT could infect permissive cells (Vero, TK-143 and CEF) and semipermissive cells PK (15) and induced a visible cytopathic effect (CPE). Both strains could infect nonpermissive CHO-K1 cells but neither was able to reproduce. The replicative ability of VG9 was a little lower than that of VTT. Additionally, recombinant vaccinia viruses containing a firefly luciferase gene (VG9-L and VTT-L) were constructed, and their expression in vitro and replication and spread in vivo were compared. The expression ability of VG9-L was lower than that of VTT-L. Whole-animal imaging data indicated that VG9-L could reproduce quickly and express the exogenous protein at the site of inoculation, regardless of whether the intramuscular, intracutaneous, subcutaneous or celiac inoculation route was used. VG9-L was better in its ability to express a foreign protein than VTT-L, but the time during which expression occurred was shorter. There was no dissemination of virus in mice inoculated with either strain. In summary, this study demonstrates the possibility of using VG9 for the production of smallpox vaccines or the construction of recombinant vaccinia virus vaccines.

  16. Smallpox vaccination and all-cause infectious disease hospitalization

    DEFF Research Database (Denmark)

    Sørup, Signe; Villumsen, Marie; Ravn, Henrik;

    2011-01-01

    There is growing evidence from observational studies and randomized trials in low-income countries that vaccinations have non-specific effects. Administration of live vaccines reduces overall child morbidity and mortality, presumably due to protection against non-targeted infections. In Denmark......, the live vaccine against smallpox was phased out in the 1970s due to the eradication of smallpox. We used the phasing-out period to investigate the effect of smallpox vaccination on the risk of hospitalization for infections....

  17. Effect of the deletion of genes encoding proteins of the extracellular virion form of vaccinia virus on vaccine immunogenicity and protective effectiveness in the mouse model.

    Directory of Open Access Journals (Sweden)

    Clement A Meseda

    Full Text Available Antibodies to both infectious forms of vaccinia virus, the mature virion (MV and the enveloped virion (EV, as well as cell-mediated immune response appear to be important for protection against smallpox. EV virus particles, although more labile and less numerous than MV, are important for dissemination and spread of virus in infected hosts and thus important in virus pathogenesis. The importance of the EV A33 and B5 proteins for vaccine induced immunity and protection in a murine intranasal challenge model was evaluated by deletion of both the A33R and B5R genes in a vaccine-derived strain of vaccinia virus. Deletion of either A33R or B5R resulted in viruses with a small plaque phenotype and reduced virus yields, as reported previously, whereas deletion of both EV protein-encoding genes resulted in a virus that formed small infection foci that were detectable and quantifiable only by immunostaining and an even more dramatic decrease in total virus yield in cell culture. Deletion of B5R, either as a single gene knockout or in the double EV gene knockout virus, resulted in a loss of EV neutralizing activity, but all EV gene knockout viruses still induced a robust neutralizing activity against the vaccinia MV form of the virus. The effect of elimination of A33 and/or B5 on the protection afforded by vaccination was evaluated by intranasal challenge with a lethal dose of either vaccinia virus WR or IHD-J, a strain of vaccinia virus that produces relatively higher amounts of EV virus. The results from multiple experiments, using a range of vaccination doses and virus challenge doses, and using mortality, morbidity, and virus dissemination as endpoints, indicate that the absence of A33 and B5 have little effect on the ability of a vaccinia vaccine virus to provide protection against a lethal intranasal challenge in a mouse model.

  18. Vaccinia Virus LC16m8∆ as a Vaccine Vector for Clinical Applications

    Directory of Open Access Journals (Sweden)

    Minoru Kidokoro

    2014-10-01

    Full Text Available The LC16m8 strain of vaccinia virus, the active ingredient in the Japanese smallpox vaccine, was derived from the Lister/Elstree strain. LC16m8 is replication-competent and has been administered to over 100,000 infants and 3,000 adults with no serious adverse reactions. Despite this outstanding safety profile, the occurrence of spontaneously-generated large plaque-forming virulent LC16m8 revertants following passage in cell culture is a major drawback. We identified the gene responsible for the reversion and deleted the gene (B5R from LC16m8 to derive LC16m8Δ. LC16m8∆ is non-pathogenic in immunodeficient severe combined immunodeficiency (SCID mice, genetically-stable and does not reverse to a large-plaque phenotype upon passage in cell culture, even under conditions in which most LC16m8 populations are replaced by revertants. Moreover, LC16m8∆ is >500-fold more effective than the non-replicating vaccinia virus (VV, Modified Vaccinia Ankara (MVA, at inducing murine immune responses against pathogenic VV. LC16m8∆, which expresses the SIV gag gene, also induced anti-Gag CD8+ T-cells more efficiently than MVA and another non-replicating VV, Dairen I minute-pock variants (DIs. Moreover, LC16m8∆ expressing HIV-1 Env in combination with a Sendai virus vector induced the production of anti-Env antibodies and CD8+ T-cells. Thus, the safety and efficacy of LC16m8∆ mean that it represents an outstanding platform for the development of human vaccine vectors.

  19. Frequency of Adverse Events after Vaccination with Different Vaccinia Strains.

    NARCIS (Netherlands)

    Kretzschmar, Mirjam; Wallinga, Jacco; Teunis, Peter F M; Xing, Shuqin; Mikolajczyk, Rafael

    2006-01-01

    BACKGROUND: Large quantities of smallpox vaccine have been stockpiled to protect entire nations against a possible reintroduction of smallpox. Planning for an appropriate use of these stockpiled vaccines in response to a smallpox outbreak requires a rational assessment of the risks of vaccination-re

  20. Critical role of perforin-dependent CD8+ T cell immunity for rapid protective vaccination in a murine model for human smallpox.

    Directory of Open Access Journals (Sweden)

    Melanie Kremer

    Full Text Available Vaccination is highly effective in preventing various infectious diseases, whereas the constant threat of new emerging pathogens necessitates the development of innovative vaccination principles that also confer rapid protection in a case of emergency. Although increasing evidence points to T cell immunity playing a critical role in vaccination against viral diseases, vaccine efficacy is mostly associated with the induction of antibody responses. Here we analyze the immunological mechanism(s of rapidly protective vaccinia virus immunization using mousepox as surrogate model for human smallpox. We found that fast protection against lethal systemic poxvirus disease solely depended on CD4 and CD8 T cell responses induced by vaccination with highly attenuated modified vaccinia virus Ankara (MVA or conventional vaccinia virus. Of note, CD4 T cells were critically required to allow for MVA induced CD8 T cell expansion and perforin-mediated cytotoxicity was a key mechanism of MVA induced protection. In contrast, selected components of the innate immune system and B cell-mediated responses were fully dispensable for prevention of fatal disease by immunization given two days before challenge. In conclusion, our data clearly demonstrate that perforin-dependent CD8 T cell immunity plays a key role in MVA conferred short term protection against lethal mousepox. Rapid induction of T cell immunity might serve as a new paradigm for treatments that need to fit into a scenario of protective emergency vaccination.

  1. Standardized emergency management system and response to a smallpox emergency.

    Science.gov (United States)

    Kim-Farley, Robert J; Celentano, John T; Gunter, Carol; Jones, Jessica W; Stone, Rogelio A; Aller, Raymond D; Mascola, Laurene; Grigsby, Sharon F; Fielding, Jonathan E

    2003-01-01

    The smallpox virus is a high-priority, Category-A agent that poses a global, terrorism security risk because it: (1) easily can be disseminated and transmitted from person to person; (2) results in high mortality rates and has the potential for a major public health impact; (3) might cause public panic and social disruption; and (4) requires special action for public health preparedness. In recognition of this risk, the Los Angeles County Department of Health Services (LAC-DHS) developed the Smallpox Preparedness, Response, and Recovery Plan for LAC to prepare for the possibility of an outbreak of smallpox. A unique feature of the LAC-DHS plan is its explicit use of the Standardized Emergency Management System (SEMS) framework for detailing the functions needed to respond to a smallpox emergency. The SEMS includes the Incident Command System (ICS) structure (management, operations, planning/intelligence, logistics, and finance/administration), the mutual-aid system, and the multi/interagency coordination required during a smallpox emergency. Management for incident command includes setting objectives and priorities, information (risk communications), safety, and liaison. Operations includes control and containment of a smallpox outbreak including ring vaccination, mass vaccination, adverse events monitoring and assessment, management of confirmed and suspected smallpox cases, contact tracing, active surveillance teams and enhanced hospital-based surveillance, and decontamination. Planning/intelligence functions include developing the incident action plan, epidemiological investigation and analysis of smallpox cases, and epidemiological assessment of the vaccination coverage status of populations at risk. Logistics functions include receiving, handling, inventorying, and distributing smallpox vaccine and vaccination clinic supplies; personnel; transportation; communications; and health care of personnel. Finally, finance/administration functions include monitoring

  2. Prospective surveillance for cardiac adverse events in healthy adults receiving modified vaccinia Ankara vaccines: a systematic review.

    Directory of Open Access Journals (Sweden)

    Marnie L Elizaga

    Full Text Available BACKGROUND: Vaccinia-associated myo/pericarditis was observed during the US smallpox vaccination (DryVax campaign initiated in 2002. A highly-attenuated vaccinia strain, modified vaccinia Ankara (MVA has been evaluated in clinical trials as a safer alternative to DryVax and as a vector for recombinant vaccines. Due to the lack of prospectively collected cardiac safety data, the US Food and Drug Administration required cardiac screening and surveillance in all clinical trials of MVA since 2004. Here, we report cardiac safety surveillance from 6 phase I trials of MVA vaccines. METHODS: Four clinical research organizations contributed cardiac safety data using common surveillance methods in trials administering MVA or recombinant MVA vaccines to healthy participants. 'Routine cardiac investigations' (ECGs and cardiac enzymes obtained 2 weeks after injections of MVA or MVA-HIV recombinants, or placebo-controls, and 'Symptom-driven cardiac investigations' are reported. The outcome measure is the number of participants who met the CDC-case definition for vaccinia-related myo/pericarditis or who experienced cardiac adverse events from an MVA vaccine. RESULTS: Four hundred twenty-five study participants had post-vaccination safety data analyzed, 382 received at least one MVA-containing vaccine and 43 received placebo; 717 routine ECGs and 930 cardiac troponin assays were performed. Forty-five MVA recipients (12% had additional cardiac testing performed; 22 for cardiac symptoms, 19 for ECG/laboratory changes, and 4 for cardiac symptoms with an ECG/laboratory change. No participant had evidence of symptomatic or asymptomatic myo/pericarditis meeting the CDC-case definition and judged to be related to an MVA vaccine. CONCLUSIONS: Prospective surveillance of MVA recipients for myo/pericarditis did not detect cardiac adverse reactions in 382 study participants. TRIAL REGISTRATION: ClinicalTrials.gov NCT00082446 NCT003766090 NCT00252148 NCT00083603

  3. The effects of post-exposure smallpox vaccination on clinical disease presentation: addressing the data gaps between historical epidemiology and modern surrogate model data.

    Science.gov (United States)

    Keckler, M Shannon; Reynolds, Mary G; Damon, Inger K; Karem, Kevin L

    2013-10-25

    Decades after public health interventions - including pre- and post-exposure vaccination - were used to eradicate smallpox, zoonotic orthopoxvirus outbreaks and the potential threat of a release of variola virus remain public health concerns. Routine prophylactic smallpox vaccination of the public ceased worldwide in 1980, and the adverse event rate associated with the currently licensed live vaccinia virus vaccine makes reinstatement of policies recommending routine pre-exposure vaccination unlikely in the absence of an orthopoxvirus outbreak. Consequently, licensing of safer vaccines and therapeutics that can be used post-orthopoxvirus exposure is necessary to protect the global population from these threats. Variola virus is a solely human pathogen that does not naturally infect any other known animal species. Therefore, the use of surrogate viruses in animal models of orthopoxvirus infection is important for the development of novel vaccines and therapeutics. Major complications involved with the use of surrogate models include both the absence of a model that accurately mimics all aspects of human smallpox disease and a lack of reproducibility across model species. These complications limit our ability to model post-exposure vaccination with newer vaccines for application to human orthopoxvirus outbreaks. This review seeks to (1) summarize conclusions about the efficacy of post-exposure smallpox vaccination from historic epidemiological reports and modern animal studies; (2) identify data gaps in these studies; and (3) summarize the clinical features of orthopoxvirus-associated infections in various animal models to identify those models that are most useful for post-exposure vaccination studies. The ultimate purpose of this review is to provide observations and comments regarding available model systems and data gaps for use in improving post-exposure medical countermeasures against orthopoxviruses.

  4. A Multicenter, Open-Label, Controlled Phase II Study to Evaluate Safety and Immunogenicity of MVA Smallpox Vaccine (IMVAMUNE in 18-40 Year Old Subjects with Diagnosed Atopic Dermatitis.

    Directory of Open Access Journals (Sweden)

    Richard N Greenberg

    Full Text Available Replicating smallpox vaccines can cause severe complications in individuals with atopic dermatitis (AD. Prior studies evaluating Modified Vaccinia Ankara virus (MVA, a non-replicating vaccine in humans, showed a favorable safety and immunogenicity profile in healthy volunteers.This Phase II study compared the safety and immunogenicity of MVA enrolling groups of 350 subjects with AD (SCORAD ≤ 30 and 282 healthy subjects.Subjects were vaccinated twice with MVA, each dose given subcutaneously 4 weeks apart. Adverse events, cardiac parameters, and the development of vaccinia virus humoral immune responses were monitored.The overall safety of the vaccine was similar in both groups. Adverse events affecting skin were experienced significantly more often in subjects with AD, but the majority of these events were mild to moderate in intensity. Seroconversion rates and geometric mean titers for total and neutralizing vaccinia-specific antibodies in the AD group were non-inferior compared to the healthy subjects.The size of the study population limited the detection of serious adverse events occurring at a frequency less than 1%.MVA has a favorable safety profile and the ability to elicit vaccinia-specific immune responses in subjects with AD.ClinicalTrials.gov NCT00316602.

  5. Vaccinia virus: a selectable eukaryotic cloning and expression vector.

    OpenAIRE

    Mackett, M; Smith, G L; B. Moss

    1982-01-01

    Foreign DNA was inserted into two nonessential regions of the vaccinia virus genome by homologous recombination in cells infected with virus and transfected with plasmids containing the foreign DNA elements flanked by vaccinia virus DNA. Thymidine kinase-negative (TK-) recombinants were selected after inserting foreign DNA into the coding region of the TK gene of wild-type vaccinia virus; TK+ recombinants were selected after inserting the herpesvirus TK gene into TK- mutants of vaccinia virus...

  6. Preparation of Cell Cultures and Vaccinia Virus Stocks.

    Science.gov (United States)

    Cotter, Catherine A; Earl, Patricia L; Wyatt, Linda S; Moss, Bernard

    2015-01-01

    The culturing of cell lines used with vaccinia virus, both as monolayer and in suspension, is described. The preparation of chick embryo fibroblasts (CEF) is presented for use in the production of the highly attenuated and host range-restricted modified vaccinia virus Ankara (MVA) strain of vaccinia virus. Protocols for the preparation, titration, and trypsinization of vaccinia virus stocks, as well as viral DNA preparation and virus purification methods are also included.

  7. Vaccinia DNA topoisomerase I promotes illegitimate recombination in Escherichia coli.

    OpenAIRE

    Shuman, S

    1989-01-01

    Vaccinia virus encapsidates a Mr 32,000 type IDNA topoisomerase. Although the vaccinia gene encoding the topoisomerase is essential for virus growth, the role of the enzyme in vivo remains unclear. In the present study, the physiologic consequences of vaccinia topoisomerase action have been examined in a heterologous system, Escherichia coli. The vaccinia topoisomerase gene was inducibly expressed in an int-lambda lysogen BL21(DE3) using a T7 RNA polymerase-based transcription system. Express...

  8. The generation of CD8+ T-cell population specific for vaccinia virus epitope involved in the antiviral protection against ectromelia virus challenge.

    Science.gov (United States)

    Gierynska, Malgorzata; Szulc-Dabrowska, Lidia; Dzieciatkowski, Tomasz; Golke, Anna; Schollenberger, Ada

    2015-12-01

    Eradication of smallpox has led to cessation of vaccination programs. This has rendered the human population increasingly susceptible not only to variola virus infection but also to infections with other representatives of Poxviridae family that cause zoonotic variola-like diseases. Thus, new approaches for designing improved vaccine against smallpox are required. Discovering that orthopoxviruses, e.g. variola virus, vaccinia virus, ectromelia virus, share common immunodominant antigen, may result in the development of such a vaccine. In our study, the generation of antigen-specific CD8(+) T cells in mice during the acute and memory phase of the immune response was induced using the vaccinia virus immunodominant TSYKFESV epitope and CpG oligodeoxynucleotides as adjuvants. The role of the generated TSYKFESV-specific CD8(+) T cells was evaluated in mice during ectromelia virus infection using systemic and mucosal model. Moreover, the involvement of dendritic cells subsets in the adaptive immune response stimulation was assessed. Our results indicate that the TSYKFESV epitope/TLR9 agonist approach, delivered systemically or mucosally, generated strong CD8(+) T-cell response when measured 10 days after immunization. Furthermore, the TSYKFESV-specific cell population remained functionally active 2 months post-immunization, and gave cross-protection in virally challenged mice, even though the numbers of detectable antigen-specific T cells decreased. PMID:26474845

  9. An update on the vaccinia virus genome.

    Science.gov (United States)

    Johnson, G P; Goebel, S J; Paoletti, E

    1993-10-01

    This communication is intended as a single source update of the initial report (Goebel et al., 1990a,b) which described the complete DNA sequence of the vaccinia virus genome. We have integrated published information as well as unpublished data. Our understanding of the complexities of the genetic functional organization of poxviruses is increasing at a remarkable rate. While some previously unknown identities have since been elucidated, the fact that the majority of vaccinia-encoded gene products still lack assigned functions lends excitement to the immediate future of poxvirus research.

  10. Protective Effect of Surfactant Protein D in Pulmonary Vaccinia Virus Infection: Implication of A27 Viral Protein

    Directory of Open Access Journals (Sweden)

    Julien Perino

    2013-03-01

    Full Text Available Vaccinia virus (VACV was used as a surrogate of variola virus (VARV (genus Orthopoxvirus, the causative agent of smallpox, to study Orthopoxvirus infection. VARV is principally transmitted between humans by aerosol droplets. Once inhaled, VARV first infects the respiratory tract where it could encounter surfactant components, such as soluble pattern recognition receptors. Surfactant protein D (SP-D, constitutively present in the lining fluids of the respiratory tract, plays important roles in innate host defense against virus infection. We investigated the role of SP-D in VACV infection and studied the A27 viral protein involvement in the interaction with SP-D. Interaction between SP-D and VACV caused viral inhibition in a lung cell model. Interaction of SP-D with VACV was mediated by the A27 viral protein. Binding required Ca2+ and interactions were blocked in the presence of excess of SP-D saccharide ligands. A27, which lacks glycosylation, directly interacted with SP-D. The interaction between SP-D and the viral particle was also observed using electron microscopy. Infection of mice lacking SP-D (SP-D-/- resulted in increased mortality compared to SP-D+/+ mice. Altogether, our data show that SP-D participates in host defense against the vaccinia virus infection and that the interaction occurs with the viral surface protein A27.

  11. Proteomic basis of the antibody response to monkeypox virus infection examined in cynomolgus macaques and a comparison to human smallpox vaccination.

    Directory of Open Access Journals (Sweden)

    Sarah Keasey

    Full Text Available Monkeypox is a zoonotic viral disease that occurs primarily in Central and West Africa. A recent outbreak in the United States heightened public health concerns for susceptible human populations. Vaccinating with vaccinia virus to prevent smallpox is also effective for monkeypox due to a high degree of sequence conservation. Yet, the identity of antigens within the monkeypox virus proteome contributing to immune responses has not been described in detail. We compared antibody responses to monkeypox virus infection and human smallpox vaccination by using a protein microarray covering 92-95% (166-192 proteins of representative proteomes from monkeypox viral clades of Central and West Africa, including 92% coverage (250 proteins of the vaccinia virus proteome as a reference orthopox vaccine. All viral gene clones were verified by sequencing and purified recombinant proteins were used to construct the microarray. Serum IgG of cynomolgus macaques that recovered from monkeypox recognized at least 23 separate proteins within the orthopox proteome, while only 14 of these proteins were recognized by IgG from vaccinated humans. There were 12 of 14 antigens detected by sera of human vaccinees that were also recognized by IgG from convalescent macaques. The greatest level of IgG binding for macaques occurred with the structural proteins F13L and A33R, and the membrane scaffold protein D13L. Significant IgM responses directed towards A44R, F13L and A33R of monkeypox virus were detected before onset of clinical symptoms in macaques. Thus, antibodies from vaccination recognized a small number of proteins shared with pathogenic virus strains, while recovery from infection also involved humoral responses to antigens uniquely recognized within the monkeypox virus proteome.

  12. Epidemiologic Assessment of the Protective Effects of Smallpox Vaccination

    Directory of Open Access Journals (Sweden)

    Hiroshi Nishiura

    2006-01-01

    Full Text Available Despite smallpox eradication, the widely discussed possibility of a bioterrorist attack using a variola virus makes it necessary to review the epidemiology of smallpox and the effects of various vaccination schemes. This paper provides a literature review concerning the epidemiologic assessment of the protective effects of smallpox vaccination, with particular emphasis on the statistical and theoretical points of view. Although smallpox vaccination has the longest history of all vaccinations, we lack precise epidemiologic estimates of its effectiveness. Vaccination practice continually evolved and many places experienced vaccinations with various strains over time. Despite the weak statistical evidence, it can be stated with certainty that smallpox vaccines prevented infection for a few decades after primary vaccination and that vaccinated individuals had the benefit of a longer lasting partial protection when they contracted the disease. Confronted with the huge uncertainties and with the necessity to rely on laboratory evidence, appropriate preparedness plans for countermeasures using vaccination must be based on the best available evidence.

  13. 76 FR 49776 - The Development and Evaluation of Next-Generation Smallpox Vaccines; Public Workshop

    Science.gov (United States)

    2011-08-11

    ... workshop entitled ``The Development and Evaluation of Next-Generation Smallpox Vaccines.'' The purpose of... evaluation of next-generation smallpox vaccines. The public workshop will include presentations on the human response to smallpox vaccines and development of animal models for demonstration of effectiveness of...

  14. What to Do After You've Gotten the Smallpox Vaccine

    Science.gov (United States)

    ... Z Index SMALLPOX FACT SHEET What to Do After You’ve Gotten the Smallpox Vaccine The smallpox vaccine ... cared for carefully until the scab that forms after vaccination falls off on its own (in 2 to 3 weeks). Follow these instructions: What You Should Do: Cover the vaccination site loosely with ...

  15. Smallpox virus destruction and the implications of a new vaccine.

    Science.gov (United States)

    Henderson, D A

    2011-06-01

    The World Health Assembly is scheduled to decide in May 2011 whether the 2 known remaining stockpiles of smallpox virus are to be destroyed or retained. In preparation for this, a WHO-appointed committee undertook a comprehensive review of the status of smallpox virus research from 1999 to 2010. It concluded that, considering the nature of the studies already completed with respect to vaccine, drugs, and diagnostics, there was no reason to retain live smallpox virus except to satisfy restrictive regulatory requirements. The committee advised that researchers and regulators define alternative models for testing the vaccines and drugs. Apart from other considerations, the costs of new products are significant and important. These include prospective expenditures required for the development, manufacture, testing, and storage of new products. This commentary provides approximations of these costs and the incremental contribution that a newly developed vaccine might make in terms of public health security.

  16. A prospective study of the incidence of myocarditis/pericarditis and new onset cardiac symptoms following smallpox and influenza vaccination.

    Directory of Open Access Journals (Sweden)

    Renata J M Engler

    Full Text Available Although myocarditis/pericarditis (MP has been identified as an adverse event following smallpox vaccine (SPX, the prospective incidence of this reaction and new onset cardiac symptoms, including possible subclinical injury, has not been prospectively defined.The study's primary objective was to determine the prospective incidence of new onset cardiac symptoms, clinical and possible subclinical MP in temporal association with immunization.New onset cardiac symptoms, clinical MP and cardiac specific troponin T (cTnT elevations following SPX (above individual baseline values were measured in a multi-center prospective, active surveillance cohort study of healthy subjects receiving either smallpox vaccine or trivalent influenza vaccine (TIV.New onset chest pain, dyspnea, and/or palpitations occurred in 10.6% of SPX-vaccinees and 2.6% of TIV-vaccinees within 30 days of immunization (relative risk (RR 4.0, 95% CI: 1.7-9.3. Among the 1081 SPX-vaccinees with complete follow-up, 4 Caucasian males were diagnosed with probable myocarditis and 1 female with suspected pericarditis. This indicates a post-SPX incidence rate more than 200-times higher than the pre-SPX background population surveillance rate of myocarditis/pericarditis (RR 214, 95% CI 65-558. Additionally, 31 SPX-vaccinees without specific cardiac symptoms were found to have over 2-fold increases in cTnT (>99th percentile from baseline (pre-SPX during the window of risk for clinical myocarditis/pericarditis and meeting a proposed case definition for possible subclinical myocarditis. This rate is 60-times higher than the incidence rate of overt clinical cases. No clinical or possible subclinical myocarditis cases were identified in the TIV-vaccinated group.Passive surveillance significantly underestimates the true incidence of myocarditis/pericarditis after smallpox immunization. Evidence of subclinical transient cardiac muscle injury post-vaccinia immunization is a finding that requires further

  17. 溶瘤痘苗病毒的研究进展%Advances of Oncolytic Vaccinia Virus for the Treatment of Tumor

    Institute of Scientific and Technical Information of China (English)

    郝明强; 田厚文

    2012-01-01

    Oncolytic virus can selectively kill cancer cells and normal cells are generally left intact. Nearly 10 kinds of oncolytic viruses have been developed in recent years. Vaccinia virus has an enormous use in humans for the eradication of smallpox. In addition, vaccinia virus replicates rapidly, has highly immunogenic and well-known side effect. Genetic modified vaccinia virus can selectively replicate and lyse tumor cells. The reported oncolytic vaccinia virus researches mainly based on the backbone of Western Reverse strain, Wyeth strain, Lister strain and Copenhagen strain. There is no related report about Tian-Tan strain.%溶瘤病毒可靶向性杀伤肿瘤细胞而不对正常细胞产生杀伤作用.近几年已开发出十余种溶瘤病毒.痘苗病毒曾在全球消灭天花行动中被广泛使用,并且有着复制速度快、免疫原性强、副作用明确等优点.痘苗病毒经过基因改造,可以选择性地在肿瘤细胞中复制并裂解细胞.目前,用于溶瘤痘苗病毒改造的主要有痘苗病毒Western Reverse株、Wyeth株、Lister株和Copenhagen株,我国使用的痘苗病毒天坛株尚未有相关报道.

  18. The complete DNA sequence of vaccinia virus.

    Science.gov (United States)

    Goebel, S J; Johnson, G P; Perkus, M E; Davis, S W; Winslow, J P; Paoletti, E

    1990-11-01

    The complete DNA sequence of the genome of vaccinia virus has been determined. The genome consisted of 191,636 bp with a base composition of 66.6% A + T. We have identified 198 "major" protein-coding regions and 65 overlapping "minor" regions, for a total of 263 potential genes. Genes encoded by the virus were located by examination of DNA sequence characteristics and compared with existing vaccinia virus mapping analyses, sequence data, and transcription data. These genes were found to be compactly organized along the genome with relatively few regions of noncoding sequences. Whereas several similarities to proteins of known function were discerned, the function of the majority of proteins encoded by these open reading frames is as yet undetermined.

  19. Smallpox Vaccination of Laboratory Workers at US Variola Testing Sites.

    Science.gov (United States)

    Medcalf, Sharon; Bilek, Laura; Hartman, Teresa; Iwen, Peter C; Leuschen, Patricia; Miller, Hannah; O'Keefe, Anne; Sayles, Harlan; Smith, Philip W

    2015-08-01

    To evaluate the need to revaccinate laboratory workers against smallpox, we assessed regular revaccination at the US Laboratory Response Network's variola testing sites by examining barriers to revaccination and the potential for persistence of immunity. Our data do not provide evidence to suggest prolonging the recommended interval for revaccination.

  20. Bioterrorism and Smallpox: Policies, Practices, and Implications for Social Work

    Science.gov (United States)

    Mackelprang, Romel W.; Mackelprang, Romel D.; Thirkill, Ashley D.

    2005-01-01

    Terrorist acts and the fear of terrorism have become a part of everyday life in the early 21st century. Among the threats most feared is bioterrorism, including the intentional release of smallpox. With the invasion of Iraq and toppling of the Saddam Hussein regime, acute bioterrorism fears have abated; however, an ongoing threat remains. This…

  1. The Emergency campaign for smallpox eradication from Somalia (1977-1979)--revisited.

    Science.gov (United States)

    Deria, Abdullahi

    2011-12-30

    The historical significance of smallpox eradication from Somalia lies in the fact that the country was the last to record the last endemic smallpox case in the world. Before 1977 the programme was mismanaged. In the mid-1970s, the programme was plagued with concealment. Confirmation of smallpox outbreak in Mogadishu in September 1976 delayed global smallpox eradication. The Government maintained that there was no ongoing smallpox transmission in the country after the Mogadishu outbreak and frustrated independent attempts to verify its claim. In February 1977 the Government allowed World Health Organization (WHO) epidemiologists to search, unhindered, for smallpox outside Mogadishu. Soon widespread smallpox transmission was detected. The Government appealed for international support. The strategy to stop the smallpox transmission was based on surveillance and containment. The WHO took the leading role of the campaign which, in spite of the Somalia/Ethiopia war of 1977/78, culminated in the eradication of smallpox from the country. Somalia was certified smallpox-free on 19 October 1979.

  2. A novel replication-competent vaccinia vector MVTT is superior to MVA for inducing high levels of neutralizing antibody via mucosal vaccination.

    Science.gov (United States)

    Huang, Xiaoxing; Lu, Bin; Yu, Wenbo; Fang, Qing; Liu, Li; Zhuang, Ke; Shen, Tingting; Wang, Haibo; Tian, Po; Zhang, Linqi; Chen, Zhiwei

    2009-01-01

    Mucosal vaccination offers great advantage for inducing protective immune response to prevent viral transmission and dissemination. Here, we report our findings of a head-to-head comparison of two viral vectors modified vaccinia Ankara (MVA) and a novel replication-competent modified vaccinia Tian Tan (MVTT) for inducing neutralizing antibodies (Nabs) via intramuscular and mucosal vaccinations in mice. MVTT is an attenuated variant of the wild-type VTT, which was historically used as a smallpox vaccine for millions of Chinese people. The spike glycoprotein (S) of SARS-CoV was used as the test antigen after the S gene was constructed in the identical genomic location of two vectors to generate vaccine candidates MVTT-S and MVA-S. Using identical doses, MVTT-S induced lower levels ( approximately 2-3-fold) of anti- SARS-CoV neutralizing antibodies (Nabs) than MVA-S through intramuscular inoculation. MVTT-S, however, was capable of inducing consistently 20-to-100-fold higher levels of Nabs than MVA-S when inoculated via either intranasal or intraoral routes. These levels of MVTT-S-induced Nab responses were substantially (approximately 10-fold) higher than that induced via the intramuscular route in the same experiments. Moreover, pre-exposure to the wild-type VTT via intranasal or intraoral route impaired the Nab response via the same routes of MVTT-S vaccination probably due to the pre-existing anti-VTT Nab response. The efficacy of intranasal or intraoral vaccination, however, was still 20-to-50-fold better than intramuscular inoculation despite the subcutaneous pre-exposure to wild-type VTT. Our data have implications for people who maintain low levels of anti-VTT Nabs after historical smallpox vaccination. MVTT is therefore an attractive live viral vector for mucosal vaccination.

  3. A novel replication-competent vaccinia vector MVTT is superior to MVA for inducing high levels of neutralizing antibody via mucosal vaccination.

    Directory of Open Access Journals (Sweden)

    Xiaoxing Huang

    Full Text Available Mucosal vaccination offers great advantage for inducing protective immune response to prevent viral transmission and dissemination. Here, we report our findings of a head-to-head comparison of two viral vectors modified vaccinia Ankara (MVA and a novel replication-competent modified vaccinia Tian Tan (MVTT for inducing neutralizing antibodies (Nabs via intramuscular and mucosal vaccinations in mice. MVTT is an attenuated variant of the wild-type VTT, which was historically used as a smallpox vaccine for millions of Chinese people. The spike glycoprotein (S of SARS-CoV was used as the test antigen after the S gene was constructed in the identical genomic location of two vectors to generate vaccine candidates MVTT-S and MVA-S. Using identical doses, MVTT-S induced lower levels ( approximately 2-3-fold of anti- SARS-CoV neutralizing antibodies (Nabs than MVA-S through intramuscular inoculation. MVTT-S, however, was capable of inducing consistently 20-to-100-fold higher levels of Nabs than MVA-S when inoculated via either intranasal or intraoral routes. These levels of MVTT-S-induced Nab responses were substantially (approximately 10-fold higher than that induced via the intramuscular route in the same experiments. Moreover, pre-exposure to the wild-type VTT via intranasal or intraoral route impaired the Nab response via the same routes of MVTT-S vaccination probably due to the pre-existing anti-VTT Nab response. The efficacy of intranasal or intraoral vaccination, however, was still 20-to-50-fold better than intramuscular inoculation despite the subcutaneous pre-exposure to wild-type VTT. Our data have implications for people who maintain low levels of anti-VTT Nabs after historical smallpox vaccination. MVTT is therefore an attractive live viral vector for mucosal vaccination.

  4. Adsorption of recombinant poxvirus L1-protein to aluminum hydroxide/CpG vaccine adjuvants enhances immune responses and protection of mice from vaccinia virus challenge

    Science.gov (United States)

    Xiao, Yuhong; Zeng, Yuhong; Alexander, Edward; Mehta, Shyam; Joshi, Sangeeta B.; Buchman, George W.; Volkin, David B.; Middaugh, C. Russell; Isaacs, Stuart N.

    2012-01-01

    The stockpiling of live vaccinia virus vaccines has enhanced biopreparedness against the intentional or accidental release of smallpox. Ongoing research on future generation smallpox vaccines is providing key insights into protective immune responses as well as important information about subunit vaccine design strategies. For protein-based recombinant subunit vaccines, the formulation and stability of candidate antigens with different adjuvants are important factors to consider for vaccine design. In this work, a non-tagged secreted L1-protein, a target antigen on mature virus, was expressed using recombinant baculovirus technology and purified. To identify optimal formulation conditions for L1, a series of biophysical studies was performed over a range of pH and temperature conditions. The overall physical stability profile was summarized in an empirical phase diagram. Another critical question to address for development of an adjuvanted-vaccine was if immunogenicity and protection could be affected by the interactions and binding of L1 to aluminum salts (Alhydrogel) with and without a second adjuvant, CpG. We thus designed a series of vaccine formulations with different binding interactions between the L1 and the two adjuvants, and then performed a series of vaccination-challenge experiments in mice including measurement of antibody responses and post-challenge weight-loss and survival. We found that better humoral responses and protection were conferred with vaccine formulations when the L1-protein was adsorbed to Alhydrogel. These data demonstrate that designing vaccine formulation conditions to maximize antigen-adjuvant interactions is a key factor in smallpox subunit vaccine immunogenicity and protection. PMID:23153450

  5. [Immunological characteristics of the 2-stage method of smallpox vaccination].

    Science.gov (United States)

    Marennikova, S S; Matsevich, G R; Sokolova, A F; Shul'ga, L G; Manenkova, G M

    1977-05-01

    As a result of observations carried out on children the authors present immunological characteristics of two-stage smallpox vaccination at different intervals (1 to 60 days) between the injection of inactivated and live vaccine. There proved to be acceleration and intensification of antibody formation after two-stage immunization in comparison with the rutine vaccination. A seven-day interval between the injection of the inactivated and live preparations was recommended on the basis of the data obtained.

  6. Should smallpox vaccine be made available to the general public?

    Science.gov (United States)

    May, Thomas; Silverman, Ross D

    2003-06-01

    In June 2002, the Advisory Committee on Immunization Practices (ACIP) approved draft recommendations concerning preparation for potential biological terror attacks that utilize the smallpox virus. ACIP recommends against both mandatory and voluntary vaccination of the general public. The present paper examines the moral and political considerations both for and against each of the general public vaccination options considered by the ACIP in the context of the state's authority over vaccination for the purposes of protecting public health. Although it is clear that compulsory mass vaccination is not justified at this time, the issues surrounding voluntary vaccination are more complex. Should smallpox vaccination prior to an outbreak be made available to the general public? The paper concludes that the vaccine should not be made available at this time. This conclusion, however, is based upon contingent features of current circumstances, which would change once an outbreak occurred. In the even of a terror-related outbreak of smallpox, the general public's access to voluntary vaccination would become justified, even in areas beyond where the outbreak has occurred.

  7. Vaccinia Virus Infections in a Martial Arts Gym

    Centers for Disease Control (CDC) Podcasts

    2011-04-04

    This podcast discusses an outbreak of vaccinia virus in Maryland in 2008. Christine Hughes, a health scientist with the Poxvirus and Rabies Branch at CDC, and co-author of a paper in the April 2011 issue of CDC's journal, discusses vaccinia virus infections in a martial arts gym.  Created: 4/4/2011 by National Center for Emerging Zoonotic and Infectious Diseases (NCEZID).   Date Released: 4/5/2011.

  8. Antibody against extracellular vaccinia virus (EV protects mice through complement and Fc receptors.

    Directory of Open Access Journals (Sweden)

    Matthew E Cohen

    Full Text Available Protein-based subunit smallpox vaccines have shown their potential as effective alternatives to live virus vaccines in animal model challenge studies. We vaccinated mice with combinations of three different vaccinia virus (VACV proteins (A33, B5, L1 and examined how the combined antibody responses to these proteins cooperate to effectively neutralize the extracellular virus (EV infectious form of VACV. Antibodies against these targets were generated in the presence or absence of CpG adjuvant so that Th1-biased antibody responses could be compared to Th2-biased responses to the proteins with aluminum hydroxide alone, specifically with interest in looking at the ability of anti-B5 and anti-A33 polyclonal antibodies (pAb to utilize complement-mediated neutralization in vitro. We found that neutralization of EV by anti-A33 or anti-B5 pAb can be enhanced in the presence of complement if Th1-biased antibody (IgG2a is generated. Mechanistic differences found for complement-mediated neutralization showed that anti-A33 antibodies likely result in virolysis, while anti-B5 antibodies with complement can neutralize by opsonization (coating. In vivo studies found that mice lacking the C3 protein of complement were less protected than wild-type mice after passive transfer of anti-B5 pAb or vaccination with B5. Passive transfer of anti-B5 pAb or monoclonal antibody into mice lacking Fc receptors (FcRs found that FcRs were also important in mediating protection. These results demonstrate that both complement and FcRs are important effector mechanisms for antibody-mediated protection from VACV challenge in mice.

  9. 42 CFR 102.51 - Documentation a smallpox vaccine recipient must submit to be deemed eligible by the Secretary.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Documentation a smallpox vaccine recipient must..., DEPARTMENT OF HEALTH AND HUMAN SERVICES VACCINES SMALLPOX COMPENSATION PROGRAM Required Documentation To Be Deemed Eligible § 102.51 Documentation a smallpox vaccine recipient must submit to be deemed eligible...

  10. Vaccination scars in HIV infected patients – does vaccinia vaccination confer protection against HIV?

    DEFF Research Database (Denmark)

    Jespersen, Sanne; Hønge, Bo Langhoff; Medina, Candida;

    Vaccination scars in HIV infected patients – does vaccinia vaccination confer protection against HIV?......Vaccination scars in HIV infected patients – does vaccinia vaccination confer protection against HIV?...

  11. Outbreaks of human monkeypox after cessation of smallpox vaccination.

    Science.gov (United States)

    Reynolds, Mary G; Damon, Inger K

    2012-02-01

    The recent observation of a surge in human monkeypox in the Democratic Republic of the Congo (DRC) prompts the question of whether cessation of smallpox vaccination is driving the phenomenon, and if so, why is re-emergence not universal throughout the historic geographic range of the virus? Research addressing the virus's mechanisms for immune evasion and induction, as well as that directed at elucidating the genes involved in pathogenesis in different viral lineages (West African vs Congo Basin), provide insights to help explain why emergence appears to be geographically limited. Novel vaccines offer one solution to curtail the spread of this disease.

  12. Group interest versus self-interest in smallpox vaccination policy.

    Science.gov (United States)

    Bauch, Chris T; Galvani, Alison P; Earn, David J D

    2003-09-01

    The recent threat of bioterrorism has fueled debate on smallpox vaccination policy for the United States. Certain policy proposals call for voluntary mass vaccination; however, if individuals decide whether to vaccinate according to self-interest, the level of herd immunity achieved may differ from what is best for the population as a whole. We present a synthesis of game theory and epidemic modeling that formalizes this conflict between self-interest and group interest and shows that voluntary vaccination is unlikely to reach the group-optimal level. This shortfall results in a substantial increase in expected mortality after an attack.

  13. Governments, off-patent vaccines, smallpox and universal childhood vaccination.

    Science.gov (United States)

    Music, Stanley

    2010-01-22

    WHO is now celebrating more than 30 years of freedom from smallpox. What was originally seen as a victory over an ancient scourge can now be viewed as an epidemiologically driven programme to overcome governmental inertia and under-achievement in delivering an off-patent vaccine. Though efforts are accelerating global vaccine use, a plea is made to push the world's governments to commit to universal childhood vaccination via a proposed new programme. The latter should begin by exploiting a long list of ever more affordable off-patent vaccines, vaccines that can virtually eliminate the bulk of the world's current vaccine-preventable disease burden. PMID:19699330

  14. Antitumor efficacy of vaccinia virus-modified tumor cell vaccine

    International Nuclear Information System (INIS)

    The antitumor efficacies of vaccinia virus-modified tumor cell vaccines were examined in murine syngeneic MH134 and X5563 tumor cells. UV-inactivated vaccinia virus was inoculated i.p. into C3H/HeN mice that had received whole body X-irradiation at 150 rads. After 3 weeks, the vaccines were administered i.p. 3 times at weekly intervals. One week after the last injection, mice were challenged i.p. with various doses of syngeneic MH134 or X5563 viable tumor cells. Four methods were used for preparing tumor cell vaccines: X-ray irradiation; fixation with paraformaldehyde for 1 h or 3 months; and purification of the membrane fraction. All four vaccines were effective, but the former two vaccines were the most effective. A mixture of the membrane fraction of untreated tumor cells and UV-inactivated vaccinia virus also had an antitumor effect. These results indicate that vaccine with the complete cell structure is the most effective. The membrane fraction of UV-inactivated vaccinia virus-absorbed tumor cells was also effective. UV-inactivated vaccinia virus can react with not only intact tumor cells but also the purified membrane fraction of tumor cells and augment antitumor activity

  15. A recombinant vaccinia virus expressing human carcinoembryonic antigen (CEA).

    Science.gov (United States)

    Kaufman, H; Schlom, J; Kantor, J

    1991-07-30

    Carcinoembryonic antigen (CEA) is a 180-kDa glycoprotein expressed on most gastrointestinal carcinomas. A 2.4-kb cDNA clone, containing the complete coding sequence, was isolated from a human colon tumor cell library and inserted into a vaccinia virus genome. This newly developed construct was characterized by Southern blotting, DNA hybridization studies, and polymerase chain reaction analysis. The CEA gene was stably integrated into the vaccinia virus thymidine kinase gene. The recombinant was efficiently replicated upon serial passages in cell cultures and in animals. The recombinant virus expresses on the surface of infected cells a protein product recognized by a monoclonal antibody (COL-I) directed against CEA. Immunization of mice with the vaccinia construct elicited a humoral immune response against CEA. Pilot studies also showed that administration of the recombinant CEA vaccinia construct was able to greatly reduce the growth in mice of a syngeneic murine colon adenocarcinoma which had been transduced with the human CEA gene. The use of this new recombinant CEA vaccinia construct may thus provide an approach in the specific active immunotherapy of human GI cancer and other CEA expressing carcinoma types.

  16. Vaccinations against smallpox and tuberculosis are associated with better long-term survival

    DEFF Research Database (Denmark)

    Rieckmann, Andreas; Villumsen, Marie; Sørup, Signe;

    2016-01-01

    -up), and 401 deaths due to natural causes (841 deaths in total) occurred in the full cohort. Compared with individuals who had not received vaccinia or BCG, those who had received both vaccinia and BCG had an adjusted hazard ratio (aHR) of 0.54 [95% confidence interval (CI): 0.36-0.81] for mortality due...

  17. Smallpox and its eradication in the Democratic Republic of Congo: lessons learned.

    Science.gov (United States)

    Muyembe-Tamfum, Jean-Jacques; Mulembakani, Prime; Lekie, René Botee; Szczeniowski, Mark; Ježek, Zdeněk; Doshi, Reena; Hoff, Nicole; Rimoin, Anne W

    2011-12-30

    Smallpox eradication is considered to be one of the most remarkable accomplishments of the 20th century. Lessons learned from the campaign during the 1960s and 1970s in the Democratic Republic of Congo (DRC) can provide important information for the development of other eradication programs including polio. The DRC is the third largest country in Africa; the population suffers from extreme poverty, deteriorating infrastructure and health systems, and long periods of civil strife. Despite these challenges, DRC's smallpox eradication campaign was successful, eradicating smallpox only 41 months after initiation. DRC had been polio free since 2001; however, in 2006, imported cases were identified in the country. Polio transmission has since been re-established and DRC now has the second greatest number of reported polio cases in the world. Challenges which existed during the smallpox campaign in DRC are still present today; additionally, the polio vaccine itself poses unique challenges which include requiring multiple doses to confer immunity. In the fight against polio in DRC, it will be important to draw from the smallpox eradication experience. A number of important themes emerged during the campaign that could be beneficial to eradicating polio and future eradication programs that may follow. During the smallpox campaign, a standard vaccination program was implemented, surveillance was intensified, and there were strong collaborative programs with community involvement. These successful elements of the smallpox campaign should be adapted and applied in DRC in polio eradication programs. PMID:22188930

  18. 42 CFR 102.50 - Medical records necessary to establish that a covered injury was sustained.

    Science.gov (United States)

    2010-10-01

    ... to establish that a smallpox vaccine recipient or vaccinia contact sustained a covered injury, a... records, including the admission history and physical examination, the discharge summary, all physician... the smallpox vaccine) or vaccinia contracted through accidental vaccinia inoculation. (c) If...

  19. Cryo-electron tomography of vaccinia virus

    Science.gov (United States)

    Cyrklaff, Marek; Risco, Cristina; Fernández, Jose Jesús; Jiménez, Maria Victoria; Estéban, Mariano; Baumeister, Wolfgang; Carrascosa, José L.

    2005-01-01

    The combination of cryo-microscopy and electron tomographic reconstruction has allowed us to determine the structure of one of the more complex viruses, intracellular mature vaccinia virus, at a resolution of 4–6 nm. The tomographic reconstruction allows us to dissect the different structural components of the viral particle, avoiding projection artifacts derived from previous microscopic observations. A surface-rendering representation revealed brick-shaped viral particles with slightly rounded edges and dimensions of ≈360 × 270 × 250 nm. The outer layer was consistent with a lipid membrane (5–6 nm thick), below which usually two lateral bodies were found, built up by a heterogeneous material without apparent ordering or repetitive features. The internal core presented an inner cavity with electron dense coils of presumptive DNA–protein complexes, together with areas of very low density. The core was surrounded by two layers comprising an overall thickness of ≈18–19 nm; the inner layer was consistent with a lipid membrane. The outer layer was discontinuous, formed by a periodic palisade built by the side interaction of T-shaped protein spikes that were anchored in the lower membrane and were arranged into small hexagonal crystallites. It was possible to detect a few pore-like structures that communicated the inner side of the core with the region outside the layer built by the T-shaped spike palisade. PMID:15699328

  20. A brief history of vaccines: smallpox to the present.

    Science.gov (United States)

    Hsu, Jennifer L

    2013-01-01

    Modern vaccine history began in the late 18th century with the discovery of smallpox immunization by Edward Jenner. This pivotal step led to substantial progress in prevention of infectious diseases with inactivated vaccines for multiple infectious diseases, including typhoid, plague and cholera. Each advance produced significant decreases in infection-associated morbidity and mortality, thus shaping our modem cultures. As knowledge of microbiology and immunology grew through the 20th century, techniques were developed for cell culture of viruses. This allowed for rapid advances in prevention of polio, varicella, influenza and others. Finally, recent research has led to development of alternative vaccine strategies through use of vectored antigens, pathogen subunits (purified proteins or polysaccharides) or genetically engineered antigens. As the science of vaccinology continues to rapidly evolve, knowledge of the past creates added emphasis on the importance of developing safe and effective strategies for infectious disease prevention in the 21st century.

  1. Mapping the active site of vaccinia virus RNA triphosphatase

    International Nuclear Information System (INIS)

    The RNA triphosphatase component of vaccinia virus mRNA capping enzyme (the product of the viral D1 gene) belongs to a family of metal-dependent phosphohydrolases that includes the RNA triphosphatases of fungi, protozoa, Chlorella virus, and baculoviruses. The family is defined by two glutamate-containing motifs (A and C) that form the metal-binding site. Most of the family members resemble the fungal and Chlorella virus enzymes, which have a complex active site located within the hydrophilic interior of a topologically closed eight-stranded β barrel (the so-called ''triphosphate tunnel''). Here we queried whether vaccinia virus capping enzyme is a member of the tunnel subfamily, via mutational mapping of amino acids required for vaccinia triphosphatase activity. We identified four new essential side chains in vaccinia D1 via alanine scanning and illuminated structure-activity relationships by conservative substitutions. Our results, together with previous mutational data, highlight a constellation of six acidic and three basic amino acids that likely compose the vaccinia triphosphatase active site (Glu37, Glu39, Arg77, Lys107, Glu126, Asp159, Lys161, Glu192, and Glu194). These nine essential residues are conserved in all vertebrate and invertebrate poxvirus RNA capping enzymes. We discerned no pattern of clustering of the catalytic residues of the poxvirus triphosphatase that would suggest structural similarity to the tunnel proteins (exclusive of motifs A and C). We infer that the poxvirus triphosphatases are a distinct lineage within the metal-dependent RNA triphosphatase family. Their unique active site, which is completely different from that of the host cell's capping enzyme, recommends the poxvirus RNA triphosphatase as a molecular target for antipoxviral drug discovery

  2. Logistics of community smallpox control through contact tracing and ring vaccination: a stochastic network model

    Directory of Open Access Journals (Sweden)

    Portnoy Diane L

    2004-08-01

    Full Text Available Abstract Background Previous smallpox ring vaccination models based on contact tracing over a network suggest that ring vaccination would be effective, but have not explicitly included response logistics and limited numbers of vaccinators. Methods We developed a continuous-time stochastic simulation of smallpox transmission, including network structure, post-exposure vaccination, vaccination of contacts of contacts, limited response capacity, heterogeneity in symptoms and infectiousness, vaccination prior to the discontinuation of routine vaccination, more rapid diagnosis due to public awareness, surveillance of asymptomatic contacts, and isolation of cases. Results We found that even in cases of very rapidly spreading smallpox, ring vaccination (when coupled with surveillance is sufficient in most cases to eliminate smallpox quickly, assuming that 95% of household contacts are traced, 80% of workplace or social contacts are traced, and no casual contacts are traced, and that in most cases the ability to trace 1–5 individuals per day per index case is sufficient. If smallpox is assumed to be transmitted very quickly to contacts, it may at times escape containment by ring vaccination, but could be controlled in these circumstances by mass vaccination. Conclusions Small introductions of smallpox are likely to be easily contained by ring vaccination, provided contact tracing is feasible. Uncertainties in the nature of bioterrorist smallpox (infectiousness, vaccine efficacy support continued planning for ring vaccination as well as mass vaccination. If initiated, ring vaccination should be conducted without delays in vaccination, should include contacts of contacts (whenever there is sufficient capacity and should be accompanied by increased public awareness and surveillance.

  3. Progress in the research of smallpox vaccines%天花疫苗研究进展

    Institute of Scientific and Technical Information of China (English)

    孟昕; 阮力

    2010-01-01

    In the last decade, the research on smallpox vaccine has been paid much more attention because of the special position of variola virus in bioterrorism and biological warfare. To date, 4 generations of smallpox vaccines have been developed, and of which 3 generations can be used. Among them, the first generation smallpox vaccines play an important role in the achievement of global smallpox eradication, but their adverse reactions are strong. The second generation smallpox vaccines possess the theoretical advantages conferred by improved manufacturing process and lowered risk of contamination by adventitious agents. The third generation smallpox vaccines have reduced virulence and improved safety, but the immunological efficacy has also descended. The fourth generation smallpox vaccines are developed by techniques for genetic engineering, and the efficacy remains to be evaluated. Owing to global smallpox eradication, the evaluation of the immunological efficacy of new smallpox vaccines becomes the key procedure which can hinder the development of new vaccines.%鉴于天花病毒在生物恐怖和生物战中的特殊地位,近十年来,天花疫苗的研究重新得到重视.到目前为止,天花疫苗研究已进入第四代,已有三代天花疫苗可供使用.其中,第一代天花疫苗在全球消灭天花中起到重要和关键的作用,但不良反应较强.第二代疫苗改进了生产工艺,降低了外源因子污染的可能.第三代疫苗有效地降低了疫苗的毒力,增强了安全性,但免疫效力有所下降.第四代疫苗系使用基因工程技术研制的疫苗,效果尚待评价.由于天花已经消灭,在新疫苗的研究中,如何评价其免疫效果成为妨碍疫苗研究进展的关键环节.

  4. SIMULTANEOUS BCG AND SMALLPOX VACCINATION ON NEWBORN INFANTS

    Directory of Open Access Journals (Sweden)

    Abdul Rivai

    2012-09-01

    Full Text Available Telah dikemukakan anggapan-anggapan yang terdapat dewasa ini tentang vaksinasi BCG dan cacar secara simultan. Telah dilakukan vaksinasi BCG dan cacar secara simultan pada 729 neonati dengan freeze dried Smallpox vaccine buatan dari Bio Farma dan freeze dried BCG vaccine Tokyo. Pencacaran dilakukan secara multiple puncture dan bifurcated needle dengan suntikan BCG dengan jarum dan spuit khusus intracutan dengan dosis 0,1 ml. Tuberkulin test dilakukan dengan PPD dari Kopenhagen dengan kekuatan 2 TU 9 minggu setelah vaksinasi. Dari 741 bayi yang diikut sertakan dalam survey, 12 menolak, 3 bayi tidak dapat dilakukan pemeriksaan pertama, 35 bayi belum diperiksa, pemeriksaan pertama telah dilakukan pada 691 bayi. Dari 406 bayi yang seharusnya sudah diperiksa untuk pemeriksaan kedua, 23 dapat dilakukan karena tidak dapat dijumpai atau meninggal. Telah dikemukakan bahwa pencatatan alamat yang jelas dan lengkap serta kesungguhan dalam melakukan home visits sangat penting untuk berhasilnya penyelidikan semacam ini. Dari hasil-hasil yang didapatkan sampai sekarang telah dapat diambil kesimpulan sementara, bahwa vaksinasi BCG dan cacar secara simultan memberikan hasil yang memuaskan, juga bila dibandingkan dengan hasil-hasil penyelidikan diluar negeri take pada pencacaran 99.4 percent, test tuberkulin dengan PPD 2 TU 9 minggu setelah vaksinasi memberikan indurasi lebih dari 5 mm pada 99.75 percent dan tidak menimbulkan komplikasi-komplikasi. Pelaksanaan vaksinasi BCG dan cacar dapat dilakukan oleh tenaga paramedis yang telah mendapat latihan khusus dan diawasi oleh dokter yang kompeten. Dianjurkan untuk melakukan follow up pada bayi-bayi yang diikut sertakan dalam survey ini.

  5. Inhibition of Translation Initiation by Protein 169: A Vaccinia Virus Strategy to Suppress Innate and Adaptive Immunity and Alter Virus Virulence.

    Directory of Open Access Journals (Sweden)

    Pavla Strnadova

    2015-09-01

    Full Text Available Vaccinia virus (VACV is the prototypic orthopoxvirus and the vaccine used to eradicate smallpox. Here we show that VACV strain Western Reserve protein 169 is a cytoplasmic polypeptide expressed early during infection that is excluded from virus factories and inhibits the initiation of cap-dependent and cap-independent translation. Ectopic expression of protein 169 causes the accumulation of 80S ribosomes, a reduction of polysomes, and inhibition of protein expression deriving from activation of multiple innate immune signaling pathways. A virus lacking 169 (vΔ169 replicates and spreads normally in cell culture but is more virulent than parental and revertant control viruses in intranasal and intradermal murine models of infection. Intranasal infection by vΔ169 caused increased pro-inflammatory cytokines and chemokines, infiltration of pulmonary leukocytes, and lung weight. These alterations in innate immunity resulted in a stronger CD8+ T-cell memory response and better protection against virus challenge. This work illustrates how inhibition of host protein synthesis can be a strategy for virus suppression of innate and adaptive immunity.

  6. Transmission patterns of smallpox: Systematic review of natural outbreaks in Europe and North America since World War II

    NARCIS (Netherlands)

    V. Bhatnagar (Vibha); M.A. Stoto (Michael); S.C. Morton (Sally); R. Boer (Rob); S.A. Bozzette (Samuel)

    2006-01-01

    textabstractBackground: Because smallpox (variola major) may be used as a biological weapon, we reviewed outbreaks in post-World War II Europe and North America in order to understand smallpox transmission patterns. Methods: A systematic review was used to identify papers from the National Library o

  7. Vaccinia virus vectors: new strategies for producing recombinant vaccines.

    OpenAIRE

    Hruby, D. E.

    1990-01-01

    The development and continued refinement of techniques for the efficient insertion and expression of heterologous DNA sequences from within the genomic context of infectious vaccinia virus recombinants are among the most promising current approaches towards effective immunoprophylaxis against a variety of protozoan, viral, and bacterial human pathogens. Because of its medical relevance, this area is the subject of intense research interest and has evolved rapidly during the past several years...

  8. GMCSF-armed vaccinia virus induces an antitumor immune response.

    Science.gov (United States)

    Parviainen, Suvi; Ahonen, Marko; Diaconu, Iulia; Kipar, Anja; Siurala, Mikko; Vähä-Koskela, Markus; Kanerva, Anna; Cerullo, Vincenzo; Hemminki, Akseli

    2015-03-01

    Oncolytic Western Reserve strain vaccinia virus selective for epidermal growth factor receptor pathway mutations and tumor-associated hypermetabolism was armed with human granulocyte-macrophage colony-stimulating factor (GMCSF) and a tdTomato fluorophore. As the assessment of immunological responses to human transgenes is challenging in the most commonly used animal models, we used immunocompetent Syrian golden hamsters, known to be sensitive to human GMCSF and semipermissive to vaccinia virus. Efficacy was initially tested in vitro on various human and hamster cell lines and oncolytic potency of transgene-carrying viruses was similar to unarmed virus. The hGMCSF-encoding virus was able to completely eradicate subcutaneous pancreatic tumors in hamsters, and to fully protect the animals from subsequent rechallenge with the same tumor. Induction of specific antitumor immunity was also shown by ex vivo co-culture experiments with hamster splenocytes. In addition, histological examination revealed increased infiltration of neutrophils and macrophages in GMCSF-virus-treated tumors. These findings help clarify the mechanism of action of GMCSF-armed vaccinia viruses undergoing clinical trials.

  9. The discontinuation of routine smallpox vaccination in the United States, 1960-1976: an unlikely affirmation of biomedical hegemony.

    Science.gov (United States)

    Rich, Miriam

    2011-02-01

    This article seeks to understand the discursive context of the cessation of routine smallpox vaccination in the United States in the early 1970s. The United States has a long tradition of opposition to compulsory smallpox vaccination, usually expressed in terms of concerns about personal liberties, the extent of state authority, and challenges to the hegemony of orthodox biomedicine. The practice of routine smallpox vaccination continued in the United States until its termination in the 1970s, following a 1971 recommendation against the practice issued by the United States Public Health Service. This history investigates the ways in which opposition to compulsory smallpox vaccination in the 1960s and 70s was articulated and understood by contemporaries through an analysis of the rhetoric used in leading medical journals and popular newspapers. It finds that this ultimately successful movement to end routine smallpox vaccination drew upon the language of biomedical authority rather than political protest.

  10. Safety of attenuated smallpox vaccine LC16m8 in immunodeficient mice.

    Science.gov (United States)

    Yokote, Hiroyuki; Shinmura, Yasuhiko; Kanehara, Tomomi; Maruno, Shinichi; Kuranaga, Masahiko; Matsui, Hajime; Hashizume, So

    2014-09-01

    Freeze-dried live attenuated smallpox vaccine LC16m8 prepared in cell culture has been the sole smallpox vaccine licensed in Japan since 1975 and was recently recommended as a WHO stockpile vaccine. We evaluated the safety of recently remanufactured lots of LC16m8 using a series of immunodeficient mouse models. These models included suckling mice, severe combined immunodeficiency disease (SCID) mice, and wild-type mice treated with cyclosporine. LC16m8 showed extremely low virulence in each of the three mouse models compared with that of its parental strains, Lister and LC16mO. These results provide further evidence that LC16m8 is one of the safest replication-competent smallpox vaccines in the world and may be considered for use in immunodeficient patients.

  11. Modeling the Effect of Herd Immunity and Contagiousness in Mitigating a Smallpox Outbreak.

    Science.gov (United States)

    Graeden, Ellie; Fielding, Russel; Steinhouse, Kyle E; Rubin, Ilan N

    2015-07-01

    The smallpox antiviral tecovirimat has recently been purchased by the U.S. Strategic National Stockpile. Given significant uncertainty regarding both the contagiousness of smallpox in a contemporary outbreak and the efficiency of a mass vaccination campaign, vaccine prophylaxis alone may be unable to control a smallpox outbreak following a bioterror attack. Here, we present the results of a compartmental epidemiological model that identifies conditions under which tecovirimat is required to curtail the epidemic by exploring how the interaction between contagiousness and prophylaxis coverage of the affected population affects the ability of the public health response to control a large-scale smallpox outbreak. Each parameter value in the model is based on published empirical data. We describe contagiousness parametrically using a novel method of distributing an assumed R-value over the disease course based on the relative rates of daily viral shedding from human and animal studies of cognate orthopoxvirus infections. Our results suggest that vaccination prophylaxis is sufficient to control the outbreak when caused either by a minimally contagious virus or when a very high percentage of the population receives prophylaxis. As vaccination coverage of the affected population decreases below 70%, vaccine prophylaxis alone is progressively less capable of controlling outbreaks, even those caused by a less contagious virus (R0 less than 4). In these scenarios, tecovirimat treatment is required to control the outbreak (total number of cases under an order of magnitude more than the number of initial infections). The first study to determine the relative importance of smallpox prophylaxis and treatment under a range of highly uncertain epidemiological parameters, this work provides public health decision-makers with an evidence-based guide for responding to a large-scale smallpox outbreak.

  12. [Study of allergic reactions in the body after experimental smallpox vaccination].

    Science.gov (United States)

    Vorob'ev, A A; Afanas'ev, S S; Patrikeev, G T; Prigoda, A S; Podkuiĭko, V N

    1977-09-01

    Experiments on guinea pigs demonstrated a mixed cellular-humoral character of allergy in smallpox vaccination. The ratio of cellular and humoral components depended on the site of the vaccina application. Skin manifestations in smallpox vaccination (hyperemia, infiltration, papula) were due to the multiplication of the virus proper, increased sensitivity of the surrounding tissues to the live vibrio, and specific immunological reconstruction. The skin of the sensitized animal after the anaphylactic shock in response to the intracardiac injection of the challenging dose of the vaccine virus acquired areactivity to its subsequent application.

  13. [Study of allergic reactions in the body after experimental smallpox vaccination].

    Science.gov (United States)

    Vorob'ev, A A; Afanas'ev, S S; Patrikeev, G T; Prigoda, A S; Podkuiĭko, V N

    1977-09-01

    Experiments on guinea pigs demonstrated a mixed cellular-humoral character of allergy in smallpox vaccination. The ratio of cellular and humoral components depended on the site of the vaccina application. Skin manifestations in smallpox vaccination (hyperemia, infiltration, papula) were due to the multiplication of the virus proper, increased sensitivity of the surrounding tissues to the live vibrio, and specific immunological reconstruction. The skin of the sensitized animal after the anaphylactic shock in response to the intracardiac injection of the challenging dose of the vaccine virus acquired areactivity to its subsequent application. PMID:596021

  14. Expression of the F and HN glycoproteins of human parainfluenza virus type 3 by recombinant vaccinia viruses: contributions of the individual proteins to host immunity.

