WorldWideScience

Sample records for ac-type microarc oxidation

  1. The influence of Ac parameters in the process of micro-arc oxidation film electric breakdown

    Directory of Open Access Journals (Sweden)

    Ma Jin

    2016-01-01

    Full Text Available This paper studies the electric breakdown discharge process of micro-arc oxidation film on the surface of aluminum alloy. Based on the analysis of the AC parameters variation in the micro-arc oxidation process, the following conclusions can be drawn: The growth of oxide film can be divided into three stages, and Oxide film breakdown discharge occurs twice in the micro-arc oxidation process. The first stage is the formation and disruptive discharge of amorphous oxide film, producing the ceramic oxide granules, which belong to solid dielectric breakdown. In this stage the membrane voltage of the oxide film plays a key role; the second stage is the formation of ceramic oxide film, the ceramic oxide granules turns into porous structure oxide film in this stage; the third stage is the growth of ceramic oxide film, the gas film that forms in the oxide film’s porous structure is electric broken-down, which is the second breakdown discharge process, the current density on the oxide film surface could affect the breakdown process significantly.

  2. The Otto Aufranc Award: Enhanced Biocompatibility of Stainless Steel Implants by Titanium Coating and Microarc Oxidation

    Science.gov (United States)

    Lim, Young Wook; Kwon, Soon Yong; Sun, Doo Hoon

    2010-01-01

    Background Stainless steel is one of the most widely used biomaterials for internal fixation devices, but is not used in cementless arthroplasty implants because a stable oxide layer essential for biocompatibility cannot be formed on the surface. We applied a Ti electron beam coating, to form oxide layer on the stainless steel surface. To form a thicker oxide layer, we used a microarc oxidation process on the surface of Ti coated stainless steel. Modification of the surface using Ti electron beam coating and microarc oxidation could improve the ability of stainless steel implants to osseointegrate. Questions/purposes The ability of cells to adhere to grit-blasted, titanium-coated, microarc-oxidated stainless steel in vitro was compared with that of two different types of surface modifications, machined and titanium-coated, and microarc-oxidated. Methods We performed energy-dispersive x-ray spectroscopy and scanning electron microscopy investigations to assess the chemical composition and structure of the stainless steel surfaces and cell morphology. The biologic responses of an osteoblastlike cell line (SaOS-2) were examined by measuring proliferation (cell proliferation assay), differentiation (alkaline phosphatase activity), and attraction ability (cell migration assay). Results Cell proliferation, alkaline phosphatase activity, migration, and adhesion were increased in the grit-blasted, titanium-coated, microarc-oxidated group compared to the two other groups. Osteoblastlike cells on the grit-blasted, titanium-coated, microarc-oxidated surface were strongly adhered, and proliferated well compared to those on the other surfaces. Conclusions The surface modifications we used (grit blasting, titanium coating, microarc oxidation) enhanced the biocompatibility (proliferation and migration of osteoblastlike cells) of stainless steel. Clinical Relevance This process is not unique to stainless steel; it can be applied to many metals to improve their biocompatibility

  3. Investigating the Influence of Micro-Arc Oxide Coating on Rigidity and Strength of Long Force Elements of Spacecraft

    Directory of Open Access Journals (Sweden)

    V. K. Shatalov

    2014-01-01

    operating conditions, type of structures, and dominant type of deformations the choice of the micro-arc oxide coating thickness can have a considerable effect on the loading capacity of structure.

  4. Investigation of the Scanning Microarc Oxidation Process

    Directory of Open Access Journals (Sweden)

    Lingqin Xia

    2017-01-01

    Full Text Available Scanning microarc oxidation (SMAO is a coating process which is based on conventional microarc oxidation (MAO. The key difference is that deposition in SMAO is achieved by using a stainless steel nozzle to spray an electrolyte stream on the substrate surface as opposed to immersing the workpiece in an electrolyzer. In the present study, SMAO discharge characteristics, coating morphology, and properties are analyzed and compared to results obtained from MAO under similar conditions. Results show that MAO and SMAO have comparable spark and microarc lifetimes and sizes, though significant differences in incubation time and discharge distribution were evident. Results also showed that the voltage and current density for MAO and SMAO demonstrate similar behavior but have markedly different transient and steady-state values. Results obtained from coating A356 aluminum sheet show that oxide thickness and growth rate in SMAO are strongly dependent on interelectrode spacing and travel speed. Analysis of the SMAO coating morphology and structure showed that a denser and slightly harder layer was deposited in comparison to MAO and is attributed to reduced porosity and increased formation of α-Al2O3. Preliminary results indicate that SMAO represents a viable process for coating of aluminum surfaces.

  5. [Apatite-forming ability of pure titanium implant after micro-arc oxidation treatment].

    Science.gov (United States)

    Tian, Zhihui; Zhang, Yu; Wang, Lichao; Nan, Kaihui

    2013-10-01

    To investigate the apatite forming ability of pure titanium implant after micro-arc oxidation treatment in simulated body fluid (SBF) and obtain implants with calcium phosphate (Ca-P) layers. The implants were immersed in (SBF) after micro-arc oxidation treatment for different time lengths, and their apatite forming ability and the morphology and constituents of the Ca-P layers formed on the sample surface were analyzed using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive electron probe. After immersion in SBF, large quantities of Ca-P layers were induced on the surface of the samples. The Ca-P layers were composed of octacalcium phosphate and carbonated hydroxyapatite, and the crystals showed a plate-like morphology with an oriented growth. The implants with micro-arc oxidation treatment show good apatite forming ability on the surface with rich calcium and phosphorus elements. The formed layers are composed of bone-like apatite including octacalcium phosphate and carbonated hydroxyapatite.

  6. Preparation and Properties of Microarc Oxidation Self-Lubricating Composite Coatings on Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Zhenwei Li

    2017-04-01

    Full Text Available Microarc oxidation (MAO coatings were prepared on 2024-T4 aluminum alloy using pulsed bipolar power supply at different cathode current densities. The MAO ceramic coatings contained many crater-like micropores and a small number of microcracks. After the MAO coatings were formed, the coated samples were immersed into a water-based Polytetrafluoroethylene (PTFE dispersion. The micropores and microcracks on the surface of the MAO coatings were filled with PTFE dispersion for preparing MAO self-lubricating composite coatings. The microstructure and properties of MAO coatings and the wear resistance of microarc oxidation self-lubricating composite coatings were analyzed by SEM, laser confocal microscope, X-ray diffractometry (XRD, Vickers hardness test, scratch test and ball-on-disc abrasive tests, respectively. The results revealed that the wear rates of the MAO coatings decreased significantly with an increase in cathode current density. Compared to the MAO coatings, the microarc oxidation self-lubricating composite coatings exhibited a lower friction coefficient and lower wear rates.

  7. Fabrication of oxide layer on zirconium by micro-arc oxidation: Structural and antimicrobial characteristics

    International Nuclear Information System (INIS)

    Fidan, S.; Muhaffel, F.; Riool, M.; Cempura, G.; Boer, L. de; Zaat, S.A.J.; Filemonowicz, A. Czyrska -; Cimenoglu, H.

    2017-01-01

    The aim of this study was to cover the surfaces of zirconium (Zr) with an antimicrobial layer for biomedical applications. For this purpose, the micro-arc oxidation (MAO) process was employed in a sodium silicate and sodium hydroxide containing base electrolyte with and without addition of silver acetate (AgC 2 H 3 O 2 ). In general, synthesized MAO layers were composed of zirconium oxide (ZrO 2 ) and zircon (ZrSiO 4 ). Addition of AgC 2 H 3 O 2 into the base electrolyte caused homogenous precipitation of silver-containing particles in the MAO layer, which exhibited excellent antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) as compared to the untreated and MAO-treated Zr. - Highlights: • Micro-arc oxidation process was applied on zirconium in an electrolyte containing silver acetate. • Silver incorporated in the oxide layer in the form of nanoparticles. • 0.45 wt.% silver incorporation provided excellent antibacterial activity.

  8. Fabrication of oxide layer on zirconium by micro-arc oxidation: Structural and antimicrobial characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Fidan, S.; Muhaffel, F. [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Sariyer, 34469 Istanbul (Turkey); Riool, M. [Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105, AZ, Amsterdam (Netherlands); Cempura, G. [International Centre of Electron Microscopy for Materials Science, AGH University of Science and Technology, PL, 30-059 Kraków (Poland); Boer, L. de; Zaat, S.A.J. [Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105, AZ, Amsterdam (Netherlands); Filemonowicz, A. Czyrska - [International Centre of Electron Microscopy for Materials Science, AGH University of Science and Technology, PL, 30-059 Kraków (Poland); Cimenoglu, H., E-mail: cimenogluh@itu.edu.tr [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Sariyer, 34469 Istanbul (Turkey)

    2017-02-01

    The aim of this study was to cover the surfaces of zirconium (Zr) with an antimicrobial layer for biomedical applications. For this purpose, the micro-arc oxidation (MAO) process was employed in a sodium silicate and sodium hydroxide containing base electrolyte with and without addition of silver acetate (AgC{sub 2}H{sub 3}O{sub 2}). In general, synthesized MAO layers were composed of zirconium oxide (ZrO{sub 2}) and zircon (ZrSiO{sub 4}). Addition of AgC{sub 2}H{sub 3}O{sub 2} into the base electrolyte caused homogenous precipitation of silver-containing particles in the MAO layer, which exhibited excellent antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) as compared to the untreated and MAO-treated Zr. - Highlights: • Micro-arc oxidation process was applied on zirconium in an electrolyte containing silver acetate. • Silver incorporated in the oxide layer in the form of nanoparticles. • 0.45 wt.% silver incorporation provided excellent antibacterial activity.