    OpenAIRE

    Spriggs, M K; Murphy, B R; Prince, G A; Olmsted, R A; Collins, P L

    1987-01-01

    cDNA clones containing the complete coding sequences for the human parainfluenza virus type 3 (PIV3) fusion (F) and hemagglutinin-neuraminidase (HN) glycoprotein genes were inserted into the thymidine kinase gene of vaccinia virus (WR strain) under the control of the P7.5 early-late vaccinia virus promotor. The recombinant vaccinia viruses, designated vaccinia-F and vaccinia-HN, expressed glycoproteins in cell culture that appeared to be authentic with respect to glycosylation, disulfide link...

  15. Smallpox inoculation (variolation) in East Africa with special reference to the practice among the Boran and Gabra of Northern Kenya.

    Science.gov (United States)

    Imperato, Pascal James; Imperato, Gavin H

    2014-12-01

    Smallpox inoculation (variolation) was widely reported in sub-Sahara Africa before, during, and after the colonial era. The infective smallpox materials and techniques used, as well as the anatomical sites for inoculation, varied widely among different ethnic groups. The practice among the Boran and Gabra pastoralists of northern Kenya resembled that which was prevalent in a number of areas of Ethiopia. This is not surprising as the Boran also live in southern Ethiopia, and Gabra herdsmen frequently cross the border into this region. The Boran and Gabra technique for smallpox inoculation consisted of taking infective material from the vesicles or pustules of those with active smallpox, and scraping it into the skin on the dorsum of the lower forearm. Although the intent was to cause a local reaction and at most a mild form of smallpox, severe cases of the disease not infrequently resulted. Also, variolated individuals were capable of infecting others with smallpox, thereby augmenting outbreaks and sustaining them. The limited known reports of smallpox inoculation among the Boran and Gabra are presented in this communication. The expansion of vaccination with effective heat stable vaccines, the development of medical and public health infrastructures, and educational programs all contributed to the eventual disappearance of the practice among the Boran and Gabra. PMID:25100176

  16. Risk of Inflammatory Bowel Disease following Bacille Calmette-Guérin and Smallpox Vaccination

    DEFF Research Database (Denmark)

    Villumsen, Anne Marie; Jess, Tine; Sørup, Signe;

    2013-01-01

    Childhood immunology has been suggested to play a role in development of inflammatory bowel disease (IBD) based on the studies of childhood vaccinations, infections, and treatment with antibiotics. Bacille Calmette-Guérin (BCG) and smallpox vaccinations were gradually phased-out in Denmark...

  17. Sewers and scapegoats: spatial metaphors of smallpox in nineteenth century San Francisco.

    Science.gov (United States)

    Craddock, S

    1995-10-01

    Medical geography is slowly including more social and cultural theory in its analysis of health issues. Yet there is still room for theoretical growth in the discipline, in areas such as historical inquiry, metaphoric landscapes of disease, and the role of disease and its interpretations in the production of place. With the example of four smallpox epidemics in nineteenth century San Francisco, application of these concepts is illustrated. Each successive epidemic in San Francisco brought stronger association of the disease with Chinatown, until an almost complete metonymy of place and disease had occurred by the last decades of the century. The articulation of biased medical theory onto a landscape of xenophobia engendered this metaphorical transformation of Chinatown into a pustule of contagion threatening to infect the rest of the urban body. A less metaphoric mapping of smallpox focused on the sewer. According to 19th-century miasmatic theories of epidemiology, sewers were the most dangerous urban topographical feature. In an increasingly class-stratified city, they undercut attempts of the upper classes to escape disease by carrying smallpox-causing miasmas across class and ethnic boundaries. A reinvigorated sanitation movement was the result. Both reactions to smallpox epidemics had significant influence in shaping San Francisco's landscape, real and symbolic. PMID:8545670

  18. Les hasards de la variole The hazards of smallpox

    Directory of Open Access Journals (Sweden)

    Jean-Marc Rohrbasser

    2011-12-01

    Full Text Available La nécessité d’un calcul ayant pour fin d’estimer un risque peut être révoquée en doute lorsqu’il s’agit de prendre une décision en situation d’incertitude, a fortiori lorsqu’il s’agit d’une question de vie ou de mort. Dans la controverse engagée sur l’opportunité d’inoculer la variole, la position de D’Alembert constitue un cas exemplaire de scepticisme portant sur l’application des mathématiques, et en l’occurrence du calcul des probabilités, à des décisions relatives à la vie humaine. D’Alembert, en effet, conteste aux mathématiques sociales le pouvoir de rendre compte de phénomènes humains en y cherchant des régularités et des formalisations sans dissocier les dimensions mathématiques et probabilistes des dimensions philosophiques et éthiques. En suivant le débat qui, au milieu du xviiie siècle, se déroule entre le mathématicien français et son homologue suisse Daniel Bernoulli, on assiste à l’un des épisodes de la lente gestation des notions de prise de risque, de décision et de rationalité.The necessity of a calculation aiming to evaluate a risk can be revoked in doubt when the question is to make a decision in a situation of uncertainty, all the more when the question is about life or death. In the controversy opened on the opportunity to inoculate the smallpox, D'Alembert’s position constitutes an exemplary case of scepticism concerning the application of the mathematics, and in this particular case the probability theory, to decisions relative to the human life. D’Alembert, indeed, disputes in the social mathematics the power to describe human phenomena by looking for regularities and for formalizations without separating the mathematical and probability dimensions of the philosophic and ethical ones. By following the debate which, in the middle of the 18th century, takes place between the French mathematician and his Swiss counterpart Daniel Bernoulli, we attend one of the

  19. [From dreaded epidemic to rare disease - smallpox in Sweden 1750-1900].

    Science.gov (United States)

    Sköld, P

    1994-01-01

    Smallpox contributed to the death of 300,000 people in Sweden between 1750 and 1800. It was one of the most feared diseases of the time. Most victims were children under the age of 10 years. It is estimated that one out of every ten children died from smallpox. The mortality rate was between 10% and 20% but those who survived faced severe complications. Most common were the disfiguring pockmarks among those previously infected. It turned out that women who had contracted smallpox married much later in life than the healthy. Also, both female and male fertility was lowered by smallpox infection. By the mid 1750s inoculation was introduced in Sweden. This was a preventive method where a mild infection was given by putting smallpox matter into an incision in the skin. Success was restricted to the wealthy, even if the doctors tried to reach the common people. The main reasons were lack of confidence for doctors, medical and epidemiological risks, costs and an ineffective organization. In 1801 Eberhard Zacharias Munch of Rosenschöld performed the first vaccination with cowpox matter in Sweden. In a few years an extensive practise was stabilized, which made the Swedish population one of the best vaccinated in the world. Moreover, a unique registration was compiled which, together with the parish records, makes the country one of the best documented. The main reasons behind the success was previous experiences of inoculation, international influences, abolition of the physicians monopoly, an effective organization, better opportunities for financing and rewards, and the compulsory law of 1816.

  20. A new inhibitor of apoptosis from vaccinia virus and eukaryotes.

    Directory of Open Access Journals (Sweden)

    Caroline Gubser

    2007-02-01

    Full Text Available A new apoptosis inhibitor is described from vaccinia virus, camelpox virus, and eukaryotic cells. The inhibitor is a hydrophobic, multiple transmembrane protein that is resident in the Golgi and is named GAAP (Golgi anti-apoptotic protein. Stable expression of both viral GAAP (v-GAAP and human GAAP (h-GAAP, which is expressed in all human tissues tested, inhibited apoptosis induced by intrinsic and extrinsic apoptotic stimuli. Conversely, knockout of h-GAAP by siRNA induced cell death by apoptosis. v-GAAP and h-GAAP display overlapping functions as shown by the ability of v-GAAP to complement for the loss of h-GAAP. Lastly, deletion of the v-GAAP gene from vaccinia virus did not affect virus replication in cell culture, but affected virus virulence in a murine infection model. This study identifies a new regulator of cell death that is highly conserved in evolution from plants to insects, amphibians, mammals, and poxviruses.

  1. 痘苗病毒天坛株载体研究与应用概述%Research and application of vaccinia virus Tiantan strain vector

    Institute of Scientific and Technical Information of China (English)

    阮力

    2013-01-01

    1982年,文献首次报道外源基因成功在痘苗病毒WR株(小鼠嗜神经毒株)中获得表达,引起了中国科学家的极大关注.1984年,中国医学科学院病毒学研究所在朱既明院士的组织下成立了痘苗病毒基因表达载体研究协作组,提出使用痘苗病毒天坛株开发可用于人体的痘苗病毒基因表达载体的新思路.该研究历时10余年,成功构建了痘苗病毒天坛株高效表达载体,并广泛用于外源基因表达、基因工程疫苗研究、单克隆抗体研制和诊断试剂开发.本文简单介绍了该载体的研究及应用,并对载体疫苗存在的问题及发展前景进行了讨论.%In 1982, a foreign gene successfully expressed in the vaccinia virus WR strain (mouse neurotropic strain) aroused a great concern of Chinese scientists. In 1984, Dr. ZHU Ji-Ming, academician of Chinese Academy of Science organized a collaborative research group in the Institute of Virology, Chinese Academy of Medical Sciences to develop a novel gene expression system based on vaccinia virus Tiantan strain which was used to prepare smallpox vaccine for human use more than 50 years in China. After more than ten years of effort, a highly efficient vector system for foreign gene expression was successfully established and widely used for the expression of foreign genes, recombinant vaccines, and the development of monoclonal antibodies and diagnostic reagents. This paper briefly described the research and application of the gene expression system and discussed the problems and prospects of vector vaccine development.

  2. The role of vaccinia termination factor and cis-acting elements in vaccinia virus early gene transcription termination.

    Science.gov (United States)

    Tate, Jessica; Gollnick, Paul

    2015-11-01

    Vaccinia virus early gene transcription termination requires the virion form of the viral RNA polymerase (vRNAP), Nucleoside Triphosphate Phosphohydrolase I (NPHI), ATP, the vaccinia termination factor (VTF), and a U5NU termination signal in the nascent transcript. VTF, also the viral mRNA capping enzyme, binds U5NU, and NPHI hydrolyzes ATP to release the transcript. NPHI can release transcripts independent of VTF and U5NU if vRNAP is not actively elongating. However, VTF and U5NU are required for transcript release from an elongating vRNAP, suggesting that the function of VTF and U5NU may be to stall the polymerase. Here we demonstrate that VTF inhibits transcription elongation by enhancing vRNAP pausing. Hence VTF provides the connection between the termination signal in the RNA transcript and viral RNA polymerase to initiate transcription termination. We also provide evidence that a second cis-acting element downstream of U5NU influences the location and efficiency of early gene transcription termination.

  3. Vaccinia scars associated with better survival for adults. An observational study from Guinea-Bissau

    DEFF Research Database (Denmark)

    Aaby, Peter; Gustafson, Per; Roth, Adam Anders Edvin;

    2006-01-01

    Live vaccines including BCG and measles may have non-targeted beneficial effects on childhood survival in areas with high mortality. The authors therefore undertook a survey of vaccinia scars to evaluate subsequent mortality.......Live vaccines including BCG and measles may have non-targeted beneficial effects on childhood survival in areas with high mortality. The authors therefore undertook a survey of vaccinia scars to evaluate subsequent mortality....

  4. Stringent chemical and thermal regulation of recombinant gene expression by vaccinia virus vectors in mammalian cells.

    OpenAIRE

    Ward, G. A.; Stover, C. K.; B. Moss; Fuerst, T R

    1995-01-01

    We developed a stringently regulated expression system for mammalian cells that uses (i) the RNA polymerase, phi 10 promoter, and T phi transcriptional terminator of bacteriophage T7; (ii) the lac repressor, lac operator, rho-independent transcriptional terminators and the gpt gene of Escherichia coli; (iii) the RNA translational enhancer of encephalomyocarditis virus; and (iv) the genetic background of vaccinia virus. In cells infected with the recombinant vaccinia virus, reporter beta-galac...

  5. Pox proteomics: mass spectrometry analysis and identification of Vaccinia virion proteins

    Directory of Open Access Journals (Sweden)

    Vemulapalli Srilakshmi

    2006-03-01

    Full Text Available Abstract Background Although many vaccinia virus proteins have been identified and studied in detail, only a few studies have attempted a comprehensive survey of the protein composition of the vaccinia virion. These projects have identified the major proteins of the vaccinia virion, but little has been accomplished to identify the unknown or less abundant proteins. Obtaining a detailed knowledge of the viral proteome of vaccinia virus will be important for advancing our understanding of orthopoxvirus biology, and should facilitate the development of effective antiviral drugs and formulation of vaccines. Results In order to accomplish this task, purified vaccinia virions were fractionated into a soluble protein enriched fraction (membrane proteins and lateral bodies and an insoluble protein enriched fraction (virion cores. Each of these fractions was subjected to further fractionation by either sodium dodecyl sulfate-polyacrylamide gel electophoresis, or by reverse phase high performance liquid chromatography. The soluble and insoluble fractions were also analyzed directly with no further separation. The samples were prepared for mass spectrometry analysis by digestion with trypsin. Tryptic digests were analyzed by using either a matrix assisted laser desorption ionization time of flight tandem mass spectrometer, a quadrupole ion trap mass spectrometer, or a quadrupole-time of flight mass spectrometer (the latter two instruments were equipped with electrospray ionization sources. Proteins were identified by searching uninterpreted tandem mass spectra against a vaccinia virus protein database created by our lab and a non-redundant protein database. Conclusion Sixty three vaccinia proteins were identified in the virion particle. The total number of peptides found for each protein ranged from 1 to 62, and the sequence coverage of the proteins ranged from 8.2% to 94.9%. Interestingly, two vaccinia open reading frames were confirmed as being expressed

  6. The Immune Response: Romanticism and the Radical Literary History of Smallpox Inoculation

    OpenAIRE

    Wang, Fuson

    2014-01-01

    My dissertation untangles the oxymoron of Romantic medicine. The literary history of inoculation, I contend, reveals that smallpox eradication was as much a triumph of the literary imagination as it was an achievement of Enlightenment science. Underlying this argument is the larger disciplinary question: Who counts as a producer of scientific knowledge? My project uncovers a surprisingly literary history of medicine that includes poetry and imaginative fiction in the discovery, propagation, a...

  7. Following in the footsteps of smallpox: can we achieve the global eradication of measles?

    Directory of Open Access Journals (Sweden)

    Morgan Oliver WC

    2004-03-01

    Full Text Available Abstract Background Although an effective measles vaccine has been available for almost 40 years, in 2000 there were about 30 million measles infections worldwide and 777,000 measles-related deaths. The history of smallpox suggests that achieving measles eradication depends on several factors; the biological characteristics of the organism; vaccine technology; surveillance and laboratory identification; effective delivery of vaccination programmes and international commitment to eradication. Discussion Like smallpox, measles virus has several biological characteristics that favour eradication. Humans are the only reservoir for the virus, which causes a visible illness and infection leading to life-long immunity. As the measles virus has only one genetic serotype which is relatively stable over time, the same basic vaccine can be used world-wide. Vaccination provides protection against measles infection for at least 15 years, although efficacy may be reduced due to host factors such as nutritional status. Measles vaccination may also confer other non-specific health benefits leading to reduced mortality. Accurate laboratory identification of measles cases enables enhanced surveillance to support elimination programmes. The "catch-up, keep-up, follow-up" vaccination programme implemented in the Americas has shown that measles elimination is possible using existing technologies. On 17th October 2003 the "Cape Town Measles Declaration" by the World Health Organisation and the United Nations Childrens Fund called on governments to intensify efforts to reduce measles mortality by supporting universal vaccination coverage and the development of more effective vaccination. Summary Although more difficult than for smallpox, recent experience in the Americas suggests that measles eradication is technically feasible. Growing international support to deliver these programmes means that measles, like smallpox, may very well become a curiosity of history.

  8. What was the primary mode of smallpox transmission? Implications for biodefense

    OpenAIRE

    Milton, Donald K

    2012-01-01

    The mode of infection transmission has profound implications for effective containment by public health interventions. The mode of smallpox transmission was never conclusively established. Although, “respiratory droplet” transmission was generally regarded as the primary mode of transmission, the relative importance of large ballistic droplets and fine particle aerosols that remain suspended in air for more than a few seconds was never resolved. This review examines evidence from the history ...

  9. SWOT analysis: strengths, weaknesses, opportunities and threats of the Israeli Smallpox Revaccination Program.

    Science.gov (United States)

    Huerta, Michael; Balicer, Ran D; Leventhal, Alex

    2003-01-01

    During September 2002, Israel began its current revaccination program against smallpox, targeting previously vaccinated "first responders" among medical and emergency workers. In order to identify the potential strengths and weaknesses of this program and the conditions under which critical decisions were reached, we conducted a SWOT analysis of the current Israeli revaccination program, designed to identify its intrinsic strengths and weaknesses, as well as opportunities for its success and threats against it. SWOT analysis--a practical tool for the study of public health policy decisions and the social and political contexts in which they are reached--revealed clear and substantial strengths and weaknesses of the current smallpox revaccination program, intrinsic to the vaccine itself. A number of threats were identified that may jeopardize the success of the current program, chief among them the appearance of severe complications of vaccination. Our finding of a lack of a generation of knowledge on smallpox vaccination highlights the need for improved physician education and dissipation of misconceptions that are prevalent in the public today.

  10. 天花病名流变考%A Study on the Chinese Name of Smallpox

    Institute of Scientific and Technical Information of China (English)

    刘思媛

    2015-01-01

    现知最早记载天花的中医古籍《肘后备急方》中称天花为“虏疮”,后来又出现了“圣疮”“天疮”“豌豆疮”“麸豆疮”“痘疹”等多种称谓。历史上天花病名的繁杂更替,是中医关于天花的理论认识逐渐演变的显著标志。天花病名与中医相关诊断治疗、民间相关社会习俗均有联系。民国时期,“天花”最终替代“痘疹”成为这种病毒性传染病的专有名称,是牛痘接种术传入之后,中医在天花防治中的重要地位被预防接种所取代的结果。%The Zhou hou fang ( Handbook of Formulae) is the earliest known ancient medical book carrying the title of smallpox, called“lu chuan” ( captive sore) .Since then, various names had been ap-plied to this disorder, including “sheng chuang” (holy sore),“tian chuang” (celestial sore), “wan dou chuang” (pea sore),“fu dou chuang” (bran sore), and“dou zhen” (pox-rash).This frequent changes of disease titles in its history is a significant mark of the evolution of TCM recognition on smallpox related to its treatment and prevention, and folk-social customs.It was not until the Republican period that the title of“pox-rash” was substituted by smallpox, a specific title for this viral infection.This is also the outcome showing the important position of TCM treatment and prevention for smallpox replaced by the preventive method of modern smallpox vaccination.

  11. Non-coding RNAs and heme oxygenase-1 in vaccinia virus infection

    International Nuclear Information System (INIS)

    Highlights: • Heme oxygenase-1 (HO-1) induction inhibited vaccinia virus infection of macrophages. • Reduced infectivity inversely correlated with increased expression of non-coding RNAs. • The regulation of HO-1 and ncRNAs suggests a novel host defense response against vaccinia virus infection. - Abstract: Small nuclear RNAs (snRNAs) are <200 nucleotide non-coding uridylate-rich RNAs. Although the functions of many snRNAs remain undetermined, a population of snRNAs is produced during the early phase of infection of cells by vaccinia virus. In the present study, we demonstrate a direct correlation between expression of the cytoprotective enzyme heme oxygenase-1 (HO-1), suppression of selective snRNA expression, and inhibition of vaccinia virus infection of macrophages. Hemin induced HO-1 expression, completely reversed virus-induced host snRNA expression, and suppressed vaccinia virus infection. This involvement of specific virus-induced snRNAs and associated gene clusters suggests a novel HO-1-dependent host-defense pathway in poxvirus infection

  12. Non-coding RNAs and heme oxygenase-1 in vaccinia virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Meseda, Clement A. [Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States); Srinivasan, Kumar [Division of Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States); Wise, Jasen [Qiagen, Frederick, MD (United States); Catalano, Jennifer [Center for Tobacco Products, Food and Drug Administration, Bethesda, MD (United States); Yamada, Kenneth M. [National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Dhawan, Subhash, E-mail: subhash.dhawan@fda.hhs.gov [Division of Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States)

    2014-11-07

    Highlights: • Heme oxygenase-1 (HO-1) induction inhibited vaccinia virus infection of macrophages. • Reduced infectivity inversely correlated with increased expression of non-coding RNAs. • The regulation of HO-1 and ncRNAs suggests a novel host defense response against vaccinia virus infection. - Abstract: Small nuclear RNAs (snRNAs) are <200 nucleotide non-coding uridylate-rich RNAs. Although the functions of many snRNAs remain undetermined, a population of snRNAs is produced during the early phase of infection of cells by vaccinia virus. In the present study, we demonstrate a direct correlation between expression of the cytoprotective enzyme heme oxygenase-1 (HO-1), suppression of selective snRNA expression, and inhibition of vaccinia virus infection of macrophages. Hemin induced HO-1 expression, completely reversed virus-induced host snRNA expression, and suppressed vaccinia virus infection. This involvement of specific virus-induced snRNAs and associated gene clusters suggests a novel HO-1-dependent host-defense pathway in poxvirus infection.

  13. Vaccinia virus recombinants expressing an 11-kilodalton beta-galactosidase fusion protein incorporate active beta-galactosidase in virus particles.

    Science.gov (United States)

    Huang, C; Samsonoff, W A; Grzelecki, A

    1988-10-01

    Recombinant plasmids in which vaccinia virus transcriptional regulatory sequences were fused to the Escherichia coli lacZ gene were constructed for insertion of the lacZ gene into the vaccinia virus genome. beta-Galactosidase (beta-gal) was found in some purified recombinant vaccinia virions. By enzyme activity, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and microscopic techniques, the evidence suggested that beta-gal accounted for 5% of the total protein in the virion. These recombinant viruses were constructed so that a portion of the coding sequences of a late vaccinia virus structural polypeptide was fused to the amino terminus of beta-gal to produce the fusion protein. Removal of the coding sequences resulted in the complete loss of beta-gal activity. This demonstrated that a vaccinia virus DNA segment from a late structural gene is responsible for the incorporation of beta-gal into the virion.

  14. Transmission patterns of smallpox: systematic review of natural outbreaks in Europe and North America since World War II

    Directory of Open Access Journals (Sweden)

    Boer Rob

    2006-05-01

    Full Text Available Abstract Background Because smallpox (variola major may be used as a biological weapon, we reviewed outbreaks in post-World War II Europe and North America in order to understand smallpox transmission patterns. Methods A systematic review was used to identify papers from the National Library of Medicine, Embase, Biosis, Cochrane Library, Defense Technical Information Center, WorldCat, and reference lists of included publications. Two authors reviewed selected papers for smallpox outbreaks. Results 51 relevant outbreaks were identified from 1,389 publications. The median for the effective first generation reproduction rate (initial R was 2 (range 0–38. The majority outbreaks were small (less than 5 cases and contained within one generation. Outbreaks with few hospitalized patients had low initial R values (median of 1 and were prolonged if not initially recognized (median of 3 generations; outbreaks with mostly hospitalized patients had higher initial R values (median 12 and were shorter (median of 3 generations. Index cases with an atypical presentation of smallpox were less likely to have been diagnosed with smallpox; outbreaks in which the index case was not correctly diagnosed were larger (median of 27.5 cases and longer (median of 3 generations compared to outbreaks in which the index case was correctly diagnosed (median of 3 cases and 1 generation. Conclusion Patterns of spread during Smallpox outbreaks varied with circumstances, but early detection and implementation of control measures is a most important influence on the magnitude of outbreaks. The majority of outbreaks studied in Europe and North America were controlled within a few generations if detected early.

  15. Vaccination policy against smallpox, 1835-1914: a comparison of England with Prussia and Imperial Germany.

    Science.gov (United States)

    Hennock, E P

    1998-04-01

    There are three identifiable phases in comparing vaccination policy in England, Prussia and Imperial Germany. (1) Prior to the 1870's the tradition of medical police in Prussia resulted in the vaccination of the population being treated as a State responsibility earlier than in England and provided an appropriate administrative framework. The administrative pressure that could be exerted persuaded the Prussian authorities that legislation to make vaccination compulsory was unnecessary. In contrast, England and Wales lacked both the tradition and administrative structures of a medical police. Legislation (1840, 1853) for free and universal infant vaccination was followed by radical ideological and administrative innovation. (2) From 1875 to 1889 both countries provided free and compulsory vaccination for all. In England this was limited to infants; in Germany including Prussia, it included the re-vaccination of children. (3) After 1889 England and Germany began to diverge more sharply. In England vaccination rates fell and after 1898 conscientious objectors were excused from having to have their children vaccinated. Germany retained compulsory vaccination and rates in the two countries increasingly diverged. England came to rely on the local public health administration for the surveillance and containment of smallpox, including selective vaccination of contacts. Despite these differences smallpox mortality dropped sharply in both countries, although in Germany somewhat earlier. The English reliance on surveillance and containment prefigures that of the WHO in the eradication of smallpox in the Third World. It suggests that the emphasis on the importance of high levels of mass vaccination in the German literature should perhaps be revised.

  16. Redundancy complicates the definition of essential genes for vaccinia virus.

    Science.gov (United States)

    Dobson, Bianca M; Tscharke, David C

    2015-11-01

    Vaccinia virus (VACV) genes are characterized as either essential or non-essential for growth in culture. It seems intuitively obvious that if a gene can be deleted without imparting a growth defect in vitro it does not have a function related to basic replication or spread. However, this interpretation relies on the untested assumption that there is no redundancy across the genes that have roles in growth in cell culture. First, we provide a comprehensive summary of the literature that describes the essential genes of VACV. Next, we looked for interactions between large blocks of non-essential genes located at the ends of the genome by investigating sets of VACVs with large deletions at the genomic termini. Viruses with deletions at either end of the genome behaved as expected, exhibiting only mild or host-range defects. In contrast, combining deletions at both ends of the genome for the VACV Western Reserve (WR) strain caused a devastating growth defect on all cell lines tested. Unexpectedly, we found that the well-studied VACV growth factor homologue encoded by C11R has a role in growth in vitro that is exposed when 42 genes are absent from the left end of the VACV WR genome. These results demonstrate that some non-essential genes contribute to basic viral growth, but redundancy means these functions are not revealed by single-gene-deletion mutants.

  17. Effects of poliovirus 2A(pro) on vaccinia virus gene expression.

    Science.gov (United States)

    Feduchi, E; Aldabe, R; Novoa, I; Carrasco, L

    1995-12-15

    The effects of transient expression of poliovirus 2A(pro) on p220 cleavage in COS cells have been analyzed. When 2A(pro) was cloned in plasmid pTM1 and transiently expressed in COS cells, efficient cleavage of p220 occurred after infection of these cells with a recombinant vaccinia virus bearing phage T7 RNA polymerase. High numbers of COS cells were transfected with pTM1-2A, as judged by p220 cleavage, thereby allowing an analysis of the effects of poliovirus 2A(pro) on vaccinia virus gene expression. A 40-50% cleavage of p220 by transfected poliovirus 2A(pro) was observed ten hours post infection and cleavage was almost complete (80-90%) 20-25 hours post infection with vaccinia virus. Profound inhibition of vaccinia virus protein synthesis was detectable ten hours post infection and was maximal 20-25 hours post infection. This inhibition resulted from neither a blockade of transcription of vaccinia virus nor a lack of translatability of the mRNAs present in cells that synthesize poliovirus 2A(pro). Addition of ara-C inhibited the replication of vaccinia virus and allowed the continued synthesis of cellular proteins. Under these conditions, 2A(pro) is expressed and blocks cellular translation. Finally, p220 cleavage by 2A(pro) did not inhibit the translation of a mRNA encoding poliovirus protein 2C, as directed by the 5' leader sequences of encephalomiocarditis virus. Therefore, these findings show a correlation between p220 cleavage and inhibition of translation from newly made mRNAs. Our results are discussed in the light of present knowledge of p220 function, and new approaches are considered that might provide further insights into the function(s) of initiation factor eIF-4F.

  18. Preparation of national standard for determination of vaccinia virus titer%痘苗病毒滴度测定用国家标准品的制备

    Institute of Scientific and Technical Information of China (English)

    黄维金; 周艳; 孟淑芳; 俞永新; 王佑春; 朱蓉; 赵晨燕; 徐静; 万延民; 齐影; 刘强; 王文波; 温智恒

    2012-01-01

    Objective To prepare the national standard for determination of titers of virus vector-based vaccines. Methods Vaccinia virus was prepared with chick embryo fibroblasts (CEFs), purified by density gradient ultracentrifuge, added with preservative for smallpox vaccine, then filled and stored in frozen, and distributed to four laboratories for cooperative calibration by plaque assay with crystal violet staining. The samples were diluted serially, and two dilutions were used for each test. Five parallel tests were performed on each dilution. The geometric mean of determination results in various laboratories was calculated, based on which the vaccinia virus titer in standard was defined. The virus standard after storage at various temperatures for various time durations were evaluated for stability, and subjected to overall control tests. Results A total of 44 tests were performed in four laboratories, and the results, with a geometric mean of 3. 05 × 106 PFU/ml, a 95% CI of 2. 00 × 106 ~ 4. 65 × 106 PFU/ml, a standard deviation of 0. 09 and a total CV value of 1. 41%, showed no significant difference (P > 0. 05). The prepared vaccinia virus standard was stable after storage at 4℃ for 10 d, while was less stable at 37℃, and was qualified in filling quantity (1 ml per container) and sterility test, of which the pH value was 6. 9 and the precision for filling was 0. 95% based on weight. Conclusion The prepared vaccinia virus standard may be used for determination of titers of vaccinia virus vector-based vaccines.%目的 制备病毒载体疫苗滴度测定用国家标准品.方法 以鸡胚成纤维细胞制备痘苗病毒,经密度梯度超速离心纯化后,加入天花疫苗保护剂,分装冻存,分发至我国4个不同实验室,按照统一的结晶紫染色蚀斑法实验方案进行协作标定,每次实验稀释后取2个稀释度,每个稀释度设5个平行孔,计算各实验室检测结果的几何均数,对标准品中痘苗病毒滴度进行赋值.

  19. Production and characterisation of a monoclonal antibody to human papillomavirus type 16 using recombinant vaccinia virus.

    OpenAIRE

    McLean, C S; Churcher, M J; Meinke, J.; Smith, G.L.; Higgins, G; Stanley, M.; Minson, A C

    1990-01-01

    A monoclonal antibody was raised against the major capsid protein L1 of human papillomavirus type 16, using a recombinant vaccinia virus that expresses the L1 protein, as a target for screening. This antibody, designated CAMVIR-1, reacted with a 56 kilodalton protein in cells infected with L1-vaccinia virus, and the protein was present in a predominantly nuclear location. The antibody also detects the HPV-16 L1 antigen in formalin fixed, paraffin wax embedded biopsy specimens and on routine c...

  20. Reflections on New York City's 1947 Smallpox Vaccination Program and Its 1976 Swine Influenza Immunization Program.

    Science.gov (United States)

    Imperato, Pascal James

    2015-06-01

    In 1947, a smallpox outbreak occurred in New York City with a total of twelve cases and two deaths. In order to contain this outbreak, the New York City Department of Health launched a mass immunization campaign that over a period of some 60 days vaccinated 6.35 million people. This article examines in detail the epidemiology of this outbreak and the measures employed to contain it. In 1976, a swine influenza strain was isolated among a few recruits at a US Army training camp at Fort Dix, New Jersey. It was concluded at the time that this virus possibly represented a re-appearance of the 1918 influenza pandemic influenza strain. As a result, a mass national immunization program was launched by the federal government. From its inception, the program encountered a myriad of challenges ranging from doubts that it was even necessary to the development of Guillain-Barré paralysis among some vaccine recipients. This paper examines the planning for and implementation of the swine flu immunization program in New York City. It also compares it to the smallpox vaccination program of 1947. Despite equivalent financial and personnel resources, leadership and organizational skills, the 1976 program only immunized approximately a tenth of the number of New York City residents vaccinated in 1947. The reasons for these marked differences in outcomes are discussed in detail.

  1. Live-Cell Imaging of Vaccinia Virus Recombination

    Science.gov (United States)

    Paszkowski, Patrick; Noyce, Ryan S.; Evans, David H.

    2016-01-01

    Recombination between co-infecting poxviruses provides an important mechanism for generating the genetic diversity that underpins evolution. However, poxviruses replicate in membrane-bound cytoplasmic structures known as factories or virosomes. These are enclosed structures that could impede DNA mixing between co-infecting viruses, and mixing would seem to be essential for this process. We hypothesize that virosome fusion events would be a prerequisite for recombination between co-infecting poxviruses, and this requirement could delay or limit viral recombination. We have engineered vaccinia virus (VACV) to express overlapping portions of mCherry fluorescent protein fused to a cro DNA-binding element. In cells also expressing an EGFP-cro fusion protein, this permits live tracking of virus DNA and genetic recombination using confocal microscopy. Our studies show that different types of recombination events exhibit different timing patterns, depending upon the relative locations of the recombining elements. Recombination between partly duplicated sequences is detected soon after post-replicative genes are expressed, as long as the reporter gene sequences are located in cis within an infecting genome. The same kinetics are also observed when the recombining elements are divided between VACV and transfected DNA. In contrast, recombination is delayed when the recombining sequences are located on different co-infecting viruses, and mature recombinants aren’t detected until well after late gene expression is well established. The delay supports the hypothesis that factories impede inter-viral recombination, but even after factories merge there remain further constraints limiting virus DNA mixing and recombinant gene assembly. This delay could be related to the continued presence of ER-derived membranes within the fused virosomes, membranes that may once have wrapped individual factories. PMID:27525721

  2. Susceptibility of Marmosets (Callithrix jacchus to Monkeypox Virus: A Low Dose Prospective Model for Monkeypox and Smallpox Disease.

    Directory of Open Access Journals (Sweden)

    Eric M Mucker

    Full Text Available Although current nonhuman primate models of monkeypox and smallpox diseases provide some insight into disease pathogenesis, they require a high titer inoculum, use an unnatural route of infection, and/or do not accurately represent the entire disease course. This is a concern when developing smallpox and/or monkeypox countermeasures or trying to understand host pathogen relationships. In our studies, we altered half of the test system by using a New World nonhuman primate host, the common marmoset. Based on dose finding studies, we found that marmosets are susceptible to monkeypox virus infection, produce a high viremia, and have pathological features consistent with smallpox and monkeypox in humans. The low dose (48 plaque forming units required to elicit a uniformly lethal disease and the extended incubation (preclinical signs are unique features among nonhuman primate models utilizing monkeypox virus. The uniform lethality, hemorrhagic rash, high viremia, decrease in platelets, pathology, and abbreviated acute phase are reflective of early-type hemorrhagic smallpox.

  3. One-step selection of Vaccinia virus-binding DNA aptamers by MonoLEX

    Directory of Open Access Journals (Sweden)

    Stöcklein Walter

    2007-08-01

    Full Text Available Abstract Background As a new class of therapeutic and diagnostic reagents, more than fifteen years ago RNA and DNA aptamers were identified as binding molecules to numerous small compounds, proteins and rarely even to complete pathogen particles. Most aptamers were isolated from complex libraries of synthetic nucleic acids by a process termed SELEX based on several selection and amplification steps. Here we report the application of a new one-step selection method (MonoLEX to acquire high-affinity DNA aptamers binding Vaccinia virus used as a model organism for complex target structures. Results The selection against complete Vaccinia virus particles resulted in a 64-base DNA aptamer specifically binding to orthopoxviruses as validated by dot blot analysis, Surface Plasmon Resonance, Fluorescence Correlation Spectroscopy and real-time PCR, following an aptamer blotting assay. The same oligonucleotide showed the ability to inhibit in vitro infection of Vaccinia virus and other orthopoxviruses in a concentration-dependent manner. Conclusion The MonoLEX method is a straightforward procedure as demonstrated here for the identification of a high-affinity DNA aptamer binding Vaccinia virus. MonoLEX comprises a single affinity chromatography step, followed by subsequent physical segmentation of the affinity resin and a single final PCR amplification step of bound aptamers. Therefore, this procedure improves the selection of high affinity aptamers by reducing the competition between aptamers of different affinities during the PCR step, indicating an advantage for the single-round MonoLEX method.

  4. Relationship between RNA polymerase II and efficiency of vaccinia virus replication

    International Nuclear Information System (INIS)

    It is clear from previous studies that host transcriptase or RNA polymerase II (pol II) has a role in poxvirus replication. To elucidate the participation of this enzyme further, in this study the authors examined several parameters related to pol II during the cycle of vaccinia virus infection in L-strain fibroblasts, HeLa cells, and L6H9 rat myoblasts. Nucleocytoplasmic transposition of pol II into virus factories and virions was assessed by immunofluorescence and immunoblotting by using anti-pol II immunoglobulin G. RNA polymerase activities were compared in nuclear extracts containing cured enzyme preparations. Rates of translation into cellular or viral polypeptides were ascertained by labeling with [35S]methionine. In L and HeLa cells, which produced vaccinia virus more abundantly, the rate of RNA polymerase and translation in controls and following infection were higher than in myoblasts. The data on synthesis and virus formation could be correlated with observations on transmigration of pol II, which was more efficient and complete in L and HeLa cells. The stimulus for pol II to leave the nucleus required the expression of both early and late viral functions. On the basis of current and past information, the authors suggest that mobilization of pol II depends on the efficiency of vaccinia virus replication and furthermore that control over vaccinia virus production by the host is related to the content or availability (or both) of pol II in different cell types

  5. Antigen profiling analysis of vaccinia virus injected canine tumors: oncolytic virus efficiency predicted by boolean models.

    Science.gov (United States)

    Cecil, Alexander; Gentschev, Ivaylo; Adelfinger, Marion; Nolte, Ingo; Dandekar, Thomas; Szalay, Aladar A

    2014-01-01

    Virotherapy on the basis of oncolytic vaccinia virus (VACV) strains is a novel approach for cancer therapy. In this study we describe for the first time the use of dynamic boolean modeling for tumor growth prediction of vaccinia virus GLV-1h68-injected canine tumors including canine mammary adenoma (ZMTH3), canine mammary carcinoma (MTH52c), canine prostate carcinoma (CT1258), and canine soft tissue sarcoma (STSA-1). Additionally, the STSA-1 xenografted mice were injected with either LIVP 1.1.1 or LIVP 5.1.1 vaccinia virus strains.   Antigen profiling data of the four different vaccinia virus-injected canine tumors were obtained, analyzed and used to calculate differences in the tumor growth signaling network by type and tumor type. Our model combines networks for apoptosis, MAPK, p53, WNT, Hedgehog, TK cell, Interferon, and Interleukin signaling networks. The in silico findings conform with in vivo findings of tumor growth. Boolean modeling describes tumor growth and remission semi-quantitatively with a good fit to the data obtained for all cancer type variants. At the same time it monitors all signaling activities as a basis for treatment planning according to antigen levels. Mitigation and elimination of VACV- susceptible tumor types as well as effects on the non-susceptible type CT1258 are predicted correctly. Thus the combination of Antigen profiling and semi-quantitative modeling optimizes the therapy already before its start.

  6. Production and characterisation of a monoclonal antibody to human papillomavirus type 16 using recombinant vaccinia virus.

    Science.gov (United States)

    McLean, C S; Churcher, M J; Meinke, J; Smith, G L; Higgins, G; Stanley, M; Minson, A C

    1990-06-01

    A monoclonal antibody was raised against the major capsid protein L1 of human papillomavirus type 16, using a recombinant vaccinia virus that expresses the L1 protein, as a target for screening. This antibody, designated CAMVIR-1, reacted with a 56 kilodalton protein in cells infected with L1-vaccinia virus, and the protein was present in a predominantly nuclear location. The antibody also detects the HPV-16 L1 antigen in formalin fixed, paraffin wax embedded biopsy specimens and on routine cervical smears. The antibody reacts strongly and consistently with biopsy specimens containing HPV-16 or HPV-33, but very weak reactions were occasionally observed with biopsy specimens or smears containing HPV-6 or HPV-11. The potential advantages of using a vaccinia recombinant are (i) the target protein is synthesised in a eukoryotic cell so that its "processing" and location are normal; (ii) cells infected with vaccinia recombinants can be subjected to various fixing procedures similar to those used for routine clinical material. This greatly increases the probability that an identified antibody will be useful in a clinical setting.

  7. Proteome analysis of vaccinia virus IHD-W-infected HEK 293 cells with 2-dimensional gel electrophoresis and MALDI-PSD-TOF MS of on solid phase support N-terminally sulfonated peptides

    Directory of Open Access Journals (Sweden)

    Bartel Sebastian

    2011-08-01

    Full Text Available Abstract Background Despite the successful eradication of smallpox by the WHO-led vaccination programme, pox virus infections remain a considerable health threat. The possible use of smallpox as a bioterrorism agent as well as the continuous occurrence of zoonotic pox virus infections document the relevance to deepen the understanding for virus host interactions. Since the permissiveness of pox infections is independent of hosts surface receptors, but correlates with the ability of the virus to infiltrate the antiviral host response, it directly depends on the hosts proteome set. In this report the proteome of HEK293 cells infected with Vaccinia Virus strain IHD-W was analyzed by 2-dimensional gel electrophoresis and MALDI-PSD-TOF MS in a bottom-up approach. Results The cellular and viral proteomes of VACV IHD-W infected HEK293 cells, UV-inactivated VACV IHD-W-treated as well as non-infected cells were compared. Derivatization of peptides with 4-sulfophenyl isothiocyanate (SPITC carried out on ZipTipμ-C18 columns enabled protein identification via the peptides' primary sequence, providing improved s/n ratios as well as signal intensities of the PSD spectra. The expression of more than 24 human proteins was modulated by the viral infection. Effects of UV-inactivated and infectious viruses on the hosts' proteome concerning energy metabolism and proteins associated with gene expression and protein-biosynthesis were quite similar. These effects might therefore be attributed to virus entry and virion proteins. However, the modulation of proteins involved in apoptosis was clearly correlated to infectious viruses. Conclusions The proteome analysis of infected cells provides insight into apoptosis modulation, regulation of cellular gene expression and the regulation of energy metabolism. The confidence of protein identifications was clearly improved by the peptides' derivatization with SPITC on a solid phase support. Some of the identified proteins

  8. The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses.

    Science.gov (United States)

    Antoine, G; Scheiflinger, F; Dorner, F; Falkner, F G

    1998-05-10

    The complete genomic DNA sequence of the highly attenuated vaccinia strain modified vaccinia Ankara (MVA) was determined. The genome of MVA is 178 kb in length, significantly smaller than that of the vaccinia Copenhagen genome, which is 192 kb. The 193 open reading frames (ORFs) mapped in the MVA genome probably correspond to 177 genes, 25 of which are split and/or have suffered mutations resulting in truncated proteins. The left terminal genomic region of MVA contains four large deletions and one large insertion relative to the Copenhagen strain. In addition, many ORFs in this region are fragmented, leaving only eight genes structurally intact and therefore presumably functional. The inserted DNA codes for a cluster of genes that is also found in the vaccinia WR strain and in cowpox virus and includes a highly fragmented gene homologous to the cowpox virus host range gene, providing further evidence that a cowpox-like virus was the ancestor of vaccinia. Surprisingly, the central conserved region of the genome also contains some fragmented genes, including ORF F5L, encoding a major membrane protein, and ORFs F11L and O1L, encoding proteins of 39.7 and 77.6 kDa, respectively. The right terminal genomic region carries three large deletions all classical poxviral immune evasion genes and all ankyrin-like genes located in this region are fragmented except for those encoding the interleukin-1 beta receptor and the 68-kDa ankyrin-like protein B18R. Thus, the attenuated phenotype of MVA is the result of numerous mutations, particularly affecting the host interactive proteins, including the ankyrin-like genes, but also involving some structural proteins.

  9. Safety and biodistribution of a double-deleted oncolytic vaccinia virus encoding CD40 ligand in laboratory Beagles

    OpenAIRE

    Autio, Karoliina; Knuuttila, Anna; Kipar, Anja; Pesonen, Sari; Guse, Kilian; Parviainen, Suvi; Rajamäki, Minna; Laitinen-Vapaavuori, Outi; Vähä-Koskela, Markus; Kanerva, Anna; Hemminki, Akseli

    2014-01-01

    We evaluated adverse events, biodistribution and shedding of oncolytic vaccinia virus encoding CD40 ligand in two Beagles, in preparation for a phase 1 trial in canine cancer patients. Dog 1 received one dose of vaccinia virus and was euthanized 24 hours afterwards, while dog 2 received virus four times once weekly and was euthanized 7 days after that. Dogs were monitored for adverse events and underwent a detailed postmortem examination. Blood, saliva, urine, feces, and organs were collected...

  10. Vaccinia virus-mediated melanin production allows MR and optoacoustic deep tissue imaging and laser-induced thermotherapy of cancer

    OpenAIRE

    Stritzker, Jochen; Kirscher, Lorenz; Scadeng, Miriam; Deliolanis, Nikolaos C.; Morscher, Stefan; Symvoulidis, Panagiotis; Schaefer, Karin; Zhang, Qian; Buckel, Lisa; Hess, Michael; Donat, Ulrike; Bradley, William G.; Ntziachristos, Vasilis; Szalay, Aladar A.

    2013-01-01

    We reported earlier the delivery of antiangiogenic single chain antibodies by using oncolytic vaccinia virus strains to enhance their therapeutic efficacy. Here, we provide evidence that gene-evoked production of melanin can be used as a therapeutic and diagnostic mediator, as exemplified by insertion of only one or two genes into the genome of an oncolytic vaccinia virus strain. We found that produced melanin is an excellent reporter for optical imaging without addition of substrate. Melanin...

  11. Extracts from rabbit skin inflamed by the vaccinia virus attenuate bupivacaine-induced spinal neurotoxicity in pregnant rats☆

    OpenAIRE

    Cui, Rui; Xu, Shiyuan; WANG, LIANG; Lei, Hongyi; Cai, Qingxiang; Zhang, Hongfei; Wang, Dongmei

    2013-01-01

    Extracts from rabbit skin inflamed by the vaccinia virus can relieve pain and promote repair of nerve injury. The present study intraperitoneally injected extracts from rabbit skin inflamed by the vaccinia virus for 3 and 4 days prior to and following intrathecal injection of bupivacaine into pregnant rats. The pain threshold test after bupivacaine injection showed that the maximum possible effect of tail-flick latency peaked 1 day after intrathecal injection of bupivacaine in the extract-pre...

  12. Construction of Poxviruses as Cloning Vectors: Insertion of the Thymidine Kinase Gene from Herpes Simplex Virus into the DNA of Infectious Vaccinia Virus

    Science.gov (United States)

    Panicali, Dennis; Paoletti, Enzo

    1982-08-01

    We have constructed recombinant vaccinia viruses containing the thymidine kinase gene from herpes simplex virus. The gene was inserted into the genome of a variant of vaccinia virus that had undergone spontaneous deletion as well as into the 120-megadalton genome of the large prototypic vaccinia variant. This was accomplished via in vivo recombination by contransfection of eukaryotic tissue culture cells with cloned BamHI-digested thymidine kinase gene from herpes simplex virus containing flanking vaccinia virus DNA sequences and infectious rescuing vaccinia virus. Pure populations of the recombinant viruses were obtained by replica filter techniques or by growth of the recombinant virus in biochemically selective medium. The herpes simplex virus thymidine kinase gene, as an insert in vaccinia virus, is transcribed in vivo and in vitro, and the fidelity of in vivo transcription into a functional gene product was detected by the phosphorylation of 5-[125I]iodo-2'-deoxycytidine.

  13. Characterization of a new Vaccinia virus isolate reveals the C23L gene as a putative genetic marker for autochthonous Group 1 Brazilian Vaccinia virus.

    Directory of Open Access Journals (Sweden)

    Felipe L Assis

    Full Text Available Since 1999, several Vaccinia virus (VACV isolates, the etiological agents of bovine vaccinia (BV, have been frequently isolated and characterized with various biological and molecular methods. The results from these approaches have grouped these VACV isolates into two different clusters. This dichotomy has elicited debates surrounding the origin of the Brazilian VACV and its epidemiological significance. To ascertain vital information to settle these debates, we and other research groups have made efforts to identify molecular markers to discriminate VACV from other viruses of the genus Orthopoxvirus (OPV and other VACV-BR groups. In this way, some genes have been identified as useful markers to discriminate between the VACV-BR groups. However, new markers are needed to infer ancestry and to correlate each sample or group with its unique epidemiological and biological features. The aims of this work were to characterize a new VACV isolate (VACV DMTV-2005 molecularly and biologically using conserved and non-conserved gene analyses for phylogenetic inference and to search for new genes that would elucidate the VACV-BR dichotomy. The VACV DMTV-2005 isolate reported in this study is biologically and phylogenetically clustered with other strains of Group 1 VACV-BR, the most prevalent VACV group that was isolated during the bovine vaccinia outbreaks in Brazil. Sequence analysis of C23L, the gene that encodes for the CC-chemokine-binding protein, revealed a ten-nucleotide deletion, which is a new Group 1 Brazilian VACV genetic marker. This deletion in the C23L open reading frame produces a premature stop-codon that is shared by all Group 1 VACV-BR strains and may also reflect the VACV-BR dichotomy; the deletion can also be considered to be a putative genetic marker for non-virulent Brazilian VACV isolates and may be used for the detection and molecular characterization of new isolates.

  14. Strugging to a monumental re-assessing the final phases of the smallpox eradication program in India, 1960-1980.

    Science.gov (United States)

    Bhattacharya, Sanjoy

    2007-01-01

    The global smallpox program is generally presented as the brainchild of a handful of actors from the WHO headquarters in Geneva and at the agency's regional offices. This article attempts to present a more complex description of the drive to eradicate smallpox. Based on the example of India, a major focus of the campaign, it is argued that historians and public health officials should recognize the varying roles played by a much wider range of participants. Highlighting the significance of both Indian and international field officials, the author shows how bureaucrats and politicians at different levels of administration and society managed to strengthen--yet sometimes weaken--important program components. Centrally dictated strategies developed at WHO offices in Geneva and New Delhi, often in association with Indian federal authorities, were reinterpreted by many actors and sometimes changed beyond recognition. PMID:18450301

  15. From smallpox eradication to the future of global health: innovations, application and lessons for future eradication and control initiatives.

    Science.gov (United States)

    Tomori, Oyewale

    2011-12-30

    Technological advancements, including landmark innovations in vaccinology through molecular virology, and significant transformation and changes in the society have taken place since the eradication of smallpox thirty years ago. The success with eradicating smallpox gave confidence for initiating the eradication of other diseases, such as malaria and polio. However, these efforts have not been as effective, as recorded for small pox, for a variety of reasons. There is now a debate within the global health community as to whether eradication campaigns should be abandoned in favor of less costly and perhaps more effective primary health and containment or control programmes. Significant changes that have taken place in the last thirty years, since the eradication of smallpox include, among others, (i) post-colonial political changes, with varying commitment to disease eradication initiatives, especially in the parts of the world most burdened by infectious and vaccine preventable diseases, (ii) innovations leading to the development of new and highly effective vaccines, targeted to specific diseases, (iii) the transformation brought about by improvement in education and the new global access to information (cell phones, internet, etc.), leading to an unlimited access to different types of information, subject to either positive or negative use. At the onset of eradication of smallpox, global health was confined in its operation. Today, global health is at the intersection of medical and social science disciplines-including demography, economics, epidemiology, political economy and sociology. Therefore, in considering the issue of disease eradication, medical and social perspectives must be brought into play, if future eradication programmes must succeed. The paper discusses the roles of these disciplines in disease control and eradication, especially as it affects sub Saharan Africa, the melting pot and verdant pasture of infectious diseases. PMID:22185830

  16. Vaccinia Virus-mediated Therapy of Solid Tumor Xenografts: Intra-tumoral Delivery of Therapeutic Antibodies

    OpenAIRE

    Huang, Ting

    2013-01-01

    Over the past 30 years, much effort and financial support have been invested in the fight against cancer, yet cancer still represents the leading cause of death in the world. Conventional therapies for treatment of cancer are predominantly directed against tumor cells. Recently however, new treatments options have paid more attention to exploiting the advantage of targeting the tumor stroma instead. Vaccinia virus (VACV) has played an important role in human medicine since the 18th century...

  17. Structure–function analysis of vaccinia virus mRNA cap (guanine-N7) methyltransferase

    OpenAIRE

    Zheng, Sushuang; Shuman, Stewart

    2008-01-01

    The guanine-N7 methyltransferase domain of vaccinia virus mRNA capping enzyme is a heterodimer composed of a catalytic subunit and a stimulatory subunit. Structure–function analysis of the catalytic subunit by alanine scanning and conservative substitutions (49 mutations at 25 amino acids) identified 12 functional groups essential for methyltransferase activity in vivo, most of which were essential for cap methylation in vitro. Defects in cap binding were demonstrated for a subset of lethal m...

  18. Stability of vaccinia-vectored recombinant oral rabies vaccine under field conditions: A 3-year study

    OpenAIRE

    Hermann, Joseph R.; Fry, Alethea M.; Siev, David; Slate, Dennis; Lewis, Charles; Gatewood, Donna M.

    2011-01-01

    Rabies is an incurable zoonotic disease caused by rabies virus, a member of the rhabdovirus family. It is transmitted through the bite of an infected animal. Control methods, including oral rabies vaccination (ORV) programs, have led to a reduction in the spread and prevalence of the disease in wildlife. This study evaluated the stability of RABORAL, a recombinant vaccinia virus vaccine that is used in oral rabies vaccination programs. The vaccine was studied in various field microenvironment...

  19. Vaccinia recombinant virus expressing the rabies virus glycoprotein: safety and efficacy trials in Canadian wildlife.

    OpenAIRE

    Artois, M.; Charlton, K M; Tolson, N D; Casey, G A; Knowles, M. K.; Campbell, J. B.

    1990-01-01

    Twenty-six meadow voles (Microtus pennsylvanicus), ten woodchucks (Marmota monax), thirteen grey squirrels (Sciurus carolinensis), thirteen ring-billed gulls (Larus delawarensis), six red-tailed hawks (Buteo jamaicensis) and eight great horned owls (Bubo virginianus) received vaccinia virus recombinant expressing the rabies virus glycoprotein (V-RG) by direct instillation into the oral cavity. Each of ten coyotes (Canis latrans) received the virus in two vaccine-laden baits. Several voles and...

  20. Potential effect of prior raccoonpox virus infection in raccoons on vaccinia-based rabies immunization

    OpenAIRE

    MacCarthy Kathleen A; Slate Dennis; McLean Robert G; Root J Jeffrey; Osorio Jorge E

    2008-01-01

    Abstract Background The USDA, Wildlife Services cooperative oral rabies vaccination (ORV) program uses a live vaccinia virus-vectored (genus Orthopoxvirus) vaccine, Raboral V-RG® (V-RG), to vaccinate specific wildlife species against rabies virus in several regions of the U.S. Several naturally occurring orthopoxviruses have been found in North America, including one isolated from asymptomatic raccoons (Procyon lotor). The effect of naturally occurring antibodies to orthopoxviruses on success...

  1. Pexa-Vec double agent engineered vaccinia: oncolytic and active immunotherapeutic.

    Science.gov (United States)

    Breitbach, Caroline J; Parato, Kelley; Burke, James; Hwang, Tae-Ho; Bell, John C; Kirn, David H

    2015-08-01

    Oncolytic immunotherapies (OI) selectively infect, amplify within and destroy cancer cells, thereby representing a novel class of anti-cancer therapy. In addition to this primary mechanism-of-action (MOA), OI based on vaccinia have been shown to selectively target tumor-associated vasculature, triggering an acute reduction in tumor perfusion. This review focuses on a third complementary MOA for this product class: the induction of active immunotherapy. While the active immunotherapy approach has been validated by recent product approvals, the field is still faced with significant challenges. Tumors have evolved diverse mechanisms to hide from immune-mediated destruction. Here we hypothesize that oncolytic immunotherapy replication within tumors may tip the immune balance to allow for the effective induction and execution of adaptive anti-tumor immunity, resulting in long-term tumor control following OI clearance. This immune activation against the cancer can be augmented through OI 'arming' for the expression of immunostimulatory transgene products from the virus genome. With the first vaccinia OI (Pexa-Vec, thymidine kinase-inactivated vaccinia expressing Granulocyte-colony stimulating factor [GM-CSF]) now in advanced-stage clinical trials, it has become more important than ever to understand the complimentary MOA that contributes to tumor destruction and control in patients. PMID:25900822

  2. Permissivity of the NCI-60 cancer cell lines to oncolytic Vaccinia Virus GLV-1h68

    Directory of Open Access Journals (Sweden)

    Bedognetti Davide

    2011-10-01

    Full Text Available Abstract Background Oncolytic viral therapy represents an alternative therapeutic strategy for the treatment of cancer. We previously described GLV-1h68, a modified Vaccinia Virus with exclusive tropism for tumor cells, and we observed a cell line-specific relationship between the ability of GLV-1h68 to replicate in vitro and its ability to colonize and eliminate tumor in vivo. Methods In the current study we surveyed the in vitro permissivity to GLV-1h68 replication of the NCI-60 panel of cell lines. Selected cell lines were also tested for permissivity to another Vaccinia Virus and a vesicular stomatitis virus (VSV strain. In order to identify correlates of permissity to viral infection, we measured transcriptional profiles of the cell lines prior infection. Results We observed highly heterogeneous permissivity to VACV infection amongst the cell lines. The heterogeneity of permissivity was independent of tissue with the exception of B cell derivation. Cell lines were also tested for permissivity to another Vaccinia Virus and a vesicular stomatitis virus (VSV strain and a significant correlation was found suggesting a common permissive phenotype. While no clear transcriptional pattern could be identified as predictor of permissivity to infection, some associations were observed suggesting multifactorial basis permissivity to viral infection. Conclusions Our findings have implications for the design of oncolytic therapies for cancer and offer insights into the nature of permissivity of tumor cells to viral infection.

  3. The vaccinia virus E6 protein influences virion protein localization during virus assembly

    Energy Technology Data Exchange (ETDEWEB)

    Condit, Richard C., E-mail: condit@mgm.ufl.edu; Moussatche, Nissin

    2015-08-15

    Vaccinia virus mutants in which expression of the virion core protein gene E6R is repressed are defective in virion morphogenesis. E6 deficient infections fail to properly package viroplasm into viral membranes, resulting in an accumulation of empty immature virions and large aggregates of viroplasm. We have used immunogold electron microscopy and immunofluorescence confocal microscopy to assess the intracellular localization of several virion structural proteins and enzymes during E6R mutant infections. We find that during E6R mutant infections virion membrane proteins and virion transcription enzymes maintain a normal localization within viral factories while several major core and lateral body proteins accumulate in aggregated virosomes. The results support a model in which vaccinia virions are assembled from at least three substructures, the membrane, the viroplasm and a “pre-nucleocapsid”, and that the E6 protein is essential for maintaining proper localization of the seven-protein complex and the viroplasm during assembly. - Highlights: • Mutation of E6 disrupts association of viral membranes with viral core proteins • Mutation of E6 does not perturb viral membrane biosynthesis • Mutation of E6 does not perturb localization of viral transcription enzymes • Mutation of E6 causes mis-localization and aggregation of viral core proteins • Vaccinia assembly uses three subassemblies: membranes, viroplasm, prenucleocapsid.

  4. The vaccinia virus E6 protein influences virion protein localization during virus assembly

    International Nuclear Information System (INIS)

    Vaccinia virus mutants in which expression of the virion core protein gene E6R is repressed are defective in virion morphogenesis. E6 deficient infections fail to properly package viroplasm into viral membranes, resulting in an accumulation of empty immature virions and large aggregates of viroplasm. We have used immunogold electron microscopy and immunofluorescence confocal microscopy to assess the intracellular localization of several virion structural proteins and enzymes during E6R mutant infections. We find that during E6R mutant infections virion membrane proteins and virion transcription enzymes maintain a normal localization within viral factories while several major core and lateral body proteins accumulate in aggregated virosomes. The results support a model in which vaccinia virions are assembled from at least three substructures, the membrane, the viroplasm and a “pre-nucleocapsid”, and that the E6 protein is essential for maintaining proper localization of the seven-protein complex and the viroplasm during assembly. - Highlights: • Mutation of E6 disrupts association of viral membranes with viral core proteins • Mutation of E6 does not perturb viral membrane biosynthesis • Mutation of E6 does not perturb localization of viral transcription enzymes • Mutation of E6 causes mis-localization and aggregation of viral core proteins • Vaccinia assembly uses three subassemblies: membranes, viroplasm, prenucleocapsid

  5. Initial characterization of Vaccinia Virus B4 suggests a role in virus spread

    International Nuclear Information System (INIS)

    Currently, little is known about the ankyrin/F-box protein B4. Here, we report that B4R-null viruses exhibited reduced plaque size in tissue culture, and decreased ability to spread, as assessed by multiple-step growth analysis. Electron microscopy indicated that B4R-null viruses still formed mature and extracellular virions; however, there was a slight decrease of virions released into the media following deletion of B4R. Deletion of B4R did not affect the ability of the virus to rearrange actin; however, VACV811, a large vaccinia virus deletion mutant missing 55 open reading frames, had decreased ability to produce actin tails. Using ectromelia virus, a natural mouse pathogen, we demonstrated that virus devoid of EVM154, the B4R homolog, showed decreased spread to organs and was attenuated during infection. This initial characterization suggests that B4 may play a role in virus spread, and that other unidentified mediators of actin tail formation may exist in vaccinia virus. - Highlights: • B4R-null viruses show reduced plaque size, and decreased ability to spread. • B4R-null viruses formed mature and extracellular virions; and rearranged actin. • Virus devoid of EVM154, the B4R homolog, was attenuated during infection. • Initial characterization suggests that B4 may play a role in virus spread. • Unidentified mediators of actin tail formation may exist in vaccinia virus

  6. Polymeric Cups for Cavitation-mediated Delivery of Oncolytic Vaccinia Virus.

    Science.gov (United States)

    Myers, Rachel; Coviello, Christian; Erbs, Philippe; Foloppe, Johann; Rowe, Cliff; Kwan, James; Crake, Calum; Finn, Seán; Jackson, Edward; Balloul, Jean-Marc; Story, Colin; Coussios, Constantin; Carlisle, Robert

    2016-09-01

    Oncolytic viruses (OV) could become the most powerful and selective cancer therapies. However, the limited transport of OV into and throughout tumors following intravenous injection means their clinical administration is often restricted to direct intratumoral dosing. Application of physical stimuli, such as focused ultrasound, offers a means of achieving enhanced mass transport. In particular, shockwaves and microstreaming resulting from the instigation of an ultrasound-induced event known as inertial cavitation can propel OV hundreds of microns. We have recently developed a polymeric cup formulation which, when delivered intravenously, provides the nuclei for instigation of sustained inertial cavitation events within tumors. Here we report that exposure of tumors to focused ultrasound after intravenous coinjection of cups and oncolytic vaccinia virus , leads to substantial and significant increases in activity. When cavitation was instigated within SKOV-3 or HepG2 xenografts, reporter gene expression from vaccinia virus was enhanced 1,000-fold (P cavitation to a vaccinia virus expressing a prodrug converting enzyme provided significant (P < 0.05) retardation of tumor growth. This technology could improve the clinical utility of all biological therapeutics including OV. PMID:27375160

  7. Escherichia coli gpt gene provides dominant selection for vaccinia virus open reading frame expression vectors.

    Science.gov (United States)

    Falkner, F G; Moss, B

    1988-06-01

    Mycophenolic acid, an inhibitor of purine metabolism, was shown to block the replication of vaccinia virus in normal cell lines. This observation led to the development of a dominant one-step plaque selection system, based on expression of the Escherichia coli gpt gene, for the isolation of recombinant vaccinia viruses. Synthesis of xanthine-guanine phosphoribosyltransferase enabled only the recombinant viruses to form large plaques in a selective medium containing mycophenolic acid, xanthine, and hypoxanthine. To utilize the selection system efficiently, we constructed a series of plasmids that contain the E. coli gpt gene and allow insertion of foreign genes into multiple unique restriction endonuclease sites in all three reading frames between the translation initiation codon of a strong late promoter and synthetic translation termination sequences. The selection-expression cassette is flanked by vaccinia virus DNA that directs homologous recombination into the virus genome. The new vectors allow high-level expression of complete or partial open reading frames and rapid construction of recombinant viruses by facilitating the cloning steps and by simplifying their isolation. The system was tested by cloning the E. coli beta-galactosidase gene; in 24 h, this enzyme accounted for approximately 3.5% of the total infected-cell protein.