  9. The influence of the substrate on the adhesive strength of the micro-arc oxidation coating developed on TiNi shape memory alloy

    Science.gov (United States)

    Hsieh, Shy-Feng; Ou, Shih-Fu; Chou, Chia-Kai

    2017-01-01

    TiNi shape memory alloys (SMAs), used as long-term implant materials, have a disadvantage. Ni-ion release from the alloys may trigger allergies in the human body. Micro-arc oxidation has been utilized to modify the surface of the TiNi SMA for improving its corrosion resistance and biocompatibility. However, there are very few reports investigating the essential adhesive strength between the micro-arc oxidized film and TiNi SMA. Two primary goals were attained by this study. First, Ti50Ni48.5Mo1.5 SMA having a phase transformation temperature (Af) less than body temperature and good shape recovery were prepared. Next, the Ti50Ni50 and Ti50Ni48.5Mo1.5 SMA surfaces were modified by micro-arc oxidation in phosphoric acid by applying relatively low voltages to maintain the adhesive strength. The results indicated that the pore size, film thickness, and P content increased with applied voltage. The micro-arc oxidized film, comprising Ti oxides, Ni oxide, and phosphate compounds, exhibited a glassy amorphous structure. The outmost surface of the micro-arc oxidized film contained a large amount of P (>12 at%) but only a trace of Ni (micro-arc oxidized films exceeded the requirements of ISO 13779. Furthermore, Mo addition into TiNi SMAs was found to be favorable for improving the adhesive strength of the micro-arc oxidized film.

  10. Features of the theories of the formation of oxide films on aluminum alloys piston diesel engines with micro-arc oxidation

    OpenAIRE

    Skryabin M.L.; Smekhova I. N.

    2017-01-01

    The article considers one of the promising methods of surface hardening of piston aluminum alloy – microarc oxidation. Described fundamental differences from the micro-arc oxidation anodizing and similar electrochemical processes. The schemes of formation of the barrier and outer layers surface treatment in aqueous electrolytes. Shows the mechanism of formation of the interface. Considers the formation of layers with high porosity and method of exposure. Also describes the exponential depende...

  11. Preparation and characterization of the micro-arc oxidation composite coatings on magnesium alloys

    OpenAIRE

    Yanfeng Ge; Bailing Jiang; Ming Liu; Congjie Wang; Wenning Shen

    2014-01-01

    The magnesium alloys attract the light-weight manufacture due to its high strength to weight ratio, however the poor corrosion resistance limits the application in automobile industry. The Micro-arc Composite Ceramic (MCC) coatings on AZ91D magnesium alloys were prepared by Micro-arc Oxidation (MAO) and electrophoresis technologies. The microstructure, corrosion resistance, abrasion resistance, stone impact resistance and adhesion of MCC coatings were studied respectively. The cross section m...

  12. Automation of the micro-arc oxidation process

    Science.gov (United States)

    Golubkov, P. E.; Pecherskaya, E. A.; Karpanin, O. V.; Shepeleva, Y. V.; Zinchenko, T. O.; Artamonov, D. V.

    2017-11-01

    At present the significantly increased interest in micro-arc oxidation (MAO) encourages scientists to look for the solution of the problem of this technological process controllability. To solve this problem an automated technological installation MAO was developed, its structure and control principles are presented in this article. This device will allow to provide the controlled synthesis of MAO coatings and to identify MAO process patterns which contributes to commercialization of this technology.

  13. Ceramic coated Y1 magnesium alloy surfaces by microarc oxidation

    Indian Academy of Sciences (India)

    The magnesium alloys occupy an important place in marine applications, but their poor corrosion resistance, wear resistance, hardness and so on, have limited their application. To meet these defects, some techniques are developed. Microarc oxidation is a one such recently developed surface treatment technology under ...

  14. Microarc oxidation discharge types and bio properties of the coating synthesized on zirconium.

    Science.gov (United States)

    Cengiz, Sezgin; Azakli, Yunus; Tarakci, Mehmet; Stanciu, Lia; Gencer, Yucel

    2017-08-01

    This study is an attempt for gaining a better understanding on relationship between microarc oxidation (MAO) coating discharge types and bioactivity of an oxide-based coating synthesized on a Zr substrate. The discharge types and the coating growth mechanism were identified by the examination of the real cross-section image of the coating microstructure. The coating was conducted by using MAO in an electrolyte containing Na 2 SiO 3 , Ca(CH 3 COO) 2 and C 3 H 7 Na 2 O 6 P, for different durations of 2.5, 5, 15, and 30mins. The effect of the process duration on the different discharge model types (Type-A, B, and C) and bioactivity of the coatings were investigated by using X-ray Diffractometry (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy-Energy-Dispersive X-ray spectroscopy measurements (SEM-EDS) and Optical Surface Profilometry (OSP). It was found that the increasing MAO duration resulted in thicker and rougher coatings. The XRD data revealed that all the samples prepared at different process durations contained the t-ZrO 2 (tetragonal zirconia) phase. During the MAO process, non-crystalline hydroxyapatite (HA) formed, which was confirmed from the FTIR data. The surface morphology, the amount and distribution of the features of the coating surface were modified by increasing voltage. The simulated body fluid (SBF) tests showed that the more bioactive surface with more HA crystals formed owing to chemical composition and high surface roughness of the coating. The pore, crack and discharge structures played a key role in apatite nucleation and growth, and provided ingrowth of apatite into discharge channels on the coating surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Evaluation of the mechanical properties of microarc oxidation coatings and 2024 aluminium alloy substrate

    CERN Document Server

    Xue Wen Bin; Deng Zhi Wei; Chen Ru Yi; Li Yong Liang; Zhang Ton Ghe

    2002-01-01

    A determination of the phase constituents of ceramic coatings produced on Al-Cu-Mg alloy by microarc discharge in alkaline solution was performed using x-ray diffraction. The profiles of the hardness, H, and elastic modulus, E, across the ceramic coating were determined by means of nanoindentation. In addition, a study of the influence of microarc oxidation coatings on the tensile properties of the aluminium alloy was also carried out. The results show that the H-and E-profiles are similar, and both of them exhibit a maximum value at the same depth of coating. The distribution of the alpha-Al sub 2 O sub 3 phase content determines the H- and E-profiles of the coatings. The tensile properties of 2024 aluminium alloy show less change after the alloy has undergone microarc discharge surface treatment.

  16. Micro-Arc oxidation of Ti in a solution of sulfuric acid and Ti+3 salt

    International Nuclear Information System (INIS)

    Ragalevicius, Rimas; Stalnionis, Giedrius; Niaura, Gediminas; Jagminas, Arunas

    2008-01-01

    A comparative study was performed on the behavior of titanium electrode in a sulfuric acid solution with and without Ti +3 during micro-arc oxidation under the constant current density control regime. The composition and microstructure of the obtained micro-arc films were analyzed using scanning electron microscopy, glancing-angle X-ray diffractometry, Raman and energy-dispersive X-ray spectroscopies. We have shown that addition of a Ti +3 salt extends the region of current densities (j a ) can be used for micro-arc oxidation of Ti and results in an obvious change of sparking behavior from extensive, large and long-played sparks to numerous, small and short sparks. As a consequence, the titania films formed in the Ti +3 -containing solutions are relatively thick, more uniform, composed of almost pure crystalline anatase and rutile phases of TiO 2 , and contain a network of evenly distributed small pores. It has also been shown that these films are promising for applications in catalysis, sensors and optoelectronics. The Raman spectra indicate that an increase in the electrolysis time of titanium in the Ti +3 -containing solution leads to the increase in rutile content, as expected

  17. Features of the theories of the formation of oxide films on aluminum alloys piston diesel engines with micro-arc oxidation

    Directory of Open Access Journals (Sweden)

    Skryabin M.L.

    2017-12-01

    Full Text Available The article considers one of the promising methods of surface hardening of piston aluminum alloy – microarc oxidation. Described fundamental differences from the micro-arc oxidation anodizing and similar electrochemical processes. The schemes of formation of the barrier and outer layers surface treatment in aqueous electrolytes. Shows the mechanism of formation of the interface. Considers the formation of layers with high porosity and method of exposure. Also describes the exponential dependence of the current density from the electric field in the surface film of the base metal. The role of discharges in the formation of oxide layers on the treated surface. Proposed and described features of the three main theories of formation of oxide films on the surface of the piston: physical and geometrical model of Keller; models of formation of oxide films as a colloid formations and plasma theory (theory of oxidation with the formation of plasma in the zone of oxidation. The features of formation of films in each of the models. For the model of Keller porous oxide film is a close-Packed oxide cell, having the shape of a prism. They are based on a hexagonal prism. These cells have normal orientation to the surface of the metal. In the center of the unit cell there is one season that is a channel, whose size is determined by the composition of the electrolyte, the chemical composition of the base metal and the electrical parameters of the process of oxidation. In the micro-arc oxidation process according to this model, the beginning of the formation of cells occurs with the formation of the barrier layer, passing in the porous layer and, over time, the elonga-tion of the pores, due to the constant etching electrolyte. In the theory of formation of the oxide films as kolloidnyh formations revealed that formation of pores in the film is a result of their growth. The anodic oxide is represented by a directed electric field, the alumina gel colloidal and

  18. Preparation and characterization of HA microflowers coating on AZ31 magnesium alloy by micro-arc oxidation and a solution treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tang Hui [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Yu Dezhen [School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Luo Yan [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Wang Fuping, E-mail: hitth001@yahoo.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. Black-Right-Pointing-Pointer The corrosion resistance of the magnesium alloy has been enhanced by micro-arc oxidation and solution treatment. Black-Right-Pointing-Pointer The coating fabricated by micro-arc oxidation and solution treatment exhibits a high ability to form apatite. - Abstract: Magnesium and its alloys are potential biodegradable implant materials due to their attractive biological properties. But the use of magnesium is still hampered by its poor corrosion resistance in physiological fluids. In this work, hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. The microstructure and composition are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The potentiodynamic polarization and electrochemical impedance spectroscopy are studied in simulated body fluid (SBF) solution, and the apatite-forming ability is studied also. The results show that the corrosion resistance of the magnesium alloy has been enhanced by MAO coating. And the solution treatment can improve the corrosion resistance of the MAO sample, by forming a barrier layer on the surface of the MAO coating, and by penetrating into the outer layer of the MAO film, sealing the micropores and micro-cracks existed in the MAO coating. In addition, the MAO-ST coating also exhibits a high ability to form apatite.