  8. Determination of the promoter region of an early vaccinia virus gene encoding thymidine kinase.

    Science.gov (United States)

    Weir, J P; Moss, B

    1987-05-01

    Nine recombinant vaccinia viruses that contain overlapping segments of the putative promoter region of the vaccinia virus thymidine kinase (TK) gene linked to DNA coding for the prokaryotic enzyme chloramphenicol acetyltransferase (CAT) were constructed. In each case, the RNA start site and 5 bp of DNA downstream were retained. No significant difference in CAT expression occurred as the deletion was extended from 352 to 32 bp before the RNA start site. Deletion of a further 10 bp, however, led to complete cessation of early promoter activity. Primer extension analysis of the 5' ends of the transcripts verified that the natural TK RNA start site was still used when only 32 bp of upstream DNA remained. Loss of early promoter activity was previously found when deletions were extended from 31 to 24 bp before the RNA start site of another vaccinia gene that is expressed constitutively throughout infection (M.A. Cochran, C. Puckett, and B. Moss, 1985, Proc. Natl. Acad. Sci. USA 82, 19-23). Sequence similarities in the promoter regions of these two genes were noted.

  9. A varíola, uma antiga inimiga Smallpox, an old foe

    Directory of Open Access Journals (Sweden)

    Hermann G. Schatzmayr

    2001-12-01

    Full Text Available A varíola acompanhou o homem por muitos séculos, causando mortes e lesões graves e irreversíveis. Usada como arma biológica em situações de guerra, volta a ser tema de discussão no mundo exatamente por essa possibilidade, apesar de ter sido erradicada das Américas em 1971, e do mundo em 1977. Os dados acumulados durante as Campanhas de Erradicação, mostram que a infecção se disseminava com relativa lentidão, através de contato muito próximo do receptor com o paciente. Infecções sub-clínicas em não-vacinados eram raras e vacinações de bloqueio em torno de novos casos, desde que estes fossem identificados e confirmados com rapidez, eram capazes de impedir a disseminação da infecção. As transmissões indiretas através de aerossóis eram menos comuns. Vacinados mesmo uma única vez, raramente apresentavam doença grave, no caso de reinfecção. A possibilidade de uso do vírus da varíola como arma biológica deve ser considerada como real, apesar de, com base nos conhecimentos atuais, serem necessárias suspensões virais de alta potência, lançadas muito próximo das pessoas a serem atingidas em grande número.Smallpox has accompanied mankind for centuries, causing deaths and permanent lesions. Used in the past as a biological weapon during wars, it has come into focus again precisely because of this renewed possibility, although the disease has been eradicated in the Americas since 1971 and worldwide since 1977. Data gathered during the eradication campaigns show that the disease spread relatively slowly through close contacts between patients and susceptibles. Sub-clinical infection in non-vaccinated individuals was a rare event, and blockade vaccination surrounding new cases (as long as these cases were confirmed early was able to prevent the disease from spreading in the community. Even with only one dose, vaccinated individuals rarely developed a serious case of the disease upon reinfection. The use of smallpox as

  10. Oncolytic and immunologic cancer therapy with GM-CSF-armed vaccinia virus of Tian Tan strain Guang9.

    Science.gov (United States)

    Deng, Lili; Fan, Jun; Guo, Mingming; Huang, Biao

    2016-03-28

    Targeted oncolytic vaccinia viruses are being developed as a novel strategy in cancer therapy. Arming vaccinia viruses with immunostimulatory cytokines can enhance antitumor efficacy. Such engineered oncolytic viruses, like JX-594, a Wyeth strain vaccinia virus modified with human granulocyte-macrophage colony-stimulating factor (GM-CSF), have shown promising results and have proceeded rapidly in clinical trials. However, the oncolytic potential of the Chinese vaccine strain Tian Tan (VTT) has not been explored. In this study, we constructed a targeted oncolytic vaccinia virus of Tian Tan strain Guang9 (VG9) expressing murine GM-CSF (VG9-GMCSF) and evaluated the antitumor effect of this recombinant vaccinia virus in a murine melanoma model. In vitro, viral replication and cytotoxicity of VG9-GMCSF was as potent as VG9; in vivo, VG9-GMCSF significantly inhibited the growth of subcutaneously implanted melanoma tumors, prolonged the survival of tumor-bearing mice, and produced an antitumor cytotoxic response. Such antitumor effect may be due to the lytic nature of virus as well as the stimulation of immune activity by GM-CSF production. Our results indicate that VG9-GMCSF induces strong tumoricidal activity, providing a potential therapeutic strategy for combating cancer. PMID:26803055

  11. Identification of the DNA sequences encoding the large subunit of the mRNA-capping enzyme of vaccinia virus

    International Nuclear Information System (INIS)

    The DNA sequences encoding the large subunit of the mRNA-capping enzyme of vaccinia virus were located on the viral genome. The formation of an enzyme-guanylate covalent intermediate labeled with [alpha-32P]GTP allowed the identification of the large subunit of the capping enzyme and was used to monitor the appearance of the enzyme during the infectious cycle. This assay confirmed that after vaccinia infection, a novel 84,000-molecular-weight polypeptide corresponding to the large subunit was rapidly synthesized before viral DNA replication. Hybrid-selected cell-free translation of early viral mRNA established that vaccinia virus encoded a polypeptide identical in molecular weight with the 32P-labeled 84,000-molecular-weight polypeptide found in vaccinia virions. Like the authentic capping enzyme, this virus-encoded cell-free translation product bound specifically to DNA-cellulose. A comparison of the partial proteolytic digestion fragments generated by V8 protease, chymotrypsin, and trypsin demonstrated that the 32P-labeled large subunit and the [35S]methionine-labeled cell-free translation product were identical. The mRNA encoding the large subunit of the capping enzyme was located 3.1 kilobase pairs to the left of the HindIII D restriction fragment of the vaccinia genome. Furthermore, the mRNA was determined to be 3.0 kilobases in size, and its 5 and 3 termini were precisely located by S1 nuclease analysis

  12. Incomplete but infectious vaccinia virions are produced in the absence of oncolysis in feline SCCF1 cells.

    Science.gov (United States)

    Parviainen, Suvi; Autio, Karoliina; Vähä-Koskela, Markus; Guse, Kilian; Pesonen, Sari; Rosol, Thomas J; Zhao, Fang; Hemminki, Akseli

    2015-01-01

    Vaccinia virus is a large, enveloped virus of the poxvirus family. It has broad tropism and typically virus replication culminates in accumulation and lytic release of intracellular mature virus (IMV), the most abundant form of infectious virus, as well as release by budding of extracellular enveloped virus (EEV). Vaccinia viruses have been modified to replicate selectively in cancer cells and clinically tested as oncolytic agents. During preclinical screening of relevant cancer targets for a recombinant Western Reserve strain deleted for both copies of the thymidine kinase and vaccinia growth factor genes, we noticed that confluent monolayers of SCCF1 cat squamous carcinoma cells were not destroyed even after prolonged infection. Interestingly, although SCCF1 cells were not killed, they continuously secreted virus into the cell culture supernatant. To investigate this finding further, we performed detailed studies by electron microscopy. Both intracellular and secreted virions showed morphological abnormalities on ultrastructural inspection, suggesting compromised maturation and morphogenesis of vaccinia virus in SCCF1 cells. Our data suggest that SCCF1 cells produce a morphologically abnormal virus which is nevertheless infective, providing new information on the virus-host cell interactions and intracellular biology of vaccinia virus.

  13. Incomplete but infectious vaccinia virions are produced in the absence of oncolysis in feline SCCF1 cells.

    Directory of Open Access Journals (Sweden)

    Suvi Parviainen

    Full Text Available Vaccinia virus is a large, enveloped virus of the poxvirus family. It has broad tropism and typically virus replication culminates in accumulation and lytic release of intracellular mature virus (IMV, the most abundant form of infectious virus, as well as release by budding of extracellular enveloped virus (EEV. Vaccinia viruses have been modified to replicate selectively in cancer cells and clinically tested as oncolytic agents. During preclinical screening of relevant cancer targets for a recombinant Western Reserve strain deleted for both copies of the thymidine kinase and vaccinia growth factor genes, we noticed that confluent monolayers of SCCF1 cat squamous carcinoma cells were not destroyed even after prolonged infection. Interestingly, although SCCF1 cells were not killed, they continuously secreted virus into the cell culture supernatant. To investigate this finding further, we performed detailed studies by electron microscopy. Both intracellular and secreted virions showed morphological abnormalities on ultrastructural inspection, suggesting compromised maturation and morphogenesis of vaccinia virus in SCCF1 cells. Our data suggest that SCCF1 cells produce a morphologically abnormal virus which is nevertheless infective, providing new information on the virus-host cell interactions and intracellular biology of vaccinia virus.

  14. Taking advantage of the positive side-effects of smallpox vaccination.

    Science.gov (United States)

    Mayr, A

    2004-06-01

    From the introduction of smallpox vaccination approximately 200 years ago right up to its discontinuation (1980), reports by physicians and scientists about positive side-effects such as healing of chronic skin rashes, reduced susceptibility to various infectious diseases, e.g. measles, scarlet fever and whooping cough, and even the prophylactic use of the vaccination, e.g. against syphilis, were published again and again. Comparison with the period after cessation of vaccination confirms the experiences of the above vaccinators. As early as 1956, targeted research on these observations led to evidence of the 'ring-zone phenomenon', i.e. the production of soluble antiviral substances in infected chicken embryos and cell cultures. With the help of modern immunological and bioengineering methods, it was later possible to demonstrate that these effects are based on the activation of lymphoreticular cells and the regulatory effect of certain cytokines within the context of the non-specific immune system. These findings led to the development of paramunization with paraspecific vaccines from highly attenuated animal pox viruses. During attenuation, deletions in the virus DNA occur. Attenuated animal pox strains are therefore suited for the production of vector vaccines. The fact that these vector vaccines demonstrate an especially high level of paraspecific efficacy and lack harmful effects is likewise the result of the attenuated animal pox viruses. Optimum regulation of the entire immune system leads to increased paramunity already in the first few days after vaccination and to enhanced antigen recognition and thus accelerated commencement of specific immunity.

  15. Evaluating public health responses to reintroduced smallpox via dynamic, socially structured, and spatially distributed metapopulation models.

    Science.gov (United States)

    Glasser, John W; Foster, Stanley O; Millar, J Donald; Lane, J Michael

    2008-03-15

    The risk of smallpox reintroduction has motivated preparations in potential target countries. After reproducing the spatiotemporal pattern after the 1972 importation into Yugoslavia via coupled, biologically realistic systems of ordinary differential equations, we developed dynamic population models with current US age distributions and typical spatially distributed social structures. Surveillance and containment (S&C) coupled with vaccination of 95% of hospital-based health care workers (HCWs) within 2 days after the first diagnosis (estimated to be 18 days after aerosol release) were modeled after simulated exposure of 10, 50, or 10,000 people in various settings. If 90% of patients were isolated within days after symptom onset and 75% of contacts were vaccinated and monitored, S&C would reduce cases by 82%-99%. Preemptive immunization of HCWs, closing of schools, and even vaccination of as many as 80% within 1 week would have small marginal benefits. Preparations should emphasize stockpiling vaccine, training HCWs, improving laboratory capacity, and fostering an understanding of S&C. PMID:18284358

  16. The eradication of smallpox--an overview of the past, present, and future.

    Science.gov (United States)

    Henderson, Donald A

    2011-12-30

    The 30th anniversary of the declaration of smallpox eradication is a propitious time to look back on the evolutionary history of the program, its execution, and its legacy for the future. The eradication of history's most feared disease culminated a decade-long World Health Organization campaign which began despite skepticism and doubt and succeeded despite a never ending array of obstacles occasioned by floods, civil war, famine, and bureaucratic inertia. New concepts in public health management, surveillance, and the application of large-scale programs for vaccination were fostered and matured. A new generation of young health workers emerged who applied new approaches and experienced the gratification of public health achievement. A definitive legacy for the future was the extension of the program into an "Expanded Program on Immunization", now functioning world-wide and resulting in dramatic improvements in health through control of vaccine-preventable diseases. No less important are the growing number of multi-national programs whose foundations rest on the development of active case surveillance to measure achievement and to guide progress - poliomyelitis, measles, guinea worm, and rubella. PMID:22188929

  17. Game theory of pre-emptive vaccination before bioterrorism or accidental release of smallpox.

    Science.gov (United States)

    Molina, Chai; Earn, David J D

    2015-06-01

    Smallpox was eradicated in the 1970s, but new outbreaks could be seeded by bioterrorism or accidental release. Substantial vaccine-induced morbidity and mortality make pre-emptive mass vaccination controversial, and if vaccination is voluntary, then there is a conflict between self- and group interests. This conflict can be framed as a tragedy of the commons, in which herd immunity plays the role of the commons, and free-riding (i.e. not vaccinating pre-emptively) is analogous to exploiting the commons. This game has been analysed previously for a particular post-outbreak vaccination scenario. We consider several post-outbreak vaccination scenarios and compare the expected increase in mortality that results from voluntary versus imposed vaccination. Below a threshold level of post-outbreak vaccination effort, expected mortality is independent of the level of response effort. A lag between an outbreak starting and a response being initiated increases the post-outbreak vaccination effort necessary to reduce mortality. For some post-outbreak vaccination scenarios, even modest response lags make it impractical to reduce mortality by increasing post-outbreak vaccination effort. In such situations, if decreasing the response lag is impossible, the only practical way to reduce mortality is to make the vaccine safer (greater post-outbreak vaccination effort leads only to fewer people vaccinating pre-emptively).

  18. Non-essential genes in the vaccinia virus HindIII K fragment: a gene related to serine protease inhibitors and a gene related to the 37K vaccinia virus major envelope antigen.

    Science.gov (United States)

    Boursnell, M E; Foulds, I J; Campbell, J I; Binns, M M

    1988-12-01

    The complete nucleotide sequence of a cloned copy of the HindIII K fragment of the WR strain of vaccinia virus has been determined. Eight open reading frames (ORFs) have been identified, on the basis of size and codon usage. The predicted amino acid sequences of the putative genes have been compared to the Protein Identification Resource and to published vaccinia virus sequences. One gene, predicted to encode a 42.2K protein, is highly related to the family of serine protease inhibitors. It shows approximately 25% identity to human antithrombin III and 19% identity to the cowpox virus 38K protein gene which is also related to serine protease inhibitors. The product of another gene shows a similar high level of identity to the 37K vaccinia virus major envelope antigen. The existence of viable deletion mutants and recombinants containing foreign DNA inserted into both these genes indicates that they are non-essential.

  19. Host range restriction of vaccinia virus in Chinese hamster ovary cells: relationship to shutoff of protein synthesis

    International Nuclear Information System (INIS)

    Chinese hamster ovary cells were found to be nonpermissive for vaccinia virus. Although early virus-induced events occurred in these cells (RNA and polypeptide synthesis), subsequent events appeared to be prevented by a very rapid and nonselective shutoff of protein synthesis. Within less than 2 h after infection, both host and viral protein syntheses were arrested. At low multiplicities of infection, inhibition of RNA synthesis with cordycepin resulted in failure of the virus to block protein synthesis. Moreover, infection of the cells in the presence of cycloheximide prevented the immediate onset of shutoff after reversal of cycloheximide. Inactivation of virus particles by uv irradiation also impaired the capacity of the virus to inhibit protein synthesis. These results suggested that an early vaccinia virus-coded product was implicated in the shutoff of protein synthesis. Either the nonpermissive Chinese hamster ovary cells were more sensitive to this inhibition than permissive cells, or a regulatory control of the vaccinia shutoff function was defective

  20. Efficient cleavage of p220 by poliovirus 2Apro expression in mammalian cells: effects on vaccinia virus.

    Science.gov (United States)

    Aldabe, R; Feduchi, E; Novoa, I; Carrasco, L

    1995-10-24

    Poliovirus protease 2A cleaves p220, a component of initiation factor eIF-4F. Polyclonal antibodies that recognize p220 and the cleaved products from different species have been raised. Transfection of several cell lines with poliovirus 2Apro cloned in different plasmids leads to efficient cleavage of p220 upon infection with VT7, a recombinant vaccinia virus that expresses the T7 RNA polymerase. Under these conditions vaccinia virus protein synthesis is severely inhibited, while expression of poliovirus protein 2C from a similar plasmid has no effect. These results show by the first time the effects of p220 cleavage on vaccinia virus translation in the infected cells.

  1. Host range restriction of vaccinia virus in Chinese hamster ovary cells: relationship to shutoff of protein synthesis.

    Science.gov (United States)

    Drillien, R; Spehner, D; Kirn, A

    1978-12-01

    Chinese hamster ovary cells were found to be nonpermissive for vaccinia virus. Although early virus-induced events occurred in these cells (RNA and polypeptide synthesis), subsequent events appeared to be prevented by a very rapid and nonselective shutoff of protein synthesis. Within less than 2 h after infection, both host and viral protein syntheses were arrested. At low multiplicities of infection, inhibition of RNA synthesis with cordycepin resulted in failure of the virus to block protein synthesis. Moreover, infection of the cells in the presence of cycloheximide prevented the immediate onset of shutoff after reversal of cycloheximide. Inactivation of virus particles by UV irradiation also impaired the capacity of the virus to inhibit protein synthesis. These results suggested that an early vaccinia virus-coded product was implicated in the shutoff of protein synthesis. Either the nonpermissive Chinese hamster ovary cells were more sensitive to this inhibition than permissive cells, or a regulatory control of the vaccinia shutoff function was defective.

  2. Neurologic adverse events associated with smallpox vaccination in the United States – response and comment on reporting of headaches as adverse events after smallpox vaccination among military and civilian personnel

    Directory of Open Access Journals (Sweden)

    Schumm Walter R

    2006-11-01

    Full Text Available Abstract Background Accurate reporting of adverse events occurring after vaccination is an important component of determining risk-benefit ratios for vaccinations. Controversy has developed over alleged underreporting of adverse events within U.S. military samples. This report examines the accuracy of adverse event rates recently published for headaches, and examines the issue of underreporting of headaches as a function of civilian or military sources and as a function of passive versus active surveillance. Methods A report by Sejvar et al was examined closely for accuracy with respect to the reporting of neurologic adverse events associated with smallpox vaccination in the United States. Rates for headaches were reported by several scholarly sources, in addition to Sejvar et al, permitting a comparison of reporting rates as a function of source and type of surveillance. Results Several major errors or omissions were identified in Sejvar et al. The count of civilian subjects vaccinated and the totals of both civilians and military personnel vaccinated were reported incorrectly by Sejvar et al. Counts of headaches reported in VAERS were lower (n = 95 for Sejvar et al than for Casey et al (n = 111 even though the former allegedly used 665,000 subjects while the latter used fewer than 40,000 subjects, with both using approximately the same civilian sources. Consequently, rates of nearly 20 neurologic adverse events reported by Sejvar et al were also incorrectly calculated. Underreporting of headaches after smallpox vaccination appears to increase for military samples and for passive adverse event reporting systems. Conclusion Until revised or corrected, the rates of neurologic adverse events after smallpox vaccinated reported by Sejvar et al must be deemed invalid. The concept of determining overall rates of adverse events by combining small civilian samples with large military samples appears to be invalid. Reports of headaches as adverse events

  3. Risk of lymphoma and leukaemia after bacille Calmette-Guérin and smallpox vaccination: a Danish case-cohort study

    DEFF Research Database (Denmark)

    Villumsen, Marie; Sørup, Signe; Jess, Tine;

    2009-01-01

    Vaccines may have non-specific effects as suggested mainly in mortality studies from low-income countries. The objective was to examine the effects of BCG and smallpox vaccinations on subsequent risk of lymphoma and leukaemia in a Danish population experiencing rapid out-phasing of these vaccines...... cohort and analysed in a case-cohort design. BCG vaccination reduced the risk of lymphomas (HR=0.49 (95% CI: 0.26-0.93)), whereas smallpox vaccination did not (HR=1.32 (0.56-3.08)). With the small number of leukaemia cases, the analysis of leukaemia had limited power (BCG vaccination HR=0.81 (0.......31-2.16); smallpox vaccination HR=1.32 (0.49-3.53)). The present study with very reliable vaccine history information indicates a beneficial effect of BCG vaccination on the risk of lymphomas....

  4. Analysis of pregnancy and infant health outcomes among women in the National Smallpox Vaccine in Pregnancy Registry who received Anthrax Vaccine Adsorbed.

    Science.gov (United States)

    Conlin, Ava Marie S; Bukowinski, Anna T; Gumbs, Gia R

    2015-08-26

    The National Smallpox Vaccine in Pregnancy Registry (NSVIPR) actively follows women inadvertently vaccinated with smallpox vaccine during or shortly before pregnancy to evaluate their reproductive health outcomes. Approximately 65% of NSVIPR participants also inadvertently received Anthrax Vaccine Adsorbed (AVA) while pregnant, providing a ready opportunity to evaluate pregnancy and infant health outcomes among these women. AVA-exposed pregnancies were ascertained using NSVIPR and electronic healthcare data. Rates of pregnancy loss and infant health outcomes, including major birth defects, were compared between AVA-exposed and AVA-unexposed pregnancies. Analyses included AVA-exposed and AVA-unexposed pregnant women who also received smallpox vaccine 28 days prior to or during pregnancy. Rates of adverse outcomes among the AVA-exposed group were similar to or lower than expected when compared with published reference rates and the AVA-unexposed population. The findings provide reassurance of the safety of AVA when inadvertently received by a relatively young and healthy population during pregnancy.

  5. [Seeds against smallpox: Joaquim Vás and the scientific translation of bananeira brava seeds in Goa, India (1894-1930)].

    Science.gov (United States)

    Roque, Ricardo

    2004-01-01

    In 1914, in the former Portuguese colony of Goa, India, the physician António Joaquim Vás announced the discovery of a wonderful treatment for smallpox, entailing clinical application of seeds from the bananeira brava (Heliconia biabi Sw.m.), a plant remedy allegedly derived from Indian medical practices. The present article explores the circumstances surrounding the successes and failures of this discovery. The concept of scientific translation is used to interpret the transformation of bananeira brava seeds into an early twentieth-century remedy for smallpox. This transfer from indigenous use to scientific therapeutic constitutes the creation of a quasi-medicine, that is, a case of 'medium translation'. Although these seeds occupy a problematic place within the program of scientific translation, they enjoyed active circulation within science and remained a part of medical practices for combating smallpox.

  6. [Seeds against smallpox: Joaquim Vás and the scientific translation of bananeira brava seeds in Goa, India (1894-1930)].

    Science.gov (United States)

    Roque, Ricardo

    2004-01-01

    In 1914, in the former Portuguese colony of Goa, India, the physician António Joaquim Vás announced the discovery of a wonderful treatment for smallpox, entailing clinical application of seeds from the bananeira brava (Heliconia biabi Sw.m.), a plant remedy allegedly derived from Indian medical practices. The present article explores the circumstances surrounding the successes and failures of this discovery. The concept of scientific translation is used to interpret the transformation of bananeira brava seeds into an early twentieth-century remedy for smallpox. This transfer from indigenous use to scientific therapeutic constitutes the creation of a quasi-medicine, that is, a case of 'medium translation'. Although these seeds occupy a problematic place within the program of scientific translation, they enjoyed active circulation within science and remained a part of medical practices for combating smallpox. PMID:15446280

  7. 痘苗病毒天坛株的减毒与其作为疫苗载体研究进展%Attenuation of the smallpox vaccine vaccinia Tiantan strain and its use as a safe vaccine live vector

    Institute of Scientific and Technical Information of China (English)

    余文博; 刘利; 陈志伟

    2011-01-01

    1 痘苗病毒天坛株的历史天花是人类历史上最可怕的传染病之一.天花由天花病毒(variola virus)引起,人是该病毒的惟一宿主.人感染天花病毒后的死亡率达到30%~40%[1].世界上公认的对天花最早的准确记录来自中国,晋代药学家葛洪于公元430年左右,在《肘后备急方》中对天花有清楚的描述[1].

  8. Could hantavirus circulation superpose areas of highly endemic vaccinia virus outbreaks? A retrospective seroepidemiological study in State of Minas Gerais

    Directory of Open Access Journals (Sweden)

    Giliane de Souza Trindade

    2014-12-01

    Full Text Available Introduction Hantavirus infections have been described in several regions in Brazil through seroepidemiological studies. Usually, populations are associated with rural and wild environment mainly due to close contact to species of Sigmodontinae rodents, considered hantavirus reservoirs. Methods A retrospective serosurvey was conducted to access the hantavirus seroprevalence in people living in regions affected by bovine vaccinia outbreaks. Results Sera from 53 patients were analyzed and none of them presented anti-hantavirus IgG antibodies. Conclusions This study presents an opportunity to analyze seronegativity despite close and recurrent contact with known hantavirus reservoirs. Aspects of hantavirus and bovine vaccinia emergence are also discussed.

  9. [The journey of the vaccine against smallpox: one expedition, two oceans, three continents, and thousands of children].

    Science.gov (United States)

    Tuells, José; Duro-Torrijos, José Luis

    2015-01-01

    Spain encouraged, during the Bourbon dynasty, the formation of scientific expeditions, among which was the Royal Philanthropic Vaccine Expedition, an example of biopolitics applied by the state in order to protect health. The expedition went all over the world, using children as a reservoir to transport the vaccine fluid. Francisco Xavier Balmis established a human chain that arm-to-arm materialized the success of the mission. The characteristics and difficulties which children had to pass through and their contribution to the spread of the smallpox vaccine are analyzed.

  10. Can vaccinia virus be replaced by MVA virus for testing virucidal activity of chemical disinfectants?

    Directory of Open Access Journals (Sweden)

    Rapp Ingrid

    2010-06-01

    Full Text Available Abstract Background Vaccinia virus strain Lister Elstree (VACV is a test virus in the DVV/RKI guidelines as representative of the stable enveloped viruses. Since the potential risk of laboratory-acquired infections with VACV persists and since the adverse effects of vaccination with VACV are described, the replacement of VACV by the modified vaccinia Ankara strain (MVA was studied by testing the activity of different chemical biocides in three German laboratories. Methods The inactivating properties of different chemical biocides (peracetic acid, aldehydes and alcohols were tested in a quantitative suspension test according to the DVV/RKI guideline. All tests were performed with a protein load of 10% fetal calf serum with both viruses in parallel using different concentrations and contact times. Residual virus was determined by endpoint dilution method. Results The chemical biocides exhibited similar virucidal activity against VACV and MVA. In three cases intra-laboratory differences were determined between VACV and MVA - 40% (v/v ethanol and 30% (v/v isopropanol are more active against MVA, whereas MVA seems more stable than VACV when testing with 0.05% glutardialdehyde. Test accuracy across the three participating laboratories was high. Remarkably inter-laboratory differences in the reduction factor were only observed in two cases. Conclusions Our data provide valuable information for the replacement of VACV by MVA for testing chemical biocides and disinfectants. Because MVA does not replicate in humans this would eliminate the potential risk of inadvertent inoculation with vaccinia virus and disease in non-vaccinated laboratory workers.

  11. Role for CCR5 in Dissemination of Vaccinia Virus In Vivo▿

    OpenAIRE

    Rahbar, Ramtin; Murooka, Thomas T.; Fish, Eleanor N.

    2008-01-01

    In an earlier report, we provided evidence that expression of CCR5 by primary human T cells renders them permissive for vaccinia virus (VACV) replication. This may represent a mechanism for dissemination throughout the lymphatic system. To test this hypothesis, wild-type CCR5+/+ and CCR5 null mice were challenged with VACV by intranasal inoculation. In time course studies using different infective doses of VACV, we identified viral replication in the lungs of both CCR5+/+ and CCR5−/− mice, ye...

  12. Construction of Recombinant Modified Vaccinia Ankara (MVA) Expressing Hepatitis B Virus Surface Antigen

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The T lymphocyte response has been shown to be the determinant in the clearance of many viral infections.Hence, therapeutic vaccine candidates against HBV are designed to enhance this response of the immune system.Vaccinia virus vector-based vaccines have been proposed as excellent candidates to elicit long-term and strong T lymphocyte mediated immune responses. In this study, the recombinant MVA expressing HBV surface antigen has been constructed, which can elicit a potent T cell mediated response. The ELISA results for the surface protein in the medium of the recombinant MVA, strongly indicate that the recombinant virus has been successfully obtained.

  13. Enhanced expression of the Epstein-Barr virus latent membrane protein by a recombinant vaccinia virus.

    Science.gov (United States)

    Stewart, J P; Hampson, I N; Heinrich, H W; Mackett, M; Arrand, J R

    1989-05-01

    The complete coding sequence of the Epstein-Barr virus strain B95-8 latent membrane protein (LMP) was cloned using a Raji cell cDNA library and genomic B95-8 DNA. The clone was characterized by sequencing and then used to make a recombinant vaccinia virus. This virus (VLMP) was shown to express a relatively high level of LMP in an authentic fashion. Antisera raised in rabbits against VLMP were shown to react with B95-8 LMP as well as cross-reacting with a 50K cellular protein.

  14. Analysis of a large cluster of nonessential genes deleted from a vaccinia virus terminal transposition mutant.

    Science.gov (United States)

    Kotwal, G J; Moss, B

    1988-12-01

    The principal objectives of this study were to analyze the structure and coding potential of a long segment of DNA missing from a previously isolated (B. Moss, E. Winters, and J. A. Cooper (1981) J. Virol. 40, 387-395) attenuated variant of vaccinia virus strain WR and to examine the precise changes in the genome accompanying the deletion. The sequences of a 14.5-kbp region located at the left end of the standard vaccinia virus genome, extending from within the inverted terminal repetition (ITR) of the HindIII C fragment to the end of the HindIII N fragment, and of a 3-kbp segment from a corresponding region of the variant genome were determined. A comparison of these sequences revealed that the variant contained a deletion of 12 kbp and an insertion of 2.1 kbp. The origin of the inserted DNA was traced to the HindIII B region by using oligonucleotide probes indicating that a transposition of unique DNA located adjacent to the right ITR had occurred. Structural analysis indicated no extensive homologies, nucleotide substitutions, additions, or deletions at the boundaries of the transposed DNA. Examination of the right end of the variant genome indicated that a copy of the transposed DNA was still present and, therefore, the length of the ITR had been increased by 2.1 kbp. The variant genome could have formed by a mechanism that resulted in the replacement of a 22-kbp left-terminal fragment with a 12-kbp right-terminal fragment. The DNA missing from the variant and contained within the standard vaccinia virus WR genome contains 17 contiguous open reading frames (ORFs), all of which are directed leftward and apparently not required for replication in cultured cells. One deleted ORF has a 60% sequence similarity to another gene encoding a 42,000-Da protein present within the ITR suggesting that duplications have previously occurred during the evolution of vaccinia virus. Another deleted ORF has a 39% sequence similarity to a complement 4b binding protein. The

  15. [EVALUATION OF THE HUMAN SENSITIVITY TO SMALLPOX VIRUS BY THE PRIMARY CULTURES OF THE MONOCYTE-MACROPHAGES].

    Science.gov (United States)

    Zamedyanskaya, A S; Titova, K A; Sergeev, Al A; Kabanov, A S; Bulychev, L E; Sergeev, Ar A; Galakhova, D O; Nesterov, A E; Nosareva, O V; Shishkina, L N; Taranov, O S; Omigov, V V; Agafonov, A P; Sergeev, A N

    2016-01-01

    Studies of the primary cultures of granulocytes, mononuclear, and monocyte-macrophage cells derived from human blood were performed using variola virus (VARV) in the doses of 0.001-0.021 PFU/cell (plaques-forming units per cell). Positive dynamics of the virus accumulation was observed only in the monocyte-macrophages with maximum values of virus concentration (5.0-5.5 Ig PFU/ml) mainly within six days after the infection. The fact of VARV replication in the monocyte-macrophages was confirmed by the data of electron microscopy. At the same time, virus vaccines when tested in doses 3.3 and 4.2 Ig PFU/ml did not show the ability to reproduce in these human cells. The people sensitivity to VARV as assessed from the data obtained on human monocyte-macrophages corresponded to -1 PFU (taking into account the smooth interaction of the virus in the body to the cells of this type), which is consistent to previously found theoretical data on the virus sensitivity. The human susceptibility to VARV assessed experimentally can be used to predict the adequacy of developed smallpox models (in vivo) based on susceptible animals. This is necessary for reliable assessment of the efficiency of development of drugs for treatment and prophylaxis of the smallpox.

  16. Contingency planning for a deliberate release of smallpox in Great Britain - the role of geographical scale and contact structure

    Directory of Open Access Journals (Sweden)

    Danon Leon

    2010-02-01

    Full Text Available Abstract Background In the event of a release of a pathogen such as smallpox, which is human-to-human transmissible and has high associated mortality, a key question is how best to deploy containment and control strategies. Given the general uncertainty surrounding this issue, mathematical modelling has played an important role in informing the likely optimal response, in particular defining the conditions under which mass-vaccination would be appropriate. In this paper, we consider two key questions currently unanswered in the literature: firstly, what is the optimal spatial scale for intervention; and secondly, how sensitive are results to the modelling assumptions made about the pattern of human contacts? Methods Here we develop a novel mathematical model for smallpox that incorporates both information on individual contact structure (which is important if the effects of contact tracing are to be captured accurately and large-scale patterns of movement across a range of spatial scales in Great Britain. Results Analysis of this model confirms previous work suggesting that a locally targeted 'ring' vaccination strategy is optimal, and that this conclusion is actually quite robust for different socio-demographic and epidemiological assumptions. Conclusions Our method allows for intuitive understanding of the reasons why national mass vaccination is typically predicted to be suboptimal. As such, we present a general framework for fast calculation of expected outcomes during the attempted control of diverse emerging infections; this is particularly important given that parameters would need to be interactively estimated and modelled in any release scenario.

  17. Preclinical evaluation of oncolytic vaccinia virus for therapy of canine soft tissue sarcoma.

    Directory of Open Access Journals (Sweden)

    Ivaylo Gentschev

    Full Text Available Virotherapy using oncolytic vaccinia virus (VACV strains is one promising new strategy for canine cancer therapy. In this study we describe the establishment of an in vivo model of canine soft tissue sarcoma (CSTS using the new isolated cell line STSA-1 and the analysis of the virus-mediated oncolytic and immunological effects of two different Lister VACV LIVP1.1.1 and GLV-1h68 strains against CSTS. Cell culture data demonstrated that both tested VACV strains efficiently infected and destroyed cells of the canine soft tissue sarcoma line STSA-1. In addition, in our new canine sarcoma tumor xenograft mouse model, systemic administration of LIVP1.1.1 or GLV-1h68 viruses led to significant inhibition of tumor growth compared to control mice. Furthermore, LIVP1.1.1 mediated therapy resulted in almost complete tumor regression and resulted in long-term survival of sarcoma-bearing mice. The replication of the tested VACV strains in tumor tissues led to strong oncolytic effects accompanied by an intense intratumoral infiltration of host immune cells, mainly neutrophils. These findings suggest that the direct viral oncolysis of tumor cells and the virus-dependent activation of tumor-associated host immune cells could be crucial parts of anti-tumor mechanism in STSA-1 xenografts. In summary, the data showed that both tested vaccinia virus strains and especially LIVP1.1.1 have great potential for effective treatment of CSTS.

  18. Fine structure of the vaccinia virion determined by controlled degradation and immunolocalization

    Energy Technology Data Exchange (ETDEWEB)

    Moussatche, Nissin, E-mail: nissin@ufl.edu; Condit, Richard C.

    2015-01-15

    The vaccinia virion is a membraned, slightly flattened, barrel-shaped particle, with a complex internal structure featuring a biconcave core flanked by lateral bodies. Although the architecture of the purified mature virion has been intensely characterized by electron microscopy, the distribution of the proteins within the virion has been examined primarily using biochemical procedures. Thus, it has been shown that non-ionic and ionic detergents combined or not with a sulfhydryl reagent can be used to disrupt virions and, to a limited degree, separate the constituent proteins in different fractions. Applying a controlled degradation technique to virions adsorbed on EM grids, we were able to immuno-localize viral proteins within the virion particle. Our results show after NP40 and DTT treatment, membrane proteins are removed from the virion surface revealing proteins that are associated with the lateral bodies and the outer layer of the core wall. Combined treatment using high salt and high DTT removed lateral body proteins and exposed proteins of the internal core wall. Cores treated with proteases could be disrupted and the internal components were exposed. Cts8, a mutant in the A3 protein, produces aberrant virus that, when treated with NP-40 and DTT, releases to the exterior the virus DNA associated with other internal core proteins. With these results, we are able to propose a model for the structure the vaccinia virion.

  19. Identification of a Bohle iridovirus thymidine kinase gene and demonstration of activity using vaccinia virus.

    Science.gov (United States)

    Coupar, B E H; Goldie, S G; Hyatt, A D; Pallister, J A

    2005-09-01

    In recent years interest in the family Iridoviridae has been renewed by the identification of a number of viruses, particularly from the genus Ranavirus, associated with disease in a range of poikilotherms. Ranaviruses have been isolated from amphibian, piscine and reptilian species. Here we describe an open reading frame (ORF) identified in the genome of Bohle iridovirus (BIV) which contains a nucleotide binding motif conserved within the thymidine kinase (TK) genes of iridoviruses from other genera (lymphocystis disease virus, LCDV, type species of the genus Lymphocystivirus; Chilo iridescent virus, CIV, type species of the genus Iridovirus). The ability of this putative gene to express a functional TK was confirmed by rescue of a TK negative mutant vaccinia virus in the presence of selective media, when expression was controlled by a vaccinia virus promoter. The sequence of the BIV TK was compared with the homologous sequences from epizootic haematopoietic necrosis virus (EHNV), a virus associated with disease in fish, from Wamena iridovirus (WIV) associated with systemic disease in green pythons, and from frog virus 3 (FV3) the ranavirus type species. Comparisons between these sequences and those available from other ranaviruses, other iridoviruses, other DNA viruses and cellular TKs are presented. PMID:15883656

  20. Vaccinia Virus Recombinant Expressing Herpes Simplex Virus Type 1 Glycoprotein D Prevents Latent Herpes in Mice

    Science.gov (United States)

    Cremer, Kenneth J.; Mackett, Michael; Wohlenberg, Charles; Notkins, Abner Louis; Moss, Bernard

    1985-05-01

    In humans, herpes simplex virus causes a primary infection and then often a latent ganglionic infection that persists for life. Because these latent infections can recur periodically, vaccines are needed that can protect against both primary and latent herpes simplex infections. Infectious vaccinia virus recombinants that contain the herpes simplex virus type 1 (HSV-1) glycoprotein D gene under control of defined early or late vaccinia virus promoters were constructed. Tissue culture cells infected with these recombinant viruses synthesized a glycosylated protein that had the same mass (60,000 daltons) as the glycoprotein D produced by HSV-1. Immunization of mice with one of these recombinant viruses by intradermal, subcutaneous, or intraperitoneal routes resulted in the production of antibodies that neutralized HSV-1 and protected the mice against subsequent lethal challenge with HSV-1 or HSV-2. Immunization with the recombinant virus also protected the majority of the mice against the development of a latent HSV-1 infection of the trigeminal ganglia. This is the first demonstration that a genetically engineered vaccine can prevent the development of latency.

  1. DNA sequence analysis of the Hind III M fragment from Chinese vaccine strain of vaccinia virus.

    Science.gov (United States)

    Liu, V J; Jin, Q; Jin, D Y; Hou, Y D

    1989-01-01

    The complete DNA sequence of the Hind III M fragment of vaccinia virus (VV) Tian Tan strain genome was determined by the dideoxynucleotide chain termination method. Three open reading frames (ORFs) were identified in the complementary strand of the sequence, comprised of 2218bp. Among them, ORF K1 initiates its transcription at -45 of the Hind III K fragment. The deduced peptide encoded by K1 contains 284 amino acids with a calculated molecular weight of 32.48 KDa. Its sequence is homologous to the host range protein of VV Copenhagen strain; the variation is only 2.46% at the amino acid level. ORF M2 could encode a peptide of 21.94 KDa with 196 amino acids. This gene was shown to be homologous to that of the 23 KDa peptide of herpes simplex virus type I. A non-coding region of 204bp located between K1 and M2 is rich in palindromic structures. ORF M1 extends its 3' terminus into the Hind III N fragment. Within the M fragment, M1 can only encode 212 amino acids. The major part of ORF M1 is very similar to the M portion of a possible alpha-amanitin resistance gene isolated from VV-WR strain. This work provides a molecular foundation in the construction of a new insertion vector for the preparation of a recombinant vaccinia virus to be used as a polyvalent live vaccine.

  2. Middle east respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus ankara efficiently induces virus-neutralizing antibodies

    NARCIS (Netherlands)

    F. Song (Fei); R. Fux (Robert); L.B.V. Provacia (Lisette); A. Volz (Asisa); M. Eickmann; S. Becker (Stephan); A.D.M.E. Osterhaus (Albert); B.L. Haagmans (Bart); G. Suttera (Gerd)

    2013-01-01

    textabstractMiddle East respiratory syndrome coronavirus (MERS-CoV) has recently emerged as a causative agent of severe respiratory disease in humans. Here, we constructed recombinant modified vaccinia virus Ankara (MVA) expressing full-length MERS-CoV spike (S) protein (MVA-MERS-S). The genetic sta

  3. Combined immunity of DNA vector and recombinant vaccinia virus expressing Gag proteins of equine infectious anemia virus

    Institute of Scientific and Technical Information of China (English)

    DAI Chunming; ZHANG Xiaoyan; WANG Shuhui; LIU Ying; DUAN Danli; SHEN Rongxian; SHAO Yiming

    2004-01-01

    In order to develop a new vaccine candidate for equine infectious anemia virus (EIAV), gag gene of Chinese donkey leukocyte attenuated strain (EIAV DLV) and its parental virulent strain (EIAV LN) were inserted respectively into the TK region of the Tiantan strain (VV) of vaccinia virus by homologous recombination and the positive clone was confirmed by blue plaque assay. Protein expression was examined by Western blot. Prime and prime-boost procedures were used to immunize mice with two DNA vectors and two recombinant vaccinia viruses expressing EIAV Gag proteins. The results showed that the specific lysis of CTL responses in the DNA+rVV groups was stronger than those in the DNA groups, amounting to 31%. Although the levels of specific antibodies were not significantly different, we could conclude that the recombinant vaccinia virus could boost the cellular responses following DNA vector priming. There was no detectable difference between the immune responses induced by DLV and LN Gag proteins. This data demonstrates that the combined immunity of DNA vector and recombinant vaccinia virus expressing EIAV gag proteins, utilizing the prime-boost procedure, can drive immunized mice to produce powerful cellular responses. These results lay an important foundation for the development of a new EIAV genetic engineering vaccine.

  4. Chemical inactivation of recombinant vaccinia viruses and the effects on antigenicity and immunogenicity of recombinant simian immunodeficiency virus envelope glycoproteins.

    NARCIS (Netherlands)

    E.G.J. Hulskotte (Ellen); M.E.M. Dings (Marlinda); S.G. Norley (Stephen); A.D.M.E. Osterhaus (Albert)

    1997-01-01

    textabstractThe efficiency of paraformaldehyde (PFA) and binary ethylenimine (BEI) in inactivating recombinant vaccinia virus (rVV), present in baby hamster kidney cells expressing simian immunodeficiency virus envelope glycoproteins (SIV-Env), was measured in a series of inactivation studies. Both

  5. Dogs and Opossums Positive for Vaccinia Virus during Outbreak Affecting Cattle and Humans, São Paulo State, Brazil.

    Science.gov (United States)

    Peres, Marina G; Barros, Claudenice B; Appolinário, Camila M; Antunes, João M A P; Mioni, Mateus S R; Bacchiega, Thais S; Allendorf, Susan D; Vicente, Acácia F; Fonseca, Clóvis R; Megid, Jane

    2016-02-01

    During a vaccinia virus (VACV) outbreak in São Paulo State, Brazil, blood samples were collected from cows, humans, other domestic animals, and wild mammals. Samples from 3 dogs and 3 opossums were positive for VACV by PCR. Results of gene sequencing yielded major questions regarding other mammalian species acting as reservoirs of VACV.

  6. Mapping of the vaccinia virus DNA polymerase gene by marker rescue and cell-free translation of selected RNA

    International Nuclear Information System (INIS)

    The previous demonstration that a phosphonoacetate (PAA)-resistant (PAA/sup r/) vaccinia virus mutant synthesized an altered DNA polymerase provided the key to mapping this gene. Marker rescue was performed in cells infected with wild-type PAA-sensitive (PAA/sup s/) vaccinia by transfecting with calcium phosphate-precipitated DNA from a PAA/sup r/ mutant virus. Formation of PAA/sup r/ recombinants was measured by plaque assay in the presence of PAA. Of the 12 HindIII fragments cloned in plasmid or cosmid vectors, only fragment E conferred the PAA/sup r/ phenotype. Successive subcloning of the 15-kilobase HindIII fragment E localized the marker within a 7.5-kilobase BamHI-HindIII fragment and then within a 2.9-kilobase EcoRI fragment. The location of the DNA polymerase gene, about 57 kilobases from the left end of the genome, was confirmed by cell-free translation of mRNA selected by hybridization to plasmids containing regions of PAA/sup r/ vaccinia DNA active in marker rescue. A 100,000-dalton polypeptide that comigrated with authentic DNA polymerase was synthesized. Correspondence of the in vitro translation product with purified vaccinia DNA polymerase was established by peptide mapping

  7. CD40 ligand and tdTomato-armed vaccinia virus for induction of antitumor immune response and tumor imaging.

    Science.gov (United States)

    Parviainen, S; Ahonen, M; Diaconu, I; Hirvinen, M; Karttunen, Å; Vähä-Koskela, M; Hemminki, A; Cerullo, V

    2014-02-01

    Oncolytic vaccinia virus is an attractive platform for immunotherapy. Oncolysis releases tumor antigens and provides co-stimulatory danger signals. However, arming the virus can improve efficacy further. CD40 ligand (CD40L, CD154) can induce apoptosis of tumor cells and it also triggers several immune mechanisms. One of these is a T-helper type 1 (Th1) response that leads to activation of cytotoxic T-cells and reduction of immune suppression. Therefore, we constructed an oncolytic vaccinia virus expressing hCD40L (vvdd-hCD40L-tdTomato), which in addition features a cDNA expressing the tdTomato fluorochrome for detection of virus, potentially important for biosafety evaluation. We show effective expression of functional CD40L both in vitro and in vivo. In a xenograft model of bladder carcinoma sensitive to CD40L treatment, we show that growth of tumors was significantly inhibited by the oncolysis and apoptosis following both intravenous and intratumoral administration. In a CD40-negative model, CD40L expression did not add potency to vaccinia oncolysis. Tumors treated with vvdd-mCD40L-tdtomato showed enhanced efficacy in a syngenic mouse model and induced recruitment of antigen-presenting cells and lymphocytes at the tumor site. In summary, oncolytic vaccinia virus coding for CD40L mediates multiple antitumor effects including oncolysis, apoptosis and induction of Th1 type T-cell responses.

  8. Analysis of the L1 gene product of human papillomavirus type 16 by expression in a vaccinia virus recombinant.

    Science.gov (United States)

    Browne, H M; Churcher, M J; Stanley, M A; Smith, G L; Minson, A C

    1988-06-01

    The L1 open reading frame of human papillomavirus type 16 (HPV16) has been expressed in vaccinia virus under the control of both the 7.5K early and late promoter, and the 4b major late promoter. Antibodies to a beta-galactosidase fusion protein containing a C-terminal portion of the HPV16 L1 gene product were used to compare the levels of L1 expression in the two recombinants, and showed that greater levels of expression were obtained when the gene was placed under the control of the 4b late promoter. Immunofluorescence studies revealed a nuclear location of the L1 gene product when expressed in vaccinia virus. Antibodies to the beta-galactosidase fusion protein detected a major polypeptide species of 57K and a minor species of 64K in Western blots of recombinant-infected cell lysates. The 64K species was not detected when cells were infected in the presence of tunicamycin, indicating that the primary translation product of the HPV16 L1 open reading frame is modified by N-linked glycosylation when expressed in vaccinia virus. Whereas antibodies to HPV16 L1 fusion proteins and to a peptide containing amino acids from the C terminus of HPV16 L1 reacted well in Western blots with the HPV16 L1 target expressed in vaccinia virus, no reactivity was observed with antibodies to bovine papillomavirus type 1 particles or to a HPV6b fusion protein.

  9. Gel-eletroforese no diagnóstico da varíola Gel-electrophoresis in the smallpox diagnosis

    Directory of Open Access Journals (Sweden)

    Julio A. Mesquita

    1972-01-01

    Full Text Available O emprego de gel-eletroforese no diagnóstico da varíola, demonstrou ser ao menos trinta vezes (30X mais sensível que o teste de agar-gel, nas condições descritas (tabela I. Doze (12 espécimes, cujos testes convencionais de inoculação em ovos embrionados e de agar-gel resultaram positivos, foram testados em suas diluições originais congeladas por mais de um ano, sendo seis deles revelados por gel-eletroforese enquanto nenhum o foi por agar-gel (tabela II. Trinta e três (33 amostras isoladas no laboratório, foram testadas com material colhido de membrana cório-alantóica da primeira inoculação para o diagnóstico, conservado em glicerina 50%, resultando 15 positivas em gel-eletroforese e apenas 3 em agar-gel (tabela II. Os últimos 60 espécimes recebidos para diagnóstico, através a Campanha de Erradicação da Varíola, também resultaram negativos em gel-eletroforese, que não mostrou falsos-positivos nas condições descritas.The test of gel-electrophoresis applied to the pox virus group showed to be at least thirth times (30X more sensitive than agar-gel test on the described conditions (Table I. Twelve specimens, which were positives form Smallpox in the conventional tests of egg inoculation and agar-gel difusion test, have been screened in their original dilutions frozen for more than 1 year and six of them were still detectable by gel-eletrophoresis, while by agar-gel test any of them was positive (Table II. Thirty three Smallpox isolates have been tested with material from first egg inoculation (chorioallantoic membranes which have been stored in glycerin 50%, at - 15ºC. Fifteen of them were still positive by gel-electrophoresis and only 3 by agar-gel (Table II. The last 60 specimens received for diagnosis from Smallpox Erradication Campaign (CEV, were negatives by both tests. The gel-electrophoresis, did not show false-positives on described conditions.

  10. A novel replication-competent vaccinia vector MVTT is superior to MVA for inducing high levels of neutralizing antibody via mucosal vaccination

    OpenAIRE

    Xiaoxing Huang; Bin Lu; Wenbo Yu; Qing Fang; Li Liu; Ke Zhuang; Tingting Shen; Haibo Wang; Po Tian; Linqi Zhang; Zhiwei Chen

    2009-01-01

    Mucosal vaccination offers great advantage for inducing protective immune response to prevent viral transmission and dissemination. Here, we report our findings of a head-to-head comparison of two viral vectors modified vaccinia Ankara (MVA) and a novel replication-competent modified vaccinia Tian Tan (MVTT) for inducing neutralizing antibodies (Nabs) via intramuscular and mucosal vaccinations in mice. MVTT is an attenuated variant of the wild-type VTT, which was historically used as a smallp...

  11. From foe to friend: geographical and environmental factors and the control and eradication of smallpox in India.

    Science.gov (United States)

    Bhattacharya, Sanjoy

    2003-01-01

    Due to the highly visible nature of the disease, smallpox received a lot of attention from the colonial and independent Indian governments. An assessment of the changing official views about the impact of geographical and environmental factors on modes of variola causation and control presents insights into themes that are generally ignored in the existing historiography. Rather than being synchronised efforts, imposed top-down, provincial level officials in charge of running vaccination programmes were able to retain a great degree of autonomy and shape the nature of local immunisation drive. As a result, vaccination work in the country was often disjointed, marked by official disagreements about the usefulness of certain strategies and technological inputs, with these trends being most noticeable in rural areas. Thus, this study seeks to highlight the importance of recognising--and studying--the fractured nature of medical and public health administration in the South Asian sub-continent.

  12. Characterization of an attenuated TE3L-deficient vaccinia virus Tian Tan strain.

    Science.gov (United States)

    Wang, Yuhang; Kan, Shifu; Du, Shouwen; Qi, Yanxin; Wang, Jinhui; Liu, Liming; Ji, Huifan; He, Dongyun; Wu, Na; Li, Chang; Chi, Baorong; Li, Xiao; Jin, Ningyi

    2012-12-01

    An attenuated vaccinia virus (VACV), TE3L(-)VTT, was evaluated for virulence and safety to determine its potential use as a vaccine or as a recombinant virus vector to express foreign genes. The virulence of TE3L(-)VTT was compared with that of the wild-type VTT both in vivo and in vitro. The humoral and cellular immune responses were detected in a mouse model to test the vaccine efficacy of the TE3L mutant. The results suggested that deletion of the TE3L gene decreased the virulence and neurovirulence significantly in mice and rabbit models, yet retained the immunogenicity. Thus, the deletion of TE3L improved the safety of the VTT vector; this approach may yield a valuable resource for studies of recombinant VACV-vectored vaccines.

  13. Vaccinia complement control protein: Multi-functional protein and a potential wonder drug

    Indian Academy of Sciences (India)

    Purushottam Jha; Girish J Kotwal

    2003-04-01

    Vaccinia virus complement control protein (VCP) was one of the first viral molecules demonstrated to have a role in blocking complement and hence in the evasion of host defense. Structurally it is very similar to the human C4b-BP and the other members of complement control protein. Functionally it is most similar to the CR1 protein. VCP blocks both major pathways of complement activation. The crystal structure of VCP was determined a little over a year ago and it is the only known structure of an intact and complete complement control protein. In addition to binding complement, VCP also binds to heparin. These two binding abilities can take place simultaneously and contribute to its many function and to its potential use in several inflammatory diseases, e.g. Alzheimer’s disease (AD), CNS injury, xenotransplantation, etc. making it a truly fascinating molecule and potential drug.

  14. Modulation of gene expression in a human cell line caused by poliovirus, vaccinia virus and interferon

    Directory of Open Access Journals (Sweden)

    Hoddevik Gunnar

    2007-03-01

    Full Text Available Abstract Background The project was initiated to describe the response of a human embryonic fibroblast cell line to the replication of two different viruses, and, more specifically, to look for candidate genes involved in viral defense. For this purpose, the cells were synchronously infected with poliovirus in the absence or presence of interferon-alpha, or with vaccinia virus, a virus that is not inhibited by interferon. By comparing the changes in transcriptosome due to these different challenges, it should be possible to suggest genes that might be involved in defense. Results The viral titers were sufficient to yield productive infection in a majority of the cells. The cells were harvested in triplicate at various time-points, and the transcriptosome compared with mock infected cells using oligo-based, global 35 k microarrays. While there was very limited similarities in the response to the different viruses, a large proportion of the genes up-regulated by interferon-alpha were also up-regulated by poliovirus. Interferon-alpha inhibited poliovirus replication, but there were no signs of any interferons being induced by poliovirus. The observations suggest that the cells do launch an antiviral response to poliovirus in the absence of interferon. Analyses of the data led to a list of candidate antiviral genes. Functional information was limited, or absent, for most of the candidate genes. Conclusion The data are relevant for our understanding of how the cells respond to poliovirus and vaccinia virus infection. More annotations, and more microarray studies with related viruses, are required in order to narrow the list of putative defence-related genes.

  15. Vaccinia virus-mediated melanin production allows MR and optoacoustic deep tissue imaging and laser-induced thermotherapy of cancer.

    Science.gov (United States)

    Stritzker, Jochen; Kirscher, Lorenz; Scadeng, Miriam; Deliolanis, Nikolaos C; Morscher, Stefan; Symvoulidis, Panagiotis; Schaefer, Karin; Zhang, Qian; Buckel, Lisa; Hess, Michael; Donat, Ulrike; Bradley, William G; Ntziachristos, Vasilis; Szalay, Aladar A

    2013-02-26

    We reported earlier the delivery of antiangiogenic single chain antibodies by using oncolytic vaccinia virus strains to enhance their therapeutic efficacy. Here, we provide evidence that gene-evoked production of melanin can be used as a therapeutic and diagnostic mediator, as exemplified by insertion of only one or two genes into the genome of an oncolytic vaccinia virus strain. We found that produced melanin is an excellent reporter for optical imaging without addition of substrate. Melanin production also facilitated deep tissue optoacoustic imaging as well as MRI. In addition, melanin was shown to be a suitable target for laser-induced thermotherapy and enhanced oncolytic viral therapy. In conclusion, melanin as a mediator for thermotherapy and reporter for different imaging modalities may soon become a versatile alternative to replace fluorescent proteins also in other biological systems. After ongoing extensive preclinical studies, melanin overproducing oncolytic virus strains might be used in clinical trials in patients with cancer.

  16. Evidence for Protection against Chronic Hepatitis C Virus Infection in Chimpanzees by Immunization with Replicating Recombinant Vaccinia Virus▿

    OpenAIRE

    Youn, Jin-Won; Hu, Yu-Wen; Tricoche, Nancy; Pfahler, Wolfram; Shata, Mohamed Tarek; Dreux, Marlene; Cosset, François-Loic; Folgori, Antonella; Lee, Dong-Hun; Brotman, Betsy; Prince, Alfred M.

    2008-01-01

    Given the failures of nonreplicating vaccines against chronic hepatitis C virus (HCV) infection, we hypothesized that a replicating viral vector may provide protective immunity. Four chimpanzees were immunized transdermally twice with recombinant vaccinia viruses (rVV) expressing HCV genes. After challenge with 24 50% chimpanzee infective doses of homologous HCV, the two control animals that had received only the parental VV developed chronic HCV infection. All four immunized animals resolved...

  17. Heat shock protein and heat shock factor 1 expression and localization in vaccinia virus infected human monocyte derived macrophages

    Directory of Open Access Journals (Sweden)

    Dziedzic Jakub

    2005-10-01

    Full Text Available Abstract Background Viruses remain one of the inducers of the stress response in the infected cells. Heat shock response induced by vaccinia virus (VV infection was studied in vitro in human blood monocyte derived macrophages (MDMs as blood cells usually constitute the primary site of the infection. Methods Human blood monocytes were cultured for 12 – 14 days. The transcripts of heat shock factor 1 (HSF1, heat shock protein 70 (HSP70, heat shock protein 90 (HSP90 and two viral genes (E3L and F17R were assayed by reverse transcriptase-polymerase chain reaction (RT-PCR, and the corresponding proteins measured by Western blot. Heat shock factor 1 DNA binding activities were estimated by electrophoretic mobility shift assay (EMSA and its subcellular localization analyzed by immunocytofluorescence. Results It appeared that infection with vaccinia virus leads to activation of the heat shock factor 1. Activation of HSF1 causes increased synthesis of an inducible form of the HSP70 both at the mRNA and the protein level. Although HSP90 mRNA was enhanced in vaccinia virus infected cells, the HSP90 protein content remained unchanged. At the time of maximum vaccinia virus gene expression, an inhibitory effect of the infection on the heat shock protein and the heat shock factor 1 was most pronounced. Moreover, at the early phase of the infection translocation of HSP70 and HSP90 from the cytoplasm to the nucleus of the infected cells was observed. Conclusion Preferential nuclear accumulation of HSP70, the major stress-inducible chaperone protein, suggests that VV employs this particular mechanism of cytoprotection to protect the infected cell rather than to help viral replication. The results taken together with our previuos data on monocytes or MDMs infected with VV or S. aureus strongly argue that VV employs multiple cellular antiapoptotic/cytoprotective mechanisms to prolong viability and proinflammatory activity of the cells of monocytic

  18. Efficacy and safety of oncolytic vaccinia virus and Semliki Forest virus in the treatment of canine and feline malignant tumours

    OpenAIRE

    Autio, Karoliina

    2015-01-01

    Cancer is one of the most common reasons for death in dogs, cats and humans. New therapeutic modalities are necessary to improve disease outcome. One promising approach is oncolytic virotherapy. Until now, the only oncolytic virus evaluated in a clinical trial in veterinary medicine has been canine oncolytic adenovirus, but a clinical trial has been started with oncolytic vaccinia virus (VV) in pet dogs. In cats, oncolytic viruses have not been evaluated in clinical settings. Tumour treatment...

  19. Oral immunization and protection of raccoons (Procyon lotor) with a vaccinia-rabies glycoprotein recombinant virus vaccine.

    OpenAIRE

    Rupprecht, C E; Wiktor, T. J.; Johnston, D. H.; Hamir, A N; Dietzschold, B; Wunner, W H; Glickman, L T; Koprowski, H

    1986-01-01

    Animal rabies control has been frustrated by the existence of multiple wildlife reservoirs and the lack of efficacious oral vaccines. In this investigation, raccoons fed a vaccinia-rabies glycoprotein recombinant virus in a sponge bait developed rabies virus-neutralizing antibody (0.6-54.0 units) and resisted street rabies virus infection 28 and 205 days after feeding. Additional raccoons immunized by oral infusion with attenuated antigenic variants of rabies virus strains CVS-11 and ERA fail...

  20. Smallpox eradication, laboratory visits, and a touch of tourism: travel notes of a Canadian scientist in Brazil Erradicando a varíola, visitando laboratórios e um pouco de turismo: notas de viagem de um cientista canadense ao Brasil

    OpenAIRE

    Steven Palmer; Gilberto Hochman; Danieli Arbex

    2010-01-01

    The paper presents and discusses the travel notes diary of Canadian scientist Robert J. Wilson when he visited Brazil in April 1967 during the Smallpox Eradication Programme run by the World Health Organisation. Wilson's report makes it possible to reflect on the smallpox eradication campaign in Brazil; on the Canada-Brazil cooperation to improve the quality of the smallpox vaccine; on his assessment by of scientists and Brazilian laboratories; on the effects of intersections between scientif...

  1. Efficient colonization and therapy of human hepatocellular carcinoma (HCC using the oncolytic vaccinia virus strain GLV-1h68.

    Directory of Open Access Journals (Sweden)

    Ivaylo Gentschev

    Full Text Available Virotherapy using oncolytic vaccinia virus strains is one of the most promising new strategies for cancer therapy. In this study, we analyzed for the first time the therapeutic efficacy of the oncolytic vaccinia virus GLV-1h68 in two human hepatocellular carcinoma cell lines HuH7 and PLC/PRF/5 (PLC in cell culture and in tumor xenograft models. By viral proliferation assays and cell survival tests, we demonstrated that GLV-1h68 efficiently colonized, replicated in, and did lyse these cancer cells in culture. Experiments with HuH7 and PLC xenografts have revealed that a single intravenous injection (i.v. of mice with GLV-1h68 resulted in a significant reduction of primary tumor sizes compared to uninjected controls. In addition, replication of GLV-1h68 in tumor cells led to strong inflammatory and oncolytic effects resulting in intense infiltration of MHC class II-positive cells like neutrophils, macrophages, B cells and dendritic cells and in up-regulation of 13 pro-inflammatory cytokines. Furthermore, GLV-1h68 infection of PLC tumors inhibited the formation of hemorrhagic structures which occur naturally in PLC tumors. Interestingly, we found a strongly reduced vascular density in infected PLC tumors only, but not in the non-hemorrhagic HuH7 tumor model. These data demonstrate that the GLV-1h68 vaccinia virus may have an enormous potential for treatment of human hepatocellular carcinoma in man.

  2. [Modified vaccinia virus ankara (MVA)--development as recombinant vaccine and prospects for use in veterinary medicine].

    Science.gov (United States)

    Volz, Asisa; Fux, Robert; Langenmayer, Martin C; Sutter, Gerd

    2015-01-01

    Poxviruses as expression vectors are widely used in medical research for the development of recombinant vaccines and molecular therapies. Here we review recent accomplishments in vaccine research using recombinant modified vaccinia virus ankara (MVA). MVA is a highly attenuated vaccinia virus strain that originated from serial tissue culture passage in chicken embryo fibroblasts more than 40 years ago. Growth adaptation to avian host cells caused deletions and mutations in the viral genome affecting about 15% of the original genetic information. In consequence, MVA is replication-deficient in cells of mammalian origin and fails to produce many of the virulence factors encoded by conventional vaccinia virus. Because of its safety for the general environment MVA can be handled under conditions of biosafety level one. Non-replicating MVA can enter any target cell and activate its molecular life cycle to express all classes of viral and recombinant genes. Therefore, recombinant MVA have been established as an extremely safe and efficient vector system for vaccine development in medical research. By now, various recombinant MVA vaccines have been found safe and immunogenic when used for phase I/II clinical testing in humans, and suitable for industrial scale production following good practice of manufacturing. Thus, there is an obvious usefulness of recombinant MVA vaccines for novel prophylactic and therapeutic approaches also in veterinary medicine. Results from first studies in companion and farm animals are highly promising.

  3. Induction of neutralizing antibodies by varicella-zoster virus gpII glycoprotein expressed from recombinant vaccinia virus.

    Science.gov (United States)

    Massaer, M; Haumont, M; Place, M; Bollen, A; Jacobs, P

    1993-03-01

    The gpII glycoprotein of varicella-zoster virus (VZV) was produced in CV1 cells via vaccinia virus recombinants. Two different DNA constructs were expressed: the first one encodes the complete gpII protein (gpII s+a+) and the second a truncated species lacking the membrane anchorage domain (gpII s+a-). To achieve expression both coding sequences had to be engineered at the 5' end by substituting the unusually short (24 bp) natural signal sequence by a more conventional one encoding 29 amino acids. Recombinant gpII proteins were detected in vaccinia virus-infected cells by ELISA and immunoprecipitation. Both forms of recombinant gpII proteins were produced as glycosylated single-chain molecules of respectively 110K and 90K. Upon reduction these were only partially converted into subunits. A rabbit infected with the vaccinia virus recombinant expressing the complete gpII produced antibodies which recognized VZV antigens and neutralized VZV infectivity in vitro, independent of complement.

  4. A PCR-based method for manipulation of the vaccinia virus genome that eliminates the need for cloning.

    Science.gov (United States)

    Turner, P C; Moyer, R W

    1992-11-01

    A general method is described for altering specific genes of vaccinia virus (VV). We demonstrate and evaluate the procedure by gene inactivation, using a dominant selectable marker in conjunction with recombinant polymerase chain reaction (PCR). Primers based on the sequence of the target gene enable amplification of flanking arms and their subsequent attachment to the gpt cassette that confers resistance to mycophenolic acid. Linear PCR constructs are transfected into cells infected with wild-type vaccinia virus. Mutant viruses with gpt inserted into the target gene by homologous recombination are then selected by growth in the presence of MPA. This technique was applied to the vaccinia virus thymidine kinase gene and compared to the traditional method of constructing gpt-containing plasmids by cloning. The PCR scheme was found to be highly efficient and could theoretically be used to insert any foreign DNA element into any nonessential target gene for which partial or complete sequence information is available. The procedure can potentially be used for a wide variety of genetic modifications, including the insertion of foreign genes, with poxviruses and other DNA viruses. Genomes of microorganisms, such as bacteria and yeast that can be transformed with linear DNA, are also candidates for manipulation by this methodology.

  5. Extracts from rabbit skin inflamed by the vaccinia virus attenuate bupivacaine-induced spinal neurotoxicity in pregnant rats

    Institute of Scientific and Technical Information of China (English)

    Rui Cui; Shiyuan Xu; Liang Wang; Hongyi Lei; Qingxiang Cai; Hongfei Zhang; Dongmei Wang

    2013-01-01

    Extracts from rabbit skin inflamed by the vaccinia virus can relieve pain and promote repair of nerve injury. The present study intraperitoneally injected extracts from rabbit skin inflamed by the vaccinia virus for 3 and 4 days prior to and following intrathecal injection of bupivacaine into pregnant rats. The pain threshold test after bupivacaine injection showed that the maximum possible effect of tail-flick latency peaked 1 day after intrathecal injection of bupivacaine in the extract-pretreatment group, and gradually decreased, while the maximum possible effect in the bupivacaine group continued to increase after intrathecal injection of bupivacaine. Histological observation showed that after 4 days of intrathecal injection of bupivacaine, the number of shrunken, vacuolated, apoptotic and caspase-9-positive cells in the dorsal root ganglion in the extract-pretreatment group was significantly reduced compared with the bupivacaine group. These findings indicate that extracts from rabbit skin inflamed by the vaccinia virus can attenuate neurotoxicity induced by intrathecal injection of bupivacaine in pregnant rats, possibly by inhibiting caspase-9 protein expression and suppressing nerve cell apoptosis.

  6. Hospital recruitment for the Smallpox Pre-Event Vaccination Program: experiences from Florida, Nebraska, New Jersey, and Tennessee, December 2002-June 2003.

    OpenAIRE

    Ching, Pamela; Tynan, William P.; Raymond, Dick; Bresnitz, Eddy; Craig, Allen S.

    2004-01-01

    The Smallpox Pre-Event Vaccination Program (SPVP) for public health and hospital-based health care workers began on January 24, 2003. This report summarizes efforts made by health officials in Florida, Nebraska, New Jersey, and Tennessee to facilitate the voluntary participation of acute care hospitals in the SPVP. Seven common characteristics contributed to the success of programs in these four states: (1) early planning, building on existing competencies, and state government support, (2) c...

  7. Vergleich von rekombinanten Vaccinia- und DNA-Vektoren zur Tumorimmuntherapie im C57BL/6-Mausmodell

    Science.gov (United States)

    Johnen, Heiko

    2002-10-01

    In der vorliegenden Arbeit wurden Tumorimpfstoffe auf der Basis des Plasmid-Vektors pCI, modified vaccinia virus Ankara (MVA) und MVA-infizierten dendritischen Zellen entwickelt und durch Sequenzierung, Western blotting und durchflußzytometrische Analyse überprüft. Die in vivo Wirksamkeit der Vakzinen wurde in verschiedenen Tumormodellen in C57BL/6 Mäusen verglichen. Die auf dem eukaryotischen Expressionsvektor pCI basierende DNA-Vakzinierung induzierte einen sehr wirksamen, antigenspezifischen und langfristigen Schutz vor Muzin, CEA oder beta-Galactosidase exprimierenden Tumoren. Eine MVA-Vakzinierung bietet in den in dieser Arbeit durchgeführten Tumormodellen keinen signifikanten Schutz vor Muzin oder beta-Galactosidase exprimierenden Tumoren. Sowohl humane, als auch murine in vitro generierte dendritische Zellen lassen sich mit MVA – im Vergleich zu anderen viralen Vektoren – sehr gut infizieren. Die Expressionsrate der eingefügten Gene ist aber gering im Vergleich zur Expression in permissiven Wirtszellen des Virus (embryonale Hühnerfibroblasten). Es konnte gezeigt werden, daß eine MVA-Infektion dendritischer Zellen ähnliche Auswirkungen auf den Reifezustand humaner und muriner dendritischer Zellen hat, wie eine Infektion mit replikationskompetenten Vakzinia-Stämmen, und außerdem die Hochregulation von CD40 während der terminalen Reifung von murinen dendritischen Zellen inhibiert wird. Die während der langfristigen in vitro Kultur auf CEF-Zellen entstandenen Deletionen im MVA Genom führten zu einer starken Attenuierung und dem Verlust einiger Gene, die immunmodulatorische Proteine kodieren, jedoch nicht zu einer Verminderung des zytopathischen Effekts in dendritischen Zellen. Die geringe Expressionsrate und die beobachtete Inhibition der Expression kostimulatorischer Moleküle auf dendritischen Zellen kann für eine wenig effektive Induktion einer Immunantwort in MVA vakzinierten Tieren durch cross priming oder die direkte Infektion antigenpr

  8. Analysis of pregnancy and infant health outcomes among women in the National Smallpox Vaccine in Pregnancy Registry who received Anthrax Vaccine Adsorbed.

    Science.gov (United States)

    Conlin, Ava Marie S; Bukowinski, Anna T; Gumbs, Gia R

    2015-08-26

    The National Smallpox Vaccine in Pregnancy Registry (NSVIPR) actively follows women inadvertently vaccinated with smallpox vaccine during or shortly before pregnancy to evaluate their reproductive health outcomes. Approximately 65% of NSVIPR participants also inadvertently received Anthrax Vaccine Adsorbed (AVA) while pregnant, providing a ready opportunity to evaluate pregnancy and infant health outcomes among these women. AVA-exposed pregnancies were ascertained using NSVIPR and electronic healthcare data. Rates of pregnancy loss and infant health outcomes, including major birth defects, were compared between AVA-exposed and AVA-unexposed pregnancies. Analyses included AVA-exposed and AVA-unexposed pregnant women who also received smallpox vaccine 28 days prior to or during pregnancy. Rates of adverse outcomes among the AVA-exposed group were similar to or lower than expected when compared with published reference rates and the AVA-unexposed population. The findings provide reassurance of the safety of AVA when inadvertently received by a relatively young and healthy population during pregnancy. PMID:26049005

  9. Research progress in response strategies to smallpox bioterrorism%生物恐怖视角下的天花应对策略研究进展

    Institute of Scientific and Technical Information of China (English)

    祖正虎; 许晴; 张文斗; 徐致靖; 黄培堂; 郑涛

    2013-01-01

    Emergency prevention and control of smallpox transmission in the context of bioterrorism require effective response strategies. This paper began by describing the general process of computational experiments on smallpox response strategies. Then,the current achievement of this method was summarized in terms of the experimental environment, the computational model and intervention strategies. Finally, problems with smallpox response strategy simulation and directions of further research were discussed.%生物恐怖视角下天花传播的应急防控需要科学的应对策略.本文首先介绍天花应对策略计算实验的一般过程,然后从实验环境、计算模型及干预策略3个方面总结当前的研究及取得的进展,并就天花应对策略模拟存在的问题及进一步研究方向进行讨论.

  10. Reverse genetics of SARS-related coronavirus using vaccinia virus-based recombination.

    Directory of Open Access Journals (Sweden)

    Sjoerd H E van den Worm

    Full Text Available Severe acute respiratory syndrome (SARS is a zoonotic disease caused by SARS-related coronavirus (SARS-CoV that emerged in 2002 to become a global health concern. Although the original outbreak was controlled by classical public health measures, there is a real risk that another SARS-CoV could re-emerge from its natural reservoir, either in its original form or as a more virulent or pathogenic strain; in which case, the virus would be difficult to control in the absence of any effective antiviral drugs or vaccines. Using the well-studied SARS-CoV isolate HKU-39849, we developed a vaccinia virus-based SARS-CoV reverse genetic system that is both robust and biosafe. The SARS-CoV genome was cloned in separate vaccinia virus vectors, (vSARS-CoV-5prime and vSARS-CoV-3prime as two cDNAs that were subsequently ligated to create a genome-length SARS-CoV cDNA template for in vitro transcription of SARS-CoV infectious RNA transcripts. Transfection of the RNA transcripts into permissive cells led to the recovery of infectious virus (recSARS-CoV. Characterization of the plaques produced by recSARS-CoV showed that they were similar in size to the parental SARS-CoV isolate HKU-39849 but smaller than the SARS-CoV isolate Frankfurt-1. Comparative analysis of replication kinetics showed that the kinetics of recSARS-CoV replication are similar to those of SARS-CoV Frankfurt-1, although the titers of virus released into the culture supernatant are approximately 10-fold less. The reverse genetic system was finally used to generate a recSARS-CoV reporter virus expressing Renilla luciferase in order to facilitate the analysis of SARS-CoV gene expression in human dendritic cells (hDCs. In parallel, a Renilla luciferase gene was also inserted into the genome of human coronavirus 229E (HCoV-229E. Using this approach, we demonstrate that, in contrast to HCoV-229E, SARS-CoV is not able to mediate efficient heterologous gene expression in hDCs.

  11. Epitope mapping by random peptide phage display reveals essential residues for vaccinia extracellular enveloped virion spread

    Directory of Open Access Journals (Sweden)

    He Yong

    2012-09-01

    Full Text Available Abstract Background A33 is a type II integral membrane protein expressed on the extracellular enveloped form of vaccinia virus (VACV. Passive transfer of A33-directed monoclonal antibodies or vaccination with an A33 subunit vaccine confers protection against lethal poxvirus challenge in animal models. Homologs of A33 are highly conserved among members of the Orthopoxvirus genus and are potential candidates for inclusion in vaccines or assays targeting extracellular enveloped virus activity. One monoclonal antibody directed against VACV A33, MAb-1G10, has been shown to target a conformation-dependent epitope. Interestingly, while it recognizes VACV A33 as well as the corresponding variola homolog, it does not bind to the monkeypox homolog. In this study, we utilized a random phage display library to investigate the epitope recognized by MAb-1G10 that is critical for facilitating cell-to-cell spread of the vaccinia virus. Results By screening with linear or conformational random phage libraries, we found that phages binding to MAb-1G10 display the consensus motif CEPLC, with a disulfide bond formed between two cysteine residues required for MAb-1G10 binding. Although the phage motif contained no linear sequences homologous to VACV A33, structure modeling and analysis suggested that residue D115 is important to form the minimal epitope core. A panel of point mutants expressing the ectodomain of A33 protein was generated and analyzed by either binding assays such as ELISA and immunoprecipitation or a functional assessment by blocking MAb-1G10 mediated comet inhibition in cell culture. Conclusions These results confirm L118 as a component of the MAb-1G10 binding epitope, and further identify D115 as an essential residue. By defining the minimum conformational structure, as well as the conformational arrangement of a short peptide sequence recognized by MAb-1G10, these results introduce the possibility of designing small molecule mimetics that may

  12. Vaccinia virus, herpes simplex virus, and carcinogens induce DNA amplification in a human cell line and support replication of a helpervirus dependent parvovirus

    Energy Technology Data Exchange (ETDEWEB)

    Schlehofer, J.R.; Ehrbar, M.; zur Hausen, H.

    1986-07-15

    The SV40-transformed human kidney cell line, NB-E, amplifies integrated as well as episomal SV40 DNA upon treatment with chemical (DMBA) or physical (uv irradiation) carcinogens (initiators) as well as after infection with herpes simplex virus (HSV) type 1 or with vaccinia virus. In addition it is shown that vaccinia virus induces SV40 DNA amplification also in the SV40-transformed Chinese hamster embryo cell line, CO631. These findings demonstrate that human cells similar to Chinese hamster cells amplify integrated DNA sequences after treatment with carcinogens or infection with specific viruses. Furthermore, a poxvirus--vaccinia virus--similar to herpes group viruses induces DNA amplification. As reported for other systems, the vaccinia virus-induced DNA amplification in NB-E cells is inhibited by coinfection with adeno-associated virus (AAV) type 5. This is in line with previous studies on inhibition of carcinogen- or HSV-induced DNA amplification in CO631 cells. The experiments also demonstrate that vaccinia virus, in addition to herpes and adenoviruses acts as a helper virus for replication and structural antigen synthesis of AAV-5 in NB-E cells.

  13. Vaccinia virus, herpes simplex virus, and carcinogens induce DNA amplification in a human cell line and support replication of a helpervirus dependent parvovirus

    International Nuclear Information System (INIS)

    The SV40-transformed human kidney cell line, NB-E, amplifies integrated as well as episomal SV40 DNA upon treatment with chemical (DMBA) or physical (uv irradiation) carcinogens (initiators) as well as after infection with herpes simplex virus (HSV) type 1 or with vaccinia virus. In addition it is shown that vaccinia virus induces SV40 DNA amplification also in the SV40-transformed Chinese hamster embryo cell line, CO631. These findings demonstrate that human cells similar to Chinese hamster cells amplify integrated DNA sequences after treatment with carcinogens or infection with specific viruses. Furthermore, a poxvirus--vaccinia virus--similar to herpes group viruses induces DNA amplification. As reported for other systems, the vaccinia virus-induced DNA amplification in NB-E cells is inhibited by coinfection with adeno-associated virus (AAV) type 5. This is in line with previous studies on inhibition of carcinogen- or HSV-induced DNA amplification in CO631 cells. The experiments also demonstrate that vaccinia virus, in addition to herpes and adenoviruses acts as a helper virus for replication and structural antigen synthesis of AAV-5 in NB-E cells

  14. Generation of an attenuated Tiantan vaccinia virus by deletion of the ribonucleotide reductase large subunit.

    Science.gov (United States)

    Kan, Shifu; Jia, Peng; Sun, Lili; Hu, Ningning; Li, Chang; Lu, Huijun; Tian, Mingyao; Qi, Yanxin; Jin, Ningyi; Li, Xiao

    2014-09-01

    Attenuation of the virulence of vaccinia Tiantan virus (VTT) underlies the strategy adopted for mass vaccination campaigns. This strategy provides advantages of safety and efficacy over traditional vaccines and is aimed at minimization of adverse health effects. In this study, a mutant form of the virus, MVTT was derived from VTT by deletion of the ribonucleotide reductase large subunit (R1) (TI4L). Compared to wild-type parental (VTT) and revertant (VTT-rev) viruses, virulence of the mutant MVTT was reduced by 100-fold based on body weight reduction and by 3,200-fold based on determination of the intracranial 50% lethal infectious dose. However, the immunogenicity of MVTT was equivalent to that of the parental VTT. We also demonstrated that the TI4L gene is not required for efficient replication. These data support the conclusion that MVTT can be used as a replicating virus vector or as a platform for the development of vaccines against infectious diseases and for cancer therapy.

  15. Brazilian vaccinia virus strains show a classical orthopoxvirus in-fection course and cross-protection

    Institute of Scientific and Technical Information of China (English)

    Betania Paiva Drumond; Jonatas Santos Abraho; Zlia Ins Portela Lobato; Cludio Antonio Bonjardim; Paulo Csar Peregrino Ferreira; Erna Geessien Kroon

    2009-01-01

    Objectives:The purpose of this work was to study the infection course and cross-protection in mice after intra-dermal injection of Vaccinia virus (VACV ) strain Western Reserve and three Brazilian VACV strains:Araatuba,Muriaéand BeAn58058 isolated from cow,human and rodent,respectively.Methods:Balb /c mice were inoculated by footpad and back scarification and daily monitored regarding lesion development and weight loss.To check cross protection after intradermal VACV inoculation,mice were subsequently infected with different VACV strains and monitored to check lesion development.Serum neutralization assays were per-formed to check for the presence of antibodies against Orthopoxvirus.Results:After VACV intradermal inocu-lation the lesion development pattern was similar in mice infected with the different virus strains.By using the footpad scarification model,cross-protection among VACV strains was observed.Moreover,neutralizing anti-bodies against Orthopoxvirus were detected in sera from mice infected with all VACV strains.Conclusion:Al-though it was not possible to observe virulence differences among VACV strains isolated from cow,rodent and human using the murine model,this inoculation route showed to be an appropriated model to study lesions de-velopment since it mimics natural infections by VACV in nature.

  16. Delivery of Echinococcus granulosus antigen EG95 to mice and sheep using recombinant vaccinia virus.

    Science.gov (United States)

    Dutton, S; Fleming, S B; Ueda, N; Heath, D D; Hibma, M H; Mercer, A A

    2012-06-01

    The tapeworm Echinococcus granulosus is the causative agent of hydatid disease and affects sheep, cattle, dogs and humans worldwide. It has a two-stage life cycle existing as worms in the gut of infected dogs (definitive host) and as cysts in herbivores and humans (intermediate host). The disease is debilitating and can be life threatening where the cysts interfere with organ function. Interruption of the hydatid life cycle in the intermediate host by vaccination may be a way to control the disease, and a protective oncosphere antigen EG95 has been shown to protect animals against challenge with E. granulosus eggs. We explored the use of recombinant vaccinia virus as a delivery vehicle for EG95. Mice and sheep were immunized with the recombinant vector, and the result monitored at the circulating antibody level. In addition, sera from immunized mice were assayed for the ability to kill E. granulosus oncospheres in vitro. Mice immunized once intranasally developed effective oncosphere-killing antibody by day 42 post-infection. Antibody responses and oncosphere killing were correlated and were significantly enhanced by boosting mice with either EG95 protein or recombinant vector. Sheep antibody responses to the recombinant vector or to EG95 protein mirrored those in mice.

  17. High cytokine production and effective antitumor activity of a recombinant vaccinia virus encoding murine interleukin 12.

    Science.gov (United States)

    Meko, J B; Yim, J H; Tsung, K; Norton, J A

    1995-11-01

    We have constructed a recombinant vaccinia virus (recVV), vKT0334 mIL-12, containing the genes encoding the p35 and p40 subunits of murine interleukin-12 (mIL-12). In vitro experiments demonstrated that vKT0334 mIL-12 efficiently infected a variety of murine and human tumor cell lines and produced very high amounts (1.5 micrograms/10(6) cells/24 h) of biologically active mIL-12. Mice injected s.c. with 10(6) MCA 105 sarcoma cells, followed by injection at the same site with saline or a control recVV, vKT033, containing no mIL-12 genes, all developed progressively growing tumor, whereas 60% of animals injected with vKT0334 mIL-12 remained tumor free (P < 0.0005). Furthermore, tumor growth was significantly reduced in the remaining mice treated with vKT0334 mIL-12 that did develop tumor compared with mice treated with vKT033 (P < 0.03) or saline (P < 0.0001). We conclude that recVV expressing high levels of mIL-12 offers an effective in vivo method of cytokine gene delivery and expression in tumors with subsequent antitumor effect.

  18. RAB1A promotes Vaccinia virus replication by facilitating the production of intracellular enveloped virions

    Energy Technology Data Exchange (ETDEWEB)

    Pechenick Jowers, Tali; Featherstone, Rebecca J.; Reynolds, Danielle K.; Brown, Helen K. [The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian EH25 9RG, Scotland (United Kingdom); James, John; Prescott, Alan [Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland (United Kingdom); Haga, Ismar R. [The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian EH25 9RG, Scotland (United Kingdom); Beard, Philippa M., E-mail: pip.beard@roslin.ed.ac.uk [The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian EH25 9RG, Scotland (United Kingdom)

    2015-01-15

    Vaccinia virus (VACV) is a large double-stranded DNA virus with a complex cytoplasmic replication cycle that exploits numerous cellular proteins. This work characterises the role of a proviral cellular protein, the small GTPase RAB1A, in VACV replication. Using siRNA, we identified RAB1A as required for the production of extracellular enveloped virions (EEVs), but not intracellular mature virions (IMVs). Immunofluorescence and electron microscopy further refined the role of RAB1A as facilitating the wrapping of IMVs to become intracellular enveloped virions (IEVs). This is consistent with the known function of RAB1A in maintenance of ER to Golgi transport. VACV can therefore be added to the growing list of viruses which require RAB1A for optimal replication, highlighting this protein as a broadly proviral host factor. - Highlights: • Characterisation of the role of the small GTPase RAB1A in VACV replication. • RAB1A is not required for production of the primary virion form (IMV). • RAB1A is required for production of processed virion forms (IEVs, CEVs and EEVs). • Consistent with known role of RAB1A in ER to Golgi transport.

  19. Stunned silence: gene expression programs in human cells infected with monkeypox or vaccinia virus.

    Directory of Open Access Journals (Sweden)

    Kathleen H Rubins

    Full Text Available Poxviruses use an arsenal of molecular weapons to evade detection and disarm host immune responses. We used DNA microarrays to investigate the gene expression responses to infection by monkeypox virus (MPV, an emerging human pathogen, and Vaccinia virus (VAC, a widely used model and vaccine organism, in primary human macrophages, primary human fibroblasts and HeLa cells. Even as the overwhelmingly infected cells approached their demise, with extensive cytopathic changes, their gene expression programs appeared almost oblivious to poxvirus infection. Although killed (gamma-irradiated MPV potently induced a transcriptional program characteristic of the interferon response, no such response was observed during infection with either live MPV or VAC. Moreover, while the gene expression response of infected cells to stimulation with ionomycin plus phorbol 12-myristate 13-acetate (PMA, or poly (I-C was largely unimpaired by infection with MPV, a cluster of pro-inflammatory genes were a notable exception. Poly(I-C induction of genes involved in alerting the innate immune system to the infectious threat, including TNF-alpha, IL-1 alpha and beta, CCL5 and IL-6, were suppressed by infection with live MPV. Thus, MPV selectively inhibits expression of genes with critical roles in cell-signaling pathways that activate innate immune responses, as part of its strategy for stealthy infection.

  20. Structural analysis of point mutations at the Vaccinia virus A20/D4 interface.

    Science.gov (United States)

    Contesto-Richefeu, Céline; Tarbouriech, Nicolas; Brazzolotto, Xavier; Burmeister, Wim P; Peyrefitte, Christophe N; Iseni, Frédéric

    2016-09-01

    The Vaccinia virus polymerase holoenzyme is composed of three subunits: E9, the catalytic DNA polymerase subunit; D4, a uracil-DNA glycosylase; and A20, a protein with no known enzymatic activity. The D4/A20 heterodimer is the DNA polymerase cofactor, the function of which is essential for processive DNA synthesis. The recent crystal structure of D4 bound to the first 50 amino acids of A20 (D4/A201-50) revealed the importance of three residues, forming a cation-π interaction at the dimerization interface, for complex formation. These are Arg167 and Pro173 of D4 and Trp43 of A20. Here, the crystal structures of the three mutants D4-R167A/A201-50, D4-P173G/A201-50 and D4/A201-50-W43A are presented. The D4/A20 interface of the three structures has been analysed for atomic solvation parameters and cation-π interactions. This study confirms previous biochemical data and also points out the importance for stability of the restrained conformational space of Pro173. Moreover, these new structures will be useful for the design and rational improvement of known molecules targeting the D4/A20 interface. PMID:27599859

  1. Potential effect of prior raccoonpox virus infection in raccoons on vaccinia-based rabies immunization

    Directory of Open Access Journals (Sweden)

    MacCarthy Kathleen A

    2008-10-01

    Full Text Available Abstract Background The USDA, Wildlife Services cooperative oral rabies vaccination (ORV program uses a live vaccinia virus-vectored (genus Orthopoxvirus vaccine, Raboral V-RG® (V-RG, to vaccinate specific wildlife species against rabies virus in several regions of the U.S. Several naturally occurring orthopoxviruses have been found in North America, including one isolated from asymptomatic raccoons (Procyon lotor. The effect of naturally occurring antibodies to orthopoxviruses on successful V-RG vaccination in raccoons is the focus of this study. Results Overall, raccoons pre-immunized (n = 10 with a recombinant raccoonpox virus vaccine (RCN-F1 responded to vaccination with V-RG with lower rabies virus neutralizing antibody (VNA titers than those which were not pre-immunized (n = 10 and some failed to seroconvert for rabies VNA to detectable levels. Conclusion These results suggest that the success of some ORV campaigns may be hindered where raccoonpox virus or possibly other orthopoxvirus antibodies are common in wildlife species targeted for ORV. If these areas are identified, different vaccination strategies may be warranted.

  2. Ectromelia Virus Disease Characterization in the BALB/c Mouse: A Surrogate Model for Assessment of Smallpox Medical Countermeasures

    Directory of Open Access Journals (Sweden)

    Jennifer Garver

    2016-07-01

    Full Text Available In 2007, the United States– Food and Drug Administration (FDA issued guidance concerning animal models for testing the efficacy of medical countermeasures against variola virus (VARV, the etiologic agent for smallpox. Ectromelia virus (ECTV is naturally-occurring and responsible for severe mortality and morbidity as a result of mousepox disease in the murine model, displaying similarities to variola infection in humans. Due to the increased need of acceptable surrogate animal models for poxvirus disease, we have characterized ECTV infection in the BALB/c mouse. Mice were inoculated intranasally with a high lethal dose (125 PFU of ECTV, resulting in complete mortality 10 days after infection. Decreases in weight and temperature from baseline were observed eight to nine days following infection. Viral titers via quantitative polymerase chain reaction (qPCR and plaque assay were first observed in the blood at 4.5 days post-infection and in tissue (spleen and liver at 3.5 days post-infection. Adverse clinical signs of disease were first observed four and five days post-infection, with severe signs occurring on day 7. Pathological changes consistent with ECTV infection were first observed five days after infection. Examination of data obtained from these parameters suggests the ECTV BALB/c model is suitable for potential use in medical countermeasures (MCMs development and efficacy testing.

  3. [The historical development of immunization in Germany. From compulsory smallpox vaccination to a National Action Plan on Immunization].

    Science.gov (United States)

    Klein, S; Schöneberg, I; Krause, G

    2012-11-01

    In the German Reich, smallpox vaccinations were organized by the state. A mandatory vaccination throughout the empire was introduced in 1874, which was continued in the Federal Republic of Germany (FRG) and the German Democratic Republic (GDR) until 1982/1983. From 1935, health departments were responsible for vaccinations. In the GDR, immunization was tightly organized: The state made great efforts to achieve high vaccination rates. Responsibilities were clearly defined at all levels and for all ages. While vaccination was initially mandatory only at the regional level, the legally mandated immunization schedule later contained compulsory vaccinations, e.g., against measles. In the beginning there were mandatory vaccinations in the FRG at the Länder level. Since 1961, the Federal Epidemics Act has impeded obligatory vaccinations. Instead, voluntary vaccinations based on recommendations were stressed. Since the 1980s, vaccinations have been shifted from the public health service sector to office-based physicians. Today, public health authorities offer mainly supplementary vaccinations. In 2007, protective immunizations were introduced as compulsory benefits of the statutory health insurance (SHI). Recently, the German federal states developed a National Vaccination Plan to support immunization strategies.

  4. Ectromelia Virus Disease Characterization in the BALB/c Mouse: A Surrogate Model for Assessment of Smallpox Medical Countermeasures.

    Science.gov (United States)

    Garver, Jennifer; Weber, Lauren; Vela, Eric M; Anderson, Mike; Warren, Richard; Merchlinsky, Michael; Houchens, Christopher; Rogers, James V

    2016-01-01

    In 2007, the United States- Food and Drug Administration (FDA) issued guidance concerning animal models for testing the efficacy of medical countermeasures against variola virus (VARV), the etiologic agent for smallpox. Ectromelia virus (ECTV) is naturally-occurring and responsible for severe mortality and morbidity as a result of mousepox disease in the murine model, displaying similarities to variola infection in humans. Due to the increased need of acceptable surrogate animal models for poxvirus disease, we have characterized ECTV infection in the BALB/c mouse. Mice were inoculated intranasally with a high lethal dose (125 PFU) of ECTV, resulting in complete mortality 10 days after infection. Decreases in weight and temperature from baseline were observed eight to nine days following infection. Viral titers via quantitative polymerase chain reaction (qPCR) and plaque assay were first observed in the blood at 4.5 days post-infection and in tissue (spleen and liver) at 3.5 days post-infection. Adverse clinical signs of disease were first observed four and five days post-infection, with severe signs occurring on day 7. Pathological changes consistent with ECTV infection were first observed five days after infection. Examination of data obtained from these parameters suggests the ECTV BALB/c model is suitable for potential use in medical countermeasures (MCMs) development and efficacy testing. PMID:27455306

  5. Parallel simulation of smallpox spreading in large populations based on social contact networks%基于社会接触网络的大规模人群天花传播并行仿真

    Institute of Scientific and Technical Information of China (English)

    许晴; 祖正虎; 张文斗; 徐致靖; 黄培堂; 郑涛

    2012-01-01

    天花生物恐怖是世界各国面临的重大潜在威胁.本文利用并行仿真的技术手段,研究天花在大规模城市人群中的传播规律并对环形接种和大规模疫苗接种这两种主要的天花疫苗接种策略进行有效性分析,结果表明环形接种措施能够有效控制天花疫情的扩散,在天花疫苗储备不足的情况下可以优先考虑采用该措施.%Smallpox bioterrorism is a potentially significant threat to the world. This paper used the parallel simulation method to study the spread of smallpox in large urban populations and analyzed the effectiveness of two main smallpox vaccination strategies,which are ring vaccination and mass vaccination. The result showed that ring vaccination strategy can effectively control smallpox epidemic and should be given priority in case of shortage of smallpox vaccine reserves.

  6. Comparison on Virulence and Immunogenicity of Two Recombinant Vaccinia Vaccines, Tian Tan and Guang9 Strains, Expressing the HIV-1 Envelope Gene

    OpenAIRE

    Rong Zhu; Weijin Huang; Wenbo Wang; Qiang Liu; Jianhui Nie; Shufang Meng; Yongxin Yu; Youchun Wang

    2012-01-01

    BACKGROUND: The vaccinia virus Guang9 strain (VG9), derived from the vaccinia virus Tian Tan strain (VTT) has been found to be less virulent than VTT. METHODOLOGY/PRINCIPAL FINDINGS: To investigate whether VG9 could be a potential replicating virus vector, the TK genes in VG9 and VTT were replaced with the HIV-1 envelope gene via homologous recombination, resulting in the recombinant viruses, VG9-E and VTT-E. The biology, virulence, humoral and cellular immunological responses of VG9-E and VT...

  7. Deletion of C7L and K1L Genes Leads to Significantly Decreased Virulence of Recombinant Vaccinia Virus TianTan

    OpenAIRE

    Zheng Liu; Shuhui Wang; Qicheng Zhang; Meijuan Tian; Jue Hou; Rongmin Wang; Chang Liu; Xu Ji; Ying Liu; Yiming Shao

    2013-01-01

    The vaccinia virus TianTan (VTT) has been modified as an HIV vaccine vector in China and has shown excellent performance in immunogenicity and safety. However, its adverse effects in immunosuppressed individuals warrant the search for a safer vector in the following clinic trails. In this study, we deleted the C7L and K1L genes of VTT and constructed six recombinant vaccinia strains VTT△C7L, VTT△K1L, VTT△C7LK1L, VTKgpe△C7L, VTKgpe△K1L and VTT△C7LK1L-gag. The pathogenicity and immunogenicity o...

  8. The development and use of a vaccinia-rabies recombinant oral vaccine for the control of wildlife rabies; a link between Jenner and Pasteur.

    OpenAIRE

    PASTORET, P.P.; Brochier, B

    1996-01-01

    To improve both safety and stability of the oral vaccines used in the field to vaccinate foxes against rabies, a recombinant vaccinia virus, which expresses the immunizing G protein of rabies virus has been developed by inserting the cDNA which codes for the immunogenic glycoprotein of rabies virus into the thymidine kinase (TK) gene of the Copenhagen strain of vaccinia virus. The efficacy of this vaccine was tested by the oral route, primarily in foxes. The immunity conferred, a minimum of 1...

  9. Tc17 cells are capable of mediating immunity to vaccinia virus by acquisition of a cytotoxic phenotype

    OpenAIRE

    Yeh, Norman; Glosson, Nicole L.; Wang, Nan; Guindon, Lynette; McKinley, Carl; Hamada, Hiromasa; Li, Qingsheng; Dutton, Richard W.; Shrikant, Protul; Zhou, Baohua; Brutkiewicz, Randy R.; Blum, Janice S.; Kaplan, Mark H.

    2010-01-01

    CD8 T cells can acquire cytokine-secreting phenotypes paralleling cytokine production from Th cells. IL-17-secreting CD8 T cells, termed Tc17 cells, have been shown to promote inflammation and mediate immunity to influenza. However, most reports have observed a lack of cytotoxic activity by Tc17 cells. In this report, we explored the anti-viral activity of Tc17 cells using a vaccinia virus infection (VV) model. Tc17 cells expanded during VV infection, and TCR transgenic Tc17 cells were capabl...

  10. Interferon gamma is involved in the recovery of athymic nude mice from recombinant vaccinia virus/interleukin 2 infection

    OpenAIRE

    1990-01-01

    Athymic nude mice recover from an infection with recombinant vaccinia virus (VV) encoding murine interleukin 2 (IL-2), but treatment with a mAb to IL-2 accentuated infection. Administration of a mAb against interferon gamma (IFN-gamma) to mice infected with the IL-2-encoding virus completely prevented the IL-2-induced mechanisms of recovery. Both asialo-GM1+ (NK) and asialo-GM1- (non-NK) cells were participants in the IFN-gamma-mediated recovery of nude mice from infection with the IL-2-encod...

  11. Enfrentando el bioterrorismo: aspectos epidemiológicos, clínicos y preventivos de la viruela Confronting bioterrorism: epidemiologic, clinical, and preventive aspects of smallpox

    Directory of Open Access Journals (Sweden)

    Carlos Franco-Paredes

    2003-08-01

    Full Text Available Uno de los grandes logros de la salud pública mundial, la erradicación de la viruela, puede verse mermado por el posible riesgo de bioterrorismo. El debate acerca de la destrucción de los restos del virus en los dos laboratorios de referencia de la Organización Mundial de la Salud ha cambiado diametralmente debido a los eventos terroristas y a la dispersión intencional de Bacillus anthracis ocurridos en poblaciones civiles en Estados Unidos de América en el año 2001. La liberación del virus Variola con fines terroristas constituye un riesgo mínimo no cuantificable, pero desafortunadamente real. El impacto podría ser devastador debido a la elevada morbimortalidad de la enfermedad aunada al pánico y a la desestabilización social que podría ocasionar. Es por ello que el establecimiento de un plan de respuesta, sumado a disponibilidad de vacuna para ser utilizada pos-exposición, es importante dentro de los planes de contingencia contra el bioterrorismo. El reiniciar un programa limitado de vacunación contra la viruela, como parte de dicho plan, ha sido recientemente recomendado por el Comité Asesor de Vacunación, del Centro para el Control de las Enfermedades, pero la vacuna disponible puede causar complicaciones graves e incluso la muerte, por lo que dicha recomendación no ha sido universalmente aceptada. No obstante, el personal médico y de salud pública requiere de información actualizada sobre la viruela y su prevención, ya que ellos son la primera línea de defensa en caso de un posible brote a consecuencia de un ataque bioterrorista. El presente artículo presenta una revisión dirigida a proporcionar al personal de salud un enfoque clínico, epidemiológico y preventivo sobre la viruela.The worldwide eradication of smallpox, a major achievement in public health, is currently threatened by the risk of bioterrorism. The debate on the destruction of the Variola virus in the two reference laboratories of the World Health

  12. 天花生物恐怖风险下最优疫苗接种比例%Optimal proportion of immunized populations under different smallpox bioterrorist attack risks

    Institute of Scientific and Technical Information of China (English)

    许晴; 祖正虎; 张文斗; 徐致靖; 黄培堂; 郑涛

    2012-01-01

    天花是最危险的生物剂之一,目前全世界已经消除天花疾病,但发生天花生物恐怖袭击的可能性仍然存在.大规模接种天花疫苗是最有效的天花生物恐怖预防措施,但有可能会导致大量接种者产生严重的不良反应甚至死亡.因此,在存在天花恐怖事件可能性但尚未发生的当前,保有一定比例的天花免疫人群会减少真正发生时的整体损失.本文从最小化质量调整生命年损失的角度,探讨国家在不同天花生物恐怖袭击风险下应保有的最佳免疫人群比例.%Smallpox is one of the most dangerous biological agents. Although smallbox has been eliminated globally, the possibility of smallpox being used during a bioterrorist attack still exists. Large-scale smallpox vaccination is the most effective measure against smallpox bioterrorism, but may lead to serious side effects and even death. Therefore, retaining a certain proportion of immunized populations will reduce the overall losses in case of smallpox bioterrorist incidents. Based on minimized quality-adjusted life years losses, this article explored the optimal proportion of immunized populations that a country shoulol retain under the different smallpox bioterrorist attack risks.

  13. Increased attenuation but decreased immunogenicity by deletion of multiple vaccinia virus immunomodulators.

    Science.gov (United States)

    Sumner, Rebecca P; Ren, Hongwei; Ferguson, Brian J; Smith, Geoffrey L

    2016-09-14

    Vaccinia virus (VACV)-derived vectors are popular candidates for vaccination against diseases such as HIV-1, malaria and tuberculosis. However, their genomes encode a multitude of proteins with immunomodulatory functions, several of which reduce the immunogenicity of these vectors. Hitherto only limited studies have investigated whether the removal of these immunomodulatory genes in combination can increase vaccine efficacy further. To this end we constructed viruses based on VACV strain Western Reserve (WR) lacking up to three intracellular innate immunomodulators (N1, C6 and K7). These genes were selected because the encoded proteins had known functions in innate immunity and the deletion of each gene individually had caused a decrease in virus virulence in the murine intranasal and intradermal models of infection and an increase in immunogenicity. Data presented here demonstrate that deletion of two, or three of these genes in combination attenuated the virus further in an incremental manner. However, when vaccinated mice were challenged with VACV WR the double and triple gene deletion viruses provided weaker protection against challenge. This was accompanied by inferior memory CD8(+) T cell responses and lower neutralising antibody titres. This study indicates that, at least for the three genes studied in the context of VACV WR, the single gene deletion viruses are the best vaccine vectors, and that increased attenuation induced by deletion of additional genes decreased immunogenicity. These data highlight the fine balance and complex relationship between viral attenuation and immunogenicity. Given that the proteins encoded by the genes examined in this study are known to affect specific aspects of innate immunity, the set of viruses constructed here are interesting tools to probe the role of the innate immune response in influencing immune memory and vaccine efficacy. PMID:27544585

  14. Seven major genomic deletions of vaccinia virus Tiantan strain are sufficient to decrease pathogenicity.

    Science.gov (United States)

    Li, Yiquan; Sheng, Yuan; Chu, Yunjie; Ji, Huifan; Jiang, Shuang; Lan, Tian; Li, Min; Chen, Shuang; Fan, Yuanyuan; Li, Wenjie; Li, Xiao; Sun, Lili; Jin, Ningyi

    2016-05-01

    Attenuated strain TTVAC7, as a multi-gene-deleted vaccinia virus Tiantan strain (VTT), was constructed by knocking out parts of non-essential genes related to virulence, host range and immunomodulation of VTT, and by combining double marker screening with exogenous selectable marker knockout techniques. In this study, shuttle vector plasmids pTC-EGFP, pTA35-EGFP, pTA66-EGFP, pTE-EGFP, pTB-EGFP, pTI-EGFP and pTJ-EGFP were constructed, which contained seven pairs of recombinant arms linked to the early and late strong promoter pE/L, as well as to enhanced green fluorescent protein (EGFP) as an exogenous selectable marker. BHK cells were co-transfected/infected successively with the above plasmids and VTT or gene-deleted VTT, and homologous recombination and fluorescence plaque screening methods were used to knock out the gene fragments (TC: TC7L ∼ TK2L; TA35: TA35L; TA66: TA66R; TE: TE3L ∼ TE4L; TB: TB13R; TI: TI4L; TJ: TJ2R). The Cre/LoxP system was then applied to knock out the exogenous selectable marker, and ultimately the gene-deleted attenuated strain TTVAC7 was obtained. A series of in vivo and in vitro experiments demonstrated that not only the host range of TTVAC7 could be narrowed and its toxicity weakened significantly, but its high immunogenicity was maintained at the same time. These results support the potential of TTVAC7 to be developed as a safe viral vector or vaccine.

  15. Characterization of hepatitis C virus envelope glycoprotein complexes expressed by recombinant vaccinia viruses.

    Science.gov (United States)

    Ralston, R; Thudium, K; Berger, K; Kuo, C; Gervase, B; Hall, J; Selby, M; Kuo, G; Houghton, M; Choo, Q L

    1993-11-01

    We constructed recombinant vaccinia virus vectors for expression of the structural region of hepatitis C virus (HCV). Infection of mammalian cells with a vector (vv/HCV1-906) encoding C-E1-E2-NS2 generated major protein species of 22 kDa (C), 33 to 35 kDa (E1), and 70 to 72 kDa (E2), as observed previously with other mammalian expression systems. The bulk of the E1 and E2 expressed by vv/HCV1-906 was found integrated into endoplasmic reticulum membranes as core-glycosylated species, suggesting that these E1 and E2 species represent intracellular forms of the HCV envelope proteins. HCV E1 and E2 formed E1-E2 complexes which were precipitated by either anti-E1 or anti-E2 serum and which sedimented at approximately 15 S on glycerol density gradients. No evidence of intermolecular disulfide bonding between E1 and E2 was detected. E1 and E2 were copurified to approximately 90% purity by mild detergent extraction followed by chromatography on Galanthus nivalus lectin-agarose and DEAE-Fractogel. Immunization of chimpanzees with purified E1-E2 generated high titers of anti-E1 and anti-E2 antibodies. Further studies, to be reported separately, demonstrated that purified E1-E2 complexes were recognized at high frequency by HCV+ human sera (D. Y. Chien, Q.-L. Choo, R. Ralston, R. Spaete, M. Tong, M. Houghton, and G. Kuo, Lancet, in press) and generated protective immunity in chimpanzees (Q.-L. Choo, G. Kuo, R. Ralston, A. Weiner, D. Chien, G. Van Nest, J. Han, K. Berger, K. Thudium, J. Kansopon, J. McFarland, A. Tabrizi, K. Ching, B. Mass, L. B. Cummins, E. Muchmore, and M. Houghton, submitted for publication), suggesting that these purified HCV envelope proteins display native HCV epitopes. PMID:8411378

  16. Single-particle characterization of oncolytic vaccinia virus by flow virometry.

    Science.gov (United States)

    Tang, Vera A; Renner, Tyler M; Varette, Oliver; Le Boeuf, Fabrice; Wang, Jiahu; Diallo, Jean-Simon; Bell, John C; Langlois, Marc-André

    2016-09-30

    Vaccinia virus (VV) is an oncolytic virus that is currently being evaluated as a promising cancer vaccine in several phase I, II and III clinical trials. Although several quality control tests are performed on each new batch of virus, these do not routinely include a systematic characterization of virus particle homogeneity, or relate the infectious titer to the total number of submicron sized particles (SSPs) present in the sample. SSPs are comprised of infectious virus and non-infectious viral particles, but also cell contaminants derived from the virus isolation procedures, such as cellular vesicles and debris. Here we have employed flow virometry (FV) analysis and sorting to isolate and characterize distinct SSP populations in therapeutic oncolytic VV preparations. We show that VV preparations contain SSPs heterogeneous in size and include large numbers of non-infectious VV particles. Furthermore, we used FV to illustrate how VV has a propensity to aggregate over time and under various handling and storage procedures. Accordingly, we find that together the infectious titer, the total number of SSPs, the number of viral genomes and the level of particle aggregation in a sample constitute useful parameters that greatly facilitate inter-sample assessment of physical quality, and also provides a means to monitor sample deterioration over time. Additionally, we have successfully employed FV sorting to further isolate virus from other particles by identifying a lipophilic dye that preferentially stains VV over other SSPs in the sample. Overall, we demonstrate that FV is a fast and effective tool that can be used to perform quality, and consistency control assessments of oncolytic VV vaccine preparations.

  17. Apoptosis and necrosis in vaccinia virus-infected HeLa G and BSC-40 cells.

    Science.gov (United States)

    Liskova, Jana; Knitlova, Jarmila; Honner, Richard; Melkova, Zora

    2011-09-01

    In most cells, vaccinia virus (VACV) infection is considered to cause a lytic cell death, an equivalent of necrosis. However, upon infection of the epithelial cell lines HeLa G and BSC-40 with VACV strain Western Reserve (WR), we have previously observed an increased activation of and activity attributable to caspases, a typical sign of apoptosis. In this paper, we have further analyzed the type of cell death in VACV-infected cells HeLa G and BSC-40. In a cell-based flow cytometric assay, we showed a specific activation of caspase-2 and 4 in HeLa G and BSC-40 cells infected with VACV, strain WR, while we did not find any effects of inhibitors of calpain and cathepsin D and E. The actual activity of the two caspases, but also of caspase-3, was then confirmed in lysates of infected HeLa G, but not in BSC-40 cells. Accordingly, poly(ADP)-ribose polymerase (PARP) cleavage was found increased only in infected HeLa G cells. Consequently, we have determined morphological features of apoptosis and/or activity of the executioner caspase-3 in infected HeLa G cells in situ, while only a background apoptosis was observed in infected BSC-40 cells. Finally, vaccination strains Dryvax and Praha were found to induce apoptosis in both HeLa G and BSC-40 cells, as characterized morphologically and by PARP cleavage. These findings may be important for understanding the differences in VACV-host interactions and post-vaccination complications in different individuals.

  18. Seven major genomic deletions of vaccinia virus Tiantan strain are sufficient to decrease pathogenicity.

    Science.gov (United States)

    Li, Yiquan; Sheng, Yuan; Chu, Yunjie; Ji, Huifan; Jiang, Shuang; Lan, Tian; Li, Min; Chen, Shuang; Fan, Yuanyuan; Li, Wenjie; Li, Xiao; Sun, Lili; Jin, Ningyi

    2016-05-01

    Attenuated strain TTVAC7, as a multi-gene-deleted vaccinia virus Tiantan strain (VTT), was constructed by knocking out parts of non-essential genes related to virulence, host range and immunomodulation of VTT, and by combining double marker screening with exogenous selectable marker knockout techniques. In this study, shuttle vector plasmids pTC-EGFP, pTA35-EGFP, pTA66-EGFP, pTE-EGFP, pTB-EGFP, pTI-EGFP and pTJ-EGFP were constructed, which contained seven pairs of recombinant arms linked to the early and late strong promoter pE/L, as well as to enhanced green fluorescent protein (EGFP) as an exogenous selectable marker. BHK cells were co-transfected/infected successively with the above plasmids and VTT or gene-deleted VTT, and homologous recombination and fluorescence plaque screening methods were used to knock out the gene fragments (TC: TC7L ∼ TK2L; TA35: TA35L; TA66: TA66R; TE: TE3L ∼ TE4L; TB: TB13R; TI: TI4L; TJ: TJ2R). The Cre/LoxP system was then applied to knock out the exogenous selectable marker, and ultimately the gene-deleted attenuated strain TTVAC7 was obtained. A series of in vivo and in vitro experiments demonstrated that not only the host range of TTVAC7 could be narrowed and its toxicity weakened significantly, but its high immunogenicity was maintained at the same time. These results support the potential of TTVAC7 to be developed as a safe viral vector or vaccine. PMID:26821204

  19. Complete nucleotide sequences of two adjacent early vaccinia virus genes located within the inverted terminal repetition.

    Science.gov (United States)

    Venkatesan, S; Gershowitz, A; Moss, B

    1982-11-01

    The proximal part of the 10,000-base pair (bp) inverted terminal repetition of vaccinia virus DNA encodes at least three early mRNAs. A 2,236-bp segment of the repetition was sequenced to characterize two of the genes. This task was facilitated by constructing a series of recombinants containing overlapping deletions; oligonucleotide linkers with synthetic restriction sites provided points for radioactive labeling before sequencing by the chemical degradation method of Maxam and Gilbert (Methods Enzymol. 65:499-560, 1980). The ends of the transcripts were mapped by hybridizing labeled DNA fragments to early viral RNA and resolving nuclease S1-protected fragments in sequencing gels, by sequencing cDNA clones, and from the lengths of the RNAs. The nucleotide sequences for at least 60 bp upstream of both transcriptional initiation sites are more than 80% adenine . thymine rich and contain long runs of adenines and thymines with some homology to procaryotic and eucaryotic consensus sequences. The gene transcribed in the rightward direction encodes an RNA of approximately 530 nucleotides with a single open reading frame of 420 nucleotides. Preceding the first AUG, there is a heptanucleotide that can hybridize to the 3' end of 18S rRNA with only one mismatch. The derived amino acid sequence of the protein indicated a molecular weight of 15,500. The gene transcribed in the leftward direction encodes an RNA 1,000 to 1,100 nucleotides long with an open reading frame of 996 nucleotides and a leader sequence of only 5 to 6 nucleotides. The derived amino acid sequence of this protein indicated a molecular weight of 38,500. The 3' ends of the two transcripts were located within 100 bp of each other. Although there are adenine . thymine-rich clusters near the putative transcriptional termination sites, specific AATAAA polyadenylic acid signal sequences are absent.

  20. Role of the vaccinia virus O3 protein in cell entry can be fulfilled by its Sequence flexible transmembrane domain

    International Nuclear Information System (INIS)

    The vaccinia virus O3 protein, a component of the entry–fusion complex, is encoded by all chordopoxviruses. We constructed truncation mutants and demonstrated that the transmembrane domain, which comprises two-thirds of this 35 amino acid protein, is necessary and sufficient for interaction with the entry–fusion complex and function in cell entry. Nevertheless, neither single amino acid substitutions nor alanine scanning mutagenesis revealed essential amino acids within the transmembrane domain. Moreover, replication-competent mutant viruses were generated by randomization of 10 amino acids of the transmembrane domain. Of eight unique viruses, two contained only two amino acids in common with wild type and the remainder contained one or none within the randomized sequence. Although these mutant viruses formed normal size plaques, the entry–fusion complex did not co-purify with the mutant O3 proteins suggesting a less stable interaction. Thus, despite low specific sequence requirements, the transmembrane domain is sufficient for function in entry. - Highlights: • The 35 amino acid O3 protein is required for efficient vaccinia virus entry. • The transmembrane domain of O3 is necessary and sufficient for entry. • Mutagenesis demonstrated extreme sequence flexibility compatible with function

  1. Safety and biodistribution of a double-deleted oncolytic vaccinia virus encoding CD40 ligand in laboratory Beagles.

    Science.gov (United States)

    Autio, Karoliina; Knuuttila, Anna; Kipar, Anja; Pesonen, Sari; Guse, Kilian; Parviainen, Suvi; Rajamäki, Minna; Laitinen-Vapaavuori, Outi; Vähä-Koskela, Markus; Kanerva, Anna; Hemminki, Akseli

    2014-01-01

    We evaluated adverse events, biodistribution and shedding of oncolytic vaccinia virus encoding CD40 ligand in two Beagles, in preparation for a phase 1 trial in canine cancer patients. Dog 1 received one dose of vaccinia virus and was euthanized 24 hours afterwards, while dog 2 received virus four times once weekly and was euthanized 7 days after that. Dogs were monitored for adverse events and underwent a detailed postmortem examination. Blood, saliva, urine, feces, and organs were collected for virus detection. Dog 1 had mild fever and lethargy while dog 2 experienced a possible seizure 5.5 hours after first virus administration. Viral DNA declined quickly in the blood after virus administration in both dogs but was still detectable 1 week later by quantitative polymerase chain reaction. Only samples taken directly after virus infusion contained infectious virus. Small amounts of viral DNA, but no infectious virus, were detected in a few saliva and urine samples. Necropsies did not reveal any relevant pathological changes and virus DNA was detected mainly in the spleen. The dogs in the study did not have cancer, and thus adverse events could be more common and viral load higher in dogs with tumors which allow viral amplification. PMID:27119092

  2. A cancer-favoring oncolytic vaccinia virus shows enhanced suppression of stem-cell like colon cancer

    Science.gov (United States)

    Yoo, So Young; Bang, Seo Young; Jeong, Su-Nam; Kang, Dae Hwan; Heo, Jeong

    2016-01-01

    Stem cell-like colon cancer cells (SCCs) pose a major challenge in colon cancer treatment because of their resistance to chemotherapy and radiotherapy. Oncolytic virus-based therapy has shown promising results in uncured cancer patients; however, its effects on SCCs are not well studied yet. Here, we engineered a cancer-favoring oncolytic vaccinia virus (CVV) as a potent biotherapeutic and investigated its therapeutic efficacy in terms of killing SCCs. CVV is an evolved Wyeth strain vaccinia virus (EVV) lacking the viral thymidine kinase. SCC models were established using human or mouse colon cancer spheres, which continuously expressed stemness markers. The cancer-favoring characteristics and different cytotoxic pathways for killing cancer cells successfully overrode general drug resistance, thereby killing colon cancer cells regardless of the presence of SCCs. Subcutaneously injected HT29 spheres showed lower growth in CVV-treated models than in 5-Fu-treated models. Intraperitoneally injected CT26 spheres induced tumor masses in the abdominal region. CVV-treated groups showed higher survival rates and smaller tumor mass formation, compared to 5-Fu-treated groups. Interestingly, the combined treatment of CVV with 5-Fu showed improved survival rates and complete suppression of tumor mass. The CVV developed in this study, thus, effectively suppresses SCCs, which can be synergistically enhanced by simultaneous treatment with the anticancer drug 5-Fu. Our novel CVV is highly advantageous as a next-generation therapeutic for treating colon cancer. PMID:26918725

  3. Local Production of Tumor Necrosis Factor Encoded by Recombinant Vaccinia Virus is Effective in Controlling Viral Replication in vivo

    Science.gov (United States)

    Sambhi, Sharan K.; Kohonen-Corish, Maija R. J.; Ramshaw, Ian A.

    1991-05-01

    Tumor necrosis factor (TNF) has pleiotropic effects on a wide variety of cell types. In vitro studies have demonstrated that TNF has antiviral properties and is induced in response to viral infections. However, a role for TNF in the antiviral immune response of the host has yet to be demonstrated. Here we describe the construction of and studies using a recombinant vaccinia virus that encodes the gene for murine TNF-α. By comparing the replication of and immune responses elicited by the TNF-encoding virus to a similarly constructed control virus, we hoped to observe immunobiological effects of TNF in the host. The in vivo experiments with this recombinant virus demonstrate that the localized production of TNF-α during a viral infection leads to the rapid and efficient clearance of the virus in normal mice and attenuates the otherwise lethal pathogenicity of the virus in immunodeficient animals. This attenuation occurs early in the infection (by postinfection hour 24) and is not due to the enhancement of cellular or antibody responses by the vaccinia virus-encoded TNF. This evidence suggests that attenuation of the recombinant virus is due to a direct antiviral effect of TNF on cells at the site of infection. Therefore, these results support the suggestion that TNF produced by immune cells may be an important effector mechanism of viral clearance in vivo.

  4. Safety and biodistribution of a double-deleted oncolytic vaccinia virus encoding CD40 ligand in laboratory Beagles.

    Science.gov (United States)

    Autio, Karoliina; Knuuttila, Anna; Kipar, Anja; Pesonen, Sari; Guse, Kilian; Parviainen, Suvi; Rajamäki, Minna; Laitinen-Vapaavuori, Outi; Vähä-Koskela, Markus; Kanerva, Anna; Hemminki, Akseli

    2014-01-01

    We evaluated adverse events, biodistribution and shedding of oncolytic vaccinia virus encoding CD40 ligand in two Beagles, in preparation for a phase 1 trial in canine cancer patients. Dog 1 received one dose of vaccinia virus and was euthanized 24 hours afterwards, while dog 2 received virus four times once weekly and was euthanized 7 days after that. Dogs were monitored for adverse events and underwent a detailed postmortem examination. Blood, saliva, urine, feces, and organs were collected for virus detection. Dog 1 had mild fever and lethargy while dog 2 experienced a possible seizure 5.5 hours after first virus administration. Viral DNA declined quickly in the blood after virus administration in both dogs but was still detectable 1 week later by quantitative polymerase chain reaction. Only samples taken directly after virus infusion contained infectious virus. Small amounts of viral DNA, but no infectious virus, were detected in a few saliva and urine samples. Necropsies did not reveal any relevant pathological changes and virus DNA was detected mainly in the spleen. The dogs in the study did not have cancer, and thus adverse events could be more common and viral load higher in dogs with tumors which allow viral amplification.

  5. High-affinity human leucocyte antigen class I binding variola-derived peptides induce CD4(+) T cell responses more than 30 years post-vaccinia virus vaccination

    DEFF Research Database (Denmark)

    Wang, M.; Tang, Sheila Tuyet; Lund, Ole;

    2009-01-01

    Interferon-gamma secreting T lymphocytes against pox virus-derived synthetic 9-mer peptides were tested by enzyme-linked immunospot in peripheral blood of individuals vaccinated with vaccinia virus more than 30 years ago. The peptides were characterized biochemically as high-affinity human...

  6. Biophysical analysis of bacterial and viral systems. A shock tube study of bio-aerosols and a correlated AFM/nanosims investigation of vaccinia virus

    Energy Technology Data Exchange (ETDEWEB)

    Gates, Sean Damien [Stanford Univ., CA (United States)

    2013-05-01

    The work presented herein is concerned with the development of biophysical methodology designed to address pertinent questions regarding the behavior and structure of select pathogenic agents. Two distinct studies are documented: a shock tube analysis of endospore-laden bio-aerosols and a correlated AFM/NanoSIMS study of the structure of vaccinia virus.

  7. Increased antibody responses to human papillomavirus type 16 L1 protein expressed by recombinant vaccinia virus lacking serine protease inhibitor genes.

    Science.gov (United States)

    Zhou, J; Crawford, L; McLean, L; Sun, X Y; Stanley, M; Almond, N; Smith, G L

    1990-09-01

    The L1 gene of human papillomavirus type 16 (HPV-16) driven by the vaccinia virus major late 4b gene promoter has been inserted into three different sites of the vaccinia virus genome. Insertion into the thymidine kinase (TK) gene was achieved by selection of TK- mutants in BUdR on TK- cells. Insertion into two vaccinia virus serine protease inhibitor (serpin) genes was achieved by co-insertion of the Escherichia coli xanthine guanine phosphoribosyltransferase gene linked to the vaccinia virus 7.5K promoter and selection of mycophenolic acid-resistant recombinant viruses. Each recombinant virus expressed a 57K L1 protein at similar levels and with similar kinetics. However, immunization of mice with these recombinant viruses induced different levels of antibody to the L1 protein. Viruses lacking serpin genes B13R and B24R induced significantly higher antibody levels than did viruses lacking the TK gene. The presence of functional B13R and B24R gene products is therefore somehow immunosuppressive at least for antibody responses to the L1 protein of HPV-16.

  8. Live-vaccinia virus encapsulation in pH-sensitive polymer increases safety of a reservoir-targeted Lyme disease vaccine by targeting gastrointestinal release.

    Science.gov (United States)

    Kern, Aurelie; Zhou, Chensheng W; Jia, Feng; Xu, Qiaobing; Hu, Linden T

    2016-08-31

    The incidence of Lyme disease has continued to rise despite attempts to control its spread. Vaccination of zoonotic reservoirs of human pathogens has been successfully used to decrease the incidence of rabies in raccoons and foxes. We have previously reported on the efficacy of a vaccinia virus vectored vaccine to reduce carriage of Borrelia burgdorferi in reservoir mice and ticks. One potential drawback to vaccinia virus vectored vaccines is the risk of accidental infection of humans. To reduce this risk, we developed a process to encapsulate vaccinia virus with a pH-sensitive polymer that inactivates the virus until it is ingested and dissolved by stomach acids. We demonstrate that the vaccine is inactive both in vitro and in vivo until it is released from the polymer. Once released from the polymer by contact with an acidic pH solution, the virus regains infectivity. Vaccination with coated vaccinia virus confers protection against B. burgdorferi infection and reduction in acquisition of the pathogen by naïve feeding ticks. PMID:27502570

  9. The Integration of Epistasis Network and Functional Interactions in a GWAS Implicates RXR Pathway Genes in the Immune Response to Smallpox Vaccine

    Science.gov (United States)

    McKinney, Brett A.; Lareau, Caleb; Oberg, Ann L.; Kennedy, Richard B.; Ovsyannikova, Inna G.; Poland, Gregory A.

    2016-01-01

    Although many diseases and traits show large heritability, few genetic variants have been found to strongly separate phenotype groups by genotype. Complex regulatory networks of variants and expression of multiple genes lead to small individual-variant effects and difficulty replicating the effect of any single variant in an affected pathway. Interaction network modeling of GWAS identifies effects ignored by univariate models, but population differences may still cause specific genes to not replicate. Integrative network models may help detect indirect effects of variants in the underlying biological pathway. In this study, we used gene-level functional interaction information from the Integrative Multi-species Prediction (IMP) tool to reveal important genes associated with a complex phenotype through evidence from epistasis networks and pathway enrichment. We test this method for augmenting variant-based network analyses with functional interactions by applying it to a smallpox vaccine immune response GWAS. The integrative analysis spotlights the role of genes related to retinoid X receptor alpha (RXRA), which has been implicated in a previous epistasis network analysis of smallpox vaccine. PMID:27513748

  10. A36-dependent actin filament nucleation promotes release of vaccinia virus.

    Directory of Open Access Journals (Sweden)

    Jacquelyn Horsington

    2013-03-01

    Full Text Available Cell-to-cell transmission of vaccinia virus can be mediated by enveloped virions that remain attached to the outer surface of the cell or those released into the medium. During egress, the outer membrane of the double-enveloped virus fuses with the plasma membrane leaving extracellular virus attached to the cell surface via viral envelope proteins. Here we report that F-actin nucleation by the viral protein A36 promotes the disengagement of virus attachment and release of enveloped virus. Cells infected with the A36(YdF virus, which has mutations at two critical tyrosine residues abrogating localised actin nucleation, displayed a 10-fold reduction in virus release. We examined A36(YdF infected cells by transmission electron microscopy and observed that during release, virus appeared trapped in small invaginations at the plasma membrane. To further characterise the mechanism by which actin nucleation drives the dissociation of enveloped virus from the cell surface, we examined recombinant viruses by super-resolution microscopy. Fluorescently-tagged A36 was visualised at sub-viral resolution to image cell-virus attachment in mutant and parental backgrounds. We confirmed that A36(YdF extracellular virus remained closely associated to the plasma membrane in small membrane pits. Virus-induced actin nucleation reduced the extent of association, thereby promoting the untethering of virus from the cell surface. Virus release can be enhanced via a point mutation in the luminal region of B5 (P189S, another virus envelope protein. We found that the B5(P189S mutation led to reduced contact between extracellular virus and the host membrane during release, even in the absence of virus-induced actin nucleation. Our results posit that during release virus is tightly tethered to the host cell through interactions mediated by viral envelope proteins. Untethering of virus into the surrounding extracellular space requires these interactions be relieved, either

  11. Nucleotide sequence of XhoI O fragment of ectromelia virus DNA reveals significant differences from vaccinia virus.

    Science.gov (United States)

    Senkevich, T G; Muravnik, G L; Pozdnyakov, S G; Chizhikov, V E; Ryazankina, O I; Shchelkunov, S N; Koonin, E V; Chernos, V I

    1993-10-01

    The nucleotide sequence of the 3913 base pair XhoI O fragment located in an evolutionary variable region adjacent to the right end of the genome of ectromelia virus (EMV) was determined. The sequence contains two long open reading frames coding for putative proteins of 559 amino acid residues (p65) and 344 amino acid residues (p39). Amino acid database searches showed that p39 is closely related to vaccinia virus (VV), strain WR, B22R gene product (C12L gene product of strain Copenhagen), which belongs to the family of serine protease inhibitors (serpins). Despite the overall high conservation, differences were observed in the sequences of p39, B22R, and C12L in the site known to interact with proteases in other serpins, suggesting that the serpins of EMV and two strains of VV may all inhibit proteases with different specificities. The gene coding for the ortholog of p65 is lacking in the Copenhagen strain of vaccinia virus; the WR strain contains a truncated variant of this gene (B21R) potentially coding for a small protein (p16) corresponding to the C-terminal region of p65. p65 is a new member of the family of poxvirus proteins including vaccinia virus proteins A55R, C2L and F3L, and a group of related proteins of leporipoxviruses, Shope fibroma and myxoma viruses (T6, T8, T9, M9). These proteins are homologous to the Drosophila protein Kelch involved in egg development. Both Kelch protein and the related poxvirus proteins contain two distinct domains. The N-terminal domain is related to the similarly located domains of transcription factors Ttk, Br-C (Drosophila), and KUP (human), and GCL protein involved in early development in Drosophila. The C-terminal domain consists of an array of four to five imperfect repeats and is related to human placental protein MIPP. Phylogenetic analysis of the family of poxvirus proteins showed that their genes have undergone a complex succession of duplications, and complete or partial deletions.