  19. Effect of calcium on the microstructure and corrosion behavior of microarc oxidized Mg-xCa alloys.

    Science.gov (United States)

    Pan, Yaokun; Chen, Chuanzhong; Feng, Rui; Cui, Hongwei; Gong, Benkui; Zheng, Tingting; Ji, Yarou

    2018-01-16

    Magnesium alloys are potential biodegradable implants for biomedical applications, and calcium (Ca) is one kind of ideal element being examined for magnesium alloys and biodegradable ceramic coatings owing to its biocompatibility and mechanical suitability. In this study, microarc oxidation (MAO) coatings were prepared on Mg-xCa alloys to study the effect of Ca on the microstructure and corrosion resistance of Mg-xCa alloys and their surface MAO coatings. The electrochemical corrosion behavior was investigated using an electrochemical workstation, and the degradability and bioactivity were evaluated by soaking tests in simulated body fluid (SBF) solutions. The corrosion products were characterized by scanning electron microscopy, x-ray diffractometry, and Fourier transform infrared spectrometry. The effects of Ca on the alloy phase composition, microstructure, MAO coating formation mechanism, and corrosion behavior were investigated. Results showed that the Mg-0.82Ca alloy and MAO-coated Mg-0.82Ca exhibited the highest corrosion resistance. The number and distribution of Mg 2 Ca phases can be controlled by adjusting the Ca content in the Mg-xCa alloys. The proper amount of Ca in magnesium alloy was about 0.5-0.8 wt. %. The pore size, surface roughness, and corrosion behavior of microarc oxidized Mg-xCa samples can be controlled by the number and distribution of the Mg 2 Ca phase. The corrosion behaviors of microarc oxidized Mg-Ca in SBF solutions were discussed.

  20. Microarc Oxidation of Product Surfaces without Using a Bath

    Directory of Open Access Journals (Sweden)

    V. K. Shatalov

    2015-01-01

    Full Text Available While using an electrochemical method to cover the large-sized work-pieces, units, and products up to 6 м3 by protective coating, there is a certain difficulty to apply traditional anodizing techniques in a plating vat, and it is necessary to find various processing techniques.To use the existing micro-arc oxide coating (MOC methods for work-pieces of various forms and sizes in a plating vat is complicated in case it is required to provide oxide layers in separate places rather than over entire surface of a work-piece. The challenge is to treat flat surfaces in various directions, external and internal surfaces of rotation bodies, profiled surfaces, intersections, closed and through holes, pipes, as well as spline and thread openings for ensuring anti-seize properties in individual or small-scale production to meet technical requirements and operational properties of products.A design of tools to provide MOC-process of all possible surfaces of various engineering box-type products depends on many factors and can be considerably different even when processing the surfaces of the same forms. An attachment to be used is fixed directly on a large-sized design (a work-piece, a product or fastened in the special tool. The features of technological process, design shape, and arrangement of the processed surfaces define a fastening method of the attachment. Therefore it is necessary to pay much attention to a choice of the processing pattern and a design of tools.The Kaluga-branch of Bauman Moscow State Technical University is an original proposer of methods to form MOC-coatings on the separate surfaces of large-sized work-pieces using the moved and stationary electrodes to solve the above listed tasks.The following results of work will have an impact on development of the offered processing methods and their early implementation in real production:1. To provide oxide coatings on the surfaces of large-sized products or assemblies in a single or small

  1. Fabrication of oxide layer on zirconium by micro-arc oxidation: Structural and antimicrobial characteristics.

    Science.gov (United States)

    Fidan, S; Muhaffel, F; Riool, M; Cempura, G; de Boer, L; Zaat, S A J; Filemonowicz, A Czyrska-; Cimenoglu, H

    2017-02-01

    The aim of this study was to cover the surfaces of zirconium (Zr) with an antimicrobial layer for biomedical applications. For this purpose, the micro-arc oxidation (MAO) process was employed in a sodium silicate and sodium hydroxide containing base electrolyte with and without addition of silver acetate (AgC 2 H 3 O 2 ). In general, synthesized MAO layers were composed of zirconium oxide (ZrO 2 ) and zircon (ZrSiO 4 ). Addition of AgC 2 H 3 O 2 into the base electrolyte caused homogenous precipitation of silver-containing particles in the MAO layer, which exhibited excellent antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) as compared to the untreated and MAO-treated Zr. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Structure and in vitro bioactivity of ceramic coatings on magnesium alloys by microarc oxidation

    Science.gov (United States)

    Yu, Huijun; Dong, Qing; Dou, Jinhe; Pan, Yaokun; Chen, Chuanzhong

    2016-12-01

    Magnesium and its alloys have the potential to serve as lightweight, degradable, biocompatible and bioactive orthopedic implants for load-bearing applications. However, severe local corrosion attack and high corrosion rate have prevented their further clinical use. Micro-arc oxidation (MAO) is proved to be a simple, controllable and efficient electrochemistry technique that can prepare protective ceramic coatings on magnesium alloys. In this paper, electrolyte containing silicate salts was used for microarc oxidation to form ceramic bioactive coatings on the ZK61 alloy substrate. The structure characteristics and element distributions of the coating were investigated by XRD, TEM, SEM and EPMA. The MAO samples were immersed in simulated body fluid (SBF) for 7 and 14 days, respectively. The surface characteristic of the immersed coatings was investigated by Fourier-transform infrared (FTIR) spectroscopy. The results show that these MAO coatings have low crystallinity and are mainly composed of MgO, Mg2SiO4 and Mg2Si2O6. The coating surface is porous. During the SBF immersion period, the nucleation and precipitation of bone-like apatites occur on the MAO coating surface. The corrosion resistance of the substrate is improved by the MAO coatings.

  3. The Infulence of Microarc Oxidation Method Modes on the Properties of Coatings

    Directory of Open Access Journals (Sweden)

    N.Y. Dudareva

    2014-07-01

    Full Text Available The experimental studies of the properties of the hardened surface layer, developed by the microarc oxidation method (MAO on the surface of Al-Si ingots from AK12D alloy have been presented here. The effect of concentration of the electrolyte components on the properties of the MAO coating, such as microhardness, thickness, porosity have been studied. The corresponding regression equations to estimate the influence of the process parameters on the quality of the developed MAO-layer, have been set up.

  4. Preparation and characterization of the micro-arc oxidation composite coatings on magnesium alloys

    Directory of Open Access Journals (Sweden)

    Yanfeng Ge

    2014-12-01

    Full Text Available The magnesium alloys attract the light-weight manufacture due to its high strength to weight ratio, however the poor corrosion resistance limits the application in automobile industry. The Micro-arc Composite Ceramic (MCC coatings on AZ91D magnesium alloys were prepared by Micro-arc Oxidation (MAO and electrophoresis technologies. The microstructure, corrosion resistance, abrasion resistance, stone impact resistance and adhesion of MCC coatings were studied respectively. The cross section morphologies showed that the outer organic coating was filled into the hole on surface of MAO coating, and it acted as a shelter against corrosive products. The copper-accelerated acetic acid salt spray Test, abrasion resistance test, stone impact resistance test, thermal shock resistance test and adhesion test were used to evaluate the protective characterization by the third testing organization which approved by GM. The test results showed the composite coatings meet all the requirements. The MCC coating on Mg presents excellent properties, and it is a promising surface treatment technology on magnesium alloys for production vehicles.

  5. Research of growth mechanism of ceramic coatings fabricated by micro-arc oxidation on magnesium alloys at high current mode

    Directory of Open Access Journals (Sweden)

    Wei-wei Chen

    2015-09-01

    Full Text Available Micro-arc oxidation (MAO coatings of ZK60 magnesium alloys were formed in a self-developed dual electrolyte composed of sodium silicate and phosphate at the high constant current of 1.8 A (15 A/dm2. The MAO process and growth mechanism were investigated by scanning electron microscopy (SEM coupled with an energy dispersive spectrometer (EDS, confocal laser scanning microscopy and X-ray diffraction (XRD. The results indicate that the growth process of MAO coating mainly goes through “forming → puncturing → rapid growth of micro-arc oxidation →large arc discharge → self-repairing”. The coating grows inward and outward at the same time in the initial stage, but outward growth of the coating is dominant later. Mg, Mg2SiO4 and MgO are the main phases of ceramic coating.

  6. Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance

    International Nuclear Information System (INIS)

    Guo, H.F.; An, M.Z.

    2005-01-01

    Micro-arc oxidization of AZ91D magnesium alloys was studied in solutions containing sodium aluminate and potassium fluoride at constant applied current densities. The influence of applied current densities, concentration and constituents of the electrolyte as well as treatment time on micro-arc oxidization process was investigated, respectively; surface morphology and phase structure were analyzed using scanning electron microscope (SEM) and X-ray powder diffraction (XRD). Potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion resistance of ceramic coatings formed on magnesium alloys. XRD analyses indicate that the ceramic coatings fabricated on the surface of magnesium alloys by micro-arc oxidization are composed of spinel phase MgAl 2 O 4 and intermetallic phase Al 2 Mg; variation of treatment time arises no obvious difference to phase structure of the ceramic coatings. A few circular pores and micro-cracks are also observed to remain on the ceramic coating surface; the number of the pores is decreasing, while the diameter of the pores is apparently increasing with prolonging of treatment time. The corrosion resistance of ceramic coatings is improved more than 100 times compared with magnesium alloy substrate

  7. Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yong [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Wang Yingjun [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Ning Chengyun [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Nan Kaihui [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Han Yong [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2007-09-15

    A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and {beta}-glycerol phosphate disodium salt pentahydrate ({beta}-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 {mu}m, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints.