  12. The epidemic of smallpox in Guangdong Province and its prevention and treatment in the Republican period%民国时期广东的天花流行与防治

    Institute of Scientific and Technical Information of China (English)

    陈丽楠; 刘玲娣

    2014-01-01

    民国时期,广东几乎每年都有天花疫情发生.为了应对传染病,广东省建立了卫生行政及传染病防治机构,并自制牛痘疫苗;相关机构按周、月、年对疫情进行统计,并定期上报,以了解疫情进展.同时,还成立了传染病医院收容天花患者.港口检疫则将天花列为重点检查对象.为了推广牛痘接种,政府与社会合作,组织大规模的“种痘运动”,以儿童、学生和年轻人作为主要接种对象,并借助媒体积极宣传天花防治知识.%During the Republican period,the smallpox broke out in high frequency almost annually in Guangdong.In response to infectious diseases,the Guangdong government established the Health Administration and institutions for infectious disease's prevention and treatment,and prepared smallpox vaccine by themselves.In order to grasp the situation of the epidenmic,related institutions collected epidemic data weekly,monthly,and annually with the statistics reported regularly.Meanwhile,infectious diseasc hospital was established for smallpox patients.Harbor quarantine put smallpox as a key target of inspection.With the joint effort of the government and social organizations,massive "vaccination campaigns" was organized to promote vaccination,in which children,students and young people were the main subjects for inoculations.Prevention knowledge and anti-epidemic concept towards smallpox have been actively publicized and improved by media.

  13. Evaluation of radiation effects against C6 glioma in combination with vaccinia virus-p53 gene therapy

    Science.gov (United States)

    Gridley, D. S.; Andres, M. L.; Li, J.; Timiryasova, T.; Chen, B.; Fodor, I.; Nelson, G. A. (Principal Investigator)

    1998-01-01

    The primary objective of this study was to evaluate the antitumor effects of recombinant vaccinia virus-p53 (rVV-p53) in combination with radiation therapy against the C6 rat glioma, a p53 deficient tumor that is relatively radioresistant. VV-LIVP, the parental virus (Lister strain), was used as a control. Localized treatment of subcutaneous C6 tumors in athymic mice with either rVV-p53 or VV-LIVP together with tumor irradiation resulted in low tumor incidence and significantly slower tumor progression compared to the agents given as single modalities. Assays of blood and spleen indicated that immune system activation may account, at least partly, for the enhance tumor inhibition seen with combined treatment. No overt signs of treatment-related toxicity were noted.

  14. Unpolarized release of vaccinia virus and HIV antigen by colchicine treatment enhances intranasal HIV antigen expression and mucosal humoral responses.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available The induction of a strong mucosal immune response is essential to building successful HIV vaccines. Highly attenuated recombinant HIV vaccinia virus can be administered mucosally, but even high doses of immunization have been found unable to induce strong mucosal antibody responses. In order to solve this problem, we studied the interactions of recombinant HIV vaccinia virus Tiantan strain (rVTT-gagpol in mucosal epithelial cells (specifically Caco-2 cell layers and in BALB/c mice. We evaluated the impact of this virus on HIV antigen delivery and specific immune responses. The results demonstrated that rVTT-gagpol was able to infect Caco-2 cell layers and both the nasal and lung epithelia in BALB/c mice. The progeny viruses and expressed p24 were released mainly from apical surfaces. In BALB/c mice, the infection was limited to the respiratory system and was not observed in the blood. This showed that polarized distribution limited antigen delivery into the whole body and thus limited immune response. To see if this could be improved upon, we stimulated unpolarized budding of the virus and HIV antigens by treating both Caco-2 cells and BALB/c mice with colchicine. We found that, in BALB/c mice, the degree of infection and antigen expression in the epithelia went up. As a result, specific immune responses increased correspondingly. Together, these data suggest that polarized budding limits antigen delivery and immune responses, but unpolarized distribution can increase antigen expression and delivery and thus enhance specific immune responses. This conclusion can be used to optimize mucosal HIV vaccine strategies.

  15. Production of HIV-1 gp120 in packed-bed bioreactor using the vaccinia virus/T7 expression system.

    Science.gov (United States)

    Hu, Y C; Kaufman, J; Cho, M W; Golding, H; Shiloach, J

    2000-01-01

    The HeLa cell-vaccinia virus system is an attractive method for producing recombinant mammalian proteins with proper post-translation modifications. This approach is especially important for the production of HIV-1 envelope glycoprotein, gp120, since more than half of its total mass is due to carbohydrates. A recombinant vaccinia virus/T7 RNA polymerase expression system was developed to express and produce large amounts of gp120 tagged with six histidine residues. In this system, the expressed T7 RNA polymerase from one virus drives the transcription of the gp120 encoded in the second virus. During the process development phase, the following parameters were studied: infection time, infection duration, multiplicity of infection, ratio of the two viruses, medium composition, and medium replacement strategy during the infection phase. The chosen production method was based on using the packed-bed bioreactor. The HeLa cells were immobilized on fibrous disks (Fibra-Cel) packed in an internal basket positioned in a vertically mixed bioreactor (Celligen Plus), and 25 g of carriers were packed in a 1.6-L (working volume) reactor. The process included a growth stage followed by a production stage. In the growth stage, the bed was perfused with a serum-containing medium, allowing the cells to grow to saturation, and in the production stage, done using serum-free medium, the cells were infected with the two recombinant viruses. The expressed protein was secreted, collected from the culture fluid, and purified. The specific production was found to be between 2 and 3 microg of protein/10(6) cells, and the volumetric production was around 10 mg/50 g carriers. PMID:11027165

  16. Induction of antibody responses to African horse sickness virus (AHSV in ponies after vaccination with recombinant modified vaccinia Ankara (MVA.

    Directory of Open Access Journals (Sweden)

    Rachael Chiam

    Full Text Available BACKGROUND: African horse sickness virus (AHSV causes a non-contagious, infectious disease in equids, with mortality rates that can exceed 90% in susceptible horse populations. AHSV vaccines play a crucial role in the control of the disease; however, there are concerns over the use of polyvalent live attenuated vaccines particularly in areas where AHSV is not endemic. Therefore, it is important to consider alternative approaches for AHSV vaccine development. We have carried out a pilot study to investigate the ability of recombinant modified vaccinia Ankara (MVA vaccines expressing VP2, VP7 or NS3 genes of AHSV to stimulate immune responses against AHSV antigens in the horse. METHODOLOGY/PRINCIPAL FINDINGS: VP2, VP7 and NS3 genes from AHSV-4/Madrid87 were cloned into the vaccinia transfer vector pSC11 and recombinant MVA viruses generated. Antigen expression or transcription of the AHSV genes from cells infected with the recombinant viruses was confirmed. Pairs of ponies were vaccinated with MVAVP2, MVAVP7 or MVANS3 and both MVA vector and AHSV antigen-specific antibody responses were analysed. Vaccination with MVAVP2 induced a strong AHSV neutralising antibody response (VN titre up to a value of 2. MVAVP7 also induced AHSV antigen-specific responses, detected by western blotting. NS3 specific antibody responses were not detected. CONCLUSIONS: This pilot study demonstrates the immunogenicity of recombinant MVA vectored AHSV vaccines, in particular MVAVP2, and indicates that further work to investigate whether these vaccines would confer protection from lethal AHSV challenge in the horse is justifiable.

  17. A human multi-epitope recombinant vaccinia virus as a universal T cell vaccine candidate against influenza virus.

    Directory of Open Access Journals (Sweden)

    Alan G Goodman

    Full Text Available There is a need to develop a universal vaccine against influenza virus infection to avoid developing new formulations of a seasonal vaccine each year. Many of the vaccine strategies for a universal vaccine target strain-conserved influenza virus proteins, such as the matrix, polymerase, and nucleoproteins, rather than the surface hemagglutinin and neuraminidase proteins. In addition, non-disease-causing viral vectors are a popular choice as a delivery system for the influenza virus antigens. As a proof-of-concept, we have designed a novel influenza virus immunogen based on the NP backbone containing human T cell epitopes for M1, NS1, NP, PB1 and PA proteins (referred as NPmix as well as a construct containing the conserved regions of influenza virus neuraminidase (N-terminal and hemagglutinin (C-terminal (referred as NA-HA. DNA vectors and vaccinia virus recombinants expressing NPmix (WR-NP or both NPmix plus NA-HA (WR-flu in the cytosol were tested in a heterologous DNA-prime/vaccinia virus-boost vaccine regimen in mice. We observed an increase in the number of influenza virus-specific IFNγ-secreting splenocytes, composed of populations marked by CD4(+ and CD8(+ T cells producing IFNγ or TNFα. Upon challenge with influenza virus, the vaccinated mice exhibited decreased viral load in the lungs and a delay in mortality. These findings suggest that DNA prime/poxvirus boost with human multi-epitope recombinant influenza virus proteins is a valid approach for a general T-cell vaccine to protect against influenza virus infection.

  18. Expanding the repertoire of Modified Vaccinia Ankara-based vaccine vectors via genetic complementation strategies.

    Directory of Open Access Journals (Sweden)

    David A Garber

    Full Text Available BACKGROUND: Modified Vaccinia virus Ankara (MVA is a safe, highly attenuated orthopoxvirus that is being developed as a recombinant vaccine vector for immunization against a number of infectious diseases and cancers. However, the expression by MVA vectors of large numbers of poxvirus antigens, which display immunodominance over vectored antigens-of-interest for the priming of T cell responses, and the induction of vector-neutralizing antibodies, which curtail the efficacy of subsequent booster immunizations, remain as significant impediments to the overall utility of such vaccines. Thus, genetic approaches that enable the derivation of MVA vectors that are antigenically less complex may allow for rational improvement of MVA-based vaccines. PRINCIPAL FINDINGS: We have developed a genetic complementation system that enables the deletion of essential viral genes from the MVA genome, thereby allowing us to generate MVA vaccine vectors that are antigenically less complex. Using this system, we deleted the essential uracil-DNA-glycosylase (udg gene from MVA and propagated this otherwise replication-defective variant on a complementing cell line that constitutively expresses the poxvirus udg gene and that was derived from a newly identified continuous cell line that is permissive for growth of wild type MVA. The resulting virus, MVADeltaudg, does not replicate its DNA genome or express late viral gene products during infection of non-complementing cells in culture. As proof-of-concept for immunological 'focusing', we demonstrate that immunization of mice with MVADeltaudg elicits CD8+ T cell responses that are directed against a restricted repertoire of vector antigens, as compared to immunization with parental MVA. Immunization of rhesus macaques with MVADeltaudg-gag, a udg(- recombinant virus that expresses an HIV subtype-B consensus gag transgene, elicited significantly higher frequencies of Gag-specific CD8 and CD4 T cells following both primary (2

  19. Regression of Human Prostate Tumors and Metastases in Nude Mice following Treatment with the Recombinant Oncolytic Vaccinia Virus GLV-1h68

    Directory of Open Access Journals (Sweden)

    Ivaylo Gentschev

    2010-01-01

    Full Text Available Virotherapy using oncolytic vaccinia virus strains is one of the most promising new strategies for cancer therapy. In the current study, we analyzed the therapeutic efficacy of the oncolytic vaccinia virus GLV-1h68 against two human prostate cancer cell lines DU-145 and PC-3 in cell culture and in tumor xenograft models. By viral proliferation assays and cell survival tests, we demonstrated that GLV-1h68 was able to infect, replicate in, and lyse these prostate cancer cells in culture. In DU-145 and PC-3 tumor xenograft models, a single intravenous injection with GLV-1h68 resulted in a significant reduction of primary tumor size. In addition, the GLV-1h68-infection led to strong inflammatory and oncolytic effects resulting in drastic reduction of regional lymph nodes with PC-3 metastases. Our data documented that the GLV-1h68 virus has a great potential for treatment of human prostate carcinoma.

  20. Hospital recruitment for the Smallpox Pre-Event Vaccination Program: experiences from Florida, Nebraska, New Jersey, and Tennessee, December 2002-June 2003.

    Science.gov (United States)

    Ching, Pamela; Tynan, William P; Raymond, Dick; Bresnitz, Eddy; Craig, Allen S

    2004-01-01

    The Smallpox Pre-Event Vaccination Program (SPVP) for public health and hospital-based health care workers began on January 24, 2003. This report summarizes efforts made by health officials in Florida, Nebraska, New Jersey, and Tennessee to facilitate the voluntary participation of acute care hospitals in the SPVP. Seven common characteristics contributed to the success of programs in these four states: (1) early planning, building on existing competencies, and state government support, (2) carrying the program forward on a planned timeline with experienced vaccination staff, (3) use of multifaceted training activities, (4) use of mock scenarios and field exercises to avoid early problems, (5) establishment and fostering of good relationships and lines of communication with stakeholders and the mass media, (6) addressing liability and workers' compensation concerns prior to initiation of the SPVP, and (7) attention to vaccination clinic logistics. PMID:15504446

  1. Smallpox Vaccine Overview

    Science.gov (United States)

    ... Del.icio.us Digg Facebook Google Bookmarks Technorati Yahoo MyWeb Updates Subscribe Listen Page last reviewed February ... Del.icio.us Digg Facebook Google Bookmarks Technorati Yahoo MyWeb Download page Subscribe to RSS View page ...

  2. Smallpox Disease Images

    Science.gov (United States)

    ... Del.icio.us Digg Facebook Google Bookmarks Technorati Yahoo MyWeb Updates Subscribe Listen Content source: National Center ... Del.icio.us Digg Facebook Google Bookmarks Technorati Yahoo MyWeb Subscribe to RSS Get email updates To ...

  3. Smallpox Disease Overview

    Science.gov (United States)

    ... Del.icio.us Digg Facebook Google Bookmarks Technorati Yahoo MyWeb Updates Subscribe Listen Page last reviewed: February ... Del.icio.us Digg Facebook Google Bookmarks Technorati Yahoo MyWeb Download page Subscribe to RSS View page ...

  4. Investigation of Interaction of Vaccinia Virus Complement Control Protein and Curcumin with Complement Components C3 and C3b Using Quartz Crystal Microbalance with Dissipation Monitoring Technology

    OpenAIRE

    Kulkarni, Amod P.; Randall, Philippa J.; Murthy, Krishna; Kellaway, Lauriston A; Kotwal, Girish J.

    2010-01-01

    C3 and C3b, the components central to the complement activation, also play a damaging role in several inflammatory disorders. Vaccinia virus complement control protein (VCP) and curcumin (Cur) are natural compounds with different biological origins reported to regulate complement activation. However, both VCP and Cur have not been investigated for their interaction with the third component (C3) prior to it being converted to its activated form (C3b). These two compounds have also not been com...

  5. Suitability of vaccinia virus and bovine viral diarrhea virus (BVDV for determining activities of three commonly-used alcohol-based hand rubs against enveloped viruses

    Directory of Open Access Journals (Sweden)

    Steinmann Jochen

    2007-02-01

    Full Text Available Abstract Background A procedure for including activity against enveloped viruses in the post-contamination treatment of hands has been recommended, but so far no European standard is available to implement it. In 2004, the German Robert Koch-Institute (RKI and the German Association for the Control of Virus Disease (DVV suggested that vaccinia virus and bovine viral diarrhea virus (BVDV should be used as test viruses in a quantitative suspension test to determine the activity of a disinfectant against all enveloped viruses. Methods We have studied the activities of three commonly-used alcohol-based hand rubs (hand rub A, based on 45% propan-2-ol, 30% propan-1-ol and 0.2% mecetronium etilsulfate; hand rub B, based on 80% ethanol; hand rub C, based on 95% ethanol against vaccinia virus and BVDV, and in addition against four other clinically relevant enveloped viruses: herpes simplex virus (HSV types 1 and 2, and human and avian influenza A virus. The hand rubs were challenged with different organic loads at exposure time of 15, 30 and 60 s. According to the guidelines of both BGA/RKI and DVV, and EN 14476:2005, the reduction of infectivity of each test virus was measured on appropriate cell lines using a quantitative suspension test. Results All three alcohol-based hand rubs reduced the infectivity of vaccinia virus and BVDV by ≥ 4 log10-steps within 15 s, irrespective of the type of organic load. Similar reductions of infectivity were seen against the other four enveloped viruses within 15 s in the presence of different types of organic load. Conclusion Commonly used alcohol-based hand rubs with a total alcohol concentration ≥ 75% can be assumed to be active against clinically relevant enveloped viruses if they effectively reduce the infectivities of vaccinia virus and BVDV in a quantitative suspension test.

  6. Adjuvant-like Effect of Vaccinia Virus 14K Protein: A Case Study with Malaria Vaccine Based on the Circumsporozoite Protein

    Science.gov (United States)

    Vijayan, Aneesh; Gómez, Carmen E.; Espinosa, Diego A.; Goodman, Alan G.; Sanchez-Sampedro, Lucas; Sorzano, Carlos Oscar S.; Zavala, Fidel; Esteban, Mariano

    2014-01-01

    Development of subunit vaccines for malaria that elicit a strong, long-term memory response is an intensive area of research, with the focus on improving the immunogenicity of a circumsporozoite (CS) protein-based vaccine. In this study, we found that a chimeric protein, formed by fusing vaccinia virus protein 14K (A27) to the CS of Plasmodium yoelii, induces strong effector memory CD8+ T cell responses in addition to high-affinity Abs when used as a priming agent in the absence of any adjuvant, followed by an attenuated vaccinia virus boost expressing CS in murine models. Moreover, priming with the chimeric protein improved the magnitude and polyfunctionality of cytokine-secreting CD8+ T cells. This fusion protein formed oligomers/aggregates that led to activation of STAT-1 and IFN regulatory factor-3 in human macrophages, indicating a type I IFN response, resulting in NO, IL-12, and IL-6 induction. Furthermore, this vaccination regimen inhibited the liver stage development of the parasite, resulting in sterile protection. In summary, we propose a novel approach in designing CS based pre-erythrocytic vaccines against Plasmodium using the adjuvant-like effect of the immunogenic vaccinia virus protein 14K. PMID:22615208

  7. Recombinant Vaccinia Virus is an Effective and Non—perturbing Vector for Human Dendritic Cells Transfected with Epstein—Barr Virus Latent Membrane Protein 2A

    Institute of Scientific and Technical Information of China (English)

    许继军; 姚Kun; 等

    2002-01-01

    Objective To study the effects of dendritic cells(DC) transfected with recombinant vaccinia virus encoding Epstein-Barr virus(EBV) latent membrane protein 2A(LMP2A) gene,and to provide evidence for further investigation on the therapeutic uaccines against EBV-associated malignancies.Methods Mature DC were transfected with EVB-LMP2A recombinant vaccinia virus(rVV-LMP2A).Before and after the transfection,the expression of surface antigens on mature DC including CD1a,CD83,CD40,CD80,HLA-DR was measured by fluorescence activated cell sorter(FACS) and the function of DC to stimulate allogeneic T cells proliferation was measured by mixed leukocyte reactions(MLR).Results LMP2A protein was highly expressed (66.1%) in DC after the transfection of rVV-LMP2A.No significant changes in the primary surface antigens expression and in the MLR were detected during the transfection.Transfected DC still had strong potential in stimulating the proliferation of allogeneic T cells.Conclusion Recombinant vaccinia virus was an effective and non-perturbing vector to mediate the transfection of LMP2A into DC.The functions of mature DC were not affected significantly by the transfection of Vac-LMP2A.This study could provide evidence for the further immunotherapy of EBV-associated malignancies,e.g.nasopharyngeal carcinoma(NPC).

  8. Recombinant Vaccinia Virus is an Effective and Non-perturbing Vector for Human Dendritic Cells Transfected with Epstein-Barr Virus Latent Membrane Protein 2A

    Institute of Scientific and Technical Information of China (English)

    许继军; 姚堃; 彭光勇; 谢芳艺; 丁传林; 朱建中; 秦健

    2002-01-01

    ObjectiveTo study the effects of dendritic cells (DC) transfected with recombinant vaccinia virus encoding Epstein-Barr virus (EBV) latent membrane protein 2A(LMP2A) gene,and to provide evidence for further investigation on the therapeutic vaccines against EBV-associated malignancies.MethodsMature DC were transfected with EBV-LMP2A recombinant vaccinia virus (rVV-LMP2A).Before and after the transfection,the expression of surface antigens on mature DC including CD1a,CD83,CD40,CD80,HLA-DR was measured by fluorescence activated cell sorter (FACS) and the function of DC to stimulate allogeneic T cells proliferation was measured by mixed leukocyte reactions (MLR).ResultsLMP2A protein was highly expressed (66.1%) in DC after the transfection of rVV-LMP2A.No significant changes in the primary surface antigens expression and in the MLR were detected during the transfection.Transfected DC still had strong potential in stimulating the proliferation of allogeneic T cells.ConclusionRecombinant vaccinia virus was an effective and non-perturbing vector to mediate the transfection of LMP2A into DC.The functions of mature DC were not affected significantly by the transfection of Vac-LMP2A.This study could provide evidence for the further immunotherapy of EBV-associated malignancies,e.g.nasopharyngeal carcinoma (NPC).``

  9. Immunogenicity of Attenuated Vaccinia Virus Guang 9 Strain%痘苗病毒弱毒株广9株的免疫原性分析

    Institute of Scientific and Technical Information of China (English)

    朱蓉; 黄维金; 王佑春; 俞永新

    2011-01-01

    目的 分析痘苗病毒弱毒株广9株(Vaccinia virus Guang 9 strain,VG9)对BALB/c小鼠的免疫原性.方法 用鸡胚成纤维细胞培养痘苗病毒VG9株和天坛株(Vaccinia virus Tian Tan strain,VTT),离心纯化病毒,经小鼠背部皮内免疫后,每周采血,共4次,采用ELISA法检测小鼠血清中抗痘苗病毒特异性抗体效价;中和试验检测免疫后3周和4周小鼠血清中和抗体效价.结果 两株痘苗病毒免疫后1周,小鼠血清中即产生抗痘苗病毒特异性抗体,效价均达1∶4050;至第3周,抗体效价上升至1∶12 150;第4周时,VG9株抗体效价维持在1∶12 150,而VTT株效价可达1:36 450.两株病毒诱导的中和抗体水平均在免疫后3周达峰值,且具有交叉中和作用,均对VTT株中和效果更好,VG9株诱导产生中和抗体的能力较VTT株略低.结论 痘苗病毒VG9株与VTT株一样,具有良好的免疫原性,皮内免疫均能刺激小鼠产生良好的抗痘菌病毒特异性抗体和中和抗体.%Objective To analyze the immunogenicity of attenuated vaccinia virus Guang 9 (VG9) strain. Methods VG9 and Vaccinia virus Tian Tan (VTT) strains were cultured in chick embryo fibroblasts (CEFs), purified by centrifugation and inoculated I.d. Into BALB /c mice. Serum samples were collected once a week for 4 times, and determined for specific antibody liter against vaccinia virus by ELJSA. The neutralizing antibody liters in sera 3 and 4 weeks after immunization were determined by neutralization test. Results Specific antibody liters against vaccinia virus in sera of mice were 1 : 4 050 one week after immunization with both the strains and increased to 1 : 12 150 on week 3. However, the antibody titers against VG9 and VTT strains on week 4 after immunization were 1 : 12 150 and 1 : 36 450 respectively. Both the neutralizing antibody levels induced by the two strains reached peak values 3 weeks after immunization, and cross neutralization was observed. The neutralizing effect on

  10. Attenuated recombinant vaccinia virus expressing oncofetal antigen (tumor-associated antigen) 5T4 induces active therapy of established tumors.

    Science.gov (United States)

    Mulryan, Kate; Ryan, Matthew G; Myers, Kevin A; Shaw, David; Wang, Who; Kingsman, Susan M; Stern, Peter L; Carroll, Miles W

    2002-10-01

    The human oncofetal antigen 5T4 (h5T4) is a transmembrane glycoprotein overexpressed by a wide spectrum of cancers, including colorectal, ovarian, and gastric, but with a limited normal tissue expression. Such properties make 5T4 an excellent putative target for cancer immunotherapy. The murine homologue of 5T4 (m5T4) has been cloned and characterized, which allows for the evaluation of immune intervention strategies in "self-antigen" in vivo tumor models. We have constructed recombinant vaccinia viruses based on the highly attenuated and modified vaccinia virus ankara (MVA strain), expressing h5T4 (MVA-h5T4), m5T4 (MVA-m5T4), and Escherichia coli LacZ (MVA-LacZ). Immunization of BALB/c and C57BL/6 mice with MVA-h5T4 and MVA-m5T4 constructs induced antibody responses to human and mouse 5T4, respectively. C57BL/6 and BALB/c mice vaccinated with MVA-h5T4 were challenged with syngeneic tumor line transfectants, B16 melanoma, and CT26 colorectal cells that express h5T4. MVA-h5T4-vaccinated mice showed significant tumor retardation compared with mice vaccinated with MVA-LacZ or PBS. In active treatment studies, inoculation with MVA-h5T4 was able to treat established CT26-h5T4 lung tumor and to a lesser extent B16.h5T4 s.c. tumors. Additionally, when C57BL/6 mice vaccinated with MVA-m5T4 were challenged with B16 cells expressing m5T4, resulting growth of the tumors was significantly retarded compared with control animals. Furthermore, mice vaccinated with MVA-m5T4 showed no signs of autoimmune toxicity. These data support the use of MVA-5T4 for tumor immunotherapy. PMID:12481437

  11. Systemic treatment of xenografts with vaccinia virus GLV-1h68 reveals the immunologic facet of oncolytic therapy

    Directory of Open Access Journals (Sweden)

    Liu Hui

    2009-07-01

    Full Text Available Abstract Background GLV-1h68 is an attenuated recombinant vaccinia virus (VACV that selectively colonizes established human xenografts inducing their complete regression. Results Here, we explored xenograft/VACV/host interactions in vivo adopting organism-specific expression arrays and tumor cell/VACV in vitro comparing VACV replication patterns. There were no clear-cut differences in vitro among responding and non-responding tumors, however, tumor rejection was associated in vivo with activation of interferon-stimulated genes (ISGs and innate immune host's effector functions (IEFs correlating with VACV colonization of the xenografts. These signatures precisely reproduce those observed in humans during immune-mediated tissue-specific destruction (TSD that causes tumor or allograft rejection, autoimmunity or clearance of pathogens. We recently defined these common pathways in the "immunologic constant of rejection" hypothesis (ICR. Conclusion This study provides the first prospective validation of a universal mechanism associated with TSD. Thus, xenograft infection by oncolytic VACV, beyond offering a promising therapy of established cancers, may represent a reliable pre-clinical model to test therapeutic strategies aimed at modulating the central pathways leading to TSD; this information may lead to the identification of principles that could refine the treatment of cancer and chronic infection by immune stimulation or autoimmunity and allograft rejection through immune tolerance.

  12. Recombinant modified vaccinia virus Ankara expressing glycoprotein E2 of Chikungunya virus protects AG129 mice against lethal challenge.

    Directory of Open Access Journals (Sweden)

    Petra van den Doel

    2014-09-01

    Full Text Available Chikungunya virus (CHIKV infection is characterized by rash, acute high fever, chills, headache, nausea, photophobia, vomiting, and severe polyarthralgia. There is evidence that arthralgia can persist for years and result in long-term discomfort. Neurologic disease with fatal outcome has been documented, although at low incidences. The CHIKV RNA genome encodes five structural proteins (C, E1, E2, E3 and 6K. The E1 spike protein drives the fusion process within the cytoplasm, while the E2 protein is believed to interact with cellular receptors and therefore most probably constitutes the target of neutralizing antibodies. We have constructed recombinant Modified Vaccinia Ankara (MVA expressing E3E2, 6KE1, or the entire CHIKV envelope polyprotein cassette E3E26KE1. MVA is an appropriate platform because of its demonstrated clinical safety and its suitability for expression of various heterologous proteins. After completing the immunization scheme, animals were challenged with CHIV-S27. Immunization of AG129 mice with MVAs expressing E2 or E3E26KE1 elicited neutralizing antibodies in all animals and provided 100% protection against lethal disease. In contrast, 75% of the animals immunized with 6KE1 were protected against lethal infection. In conclusion, MVA expressing the glycoprotein E2 of CHIKV represents as an immunogenic and effective candidate vaccine against CHIKV infections.

  13. Azathioprine inhibits vaccinia virus replication in both BSC-40 and RAG cell lines acting on different stages of virus cycle.

    Science.gov (United States)

    Damaso, Clarissa R A; Oliveira, Marcus F; Massarani, Susana M; Moussatché, Nissin

    2002-08-15

    In the present study we demonstrate that azathioprine (AZA) inhibits vaccinia virus (VV) replication in both BSC-40 and RAG cell lines, acting on different stages of virus cycle. In BSC-40 cells, early protein synthesis was not significantly affected, but late gene expression was severely impaired. In RAG cells all stages of gene expression were completed during synchronous infection in the presence of the drug. The onset of DNA replication was not affected in RAG cells, but a severe inhibition was observed in BSC-40 cells. Electron microscopic analysis of VV-infected RAG cells treated with AZA revealed brick-shaped particles presenting abnormal definition of the internal structure. Purified virions from AZA-treated RAG cells presented several modifications of the protein content, a lesser amount of DNA, and a lower PFU:particle ratio. Our results suggest that in VV-infected RAG cells AZA interfered with virus morphogenesis, whereas in BSC-40 cells the replicative cycle was inhibited at the DNA replication stage.

  14. Five of 12 forms of vaccinia virus-expressed human hepatic cytochrome P450 metabolically activate aflatoxin B1

    International Nuclear Information System (INIS)

    Twelve forms of human hepatic cytochrome P450 were expressed in hepatoma cells by means of recombinant vaccinia viruses. The expressed P450s were analyzed for their abilities to activate the potent hepatocarcinogen aflatoxin B1 to metabolites having mutagenic or DNA-binding properties. Five forms, P450s IA2, IIA3, IIB7, IIIA3, and IIIA4, activated aflatoxin B1 to mutagenic metabolites as assessed by the production of His revertants of Salmonella typhimurium in the Ames test. The same P450s catalyzed conversion of aflatoxin B1 to DNA-bound derivatives as judged by an in situ assay in which the radiolabeled carcinogen was incubated with cells expressing the individual P450 forms. Seven other human P450s, IIC8, IIC9, IID6, IIE1, IIF1, and IIIA5, and IVB1, did not significantly activate aflatoxin B1 as measured by both the Ames test and the DNA-binding assay. Moreover, polyclonal anti-rat liver P450 antibodies that crossreact with individual human P450s IA2, IIA3, IIIA3, and IIIA4 each inhibited aflatoxin B1 activation catalyzed by human liver S-9 extracts. Inhibition ranged from as low as 10% with antibody against IIA3 to as high as 65% with antibody against IIIA3 and IIIA4. These results establish that metabolic activation of aflatoxin B1 in human liver involves the contribution of multiple forms of P450

  15. Field use of a vaccinia-rabies recombinant vaccine for the control of sylvatic rabies in Europe and North America.

    Science.gov (United States)

    Brochier, B; Aubert, M F; Pastoret, P P; Masson, E; Schon, J; Lombard, M; Chappuis, G; Languet, B; Desmettre, P

    1996-09-01

    During recent years, most research on the control of sylvatic rabies has concentrated on developing methods of oral vaccination of wild rabies vectors. To improve both the safety and the stability of the vaccine used, a recombinant vaccinia virus, which expresses the immunising glycoprotein of rabies virus (VRG), has been developed and tested extensively in the laboratory as well as in the field. From 1989 to 1995, approximately 8.5 million VRG vaccine doses were dispersed in Western Europe to vaccinate red foxes (Vulpes vulpes), and in the United States of America (USA) to vaccinate raccoons (Procyon lotor) and coyotes (Canis latrans). In Europe, the use of VRG has led to the elimination of sylvatic rabies from large areas of land, which have consequently been freed from the need for vaccination. Nevertheless, despite very good examples of cross-border cooperation, reinfections have occurred in some regions, due to the difficulty of co-ordinating vaccination plans among neighbouring countries. In the USA, preliminary data from field trails indicate a significant reduction in the incidence of rabies in vaccinated areas. PMID:9025144

  16. Transcription and translation mapping of the 13 genes in the vaccinia virus HindIII D fragment.

    Science.gov (United States)

    Lee-Chen, G J; Niles, E G

    1988-03-01

    The vaccinia virus HindIII D fragment is 160,060 bp in length and encodes 13 complete open reading frames [Niles et al. (1986) Virology 153, 96-112; S. L. Weinrich and D. E. Hruby (1986). Nucleic Acids Res. 14, 3003-3016]. We have employed a two-step Northern hybridization protocol using single-stranded DNA probes from M13 recombinants in order to identify the mRNA products from the 13 genes. Six of these genes are expressed only at early times after infection; six are transcribed only at late times; one gene is expressed at both early and late times after virus infection. The D11 gene is transcribed into two late mRNA species, one full-length and the other derived from the 3' one-third of the coding sequence. Translation of hybrid-selected mRNA was carried out in an attempt to identify the protein products encoded by each mRNA. Protein products were found for each early gene but translation was successful for only two of the eight late mRNAs. With the completion of the physical map it is apparent that the early and late genes in the HindIII D fragment are arranged in order to minimize potential interference caused by the expression of closely packed viral genes.

  17. A genotype of modified vaccinia Ankara (MVA) that facilitates replication in suspension cultures in chemically defined medium.

    Science.gov (United States)

    Jordan, Ingo; Horn, Deborah; John, Katrin; Sandig, Volker

    2013-01-21

    While vectored vaccines, based on hyperattenuated viruses, may lead to new treatment options against infectious diseases and certain cancers, they are also complex products and sometimes difficult to provide in sufficient amount and purity. To facilitate vaccine programs utilizing host-restricted poxviruses, we established avian suspension cell lines (CR and CR.pIX) and developed a robust, chemically defined, culturing process for production of this class of vectors. For one prominent member, modified vaccinia Ankara (MVA), we now describe a new strain that appears to replicate to greater yields of infectious units, especially in the cell-free supernatant of cultures in chemically defined media. The new strain was obtained by repeated passaging in CR suspension cultures and, consistent with reports on the exceptional genetic stability of MVA, sequencing of 135 kb of the viral genomic DNA revealed that only three structural proteins (A3L, A9L and A34R) each carry a single amino acid exchange (H639Y, K75E and D86Y, respectively). Host restriction in a plaque-purified isolate of the new genotype appears to be maintained in cell culture. Processing towards an injectable vaccine preparation may be simplified with this strain as a complete lysate, containing the main burden of host cell contaminants, may not be required anymore to obtain adequate yields.

  18. An Alternative Method to Facilitate cDNA Cloning for Expression Studies in Mammalian Cells by Introducing Positive Blue White Selection in Vaccinia Topoisomerase I-Mediated Recombination.

    Directory of Open Access Journals (Sweden)

    Hiroshi Udo

    Full Text Available One of the most basic techniques in biomedical research is cDNA cloning for expression studies in mammalian cells. Vaccinia topoisomerase I-mediated cloning (TOPO cloning by Invitrogen allows fast and efficient recombination of PCR-amplified DNAs. Among TOPO vectors, a pcDNA3.1 directional cloning vector is particularly convenient, since it can be used for expression analysis immediately after cloning. However, I found that the cloning efficiency was reduced when RT-PCR products were used as inserts (about one-quarter. Since TOPO vectors accept any PCR products, contaminating fragments in the insert DNA create negative clones. Therefore, I designed a new mammalian expression vector enabling positive blue white selection in Vaccinia topoisomerase I-mediated cloning. The method utilized a short nontoxic LacZα peptide as a linker for GFP fusion. When cDNAs were properly inserted into the vector, minimal expression of the fusion proteins in E. coli (harboring lacZΔM15 resulted in formation of blue colonies on X-gal plates. This method improved both cloning efficiency (75% and directional cloning (99% by distinguishing some of the negative clones having non-cording sequences, since these inserts often disturbed translation of lacZα. Recombinant plasmids were directly applied to expression studies using GFP as a reporter. Utilization of the P2A peptide allowed for separate expression of GFP. In addition, the preparation of Vaccinia topoisomerase I-linked vectors was streamlined, which consisted of successive enzymatic reactions with a single precipitation step, completing in 3 hr. The arrangement of unique restriction sites enabled further modification of vector components for specific applications. This system provides an alternative method for cDNA cloning and expression in mammalian cells.

  19. Deletion of C7L and K1L genes leads to significantly decreased virulence of recombinant vaccinia virus TianTan.

    Science.gov (United States)

    Liu, Zheng; Wang, Shuhui; Zhang, Qicheng; Tian, Meijuan; Hou, Jue; Wang, Rongmin; Liu, Chang; Ji, Xu; Liu, Ying; Shao, Yiming

    2013-01-01

    The vaccinia virus TianTan (VTT) has been modified as an HIV vaccine vector in China and has shown excellent performance in immunogenicity and safety. However, its adverse effects in immunosuppressed individuals warrant the search for a safer vector in the following clinic trails. In this study, we deleted the C7L and K1L genes of VTT and constructed six recombinant vaccinia strains VTT△C7L, VTT△K1L, VTT△C7LK1L, VTKgpe△C7L, VTKgpe△K1L and VTT△C7LK1L-gag. The pathogenicity and immunogenicity of these recombinants were evaluated in mouse and rabbit models. Comparing to parental VTT, VTT△C7L and VTT△K1L showed significantly decreased replication capability in CEF, Vero, BHK-21 and HeLa cell lines. In particular, replication of VTT△C7LK1L decreased more than 10-fold in all four cell lines. The virulence of all these mutants were decreased in BALB/c mouse and rabbit models; VTT△C7LK1L once again showed the greatest attenuation, having resulted in no evident damage in mice and erythema of only 0.4 cm diameter in rabbits, compared to 1.48 cm for VTT. VTKgpe△C7L, VTKgpe△K1L and VTT△C7LK1L-gag elicited as strong cellular and humoral responses against HIV genes as did VTKgpe, while humoral immune response against the vaccinia itself was reduced by 4-8-fold. These data show that deletion of C7L and K1L genes leads to significantly decreased virulence without compromising animal host immunogenicity, and may thus be key to creating a more safe and effective HIV vaccine vector.

  20. Deletion of C7L and K1L genes leads to significantly decreased virulence of recombinant vaccinia virus TianTan.

    Directory of Open Access Journals (Sweden)

    Zheng Liu

    Full Text Available The vaccinia virus TianTan (VTT has been modified as an HIV vaccine vector in China and has shown excellent performance in immunogenicity and safety. However, its adverse effects in immunosuppressed individuals warrant the search for a safer vector in the following clinic trails. In this study, we deleted the C7L and K1L genes of VTT and constructed six recombinant vaccinia strains VTT△C7L, VTT△K1L, VTT△C7LK1L, VTKgpe△C7L, VTKgpe△K1L and VTT△C7LK1L-gag. The pathogenicity and immunogenicity of these recombinants were evaluated in mouse and rabbit models. Comparing to parental VTT, VTT△C7L and VTT△K1L showed significantly decreased replication capability in CEF, Vero, BHK-21 and HeLa cell lines. In particular, replication of VTT△C7LK1L decreased more than 10-fold in all four cell lines. The virulence of all these mutants were decreased in BALB/c mouse and rabbit models; VTT△C7LK1L once again showed the greatest attenuation, having resulted in no evident damage in mice and erythema of only 0.4 cm diameter in rabbits, compared to 1.48 cm for VTT. VTKgpe△C7L, VTKgpe△K1L and VTT△C7LK1L-gag elicited as strong cellular and humoral responses against HIV genes as did VTKgpe, while humoral immune response against the vaccinia itself was reduced by 4-8-fold. These data show that deletion of C7L and K1L genes leads to significantly decreased virulence without compromising animal host immunogenicity, and may thus be key to creating a more safe and effective HIV vaccine vector.

  1. Potent and Broadly Reactive HIV-2 Neutralizing Antibodies Elicited by a Vaccinia Virus Vector Prime-C2V3C3 Polypeptide Boost Immunization Strategy▿ †

    Science.gov (United States)

    Marcelino, José Maria; Borrego, Pedro; Rocha, Cheila; Barroso, Helena; Quintas, Alexandre; Novo, Carlos; Taveira, Nuno

    2010-01-01

    Human immunodeficiency virus type 2 (HIV-2) infection affects about 1 to 2 million individuals, the majority living in West Africa, Europe, and India. As for HIV-1, new strategies for the prevention of HIV-2 infection are needed. Our aim was to produce new vaccine immunogens that elicit the production of broadly reactive HIV-2 neutralizing antibodies (NAbs). Native and truncated envelope proteins from the reference HIV-2ALI isolate were expressed in vaccinia virus or in bacteria. This source isolate was used due to its unique phenotype combining CD4 independence and CCR5 usage. NAbs were not elicited in BALB/c mice by single immunization with a truncated and fully glycosylated envelope gp125 (gp125t) or a recombinant polypeptide comprising the C2, V3, and C3 envelope regions (rpC2-C3). A strong and broad NAb response was, however, elicited in mice primed with gp125t expressed in vaccinia virus and boosted with rpC2-C3. Serum from these animals potently neutralized (median 50% neutralizing titer, 3,200) six of six highly divergent primary HIV-2 isolates. Coreceptor usage and the V3 sequence of NAb-sensitive isolates were similar to that of the vaccinating immunogen (HIV-2ALI). In contrast, NAbs were not reactive on three X4 isolates that displayed major changes in V3 loop sequence and structure. Collectively, our findings demonstrate that broadly reactive HIV-2 NAbs can be elicited by using a vaccinia virus vector-prime/rpC2-C3-boost immunization strategy and suggest a potential relationship between escape to neutralization and cell tropism. PMID:20844029

  2. On the falsifications in history: Juan José Heydeck (n. 1755 and his «amazing» discovery of a vaccine against the smallpox

    Directory of Open Access Journals (Sweden)

    Olagüe de Ros, Guillermo

    2007-06-01

    Full Text Available Juan Jose Heydeck (b. 1755 is a turbid figure that in the last years he is acquiring certain historical relief. His false find of a vaccine has been overvalued, in excess, against the smallpox in goats of Madrid. In this note, which is a response to an article appeared in Asclepio in 2006, this personage is checked from an historical point of view and there is demonstrated the falsehood of his find, fruit of his excessive ambition.

    Juan José Heydeck (n. 1755 es una turbia figura que en los últimos años está adquiriendo cierto relieve historiográfico. Se ha sobrevalorado, en exceso, su falso hallazgo de una vacuna contra la
    viruela en cabras de Madrid. En esta nota, que es respuesta a un artículo aparecido en esta revista en 2006, se revisa historiográficamente a este personaje y se demuestra la falsedad de su hallazgo, fruto de su ambiciosa y desmedida ambición.

  3. An Alternative Method to Facilitate cDNA Cloning for Expression Studies in Mammalian Cells by Introducing Positive Blue White Selection in Vaccinia Topoisomerase I-Mediated Recombination

    OpenAIRE

    Udo, Hiroshi

    2015-01-01

    One of the most basic techniques in biomedical research is cDNA cloning for expression studies in mammalian cells. Vaccinia topoisomerase I-mediated cloning (TOPO cloning by Invitrogen) allows fast and efficient recombination of PCR-amplified DNAs. Among TOPO vectors, a pcDNA3.1 directional cloning vector is particularly convenient, since it can be used for expression analysis immediately after cloning. However, I found that the cloning efficiency was reduced when RT-PCR products were used as...

  4. A selective Seoul-Fluor-based bioprobe, SfBP, for vaccinia H1-related phosphatase--a dual-specific protein tyrosine phosphatase.

    Science.gov (United States)

    Jeong, Myeong Seon; Kim, Eunha; Kang, Hyo Jin; Choi, Eun Joung; Cho, Alvin R; Chung, Sang J; Park, Seung Bum

    2012-07-01

    We report a Seoul-Fluor-based bioprobe, SfBP, for selective monitoring of protein tyrosine phosphatases (PTPs). A rational design based on the structures at the active site of dual-specific PTPs can enable SfBP to selectively monitor the activity of these PTPs with a 93-fold change in brightness. Moreover, screening results of SfBP against 30 classical PTPs and 35 dual-specific PTPs show that it is selective toward vaccinia H1-related (VHR) phosphatase, a dual-specific PTP (DUSP-3).

  5. Protection of Mice from Fatal Measles Encephalitis by Vaccination with Vaccinia Virus Recombinants Encoding Either the Hemagglutinin or the Fusion Protein

    Science.gov (United States)

    Drillien, Robert; Spehner, Daniele; Kirn, Andre; Giraudon, Pascale; Buckland, Robin; Wild, Fabian; Lecocq, Jean-Pierre

    1988-02-01

    Vaccinia virus recombinants encoding the hemagglutinin or fusion protein of measles virus have been constructed. Infection of cell cultures with the recombinants led to the synthesis of authentic measles proteins as judged by their electrophoretic mobility, recognition by antibodies, glycosylation, proteolytic cleavage, and presentation on the cell surface. Mice vaccinated with a single dose of the recombinant encoding the hemagglutinin protein developed antibodies capable of both inhibiting hemagglutination activity and neutralizing measles virus, whereas animals vaccinated with the recombinant encoding the fusion protein developed measles neutralizing antibodies. Mice vaccinated with either of the recombinants resisted a normally lethal intracerebral inoculation of a cell-associated measles virus subacute sclerosing panencephalitis strain.

  6. Protection of rhesus monkeys from fatal Lassa fever by vaccination with a recombinant vaccinia virus containing the Lassa virus glycoprotein gene.

    OpenAIRE

    Fisher-Hoch, S P; McCormick, J. B.; Auperin, D; Brown, B G; Castor, M; Perez, G; Ruo, S; Conaty, A; Brammer, L.; S. Bauer

    1989-01-01

    Lassa fever is an acute febrile disease of West Africa, where there are as many as 300,000 infections a year and an estimated 3000 deaths. As control of the rodent host is impracticable at present, the best immediate prospect is vaccination. We tested as potential vaccines in rhesus monkeys a closely related virus, Mopeia virus (two monkeys), and a recombinant vaccinia virus containing the Lassa virus glycoprotein gene, V-LSGPC (four monkeys). Two monkeys vaccinated with the New York Board of...

  7. The detection of Vaccinia virus confirms the high circulation of Orthopoxvirus in buffaloes living in geographical isolation, Marajó Island, Brazilian Amazon.

    Science.gov (United States)

    Franco-Luiz, Ana Paula Moreira; Fagundes Pereira, Alexandre; de Oliveira, Cairo Henrique Sousa; Barbosa, José Diomedes; Oliveira, Danilo Bretas; Bonjardim, Cláudio Antônio; Ferreira, Paulo César Peregrino; de Souza Trindade, Giliane; Abrahão, Jônatas Santos; Kroon, Erna Geessien

    2016-06-01

    In Brazil, serologic evidence of Orthopoxvirus (OPV) circulation showed positivity around 20% in cattle, humans, monkeys and rodents. Although OPV seropositivity has been described in buffalo herds in southeastern Brazil, no Vaccinia virus (VACV) (member of genus OPV) outbreaks in buffalo herds have been described in this country. This study aimed to investigate the detection of anti-OPV antibodies and to study the OPV genome in Brazilian buffalo herds. Our results demonstrated a high OPV seropositivity in buffalo herds on Marajó Island and molecular data confirmed the circulation of VACV. The geographical isolation conditionmight be a sine qua non condition to explain our results. PMID:27260805

  8. Localization at high resolution of antibody-induced mobilization of vaccinia virus hemagglutinin and the major histocompatibility antigens on the plasma membrane of infected cells

    OpenAIRE

    1982-01-01

    We examined the consequence of simultaneous or independent binding of monospecific antibody to the hemagglutinin (HA) of vaccinia virus and the A-, B- and -determinants of HLA on HeLa or Raji cells or KkDk determinants of H-2 on L929 cells. The bound antibodies were marked by goat-anti-mouse (GAM) or goat-anti-rabbit (GAR) fluorochrome conjugates suitable for light microscopy and GAM or GAR gold conjugates, used in electron microscopy. Specificity and amount of antibody adsorbed was ascertain...

  9. Quantitative Analysis of MicroRNAs in Vaccinia virus Infection Reveals Diversity in Their Susceptibility to Modification and Suppression.

    Directory of Open Access Journals (Sweden)

    Amy H Buck

    Full Text Available Vaccinia virus (VACV is a large cytoplasmic DNA virus that causes dramatic alterations to many cellular pathways including microRNA biogenesis. The virus encodes a poly(A polymerase which was previously shown to add poly(A tails to the 3' end of cellular miRNAs, resulting in their degradation by 24 hours post infection (hpi. Here we used small RNA sequencing to quantify the impact of VACV infection on cellular miRNAs in human cells at both early (6 h and late (24 h times post infection. A detailed quantitative analysis of individual miRNAs revealed marked diversity in the extent of their modification and relative change in abundance during infection. Some miRNAs became highly modified (e.g. miR-29a-3p, miR-27b-3p whereas others appeared resistant (e.g. miR-16-5p. Furthermore, miRNAs that were highly tailed at 6 hpi were not necessarily among the most reduced at 24 hpi. These results suggest that intrinsic features of human cellular miRNAs cause them to be differentially polyadenylated and altered in abundance during VACV infection. We also demonstrate that intermediate and late VACV gene expression are required for optimal repression of some miRNAs including miR-27-3p. Overall this work reveals complex and varied consequences of VACV infection on host miRNAs and identifies miRNAs which are largely resistant to VACV-induced polyadenylation and are therefore present at functional levels during the initial stages of infection and replication.

  10. Immunological characterization of a modified vaccinia virus Ankara vector expressing the human papillomavirus 16 E1 protein.

    Science.gov (United States)

    Remy-Ziller, Christelle; Germain, Claire; Spindler, Anita; Hoffmann, Chantal; Silvestre, Nathalie; Rooke, Ronald; Bonnefoy, Jean-Yves; Préville, Xavier

    2014-02-01

    Women showing normal cytology but diagnosed with a persistent high-risk human papillomavirus (HR-HPV) infection have a higher risk of developing high-grade cervical intraepithelial neoplasia and cervical cancer than noninfected women. As no therapeutic management other than surveillance is offered to these women, there is a major challenge to develop novel targeted therapies dedicated to the treatment of these patients. As such, E1 and E2 antigens, expressed early in the HPV life cycle, represent very interesting candidates. Both proteins are necessary for maintaining coordinated viral replication and gene synthesis during the differentiation process of the epithelium and are essential for the virus to complete its normal and propagative replication cycle. In the present study, we evaluated a new active targeted immunotherapeutic, a modified vaccinia virus Ankara (MVA) vector containing the E1 sequence of HPV16, aimed at inducing cellular immune responses with the potential to help and clear persistent HPV16-related infection. We carried out an extensive comparative time course analysis of the cellular immune responses induced by different schedules of immunization in C57BL/6 mice. We showed that multiple injections of MVA-E1 allowed sustained HPV16 E1-specific cellular immune responses in vaccinated mice and had no impact on the exhaustion phenotype of the generated HPV16 E1-specific CD8⁺ T cells, but they led to the differentiation of multifunctional effector T cells with high cytotoxic capacity. This study provides proof of concept that an MVA expressing HPV16 E1 can induce robust and long-lasting E1-specific responses and warrants further development of this candidate. PMID:24307238

  11. A novel naturally occurring tandem promoter in modified vaccinia virus ankara drives very early gene expression and potent immune responses.

    Directory of Open Access Journals (Sweden)

    Sonia T Wennier

    Full Text Available Modified vaccinia virus Ankara (MVA has been shown to be suitable for the generation of experimental vaccines against cancer and infectious diseases, eliciting strong humoral and cellular immune responses. In viral vectored vaccines, strong recombinant antigen expression and timing of expression influence the quantity and quality of the immune response. Screening of synthetic and native poxvirus promoters for strong protein expression in vitro and potent immune responses in vivo led to the identification of the MVA13.5L promoter, a unique and novel naturally occurring tandem promoter in MVA composed of two 44 nucleotide long repeated motifs, each containing an early promoter element. The MVA13.5L gene is highly conserved across orthopoxviruses, yet its function is unknown. The unique structure of its promoter is not found for any other gene in the MVA genome and is also conserved in other orthopoxviruses. Comparison of the MVA13.5L promoter activity with synthetic poxviral promoters revealed that the MVA13.5L promoter produced higher levels of protein early during infection in HeLa cells and particularly in MDBK cells, a cell line in which MVA replication stops at an early stage before the expression of late genes. Finally, a recombinant antigen expressed under the control of this novel promoter induced high antibody titers and increased CD8 T cell responses in homologous prime-boost immunization compared to commonly used promoters. In particular, the recombinant antigen specific CD8 T cell responses dominated over the immunodominant B8R vector-specific responses after three vaccinations and even more during the memory phase. These results have identified the native MVA13.5L promoter as a new potent promoter for use in MVA vectored preventive and therapeutic vaccines.

  12. Biological properties of H5 hemagglutinin expressed by vaccinia virus vector and its immunological reactivity with human sera.

    Science.gov (United States)

    Noisumdaeng, Pirom; Pooruk, Phisanu; Kongchanagul, Alita; Assanasen, Susan; Kitphati, Rungrueng; Auewarakul, Prasert; Puthavathana, Pilaipan

    2013-02-01

    A recombinant vaccinia virus harboring the full length hemagglutinin (HA) gene derived from a highly pathogenic avian influenza A/Thailand/1(KAN-1)/2004 (H5N1) virus (rVac-H5 HA virus) was constructed. The immunogenicity of the expressed HA protein was characterized using goat antiserum, mouse monoclonal antibody, and human sera. The expressed HA protein localized both in the cytoplasm and on the cytoplasmic membrane of the thymidine kinase negative cells infected with the rVac-H5 HA virus, as determined by immunofluorescence assay. Western blot analysis demonstrated that the rVac-H5 HA protein was post-translationally processed by proteolytic cleavage of the HA0 precursor into HA1 and HA2 domains; and all of these HA forms were immunogenic in BALB/c mice. The molecular weight (MW) of each HA domain was the same as the wild-type H5 HA produced in Madin-Darby canine kidney cells infected with the H5N1 virus, but was higher than that expressed by a baculovirus-insect cell system. Sera from all H5N1 survivors reacted to HA0, HA1, and HA2 domains; whereas sera from H5N1-uninfected subjects reacted to the HA2 domain only, but not to HA0 or HA1, indicating that some cross-subtypic immunity exists in the general population. There was a lot-to-lot variation of the recombinant HA produced in the baculovirus-insect cell system that might affect the detection rate of antibody directed against certain HA domains. PMID:23374152

  13. The acidic C-terminus of vaccinia virus I3 single-strand binding protein promotes proper assembly of DNA-protein complexes.

    Science.gov (United States)

    Harrison, Melissa L; Desaulniers, Megan A; Noyce, Ryan S; Evans, David H

    2016-02-01

    The vaccinia virus I3L gene encodes a single-stranded DNA binding protein (SSB) that is essential for virus DNA replication and is conserved in all Chordopoxviruses. The I3 protein contains a negatively charged C-terminal tail that is a common feature of SSBs. Such acidic tails are critical for SSB-dependent replication, recombination and repair. We cloned and purified variants of the I3 protein, along with a homolog from molluscum contagiosum virus, and tested how the acidic tail affected DNA-protein interactions. Deleting the C terminus of I3 enhanced the affinity for single-stranded DNA cellulose and gel shift analyses showed that it also altered the migration of I3-DNA complexes in agarose gels. Microinjecting an antibody against I3 into vaccinia-infected cells also selectively inhibited virus replication. We suggest that this domain promotes cooperative binding of I3 to DNA in a way that would maintain an open DNA configuration around a replication site.

  14. The attenuation of vaccinia Tian Tan strain by the removal of the viral M1L-K2L genes.

    Science.gov (United States)

    Zhu, Weijun; Fang, Qing; Zhuang, Ke; Wang, Haibo; Yu, Wenbo; Zhou, Jingying; Liu, Li; Tien, Po; Zhang, Linqi; Chen, Zhiwei

    2007-09-01

    To generate a safe vaccinia Tian Tan (VTT)-based vaccine vector, it is necessary to develop a method to attenuate the virus. A modified VTT (MVTT(2-GFP)) was constructed by replacing the viral M1L-K2L genes with a GFP gene. In comparison to the parental VTT, MVTT(2-GFP) lost its replication capacity in rabbit RK13 and human HeLa cell lines. The life cycle of viral replication was blocked at different stages in these two cell lines as determined by electron microscope examination. MVTT(2-GFP) was less virulent than VTT for 100-fold by measuring mouse body weight loss after intranasal viral inoculation and for 340-fold by determining the intracranial LD(50) value in mice. The foreign GFP gene was stable genetically after 10 rounds of passage in Vero cells. Importantly, MVTT(2-GFP) elicited both humoral and cell-mediated immune responses to the GFP gene in mice. With two intramuscular inoculations of 10(5)PFU virus, the anti-GFP antibody reciprocal endpoint titer reached over 700 as determined by an ELISA. The number of IFN-gamma secreting T cells reached over 350SFU per million splenocytes against a CD8+ T cell-specific epitope of GFP. Collectively, the removal of the M1L-K2L genes is a useful method to generate an attenuated vaccinia Tian Tan vaccine vector.

  15. Protection of rhesus monkeys from fatal Lassa fever by vaccination with a recombinant vaccinia virus containing the Lassa virus glycoprotein gene.

    Science.gov (United States)

    Fisher-Hoch, S P; McCormick, J B; Auperin, D; Brown, B G; Castor, M; Perez, G; Ruo, S; Conaty, A; Brammer, L; Bauer, S

    1989-01-01

    Lassa fever is an acute febrile disease of West Africa, where there are as many as 300,000 infections a year and an estimated 3000 deaths. As control of the rodent host is impracticable at present, the best immediate prospect is vaccination. We tested as potential vaccines in rhesus monkeys a closely related virus, Mopeia virus (two monkeys), and a recombinant vaccinia virus containing the Lassa virus glycoprotein gene, V-LSGPC (four monkeys). Two monkeys vaccinated with the New York Board of Health strain of vaccinia virus as controls died after challenge with Lassa virus. The two monkeys vaccinated with Mopeia virus developed antibodies measurable by radioimmunoprecipitation prior to challenge, and they survived challenge by Lassa virus with minimal physical or physiologic disturbances. However, both showed a transient, low-titer Lassa viremia. Two of the four animals vaccinated with V-LSGPC had antibodies to both Lassa glycoproteins, as determined by radioimmunoprecipitation. All four animals survived a challenge of Lassa virus but experienced a transient febrile illness and moderate physiologic changes following challenge. Virus was recoverable from each of these animals, but at low titer and only during a brief period, as observed for the Mopeia-protected animals. We conclude that V-LSGPC can protect rhesus monkeys against death from Lassa fever. PMID:2911575

  16. Vacinação, varíola e uma cultura da imunização no Brasil Vaccination, smallpox, and a culture of immunization in Brazil

    Directory of Open Access Journals (Sweden)

    Gilberto Hochman

    2011-02-01

    Full Text Available O objetivo deste artigo é discutir a emergência e o estabelecimento de uma "cultura da imunização" no Brasil contemporâneo a partir da erradicação da varíola. Essa cultura está associada a um longo processo de introdução de vacinas, de campanhas de vacinação e de vacinação em massa empreendidas pelo Estado brasileiro desde o final do século XIX. Particular importância é atribuída à campanha de erradicação da varíola no Brasil (1966-1973. A experiência da vacinação em massa da população contra a varíola é contrastada com episódios de resistência como a "Revolta da Vacina", e considerada como crucial na configuração de novas políticas e novas compreensões sobre o papel da imunização na saúde pública e seu lugar na sociedade brasileira.The aim of this paper is to discuss the emergence and establishment of a "culture of immunization" in the contemporary Brazil from the eradication of smallpox. This culture is associated with a long process of introduction of vaccines, vaccination campaigns and mass vaccination undertaken by the Brazilian government since the late nineteenth century. Particular importance is attributed to the campaign to eradicate smallpox in Brazil (1966-1973. The experience of mass vaccination of the population against smallpox is contrasted with episodes of resistance as the "revolt against the vaccine", and regarded as crucial in shaping new policies and new understandings about the role of immunization in public health and its place in society Brazil.

  17. Marcados en la piel: vacunación y viruela en Argentina (1870-1910 Marked on the skin: vaccination and smallpox in Argentina (1870-1910

    Directory of Open Access Journals (Sweden)

    Maria Silvia Di Liscia

    2011-02-01

    Full Text Available Este artículo estudia la vacunación antivariólica en Argentina desde 1870, cuando se inician los debates al respecto, hasta la década de 1910, cuando se amplía al resto del país. Se analizan las prácticas de inmunización puestas en marcha con anterioridad a la Ley de vacunación obligatoria, aprobada en 1886 para la Capital y en 1904 para el resto del país. Tal medida fue resistida desde diferentes sectores. Su aprobación dependió de las consecuencias del proceso de modernización y urbanización acelerada, del peso de los higienistas en el escenario político y su extensión dependió de una concepción administrativa diferente, que incorporaba nuevas áreas y sectores al escenario nacional.This paper studies the smallpox vaccination in Argentina since 1870, when these discussions were inittiaded until the 1910s, when they were extended to the rest of the country. We analyze immunization practices implemented prior to the compulsory vaccination law, passed in 1886 for the Capital and in 1904 for the rest of the country. Such a move found resistance from different sectors. Its approval depended on the consequences of modernization and urbanization, the weight of hygienists in the political arena, and its extension depended on a different administrative conception, incorporating new areas and sectors to the national scenario.

  18. Imaging characteristics, tissue distribution, and spread of a novel oncolytic vaccinia virus carrying the human sodium iodide symporter.

    Directory of Open Access Journals (Sweden)

    Dana Haddad

    Full Text Available INTRODUCTION: Oncolytic viruses show promise for treating cancer. However, to assess therapy and potential toxicity, a noninvasive imaging modality is needed. This study aims to determine the in vivo biodistribution, and imaging and timing characteristics of a vaccinia virus, GLV-1h153, encoding the human sodium iodide symporter (hNIS. METHODS: GLV-1h153 was modified from GLV-1h68 to encode the hNIS gene. Timing of cellular uptake of radioiodide (131I in human pancreatic carcinoma cells PANC-1 was assessed using radiouptake assays. Viral biodistribution was determined in nude mice bearing PANC-1 xenografts, and infection in tumors confirmed histologically and optically via Green Fluorescent Protein (GFP and bioluminescence. Timing characteristics of enhanced radiouptake in xenografts were assessed via (124I-positron emission tomography (PET. Detection of systemic administration of virus was investigated with both (124I-PET and 99m-technecium gamma-scintigraphy. RESULTS: GLV-1h153 successfully facilitated time-dependent intracellular uptake of (131I in PANC-1 cells with a maximum uptake at 24 hours postinfection (P<0.05. In vivo, biodistribution profiles revealed persistence of virus in tumors 5 weeks postinjection at 10(9 plaque-forming unit (PFU/gm tissue, with the virus mainly cleared from all other major organs. Tumor infection by GLV-1h153 was confirmed via optical imaging and histology. GLV-1h153 facilitated imaging virus replication in tumors via PET even at 8 hours post radiotracer injection, with a mean %ID/gm of 3.82 ± 0.46 (P<0.05 2 days after intratumoral administration of virus, confirmed via tissue radiouptake assays. One week post systemic administration, GLV-1h153-infected tumors were detected via (124I-PET and 99m-technecium-scintigraphy. CONCLUSION: GLV-1h153 is a promising oncolytic agent against pancreatic cancer with a promising biosafety profile. GLV-1h153 facilitated time-dependent hNIS-specific radiouptake in pancreatic

  19. Repeated high-dose (5 × 10(8) TCID50) toxicity study of a third generation smallpox vaccine (IMVAMUNE) in New Zealand white rabbits.