  8. Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation.

    Science.gov (United States)

    Huang, Yong; Wang, Yingjun; Ning, Chengyun; Nan, Kaihui; Han, Yong

    2007-09-01

    A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and beta-glycerol phosphate disodium salt pentahydrate (beta-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 microm, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints.

  9. Hydroxyapatite coatings produced on commercially pure titanium by micro-arc oxidation

    International Nuclear Information System (INIS)

    Huang Yong; Wang Yingjun; Ning Chengyun; Nan Kaihui; Han Yong

    2007-01-01

    A porous hydroxyapatite (HA) coating on commercially pure titanium was prepared by micro-arc oxidation (MAO) in electrolytic solution containing calcium acetate and β-glycerol phosphate disodium salt pentahydrate (β-GP). The thickness, phase, composition morphology and biocompatibility of the oxide coating were characterized by x-ray diffraction (XRD), electron probe microanalysis (EPMA), scanning electron microscopy (SEM) with an energy dispersive x-ray spectrometer (EDS) and cell culture. The thickness of the MAO film was about 20 μm, and the coating was porous and uneven without any apparent interface to the titanium substrates. The result of XRD showed that the porous coating was made up of HA film. The favorable osteoblast cell affinity gives HA film good biocompatibility. HA coatings are expected to have significant uses for medical applications such as dental implants and artificial bone joints

  10. Characterization and corrosion behavior of ceramic coating on magnesium by micro-arc oxidation

    International Nuclear Information System (INIS)

    Durdu, Salih; Aytac, Aylin; Usta, Metin

    2011-01-01

    Highlights: · The commercial pure magnesium was coated by micro-arc oxidation method. · The coating is composed of two layers, a porous outer layer and a dense inner layer. · A super corrosion resistance was achieved with MAO coatings. · Coating with Mg 2 SiO 4 is more resistant to corrosion than that containing Mg 3 (PO 4 ) 2 . - Abstract: In this study, the commercial pure magnesium was coated in different aqueous solutions of Na 2 SiO 3 and Na 3 PO 4 by the micro-arc oxidation method (MAO). Coating thickness, phase composition, surface and cross sectional morphology and corrosion resistance of coatings were analyzed by eddy current method, X-ray diffraction (XRD), scanning electron microscope (SEM) and tafel extrapolation method, respectively. The average thickness of the coatings ranged from 52 to 74 μm for sodium silicate solution and from 64 to 88 μm for sodium phosphate solution. The dominant phases on the coatings were detected as spinal Mg 2 SiO 4 (Forsterite) and MgO (Periclase) for sodium silicate solution and Mg 3 (PO 4 ) 2 (Farringtonite) and MgO (Periclase) for sodium phosphate solution. SEM images reveal that the coating is composed of two layers as of a porous outer layer and a dense inner layer. The corrosion results show the coating consisting Mg 2 SiO 4 is more resistant to corrosion than that containing Mg 3 (PO 4 ) 2 .

  11. Morphological changes in bone tissue around titanium implants subjected to micro-arc oxidation in alkaline electrolytes with and without the use of «CollapAn-gel»

    Directory of Open Access Journals (Sweden)

    Kalmin O.V.

    2013-12-01

    Full Text Available The purpose of the article is to conduct comparative study of the features of reparative processes in the bone during installation of titanium implants with sandblasted exposed microarc subsequent oxidation in alkaline electrolyte using osteoinductive formulation without the use of this preparation. Material and Methods. Histologically examined tissue samples from 24 adult rabbits in the region of titanium implant with osteoinductive formulation and without after 7, 14, 28, 56 and 112 days postoperatively. Results. It has been revealed that the installation of titanium implants subjected to micro-arc oxidation in alkaline electrolytes without the use of osteoinductive preparation leads to a moderate inflammatory response and the processes of bone formation take more time. When using identical implants with osteoinductive preparation «CollapAn-gel» led to a less expressed inflammatory response and a more active process of bone formation. Conclusion. The use of titanium implants subjected to sandblasting followed microarc oxidation in alkaline electrolytes is optimally combined with osteoinductive agents as it provides the best clinical results and highlights shorter time of bone regeneration.

  12. Effect of applied voltage on phase components of composite coatings prepared by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenjun [Department of Prosthodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Fang, Yu-Jing [Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060 (China); Zheng, Huade [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Tan, Guoxin [Guangdong University of Technology, Guangdong Province 510006 (China); Cheng, Haimei [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Ning, Chengyun, E-mail: imcyning@scut.edu.cn [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China)

    2013-10-01

    In this report, we present results from our experiments on composite coatings formed on biomedical titanium substrates by micro-arc oxidation (MAO) in constant-voltage mode. The coatings were prepared on the substrates in an aqueous electrolyte containing calcium acetate and β-glycerol phosphate disodium salt pentahydrate (β-GP). We analyzed the element distribution and phase components of the coatings prepared at different voltages by X-ray diffraction, thin-coating X-ray diffraction, electron-probe microanalysis, and Fourier-transform infrared spectroscopy. The results show that the composite coatings formed at 500 V consist of titania (TiO{sub 2}), hydroxylapatite (HA), and calcium carbonate (CaCO{sub 3}). Furthermore, the concentration of Ca, P, and Ti gradually changes with increasing applied voltage, and the phase components of the composite coatings gradually change from the bottom of the coating to the top: the bottom layer consists of TiO{sub 2}, the middle layer consists of TiO{sub 2} and HA, and the top layer consists of HA and a small amount of CaCO{sub 3}. The formation of HA directly on the coating surface by MAO technique can greatly enhance the surface bioactivity. - Highlights: • Coatings prepared on biomedical titanium substrate by micro-arc oxidation • Coatings composed of titania, hydroxyapatite and calcium carbonate • Hydroxyapatite on the coating surface can enhance the surface bioactivity.

  13. Microstructure and corrosion behavior of coated AZ91 alloy by microarc oxidation for biomedical application

    Science.gov (United States)

    Wang, Y. M.; Wang, F. H.; Xu, M. J.; Zhao, B.; Guo, L. X.; Ouyang, J. H.

    2009-08-01

    Magnesium and its alloy currently are considered as the potential biodegradable implant materials, while the accelerated corrosion rate in intro environment leads to implant failure by losing the mechanical integrity before complete restoration. Dense oxide coatings formed in alkaline silicate electrolyte with and without titania sol addition were fabricated on magnesium alloy using microarc oxidation process. The microstructure, composition and degradation behavior in simulated body fluid (SBF) of the coated specimens were evaluated. It reveals that a small amount of TiO 2 is introduced into the as-deposited coating mainly composed of MgO and Mg 2SiO 4 by the addition of titania sol into based alkaline silicate electrolytic bath. With increasing concentration of titania sol from 0 to 10 vol.%, the coating thickness decreases from 22 to 18 μm. Electrochemical tests show that the Ecorr of Mg substrate positively shifted about 300˜500 mV and icorr lowers more than 100 times after microarc oxidation. However, the TiO 2 modified coatings formed in electrolyte containing 5 and 10 vol.% titania sol indicate an increasing worse corrosion resistance compared with that of the unmodified coating, which is possibly attributed to the increasing amorphous components caused by TiO 2 involvement. The long term immersing test in SBF is consistent with the electrochemical test, with the coated Mg alloy obviously slowing down the biodegradation rate, meanwhile accompanied by the increasing damage trends in the coatings modified by 5 and 10 vol.% titania sol.

  14. Improving the corrosion properties of magnesium AZ31 alloy GTA weld metal using microarc oxidation process

    Institute of Scientific and Technical Information of China (English)

    M.Siva Prasad; M.Ashfaq; N.Kishore Babu; A.Sreekanth; K.Sivaprasad; V.Muthupandi

    2017-01-01

    In this work,the morphology,phase composition,and corrosion properties of microarc oxidized (MAO) gas tungsten arc (GTA) weldments of AZ31 alloy were investigated.Autogenous gas tungsten arc welds were made as full penetration bead-on-plate welding under the alternating-current mode.A uniform oxide layer was developed on the surface of the specimens with MAO treatment in silicate-based alkaline electrolytes for different oxidation times.The corrosion behavior of the samples was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy.The oxide film improved the corrosion resistance substantially compared to the uncoated specimens.The sample coated for 10 min exhibited better corrosion properties.The corrosion resistance of the coatings was concluded to strongly depend on the morphology,whereas the phase composition and thickness were concluded to only slightly affect the corrosion resistance.

  15. Microarc oxidized TiO2 based ceramic coatings combined with cefazolin sodium/chitosan composited drug film on porous titanium for biomedical applications.