    Science.gov (United States)

    Tree, Julia A; Hall, Graham; Rees, Peter; Vipond, Julia; Funnell, Simon G P; Roberts, Allen D

    2016-07-01

    Concern over the release of variola virus as an agent of bioterrorism remains high and a rapid vaccination regimen is desirable for use in the event of a confirmed release of virus. A single, high-dose (5×10(8) TCID50) of Bavarian Nordic's IMVAMUNE was tested in a Phase-II clinical trial, in humans, as a substitute for the standard (1×10(8) TCID50), using a 2-dose, 28-days apart regimen. Prior to this clinical trial taking place a Good Laboratory Practice, repeated high-dose, toxicology study was performed using IMVAMUNE, in New Zealand white rabbits and the results are reported here. Male and female rabbits were dosed twice, subcutaneously, with 5×10(8) TCID50 of IMVAMUNE (test) or saline (control), 7-days apart. The clinical condition, body-weight, food consumption, haematology, blood chemistry, immunogenicity, organ-weight, and macroscopic and microscopic pathology were investigated. Haematological investigations indicated changes within the white blood cell profile that were attributed to treatment with IMVAMUNE; these comprised slight increases in neutrophil and monocyte numbers, on study days 1-3 and a marginal increase in lymphocyte numbers on day 10. Macroscopic pathology revealed reddening at the sites of administration and thickened skin in IMVAMUNE, treated animals. After the second dose of IMVAMUNE 9/10 rabbits seroconverted, as detected by antibody ELISA on day 10, by day 21, 10/10 rabbits seroconverted. Treatment-related changes were not detected in other parameters. In conclusion, the subcutaneous injection of 2 high-doses of IMVAMUNE, to rabbits, was well tolerated producing only minor changes at the site of administration. Vaccinia-specific antibodies were raised in IMVAMUNE-vaccinated rabbits only.

  20. Attenuation of vaccinia Tian Tan strain by removal of viral TC7L-TK2L and TA35R genes.

    Directory of Open Access Journals (Sweden)

    Shifu Kan

    Full Text Available Vaccinia Tian Tan (VTT was attenuated by deletion of the TC7L-TK2L and TA35R genes to generate MVTT3. The mutant was generated by replacing the open reading frames by a gene encoding enhanced green fluorescent protein (EGFP flanked by loxP sites. Viruses expressing EGFP were then screened for and purified by serial plaque formation. In a second step the marker EGFP gene was removed by transfecting cells with a plasmid encoding cre recombinase and selecting for viruses that had lost the EGFP phenotype. The MVTT3 mutant was shown to be avirulent and immunogenic. These results support the conclusion that TC7L-TK2L and TA35R deletion mutants can be used as safe viral vectors or as platform for vaccines.

  1. Protective effects of a Modified Vaccinia Ankara-based vaccine candidate against Crimean-Congo Haemorrhagic Fever virus require both cellular and humoral responses.

    Directory of Open Access Journals (Sweden)

    Stuart D Dowall

    Full Text Available Crimean-Congo Haemorrhagic Fever (CCHF is a severe tick-borne disease, endemic in many countries in Africa, the Middle East, Eastern Europe and Asia. There is no approved vaccine currently available against CCHF. The most promising candidate, which has previously been shown to confer protection in the small animal model, is a modified Vaccinia Ankara virus vector expressing the CCHF viral glycoprotein (MVA-GP. It has been shown that MVA-GP induces both humoral and cellular immunogenicity. In the present study, sera and T-lymphocytes were passively and adoptively transferred into recipient mice prior to challenge with CCHF virus. Results demonstrated that mediators from both arms of the immune system were required to demonstrate protective effects against lethal challenge.

  2. Protective effects of a Modified Vaccinia Ankara-based vaccine candidate against Crimean-Congo Haemorrhagic Fever virus require both cellular and humoral responses.

    Science.gov (United States)

    Dowall, Stuart D; Graham, Victoria A; Rayner, Emma; Hunter, Laura; Watson, Robert; Taylor, Irene; Rule, Antony; Carroll, Miles W; Hewson, Roger

    2016-01-01

    Crimean-Congo Haemorrhagic Fever (CCHF) is a severe tick-borne disease, endemic in many countries in Africa, the Middle East, Eastern Europe and Asia. There is no approved vaccine currently available against CCHF. The most promising candidate, which has previously been shown to confer protection in the small animal model, is a modified Vaccinia Ankara virus vector expressing the CCHF viral glycoprotein (MVA-GP). It has been shown that MVA-GP induces both humoral and cellular immunogenicity. In the present study, sera and T-lymphocytes were passively and adoptively transferred into recipient mice prior to challenge with CCHF virus. Results demonstrated that mediators from both arms of the immune system were required to demonstrate protective effects against lethal challenge.

  3. Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara.

    Science.gov (United States)

    Schneider, J; Gilbert, S C; Blanchard, T J; Hanke, T; Robson, K J; Hannan, C M; Becker, M; Sinden, R; Smith, G L; Hill, A V

    1998-04-01

    Immunization with irradiated sporozoites can protect against malaria infection and intensive efforts are aimed at reproducing this effect with subunit vaccines. A particular sequence of subunit immunization with pre-erythrocytic antigens of Plasmodium berghei, consisting of single dose priming with plasmid DNA followed by a single boost with a recombinant modified vaccinia virus Ankara (MVA) expressing the same antigen, induced unprecedented complete protection against P. berghei sporozoite challenge in two strains of mice. Protection was associated with very high levels of splenic peptide-specific interferon-gamma-secreting CD8+ T cells and was abrogated when the order of immunization was reversed. DNA priming followed by MVA boosting may provide a general immunization regime for induction of high levels of CD8+ T cells.

  4. The nucleotide sequence of the chicken thymidine kinase gene and the relationship of its predicted polypeptide to that of the vaccinia virus thymidine kinase.

    Science.gov (United States)

    Kwoh, T J; Engler, J A

    1984-05-11

    The entire DNA nucleotide sequence of a 3.0 kilobase pair Hind III fragment containing the chicken cytoplasmic thymidine kinase gene was determined. Oligonucleotide linker insertion mutations distributed throughout this gene and having known effects upon gene activity ( Kwoh , T.J., Zipser , D., and Wigler , M. 1983. J. Mol. Appl. Genet. 2, 191-200), were used to access regions of the Hind III fragment for sequencing reactions. The complete nucleotide sequence, together with the positions of the linker insertion mutations within the sequence, allows us to propose a structure for the chicken thymidine kinase gene. The protein coding sequence of the gene is divided into seven small segments (each less than 160 base pairs) by six small introns (each less than 230 base pairs). The proposed 244 amino acid polypeptide encoded by this gene bears strong homology to the vaccinia virus thymidine kinase. No homology with the thymidine kinases of the herpes simplex viruses was found.

  5. Characterization of a 7-kilodalton subunit of vaccinia virus DNA-dependent RNA polymerase with structural similarities to the smallest subunit of eukaryotic RNA polymerase II.

    Science.gov (United States)

    Amegadzie, B Y; Ahn, B Y; Moss, B

    1992-05-01

    A previously unrecognized 7-kDa polypeptide copurified with the DNA-dependent RNA polymerase of vaccinia virus virions. Internal amino acid sequences of the small protein matched a viral genomic open reading frame of 63 codons. Antipeptide antiserum was used to confirm the specific and complete association of the 7-kDa protein with RNA polymerase. The amino acid sequence predicted from the viral gene, named rpo7, was 23% identical to that of the smallest subunit of Saccharomyces cerevisiae RNA polymerase II, and a metal-binding motif, Cys-X-X-Cys-Gly, was located at precisely the same location near the N terminus in the two proteins. RNA analyses demonstrated early transcriptional initiation and termination signals in the rpo7 gene sequence. The viral RNA polymerase subunit was synthesized during the early phase of infection and continued to accumulate during the late phase.

  6. Optimisation of prime-boost immunization in mice using novel protein-based and recombinant vaccinia (Tiantan-based HBV vaccine.

    Directory of Open Access Journals (Sweden)

    Hong Chen

    Full Text Available BACKGROUND: A therapeutic vaccine for chronic hepatitis B virus (HBV infection that enhances virus-specific cellular immune responses is urgently needed. The "prime-boost" regimen is a widely used vaccine strategy against many persistence infections. However, few reports have addressed this strategy applying for HBV therapeutic vaccine development. METHODOLOGY/PRINCIPAL FINDINGS: To develop an effective HBV therapeutic vaccine, we constructed a recombinant vaccinia virus (Tiantan containing the S+PreS1 fusion antigen (RVJSS1 combined with the HBV particle-like subunit vaccine HBVSS1 to explore the most effective prime-boost regimen against HBV. The immune responses to different prime-boost regimens were assessed in C57BL/C mice by ELISA, ELISpot assay and Intracellular cytokine staining analysis. Among the combinations tested, an HBV protein particle vaccine priming and recombinant vaccinia virus boosting strategy accelerated specific seroconversion and produced high antibody (anti-PreS1, anti-S antibody titres as well as the strongest multi-antigen (PreS1, and S-specific cellular immune response. HBSS1 protein prime/RVJSS1 boost immunization was also generated more significant level of both CD4+ and CD8+ T cell responses for Th1 cytokines (TNF-α and IFN-γ. CONCLUSIONS: The HBSS1 protein-vaccine prime plus RVJSS1 vector boost elicits specific antibody as well as CD4 and CD8 cells secreting Th1-like cytokines, and these immune responses may be important parameters for the future HBV therapeutic vaccines.

  7. Nucleotide sequence and molecular genetic analysis of the vaccinia virus HindIII N/M region encoding the genes responsible for resistance to alpha-amanitin.

    Science.gov (United States)

    Tamin, A; Villarreal, E C; Weinrich, S L; Hruby, D E

    1988-07-01

    The genomic location of the gene(s) which provides vaccinia virus (VV) alpha-amanitin-resistant mutants with a drug-resistant phenotype have been mapped to the HindIII N/M region of the genome by the use of marker rescue techniques [E. C. Villarreal and D. E. Hruby (1986) J. Virol. 57, 65-70]. Nucleotide sequencing of a 2356-bp HindIII-Sau3A fragment of the vaccinia virus genome encompassing this region reveals the presence of two complete leftward-reading open reading frames (ORFs, N2 and M1) and two incomplete ORFs (N1 and M2). By computer analysis the N2 and M1 ORFs would be predicted to encode soluble VV polypeptides with molecular weights of approximately 20 and 48 kDa, respectively. The N2 and M1 ORFs have extremely A-T-rich 5'-proximal sequences, consistent with previous data regarding the location and A-T-richness of viral early promoters. Likewise, the consensus signal believed to be involved in terminating VV early gene transcription, TTTTTNT, was evident at the 3'-boundary of both the N2 and M1 ORFs suggesting that these genes may be VV early genes. The in vivo transcriptional activity, orientation, and limits of these putative transcriptional units were investigated by Northern blot, nuclease S1, and primer extension analysis. Both N2- and M1-specific transcripts were detected in the cytoplasm of VV-infected cells, suggesting that these loci are bonafide viral genes. Time-course nuclease S1 experiments revealed that the N2 gene was transcribed exclusively prior to VV DNA replication. In contrast, the M1 gene was transcribed throughout infection, although different start sites were used at early versus late times postinfection. These results are discussed in relation to the drug-resistant phenotype and future experiments to identify the viral gene product responsible.

  8. A vaccinia virus recombinant transcribing an alphavirus replicon and expressing alphavirus structural proteins leads to packaging of alphavirus infectious single cycle particles.

    Directory of Open Access Journals (Sweden)

    Juana M Sánchez-Puig

    Full Text Available Poxviruses and Alphaviruses constitute two promising viral vectors that have been used extensively as expression systems, or as vehicles for vaccine purposes. Poxviruses, like vaccinia virus (VV are well-established vaccine vectors having large insertion capacity, excellent stability, and ease of administration. In turn, replicons derived from Alphaviruses like Semliki Forest virus (SFV are potent protein expression and immunization vectors but stocks are difficult to produce and maintain. In an attempt to demonstrate the use of a Poxvirus as a means for the delivery of small vaccine vectors, we have constructed and characterized VV/SFV hybrid vectors. A SFV replicon cDNA was inserted in the VV genome and placed under the control of a VV early promoter. The replicon, transcribed from the VV genome as an early transcript, was functional, and thus capable of initiating its own replication and transcription. Further, we constructed a VV recombinant additionally expressing the SFV structural proteins under the control of a vaccinia synthetic early/late promoter. Infection with this recombinant produced concurrent transcription of the replicon and expression of SFV structural proteins, and led to the generation of replicon-containing SFV particles that were released to the medium and were able to infect additional cells. This combined VV/SFV system in a single virus allows the use of VV as a SFV delivery vehicle in vivo. The combination of two vectors, and the possibility of generating in vivo single-cycle, replicon containing alphavirus particles, may open new strategies in vaccine development or in the design of oncolytic viruses.

  9. A pilot study comparing the development of EIAV Env-specific antibodies induced by DNA/recombinant vaccinia-vectored vaccines and an attenuated Chinese EIAV vaccine.

    Science.gov (United States)

    Meng, Qinglai; Lin, Yuezhi; Ma, Jian; Ma, Yan; Zhao, Liping; Li, Shenwei; Yang, Kai; Zhou, Jianhua; Shen, Rongxian; Zhang, Xiaoyan; Shao, Yiming

    2012-12-01

    Data from successful attenuated lentiviral vaccine studies indicate that fully mature Env-specific antibodies characterized by high titer, high avidity, and the predominant recognition of conformational epitopes are associated with protective efficacy. Although vaccination with a DNA prime/recombinant vaccinia-vectored vaccine boost strategy has been found to be effective in some trials with non-human primate/simian/human immunodeficiency virus (SHIV) models, it remains unclear whether this vaccination strategy could elicit mature equine infectious anemia virus (EIAV) Env-specific antibodies, thus protecting vaccinated horses against EIAV infection. Therefore, in this pilot study we vaccinated horses using a strategy based on DNA prime/recombinant Tiantan vaccinia (rTTV)-vectored vaccines encoding EIAV env and gag genes, and observed the development of Env-specific antibodies, neutralizing antibodies, and p26-specific antibodies. Vaccination with DNA induced low titer, low avidity, and the predominant recognition of linear epitopes by Env-specific antibodies, which was enhanced by boosting vaccinations with rTTV vaccines. However, the maturation levels of Env-specific antibodies induced by the DNA/rTTV vaccines were significantly lower than those induced by the attenuated vaccine EIAV(FDDV). Additionally, DNA/rTTV vaccines did not elicit broadly neutralizing antibodies. After challenge with a virulent EIAV strain, all of the vaccinees and control horses died from EIAV disease. These data indicate that the regimen of DNA prime/rTTV vaccine boost did not induce mature Env-specific antibodies, which might have contributed to immune protection failure. PMID:23171359

  10. Efficacy of vaccination with recombinant vaccinia and fowlpox vectors expressing NY-ESO-1 antigen in ovarian cancer and melanoma patients.

    Science.gov (United States)

    Odunsi, Kunle; Matsuzaki, Junko; Karbach, Julia; Neumann, Antje; Mhawech-Fauceglia, Paulette; Miller, Austin; Beck, Amy; Morrison, Carl D; Ritter, Gerd; Godoy, Heidi; Lele, Shashikant; duPont, Nefertiti; Edwards, Robert; Shrikant, Protul; Old, Lloyd J; Gnjatic, Sacha; Jäger, Elke

    2012-04-10

    Recombinant poxviruses (vaccinia and fowlpox) expressing tumor-associated antigens are currently being evaluated in clinical trials as cancer vaccines to induce tumor-specific immune responses that will improve clinical outcome. To test whether a diversified prime and boost regimen targeting NY-ESO-1 will result in clinical benefit, we conducted two parallel phase II clinical trials of recombinant vaccinia-NY-ESO-1 (rV-NY-ESO-1), followed by booster vaccinations with recombinant fowlpox-NY-ESO-1 (rF-NY-ESO-1) in 25 melanoma and 22 epithelial ovarian cancer (EOC) patients with advanced disease who were at high risk for recurrence/progression. Integrated NY-ESO-1-specific antibody and CD4(+) and CD8(+) T cells were induced in a high proportion of melanoma and EOC patients. In melanoma patients, objective response rate [complete and partial response (CR+PR)] was 14%, mixed response was 5%, and disease stabilization was 52%, amounting to a clinical benefit rate (CBR) of 72% in melanoma patients. The median PFS in the melanoma patients was 9 mo (range, 0-84 mo) and the median OS was 48 mo (range, 3-106 mo). In EOC patients, the median PFS was 21 mo (95% CI, 16-29 mo), and median OS was 48 mo (CI, not estimable). CD8(+) T cells derived from vaccinated patients were shown to lyse NY-ESO-1-expressing tumor targets. These data provide preliminary evidence of clinically meaningful benefit for diversified prime and boost recombinant pox-viral-based vaccines in melanoma and ovarian cancer and support further evaluation of this approach in these patient populations.

  11. Effects of Nasal or Pulmonary Delivered Treatments with an Adenovirus Vectored Interferon (mDEF201) on Respiratory and Systemic Infections in Mice Caused by Cowpox and Vaccinia Viruses

    OpenAIRE

    Smee, Donald F.; Wong, Min-Hui; Hurst, Brett L.; Ennis, Jane; Jeffrey D. Turner

    2013-01-01

    An adenovirus 5 vector encoding for mouse interferon alpha, subtype 5 (mDEF201) was evaluated for efficacy against lethal cowpox (Brighton strain) and vaccinia (WR strain) virus respiratory and systemic infections in mice. Two routes of mDEF201 administration were used, nasal sinus (5-µl) and pulmonary (50-µl), to compare differences in efficacy, since the preferred treatment of humans would be in a relatively small volume delivered intranasally. Lower respiratory infections (LRI), upper resp...

  12. Side Effects of Smallpox Vaccination

    Science.gov (United States)

    ... Del.icio.us Digg Facebook Google Bookmarks Technorati Yahoo MyWeb Updates Subscribe Listen Page last reviewed February ... Del.icio.us Digg Facebook Google Bookmarks Technorati Yahoo MyWeb Download page Subscribe to RSS View page ...

  13. Murine anti-vaccinia virus D8 antibodies target different epitopes and differ in their ability to block D8 binding to CS-E.

    Directory of Open Access Journals (Sweden)

    Michael H Matho

    2014-12-01

    Full Text Available The IMV envelope protein D8 is an adhesion molecule and a major immunodominant antigen of vaccinia virus (VACV. Here we identified the optimal D8 ligand to be chondroitin sulfate E (CS-E. CS-E is characterized by a disaccharide moiety with two sulfated hydroxyl groups at positions 4' and 6' of GalNAc. To study the role of antibodies in preventing D8 adhesion to CS-E, we have used a panel of murine monoclonal antibodies, and tested their ability to compete with CS-E for D8 binding. Among four antibody specificity groups, MAbs of one group (group IV fully abrogated CS-E binding, while MAbs of a second group (group III displayed widely varying levels of CS-E blocking. Using EM, we identified the binding site for each antibody specificity group on D8. Recombinant D8 forms a hexameric arrangement, mediated by self-association of a small C-terminal domain of D8. We propose a model in which D8 oligomerization on the IMV would allow VACV to adhere to heterogeneous population of CS, including CS-C and potentially CS-A, while overall increasing binding efficiency to CS-E.

  14. Comparing adjuvanted H28 and modified vaccinia virus ankara expressingH28 in a mouse and a non-human primate tuberculosis model

    DEFF Research Database (Denmark)

    Billeskov, Rolf; Christensen, Jan Pravsgaard; Aagaard, Claus;

    2013-01-01

    Here we report for the first time on the immunogenicity and protective efficacy of a vaccine strategy involving the adjuvanted fusion protein "H28" (consisting of Ag85B-TB10.4-Rv2660c) and Modified Vaccinia Virus Ankara expressing H28. We show that a heterologous prime-boost regimen involving...... priming with H28 in a Th1 adjuvant followed by boosting with H28 expressed by MVA (H28/MVA28) induced the highest percentage of IFN-γ expressing T cells, the highest production of IFN-γ per single cell and the highest induction of CD8 T cells compared to either of the vaccines given alone. In contrast......, in mice vaccinated with adjuvanted recombinant H28 alone (H28/H28) we observed the highest production of IL-2 per single cell and the highest frequency of antigen specific TNF-α/IL-2 expressing CD4 T cells pre and post infection. Interestingly, TNF-α/IL-2 expressing central memory-like CD4 T cells showed...

  15. An Oncolytic Vaccinia Virus Expressing the Human Sodium Iodine Symporter Prolongs Survival and Facilitates SPECT/CT Imaging in an Orthotopic Model of Malignant Pleural Mesothelioma

    Science.gov (United States)

    Belin, Laurence J.; Ady, Justin W.; Lewis, Christina; Marano, Drew; Gholami, Sepideh; Mojica, Kelly; Eveno, Clarisse; Longo, Valerie; Zanzonico, Pat B.; Chen, Nanhai G.; Szalay, Aladar A.; Fong, Yuman

    2014-01-01

    Background The purpose of this original work is to examine the ability of an oncolytic vaccinia virus expressing the human sodium iodine transporter (hNIS) to provide real time monitoring of viral therapy and effective treatment of malignant pleural mesothelioma (MPM). Methods Infectivity and cytotoxic effect of GLV-1h153 on mesothelioma cell lines of all histologic subtypes was assayed in vitro. Viral replication was examined by standard viral plaque assay. Orthotopic MPM xenografts were generated in athymic nude mice and treated with intrapleural GLV-1h153 and assessed for effect on tumor burden and survival. Orthotopic tumors were also imaged on SPECT/CT after 131I administration. Results GLV-1h153 infected and killed all cell lines in a time and concentration dependent manner. Viral replication demonstrated over a 2.5 log increase in titer over 4 days. Intrapleural treatment of orthotopic MPM xenografts resulted in a significant reduction in tumor burden one week after treatment and an improvement in survival. Infection of orthotopic xenografts was both therapeutic and facilitated monitoring by 131I-SPECT/CT via expression of hNIS in infected tissue. Conclusions Our results suggest GLV-1h153 is a promising therapeutic agent for MPM and warrants further investigation. PMID:23890748

  16. Exploring the potential benefits of vaccinia virus complement control protein in controlling complement activation in pathogenesis of the central nervous system diseases.

    Science.gov (United States)

    Kotwal, Girish J; Fernando, Nilisha; Zhou, Jianhua; Valter, Krisztina

    2014-10-01

    Aging is a major risk factor for the development of diseases related to the central nervous system (CNS), such as Alzheimer's disease (AD) and age-related macular degeneration (AMD). In both cases, linkage studies and genome-wide association studies found strong links with complement regulatory genes and disease risk. In AD, both CLU and CR1 genes were implicated in the late-onset form of the disease. In AMD, polymorphisms in CFH, CFB and C2 were similarly implicated. The cost of caring for patients with AD or AMD is approaching billions of dollars, and with the baby boomers reaching their 60's, this amount is likely to increase further. Intervention using complement inhibitors for individuals in their early 50s who are at a higher risk of disease development, (testing positive for genetic risk factors), could slow the progression of AD or AMD and possibly prevent the severity of late stage symptoms. Although we have used the vaccinia virus complement control protein (VCP) to elucidate the role of complement in CNS diseases, it has merely been an investigational tool but not the only possible potential therapeutic agent.

  17. Vaccinia protein F12 has structural similarity to kinesin light chain and contains a motor binding motif required for virion export.

    Directory of Open Access Journals (Sweden)

    Gareth W Morgan

    2010-02-01

    Full Text Available Vaccinia virus (VACV uses microtubules for export of virions to the cell surface and this process requires the viral protein F12. Here we show that F12 has structural similarity to kinesin light chain (KLC, a subunit of the kinesin-1 motor that binds cargo. F12 and KLC share similar size, pI, hydropathy and cargo-binding tetratricopeptide repeats (TPRs. Moreover, molecular modeling of F12 TPRs upon the crystal structure of KLC2 TPRs showed a striking conservation of structure. We also identified multiple TPRs in VACV proteins E2 and A36. Data presented demonstrate that F12 is critical for recruitment of kinesin-1 to virions and that a conserved tryptophan and aspartic acid (WD motif, which is conserved in the kinesin-1-binding sequence (KBS of the neuronal protein calsyntenin/alcadein and several other cellular kinesin-1 binding proteins, is essential for kinesin-1 recruitment and virion transport. In contrast, mutation of WD motifs in protein A36 revealed they were not required for kinesin-1 recruitment or IEV transport. This report of a viral KLC-like protein containing a KBS that is conserved in several cellular proteins advances our understanding of how VACV recruits the kinesin motor to virions, and exemplifies how viruses use molecular mimicry of cellular components to their advantage.

  18. Transcriptional and translational mapping and nucleotide sequence analysis of a vaccinia virus gene encoding the precursor of the major core polypeptide 4b.

    Science.gov (United States)

    Rosel, J; Moss, B

    1985-12-01

    We prepared antiserum that reacted with a major core polypeptide of approximately 62,000 daltons (62K polypeptide), designated 4b, and its 74K precursor, designated P4b. A cell-free translation product of vaccinia virus late mRNA that comigrated with P4b was specifically immunoprecipitated. The late mRNA encoding P4b hybridized to restriction fragments derived from the left end of the HindIII A fragment and to a lesser extent from the right side of the HindIII D fragment. A polypeptide that comigrated with P4a, the precursor of another major core polypeptide, was synthesized by mRNA that hybridized to DNA segments upstream of the P4b gene. Complete nucleotide sequence analysis of the P4b gene revealed an open reading frame, entirely within the HindIII A fragment, that was sufficient to encode a 644-amino-acid polypeptide of 73K. The 5' end of the P4b mRNA was located at or just above the translational initiation site.

  19. 痘苗病毒实验室获得性感染病例的状况及特征分析%Analysis on status and characteristics of laboratory-acquired vaccinia virus infections cases

    Institute of Scientific and Technical Information of China (English)

    魏强; 卢选成; 武桂珍

    2013-01-01

    Objective By analyzing the status and characteristics of vaccinia virus laboratory-acquired infections in the bibliographical information,this paper provides relevant recommendations and measures for prevention and control of vaccinia virus laboratory-acquired infections in China.Methods Choosing PubMed,Embase,Biosis and SCIE,SSCI,CPCI-S as well as CPCI-SSH covered by Web of Science as the data source,indexing the bibliography of vaccinia virus laboratory-acquired infections,this paper analyzes the information on whether to vaccinate,the occurrence time of symptoms,diseasedparts,symptom characteristics and the disease-causing reasons.Results The outcome shows that 52.9% of the cases never get vaccinated,82.4% engaged in vaccinia virus related researches never get vaccinated in 10 years,52.9% get infected by the accidental needlestick in hands during the process of handling animal experiments,70.6% of infections occur in the hands and having symptoms after being exposed with an average of 5.1 days.Conclusion Although it is still controversial that whether or not to be vaccinated before carrying out vaccinia virus related works,it should be important aspects of prevention and control of vaccinia virus laboratory-acquired infections with the strict compliance with the operating requirements of the biosafety,by strengthening personal protection and timely taking emergency measures when unforeseen circumstances occur,as well as providing the research background information to doctors.%目的 通过分析文献报道的痘苗病毒实验室感染病例状况与特征,为预防和控制我国痘苗病毒实验室获得性感染提供相关建议与措施.方法 选择PubMed、Embase、Biosis以及涵盖SCIE、SSCI、CPCI-S和CPCI-SSH的Web of Science作为数据源,检索痘苗病毒实验室获得性感染文献,对获取病例资料从是否接种疫苗、症状出现时间、发病部位、症状特征、发生原因等方面信息进行分析.结果 52

  20. Conserved TAAATG sequence at the transcriptional and translational initiation sites of vaccinia virus late genes deduced by structural and functional analysis of the HindIII H genome fragment.

    Science.gov (United States)

    Rosel, J L; Earl, P L; Weir, J P; Moss, B

    1986-11-01

    The sequence of the 8,600-base-pair HindIII H fragment, located at the center of the vaccinia virus genome, was determined to analyze several late genes. Seven major complete open reading frames (ORFs) and two that started from or continued into adjacent DNA segments were identified. ORFs were closely spaced and present on both DNA strands. Some adjacent ORFs had oppositely oriented overlapping termination codons or contiguous stop and start codons. Nucleotide compositional analysis indicated that the A-T frequency was consistently lowest in the first codon position. The sizes of the polypeptides predicted from the DNA sequence were compared with those determined by polyacrylamide gel electrophoresis of cell-free translation products of mRNAs selected by hybridization to cloned single-stranded DNA segments or synthesized in vitro by bacteriophage T7 RNA polymerase. Six transcripts that initiated within the HindIII H DNA fragment were detected, and of these, four were synthesized only at late times, one was synthesized only early, and one was synthesized early and late. The sites on the genome corresponding to the 5' ends of the transcripts were located by high-resolution nuclease S1 analysis. For late genes, the transcriptional and translational initiation sites mapped within a few nucleotides of each other, and in each case the sequence TAAATGG occurred at the start of the ORF. The extremely short leader and the absence of A or G in the -3 position, relative to the first nucleotide of the initiation codon, distinguishes the majority of vaccinia virus late genes from eucaryotic and vaccinia virus early genes.

  1. Mutational analysis of a predicted zinc-binding motif in the 26-kilodalton protein encoded by the vaccinia virus A2L gene: correlation of zinc binding with late transcriptional transactivation activity.

    OpenAIRE

    Keck, J G; Feigenbaum, F; B. Moss

    1993-01-01

    Transient transfection assays indicated that A2L is one of three vaccinia virus intermediate genes that are required for the transcriptional transactivation of viral late genes. We have expressed the A2L open reading frame in Escherichia coli and shown by blotting experiments that the 26-kDa protein binds zinc, a property predicted by the presence of a CX2CX13CX2C zinc finger motif. The specificity for zinc binding was demonstrated by competition with other metals. The role of the sequence mo...

  2. The discontinuation of routine smallpox vaccination in the United States, 1960-1976: an unlikely affirmation of biomedical hegemony A descontinuação da vacinação de rotina contra a varíola nos Estados Unidos, 1960-1976: uma afirmação improvável da hegemonia biomédica

    Directory of Open Access Journals (Sweden)

    Miriam Rich

    2011-02-01

    Full Text Available This article seeks to understand the discursive context of the cessation of routine smallpox vaccination in the United States in the early 1970s. The United States has a long tradition of opposition to compulsory smallpox vaccination, usually expressed in terms of concerns about personal liberties, the extent of state authority, and challenges to the hegemony of orthodox biomedicine. The practice of routine smallpox vaccination continued in the United States until its termination in the 1970s, following a 1971 recommendation against the practice issued by the United States Public Health Service. This history investigates the ways in which opposition to compulsory smallpox vaccination in the 1960s and 70s was articulated and understood by contemporaries through an analysis of the rhetoric used in leading medical journals and popular newspapers. It finds that this ultimately successful movement to end routine smallpox vaccination drew upon the language of biomedical authority rather than political protest.Este artigo procura entender o contexto discursivo da cessação da vacinação de rotina contra varíola nos Estados Unidos no início dos anos 70. Os Estados Unidos têm uma longa tradição na oposição à vacinação compulsória contra a varíola, geralmente expressa em relação ao que se refere à liberdade pessoal, à extensão da autoridade estadual e desafios à hegemonia da biomedicina ortodoxa. A rotina de vacinação contra varíola continuou nos Estados Unidos até a extinção da doença nos anos 70, seguida de uma recomendação em 1971 contra a prática emitida pelo Serviço de Saúde Pública dos Estados Unidos. Essa história investiga as maneiras pelas quais a oposição à vacinação compulsória contra a varíola nos anos 60 e 70 foi articulada e entendida por contemporâneos através da análise da retórica utilizada pelos principais periódicos médicos e jornais populares. Descobriu-se que esse movimento bem

  3. Synergistic cytotoxicity of radiation and oncolytic Lister strain vaccinia in (V600D/E)BRAF mutant melanoma depends on JNK and TNF-α signaling.

    Science.gov (United States)

    Kyula, J N; Khan, A A; Mansfield, D; Karapanagiotou, E M; McLaughlin, M; Roulstone, V; Zaidi, S; Pencavel, T; Touchefeu, Y; Seth, R; Chen, N G; Yu, Y A; Zhang, Q; Melcher, A A; Vile, R G; Pandha, H S; Ajaz, M; Szalay, A A; Harrington, K J

    2014-03-27

    Melanoma is an aggressive skin cancer that carries an extremely poor prognosis when local invasion, nodal spread or systemic metastasis has occurred. Recent advances in melanoma biology have revealed that RAS-RAF-MEK-ERK signaling has a pivotal role in governing disease progression and treatment resistance. Proof-of-concept clinical studies have shown that direct BRAF inhibition yields impressive responses in advanced disease but these are short-lived as treatment resistance rapidly emerges. Therefore, there is a pressing need to develop new targeted strategies for BRAF mutant melanoma. As such, oncolytic viruses represent a promising cancer-specific approach with significant activity in melanoma. This study investigated interactions between genetically-modified vaccinia virus (GLV-1h68) and radiotherapy in melanoma cell lines with BRAF mutant, Ras mutant or wild-type genotype. Preclinical studies revealed that GLV-1h68 combined with radiotherapy significantly increased cytotoxicity and apoptosis relative to either single agent in (V600D)BRAF/(V600E)BRAF mutant melanoma in vitro and in vivo. The mechanism of enhanced cytotoxicity with GLV-1h68/radiation (RT) was independent of viral replication and due to attenuation of JNK, p38 and ERK MAPK phosphorylation specifically in BRAF mutant cells. Further studies showed that JNK pathway inhibition sensitized BRAF mutant cells to GLV-1h68-mediated cell death, mimicking the effect of RT. GLV-1h68 infection activated MAPK signaling in (V600D)BRAF/(V600E)BRAF mutant cell lines and this was associated with TNF-α secretion which, in turn, provided a prosurvival signal. Combination GLV-1h68/RT (or GLV-1h68/JNK inhibition) caused abrogation of TNF-α secretion. These data provide a strong rationale for combining GLV-1h68 with irradiation in (V600D/E)BRAF mutant tumors.

  4. Induction of antigen-presenting capacity in tumor cells upon infection with non-replicating recombinant vaccinia virus encoding murine MHC class II and costimulatory molecules.

    Science.gov (United States)

    Marti, W R; Oertli, D; Meko, J B; Norton, J A; Tsung, K

    1997-01-15

    The possibility of inducing antigen-presenting capacity in cells normally lacking such capacity, currently represents a major goal in vaccine research. To address this issue we attempted to generate 'artificial' APC able to stimulate CD4+ T cell responses when tumor cells were infected with a single, recombinant, vaccinia virus (rVV) containing the two genes encoding murine MHC class II I-Ak and a third gene encoding the murine B7-1 (mB7-1) costimulatory molecule. To minimize the cytopathic effect and to improve safety, in view of possible in vivo applications, we made this rVV replication incompetent by Psoralen and long wave UV treatment. Tumor cells infected with rVV encoding I-Ak alone, pulsed with hen egg white lysozyme peptide (HEL46-61), induced IL-2 secretion by an antigen-specific T hybridoma. Tumor cells infected with the rVV encoding mB7-1 provided costimulation for activating resting CD4+ T cells in the presence of ConA. Tumor cells infected with the rVV encoding I-Ak and mB7-1, and pulsed with chicken ovotransferrin peptide (conalbumin133-145), induced a significantly higher response in a specific Th2 cell clone (D10.G4.1) as compared to cells infected with rVV encoding I-Ak molecules only. Thus, this replication incompetent rVV represents a safe, multiple gene, vector system able to confer in one single infection step effective APC capacity to non-professional APCs.

  5. A mouse model based on replication-competent Tiantan vaccinia expressing luciferase/HIV-1 Gag fusion protein for the evaluation of protective efficacy of HIV vaccine

    Institute of Scientific and Technical Information of China (English)

    HUANG Yang; QIU Chao; LIU Lian-xing; FENG Yan-meng; ZHU Ting; XU Jian-qing

    2009-01-01

    Background Developing an effective vaccine against human immunodeficiency virus type 1 (HIV-1) remains a grand challenge after more than two decades of intensive effort. It is partially due to the lack of suitable animal models for screening and prioritizing vaccine candidates. In this study, we aim to develop a mice model to test HIV-1 vaccine efficacy. Methods We constructed a recombinant vaccinia expressing firefly luciferase and HIV-1 Gag fusion protein based on Tiantan strain, an attenuated but replication-competent poxvirus (rTTV-lucgag). By quantifying the luciferase activity as its read out, we defined the biodistribution of Tiantan strain poxvirus in mice inoculated intraperitoneally and attempted to apply this model to evaluate the HIV-1 vaccine efficacy. Results Our data demonstrated that the rTTV-lucgag was able to express high level of luciferase (≤106 relative luciferase units (RLU)/mg protein) and HIV-1 Gag (>3 folds increase comparing to the control). After intraperitoneal inoculation, this virus had dominant replication in the ovary, uterus, and cervix of mice and the luciferase activities in those organs are significantly correlated with viral titers (r2=0.71, P <0.01). Pre-immunization with an HIV gag DNA vaccine reduced the luciferase activity in ovary from (6006+3141) RLU/mg protein in control group to (1538±463) RLU/mg protein in vaccine group (P=0.1969). Conclusions The luciferase activity in ovary could represent viral replication in vivo;, this rTTV-lucgag/mice model may be suitable to assess the protective efficacy of cytotoxic T-cell responses to HIV Gag with less tedious work and high through-put.

  6. Vaccine efficacy against malaria by the combination of porcine parvovirus-like particles and vaccinia virus vectors expressing CS of Plasmodium.

    Directory of Open Access Journals (Sweden)

    Dolores Rodríguez

    Full Text Available With the aim to develop an efficient and cost-effective approach to control malaria, we have generated porcine parvovirus-like particles (PPV-VLPs carrying the CD8(+ T cell epitope (SYVPSAEQI of the circumsporozoite (CS protein from Plasmodium yoelii fused to the PPV VP2 capsid protein (PPV-PYCS, and tested in prime/boost protocols with poxvirus vectors for efficacy in a rodent malaria model. As a proof-of concept, we have characterized the anti-CS CD8(+ T cell response elicited by these hybrid PPV-VLPs in BALB/c mice after immunizations with the protein PPV-PYCS administered alone or in combination with recombinant vaccinia virus (VACV vectors from the Western Reserve (WR and modified virus Ankara (MVA strains expressing the entire P. yoelii CS protein. The results of different immunization protocols showed that the combination of PPV-PYCS prime/poxvirus boost was highly immunogenic, inducing specific CD8+ T cell responses to CS resulting in 95% reduction in liver stage parasites two days following sporozoite challenge. In contrast, neither the administration of PPV-PYCS alone nor the immunization with the vectors given in the order poxvirus/VLPs was as effective. The immune profile induced by VLPs/MVA boost was associated with polyfunctional and effector memory CD8+ T cell responses. These findings highlight the use of recombinant parvovirus PPV-PYCS particles as priming agents and poxvirus vectors, like MVA, as booster to enhance specific CD8+ T cell responses to Plasmodium antigens and to control infection. These observations are relevant in the design of T cell-inducing vaccines against malaria.

  7. Drosophila S2 cells are non-permissive for vaccinia virus DNA replication following entry via low pH-dependent endocytosis and early transcription.

    Directory of Open Access Journals (Sweden)

    Zain Bengali

    Full Text Available Vaccinia virus (VACV, a member of the chordopox subfamily of the Poxviridae, abortively infects insect cells. We have investigated VACV infection of Drosophila S2 cells, which are useful for protein expression and genome-wide RNAi screening. Biochemical and electron microscopic analyses indicated that VACV entry into Drosophila S2 cells depended on the VACV multiprotein entry-fusion complex but appeared to occur exclusively by a low pH-dependent endocytic mechanism, in contrast to both neutral and low pH entry pathways used in mammalian cells. Deep RNA sequencing revealed that the entire VACV early transcriptome, comprising 118 open reading frames, was robustly expressed but neither intermediate nor late mRNAs were made. Nor was viral late protein synthesis or inhibition of host protein synthesis detected by pulse-labeling with radioactive amino acids. Some reduction in viral early proteins was noted by Western blotting. Nevertheless, synthesis of the multitude of early proteins needed for intermediate gene expression was demonstrated by transfection of a plasmid containing a reporter gene regulated by an intermediate promoter. In addition, expression of a reporter gene with a late promoter was achieved by cotransfection of intermediate genes encoding the late transcription factors. The requirement for transfection of DNA templates for intermediate and late gene expression indicated a defect in viral genome replication in VACV-infected S2 cells, which was confirmed by direct analysis. Furthermore, VACV-infected S2 cells did not support the replication of a transfected plasmid, which occurs in mammalian cells and is dependent on all known viral replication proteins, indicating a primary restriction of DNA synthesis.

  8. Nucleotide sequence and transcript organization of a region of the vaccinia virus genome which encodes a constitutively expressed gene required for DNA replication.

    Science.gov (United States)

    Roseman, N A; Hruby, D E

    1987-05-01

    A vaccinia virus (VV) gene required for DNA replication has been mapped to the left side of the 16-kilobase (kb) VV HindIII D DNA fragment by marker rescue of a DNA- temperature-sensitive mutant, ts17, using cloned fragments of the viral genome. The region of VV DNA containing the ts17 locus (3.6 kb) was sequenced. This nucleotide sequence contains one complete open reading frame (ORF) and two incomplete ORFs reading from left to right. Analysis of this region at early times revealed that transcription from the incomplete upstream ORF terminates coincidentally with the complete ORF encoding the ts17 gene product, which is directly downstream. The predicted proteins encoded by this region correlate well with polypeptides mapped by in vitro translation of hybrid-selected early mRNA. The nucleotide sequences of a 1.3-kb BglII fragment derived from ts17 and from two ts17 revertants were also determined, and the nature of the ts17 mutation was identified. S1 nuclease protection studies were carried out to determine the 5' and 3' ends of the transcripts and to examine the kinetics of expression of the ts17 gene during viral infection. The ts17 transcript is present at both early and late times postinfection, indicating that this gene is constitutively expressed. Surprisingly, the transcriptional start throughout infection occurs at the proposed late regulatory element TAA, which immediately precedes the putative initiation codon ATG. Although the biological activity of the ts17-encoded polypeptide was not identified, it was noted that in ts17-infected cells, expression of a nonlinked VV immediate-early gene (thymidine kinase) was deregulated at the nonpermissive temperature. This result may indicate that the ts17 gene product is functionally required at an early step of the VV replicative cycle.

  9. Structure of the transcription initiation and termination sequences of seven early genes in the vaccinia virus HindIII D fragment.

    Science.gov (United States)

    Lee-Chen, G J; Bourgeois, N; Davidson, K; Condit, R C; Niles, E G

    1988-03-01

    The vaccinia virus HindIII D fragment is 16,060 bp in length and encodes 13 complete genes [E.G. Niles et al. (1986). Virology 153, 96-112; S. L. Weinrich and D. E. Hruby (1986). Nucleic Acids Res. 14, 3003-3016]. Six of these genes are expressed only at early times after infection and one gene is expressed at both early and late times [G. -J. Lee-Chen and E. G. Niles (1988). Virology 163, 52-63]. Transcript mapping by S1 nuclease protection studies was carried out and compared to the results of primer extension analyses, in order to locate map positions of the 5' termini of each early mRNA. The lengths of the products of in vitro transcription, from DNA templates which possess the transcription start regions of each of the early genes, were determined and compared to the lengths of DNA products generated by S1 nuclease protection and primer extension, in order to demonstrate that the 5' termini identified by S1 mapping and primer extension are due to transcription initiation and not to mRNA processing. For each of the early genes in the HindIII D fragment, transcription starts within 25 nucleotides of the translation initiation codon. The precise location of the 3' termini of each early transcript was identified by S1 nuclease mapping. In all but one case, the 3' ends map within 75 nucleotides of the putative transcription termination signal TTTTTNT [G. Rohrmann, L. Yuen, and B. Moss (1986).

  10. Assay of neutralizing antibody against variola virus by the degree of focus reduction on HeLa cell cultures and its application to revaccination with smallpox vaccines of various potencies.

    Science.gov (United States)

    Kitamura, T; Shinjo, N

    1972-01-01

    A method for assaying neutralizing antibody against variola virus was established by focus counting on HeLa cell cultures. The ND(50) titre, i.e., the serum dilution endpoint to give a 50% reduction in the number of foci, was determined with excellent reproducibility.Groups of students 19-20 years of age were revaccinated by the multiple pressure method with serial 10-fold dilutions of a smallpox vaccine and their neutralizing antibody response was assayed by the focus counting assay system and was related to the local skin reactions on the seventh day after inoculation and to the potency of the vaccine administered. There was a significant rise in the antibody level even after inoculation with a vaccine whose potency was as low as 1.3 x 10(5) pock-forming units/ml. In general, the rise in the log antibody level was proportional to the diameter of the reddening, but a significant rise was found among individuals who had no detectable skin reaction. The skin reaction was greater among individuals with a lower initial antibody level when the vaccine administered had a potency lower than 1.3 x 10(6) pock-forming units/ml.

  11. Myxoma Virus Induces Type I Interferon Production in Murine Plasmacytoid Dendritic Cells via a TLR9/MyD88-, IRF5/IRF7-, and IFNAR-Dependent Pathway

    OpenAIRE

    Dai, Peihong; Cao, Hua; Merghoub, Taha; Avogadri, Francesca; Wang, Weiyi; Parikh, Tanvi; Fang, Chee-Mun; Pitha, Paula M.; Fitzgerald, Katherine A.; Rahman, Masmudur M.; McFadden, Grant; Hu, Xiaoyu; Houghton, Alan N.; Shuman, Stewart; Deng, Liang

    2011-01-01

    Poxviruses are large DNA viruses that replicate in the cytoplasm of infected cells. Myxoma virus is a rabbit poxvirus that belongs to the Leporipoxvirus genus. It causes a lethal disease called myxomatosis in European rabbits but cannot sustain any detectable infection in nonlagomorphs. Vaccinia virus is a prototypal orthopoxvirus that was used as a vaccine to eradicate smallpox. Myxoma virus is nonpathogenic in mice, whereas systemic infection with vaccinia virus can be lethal even in immuno...

  12. Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety.

    OpenAIRE

    B. Moss

    1996-01-01

    Vaccinia virus, no longer required for immunization against smallpox, now serves as a unique vector for expressing genes within the cytoplasm of mammalian cells. As a research tool, recombinant vaccinia viruses are used to synthesize and analyze the structure-function relationships of proteins, determine the targets of humoral and cell-mediated immunity, and investigate the types of immune response needed for protection against specific infectious diseases and cancer. The vaccine potential of...

  13. Vaccinia virus lacking the deoxyuridine triphosphatase gene (F2L replicates well in vitro and in vivo, but is hypersensitive to the antiviral drug (N-methanocarbathymidine

    Directory of Open Access Journals (Sweden)

    Moyer Richard W

    2008-03-01

    Full Text Available Abstract Background The vaccinia virus (VV F2L gene encodes a functional deoxyuridine triphosphatase (dUTPase that catalyzes the conversion of dUTP to dUMP and is thought to minimize the incorporation of deoxyuridine residues into the viral genome. Previous studies with with a complex, multigene deletion in this virus suggested that the gene was not required for viral replication, but the impact of deleting this gene alone has not been determined in vitro or in vivo. Although the crystal structure for this enzyme has been determined, its potential as a target for antiviral therapy is unclear. Results The F2L gene was replaced with GFP in the WR strain of VV to assess its effect on viral replication. The resulting virus replicated well in cell culture and its replication kinetics were almost indistinguishable from those of the wt virus and attained similar titers. The virus also appeared to be as pathogenic as the WR strain suggesting that it also replicated well in mice. Cells infected with the dUTPase mutant would be predicted to affect pyrimidine deoxynucleotide pools and might be expected to exhibit altered susceptibility to pyrimidine analogs. The antiviral activity of cidofovir and four thymidine analogs were evaluated both in the mutant and the parent strain of this virus. The dUTPase knockout remained fully susceptible to cidofovir and idoxuridine, but was hypersensitive to the drug (N-methanocarbathymidine, suggesting that pyrimidine metabolism was altered in cells infected with the mutant virus. The absence of dUTPase should reduce cellular dUMP pools and may result in a reduced conversion to dTMP by thymidylate synthetase or an increased reliance on the salvage of thymidine by the viral thymidine kinase. Conclusion We confirmed that F2L was not required for replication in cell culture and determined that it does not play a significant role on virulence of the virus in intranasally infected mice. The recombinant virus is hypersensitive

  14. A candidate HIV/AIDS vaccine (MVA-B lacking vaccinia virus gene C6L enhances memory HIV-1-specific T-cell responses.

    Directory of Open Access Journals (Sweden)

    Juan García-Arriaza

    Full Text Available The vaccinia virus (VACV C6 protein has sequence similarities with the poxvirus family Pox_A46, involved in regulation of host immune responses, but its role is unknown. Here, we have characterized the C6 protein and its effects in virus replication, innate immune sensing and immunogenicity in vivo. C6 is a 18.2 kDa protein, which is expressed early during virus infection and localizes to the cytoplasm of infected cells. Deletion of the C6L gene from the poxvirus vector MVA-B expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (MVA-B ΔC6L had no effect on virus growth kinetics; therefore C6 protein is not essential for virus replication. The innate immune signals elicited by MVA-B ΔC6L in human macrophages and monocyte-derived dendritic cells (moDCs are characterized by the up-regulation of the expression of IFN-β and IFN-α/β-inducible genes. In a DNA prime/MVA boost immunization protocol in mice, flow cytometry analysis revealed that MVA-B ΔC6L enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4+ and CD8+ T-cell memory immune responses, with most of the HIV-1 responses mediated by the CD8+ T-cell compartment with an effector phenotype. Significantly, while MVA-B induced preferentially Env- and Gag-specific CD8+ T-cell responses, MVA-B ΔC6L induced more Gag-Pol-Nef-specific CD8+ T-cell responses. Furthermore, MVA-B ΔC6L enhanced the levels of antibodies against Env in comparison with MVA-B. These findings revealed that C6 can be considered as an immunomodulator and that deleting C6L gene in MVA-B confers an immunological benefit by enhancing IFN-β-dependent responses and increasing the magnitude and quality of the T-cell memory immune responses to HIV-1 antigens. Our observations are relevant for the improvement of MVA vectors as HIV-1 vaccines.

  15. A pandemic influenza H1N1 live vaccine based on modified vaccinia Ankara is highly immunogenic and protects mice in active and passive immunizations.

    Directory of Open Access Journals (Sweden)

    Annett Hessel

    Full Text Available BACKGROUND: The development of novel influenza vaccines inducing a broad immune response is an important objective. The aim of this study was to evaluate live vaccines which induce both strong humoral and cell-mediated immune responses against the novel human pandemic H1N1 influenza virus, and to show protection in a lethal animal challenge model. METHODOLOGY/PRINCIPAL FINDINGS: For this purpose, the hemagglutinin (HA and neuraminidase (NA genes of the influenza A/California/07/2009 (H1N1 strain (CA/07 were inserted into the replication-deficient modified vaccinia Ankara (MVA virus--a safe poxviral live vector--resulting in MVA-H1-Ca and MVA-N1-Ca vectors. These live vaccines, together with an inactivated whole virus vaccine, were assessed in a lung infection model using immune competent Balb/c mice, and in a lethal challenge model using severe combined immunodeficient (SCID mice after passive serum transfer from immunized mice. Balb/c mice vaccinated with the MVA-H1-Ca virus or the inactivated vaccine were fully protected from lung infection after challenge with the influenza H1N1 wild-type strain, while the neuraminidase virus MVA-N1-Ca induced only partial protection. The live vaccines were already protective after a single dose and induced substantial amounts of neutralizing antibodies and of interferon-gamma-secreting (IFN-gamma CD4- and CD8 T-cells in lungs and spleens. In the lungs, a rapid increase of HA-specific CD4- and CD8 T cells was observed in vaccinated mice shortly after challenge with influenza swine flu virus, which probably contributes to the strong inhibition of pulmonary viral replication observed. In addition, passive transfer of antisera raised in MVA-H1-Ca vaccinated immune-competent mice protected SCID mice from lethal challenge with the CA/07 wild-type virus. CONCLUSIONS/SIGNIFICANCE: The non-replicating MVA-based H1N1 live vaccines induce a broad protective immune response and are promising vaccine candidates for

  16. Viral-mediated oncolysis is the most critical factor in the late-phase of the tumor regression process upon vaccinia virus infection

    Directory of Open Access Journals (Sweden)

    Yu Yong A

    2011-02-01

    Full Text Available Abstract Background In principle, the elimination of malignancies by oncolytic virotherapy could proceed by different mechanisms - e.g. tumor cell specific oncolysis, destruction of the tumor vasculature or an anti-tumoral immunological response. In this study, we analyzed the contribution of these factors to elucidate the responsible mechanism for regression of human breast tumor xenografts upon colonization with an attenuated vaccinia virus (VACV. Methods Breast tumor xenografts were analyzed 6 weeks post VACV infection (p.i.; regression phase by immunohistochemistry and mouse-specific expression arrays. Viral-mediated oncolysis was determined by tumor growth analysis combined with microscopic studies of intratumoral virus distribution. The tumor vasculature was morphologically characterized by diameter and density measurements and vessel functionality was analyzed by lectin perfusion and extravasation studies. Immunological aspects of viral-mediated tumor regression were studied in either immune-deficient mouse strains (T-, B-, NK-cell-deficient or upon cyclophosphamide-induced immunosuppression (MHCII+-cell depletion in nude mice. Results Late stage VACV-infected breast tumors showed extensive necrosis, which was highly specific to cancer cells. The tumor vasculature in infected tumor areas remained functional and the endothelial cells were not infected. However, viral colonization triggers hyperpermeability and dilatation of the tumor vessels, which resembled the activated endothelium in wounded tissue. Moreover, we demonstrated an increased expression of genes involved in leukocyte-endothelial cell interaction in VACV-infected tumors, which orchestrate perivascular inflammatory cell infiltration. The immunohistochemical analysis of infected tumors displayed intense infiltration of MHCII-positive cells and colocalization of tumor vessels with MHCII+/CD31+ vascular leukocytes. However, GI-101A tumor growth analysis upon VACV-infection in

  17. Phase I safety and immunogenicity evaluation of MVA-CMDR, a multigenic, recombinant modified vaccinia Ankara-HIV-1 vaccine candidate.

    Directory of Open Access Journals (Sweden)

    Jeffrey R Currier

    Full Text Available BACKGROUND: We conducted a Phase I randomized, dose-escalation, route-comparison trial of MVA-CMDR, a candidate HIV-1 vaccine based on a recombinant modified vaccinia Ankara viral vector expressing HIV-1 genes env/gag/pol. The HIV sequences were derived from circulating recombinant form CRF01_AE, which predominates in Thailand. The objective was to evaluate safety and immunogenicity of MVA-CMDR in human volunteers in the US and Thailand. METHODOLOGY/PRINCIPAL FINDINGS: MVA-CMDR or placebo was administered intra-muscularly (IM; 10(7 or 10(8 pfu or intradermally (ID; 10(6 or 10(7 pfu at months 0, 1 and 3, to 48 healthy volunteers at low risk for HIV-1 infection. Twelve volunteers in each dosage group were randomized to receive MVA-CMDR or placebo (10∶2. Volunteers were actively monitored for local and systemic reactogenicity and adverse events post vaccination. Cellular immunogenicity was assessed by a validated IFNγ Elispot assay, an intracellular cytokine staining assay, lymphocyte proliferation and a (51Cr-release assay. Humoral immunogenicity was assessed by ADCC for gp120 and binding antibody ELISAs for gp120 and p24. MVA-CMDR was safe and well tolerated with no vaccine related serious adverse events. Cell-mediated immune responses were: (i moderate in magnitude (median IFNγ Elispot of 78 SFC/10(6 PBMC at 10(8 pfu IM, but high in response rate (70% (51Cr-release positive; 90% Elispot positive; 100% ICS positive, at 10(8 pfu IM; (ii predominantly HIV Env-specific CD4(+ T cells, with a high proliferative capacity and durable for at least 6 months (100% LPA response rate by the IM route; (iv dose- and route-dependent with 10(8 pfu IM being the most immunogenic treatment. Binding antibodies against gp120 and p24 were detectable in all vaccination groups with ADCC capacity detectable at the highest dose (40% positive at 10(8 pfu IM. CONCLUSIONS/SIGNIFICANCE: MVA-CMDR delivered both intramuscularly and intradermally was safe, well-tolerated and

  18. Effects of vaccinia virus uracil DNA glycosylase catalytic site and deoxyuridine triphosphatase deletion mutations individually and together on replication in active and quiescent cells and pathogenesis in mice

    Directory of Open Access Journals (Sweden)

    Moss Bernard

    2008-12-01

    Full Text Available Abstract Background Low levels of uracil in DNA result from misincorporation of dUMP or cytosine deamination. Vaccinia virus (VACV, the prototype poxvirus, encodes two enzymes that can potentially reduce the amount of uracil in DNA. Deoxyuridine triphosphatase (dUTPase hydrolyzes dUTP, generating dUMP for biosynthesis of thymidine nucleotides while decreasing the availability of dUTP for misincorporation; uracil DNA glycosylase (UNG cleaves uracil N-glycosylic bonds in DNA initiating base excision repair. Studies with actively dividing cells showed that the VACV UNG protein is required for DNA replication but the UNG catalytic site is not, whereas the dUTPase gene can be deleted without impairing virus replication. Recombinant VACV with an UNG catalytic site mutation was attenuated in vivo, while a dUTPase deletion mutant was not. However, the importance of the two enzymes for replication in quiescent cells, their possible synergy and roles in virulence have not been fully assessed. Results VACV mutants lacking the gene encoding dUTPase or with catalytic site mutations in UNG and double UNG/dUTPase mutants were constructed. Replication of UNG and UNG/dUTPase mutants were slightly reduced compared to wild type or the dUTPase mutant in actively dividing cells. Viral DNA replication was reduced about one-third under these conditions. After high multiplicity infection of quiescent fibroblasts, yields of wild type and mutant viruses were decreased by 2-logs with relative differences similar to those observed in active fibroblasts. However, under low multiplicity multi-step growth conditions in quiescent fibroblasts, replication of the dUTPase/UNG mutant was delayed and 5-fold lower than that of either single mutant or parental virus. This difference was exacerbated by 1-day serial passages on quiescent fibroblasts, resulting in 2- to 3-logs lower titer of the double mutant compared to the parental and single mutant viruses. Each mutant was more

  19. Varíola e vacina no Brasil no século XX: institucionalização da educação sanitária Smallpox and vaccine in Brazil at 20th century: institutionalization of health education

    Directory of Open Access Journals (Sweden)

    Tania Maria Dias Fernandes

    2011-02-01

    Full Text Available O objetivo deste texto é discutir algumas ações que possibilitaram a erradicação da varíola no Brasil, considerando os principais contextos e as políticas adotadas para as doenças entre 1920 e 1970, assumindo como destaque as medidas educativas no campo da saúde e estabelecendo uma discussão acerca do conteúdo educacional dos programas adotados. Observam-se, ao longo deste período, a configuração de políticas de saúde e a criação de organismos estatais direcionados a doenças e ações específicas, o que no caso da varíola somente ocorreu na década de 1960, quando foram criadas a Campanha Nacional contra a Varíola e a Campanha Nacional de Erradicação da Varíola. A educação sanitária e as relações com estas instituições foram de fundamental importância para a divulgação e implementação de ações estatais que possibilitaram ampliação da cobertura vacinal com a aceitação de seu uso pela população, o alcance do controle e a erradicação da doença.The aim of this paper is to discuss some actions that made possible the eradication of smallpox in Brazil, considering the main contexts and policies adopted for the disease between 1920 and 1970, assuming as contrast educational measures in the field of health and establishing a discussion on the educational content of the programs adopted. It can be observed that, during this period, the setting of the health policies and the creation of state agencies that target specific diseases and actions, which in the case of the smallpox, only occurred in the 1960s, when the National Campaign against the Smallpox and the National Campaign for Eradication of Smallpox were created. Health education and the relations with these institutions were of fundamental importance to the dissemination and implementation of state actions that allowed the expansion of the vaccinal coverage with acceptance of its use by the population and the range of control and eradication of the

  20. Therapeutic Vaccines and Antibodies for Treatment of Orthopoxvirus Infections

    Directory of Open Access Journals (Sweden)

    Stuart N. Isaacs

    2010-10-01

    Full Text Available Despite the eradication of smallpox several decades ago, variola and monkeypox viruses still have the potential to become significant threats to public health. The current licensed live vaccinia virus-based smallpox vaccine is extremely effective as a prophylactic vaccine to prevent orthopoxvirus infections, but because of safety issues, it is no longer given as a routine vaccine to the general population. In the event of serious human orthopoxvirus infections, it is important to have treatments available for individual patients as well as their close contacts. The smallpox vaccine and vaccinia immune globulin (VIG were used in the past as therapeutics for patients exposed to smallpox. VIG was also used in patients who were at high risk of developing complications from smallpox vaccination. Thus post-exposure vaccination and VIG treatments may again become important therapeutic modalities. This paper summarizes some of the historic use of the smallpox vaccine and immunoglobulins in the post-exposure setting in humans and reviews in detail the newer animal studies that address the use of therapeutic vaccines and immunoglobulins in orthopoxvirus infections as well as the development of new therapeutic monoclonal antibodies.

  1. Traditional Smallpox Vaccines and Atopic Dermatitis

    Science.gov (United States)

    ... Categories Cleansers Clothing & Fabrics Disposable Wipes Moisturizers Hair Products Household Products OTC Drugs Sunscreens About NEA Seal of ... Categories Cleansers Clothing & Fabrics Disposable Wipes Moisturizers Hair Products Household Products OTC Drugs Sunscreens About NEA Seal of ...

  2. Active treatment of murine tumors with a highly attenuated vaccinia virus expressing the tumor associated antigen 5T4 (TroVax) is CD4+ T cell dependent and antibody mediated.

    Science.gov (United States)

    Harrop, Richard; Ryan, Matthew G; Myers, Kevin A; Redchenko, Irina; Kingsman, Susan M; Carroll, Miles W

    2006-09-01

    5T4 is a tumor associated antigen that is expressed on the surface of a wide spectrum of human adenocarcinomas. The highly attenuated virus, modified vaccinia Ankara, has been engineered to express human 5T4 (h5T4). In a pre-clinical murine model, the recombinant virus (TroVax) induces protection against challenge with CT26-h5T4 (a syngeneic tumor line expressing h5T4). Anti-tumor activity is long lived, with protection still evident 6 months after the final vaccination. In a therapeutic setting, injection of mice with TroVax results in a reduction in tumor burden of >90%. Depletion of CD8+ T cells has no effect upon therapy in the active treatment model, whereas depletion of CD4+ T cells completely abrogates anti-tumor activity. In a prophylactic setting, depletion of CD4+ and CD8+ T cells after the induction of a h5T4 immune response has no deleterious effect on protection following challenge with CT26-h5T4. In light of these studies, the role of antibodies in protection against tumor challenge was investigated. 5T4 specific polyclonal serum decreased tumor burden by approximately 70%. Thus, we conclude that CD4+ T cells are essential for the induction of a protective immune response and that antibodies are the likely effector moiety in this xenogeneic murine tumor model. PMID:16311730

  3. Combined prime-boost vaccination against tick-borne encephalitis (TBE using a recombinant vaccinia virus and a bacterial plasmid both expressing TBE virus non-structural NS1 protein

    Directory of Open Access Journals (Sweden)

    Zakharova LG

    2005-08-01

    Full Text Available Abstract Background Heterologous prime-boost immunization protocols using different gene expression systems have proven to be successful tools in protecting against various diseases in experimental animal models. The main reason for using this approach is to exploit the ability of expression cassettes to prime or boost the immune system in different ways during vaccination procedures. The purpose of the project was to study the ability of recombinant vaccinia virus (VV and bacterial plasmid, both carrying the NS1 gene from tick-borne encephalitis (TBE virus under the control of different promoters, to protect mice against lethal challenge using a heterologous prime-boost vaccination protocol. Results The heterologous prime-boost vaccination protocol, using a VV recombinant and bacterial plasmid, both containing the NS1 TBE virus protein gene under the control of different promoters, achieved a high level of protection in mice against lethal challenge with a highly pathogenic TBE virus strain. No signs of pronounced TBE infection were detected in the surviving animals. Conclusion Heterologous prime-boost vaccination protocols using recombinant VV and bacterial plasmids could be used for the development of flavivirus vaccines.

  4. Phylogenetic analysis of three genes of Penguinpox virus corresponding to Vaccinia virus G8R (VLTF-1, A3L (P4b and H3L reveals that it is most closely related to Turkeypox virus, Ostrichpox virus and Pigeonpox virus

    Directory of Open Access Journals (Sweden)

    Williamson Anna-Lise

    2009-05-01

    Full Text Available Abstract Phylogenetic analysis of three genes of Penguinpox virus, a novel Avipoxvirus isolated from African penguins, reveals its relationship to other poxviruses. The genes corresponding to Vaccinia virus G8R (VLTF-1, A3L (P4b and H3L were sequenced and phylogenetic trees (Neighbour-Joining and UPGMA constructed from MUSCLE nucleotide and amino acid alignments of the equivalent sequences from several different poxviruses. Based on this analysis, PEPV was confirmed to belong to the genus Avipoxvirus, specifically, clade A, subclade A2 and to be most closely related to Turkeypox virus (TKPV, Ostrichpox virus (OSPVand Pigeonpox virus (PGPV.

  5. Deletion of the vaccinia virus gene A46R, encoding for an inhibitor of TLR signalling, is an effective approach to enhance the immunogenicity in mice of the HIV/AIDS vaccine candidate NYVAC-C.

    Directory of Open Access Journals (Sweden)

    Beatriz Perdiguero

    Full Text Available Viruses have developed strategies to counteract signalling through Toll-like receptors (TLRs that are involved in the detection of viruses and induction of proinflammatory cytokines and IFNs. Vaccinia virus (VACV encodes A46 protein which disrupts TLR signalling by interfering with TLR: adaptor interactions. Since the innate immune response to viruses is critical to induce protective immunity, we studied whether deletion of A46R gene in a NYVAC vector expressing HIV-1 Env, Gag, Pol and Nef antigens (NYVAC-C improves immune responses against HIV-1 antigens. This question was examined in human macrophages and in mice infected with a single A46R deletion mutant of the vaccine candidate NYVAC-C (NYVAC-C-ΔA46R. The viral gene A46R is not required for virus replication in primary chicken embryo fibroblast (CEF cells and its deletion in NYVAC-C markedly increases TNF, IL-6 and IL-8 secretion by human macrophages. Analysis of the immune responses elicited in BALB/c mice after DNA prime/NYVAC boost immunization shows that deletion of A46R improves the magnitude of the HIV-1-specific CD4 and CD8 T cell immune responses during adaptive and memory phases, maintains the functional profile observed with the parental NYVAC-C and enhances anti-gp120 humoral response during the memory phase. These findings establish the immunological role of VACV A46R on innate immune responses of macrophages in vitro and antigen-specific T and B cell immune responses in vivo and suggest that deletion of viral inhibitors of TLR signalling is a useful approach for the improvement of poxvirus-based vaccine candidates.

  6. Host-range restriction of vaccinia virus E3L deletion mutant can be overcome in vitro, but not in vivo, by expression of the influenza virus NS1 protein.

    Directory of Open Access Journals (Sweden)

    Susana Guerra

    Full Text Available During the last decades, research focused on vaccinia virus (VACV pathogenesis has been intensified prompted by its potential beneficial application as a vector for vaccine development and anti-cancer therapies, but also due to the fear of its potential use as a bio-terrorism threat. Recombinant viruses lacking a type I interferon (IFN antagonist are attenuated and hence good vaccine candidates. However, vaccine virus growth requires production in IFN-deficient systems, and thus viral IFN antagonists that are active in vitro, yet not in vivo, are of great value. The VACV E3 and influenza virus NS1 proteins are distinct double-stranded RNA-binding proteins that play an important role in pathogenesis by inhibiting the mammalian IFN-regulated innate antiviral response. Based on the functional similarities between E3 and NS1, we investigated the ability of NS1 to replace the biological functions of E3 of VACV in both in vitro and in vivo systems. For this, we generated a VACV recombinant virus lacking the E3L gene, yet expressing NS1 (VVΔE3L/NS1. Our study revealed that NS1 can functionally replace E3 in cultured cells, rescuing the protein synthesis blockade, and preventing apoptosis and RNA breakdown. In contrast, in vivo the VVΔE3L/NS1 virus was highly attenuated after intranasal inoculation, as it was unable to spread to the lungs and other organs. These results indicate that there are commonalities but also functional differences in the roles of NS1 and E3 as inhibitors of the innate antiviral response, which could potentially be utilized for vaccine production purposes in the future.

  7. 缺失TA35R基因减毒天坛株痘苗病毒的构建及筛选%Construction and selection of the attenuated vaccinia Tiantan strain with deleted TA35R gene

    Institute of Scientific and Technical Information of China (English)

    姜爽; 阚式绂; 胡宁宁; 陈智飞; 李一权; 周晔; 李霄; 孙丽丽; 金宁一

    2014-01-01

    通过敲除痘苗病毒天坛株(vaccinia virus tiantan strain,VTT)复制非必需基因TA35R,结合双筛选标记及同源重组技术,构建TA35R基因缺失的VTT弱毒株rVTT TA35R.人工合成含有TA35R重组臂、同向loxp序列、早晚期启动子PE/L、EGFP及酶切位点的穿梭质粒pTA35R-EGFP.pTA35R-EGFP和野生型VTT共转染BHK-21细胞,通过绿色荧光蚀斑筛选,构建缺失TA35R基因且含FGFP基因的重组痘苗病毒rVTT TA35R--EGFP+.采用Cre/Loxp系统敲除外源筛选标记EGFP,获得缺失TA35R基因的重组痘苗病毒rVTT-TA35R-,利用PCR方法和电子显微镜对其进行鉴定,通过MTT法检测细胞噬性以评价其减毒效果.结果表明,所构建的痘苗病毒弱毒株rVTT-TA35R完全缺失了TA35R基因和外源筛选标记EGFP,且细胞毒性减弱.

  8. Clustered epitopes within the Gag-Pol fusion protein DNA vaccine enhance immune responses and protection against challenge with recombinant vaccinia viruses expressing HIV-1 Gag and Pol antigens

    International Nuclear Information System (INIS)

    We have generated a codon-optimized hGagp17p24-Polp51 plasmid DNA expressing the human immunodeficiency virus type 1 (HIV-1) Gag-Pol fusion protein that consists of clusters of highly conserved cytotoxic T lymphocyte (CTL) epitopes presented by multiple MHC class I alleles. In the hGagp17p24-Polp51 construct, the ribosomal frameshift site had been deleted together with the potentially immunosuppressive Gag nucleocapsid (p15) as well as Pol protease (p10) and integrase (p31). Analyses of the magnitude and breadth of cellular responses demonstrated that immunization of HLA-A2/Kb transgenic mice with the hGagp17p24-Polp51 construct induced 2- to 5-fold higher CD8+ T-cell responses to Gag p17-, p24-, and Pol reverse transcriptase (RT)-specific CTL epitopes than the full-length hGag-PolΔFsΔPr counterpart. The increases were correlated with higher protection against challenge with recombinant vaccinia viruses (rVVs) expressing gag and pol gene products. Consistent with the profile of Gag- and Pol-specific CD8+ T cell responses, an elevated level of type 1 cytokine production was noted in p24- and RT-stimulated splenocyte cultures established from hGagp17p24-Polp51-immunized mice compared to responses induced with the hGag-PolΔFsΔPr vaccine. Sera of mice immunized with the hGagp17p24-Polp51 vaccine also exhibited an increased titer of p24- and RT-specific IgG2 antibody responses. The results from our studies provide insights into approaches for boosting the breadth of Gag- and Pol-specific immune responses

  9. Zeocin和GFP双筛选标记重组痘苗病毒载体的构建%Construction of recombinant vaccinia virus vector with Zeocin-GFP double selectable marker

    Institute of Scientific and Technical Information of China (English)

    房有荣; 李红玉; 陈科达; 周文硕; 阎辉

    2012-01-01

    Objective To construct the plasmid pCB-Zeo-GFP fusioned with Zeocin and GFP double selection marker,and construct recombinant vacci1nia virus to express the double selection marker.Methods plasmid LeGo-G/ Zeo which contained Zeo-GFP fusion gene fragment was amplified by PCR,digested by BamH I enzyme,and then ligated with the blank plasmid pCB treated with the same enzyme to replace the original marker gene gpt.Through colony PCR,the recombinant plasmid pCB-Zeo-GFP was identified by restriction map analysis and sequencing analysis,the recombinant vaccinia virus was constructed through homologous recombination at homology-bit point TK area.After Zeocin screening of two generations,GFP expression of the cells infected by the viral supematant was analyzed with flow cytometry.Results The target 426 bp band was amplified on the 1st,the 5th and the 10th colonies by colony PCR,and was fully consistent with the expected size; the recombinant plasmid pCB-Zeo-GFP was verified by restriction enzyme analysisand DNA sequencing,The recombinant vaccinia virus was constructed through homologous recombination and Zeocin screening of the two generations,GFP expression of the cells infected with the viral supematant was up to 7.18% by flow cytometry while the control was up to 1.43 %.Through Zeocin screening of the five generations,GFP was observed on more than 80% cells by laser confocal and the target band was amplified from recombinant vaceinia virus genomic DNA.Conclusions The recombinant vaccinia virus is not only observable but also resistant to drug resistance,so it is easy to be screened and identified.%目的 为研究重组痘苗病毒通用载体,构建融合Zeocin和GFP双筛选标记质粒pCB-ZeoGFP.方法 质粒LeGo-G/Zeo含有Zeo-GFP融合基因片段,通过PCR反应、BamHI酶切后连接替换空白质粒pCB的筛选基因gpt,通过菌落PCR,酶切图谱分析及测序分析鉴定重组质粒,构建成功后将其与野生型痘苗病毒进行位点特异

  10. Study of the immunogenicity and virulence of replication-competent recombinant vaccinia virus in CD4+T cell-depleted mice%C D4+T 细胞剔除对复制型重组痘苗病毒免疫原性及毒力的影响

    Institute of Scientific and Technical Information of China (English)

    刘颖; 王书晖; 刘莹; 彭虹; 刘畅; 邵一鸣

    2014-01-01

    目的:探讨CD4+T细胞剔除对复制型重组痘苗病毒免疫原性及毒力的影响。方法BALB/c小鼠经腹腔注射CD4单克隆抗体剔除CD4+T细胞后,尾部划痕接种重组痘苗病毒rTV或天坛株VTT,同时设正常小鼠对照。免疫后定期观察小鼠体重变化和接种部位痘斑变化,并检测病毒排出量和CD4+T细胞比例。免疫后第28天处死小鼠,检测小鼠体液和细胞免疫,取卵巢组织检测病毒滴度。结果 CD4+T细胞剔除小鼠和正常小鼠在接种rTV或VTT后均出现典型的种痘后局部反应,但均未出现次级或卫星病损。 CD4+T细胞剔除小鼠的痘斑愈合时间、病毒排出时间及体重恢复时间均长于正常小鼠。 CD4+T细胞剔除小鼠和正常小鼠的卵巢中均未检测出痘苗病毒。 CD4+T细胞剔除小鼠的HIV抗体和痘苗病毒抗体平均A值分别为0.119和0.168,显著低于正常小鼠的平均A值(P<0.05,P<0.01)。 McAb/rTV组的痘苗病毒中和抗体滴度几何均值为1∶321,显著低于rTV组1∶1286(P<0.05)。 McAb/rTV组诱导的痘苗病毒特异性IFN-γ+/CD4+T效应细胞百分比均值为0.654%,显著低于rTV组(P=0.0004),但IFN-γ+/CD8+T效应细胞百分比与rTV组的差异无统计学意义。结论剔除CD4+T细胞的小鼠能有效控制重组痘苗病毒的复制和播散。 CD4+T细胞的剔除显著降低了体液免疫应答和CD4+T细胞免疫应答,对CD8+T细胞免疫应答无显著影响。%Objective To investigate the effects of CD4+T cell depletion in BALB/c mice on the immunogenicity and virulence of replication-competent recombinant vaccinia virus. Methods Twelve BALB/c mice were inoculated with recombinant Tiantan vaccinia ( rTV, n=8 ) or vaccinia virus Tiantan strain ( VTT, n=4) by tail scarification after the depletion of CD4+T cells with anti-CD4 monoclonal anti-body( McAb) injected intraperitoneally for three

  11. Sobre a varíola e as práticas da vacinação em Minas Gerais (Brasil no século XIX About smallpox and vaccination practices in Minas Gerais (Brazil in the 19th century

    Directory of Open Access Journals (Sweden)

    Anny Jackeline Torres Silveira

    2011-02-01

    Full Text Available Este artigo analisa o impacto da varíola e da prática da vacinação antivariólica em Minas Gerais durante o período imperial brasileiro (1822-1889. Apesar da presença de órgãos que visavam à organização e à propagação da vacina no país desde o início do século XIX, identifica-se, pela documentação relativa à saúde pública produzida pelas autoridades provinciais, uma série de fatores de natureza administrativa e cultural que influenciaram negativamente na plena implementação quer da vacina quer da estrutura organizada no período visando à sua difusão. Seguindo as proposições da historiografia dedicada ao tema, discute-se que, apesar da tendência à centralização observada em diferentes esferas da administração no processo de estruturação do Estado Imperial, no âmbito da saúde e, particularmente, no âmbito do serviço de vacinação antivariólica, prevaleceu uma desarticulação entre os diferentes agentes responsáveis pela implementação e o controle desse serviço. Outro aspecto que contribuiu para as dificuldades relativas à implementação desse serviço foi a grande resistência da população em submeter-se à vacina e que pode ser entendida pela análise das percepções sociais construídas sobre a doença e o método da vacinação.This article discusses the impact of smallpox and vaccination practices used against the disease used in the province of Minas Gerais, in Brazil, during the Imperial Period (1822-1889. Despite the existence of services responsible for the organization and dissemination of the vaccine in the country since the early 19th century, some administrative and cultural factors, as identified in documents produced by the province's public health authorities at the time, had a negative impact upon the full implementation of both practice and organization of services aimed at the dissemination of smallpox vaccination. Based upon historiographic sources, it is argued that despite

  12. "A wild and wondrous ride": CDC field epidemiologists in the east Pakistan smallpox and cholera epidemics of 1958 "Uma louca e maravilhosa jornada": epidemiologistas de campo do CDC nas epidemias de varíola e cólera do Paquistão Oriental em 1958

    Directory of Open Access Journals (Sweden)

    Paul Greenough

    2011-02-01

    Full Text Available In mid-April of 1958 the Government of Pakistan summoned the press to announce a grave need for international aid to cope with smallpox and cholera epidemics in East Pakistan. In response, and with the backing of the US State Department, Dr. Alexander D. Langmuir, chief epidemiologist of the CDC, led a team of epidemiologists to assist authorities in Dacca strengthen their immunization programs. Langmuir's superiors hoped for a Cold War advantage, but he saw an opportunity for trainees in the Epidemic Intelligence Service to learn about public health in a developing country. Langmuir later described the episode as a "wild and wondrous ride," but it had been more like a nightmare: the East Pakistan health department had collapsed; a popular movement had taken over vaccination and squandered vaccine supplies; hostile journalists had questioned the Americans' deeper motives; and a professional rivalry opened between the Americans and a British epidemiologist named Aidan Cockburn. By the time the epidemic subsided in July 1958, 30 million Bengalis had been vaccinated for smallpox but another 20,000 had succumbed to the disease. This episode was CDC's first sustained foreign intervention, a precursor to its extensive role in the 1970s helping WHO eradicate smallpox from Bangladesh.Em meados de abril de 1958, o Governo do Paquistão convocou a imprensa para anunciar a urgente necessidade de auxílio internacional para lidar com epidemias de varíola e cólera no Paquistão Oriental. Em resposta, e com o apoio do Departamento de Estado dos Estados Unidos, Dr. Alexander D. Langmuir, chefe de epidemiologia do CDC em Atlanta, liderou um time de epidemiologistas para auxiliar as autoridades em Dacca a reforçar seus programas de imunização. Os superiores de Langmuir ansiavam por demonstrações de capacidade dos EUA na Guerra Fria, mas ele vislumbrou uma chance para o Serviço de Inteligência Epidemiológica aprender sobre saúde pública em países em

  13. 牛痘疫苗接种家兔炎症皮肤提取物治疗神经病理性痛疗效的系统评价%EFFICACY OF EXTRACT OF INFLAMMATORY RABBIT SKIN WITH VACCINATED SMALLPOX VACCINATION FOR NEUROPATHIC PAIN: A SYSTEMATIC REVIEW

    Institute of Scientific and Technical Information of China (English)

    张彩琳; 席鹏; 李亦梅

    2013-01-01

    Objective:To evaluate the treatment effects of extract of inflammatory rabbit skin vaccinated with smallpox vaccination on neuropathic pain according to current clinical research evidence,and provide the theoretical basis for clinical prognostic evaluation.Methods:Electronic database including PubMed,Medalink,Springerlink,CNKI,Tongfang Data,and Wanfang Data were searched,meanwhile related articles were searched by auxiliary manual retrieval,and the reference lists of enrolled reports and reviews were looked up.The search collected the randomized controlled clinical trials on the treatment of extract of inflammatory rabbit skin vaccinated with smallpox vaccination for neuropathic pain from 1987 to 2011.The quality of included trials was evaluated by the Cochrane Handbook.Valid data were extracted and statistically analyzed with the software RevMan 5.0.Results:Totally 1009 patients in fifteen trials were included.Meta-analysis indicated that,compared to placebo,carbamazepine,methycobal,or pancreatic kininogenase,the treatment effects of extract of inflammatory rabbit skin vaccinated with smallpox vaccination for neuropathic pain were better [OR=2.69,95% CI (1.99,3.65)].There were statistically significant differences in the visual analogue scale at the end of the treatment [OR=-1.94,95% CI (-2.05,-1.84)].There was no statistically significant difference in safety between the control group and the treatment group [OR=0.53,95% CI (0.30,0.96)].Conclusion:Extract of inflammatory rabbit skin vaccinated with smallpox vaccination can effectively relieve the neuropathic pain.%目的:根据目前的临床研究证据评价牛痘疫苗接种家兔炎症皮肤提取物用于治疗神经病理性痛的疗效,为临床预后评估提供理论依据.方法:计算机检索PubMed、Medalink、Springerlink、CNKI、同方、万方等数据库,同时辅助手工检索相关文献,查阅纳入文献的参考文献.检索时间为1987至2011年的文献,收集牛痘疫苗接种

  14. Construction and identification of the attenuated vaccinia Tiantan strain deleted for multiple genes%天坛株痘苗病毒基因缺失弱毒株的构建及鉴定

    Institute of Scientific and Technical Information of China (English)

    盛媛; 王浩然; 胡宁宁; 陈智飞; 王宏宇; 姜爽; 周晔; 李一权; 李霄

    2014-01-01

    本研究旨在通过敲除部分与天坛株痘苗病毒(vaccinia virus Tiantan strain,VTT)毒力和宿主范围等相关的复制非必需基因,并结合双标记筛选及外源筛选标记敲除技术,构建多基因缺失VTT弱毒株.人工合成7对重组臂,结合瘟病毒早晚期复合强启动子pE/L和外源筛选标记增强型绿色荧光蛋白(Enhance green fluorescent pro-tein,EGFP),构建穿梭载体质粒pTC-EGFP、pTA35-EGFP、pTA66-EGFP、pTE-EGFP、pTB-EGFP、pTI-EGFP和pTJ-EGFP.将上述质粒依次与VTT或基因缺失VTT共转/感染BHK细胞,并通过同源重组和荧光蚀斑筛选方法,逐一敲除拟缺失基因片段(TC∶TC7L~TK2L; TA35∶TA35L; TA66∶TA66R; TE∶TE3L; TB∶TB13R~TB14R;TI:TI4L;TJ∶TJ2R).利用Cre/Loxp系统实现对外源筛选标记的敲除,最终获得天坛株痘苗病毒基因缺失弱毒株TTVAC7,并运用PCR方法对TTVAC7进行鉴定和遗传稳定性检测.结果表明,本研究成功构建了缺失7个目的片段的天坛株痘苗病毒弱毒株TTVAC7,且该弱毒株具有良好的遗传稳定性.

  15. A prime/boost DNA/Modified vaccinia virus Ankara vaccine expressing recombinant Leishmania DNA encoding TRYP is safe and immunogenic in outbred dogs, the reservoir of zoonotic visceral leishmaniasis.

    Science.gov (United States)

    Carson, Connor; Antoniou, Maria; Ruiz-Argüello, Maria Begoña; Alcami, Antonio; Christodoulou, Vasiliki; Messaritakis, Ippokratis; Blackwell, Jenefer M; Courtenay, Orin

    2009-02-11

    Previous studies demonstrated safety, immunogenicity and efficacy of DNA/modified vaccinia virus Ankara (MVA) prime/boost vaccines expressing tryparedoxin peroxidase (TRYP) and Leishmania homologue of the mammalian receptor for activated C kinase (LACK) against Leishmania major challenge in mice, which was consistent with results from TRYP protein/adjuvant combinations in non-human primates. This study aimed to conduct safety and immunogenicity trials of these DNA/MVA vaccines in dogs, the natural reservoir host of Leishmania infantum, followed-up for 4 months post-vaccination. In a cohort of 22 uninfected outbred dogs, blinded randomised administration of 1000 microg (high dose) or 100 microg (low dose) DNA prime (day 0) and 1x10(8)pfu MVA boost (day 28) was shown to be safe and showed no clinical side effects. High dose DNA/MVA vaccinated TRYP dogs produced statistically higher mean levels of the type-1 pro-inflammatory cytokine IFN-gamma than controls in whole blood assays (WBA) stimulated with the recombinant vaccine antigen TRYP, up to the final sampling at day 126, and in the absence of challenge with Leishmania. TRYP vaccinated dogs also demonstrated significantly higher TRYP-specific total IgG and IgG2 subtype titres than in controls, and positive in vivo intradermal reactions at day 156 in the absence of natural infection, observed in 6/8 TRYP vaccinated dogs. No significant increases in IFN-gamma in LACK-stimulated WBA, or in LACK-specific IgG levels, were detected in LACK vaccinated dogs compared to controls, and only 2/9 LACK vaccinated dogs demonstrated DTH responses at day 156. In all groups, IgG1 subclass responses and antigen-specific stimulation of IL-10 were similar to controls demonstrating an absence of Th2/T(reg) response, as expected in the absence of in vivo restimulation or natural/experimental challenge with Leishmania. These collective results indicate significant antigen-specific type-1 responses and in vivo memory phase cellular immune

  16. Safety and tolerability of conserved region vaccines vectored by plasmid DNA, simian adenovirus and modified vaccinia virus ankara administered to human immunodeficiency virus type 1-uninfected adults in a randomized, single-blind phase I trial.

    Directory of Open Access Journals (Sweden)

    Emma-Jo Hayton

    Full Text Available TRIAL DESIGN: HIV-1 vaccine development has advanced slowly due to viral antigenic diversity, poor immunogenicity and recently, safety concerns associated with human adenovirus serotype-5 vectors. To tackle HIV-1 variation, we designed a unique T-cell immunogen HIVconsv from functionally conserved regions of the HIV-1 proteome, which were presented to the immune system using a heterologous prime-boost combination of plasmid DNA, a non-replicating simian (chimpanzee adenovirus ChAdV-63 and a non-replicating poxvirus, modified vaccinia virus Ankara. A block-randomized, single-blind, placebo-controlled phase I trial HIV-CORE 002 administered for the first time candidate HIV-1- vaccines or placebo to 32 healthy HIV-1/2-uninfected adults in Oxford, UK and elicited high frequencies of HIV-1-specific T cells capable of inhibiting HIV-1 replication in vitro. Here, detail safety and tolerability of these vaccines are reported. METHODS: Local and systemic reactogenicity data were collected using structured interviews and study-specific diary cards. Data on all other adverse events were collected using open questions. Serum neutralizing antibody titres to ChAdV-63 were determined before and after vaccination. RESULTS: Two volunteers withdrew for vaccine-unrelated reasons. No vaccine-related serious adverse events or reactions occurred during 190 person-months of follow-up. Local and systemic events after vaccination occurred in 27/32 individuals and most were mild (severity grade 1 and predominantly transient (<48 hours. Myalgia and flu-like symptoms were more strongly associated with MVA than ChAdV63 or DNA vectors and more common in vaccine recipients than in placebo. There were no intercurrent HIV-1 infections during follow-up. 2/24 volunteers had low ChAdV-63-neutralizing titres at baseline and 7 increased their titres to over 200 with a median (range of 633 (231-1533 post-vaccination, which is of no safety concern. CONCLUSIONS: These data demonstrate

  17. 恶性疟原虫保护性抗原复合基因-痘苗病毒 重组活疫苗株免疫动物后诱发的Th1细胞免疫反应%THE Th1 RESPONSES OF A VACCINIA VECTORED MULTI-EPITOPE LIVE VACCINE CANDIDATE FOR PLASMODIUM FALCIPARUM

    Institute of Scientific and Technical Information of China (English)

    董文其; 李明; 毕惠祥; 李英杰

    2001-01-01

    Objective To determine Th1 responses of the vaccinia virus vectored multi-epitope live vaccine candidate for Plasmodium falciparum. Methods The sera of rabbit, rat and mice immunized with recombinant vaccinia virus were measured for the level of IL-2 and IFN by the method of MTT. Results There was obvious IL-2 activity in the sera of rabbit, rat and mice in 4-6 weeks after immunized with recombinant virus. The sera IFN level of those three kinds of animals in 6 weeks after immunization was significantly higher than that of pre-immunization. Conclusion The vaccinia virus vectored multi-epitope live vaccine candidate could stimulate Th1 responses in immunized animals.%目的 测定恶性疟原虫-痘苗病毒重组活疫苗候选株免疫动物后产生白细胞介素-2(IL-2)和干扰素(IFN)的生物学活性水平。 方法 用MTT法测定了其诱导的保护性细胞免疫反应(Th1细胞免疫反应)。 结果 用重组痘苗病毒在免疫家兔及大白鼠4~6 wk后血清中IL-2的生物学活性增强,免疫后6 wk家兔、大白鼠及小白鼠3种动物血清中IFN的生物学活性水平比免疫前明显升高。 结论 恶性疟原虫-痘苗病毒重组活疫苗候选株免疫动物后可诱发机体产生Th1细胞免疫反应。

  18. Rationalizing the development of live attenuated virus vaccines

    OpenAIRE

    Lauring, Adam S.; Jones, Jeremy O.; Andino, Raul

    2010-01-01

    Since the first demonstration of the protective effects of vaccinia inoculation, vaccination has been one of the medicine’s greatest successes. The design of vaccines against viral disease has evolved considerably over the last 50 years. Classically attenuated viruses, those created by passaging a virus in cultured cells, have proven to be an effective means for preventing many viral diseases, including smallpox, polio, measles, mumps, and yellow fever. However, empiric attenuation is not a r...

  19. Protection of rabbits and immunodeficient mice against lethal poxvirus infections by human monoclonal antibodies.

    Directory of Open Access Journals (Sweden)

    Lindsay Crickard

    Full Text Available Smallpox (variola virus is a bioweapon concern. Monkeypox is a growing zoonotic poxvirus threat. These problems have resulted in extensive efforts to develop potential therapeutics that can prevent or treat potentially lethal poxvirus infections in humans. Monoclonal antibodies (mAbs against smallpox are a conservative approach to this problem, as the licensed human smallpox vaccine (vaccinia virus, VACV primarily works on the basis of protective antibody responses against smallpox. Fully human mAbs (hmAbs against vaccinia H3 (H3L and B5 (B5R, targeting both the mature virion (MV and extracellular enveloped virion (EV forms, have been developed as potential therapeutics for use in humans. Post-exposure prophylaxis was assessed in both murine and rabbit animal models. Therapeutic efficacy of the mAbs was assessed in three good laboratory practices (GLP studies examining severe combined immunodeficiency mice (SCID given a lethal VACV infection. Pre-exposure combination hmAb therapy provided significantly better protection against disease and death than either single hmAb or vaccinia immune globulin (VIG. Post-exposure combination mAb therapy provided significant protection against disease and death, and appeared to fully cure the VACV infection in ≥50% of SCID mice. Therapeutic efficacy was then assessed in two rabbit studies examining post-exposure hmAb prophylaxis against rabbitpox (RPXV. In the first study, rabbits were infected with RPVX and then provided hmAbs at 48 hrs post-infection, or 1 hr and 72 hrs post-infection. Rabbits in both groups receiving hmAbs were 100% protected from death. In the second rabbitpox study, 100% of animal treated with combination hmAb therapy and 100% of animals treated with anti-B5 hmAb were protected. These findings suggest that combination hmAb treatment may be effective at controlling smallpox disease in immunocompetent or immunodeficient humans.

  20. Animal infections by vaccinia-like viruses in the state of Rio de Janeiro: an expanding disease Infecções animais por vírus semelhantes ao vaccínia no estado do Rio de Janeiro: uma doença em expansão

    Directory of Open Access Journals (Sweden)

    Hermann G. Schatzmayr

    2009-07-01

    Full Text Available In the present study we investigated the presence of infections by vaccinia-like viruses in dairy cattle from 12 counties in the state of Rio de Janeiro in the last 9 years. Clinical specimens were collected from adult animals with vesicular/pustular lesions mainly in the udder and teats, and from calves with lesions around the nose and mouth. A plaque reduction neutralization test (PRNT was applied to search for antibodies to Orthopoxvirus; the vesicular/pustular fluids and scabs were examined by PCR, electron microscopy (EM and by inoculation in VERO cells for virus isolation. Antibodies to Orthopoxvirus were detected in most cases. The PCR test indicated a high nucleotide homology among the isolates and the vaccinia viruses (VACV used as controls. By EM, typical orthopoxvirus particles were observed in some specimens. The agents isolated in tissue culture were confirmed as vaccinia-like viruses by EM and PCR. The HA gene of the vaccinia-like Cantagalo/IOC virus isolated in our laboratory was sequenced and compared with other vaccinia-like isolates, showing high homology with the original Cantagalo strain, both strains isolated in 1999 from dairy cattle. Antibodies to Orthopoxvirus were detected in one wild rodent (genus Akodon sp. collected in the northwestern region of the state, indicating the circulation of poxvirus in this area. Nonetheless, PCR applied to tissue samples collected from the wild rodents were negative. Vesicular/pustular lesions in people in close contact with animals have been also recorded. Thus, the vaccinia-like virus infections in cattle and humans in the state seem to be an expanding condition, resulting in economic losses to dairy herds and leading to transient incapacitating human disease. Therefore, a possible immunization of the dairy cattle in the state should be carefully evaluated.Neste estudo avaliou-se a presença de infecções por vírus semelhantes ao vírus vaccínia (VACV em gado leiteiro em 12 munic

  1. Estudo comparativo das inclusões do alastrim e da vacina no macaco (Macacus rhesus A comparison of the inclusion bodies of alastrim and vaccinia in the monkey (Macacus rhesus

    Directory of Open Access Journals (Sweden)

    C. Magarinos Torres

    1934-02-01

    Full Text Available Vesiculas e pustulas contendo numerosas inclusões citoplasmicas nas celulas epidermicas, foram regularmente produzidas no macaco (Macacus rhesus, quer com o virus do alastrim, quer com o da vacina, após inoculação endovenosa e sem previa escarificação. O virus do alastrim parece menos virulento para essa especie de macaco que o da vacina. Ao passo que 12 macacos rhesus injetados por via endovenosa com sete amostras diferentes de virus do alastrim, após apresentarem com regularidade um infecção experimental, sobreviveram e se conservaram em boa saúde, a injecção endovenosa do virus da vacina recentemente preparado (polpa bruta produziu a morte em 2, dentre 4 animais experimentados. 2. - Foram notadas diferenças pequenas, mas nitidas, na morfologia das inclusões do alastrim e da vacina, em material fixado no liquido de Helly, incluido em parafina e corado pela hematoxilina-eosina. Dizem elas respeito ao numero de inclusões encontradas em cada celula epidermica e às suas reações de coloração. 3. - As inclusões do alastrim, quando apresentam grandes dimensões, conservam-se unicas ou solitarias no citoplasma das celulas epidermicas do macaco rhesus, e coram-se em tonalidade que varia do azul escuro ao cinzento-azulado. Comtudo, em celulas que sofreram necrose, ou naquelas contendo 2 a 4 inclusões de pequenas dimensões, por vezes elas se mostram coradas em roseo. 4. - As inclusões da vacina, quando em faze adeantada de desenvolvimento, são multiplas nas celulas epidermicas do macaco rhesus e mostram, regularmente, uma policromatofilia caracteristica.1. - Vesicles and pustules containing numerous cytoplasmic inclusion bodies within the epidermal cells were regularly produced in monkeys (Macacus rhesus by intravenous inoculation either of alastrim virus or of recently prepared vaccine emulsion, no previous scarifications being required. Alastrim virus seems less virulent for this species of monkey than the virus of vaccinia is

  2. Percutaneous Vaccination as an Effective Method of Delivery of MVA and MVA-Vectored Vaccines.

    Directory of Open Access Journals (Sweden)

    Clement A Meseda

    Full Text Available The robustness of immune responses to an antigen could be dictated by the route of vaccine inoculation. Traditional smallpox vaccines, essentially vaccinia virus strains, that were used in the eradication of smallpox were administered by percutaneous inoculation (skin scarification. The modified vaccinia virus Ankara is licensed as a smallpox vaccine in Europe and Canada and currently undergoing clinical development in the United States. MVA is also being investigated as a vector for the delivery of heterologous genes for prophylactic or therapeutic immunization. Since MVA is replication-deficient, MVA and MVA-vectored vaccines are often inoculated through the intramuscular, intradermal or subcutaneous routes. Vaccine inoculation via the intramuscular, intradermal or subcutaneous routes requires the use of injection needles, and an estimated 10 to 20% of the population of the United States has needle phobia. Following an observation in our laboratory that a replication-deficient recombinant vaccinia virus derived from the New York City Board of Health strain elicited protective immune responses in a mouse model upon inoculation by tail scarification, we investigated whether MVA and MVA recombinants can elicit protective responses following percutaneous administration in mouse models. Our data suggest that MVA administered by percutaneous inoculation, elicited vaccinia-specific antibody responses, and protected mice from lethal vaccinia virus challenge, at levels comparable to or better than subcutaneous or intramuscular inoculation. High titers of specific neutralizing antibodies were elicited in mice inoculated with a recombinant MVA expressing the herpes simplex type 2 glycoprotein D after scarification. Similarly, a recombinant MVA expressing the hemagglutinin of attenuated influenza virus rgA/Viet Nam/1203/2004 (H5N1 elicited protective immune responses when administered at low doses by scarification. Taken together, our data suggest that

  3. Percutaneous Vaccination as an Effective Method of Delivery of MVA and MVA-Vectored Vaccines.

    Science.gov (United States)

    Meseda, Clement A; Atukorale, Vajini; Kuhn, Jordan; Schmeisser, Falko; Weir, Jerry P

    2016-01-01

    The robustness of immune responses to an antigen could be dictated by the route of vaccine inoculation. Traditional smallpox vaccines, essentially vaccinia virus strains, that were used in the eradication of smallpox were administered by percutaneous inoculation (skin scarification). The modified vaccinia virus Ankara is licensed as a smallpox vaccine in Europe and Canada and currently undergoing clinical development in the United States. MVA is also being investigated as a vector for the delivery of heterologous genes for prophylactic or therapeutic immunization. Since MVA is replication-deficient, MVA and MVA-vectored vaccines are often inoculated through the intramuscular, intradermal or subcutaneous routes. Vaccine inoculation via the intramuscular, intradermal or subcutaneous routes requires the use of injection needles, and an estimated 10 to 20% of the population of the United States has needle phobia. Following an observation in our laboratory that a replication-deficient recombinant vaccinia virus derived from the New York City Board of Health strain elicited protective immune responses in a mouse model upon inoculation by tail scarification, we investigated whether MVA and MVA recombinants can elicit protective responses following percutaneous administration in mouse models. Our data suggest that MVA administered by percutaneous inoculation, elicited vaccinia-specific antibody responses, and protected mice from lethal vaccinia virus challenge, at levels comparable to or better than subcutaneous or intramuscular inoculation. High titers of specific neutralizing antibodies were elicited in mice inoculated with a recombinant MVA expressing the herpes simplex type 2 glycoprotein D after scarification. Similarly, a recombinant MVA expressing the hemagglutinin of attenuated influenza virus rgA/Viet Nam/1203/2004 (H5N1) elicited protective immune responses when administered at low doses by scarification. Taken together, our data suggest that MVA and MVA

  4. Estrategias, actores, promesas y temores en las campañas de vacunación antivariolosa en México: del Porfiriato a la Posrevolución (1880-1940 Strategies, actors, promises and fears in the smallpox vaccinations campaigns in Mexico: from the Porfiriato to the Post-revolution (1880-1940

    Directory of Open Access Journals (Sweden)

    Claudia Agostoni

    2011-02-01

    Full Text Available El artículo estudia algunas de las estrategias a las que recurrieron las autoridades de salud durante la puesta en marcha de programas vacunación antivariolosa durante los años de 1880 a 1940, periodo que corresponde al gobierno encabezado por Porfirio Díaz (1877-1911, a la fase armada de la Revolución Mexicana (1910-1920, y a las dos primeras décadas del estado posrevolucionario (1920-1940. Por una parte se prestará atención a la preeminencia que tuvo la vacunación en los centros urbanos, notablemente en la ciudad de México; y por la otra, se destacará la gradual, pero decisiva, organización y reglamentación de la vacunación antivariolosa en los programas destinados para el heterogéneo y desigual ámbito rural. Asimismo, se analizará la importancia que adquirió la educación higiénica, y se prestará atención a las divergentes respuestas que la aplicación masiva y cotidiana de la vacuna suscitó en las ciudades principales y en pequeños pueblos y municipios rurales, respuestas que incluyeron la resistencia, el temor, la incredulidad y la franca aceptación.The article examines some of the strategies employed by the Mexican health authorities that led to the organization of massive and obligatory smallpox vaccination campaigns from the late 1880s to the 1940s, a period of Mexican history that corresponds to the Porfirio Díaz regime (1877-1911, to the armed phase of the Mexican Revolution (1910-1920, and to the first two decades of the Post-revolutionary governments (1920-1940. Attention will be placed of the vaccination programs in the main urban settings, notably in Mexico City, as well as the gradual but decisive organization and regulation of vaccination campaigns in the heterogeneous rural milieu. Furthermore, the importance that hygienic education acquired will be explored, as well as the divergent and contested responses that emerged due to the obligatory vaccination campaigns, responses that included resistance, fear

  5. A varíola em São Paulo (SP, Brasil: histórico das internações no Instituto de Infectologia Emílio Ribas entre 1898 e 1970 Smallpox in São Paulo (SP, Brazil: history of admissions at the Institute of Infectious Diseases Emilio Ribas between 1898 and 1970

    Directory of Open Access Journals (Sweden)

    Ana Freitas Ribeiro

    2011-02-01

    Full Text Available O objetivo deste artigo é descrever as internações por varíola no Instituto de Infectologia Emílio Ribas, no período de 1898 a 1970, evidenciando-se a origem da residência dos pacientes da região metropolitana de São Paulo. Trata-se de um estudo descritivo retrospectivo, mediante coleta de dados secundários nos livros de registro de internação do IIER no período de 1898 a 1970. As internações foram analisadas segundo variáveis de tempo, lugar e pessoa e agrupadas em períodos de dez anos. Foram registradas 11.393 internações, com 533 óbitos, sendo 251 de pacientes do sexo feminino, 280 do masculino e dois óbitos com sexo ignorado. Esses pacientes residiam em 139 localidades diferentes. O município de São Paulo contribuiu com 7.915 69,5% do total, seguido de Santo André, Mogi das Cruzes, Guarulhos, São Caetano do Sul, Osasco e Suzano. Foram atendidos em trânsito 237 pacientes. Para 994 internações ignora-se o município, apesar de indicações nos prontuários.The objective of this article is to describe the admissions for smallpox at the Institute of Infectious Diseases Emilio Ribas, during the period from 1898 to 1970, showing the origin of the patients' residence in the metropolitan region of São Paulo. It is a descriptive study which used secondary data collected from the record books for admissions at the Institute during the period of 1898 to 1970. The hospital records were counted and grouped into periods of 10 years. The total amount of admissions were 11,393. From the total of 533 deaths, 251 of the patients were female, 280 male and two unknown. These patients resided in 139 different locations. The city of São Paulo contributed with 7915 or 69.5% of the total, followed by Santo André, Mogi das Cruzes, Guarulhos, São Caetano do Sul, Osasco and Suzano. It was seen 237 patients in transit. For 994 admissions the municipality of origin was ignored, despite indications in the records.

  6. Analysis of clinical effect and safety of extracts from rabbit skin inflamed by vaccinia virus in the treatment of external humeral epicondylitis%牛痘疫苗兔皮致炎免疫提取物治疗肱骨外上髁炎的临床效果与安全性分析

    Institute of Scientific and Technical Information of China (English)

    伊贵铭; 张勇

    2015-01-01

    目的:探讨牛痘疫苗兔皮致炎免疫提取物治疗肱骨外上髁炎的临床效果和安全性。方法选取本院2013年1月~2014年4月收治的66例肱骨外上髁炎患者为研究对象,随机分为对照组和治疗组,每组33例。对照组给予常规消炎镇痛治疗,治疗组在对照组基础上加用牛痘疫苗兔皮致炎免疫提取物,比较两组的临床疗效与安全性。结果两组治疗7、14 d后,临床症状均得到改善,且治疗组疗效优于对照组(P0.05)。结论牛痘疫苗兔皮致炎免疫提取物对治疗肱骨外上髁炎的临床效果显著,且安全性好。%Objective To explore the clinical effects and safety of extracts from rabbit skin inflamed by vaccinia virus in the treatment of external humeral epicondylitis. Methods 66 patients with external humeal epicondylitis admitted in-to our hospital from January 2013 to April 2014 were selected as research subjects,and were randomly divided into control group and treatment group,33 cases in each group.The control group was given regular analgesic and anti-in-flammatory treatment,and treatment group was further given extracts from rabbit skin inflamed by vaccinia virus on the basis of control group.Clinical effects and safety were compared between the two groups. Results 7 days and 14 days after the treatment in the two groups,the clinical symptoms all improved,and the curative effects of treatment group was better than that of control group(P<0.05).As for the improvement of pain,at the 7 days of the treatment,the total effective rates in treatment group was 43.4%,the control group was 33.3%,and the difference was significant (P<0.05).At the 14 days of the treatment, the total effective rates in treatment group was 72.7%,the control group was 56.7%,and the dif-ference was significant (P<0.05).The incidence of adverse reactions of two groups was very low,the adverse reactions in treatment group was 2 cases,while the treatment group was 3 cases, the

  7. Construction of expression vector of recombinant vaccinia virus TianTan strain with C8L-K3L region deletion and study on biological properties of the recombinant virus%痘苗病毒天坛株C8L-K3L片段缺失表达载体的生物学性能研究

    Institute of Scientific and Technical Information of China (English)

    刘铮; 刘颖; 王书晖; 张其程; 刘莹; 侯爵; 王荣敏; 邵一鸣

    2013-01-01

    目的 研究缺失C8L-K3L片段的痘苗病毒天坛株载体的生物学性能及外源基因的免疫原性.方法 构建缺失C8L-K3L区域的重组痘苗病毒天坛株载体VTT△C8-K3-gag.在4种细胞上检测了重组载体的增殖能力、在小鼠和家兔模型上进行毒力评价,并在BALB/c小鼠进行了免疫效果评价.结果 与VTT相比,VTT△C8-K3-gag在CEF、BHK-21、HeLa细胞中复制能力显著下降,在Vero细胞中失去复制能力.VTT△C8-K3-gag在小鼠和家兔模型中毒力均有显著降低.VTT△C8-K3-gag免疫小鼠第4周后诱导的痘苗病毒特异结合抗体与中和抗体滴度分别达到5.6× 103和1.0× 104,第9周滴度达到5.8×105和5.25×103,与VTKgpe相比均显著下降3~9倍,但E3刺激后的细胞免疫应答无显著变化.VTT△C8-K3-gag单独免疫或与DNA疫苗联合免疫诱导的HIV特异性抗体水平和细胞免疫应答均与VTKgpe无差异.结论 VTT△C8-K3-gag是一个安全性较高且具有深入研究价值的HIV候选疫苗株.%Objective To study the biological properties of the recombinant vaccinia virus Tiantan strain with C8L-K3L region deletion and its immunogenicity.Methods The expression vector of recombinant vaccinia virus TianTan strain (VTT△C8-K3-gag) was constructed by replacing C8L-K3L genes with HIV gag gene and GFP gene.Viral replication capacities in chicken CEF,hamster BHK-21,monkey Vero and human HeLa cell lines were detected respectively.Virulence evaluation was carried out in mice and rabbit models,and immune effects of VTT△C8-K3-gag was evaluated in BALA/c mice model.Results The replication capacity of VTT△C8-K3-gag was impaired in chicken CEF,hamster BHK-21 and human HeLa cell lines,and was completely restricted in monkey Vero cell line as compared with the parental VTT.VTT△C8-K3-gag was less virulent than VTT in mice and rabbit models.The cellular and humoral responses to HIV elicited by VTT△C8-K3-gag alone or in combination with DNA vaccine were similar

  8. 痘苗病毒VV1原核增强子样序列的克隆及其功能和应用研究%Function and application study on prokaryotic enhancer-like element VV1 from vaccinia virus genome

    Institute of Scientific and Technical Information of China (English)

    韩峰; 曹茹; 王艳; 秘晓林

    2015-01-01

    目的 从痘苗病毒基因组中克隆原核增强子样序列VV1,并对其结构、功能和应用进行研究.方法 采用氯霉素乙酰转移酶基因(CAT)作为报告基因,从痘苗病毒基因组中筛选具有原核增强子样活性的序列,采用末端定向缺失试验对原核增强子样序列进行结构与功能研究,用携带增强子样序列表达载体表达干扰素基因.结果 从痘苗病毒天坛株DNA基因组中筛选到原核增强子样序列VV1,正反向分别可使lacZ基因活性提高10.9倍和3.8倍,末端定向缺失试验证实,5'末端20 bp的核苷酸序列和3'末端20 bp的核苷酸序列对于VV1的活性具有重要作用,因为缺失任意一个都会导致增强活性的大幅度下降.而5'末端30~50 bp的核苷酸序列对于保持VV1片段的基本活性非常重要,缺失它时VV1的活性完全消失.用携带VV1的表达载体表达的IFN-α2b型干扰素比原表达载体活性提高2.6倍.结论 从痘苗病毒天坛株DNA基因组中筛选到原核增强子样序列VV1,末端定向缺失试验证实VV1功能区,携带痘苗病毒增强子样序列VV1的表达载体可提高干扰素基因的表达水平.%Objective To clone enhancer-like sequences from vaccinia virus genome.Study on function and application of it.Methods Enhancer-like element from vaccinia virus genome was obtained by using the chloramphenicol acetyl-transferase(CAT)gene as reporter gene.Stepwise deletion experiment was used to identify the functional domain of VV1 element.Interferon was expressed by using an expression vector harboring VV1 sequence.Results An enhancer-like element VV1 of 283 bp from vaccinia virus genome DNA was obtained.Deletion of β-galactosidase activity showed that positive direction could increase the activity 10.9 times and negative direction could increase 3.8 times.Stepwise deletion experiment was used to identify the functional domain of VV1 element.The results suggested that the 20 bp at 5' terminal and 20 bp at

  9. A novel double expression shuttle vector to get marker-free recombinant modified vaccinia virus Ankara%改良型痘苗病毒安卡拉株表达系统可删除筛选标记的双表达穿梭载体

    Institute of Scientific and Technical Information of China (English)

    郑其升; 毕志香; 李梅清; 侯继波; 陈溥言

    2011-01-01

    A novel double expression shuttle vector named pLR-gpt was constructed for marker-free recombinant modified vaccinia virus Ankara generation. A delectable Eco gpt marker was adopted with Cre/LoxP DNA recombination system and a BHK-21 cell line that can express Cre enzyme. Eco gpt gene controlled by P7.5 promoter from Vaccinia virus was cloned between two LoxP sites in the same direction. Additionally, two multiple cloning site under control of other two Vaccinia virus promoters were constructed outside LoxP sites. With this new transfer vector, Eco gpt marker in rMVA can be deleted on BHK-Cre with interaction between Cre enzyme and LoxP sequence. In order to verify the efficacy of this system, ORF5 and ORF6 gene of Porcine reproductive and respiratory syndrome virus (PRRSV) NJ-a strain were cloned into two multiple cloning sites of pLR-gpt to construct recombinant plasmid pLR-ORF5/ORF6. Homologous recombination between pLR-ORF5/ORF6 and wtMVA on BHK-21 cell was mediated by liposome by infecting cells with 0.01 MOI wtMVA two hours before transfection. After twelve cycles of selection, recombinant MVA with selecting marker Eco gpt was obtained and named as rMVAgpt-GP5/M. By infecting BHK-Cre, the Eco gpt marker in rMVAgpt-GP5/M was deleted and this rMVA was named as rMVA-GP5/M. Expression of GP5 and M protein was identified with Western blotting and IFA. Results from PCR and biological study for rMVA indicated that Eco gpt marker was completely deleted. Conclusions: double expression transfer vector for marker-free recombinant Modified vaccinia virus Ankara generation was successfully constructed, and works well in MVA expression system.%为了构建改良型痘苗病毒安卡拉株表达系统可删除筛选标记的双表达穿梭载体,利用Cre/LoxPDNA重组系统以及本实验室表达Cre酶的BHK-21细胞系(BHK-Cre),以大肠杆菌黄嘌吟-鸟嘌呤磷酸核糖转移酶(Eco gpt)为筛选标记构建可删除筛选标记的双表

  10. SIMULTANEOUS SMALLPOX AND B.C.G. VACCINATION IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Nyoman Kumara Rai

    2012-09-01

    Full Text Available Vaksinasi cacar dan BCG mulai diberikan secara simultan di Jawa dan Bali pada bulan April 1972 vaksinasi cacar diberikan pada lengan kiri dan BCG pada lengan kanan. Secara berangsur-angsur prograi ini kemudian diperluas kedaerah luar Jawa-Bali, sehingga pada akhir tahun 1973 sudah mencakup seluruh Indonesia. Tenaga yang digunakan adalah para juru cacar yang sudah ada dalam rangka proyek pembasmian penyakit cacar yang dimulai tahun 1968, dan terdapat hampir disemua kecamatan diseluru Indonesia. Ide untuk menggabungkan kedua jenis vaksinasi ini yang kebetulan mempunyai target sam (anak2 0 - 14 thn  timbul setelah penderita cacar tidak dilaporkan lagi dibulan September 1971 (ternyata kemudian letusan cacar terakhir adalah dibulan Desember 1971. Sampai saat itu vaksina BCG dilakukan oleh petugas Puskesmas dan tenaga part timer. Ternyata target tidak pernah tercapa hal ini mungkin disebabkan oleh terbatasnya waktu yang tersedia untuk melakukan vaksinasi BCC sehingga para tenaga part timer tsb. hanya mampu mencakup daerah disekitar Puskesmas dan sekolah dasar. Sebelumnya telah diadakan dua trial; yang pertama diadakan di Bandung untuk melihat at tidaknya saling pengaruh mempengaruhi antara kedua jenis vaksin cacar dan BCG bila diberikan pat saat yang bersamaan, sedangkain trial kedua dilakukan untuk menilai kemampuan juru cacar dala melaksanakan vaksinasi BCG serta kesukaran! yang dijumpai dilapangan (masing2 didua kabupaten (Jawa Tengah, Timur dan Yogyakarta. Disamping keuntungan yang diperoleh dari penggabungan kedua jenis vaksinasi ini yakni penghematan tenaga, biaya dan waktu, dijumpai juga beberapa kesukaran antara lain pengumpulan anak2, supply vaksin BCG yang tidak teratur dll. Walaupun demikian, di Jawa dan Bali hasil vaksinasi BCG antara April 1972 sampai dengan April 1973 menunjukkan kenaikan out-put leb dari 4 kali lipat bila dibandingkan dengan out-put sebelum penggabungan, meskipun out-put prin vaksinasi cacar mempunyai tendensi menurun. Disini hanya akan dibahas pelaksanaan vaksinasi cacar dan BCG secara simultan di Jawa dan Bali, mengingat pelaksanaannya yang sudah memasuki tahun kedua.

  11. What You Should Know about a Smallpox Outbreak

    Science.gov (United States)

    ... Del.icio.us Digg Facebook Google Bookmarks Technorati Yahoo MyWeb Updates Subscribe Listen Page last reviewed March ... Del.icio.us Digg Facebook Google Bookmarks Technorati Yahoo MyWeb Download page Subscribe to RSS Get email ...

  12. Smallpox Vaccination Information for Women Who Are Pregnant or Breastfeeding

    Science.gov (United States)

    ... Del.icio.us Digg Facebook Google Bookmarks Technorati Yahoo MyWeb Updates Subscribe Listen Page last reviewed February ... Del.icio.us Digg Facebook Google Bookmarks Technorati Yahoo MyWeb Download page Subscribe to RSS Get email ...

  13. Study on Construction and Experimental Immunity of Recombinant Vaccinia Viruses and Nucleic Acid Vaccine Plasmids of HIV-1 gp120%HIV-1中国流行株gp120基因在痘苗病毒中的表达及其与核酸疫苗的实验免疫研究

    Institute of Scientific and Technical Information of China (English)

    王莉馨; 金宁一; 罗坤; 秦云龙; 王宏伟; 郭志儒; 殷震

    2001-01-01

    To obtain recombinant vaccinia viruses of gp120 gene of HI V-1 s ubtype B and evaluate the immune effects after immunization with nucleic acid va ccine for AIDS vaccine development. gp120 gene of HIV-1 subty pe B was inserted downstream of the combined promotor of pJ38 vector. Recombinant vaccini a viruses were selected by using plaque assay after homologous recombination. Ex pression products were examined by SDS-PAGE and Western blot. Immune response o f BALB/c mice was evaluated by lymphocyte transformation test, CTL, quantity chan ge of T lymphocyte of CD+4, CD+4and OD value of serum IgG antibody. Resu lts showed that rec ombinant vaccinia viruses vJ38gp120 were obtained with reactinogenicity. Effect of rVV immunized is very good, the best one is the rVV-primed and nucleic acid v accine-boosted group. Gp120 protein can be expressed in vJ38 gp120 and cellular immunity and humoral immunity of organism were induced.%将HIV-1中国流行株gp120基因在痘苗病毒中进行表达,以期获 得重组痘苗 病毒,与核酸疫苗混合免疫,评价免疫效果,为艾滋病疫苗开发研制打下基础。将HIV-1中国流行株gp120基因片段插入到pJ38载体启动子下游,经同源重组和血凝素阴性空斑筛选重组痘苗病毒,SDSPAGE、Western blot检测目的蛋白。以重组病毒和核酸疫苗免疫B A LB/c小鼠,进行淋巴细胞转化实验、CTL、CD4+、CD8+T细胞数目及血清抗体等细胞免疫和 体液免疫指标检测。结果获得的重组痘苗病毒vJ38gp120能够表达Gp120蛋白并诱导机体产生 细胞免疫和体液免疫,具有良好的免疫原性,其免疫效果以2rVVDNA混合方式为最好。重组痘苗病毒vJ38gp120。

  14. Non-Human Primate Models of Orthopoxvirus Infections

    Directory of Open Access Journals (Sweden)

    Anne Schmitt

    2014-06-01

    Full Text Available Smallpox, one of the most destructive diseases, has been successfully eradicated through a worldwide vaccination campaign. Since immunization programs have been stopped, the number of people with vaccinia virus induced immunity is declining. This leads to an increase in orthopoxvirus (OPXV infections in humans, as well as in animals. Additionally, potential abuse of Variola virus (VARV, the causative agent of smallpox, or monkeypox virus, as agents of bioterrorism, has renewed interest in development of antiviral therapeutics and of safer vaccines. Due to its high risk potential, research with VARV is restricted to two laboratories worldwide. Therefore, numerous animal models of other OPXV infections have been developed in the last decades. Non-human primates are especially suitable due to their close relationship to humans. This article provides a review about on non-human primate models of orthopoxvirus infections.

  15. Relationship between MIP-1a and persistent immune protection of vaccinia virus Tiantan strain%MIP-1a细胞因子与痘苗病毒天坛株终身免疫保护性的相关性

    Institute of Scientific and Technical Information of China (English)

    牛燕; 张良艳; 李恒彬; 邢丽; 石辛甫; 于姝

    2015-01-01

    目的 分析MIP-1a细胞因子与痘苗病毒天坛株(vaccinia virus Tian Tan strain,VTT)终身免疫保护性的相关性.方法 将VTT分别经肌肉注射免疫C57/BL6小鼠和MIP-1a的KO小鼠模型B6.129P2-Ccl3,每只剂量2×107 PFU/ml,每组10只,30和180 d后,再次用相同剂量的VTT进行激发,激发3d后,处死小鼠,取脾淋巴细胞,采用流式细胞术分析CD44+CD62L-CD4+的外周效应记忆性T细胞(effector memory T cell,Tem)在两种小鼠体内的差异;同时用四聚体(tetramer)对荷载痘苗病毒特异性的CD8+T细胞表位(VACV-B8R20-27 Kb)进行染色,分析MIP-1a的缺失对长效免疫记忆的影响.结果 获取的CD4+的记忆性T细胞的表型以CD4+CD44+CD62L-为主,即以Tem为主;获取的CD8+的记忆性T细胞也以Tem(CD44+CD62U)为主,数量很少.B6.129P2-Ccl3小鼠受到再次激发后,体内VTT特异性CD8+T细胞在30和180 d的比例均明显少于C57/BL6小鼠;在30 d激发时,tetramer+CD8+T细胞的比例明显高于180 d激发.结论 MIP-1a细胞因子与痘苗病毒产生长效免疫记忆相关,本实验为延长疫苗的免疫记忆提供了参考.

  16. Development of a High-Content Orthopoxvirus Infectivity and Neutralization Assays.

    Directory of Open Access Journals (Sweden)

    Irina Gates

    Full Text Available Currently, a number of assays measure Orthopoxvirus neutralization with serum from individuals, vaccinated against smallpox. In addition to the traditional plaque reduction neutralization test (PRNT, newer higher throughput assays are based on neutralization of recombinant vaccinia virus, expressing reporter genes such as β-galactosidase or green fluorescent protein. These methods could not be used to evaluate neutralization of variola virus, since genetic manipulations of this virus are prohibited by international agreements. Currently, PRNT is the assay of choice to measure neutralization of variola virus. However, PRNT assays are time consuming, labor intensive, and require considerable volume of serum sample for testing. Here, we describe the development of a high-throughput, cell-based imaging assay that can be used to measure neutralization, and characterize replication kinetics of various Orthopoxviruses, including variola, vaccinia, monkeypox, and cowpox.

  17. 牛痘疫苗致炎兔皮提取物注射液治疗纤维肌痛综合征前瞻性研究%Prospective study on effect of extracts from rabbit skin inflamed by vaccinia virus for injection on the management of primary fibromyalgia syndrome

    Institute of Scientific and Technical Information of China (English)

    刘桂艳; 佟胜全; 李雅娟; 饶莉; 王治国; 石哲群; 张鸽; 燕丽君; 李春芬

    2011-01-01

    目的 探讨牛痘疫苗致炎兔皮提取物注射液(商品名:恩再适)治疗原发性纤维肌痛综合征的临床效果和安全性.方法 将86例原发性纤维肌痛综合征患者随机分为两组,A组给予阿米替林25 mg/d,B组给予阿米替林12.5 mg/d加恩再适每2天6 mL治疗,分别在基线治疗2周和4周时以视觉类推量表(visual analogue scales,VAS)评估疗效,同时记录不良反应.结果 与基线时相比,治疗2周时,两组的疼痛程度显著减轻(P0.05),两组间的疼痛程度差异也无统计学意义(P>0.05).不良反应,例如心悸、口干、肝酶升高等,其发生率B组显著低于A组(P<0.01).结论 恩再适联合小剂量阿米替林治疗原发性纤维肌痛综合征的疗效优于单药阿米替林,不良反应较少.%Objective To study the efficacy and safety of extracts from rabbit skin inflamed by vaccinia virus for injection, a commercially available agent (Analgecine) ,in the treatment of primary fibromyalgia syndrome. Methods A total of 86 primary fibromyalgia syndrome(FS) patients were randomly divided into two groups, patients in group A given amitriptyline 25mug per day,and those in group B given amitriptyline 12.5mug per day combined with Analgecine 6ml every two days. The visual analogue scales (VAS) was used to evaluate the efficacy and adverse effects were recorded at baseline,two weeks and four weeks. Results In two groups pain was significantly alleviated after two weeks(P<0.01). Group B was better than group A(P<0.05). After four weeks,the difference of the efficacy between the two strategies was not statistically significant(P>0.05). When comparing with the efficacy at two weeks, there was no significant difference both two groups at four weeks(P>0.05). Adverse effects, such as palpition,dry mouth, elevated liver enzymes and so on,in group B were less than that in group A significantly(P<0.01). Conclusion Analgecine combined with little dose of amitriptyline is more effective

  18. Guinea pigs experimentally infected with vaccinia virus replicate and shed, but do not transmit the virus Cobaias infectadas experimentalmente com vírus vaccínia replicam e excretam, porém não transmitem o vírus

    Directory of Open Access Journals (Sweden)

    Juliana Felipetto Cargnelutti

    2012-06-01

    Full Text Available The origin of vaccinia viruses (VACV associated with vesicular disease in cattle and humans in Southeast Brazil remains uncertain, yet the role of wild species in virus transmission has been suggested. This study investigated the susceptibility and transmission potential by guinea pigs (Cavia porcellus - phylogenetically close to an abundant Brazilian rodent (Cavia aperea - to two VACV strains (P1V and P2V isolated from an outbreak of cutaneous disease in horses in Southern Brazil. Eight guinea pigs inoculated intranasally with P1V and P2V (10(6 TCID50.ml-1 did not develop clinical signs, but six animals shed virus in nasal secretions (day 1 to 9 post-inoculation - pi, developed viremia (between days 1 and 10 pi and seroconverted to VACV. In spite of virus replication and shedding, the virus was not transmitted to sentinel animals by direct or indirect contact (aerosols or through food and water contaminated with virus. These results demonstrate that, in spite of replicating and shedding the virus, guinea pigs do not transmit the virus upon experimental inoculation. This finding makes unlikely a possible participation of related species in VACV maintenance and transmission in nature.A origem dos vírus vaccínia (VACV, envolvidos em surtos de doença vesicular em bovinos e humanos no Sudeste do Brasil, permanece desconhecida, e a participação de espécies silvestres na manutenção e transmissão do vírus tem sido sugerida. O objetivo deste trabalho foi investigar a susceptibilidade e o potencial de transmissão por cobaias (Cavia porcellus - filogeneticamente relacionada a uma espécie de roedor, conhecido por preá (Cavia aperea, bastante abundante no país - a duas cepas de VACV (P1V e P2V isoladas de um surto de doença cutânea em equinos no Rio Grande do Sul. Oito cobaias inoculadas pela via intranasal com uma mistura das amostras P1V e P2V (10(6 DICC50.ml-1 não apresentaram sinais clínicos, porém seis animais excretaram o vírus nas

  19. Functional characterization of the vaccinia virus I5 protein

    OpenAIRE

    Stanitsa Eleni S; Nichols R Jeremy; Unger Bethany; Traktman Paula

    2008-01-01

    The I5L gene is one of ~90 genes that are conserved throughout the chordopoxvirus family, and hence are presumed to play vital roles in the poxvirus life cycle. Previous work had indicated that the VP13 protein, a component of the virion membrane, was encoded by the I5L gene, but no additional studies had been reported. Using a recombinant virus that encodes an I5 protein fused to a V5 epitope tag at the endogenous locus (vI5V5), we show here that the I5 protein is expressed as a post-replic...

  20. Functional characterization of the vaccinia virus I5 protein

    Directory of Open Access Journals (Sweden)

    Stanitsa Eleni S

    2008-12-01

    Full Text Available The I5L gene is one of ~90 genes that are conserved throughout the chordopoxvirus family, and hence are presumed to play vital roles in the poxvirus life cycle. Previous work had indicated that the VP13 protein, a component of the virion membrane, was encoded by the I5L gene, but no additional studies had been reported. Using a recombinant virus that encodes an I5 protein fused to a V5 epitope tag at the endogenous locus (vI5V5, we show here that the I5 protein is expressed as a post-replicative gene and that the ~9 kDa protein does not appear to be phosphorylated in vivo. I5 does not appear to traffic to any cellular organelle, but ultrastructural and biochemical analyses indicate that I5 is associated with the membranous components of assembling and mature virions. Intact virions can be labeled with anti-V5 antibody as assessed by immunoelectron microscopy, indicating that the C' terminus of the protein is exposed on the virion surface. Using a recombinant virus which encodes only a TET-regulated copy of the I5V5 gene (vΔindI5V5, or one in which the I5 locus has been deleted (vΔI5, we also show that I5 is dispensable for replication in tissue culture. Neither plaque size nor the viral yield produced in BSC40 cells or primary human fibroblasts are affected by the absence of I5 expression.