    Science.gov (United States)

    Wei, Daqing; Zhou, Rui; cheng, Su; Feng, Wei; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu; Guo, Haifeng

    2013-10-01

    Porous titanium was prepared by pressureless sintering of titanium beads with diameters of 100, 200, 400 and 600 μm. The results indicated that the mechanical properties of porous titanium changed significantly with different bead diameters. Plastic deformations such as necking phenomenon and dimple structure were observed on the fracture surface of porous titanium sintered by beads with diameter of 100 μm. However, it was difficult to find this phenomenon on the porous titanium with a titanium bead diameter of 600 μm. The microarc oxidized coatings were deposited on its surface to improve the bioactivity of porous titanium. Furthermore, the cefazolin sodium/chitosan composited films were fabricated on the microarc oxidized coatings for overcoming the inflammation due to implantation, showing good slow-release ability by addition of chitosan. And the release kinetic process of cefazolin sodium in composited films could be possibly fitted by a polynomial model. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Al2O3 coating fabricated on titanium by cathodic microarc electrodeposition

    International Nuclear Information System (INIS)

    Jin Qian; Xue Wenbin; Li Xijin; Zhu Qingzhen; Wu Xiaoling

    2009-01-01

    A Al 2 O 3 coating was prepared on titanium substrate by cathodic microarc electrodeposition method in Al(NO 3 ) 3 ethanol solution. The coating thickness was about 80 μm when a 400 V cathodic potential was applied. The morphology and phase constituent of the Al 2 O 3 coating were investigated by scanning electron microscope (SEM) and X-ray diffraction (XRD). The isothermal oxidation at 700 deg. C and electrochemical corrosion behavior of the coated titanium were analyzed. The coating was composed of γ-Al 2 O 3 and little α-Al 2 O 3 phases. The oxidation resistance of the titanium subjected to cathodic microarc treatment was obviously improved. The polarization test indicated that the coated titanium has better corrosion resistance.

  17. Improved biological performance of magnesium by micro-arc oxidation

    Directory of Open Access Journals (Sweden)

    W.H. Ma

    2015-03-01

    Full Text Available Magnesium and its alloys have recently been used in the development of lightweight, biodegradable implant materials. However, the corrosion properties of magnesium limit its clinical application. The purpose of this study was to comprehensively evaluate the degradation behavior and biomechanical properties of magnesium materials treated with micro-arc oxidation (MAO, which is a new promising surface treatment for developing corrosion resistance in magnesium, and to provide a theoretical basis for its further optimization and clinical application. The degradation behavior of MAO-treated magnesium was studied systematically by immersion and electrochemical tests, and its biomechanical performance when exposed to simulated body fluids was evaluated by tensile tests. In addition, the cell toxicity of MAO-treated magnesium samples during the corrosion process was evaluated, and its biocompatibility was investigated under in vivo conditions. The results of this study showed that the oxide coating layers could elevate the corrosion potential of magnesium and reduce its degradation rate. In addition, the MAO-coated sample showed no cytotoxicity and more new bone was formed around it during in vivo degradation. MAO treatment could effectively enhance the corrosion resistance of the magnesium specimen and help to keep its original mechanical properties. The MAO-coated magnesium material had good cytocompatibility and biocompatibility. This technique has an advantage for developing novel implant materials and may potentially be used for future clinical applications.

  18. Effect of ZrO{sub 2} particle on the performance of micro-arc oxidation coatings on Ti6Al4V

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong; Sun, Yezi; Zhang, Jin, E-mail: zhangjin@ustb.edu.cn

    2015-07-01

    Highlights: • An anti-oxidation TiO{sub 2}/ZrO{sub 2} composite coating on Ti6Al4V alloy was prepared using micro-arc oxidation technology by adding ZrO{sub 2} particles in single phosphoric acid solution. • The composite coating displays excellent anti-oxidation characteristic at 700 °C in the air. • The concentration of ZrO{sub 2} particles not only influences the roughness and thickness of the coating, but the morphologies, phase composition, oxidation resistance and wear resistance. - Abstract: This paper investigates the effect of ZrO{sub 2} particle on the oxidation resistance and wear properties of coatings on a Ti6Al4V alloy generated using the micro-arc oxidation (MAO) technique. Different concentrations micron ZrO{sub 2} particles were added in phosphate electrolyte and dispersed by magnetic stirring apparatus. The composition of coating was characterized using X-ray diffraction and energy dispersive spectrum, and the morphology was examined using SEM. The high temperature oxidation resistance of the coating sample at 700 °C was investigated. Sliding wear behaviour was tested by a wear tester. The results showed that the coating consisted of ZrTiO{sub 4}, ZrO{sub 2}, TiO{sub 2}. With ZrO{sub 2} particle addition, the ceramic coating's forming time reduced by the current dynamic curve. It was shown that the addition of ZrO{sub 2} particles (3 g/L, 6 g/L) expressed an excellent oxidation resistance at 700 °C and wear resistance.

  19. [Scanning electron microscopy observation of the growth of osteoblasts on Ti-24Nb-4Zr-8Sn modified by micro-arc oxidation and alkali-heat treatment and implant-bone interface].

    Science.gov (United States)

    Han, Xue; Liu, Hong-Chen; Wang, Dong-Sheng; Li, Shu-Jun; Yang, Rui

    2011-01-01

    To observe the efficacy of micro-arc oxidation and alkali-heat treatment (MAH) on Ti-24Nb-4Zr-8Sn (Ti2448). Disks (diameter of 14.5 mm, thickness of 1 mm) and cylinders (diameter of 3 mm, height of 10 mm) were fabricated from Ti2448 alloy. Samples were divided into three groups: polished (Ti2448), micro-arc oxidation(MAO-Ti2448), micro-arc oxidation and alkali-heat treatment (MAH-Ti2448). MC3T3-E1 osteoblastic cells were cultured on the disks and cell morphology was observed with scanning electron microscopy (SEM) aftre 3 days. The cylinder samples were implanted in the tibia of dogs and implant-bone interface was observed with SEM after 3 months. A rough and porous structure was shown in both MAO and MAH group. The MC3T3-E1 cells on the MAH-Ti2448 discs spread fully in intimate contact with the underlying coarse surface through active cytoskeletal extentions. Osseointegration was formed in the implant-bone interface in MAH samples. MAH treatment can provide a more advantageous Ti2448 surface to osteoblastic cells than MAO treatment does, and the former can improve the implant-bone integration.

  20. Influence of Electrolyte Composition on the Calcium-Phosphorus compound Coating on Titanium Substrate by Micro-arc Oxidation

    Institute of Scientific and Technical Information of China (English)

    ZHU Xiu-hong; WANG Cong-zeng; KOU Bin-da; SU Xue-kuan; ZHANG Wen-quan

    2004-01-01

    The compound bioceramic coating containing calcium (Ca) and phosphorus (P) on titanium alloy substrate was prepared by means of micro-arc oxidation (MAO) treatment. The results show that under the different electrolyte the coating with the color of gray or black and surface morphology of cauliflower or honeycomb, where Ca content and P contain can attain 30% and 20% respectively, can be obtained. Meanwhile, the influences of electrolyte temperature, current density and discharge time on morphology and thickness of coating are also discussed here.

  1. In vivo evaluation of an antibacterial coating containing halogenated furanone compound-loaded poly(l-lactic acid) nanoparticles on microarc-oxidized titanium implants.

    Science.gov (United States)

    Cheng, Yicheng; Gao, Bo; Liu, Xianghui; Zhao, Xianghui; Sun, Weige; Ren, Huifang; Wu, Jiang

    2016-01-01

    To prevent peri-implant infection, a new antibacterial coating containing a halogenated furanone compound, (Z-)-4-bromo-5-(bromomethylene)-2(5H)-furanone-loaded poly(l-lactic acid) nanoparticles, has been fabricated. The current study was designed to evaluate the preventive effect of the antibacterial coating under a simulated environment of peri-implant infection in vivo. Microarc-oxidized titanium implants treated with minocycline hydrochloride ointment were used as positive control group, and microarc-oxidized titanium implants without any treatment were used as blank control group. Three kinds of implants were implanted in dogs' mandibles, and the peri-implant infection was simulated by silk ligation and feeding high sugar diet. After 2-month implantation, the results showed that no significant differences were detected between the experimental and positive control groups (P>0.05), but the data of clinical measurements of the blank control group were significantly higher than those of the other two groups (Pmicroscope observation and histological examination showed that more new bone was formed on the surface of the experimental and positive control groups. It can be concluded that the antibacterial coating fabricated on implants has remarkable preventive effect on peri-implant infection at the early stage.

  2. Research of growth mechanism of ceramic coatings fabricated by micro-arc oxidation on magnesium alloys at high current mode

    OpenAIRE

    Wei-wei Chen; Ze-xin Wang; Lei Sun; Sheng Lu

    2015-01-01

    Micro-arc oxidation (MAO) coatings of ZK60 magnesium alloys were formed in a self-developed dual electrolyte composed of sodium silicate and phosphate at the high constant current of 1.8 A (15 A/dm2). The MAO process and growth mechanism were investigated by scanning electron microscopy (SEM) coupled with an energy dispersive spectrometer (EDS), confocal laser scanning microscopy and X-ray diffraction (XRD). The results indicate that the growth process of MAO coating mainly goes through “form...

  3. Polyethylenimine/kappa carrageenan: Micro-arc oxidation coating for passivation of magnesium alloy.

    Science.gov (United States)

    Golshirazi, A; Kharaziha, M; Golozar, M A

    2017-07-01

    The aim of this study was to combine micro-arc oxidation (MAO) and self-assembly technique to improve corrosion resistivity of AZ91 alloy. While a silicate-fluoride electrolyte was adopted for MAO treatment, polyethylenimine (PEI)/kappa carrageenan (KC) self-assembly coating was applied as the second coating layer. Resulted demonstrated the formation of forsterite-fluoride containing MAO coating on AZ91 alloy depending on the voltage and time of anodizing process. Addition of the second PEI/KC coating layer on MAO treated sample effectively enhanced the adhesive strength of MAO coated sample due to filling the pores with polymers and increase in the mechanical interlocking of coating to the substrate. Moreover, the corrosion evaluation considered by potentiodynamic polarization and electrochemical impedance spectroscopy confirmed that double layered PEI/KC:MAO coating presented superior resistance to corrosion attack. It is envisioned that the proposed double layered PEI/KC:MAO coating could be useful for biomedical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Ultra-hard ceramic coatings fabricated through microarc oxidation on aluminium alloy

    International Nuclear Information System (INIS)

    Wu Hanhua; Wang Jianbo; Long Beiyu; Long Beihong; Jin Zengsun; Naidan Wang; Yu Fengrong; Bi Dongmei

    2005-01-01

    Ultra-hard ceramic coatings with microhardness of 2535 Hv have been synthesized on the Al alloy substrate by microarc oxidation (MAO) technique. The effects of anodic current density (j a ) and the ratio of cathodic to anodic current density (j c /j a ) on the mechanical and corrosion resistance properties of MAO coatings have been studied by microhardness and pitting corrosion tests, respectively. In addition, the phase composition and microstructure of the coatings were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results show that the coatings prepared at high anodic current density consist mainly of α-Al 2 O 3 , while those fabricated at low anodic current density are almost composed of γ-Al 2 O 3 . Microhardness test shows that the coatings have high microhardness, and the highest one is found in the coating formed at j a = 15 A/dm 2 and j c /j a = 0.7. Pitting corrosion test shows that the structure of coatings is strongly influenced by the varying j c /j a

  5. Preparation of Porous F-WO3/TiO2 Films with Visible-Light Photocatalytic Activity by Microarc Oxidation

    OpenAIRE

    Yeh, Chung-Wei; Wu, Kee-Rong; Hung, Chung-Hsuang; Chang, Hao-Cheng; Hsu, Chuan-Jen

    2012-01-01

    Porous F-WO3/TiO2 (mTiO2) films are prepared on titanium sheet substrates using microarc oxidation (MAO) technique. The X-ray diffraction patterns show that visible-light (Vis) enabling mTiO2 films with a very high content of anatase TiO2 and high loading of WO3 are successfully synthesized at a low applied voltage of 300 V using electrolyte contenting NaF and Na2WO4 without subsequent heat treatment. The cross-sectional transmission electron microscopy micrograph reveals that the mTiO2 films...

  6. Micro-Arc Oxidation Enhances the Blood Compatibility of Ultrafine-Grained Pure Titanium

    Directory of Open Access Journals (Sweden)

    Lin Xu

    2017-12-01

    Full Text Available Ultrafine-grained pure titanium prepared by equal-channel angular pressing has favorable mechanical performance and does not contain alloy elements that are toxic to the human body. It has potential clinical value in applications such as cardiac valve prostheses, vascular stents, and hip prostheses. To overcome the material’s inherent thrombogenicity, surface-coating modification is a crucial pathway to enhancing blood compatibility. An electrolyte solution of sodium silicate + sodium polyphosphate + calcium acetate and the micro-arc oxidation (MAO technique were employed for in situ oxidation of an ultrafine-grained pure titanium surface. A porous coating with anatase- and rutile-phase TiO2 was generated and wettability and blood compatibility were examined. The results showed that, in comparison with ultrafine-grained pure titanium substrate, the MAO coating had a rougher surface, smaller contact angles for distilled water and higher surface energy. MAO modification effectively reduced the hemolysis rate; extended the dynamic coagulation time, prothrombin time (PT, and activated partial thromboplastin time (APTT; reduced the amount of platelet adhesion and the degree of deformation; and enhanced blood compatibility. In particular, the sample with an oxidation time of 9 min possessed the highest surface energy, largest PT and APTT values, smallest hemolysis rate, less platelet adhesion, a lesser degree of deformation, and more favorable blood compatibility. The MAO method can significantly enhance the blood compatibility of ultrafine-grained pure titanium, increasing its potential for practical applications.

  7. Corrosion behavior of a self-sealing pore micro-arc oxidation film on AM60 magnesium alloy

    International Nuclear Information System (INIS)

    Dong, Kaihui; Song, Yingwei; Shan, Dayong; Han, En-Hou

    2015-01-01

    Highlights: • Pore sealing constituents fall off and titanium oxides remain during corrosion. • Dark regions of film are corroded by migration of corrosion media through pores. • Light regions of film are corroded by transverse expansion of cracks. • Both outer and inner layers of the film provide effective protection to substrate. - Abstract: The deterioration process of a self-sealing pore micro-arc oxidation (MAO) film was investigated. The surface and cross-section corrosion morphologies were observed by scanning electron microscopy (SEM). Chemical composition was detected by EDS elemental mapping and XRD. The corrosion process was analyzed by electrochemical impedance spectroscopy (EIS). The surface of the film in dark and light regions exhibits different corrosion behavior. In the dark regions, the corrosion process mainly concentrates on the migration of corrosion media through the pores inward. In the light regions, the transverse expansion of cracks plays a key role, accompanying the exfoliation of film constituents.

  8. Micro-arc oxidation of Ti-15Zr-based alloys for osseointegrative implants

    International Nuclear Information System (INIS)

    Correa, Diego Rafael Nespeque; Rocha, Luis Augusto; Doi, Hisashi; Tsutsumi, Yusuke; Hanawa, Takao

    2016-01-01

    Full text: Micro-arc oxidation (MAO) is well-known as low-cost coating technique which can produce porous structure in valve metals [1]. Studies have indicated that MAOcoatings are suitable for improve biofunctionalization of Ti-based implants by bioactive ions incorporation in the oxide layer [2]. This work aims to evaluate the characteristics of the MAO-coating in recent developed biomedical Ti-15Zr-based alloys in order to use as osseointegrative implants. Ti-15Zr-xMo (x = 0, 5, 10 and 15 % wt.) alloys were produced by argon arc-melting and molded in a centrifugal casting machine. MAO treatment were performed in disks (ϕ 8 mm x 1.5 mm), at room temperature, with a 304 stainless steel plate as counter electrode. Electrolyte was composed by 0.15 M calcium acetate and 0.10 M calcium glycerophosphate. The electrodes were connected to a DC power supply, and applied a density current of 311 A/m 2 , for 10 min, with voltages of 300, 350 and 400 V. Morphology, thickness, composition and crystal structure of the oxide layer were evaluated by SEM, XRF and XRD techniques. A typical porous layer was produced in all surfaces, being the porosity, porous size and thickness increased with the voltage. The composition of the oxide layer indicated Ca and P incorporation, being the concentration increased with the voltage applied. The XRD patterns do not exhibited peaks from oxides compounds, but only peaks from bulk-Ti phases. The results showed that the bioactive coatings were successfully growth in the Ti-15Zr-based alloys, being suitable for osseointegrative implants. References: [1] Hanawa, T. Japanese dental Science Review 46, 93-101, 2010; [2] Tsutsumi, Y. et al. Metals 6, 76-85, 2016. (author)

  9. Micro-arc oxidation of Ti-15Zr-based alloys for osseointegrative implants

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Diego Rafael Nespeque; Rocha, Luis Augusto [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Bauru, SP (Brazil); Doi, Hisashi; Tsutsumi, Yusuke; Hanawa, Takao [Tokyo Medical and Dental University (Japan)

    2016-07-01

    Full text: Micro-arc oxidation (MAO) is well-known as low-cost coating technique which can produce porous structure in valve metals [1]. Studies have indicated that MAOcoatings are suitable for improve biofunctionalization of Ti-based implants by bioactive ions incorporation in the oxide layer [2]. This work aims to evaluate the characteristics of the MAO-coating in recent developed biomedical Ti-15Zr-based alloys in order to use as osseointegrative implants. Ti-15Zr-xMo (x = 0, 5, 10 and 15 % wt.) alloys were produced by argon arc-melting and molded in a centrifugal casting machine. MAO treatment were performed in disks (ϕ 8 mm x 1.5 mm), at room temperature, with a 304 stainless steel plate as counter electrode. Electrolyte was composed by 0.15 M calcium acetate and 0.10 M calcium glycerophosphate. The electrodes were connected to a DC power supply, and applied a density current of 311 A/m{sup 2}, for 10 min, with voltages of 300, 350 and 400 V. Morphology, thickness, composition and crystal structure of the oxide layer were evaluated by SEM, XRF and XRD techniques. A typical porous layer was produced in all surfaces, being the porosity, porous size and thickness increased with the voltage. The composition of the oxide layer indicated Ca and P incorporation, being the concentration increased with the voltage applied. The XRD patterns do not exhibited peaks from oxides compounds, but only peaks from bulk-Ti phases. The results showed that the bioactive coatings were successfully growth in the Ti-15Zr-based alloys, being suitable for osseointegrative implants. References: [1] Hanawa, T. Japanese dental Science Review 46, 93-101, 2010; [2] Tsutsumi, Y. et al. Metals 6, 76-85, 2016. (author)

  10. Influence of Al-Si alloy microstructure on the corrosion resistance of coatings formed by the microarc oxidation method

    Directory of Open Access Journals (Sweden)

    Dudareva Natalia.Y.

    2017-01-01

    Full Text Available The impact of the high-silicon aluminum alloy initial microstructure on the quality of the coating formed by microarc oxidation (MAO has been studied. The MAO treatment is applied to AK12D samples in the initial coarse-grained state and after high pressure torsion. The following coating properties are studied: thickness, microhardness, porosity and corrosion resistance. It is established that the MAO layers properties depend on the base microstructure much. High pressure torsion applied to AK12D samples before MAO results in increase of the coating thickness by ∼ 2 times. The microhardness of coatings reduces and their corrosion resistance degrades by ∼ 10 times.

  11. Effect of SiC particles on microarc oxidation process of magnesium matrix composites

    International Nuclear Information System (INIS)

    Wang, Y.Q.; Wang, X.J.; Gong, W.X.; Wu, K.; Wang, F.H.