  1. 消炎镇痛液混合牛痘疫苗致炎兔皮提取物对大鼠坐骨神经损伤的效应%Effect of anti-inflammation-analgesic injection combined with extract from rabbit skin inflamed by vaccinia virus on sciatic nerve injury in rats

    Institute of Scientific and Technical Information of China (English)

    魏淑明; 赵志辉; 陈晶; 王秀丽

    2011-01-01

    目的 评价消炎镇痛液混合牛痘疫苗致炎兔皮提取物(ERSVV)对大鼠坐骨神经损伤的效应.方法 成年SD大鼠50只,雌雄各半,体重260~300 g,采用随机数字表法,将大鼠随机分为5组(n=10):假手术组(S组)、坐骨神经慢性压迫性损伤组(CCI组)、消炎镇痛液组(A组)、EBSVV组(E组)和混合用药组(A+E组).CCI组、A组、E组和A+E组制备大鼠坐骨神经慢性压迫性损伤模型;S组仅暴露坐骨神经.在坐骨神经旁置管,于术后14 d开始给药,A组注射消炎镇痛液0.2Ml[地塞米松棕榈酸酯0.05ml(4 mg/ml)、2%利多卡因0.05 ml、维生素B120.05 ml(0.5 mg/ml)和注射用水0.05ml)];E组注射ERSVV 0.2ml(40 U/ml);A+E组注射消炎镇痛液(去掉注射用水0.05 ml)+ERSVV0.05 ml共0.2 ml.第1天给药后,地塞米松棕榈酸酯改为注射用水,持续给药14 d.分别于术前1 d(基础状态)、术后1、5、7、14、21、28 d时测定机械缩足阈值(MWT).5组分别于术后14、28 d时取5只大鼠,暴露坐骨神经,测定运动神经传导速度(NCV)及复合肌肉运动电位波幅(AP),然后取结扎处坐骨神经,光镜下观察病理学结果,计数轴突数,并测定髓鞘厚度.结果 与S组比较,CCI组MW、AP、轴突计数和髓鞘厚度降低,NCV减慢(P<0.01);与CCI组比较,A组和E组MWT、AP、轴突计数和髓鞘厚度升高,NCV增快(P<0.05);与A组或E组比较,A+E组MWT、AP、轴突计数和髓鞘厚度升高,NCV增快(P<0.05或0.01).结论 与消炎镇痛液或ERSVV比较,两种药物混合应用可进一步减轻大鼠慢性压迫性坐骨神经损伤.%Objective To investigate the effect of anti-inflammation-analgesic injection (AIAI) combined with extract from rabbit skin inflamed by vaccinia virus (ERSVV) on repair of the damaged sciatic nerve in rats.Methods Fifty adult SD rats of both sexes weighing 260-300 g were randomly divided into 5 gronps ( n = 10each): sham operation group (group S); sciatic nerve chronic constriction injury group

  2. Construction of recombinant modified vaccinia virus Ankara with Ag85A and ESAT-6 gene and examination of their immunogenicity in mice%重组结核抗原痘苗病毒Ankara株的构建及其免疫原性研究

    Institute of Scientific and Technical Information of China (English)

    楼觉人; 张群; 朱琳

    2008-01-01

    目的 构建5种不同类型的表达结核杆菌特异抗原的重组痘苗病毒,并研究其特异免疫原性.方法 运用同源重组技术将含结核分泌抗原Ag85A和ESAT-6的基因片段插入痘苗病毒表达质粒p18中.重组质粒导入痘苗病毒Ankara(MVA)后构建重组痘苗病毒,经筛选和Western blot鉴定,得到5个种类的带有结核抗原基因的重组病毒.用构建的5种重组病毒免疫小鼠,MTT法检测免疫后小鼠脾淋巴细胞对特异结核抗原的增殖反应;ELISA检测小鼠脾淋巴细胞培养上清液中IFN-γ的含量;结核菌素纯蛋白衍化物(PPD)皮内试验以检测重组病毒引发的针对结核抗原的特异细胞免疫应答.结果 构建的5种蘑组病毒介导的细胞表达产物经Western blot鉴定确认相对分子质量与结核抗原一致.免疫小鼠两次后,5种重组病毒免疫组脾淋巴细胞体外与Ag85A-ESAT-6融合蛋白共培养后表现出明显的增殖活性(P<0.01),培养上清液中IFN-γ的浓度均较同组细胞经生理盐水刺激明显增高(P<0.05);与空痘苗病毒或生理盐水免疫后小鼠相比,5种重组MVA免疫组脾淋巴细胞与AgB5A.ESAT-6融合蛋白共培养后同样表现出明显的增殖活性(P<0.01),与Ag85A-ESAT-6融合蛋白共培养的细胞上清液中IFN-γ的浓度均升高(P<0.01).与空痘苗病毒或生理盐水免疫后小鼠相比,5种重组MVA免疫组小鼠对PPD都表现出显著的迟发型超敏反应应答(P<0.05).结论 成功构建了5种不同类型的表达结核杆菌抗原的重组痘苗病毒疫苗,其免疫小鼠后可激发针对结核杆菌抗原的特异性细胞免疫.%Objective To construct five types of recombinant modified vaccinia virus Ankara (MVA) carrying genes encoding antigen 85A (Ag85A), early secretory antigenic target (ESAT-6) or IL-2 and to investigate the immunogenicity of these recombinant MVA in mice. Methods The genes encoding Ag85A and ESAT-6 were amplified by PCR from Mycobacterium

  3. MHC-I-restricted epitopes conserved among variola and other related orthopoxviruses are recognized by T cells 30 years after vaccination

    DEFF Research Database (Denmark)

    Tang, Sheila Tuyet; Wang, M.; Lamberth, K.;

    2008-01-01

    It is many years since the general population has been vaccinated against smallpox virus. Here, we report that human leukocyte antigen (HLA) class I restricted T cell epitopes can be recognized more than 30 years after vaccination. Using bioinformatic methods, we predicted 177 potential cytotoxic T...... lymphocyte epitopes. Eight epitopes were confirmed to stimulate IFN-gamma release by T cells in smallpox-vaccinated subjects. The epitopes were restricted by five supertypes (HLA-A1, -A2, -A24 -A26 and -B44). Significant T cell responses were detected against 8 of 45 peptides with an HLA class I affinity...... of K(D) less than or equal to 5 nM, whereas no T cell responses were detected against 60 peptides with an HLA affinity of K(D) more than 5 nM. All epitopes were fully conserved in seven variola, vaccinia and cowpox strains. Knowledge of the long-term response to smallpox vaccination may lead...

  4. Challenges Confronted in Smallpox Vaccination and DNA Smallpox Vaccine%天花预防接种面临的挑战与DNA痘苗

    Institute of Scientific and Technical Information of China (English)

    高一彤; 曲京华; 赵玫

    2006-01-01

    介绍美国重新启动种痘的动因,LIR、A27L、A33R、B5R基因痘苗建立、修饰的Ankara痘苗和Lister基因缺失痘苗动物保护力、安全试验、临床研究现状及预防天花、人类猴痘的前景.

  5. The master regulator of the cellular stress response (HSF1 is critical for orthopoxvirus infection.

    Directory of Open Access Journals (Sweden)

    Claire Marie Filone

    2014-02-01

    Full Text Available The genus Orthopoxviridae contains a diverse group of human pathogens including monkeypox, smallpox and vaccinia. These viruses are presumed to be less dependent on host functions than other DNA viruses because they have large genomes and replicate in the cytoplasm, but a detailed understanding of the host factors required by orthopoxviruses is lacking. To address this topic, we performed an unbiased, genome-wide pooled RNAi screen targeting over 17,000 human genes to identify the host factors that support orthopoxvirus infection. We used secondary and tertiary assays to validate our screen results. One of the strongest hits was heat shock factor 1 (HSF1, the ancient master regulator of the cytoprotective heat-shock response. In investigating the behavior of HSF1 during vaccinia infection, we found that HSF1 was phosphorylated, translocated to the nucleus, and increased transcription of HSF1 target genes. Activation of HSF1 was supportive for virus replication, as RNAi knockdown and HSF1 small molecule inhibition prevented orthopoxvirus infection. Consistent with its role as a transcriptional activator, inhibition of several HSF1 targets also blocked vaccinia virus replication. These data show that orthopoxviruses co-opt host transcriptional responses for their own benefit, thereby effectively extending their functional genome to include genes residing within the host DNA. The dependence on HSF1 and its chaperone network offers multiple opportunities for antiviral drug development.

  6. PCR strategy for identification and differentiation of small pox and other orthopoxviruses.

    Science.gov (United States)

    Ropp, S L; Jin, Q; Knight, J C; Massung, R F; Esposito, J J

    1995-08-01

    Rapid identification and differentiation of orthopoxviruses by PCR were achieved with primers based on genome sequences encoding the hemagglutinin (HA) protein, an infected-cell membrane antigen that distinguishes orthopoxviruses from other poxvirus genera. The initial identification step used a primer pair of consensus sequences for amplifying an HA DNA fragment from the three known North American orthopoxviruses (raccoonpox, skunkpox, and volepox viruses), and a second pair for amplifying virtually the entire HA open reading frame of the Eurasian-African orthopoxviruses (variola, vaccinia, cowpox, monkeypox, camelpox, ectromelia, and gerbilpox viruses). RsaI digest electropherograms of the amplified DNAs of the former subgroup provided species differentiation, and TaqI digests differentiated the Eurasian-African orthopoxviruses, including vaccinia virus from the vaccinia virus subspecies buffalopox virus. Endonuclease HhaI digest patterns distinguished smallpox variola major viruses from alastrim variola minor viruses. For the Eurasian-African orthopoxviruses, a confirmatory step that used a set of higher-sequence-homology primers was developed to provide sensitivity to discern individual virus HA DNAs from cross-contaminated orthopoxvirus DNA samples; TaqI and HhaI digestions of the individual amplified HA DNAs confirmed virus identity. Finally, a set of primers and modified PCR conditions were developed on the basis of base sequence differences within the HA genes of the 10 species, which enabled production of a single DNA fragment of a particular size that indicated the specific species. PMID:7559950

  7. Studies of the Suitability of Fowlpox as a Decontamination and Thermal Stability Simulant for Variola Major

    Directory of Open Access Journals (Sweden)

    Amanda E. Chambers

    2009-01-01

    Full Text Available Variola major, the causative agent of smallpox, has been eradicated from nature. However, stocks still exist; thus, there is a need for relevant decontamination studies, preferably with nonpathogenic simulants. Previous studies have shown a similarity in response of vaccinia virus and variola major to various decontaminants and thermal inactivation. This study compared vaccinia and fowlpox viruses under similar conditions, using disinfectants and temperatures for which variola major data already existed. Most disinfectants showed similar efficacy against vaccinia and fowlpox, suggesting the utility of fowlpox as a decontamination simulant. Inactivation kinetics studies showed that fowlpox behaved similarly to variola major when treated with 0.1% iodine and 5.7% polyethyleneglycol nonylphenyl ether, 0.025% sodium hypochlorite, 0.05% sodium hypochlorite, and 0.1% cetyltrimethylammonium chloride and 0.05% benzalkonium chloride, but differed in its response to 0.05% iodine and 0.3% polyethyleneglycol nonylphenyl ether and 40% ethanol. Thermal inactivation studies demonstrated that fowlpox is a suitable thermal simulant for variola major between 40∘C and 55∘C.

  8. Myxoma virus induces type I interferon production in murine plasmacytoid dendritic cells via a TLR9/MyD88-, IRF5/IRF7-, and IFNAR-dependent pathway.

    Science.gov (United States)

    Dai, Peihong; Cao, Hua; Merghoub, Taha; Avogadri, Francesca; Wang, Weiyi; Parikh, Tanvi; Fang, Chee-Mun; Pitha, Paula M; Fitzgerald, Katherine A; Rahman, Masmudur M; McFadden, Grant; Hu, Xiaoyu; Houghton, Alan N; Shuman, Stewart; Deng, Liang

    2011-10-01

    Poxviruses are large DNA viruses that replicate in the cytoplasm of infected cells. Myxoma virus is a rabbit poxvirus that belongs to the Leporipoxvirus genus. It causes a lethal disease called myxomatosis in European rabbits but cannot sustain any detectable infection in nonlagomorphs. Vaccinia virus is a prototypal orthopoxvirus that was used as a vaccine to eradicate smallpox. Myxoma virus is nonpathogenic in mice, whereas systemic infection with vaccinia virus can be lethal even in immunocompetent mice. Plasmacytoid dendritic cells (pDCs) are potent type I interferon (IFN)-producing cells that play important roles in antiviral innate immunity. How poxviruses are sensed by pDCs to induce type I IFN production is not well understood. Here we report that infection of primary murine pDCs with myxoma virus, but not with vaccinia virus, induces IFN-α, IFN-β, tumor necrosis factor (TNF), and interleukin-12p70 (IL-12p70) production. Using pDCs derived from genetic knockout mice, we show that the myxoma virus-induced innate immune response requires the endosomal DNA sensor TLR9 and its adaptor MyD88, transcription factors IRF5 and IRF7, and the type I IFN positive-feedback loop mediated by IFNAR1. It is independent of the cytoplasmic RNA sensing pathway mediated by the mitochondrial adaptor molecule MAVS, the TLR3 adaptor TRIF, or the transcription factor IRF3. Using pharmacological inhibitors, we demonstrate that myxoma virus-induced type I IFN and IL-12p70 production in murine pDCs is also dependent on phosphatidylinositol 3-kinase (PI3K) and Akt. Furthermore, our results reveal that the N-terminal Z-DNA/RNA binding domain of vaccinia virulence factor E3, which is missing in the orthologous M029 protein expressed by myxoma virus, plays an inhibitory role in poxvirus sensing and innate cytokine production by murine pDCs. PMID:21835795

  9. Smallpox Vaccinations and the Portuguese in Macao%种牛痘与澳门葡人

    Institute of Scientific and Technical Information of China (English)

    伊莎贝尔·莫赖斯

    2007-01-01

    牛痘接种法发明以后,葡、西、英等殖民国家进行了积极的推广.本文对澳门接受牛痘的过程进行研究,探讨澳门作为一个由殖民政府管理的港口是如何积极支持传播欧洲医学的最新成果的.并对牛痘与贸易、殖民的关系也进行了分析.

  10. [History of Smallpox Vaccination and of the Vaccine Supply in Hungary, up to 1890].

    Science.gov (United States)

    Kiss, László

    2015-01-01

    One of the preconditions for the spread of vaccination against pox diseases was making vaccination available. The first vaccinations were carried out using original cowpox lymph sent by Jenner. For further vaccinations the vaccine was extracted from the blisters of those who had been successfully inoculated. In order to provide vaccine continuously six vaccine centres were set up in 1804 in the following cities: Pest, Buda, Kassa, Gyula, Pozsony and Zágráb (Croatia). Detailed information is available only about the centre in Pest which operated in Rókus Hospital under the leadership of the hospital director András Bossányi. Besides regular vaccination they also provided vaccine for the countryside. From 1824 the vaccine was relocated to the medical faculty of the university in Pest and Ferenc Gebhardt, an instructor of surgeons, became its head. The centre operated in the building of the medical faculty and vaccinations were given on Thursdays and Sundays. After the retirement of Gebhardt in 1860, the centre was taken over by the dermatologist Ferenc Poor for a short time, then by Ignác Semmelweis. From 1863 Gergely Patrubány was responsible for managing the centre. In 1874 the central vaccine institution moved to the Hospital for Poor Children in Pest where it was led first by Lázár Wittman, then by Géza Hainiss. In the 1880s private institutions appeared, the best known were Dani Pécsi's centre in Pest and Béla Intze's one in Tirgu Lapus (Romania). Between 1873 an 1889 András Kreichel ran a vaccine centre in Nálepkovo (Slovakia).

  11. Someone You Are Close to May Get the Smallpox Vaccine: What You Should Know and Do

    Science.gov (United States)

    ... Del.icio.us Digg Facebook Google Bookmarks Technorati Yahoo MyWeb Updates Subscribe Listen Page last reviewed March ... Del.icio.us Digg Facebook Google Bookmarks Technorati Yahoo MyWeb Download page Subscribe to RSS View page ...

  12. Direct presentation is sufficient for an efficient anti-viral CD8+ T cell response.

    Directory of Open Access Journals (Sweden)

    Ren-Huan Xu

    2010-02-01

    Full Text Available The extent to which direct- and cross-presentation (DP and CP contribute to the priming of CD8(+ T cell (T(CD8+ responses to viruses is unclear mainly because of the difficulty in separating the two processes. Hence, while CP in the absence of DP has been clearly demonstrated, induction of an anti-viral T(CD8+ response that excludes CP has never been purposely shown. Using vaccinia virus (VACV, which has been used as the vaccine to rid the world of smallpox and is proposed as a vector for many other vaccines, we show that DP is the main mechanism for the priming of an anti-viral T(CD8+ response. These findings provide important insights to our understanding of how one of the most effective anti-viral vaccines induces immunity and should contribute to the development of novel vaccines.

  13. Cidofovir Activity against Poxvirus Infections

    Directory of Open Access Journals (Sweden)

    Robert Snoeck

    2010-12-01

    Full Text Available Cidofovir [(S-1-(3-hydroxy-2-phosphonylmethoxypropylcytosine, HPMPC] is an acyclic nucleoside analog approved since 1996 for clinical use in the treatment of cytomegalovirus (CMV retinitis in AIDS patients. Cidofovir (CDV has broad-spectrum activity against DNA viruses, including herpes-, adeno-, polyoma-, papilloma- and poxviruses. Among poxviruses, cidofovir has shown in vitro activity against orthopox [vaccinia, variola (smallpox, cowpox, monkeypox, camelpox, ectromelia], molluscipox [molluscum contagiosum] and parapox [orf] viruses. The anti-poxvirus activity of cidofovir in vivo has been shown in different models of infection when the compound was administered either intraperitoneal, intranasal (aerosolized or topically. In humans, cidofovir has been successfully used for the treatment of recalcitrant molluscum contagiosum virus and orf virus in immunocompromised patients. CDV remains a reference compound against poxviruses and holds potential for the therapy and short-term prophylaxis of not only orthopox- but also parapox- and molluscipoxvirus infections.

  14. Amplification of 'variola virus-specific' sequences in German cowpox virus isolates.

    Science.gov (United States)

    Meyer, H; Neubauer, H; Pfeffer, M

    2002-02-01

    In 1995 a polymerase chain reaction (PCR) protocol describing the specific detection of variola virus, the causative agent of smallpox, was published by Knight and others. Virulent variola major strains could be differentiated from less virulent variola minor strains because of the distinct amplicon sizes. Here, we applied this PCR protocol to DNA from various orthopoxvirus isolates. There was no amplification with the orthopoxvirus species vaccinia, monkeypox, mousepox, or camelpox viruses. However, amplification was observed in six out of 15 cowpox virus strains investigated. The size of the amplicons corresponded exactly with the size described for variola minor strains and the nucleotide sequence identity accounted for 97%. Findings are discussed with respect to the evolution of orthopoxvirus species assuming that variola virus most probably stems from a rodent-transmitted cowpox virus-like progenitor. PMID:11911586

  15. 硬膜外输注地塞米松-布比卡因-芬太尼混合液联合牛痘疫苗致炎兔皮提取物治疗重度带状疱疹神经痛的效果%Efficacy of epidural infusion of a mixture of bupivacaine-fentanyl-dexamethasone on top of intravenous extract from rabbit skin inflamed by vaccinia virus for severe herpetic neuralgia

    Institute of Scientific and Technical Information of China (English)

    任玉娥; 刘玉华; 刘广召; 齐伟光; 杜玉敏; 丛海静

    2012-01-01

    目的 评价硬膜外输注地塞米松-布比卡因-芬太尼混合液联合牛痘疫苗致炎兔皮提取物治疗重度带状疱疹神经痛的效果.方法 带状疱疹神经痛患者48例,性别不限,年龄45-92岁,疼痛视觉模拟评分(VAS)> 6分,采用随机数字表法,将其随机分为2组(n=24):常规药物组(C组)与硬膜外阻滞联合牛痘疫苗致炎兔皮提取物组(T组).2组治疗期间均静脉输注牛痘疫苗致炎兔皮提取物6 ml/d,C组还口服阿米替林和加巴喷丁,T组选择带状疱疹病毒感染最严重的脊神经节段的相应椎间隙硬膜外穿刺,硬膜外输注药物配方0.075%布比卡因、芬太尼2μg/ml和地塞米松50 μg/ml,生理盐水稀释至100ml,速率2~5 ml/h,连续10d,维持VAS评分≤4分.记录硬膜外给药期间与硬膜外给药相关不良反应和带状疱疹后神经痛的发生情况.结果 与C组比较,T组尿潴留和带状疱疹后神经痛的发生率降低(p<0.05或0.01).T组未见其他不良反应.结论 硬膜外输注地塞米松-布比卡因-芬太尼混合液联合牛痘疫苗致炎兔皮提取物可有效地缓解严重带状疱疹神经痛,预防带状疱疹后神经痛的发生,且安全性良好.%Objective To evaluate the efficacy of epidural infusion of a mixture of bupivacaine-fentanyl-dexamethasone on top of intravenous extract from rabbit skin inflamed by vaccinia virus (ERSVV) for severe herpetic neuralgia.Methods Forty-eight patients of both sexes with severe herpetic neuralgia aged 45-92 yr were randomly divided into 2 groups (n =24 each):control group (group C) and test group( group T).Both groups received intravenous ERSVV 6 ml/d.Group C received oral amitriptyline and gabapentin,while the group T received epidural infusion of 100 ml of a mixture of 0.075% bupivacaine,fentanyl 2 μg/ml and dexamethasone 50 μg/ml in normal saline at 2-5 ml/h,once a day for 10 days and VAS score was maintained≤4.Epidural puncture was performed at the spinal segments

  16. Live attenuated vaccines: Historical successes and current challenges

    International Nuclear Information System (INIS)

    Live attenuated vaccines against human viral diseases have been amongst the most successful cost effective interventions in medical history. Smallpox was declared eradicated in 1980; poliomyelitis is nearing global eradication and measles has been controlled in most parts of the world. Vaccines function well for acute diseases such as these but chronic infections such as HIV are more challenging for reasons of both likely safety and probable efficacy. The derivation of the vaccines used has in general not been purely rational except in the sense that it has involved careful clinical trials of candidates and subsequent careful follow up in clinical use; the identification of the candidates is reviewed. - Highlights: • Live vaccines against human diseases caused by viruses have been very successful. • They have been developed by empirical clinical studies and problems identified in later use. • It can be difficult to balance ability to cause disease and ability to immunise for a strain. • There is currently no reliable basis for predicting success from pure virological studies. • Vaccinia, which eradicated smallpox, is the paradigm for all successes and issues

  17. Live attenuated vaccines: Historical successes and current challenges

    Energy Technology Data Exchange (ETDEWEB)

    Minor, Philip D., E-mail: Philip.Minor@nibsc.org

    2015-05-15

    Live attenuated vaccines against human viral diseases have been amongst the most successful cost effective interventions in medical history. Smallpox was declared eradicated in 1980; poliomyelitis is nearing global eradication and measles has been controlled in most parts of the world. Vaccines function well for acute diseases such as these but chronic infections such as HIV are more challenging for reasons of both likely safety and probable efficacy. The derivation of the vaccines used has in general not been purely rational except in the sense that it has involved careful clinical trials of candidates and subsequent careful follow up in clinical use; the identification of the candidates is reviewed. - Highlights: • Live vaccines against human diseases caused by viruses have been very successful. • They have been developed by empirical clinical studies and problems identified in later use. • It can be difficult to balance ability to cause disease and ability to immunise for a strain. • There is currently no reliable basis for predicting success from pure virological studies. • Vaccinia, which eradicated smallpox, is the paradigm for all successes and issues.

  18. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus.

    Directory of Open Access Journals (Sweden)

    Sanchita Das

    Full Text Available CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR. The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively. The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus.

  19. The Structure of the Poxvirus A33 Protein Reveals a Dimer of Unique C-Type Lectin-Like Domains

    Energy Technology Data Exchange (ETDEWEB)

    Su, Hua-Poo; Singh, Kavita; Gittis, Apostolos G.; Garboczi, David N. (NIH)

    2010-11-03

    The current vaccine against smallpox is an infectious form of vaccinia virus that has significant side effects. Alternative vaccine approaches using recombinant viral proteins are being developed. A target of subunit vaccine strategies is the poxvirus protein A33, a conserved protein in the Chordopoxvirinae subfamily of Poxviridae that is expressed on the outer viral envelope. Here we have determined the structure of the A33 ectodomain of vaccinia virus. The structure revealed C-type lectin-like domains (CTLDs) that occur as dimers in A33 crystals with five different crystal lattices. Comparison of the A33 dimer models shows that the A33 monomers have a degree of flexibility in position within the dimer. Structural comparisons show that the A33 monomer is a close match to the Link module class of CTLDs but that the A33 dimer is most similar to the natural killer (NK)-cell receptor class of CTLDs. Structural data on Link modules and NK-cell receptor-ligand complexes suggest a surface of A33 that could interact with viral or host ligands. The dimer interface is well conserved in all known A33 sequences, indicating an important role for the A33 dimer. The structure indicates how previously described A33 mutations disrupt protein folding and locates the positions of N-linked glycosylations and the epitope of a protective antibody.

  20. Original encounter with antigen determines antigen-presenting cell imprinting of the quality of the immune response in mice.

    Directory of Open Access Journals (Sweden)

    Valérie Abadie

    Full Text Available BACKGROUND: Obtaining a certain multi-functionality of cellular immunity for the control of infectious diseases is a burning question in immunology and in vaccine design. Early events, including antigen shuttling to secondary lymphoid organs and recruitment of innate immune cells for adaptive immune response, determine host responsiveness to antigens. However, the sequence of these events and their impact on the quality of the immune response remain to be elucidated. Here, we chose to study Modified Vaccinia virus Ankara (MVA which is now replacing live Smallpox vaccines and is proposed as an attenuated vector for vaccination strategies against infectious diseases. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed in vivo mechanisms triggered following intradermal (i.d. and intramuscular (i.m. Modified Vaccinia virus Ankara (MVA administration. We demonstrated significant differences in the antigen shuttling to lymphoid organs by macrophages (MPhis, myeloid dendritic cells (DCs, and neutrophils (PMNs. MVA i.d. administration resulted in better antigen distribution and more sustained antigen-presenting cells (APCs recruitment into draining lymph nodes than with i.m. administration. These APCs, which comprise both DCs and MPhis, were differentially involved in T cell priming and shaped remarkably the quality of cytokine-producing virus-specific T cells according to the entry route of MVA. CONCLUSIONS/SIGNIFICANCE: This study improves our understanding of the mechanisms of antigen delivery and their consequences on the quality of immune responses and provides new insights for vaccine development.

  1. Genomic expression libraries for the identification of cross-reactive orthopoxvirus antigens.

    Directory of Open Access Journals (Sweden)

    Lilija Miller

    Full Text Available Increasing numbers of human cowpox virus infections that are being observed and that particularly affect young non-vaccinated persons have renewed interest in this zoonotic disease. Usually causing a self-limiting local infection, human cowpox can in fact be fatal for immunocompromised individuals. Conventional smallpox vaccination presumably protects an individual from infections with other Orthopoxviruses, including cowpox virus. However, available live vaccines are causing severe adverse reactions especially in individuals with impaired immunity. Because of a decrease in protective immunity against Orthopoxviruses and a coincident increase in the proportion of immunodeficient individuals in today's population, safer vaccines need to be developed. Recombinant subunit vaccines containing cross-reactive antigens are promising candidates, which avoid the application of infectious virus. However, subunit vaccines should contain carefully selected antigens to confer a solid cross-protection against different Orthopoxvirus species. Little is known about the cross-reactivity of antibodies elicited to cowpox virus proteins. Here, we first identified 21 immunogenic proteins of cowpox and vaccinia virus by serological screenings of genomic Orthopoxvirus expression libraries. Screenings were performed using sera from vaccinated humans and animals as well as clinical sera from patients and animals with a naturally acquired cowpox virus infection. We further analyzed the cross-reactivity of the identified immunogenic proteins. Out of 21 identified proteins 16 were found to be cross-reactive between cowpox and vaccinia virus. The presented findings provide important indications for the design of new-generation recombinant subunit vaccines.

  2. Complete coding sequences of the rabbitpox virus genome.

    Science.gov (United States)

    Li, G; Chen, N; Roper, R L; Feng, Z; Hunter, A; Danila, M; Lefkowitz, E J; Buller, R M L; Upton, C

    2005-11-01

    Rabbitpox virus (RPXV) is highly virulent for rabbits and it has long been suspected to be a close relative of vaccinia virus. To explore these questions, the complete coding region of the rabbitpox virus genome was sequenced to permit comparison with sequenced strains of vaccinia virus and other orthopoxviruses. The genome of RPXV strain Utrecht (RPXV-UTR) is 197 731 nucleotides long, excluding the terminal hairpin structures at each end of the genome. The RPXV-UTR genome has 66.5 % A + T content, 184 putative functional genes and 12 fragmented ORF regions that are intact in other orthopoxviruses. The sequence of the RPXV-UTR genome reveals that two RPXV-UTR genes have orthologues in variola virus (VARV; the causative agent of smallpox), but not in vaccinia virus (VACV) strains. These genes are a zinc RING finger protein gene (RPXV-UTR-008) and an ankyrin repeat family protein gene (RPXV-UTR-180). A third gene, encoding a chemokine-binding protein (RPXV-UTR-001/184), is complete in VARV but functional only in some VACV strains. Examination of the evolutionary relationship between RPXV and other orthopoxviruses was carried out using the central 143 kb DNA sequence conserved among all completely sequenced orthopoxviruses and also the protein sequences of 49 gene products present in all completely sequenced chordopoxviruses. The results of these analyses both confirm that RPXV-UTR is most closely related to VACV and suggest that RPXV has not evolved directly from any of the sequenced VACV strains, since RPXV contains a 719 bp region not previously identified in any VACV.

  3. Tools for functional genomics applied to Staphylococci, Listeriae, Vaccinia virus and other organisms

    OpenAIRE

    Liang, Chunguang

    2010-01-01

    Genome sequence analysis A combination of genome analysis application has been established here during this project. This offers an efficient platform to interactively compare similar genome regions and reveal loci differences. The genes and operons can be rapidly analyzed and local collinear blocks (LCBs) categorized according to their function. The features of interests are parsed, recognized, and clustered into reports. Phylogenetic relationships can be readily examined such as the evoluti...

  4. Neurologic adverse events associated with smallpox vaccination in the United States – response and comment on reporting of headaches as adverse events after smallpox vaccination among military and civilian personnel

    OpenAIRE

    Schumm Walter R

    2006-01-01

    Abstract Background Accurate reporting of adverse events occurring after vaccination is an important component of determining risk-benefit ratios for vaccinations. Controversy has developed over alleged underreporting of adverse events within U.S. military samples. This report examines the accuracy of adverse event rates recently published for headaches, and examines the issue of underreporting of headaches as a function of civilian or military sources and as a function of passive versus acti...

  5. 天花疫苗的研究现状和进展%Research Progress in Smallpox Vaccine

    Institute of Scientific and Technical Information of China (English)

    刘丽; 汪巨峰; 李波

    2013-01-01

    目的 对现行天花疫苗和天花疫苗的研究进展进行综述,为天花疫苗的研究和应用提供参考.方法 通过查阅近年来与天花疫苗有效性和安全性研究相关的国内外文献,进行归纳总结.结果 扩大天花疫苗储备已成为全球性的需要,传统天花疫苗的有效性已得到充分验证,但会引起很多副作用,需要开发更为安全有效的天花疫苗.人们先后研发了几种不同类型的天花疫苗,包括细胞培养的活病毒疫苗、复制型和复制缺陷型的减毒活疫苗、蛋白亚单位疫苗、DNA亚单位疫苗、载体亚单位疫苗等.结论 减毒活疫苗与传统疫苗相比具有更好的安全性,但其免疫原性相对较低,目前,亚单位天花疫苗的研究仍处于起步阶段,需要进行更多和更深入的研究来验证其临床应用的可行性.新型天花疫苗的研发对增加使用者依从性、提高疫苗免疫效果和安全性具有重要意义.

  6. Royal College of Radiologists Annual Undergraduate Essay Prize. Melanoma: the new smallpox? Can vaccines be used to treat melanoma?

    Science.gov (United States)

    Forbes, Gareth

    2002-02-01

    This essay assesses the effectiveness of vaccine therapy for melanoma. Risks and benefits of various vaccine strategies are explored, as are the processes by which such therapies are assessed. An overview of cancer immunobiology underlying vaccine therapy is given. PMID:11898780

  7. In the Event of Bioterrorism: Protecting Families from Deadly Diseases

    Science.gov (United States)

    ... that smallpox had been eliminated worldwide. In the United States, doctors stopped giving routine smallpox vaccines to children in 1971. After the terrorist attacks of September 2001, however, concern about smallpox reemerged ...

  8. Development of eczema vaccinatum in atopic mouse models and efficacy of MVA vaccination against lethal poxviral infection.

    Directory of Open Access Journals (Sweden)

    Jarmila Knitlova

    Full Text Available Smallpox vaccine based on live, replicating vaccinia virus (VACV is associated with several potentially serious and deadly complications. Consequently, a new generation of vaccine based on non-replicating Modified vaccinia virus Ankara (MVA has been under clinical development. MVA seems to induce good immune responses in blood tests, but it is impossible to test its efficacy in vivo in human. One of the serious complications of the replicating vaccine is eczema vaccinatum (EV occurring in individuals with atopic dermatitis (AD, thus excluding them from all preventive vaccination schemes. In this study, we first characterized and compared development of eczema vaccinatum in different mouse strains. Nc/Nga, Balb/c and C57Bl/6J mice were epicutaneously sensitized with ovalbumin (OVA or saline control to induce signs of atopic dermatitis and subsequently trans-dermally (t.d. immunized with VACV strain Western Reserve (WR. Large primary lesions occurred in both mock- and OVA-sensitized Nc/Nga mice, while they remained small in Balb/c and C57Bl/6J mice. Satellite lesions developed in both mock- and OVA-sensitized Nc/Nga and in OVA-sensitized Balb/c mice with the rate 40-50%. Presence of mastocytes and eosinophils was the highest in Nc/Nga mice. Consequently, we have chosen Nc/Nga mice as a model of AD/EV and tested efficacy of MVA and Dryvax vaccinations against a lethal intra-nasal (i.n. challenge with WR, the surrogate of smallpox. Inoculation of MVA intra-muscularly (i.m. or t.d. resulted in no lesions, while inoculation of Dryvax t.d. yielded large primary and many satellite lesions similar to WR. Eighty three and 92% of mice vaccinated with a single dose of MVA i.m. or t.d., respectively, survived a lethal i.n. challenge with WR without any serious illness, while all Dryvax-vaccinated animals survived. This is the first formal prove of protective immunity against a lethal poxvirus challenge induced by vaccination with MVA in an atopic organism.

  9. The evolution of poxvirus vaccines.

    Science.gov (United States)

    Sánchez-Sampedro, Lucas; Perdiguero, Beatriz; Mejías-Pérez, Ernesto; García-Arriaza, Juan; Di Pilato, Mauro; Esteban, Mariano

    2015-04-01

    After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases.

  10. Mathematical modeling provides kinetic details of the human immune response to vaccination

    Directory of Open Access Journals (Sweden)

    Dustin eLe

    2015-01-01

    Full Text Available With major advances in experimental techniques to track antigen-specific immune responses many basic questions on the kinetics of virus-specific immunity in humans remain unanswered. To gain insights into kinetics of T and B cell responses in human volunteers we combine mathematical models and experimental data from recent studies employing vaccines against yellow fever and smallpox. Yellow fever virus-specific CD8 T cell population expanded slowly with the average doubling time of 2 days peaking 2.5 weeks post immunization. Interestingly, we found that the peak of the yellow fever-specific CD8 T cell response is determined by the rate of T cell proliferation and not by the precursor frequency of antigen-specific cells as has been suggested in several studies in mice. We also found that while the frequency of virus-specific T cells increases slowly, the slow increase can still accurately explain clearance of yellow fever virus in the blood. Our additional mathematical model describes well the kinetics of virus-specific antibody-secreting cell and antibody response to vaccinia virus in vaccinated individuals suggesting that most of antibodies in 3 months post immunization are derived from the population of circulating antibody-secreting cells. Taken together, our analysis provides novel insights into mechanisms by which live vaccines induce immunity to viral infections and highlight challenges of applying methods of mathematical modeling to the current, state-of-the-art yet limited immunological data.

  11. The Evolution of Poxvirus Vaccines

    Directory of Open Access Journals (Sweden)

    Lucas Sánchez-Sampedro

    2015-04-01

    Full Text Available After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV, the causative agent of smallpox. Cowpox virus (CPXV and horsepox virus (HSPV were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV, which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases.

  12. Chasing Jenner's vaccine: revisiting cowpox virus classification.

    Directory of Open Access Journals (Sweden)

    Darin S Carroll

    Full Text Available Cowpox virus (CPXV is described as the source of the first vaccine used to prevent the onset and spread of an infectious disease. It is one of the earliest described members of the genus Orthopoxvirus, which includes the viruses that cause smallpox and monkeypox in humans. Both the historic and current literature describe "cowpox" as a disease with a single etiologic agent. Genotypic data presented herein indicate that CPXV is not a single species, but a composite of several (up to 5 species that can infect cows, humans, and other animals. The practice of naming agents after the host in which the resultant disease manifests obfuscates the true taxonomic relationships of "cowpox" isolates. These data support the elevation of as many as four new species within the traditional "cowpox" group and suggest that both wild and modern vaccine strains of Vaccinia virus are most closely related to CPXV of continental Europe rather than the United Kingdom, the homeland of the vaccine.

  13. NK Cells and Poxvirus infection

    Directory of Open Access Journals (Sweden)

    Deborah N. Burshtyn

    2013-01-01

    Full Text Available In recent years our understanding of the role of NK cells in the response to viral infection has grown rapidly. Not only do we realize viruses have many immune evasion strategies to escape NK cell responses, but that stimulation of NK cell subsets during an antiviral response occurs through receptors seemingly geared directly at viral products and that NK cells can provide a memory response to viral pathogens. Tremendous knowledge has been gained in this area through the study of Herpes viruses, but appreciation for the significance of NK cells in the response to other types of viral infections is growing. The function of NK cells in defense against poxviruses has emerged over several decades beginning with the early seminal studies showing the role of NK cells and the NK gene complex in susceptibility of mouse strains to Ectromelia, a poxvirus pathogen of mice. More recently, greater understanding has emerged of the molecular details of the response. Given that human diseases caused by poxviruses can be as lethal as smallpox or as benign as Molluscum contagiosum, and that Vaccinia virus, the prototypic member of the pox family, persists as a mainstay of vaccine design and has potential as an oncolytic virus for tumor therapy, further research in this area remains important. This review focuses on recent advances in understanding the role of NK cells in the immune response to poxviruses, the receptors involved in activation of NK cells during poxvirus infection, and the viral evasion strategies poxviruses employ to avoid the NK response.

  14. Detection of orthopoxvirus DNA by real-time PCR and identification of variola virus DNA by melting analysis.

    Science.gov (United States)

    Nitsche, Andreas; Ellerbrok, Heinz; Pauli, Georg

    2004-03-01

    Although variola virus was eradicated by the World Health Organization vaccination program in the 1970s, the diagnosis of smallpox infection has attracted great interest in the context of a possible deliberate release of variola virus in bioterrorist attacks. Obviously, fast and reliable diagnostic tools are required to detect variola virus and to distinguish it from orthopoxviruses that have identical morphological characteristics, including vaccinia virus. The advent of real-time PCR for the clinical diagnosis of viral infections has facilitated the detection of minute amounts of viral nucleic acids in a fast, safe, and precise manner, including the option to quantify and to genotype the target reliably. In this study a complete set of four hybridization probe-based real-time PCR assays for the specific detection of orthopoxvirus DNA is presented. Melting analysis following PCR enables the identification of variola virus by the PCR product's characteristic melting temperature, permitting the discrimination of variola virus from other orthopoxviruses. In addition, an assay for the specific amplification of variola virus DNA is presented. All assays can be performed simultaneously in the same cycler, and results of a PCR run are obtained in less than 1 h. The application of more than one assay for the same organism significantly contributes to the diagnostic reliability, reducing the risk of false-negative results due to unknown sequence variations. In conclusion, the assays presented will improve the speed and reliability of orthopoxvirus diagnostics and variola virus identification.

  15. Expression of functional growth hormone receptor in a mouse L cell line infected with recombinant vaccinia virus

    NARCIS (Netherlands)

    Strous, G J; van Kerkhof, P; Verheijen, C; Rossen, J W; Liou, W; Slot, J W; Roelen, C A; Schwartz, A L

    1994-01-01

    The growth hormone receptor is a member of a large family of receptors including the receptors for prolactin and interleukins. Upon binding to one molecule of growth hormone two growth hormone receptor polypeptides dimerize. We have expressed the rabbit growth hormone receptor DNA in transfected mou

  16. The Expression of Sperm Membrane Peptide-Hepatitis B Surface Antigen Fusion Protein with Recombinant Vaccinia Virus

    Institute of Scientific and Technical Information of China (English)

    杨晓鸣; 赵峰; 严缘昌; 李光地; 汪垣

    1998-01-01

    A synthetic oligonucleotide, HSD-2a, encoding a peptide segment of the extracellular domain of a human sperm membrane protein, YWK-Ⅱ, was fused with hepatitis B surface antigen gene (HBs gene). The fused gene was then cloned to pUC18 plasmid.

  17. Recombinant Modified Vaccinia Virus Ankara Expressing Glycoprotein E2 of Chikungunya Virus Protects AG129 Mice against Lethal Challenge

    NARCIS (Netherlands)

    P. van den Doel (Petra); A. Volz (Asisa); J.M. Roose (Jouke M.); V.D. Sewbalaksing (Varsha); G.P. Pijlman (Gorben); I. van Middelkoop (Ingeborg); V. Duiverman (Vincent); E. van de Wetering (Eva); G. Sutter (Gerd); A.D.M.E. Osterhaus (Albert); B.E.E. Martina (Byron)

    2014-01-01

    textabstractChikungunya virus (CHIKV) infection is characterized by rash, acute high fever, chills, headache, nausea, photophobia, vomiting, and severe polyarthralgia. There is evidence that arthralgia can persist for years and result in long-term discomfort. Neurologic disease with fatal outcome ha

  18. Recombinant modified vaccinia virus Ankara expressing glycoprotein E2 of Chikungunya virus protects AG129 mice against lethal challenge

    NARCIS (Netherlands)

    Doel, van den P.; Volz, A.; Roose, J.M.; Sewbalaksing, V.D.; Pijlman, G.P.; Middelkoop, van I.; Duiverman, V.; Wetering, van de E.; Sutter, G.; Osterhaus, A.D.; Martina, B.E.

    2014-01-01

    Chikungunya virus (CHIKV) infection is characterized by rash, acute high fever, chills, headache, nausea, photophobia, vomiting, and severe polyarthralgia. There is evidence that arthralgia can persist for years and result in long-term discomfort. Neurologic disease with fatal outcome has been docum

  19. In vivo evaluation of recombinant Vaccinia virus MVA delivering ancestral H9 hemagglutinin antigen of Avian Influenza virus

    OpenAIRE

    Becker, Jens Michael

    2015-01-01

    Avian Influenza (AI) viruses pose a threat to human and animal health and are responsible for potential economic losses. From the waterfowl reservoir, these RNA viruses can be transmitted to domestic poultry and humans, causing illness and death among people as well as mass culling of farm birds worldwide. This study contributes to increasing the knowledge by evaluating a promising poxvirus-based vector vaccine that carries and expresses an artificial, computationally derived hemagglutini...

  20. Recombination-mediated genetic engineering of a bacterial artificial chromosome clone of modified vaccinia virus Ankara (MVA)

    DEFF Research Database (Denmark)

    Cottingham, Matthew G; Andersen, Rikke F; Spencer, Alexandra J;

    2008-01-01

    -length, rescuable clones were obtained, which had indistinguishable immunogenicity in mice. One clone was shotgun sequenced and found to be identical to the parent. We employed GalK recombination-mediated genetic engineering (recombineering) of MVA-BAC to delete five selected viral genes. Deletion of C12L, A44L, A...

  1. 应用微量滴定法测定天花疫苗效力%Detection of the potency of smallpox vaccine by microtitration

    Institute of Scientific and Technical Information of China (English)

    董小曼; 董翊; 陈秀珍

    2007-01-01

    微量滴定法代替血球吸附法测定天花疫苗效力.通过对Vero细胞接种浓度和细胞病变判定时间的优化,确定了微量滴定法测定天花疫苗效力的方法,用Vero细胞微量滴定法和血球吸附法测定14批天花疫苗.两种滴定方法的检测结果差异有显著意义(P<0.05),二者存在正相关(r=0.76, 0.001<P<0.05)和直线回归(b=0.45, 0.001<P<0.05)关系,直线回归方程为=4.61+0.45x.微量滴定法变异系数CV为1.25%~2.89%.因此,微量滴定法敏感、可靠、操作简单、重复性好,可以代替血球吸附法.

  2. [Comparison of protective properties of the smallpox DNA-vaccine based on the variola virus A30L gene and its variant with modified codon usage].

    Science.gov (United States)

    Maksiutov, R A; Shchelkunov, S N

    2011-01-01

    Efficacy of candidate DNA-vaccines based on the variola virus natural gene A30L and artificial gene A30Lopt with modified codon usage, optimized for expression in mammalian cells, was tested. The groups of mice were intracutaneously immunized three times with three-week intervals with candidate DNA-vaccines: pcDNA_A30L or pcDNA_A30Lopt, and in three weeks after the last immunization all mice in the groups were intraperitoneally infected by the ectromelia virus K1 strain in 10 LD50 dose for the estimation of protection. It was shown that the DNA-vaccines based on natural gene A30L and codon-optimized gene A30Lopt elicited virus, thereby neutralizing the antibody response and protected mice from lethal intraperitoneal challenge with the ectromelia virus with lack of statistically significant difference.

  3. Las vacunaciones antivariólicas en Navarra (España entre septiembre y noviembre de 1801 Smallpox vaccinations in Navarre (Spain between September and November 1801

    Directory of Open Access Journals (Sweden)

    J.J. Viñes

    2004-12-01

    Full Text Available Se da noticia de la localización en el Archivo de D. Gaspar Castellano de Gastón, del documento que atestigua las primeras inoculaciones con linfa vacunal en Errazu, localidad del Valle de Baztán (Navarra, realizadas el 2 de Noviembre de 1801, por el médico de San Juan de Pie de Puerto (Francia Dr. Iribarren Ayzin, desde el brazo de una muchacha francesa de 18 años, conducida personalmente por él, a instancia de D. Josef Juaquín Gastón Alcalde del Valle del Baztán. El nuevo hallazgo sirve de homenaje 200 años después a la primera expedición de Salud Pública entre 1803 y 1806, dirigida por el médico alicantino D. Francisco Xavier Balmis, dando la vuelta al mundo, con el fin de difundir la vacuna entre todas las razas y zonas del mundo conocidas.We communicate the discovery in the Archive of D. Gaspar Castellano de Gastón of a document providing evidence of the first inoculations with lymph vaccine in Errazu, a village in the Baztán Valley (Navarre. These were carried out on November 2nd 1801, by a doctor from San Juan Pie de Puerto (France, Dr. Iribarren Ayzin, from the arm of a French girl aged 18, personally brought by him at the request of D. Josef Juaquín Gastón, Mayor of the Baztán Valley. The new finding serves as homage, 200 hundred years later, to the first Public Health expedition, carried out between 1803 and 1806, which travelled around the world in order to spread the vaccine amongst all the races and areas of the known world. The expedition was led by D. Francisco Xavier Balmis, a doctor from Alicante.

  4. NIAID Biodefense Image Library

    Science.gov (United States)

    ... Content Marketing Share this: Main Content Area Image Library These high-resolution (300 dpi) images may be ... for Disease Control and Prevention public health image library . Smallpox Vaccination Study-1 Smallpox vaccination dilution study: ...

  5. History of Bioterrorism: Botulism

    Medline Plus

    Full Text Available ... diseases: smallpox, anthrax, botulism, plague, tularemia, and viral hemorrhagic fevers. If these germs were used to intentionally infect ... the Program Overview Anthrax Plague Smallpox Botulism Viral Hemorrhagic Fevers Tularemia Note: Parts of this video were adapted ...

  6. A single cidofovir treatment rescues animals at progressive stages of lethal orthopoxvirus disease

    Directory of Open Access Journals (Sweden)

    Israely Tomer

    2012-06-01

    Full Text Available Abstract Background In an event of a smallpox outbreak in humans, the window for efficacious treatment by vaccination with vaccinia viruses (VACV is believed to be limited to the first few days post-exposure (p.e.. We recently demonstrated in a mouse model for human smallpox, that active immunization 2–3 days p.e. with either VACV-Lister or modified VACV Ankara (MVA vaccines, can rescue animals from lethal challenge of ectromelia virus (ECTV, the causative agent of mousepox. The present study was carried out in order to determine whether a single dose of the anti-viral cidofovir (CDV, administered at different times and doses p.e. either alone or in conjunction with active vaccination, can rescue ECTV infected mice. Methods Animals were infected intranasally with ECTV, treated on different days with various single CDV doses and monitored for morbidity, mortality and humoral response. In addition, in order to determine the influence of CDV on the immune response following vaccination, both the "clinical take”, IFN-gamma and IgG Ab levels in the serum were evaluated as well as the ability of the mice to withstand a lethal challenge of ECTV. Finally the efficacy of a combined treatment regime of CDV and vaccination p.e. was determined. Results A single p.e. CDV treatment is sufficient for protection depending on the initiation time and dose (2.5 – 100 mg/kg of treatment. Solid protection was achieved by a low dose (5 mg/kg CDV treatment even if given at day 6 p.e., approximately 4 days before death of the control infected untreated mice (mean time to death (MTTD 10.2. At the same time point complete protection was achieved by single treatment with higher doses of CDV (25 or 100 mg/kg. Irrespective of treatment dose, all surviving animals developed a protective immune response even when the CDV treatment was initiated one day p.e.. After seven days post treatment with the highest dose (100 mg/kg, virus was still detected in some

  7. 从人痘法到牛痘法--中国为全世界消灭天花所做的贡献%From Manpox getting to Smallpox Vaccination giving--China's Contribution to the Elinmination of Smallpox in the world

    Institute of Scientific and Technical Information of China (English)

    孙关龙

    2002-01-01

    人类对机体免疫功能的认识最早是从抗感染免疫功能开始的.中国古代的传统医家很早就发现养牛者很少感染天花,而后又观察到人患天花病后的免疫现象,于16世纪(明代)发明应用天花浆预防天花的方法,在世界上开创了免疫接种的先例,也是世界上人工免疫法的开端.后来,英国医生E.詹纳在人痘法基础上进而发明牛痘法,从而于1980年在全世界消灭了天花.

  8. Considerations in detecting CDC select agents under field conditions

    Science.gov (United States)

    Spinelli, Charles; Soelberg, Scott; Swanson, Nathaneal; Furlong, Clement; Baker, Paul

    2008-04-01

    Surface Plasmon Resonance (SPR) has become a widely accepted technique for real-time detection of interactions between receptor molecules and ligands. Antibody may serve as receptor and can be attached to the gold surface of the SPR device, while candidate analyte fluids contact the detecting antibody. Minute, but detectable, changes in refractive indices (RI) indicate that analyte has bound to the antibody. A decade ago, an inexpensive, robust, miniature and fully integrated SPR chip, called SPREETA, was developed. University of Washington (UW) researchers subsequently developed a portable, temperature-regulated instrument, called SPIRIT, to simultaneously use eight of these three-channel SPREETA chips. A SPIRIT prototype instrument was tested in the field, coupled to a remote reporting system on a surrogate unmanned aerial vehicle (UAV). Two target protein analytes were released sequentially as aerosols with low analyte concentration during each of three flights and were successfully detected and verified. Laboratory experimentation with a more advanced SPIRIT instrument demonstrated detection of very low levels of several select biological agents that might be employed by bioterrorists. Agent detection under field-like conditions is more challenging, especially as analyte concentrations are reduced and complex matricies are introduced. Two different sample preconditioning protocols have been developed for select agents in complex matrices. Use of these preconditioning techniques has allowed laboratory detection in spiked heavy mud of Francisella tularensis at 10 3 CFU/ml, Bacillus anthracis spores at 10 3 CFU/ml, Staphylococcal enterotoxin B (SEB) at 1 ng/ml, and Vaccinia virus (a smallpox simulant) at 10 5 PFU/ml. Ongoing experiments are aimed at simultaneous detection of multiple agents in spiked heavy mud, using a multiplex preconditioning protocol.

  9. Evidence for Persistence of Ectromelia Virus in Inbred Mice, Recrudescence Following Immunosuppression and Transmission to Naïve Mice

    Science.gov (United States)

    Sakala, Isaac G.; Chaudhri, Geeta; Scalzo, Anthony A.; Eldi, Preethi; Newsome, Timothy P.; Buller, Robert M.; Karupiah, Gunasegaran

    2015-01-01

    Orthopoxviruses (OPV), including variola, vaccinia, monkeypox, cowpox and ectromelia viruses cause acute infections in their hosts. With the exception of variola virus (VARV), the etiological agent of smallpox, other OPV have been reported to persist in a variety of animal species following natural or experimental infection. Despite the implications and significance for the ecology and epidemiology of diseases these viruses cause, those reports have never been thoroughly investigated. We used the mouse pathogen ectromelia virus (ECTV), the agent of mousepox and a close relative of VARV to investigate virus persistence in inbred mice. We provide evidence that ECTV causes a persistent infection in some susceptible strains of mice in which low levels of virus genomes were detected in various tissues late in infection. The bone marrow (BM) and blood appeared to be key sites of persistence. Contemporaneous with virus persistence, antiviral CD8 T cell responses were demonstrable over the entire 25-week study period, with a change in the immunodominance hierarchy evident during the first 3 weeks. Some virus-encoded host response modifiers were found to modulate virus persistence whereas host genes encoded by the NKC and MHC class I reduced the potential for persistence. When susceptible strains of mice that had apparently recovered from infection were subjected to sustained immunosuppression with cyclophosphamide (CTX), animals succumbed to mousepox with high titers of infectious virus in various organs. CTX treated index mice transmitted virus to, and caused disease in, co-housed naïve mice. The most surprising but significant finding was that immunosuppression of disease-resistant C57BL/6 mice several weeks after recovery from primary infection generated high titers of virus in multiple tissues. Resistant mice showed no evidence of a persistent infection. This is the strongest evidence that ECTV can persist in inbred mice, regardless of their resistance status. PMID

  10. CRISPR/Cas9 Cleavage of Viral DNA Efficiently Suppresses Vaccinia Viruses%CRISPR/Cas9切割痘病毒DNA抑制病毒复制

    Institute of Scientific and Technical Information of China (English)

    王娇娇; 张新敏; 倪爱民; 章康健; 刘新垣; 刘锡君

    2016-01-01

    当前,CRISPR/Cas9系统靶向痘苗病毒的相关研究鲜有报道.该文采用了CRISPR/Cas9基因组定点编辑技术,以痘病毒为研究对象.在重组痘病-毒WR-EGFP中针对EGFP基因序列设计不同靶点gRNAs,转染Cas9/gRNA质粒,同时感染WR-EGFP痘病毒,随后观察EGFP荧光表达、提取病毒基因组,通过PCR进行切口鉴定并运用错配酶切法验-CRISPR/Cas9对痘病毒靶点DNA切割的切口修复情况.与单独感染WR-EGFP组相比,转染了Cas9/gRNA 174和Cas9/gRNA 175质粒的EGFP荧光强度明显降低,表明CRISPR/Cas9抑制WR-EGFP病毒中EGFP基因的表达.相对定量PCR及错配酶切实验结果显示,CRISPR/Cas9切割靶点导致WR-EGFP病毒基因组产生了切口,并且存在DNA错配修复现象.最后,通过结晶紫染色法测定痘病毒的滴度,结果显示,经CRISPR/Cas9处理组的痘病毒滴度显著下降,即CRISPR/Cas9能够使痘病毒的复制能力显著地降低.综上所述,CRISPR/Cas9切割痘病毒基因组DNA并且抑制痘病毒复制.

  11. Use of vaccinia virus vectors to study protein processing in human disease. Normal nerve growth factor processing and secretion in cultured fibroblasts from patients with familial dysautonomia.

    OpenAIRE

    Edwards, R H; Rutter, W J

    1988-01-01

    Familial dysautonomia is a hereditary disorder that affects autonomic and sensory neurons. Nerve growth factor (NGF) is required for the normal development of sympathetic and sensory neurons and it has been postulated that an abnormality involving NGF may be responsible for familial dysautonomia. Previous studies have shown that the beta-NGF gene is not linked to the disease. However, NGF appears to be abnormal by immunochemical assays; the putative altered form of NGF could result from a dis...

  12. NCBI nr-aa BLAST: CBRC-LAFR-01-0676 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-LAFR-01-0676 ref|YP_232946.1| membrane protein [Vaccinia virus] sp|P23372|VE08..._VACCV Protein E8 gb|AAB59828.1| ORF6 [Vaccinia virus] gb|AAO89343.1| membrane protein [Vaccinia virus WR] YP_232946.1 0.19 24% ...

  13. NCBI nr-aa BLAST: CBRC-LAFR-01-1541 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-LAFR-01-1541 ref|YP_232946.1| membrane protein [Vaccinia virus] sp|P23372|VE08..._VACCV Protein E8 gb|AAB59828.1| ORF6 [Vaccinia virus] gb|AAO89343.1| membrane protein [Vaccinia virus WR] YP_232946.1 0.19 24% ...

  14. Establishment and verification of neutralization method for smallpox vaccine Tiantan strain%天花疫苗天坛株病毒中和试验方法的建立和验证

    Institute of Scientific and Technical Information of China (English)

    董小曼; 陈秀珍; 董翊; 吕洋

    2007-01-01

    @@ 天花疫苗天坛株病毒是自1926年从天花患者的疱痂中分离出来的病毒经连续传代减毒而获得.自1980年WHO宣布全球消灭天花后,天花疫苗停止使用[1-2].2001年9月11日美国遭受恐怖袭击后,天花疫苗重新成为世界范围内用于反生物武器研究和使用的重点.

  15. ReliefSeq: a gene-wise adaptive-K nearest-neighbor feature selection tool for finding gene-gene interactions and main effects in mRNA-Seq gene expression data.

    Directory of Open Access Journals (Sweden)

    Brett A McKinney

    Full Text Available Relief-F is a nonparametric, nearest-neighbor machine learning method that has been successfully used to identify relevant variables that may interact in complex multivariate models to explain phenotypic variation. While several tools have been developed for assessing differential expression in sequence-based transcriptomics, the detection of statistical interactions between transcripts has received less attention in the area of RNA-seq analysis. We describe a new extension and assessment of Relief-F for feature selection in RNA-seq data. The ReliefSeq implementation adapts the number of nearest neighbors (k for each gene to optimize the Relief-F test statistics (importance scores for finding both main effects and interactions. We compare this gene-wise adaptive-k (gwak Relief-F method with standard RNA-seq feature selection tools, such as DESeq and edgeR, and with the popular machine learning method Random Forests. We demonstrate performance on a panel of simulated data that have a range of distributional properties reflected in real mRNA-seq data including multiple transcripts with varying sizes of main effects and interaction effects. For simulated main effects, gwak-Relief-F feature selection performs comparably to standard tools DESeq and edgeR for ranking relevant transcripts. For gene-gene interactions, gwak-Relief-F outperforms all comparison methods at ranking relevant genes in all but the highest fold change/highest signal situations where it performs similarly. The gwak-Relief-F algorithm outperforms Random Forests for detecting relevant genes in all simulation experiments. In addition, Relief-F is comparable to the other methods based on computational time. We also apply ReliefSeq to an RNA-Seq study of smallpox vaccine to identify gene expression changes between vaccinia virus-stimulated and unstimulated samples. ReliefSeq is an attractive tool for inclusion in the suite of tools used for analysis of mRNA-Seq data; it has power to

  16. Eradicating a Disease: Lessons from Mathematical Epidemiology

    Science.gov (United States)

    Glomski, Matthew; Ohanian, Edward

    2012-01-01

    Smallpox remains the only human disease ever eradicated. In this paper, we consider the mathematics behind control strategies used in the effort to eradicate smallpox, from the life tables of Daniel Bernoulli, to the more modern susceptible-infected-removed (SIR)-type compartmental models. In addition, we examine the mathematical feasibility of…

  17. Disease: H00372 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available millions of people. Infectious disease Variola virus [VGNM:NC_001611] Smallpox vaccine [DR:D05295] ICD-10: B...03 MeSH: D012899 MedlinePlus: 001356 PMID:10616173 (description) Arita I Standardization of smallpox vaccine

  18. Progression of pathogenic events in cynomolgus macaques infected with variola virus.

    Directory of Open Access Journals (Sweden)

    Victoria Wahl-Jensen

    Full Text Available Smallpox, caused by variola virus (VARV, is a devastating human disease that affected millions worldwide until the virus was eradicated in the 1970 s. Subsequent cessation of vaccination has resulted in an immunologically naive human population that would be at risk should VARV be used as an agent of bioterrorism. The development of antivirals and improved vaccines to counter this threat would be facilitated by the development of animal models using authentic VARV. Towards this end, cynomolgus macaques were identified as adequate hosts for VARV, developing ordinary or hemorrhagic smallpox in a dose-dependent fashion. To further refine this model, we performed a serial sampling study on macaques exposed to doses of VARV strain Harper calibrated to induce ordinary or hemorrhagic disease. Several key differences were noted between these models. In the ordinary smallpox model, lymphoid and myeloid hyperplasias were consistently found whereas lymphocytolysis and hematopoietic necrosis developed in hemorrhagic smallpox. Viral antigen accumulation, as assessed immunohistochemically, was mild and transient in the ordinary smallpox model. In contrast, in the hemorrhagic model antigen distribution was widespread and included tissues and cells not involved in the ordinary model. Hemorrhagic smallpox developed only in the presence of secondary bacterial infections - an observation also commonly noted in historical reports of human smallpox. Together, our results support the macaque model as an excellent surrogate for human smallpox in terms of disease onset, acute disease course, and gross and histopathological lesions.

  19. De vreselijkste aller harpijen. Pokkenepidemiën en pokkenbestrijding in Nederland in de 18e en 19e eeuw.

    NARCIS (Netherlands)

    Rutten, W.

    1997-01-01

    This study examines the fight against smallpox in the Netherlands in the 18th and 19th centuries. Smallpox mortality dropped in an unprecedented way from about 1810, generating a substantial reduction in the urban child mortality rate. The impact of vaccination on the acceleration of the Dutch popul

  20. Construction of Recombinant HPV16 E7 Antigen Vaccinia Virus%重组人乳头瘤病毒16型E7抗原痘苗病毒的构建

    Institute of Scientific and Technical Information of China (English)

    邱小萍; 伍欣星; 谭云; 郑义; 赵文日; 赵文先; 戴天力

    2001-01-01

    To study the biological and immunological properties of HPV16 E7 protein. Methods:HPV16 E7 gene fragment was amplified form plasmid of HPV16 E7 using PCR and digested by two restriction endonucleaes Xho I and Bgl Ⅱ. Results: E7 gene was orientally inserted into the downstream of late promotor P11 of expression vector PJ120.Conclusion:E7 gene has been successfuly cloned the site of the expressive vector PJ120.It is the beginning for the recombinant to express protien product in eukaryotic cell.%目的:研究人乳头瘤病毒16型E7(HPV16 E7)基因蛋白的生物学和免疫学活性。方法:用聚合酶链反应(PCR)技术扩增并分离出HPV16 E7 359 bp的基因片段,经XhoⅠ和BglⅡ双酶切后,定向插入到表达质粒PJ120的晚期启动子P11下游。结果:经PCR技术、双酶切分析证明HPV16 E7基因已克隆到载体PJ120上。结论:HPV16 E7基因痘苗病毒重组体构建成功,为其在真核细胞的表达奠定了基础。