    2013-01-01

    SiC particles are an important reinforced phase in metal matrix composites. Their effect on the microarc oxidation (MAO, also named plasma electrolytic oxidation-PEO) process of SiC p /AZ91 Mg matrix composites (MMCs) was studied and the mechanism was revealed. The corrosion resistance of MAO coating was also investigated. Voltage–time curves during MAO were recorded to study the barrier film status on the composites. Scanning electron microscopy was used to characterize the existing state of SiC particles in MAO. Energy dispersive X-ray spectrometry and X-ray photoelectron spectroscopy were used to analyze the chemical composition of the coating. Corrosion resistance of the bare and coated composites was evaluated by potentiodynamic polarization curves in 3.5% NaCl solution. Results showed that the integrality and electrical insulation properties of the barrier film on the composites were destroyed by the SiC particles. Consequently, the sparking discharge at the early stage of MAO was inhibited, and the growth efficiency of the MAO coating decreased with the increase in the volume fraction of SiC particles. SiC particles did not exist stably during MAO; they were oxidized or partially oxidized into SiO 2 before the overall sparking discharge. The transformation from semi-conductive SiC to insulating SiO 2 by oxidation restrained the current leakage at the original SiC positions and then promoted sparking discharge and coating growth. The corrosion current density of SiC p /AZ91 MMCs was reduced by two orders of magnitude after MAO treatment. However, the corrosion resistances of the coated composites were lower than that of the coated alloy.

  12. Surface characterization and corrosion behavior of micro-arc oxidized Ti surface modified with hydrothermal treatment and chitosan coating

    International Nuclear Information System (INIS)

    Neupane, Madhav Prasad; Park, Il Song; Lee, Min Ho

    2014-01-01

    In the present work, we describe the surface modification of commercially pure titanium (CP-Ti) by a composite/multilayer coating approach for biomedical applications. CP-Ti samples were treated by micro-arc oxidation (MAO) and subsequently some of the samples were coated with chitosan (Chi) by dip coating method, while others were subjected to hydrothermal treatment (HT) followed by chitosan coating. The MAO, MAO/Chi, and MAO/HT/Chi coated Ti were characterized and their characteristics were compared with CP-Ti. X-ray diffraction and scanning electron microscopy were used to assess the structural and morphological characteristics. The average surface roughness was determined using a surface profilometer. The corrosion resistance of untreated and surface modified Ti in commercial saline at 298 K was evaluated by potentiodynamic polarization test. The results indicated that the chitosan coating is very well integrated with the MAO and MAO/HT coating by physically interlocking itself with the coated layer and almost sealed all the pores. The surface roughness of hydrothermally treated and chitosan coated MAO film was superior evidently to that with other sample groups. The corrosion studies demonstrated that the MAO, hydrothermally treated and chitosan coated sample enhanced the corrosion resistance of titanium. The result indicates that fabrication of hydrothermally treated MAO surface coatings with chitosan is a significant approach to protect the titanium from corrosion, hence enhancing the potential use of titanium as bio-implants. - Highlights: • Micro-arc oxidized (MAO) and hydrothermally treated (HT) Ti surfaces are coated with chitosan (Chi). • The MAO/HT/Chi surface exhibits pores sealing and enhanced the surface roughness. • The MAO/HT/Chi surface significantly increase the corrosion resistance. • The MAO/HT/Chi can be a potential surface of titanium for bio-implants

  13. Growth of aluminum-free porous oxide layers on titanium and its alloys Ti-6Al-4V and Ti-6Al-7Nb by micro-arc oxidation.

    Science.gov (United States)

    Duarte, Laís T; Bolfarini, Claudemiro; Biaggio, Sonia R; Rocha-Filho, Romeu C; Nascente, Pedro A P

    2014-08-01

    The growth of oxides on the surfaces of pure Ti and two of its ternary alloys, Ti-6Al-4V and Ti-6Al-7Nb, by micro-arc oxidation (MAO) in a pH 5 phosphate buffer was investigated. The primary aim was to form thick, porous, and aluminum-free oxide layers, because these characteristics favor bonding between bone and metal when the latter is implanted in the human body. On Ti, Ti-6Al-4 V, and Ti-6Al-7Nb, the oxides exhibited breakdown potentials of about 200 V, 130 V, and 140 V, respectively, indicating that the oxide formed on the pure metal is the most stable. The use of the MAO procedure led to the formation of highly porous oxides, with a uniform distribution of pores; the pores varied in size, depending on the anodizing applied voltage and time. Irrespective of the material being anodized, Raman analyses allowed us to determine that the oxide films consisted mainly of the anatase phase of TiO2, and XPS results indicated that this oxide is free of Al and any other alloying element. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Preparation and bioactivity of micro-arc oxidized calcium phosphate coatings

    International Nuclear Information System (INIS)

    Pan, Y.K.; Chen, C.Z.; Wang, D.G.; Lin, Z.Q.

    2013-01-01

    Calcium phosphate (CaP) coatings were prepared on ZK60 magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH 3 COO) 2 Ca·H 2 O) and disodium hydrogen phosphate dodecahydrate (Na 2 HPO 4 ·12H 2 O). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDX) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings respectively. Simulated body fluid (SBF) immersion test was used to evaluate the coating degradability and bioactivity. After 30 days of SBF immersion, the CaP coatings effectively reduce the degradation rate. The surfaces of CaP coatings are covered by a new layer formed of numerous needle-like, spherical and columned calcium phosphates. SEM, EDX and XRD results suggest that these calcium phosphates are bioactive calcium phosphate phases such as hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 , HA) and calcium pyrophosphates (Ca 2 P 2 O 7 , CPP). The formation of these calcium phosphates indicates that the CaP coatings have bioactivity. - Highlights: • Bioactive CaP coatings are successfully formed on ZK60 magnesium alloy. • CaP coatings consist of MgO, MgF 2 , CaO, CaF 2 and Ca 3 (PO 4 ) 2 . • Needle-like, spherical and columned calcium phosphates formed in SBF. • CaP coatings exhibit bioactivity and low corrosion rate

  15. Immobilization of chitosan film containing semaphorin 3A onto a microarc oxidized titanium implant surface via silane reaction to improve MG63 osteogenic differentiation

    Directory of Open Access Journals (Sweden)

    Fang K

    2014-10-01

    Full Text Available Kaixiu Fang,1,* Wen Song,2,* Lifeng Wang,1 Sen Jia,3 Hongbo Wei,1 Shuai Ren,1 Xiaoru Xu,1 Yingliang Song1 1State Key Laboratory of Military Stomatology, Department of Implant Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, People’s Republic of China; 2State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, School of Stomatology, Fourth Military Medical University, Xi’an, People’s Republic of China; 3State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi’an, People’s Republic of China *These authors contributed equally to this work Abstract: Improving osseointegration of extensively used titanium (Ti implants still remains a main theme in implantology. Recently, grafting biomolecules onto a Ti surface has attracted more attention due to their direct participation in the osseointegration process around the implant. Semaphorin 3A (Sema3A is a new proven osteoprotection molecule and is considered to be a promising therapeutic agent in bone diseases, but how to immobilize the protein onto a Ti surface to acquire a long-term effect is poorly defined. In our study, we tried to use chitosan to wrap Sema3A (CS/Sema and connect to the microarc oxidized Ti surface via silane glutaraldehyde coupling. The microarc oxidization could formulate porous topography on a Ti surface, and the covalently bonded coating was homogeneously covered on the ridges between the pores without significant influence on the original topography. A burst release of Sema3A was observed in the first few days in phosphate-buffered saline and could be maintained for >2 weeks. Coating in phosphate-buffered saline containing lysozyme was similar, but the release rate was much more rapid. The coating did not significantly affect cellular adhesion, viability, or cytoskeleton arrangement, but the osteogenic-related gene

  16. Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Kuan-Chen [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China); Lee, Tzer-Min, E-mail: tmlee@mail.ncku.edu.t [Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan (China); Lui, Truan-Sheng [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China)

    2010-10-22

    Research highlights: The dental implant of titanium could be modified by anodic oxidation. It was found that incorporation of strontium ions into the matrix increase the bone formation. In this study, we try to investigate the effect of corrosion property and bioactivity on coatings containing strontium by anodic oxidation. The results suggest that coatings containing strontium on titanium by anodic oxidation has the potential to show the stability and bioactivity in the clinical use. - Abstract: Pure titanium (Ti) and titanium alloys are considered as bio-inert materials in clinical use. Bioactivity is the ability to induce bone-like apatite on the material surface. The micro-arc oxidation (MAO) technique is an effective method for improving the surface properties of titanium. The aim of this study was to investigate the bioactivity and corrosion behavior of MAO coatings containing strontium, which is beneficial for biological performance. The bioactivity of materials was evaluated based on the ability to induce a bond-like apatite layer on the surface in simulated body fluid (SBF), as proposed by Kokubo et al. After the materials were soaked in SBF for 1 day, precipitates formed on the surface of MAO coating. The surface of MAO coatings was completely covered with precipitates after 7 days. The precipitates, which were found to be composed of fiber structures, were identified as the apatite phase using thin film X-ray diffraction (TF-XRD). The results show that MAO coatings containing strontium can induce the formation of an apatite layer on their surface. In the potentiodynamic test, MAO coatings exhibited a more noble corrosion potential (E{sub corr}) than that of titanium in SBF. In the passive region, the current density of MAO coatings was lower than that of titanium. All findings in this study indicated that MAO coatings containing strontium have good bioactivity and corrosion resistance for clinical applications.

  17. Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation

    International Nuclear Information System (INIS)

    Kung, Kuan-Chen; Lee, Tzer-Min; Lui, Truan-Sheng

    2010-01-01

    Research highlights: The dental implant of titanium could be modified by anodic oxidation. It was found that incorporation of strontium ions into the matrix increase the bone formation. In this study, we try to investigate the effect of corrosion property and bioactivity on coatings containing strontium by anodic oxidation. The results suggest that coatings containing strontium on titanium by anodic oxidation has the potential to show the stability and bioactivity in the clinical use. - Abstract: Pure titanium (Ti) and titanium alloys are considered as bio-inert materials in clinical use. Bioactivity is the ability to induce bone-like apatite on the material surface. The micro-arc oxidation (MAO) technique is an effective method for improving the surface properties of titanium. The aim of this study was to investigate the bioactivity and corrosion behavior of MAO coatings containing strontium, which is beneficial for biological performance. The bioactivity of materials was evaluated based on the ability to induce a bond-like apatite layer on the surface in simulated body fluid (SBF), as proposed by Kokubo et al. After the materials were soaked in SBF for 1 day, precipitates formed on the surface of MAO coating. The surface of MAO coatings was completely covered with precipitates after 7 days. The precipitates, which were found to be composed of fiber structures, were identified as the apatite phase using thin film X-ray diffraction (TF-XRD). The results show that MAO coatings containing strontium can induce the formation of an apatite layer on their surface. In the potentiodynamic test, MAO coatings exhibited a more noble corrosion potential (E corr ) than that of titanium in SBF. In the passive region, the current density of MAO coatings was lower than that of titanium. All findings in this study indicated that MAO coatings containing strontium have good bioactivity and corrosion resistance for clinical applications.

  18. Formation mechanism and adhesive strength of a hydroxyapatite/TiO{sub 2} composite coating on a titanium surface prepared by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shimin, E-mail: lshm1216@163.com [Department of Gem and Material Technique, Tianjin University of Commerce, Tianjin 300134 (China); Li, Baoe; Liang, Chunyong; Wang, Hongshui [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Qiao, Zhixia [School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134 (China)

    2016-01-30

    Graphical abstract: - Highlights: • Hydroxyapatite/TiO{sub 2} composite coating was prepared by one-step micro-arc oxidation. • The formation mechanism of composite coating was investigated. • Higher bonding strength between hydroxyapatite and TiO{sub 2} layer was obtained. - Abstract: A hydroxyapatite (HA)/TiO{sub 2} composite coating was prepared on a titanium surface by one-step micro-arc oxidation (MAO). The formation mechanism of the composite coating was investigated and the adhesion of the coating to the substrate was also measured. The results showed that flocculent structures could be obtained during the early stages of treatment. As the treatment period extended, increasing amounts of Ca–P precipitate appeared on the surface, and the flocculent morphology transformed into a plate-like morphology. Then the plate-like calcium and phosphate salt self-assembled to form flower-like apatite. The Ca/P atomic ratio gradually decreased, indicating that the amounts of Ca{sup 2+} ions which diffused into the coating decreased more rapidly than that of PO{sub 4}{sup 3−} or HPO{sub 4}{sup 2−}. The adhesive strength between the apatite and TiO{sub 2} coating was improved. This improvement is attributed to the interlocking effect between the apatite and TiO{sub 2} layer which formed simultaneously during the early stages of the one-step MAO. This study shows that it is a promising method to prepare bioactive coating on a titanium surface.

  19. Preparation and bioactivity of micro-arc oxidized calcium phosphate coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Y.K. [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji' nan, Shandong 250061 (China); School of Materials Science and Engineering, Shandong University, Ji' nan, Shandong 250061 (China); Chen, C.Z., E-mail: czchen@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji' nan, Shandong 250061 (China); School of Materials Science and Engineering, Shandong University, Ji' nan, Shandong 250061 (China); Wang, D.G.; Lin, Z.Q. [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji' nan, Shandong 250061 (China); School of Materials Science and Engineering, Shandong University, Ji' nan, Shandong 250061 (China)

    2013-09-16

    Calcium phosphate (CaP) coatings were prepared on ZK60 magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH{sub 3}COO){sub 2}Ca·H{sub 2}O) and disodium hydrogen phosphate dodecahydrate (Na{sub 2}HPO{sub 4}·12H{sub 2}O). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDX) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings respectively. Simulated body fluid (SBF) immersion test was used to evaluate the coating degradability and bioactivity. After 30 days of SBF immersion, the CaP coatings effectively reduce the degradation rate. The surfaces of CaP coatings are covered by a new layer formed of numerous needle-like, spherical and columned calcium phosphates. SEM, EDX and XRD results suggest that these calcium phosphates are bioactive calcium phosphate phases such as hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, HA) and calcium pyrophosphates (Ca{sub 2}P{sub 2}O{sub 7}, CPP). The formation of these calcium phosphates indicates that the CaP coatings have bioactivity. - Highlights: • Bioactive CaP coatings are successfully formed on ZK60 magnesium alloy. • CaP coatings consist of MgO, MgF{sub 2}, CaO, CaF{sub 2} and Ca{sub 3}(PO{sub 4}){sub 2}. • Needle-like, spherical and columned calcium phosphates formed in SBF. • CaP coatings exhibit bioactivity and low corrosion rate.

  20. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications.

    Science.gov (United States)

    Ribeiro, A R; Oliveira, F; Boldrini, L C; Leite, P E; Falagan-Lotsch, P; Linhares, A B R; Zambuzzi, W F; Fragneaud, B; Campos, A P C; Gouvêa, C P; Archanjo, B S; Achete, C A; Marcantonio, E; Rocha, L A; Granjeiro, J M

    2015-09-01

    Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Biocorrosion resistance of coated magnesium alloy by microarc oxidation in electrolyte containing zirconium and calcium salts

    Science.gov (United States)

    Wang, Ya-Ming; Guo, Jun-Wei; Wu, Yun-Feng; Liu, Yan; Cao, Jian-Yun; Zhou, Yu; Jia, De-Chang

    2014-09-01

    The key to use magnesium alloys as suitable biodegradable implants is how to adjust their degradation rates. We report a strategy to prepare biocompatible ceramic coating with improved biocorrosion resistance property on AZ91D alloy by microarc oxidation (MAO) in a silicate-K2ZrF6 solution with and without Ca(H2PO4)2 additives. The microstructure and biocorrosion of coatings were characterized by XRD and SEM, as well as electrochemical and immersion tests in simulated body fluid (SBF). The results show that the coatings are mainly composed of MgO, Mg2SiO4, m-ZrO2 phases, further Ca containing compounds involve the coating by Ca(H2PO4)2 addition in the silicate-K2ZrF6 solution. The corrosion resistance of coated AZ91D alloy is significantly improved compared with the bare one. After immersing in SBF for 28 d, the Si-Zr5-Ca0 coating indicates a best corrosion resistance performance.

  2. Corrosion mechanism and model of pulsed DC microarc oxidation treated AZ31 alloy in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Gu Yanhong, E-mail: ygu2@alaska.edu [Department of Mechanical Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Chen Chengfu [Department of Mechanical Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Bandopadhyay, Sukumar [Department of Mining Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Ning Chengyun [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Zhang Yongjun [Department of Mining Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States); Guo Yuanjun [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2012-06-01

    This paper addresses the effect of pulse frequency on the corrosion behavior of microarc oxidation (MAO) coatings on AZ31 Mg alloys in simulated body fluid (SBF). The MAO coatings were deposited by a pulsed DC mode at four different pulse frequencies of 300 Hz, 500 Hz, 1000 Hz and 3000 Hz with a constant pulse ratio. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests were used for corrosion rate and electrochemical impedance evaluation. The corroded surfaces were examined by X-ray diffraction (XRD), X-ray fluorescence (XRF) and optical microscopy. All the results exhibited that the corrosion resistance of MAO coating produced at 3000 Hz is superior among the four frequencies used. The XRD spectra showed that the corrosion products contain hydroxyapatite, brucite and quintinite. A model for corrosion mechanism and corrosion process of the MAO coating on AZ31 Mg alloy in the SBF is proposed.

  3. Corrosion mechanism and model of pulsed DC microarc oxidation treated AZ31 alloy in simulated body fluid

    International Nuclear Information System (INIS)

    Gu Yanhong; Chen Chengfu; Bandopadhyay, Sukumar; Ning Chengyun; Zhang Yongjun; Guo Yuanjun

    2012-01-01

    This paper addresses the effect of pulse frequency on the corrosion behavior of microarc oxidation (MAO) coatings on AZ31 Mg alloys in simulated body fluid (SBF). The MAO coatings were deposited by a pulsed DC mode at four different pulse frequencies of 300 Hz, 500 Hz, 1000 Hz and 3000 Hz with a constant pulse ratio. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests were used for corrosion rate and electrochemical impedance evaluation. The corroded surfaces were examined by X-ray diffraction (XRD), X-ray fluorescence (XRF) and optical microscopy. All the results exhibited that the corrosion resistance of MAO coating produced at 3000 Hz is superior among the four frequencies used. The XRD spectra showed that the corrosion products contain hydroxyapatite, brucite and quintinite. A model for corrosion mechanism and corrosion process of the MAO coating on AZ31 Mg alloy in the SBF is proposed.

  4. Microstructure characteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Guo, H.F. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: Guohf@hit.edu.cn; An, M.Z. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: mzan@hit.edu.cn; Huo, H.B. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Xu, S. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Wu, L.J. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2006-09-15

    Micro-arc oxidation (MAO) of AZ31B magnesium alloys was studied in alkaline silicate solutions at constant applied current densities. The microstructure, phase composition and elemental distribution of ceramic coatings were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDX). There are two inflections in the voltage-time response, three regions were identifiable and each of the regions was almost linear. The pores with different shapes distributed all over the coating surface, the number of the pores was decreasing, while the diameter was apparently increasing with prolonged MAO treatment time. There were also cracks on the coating surface, resulting from the rapid solidification of the molten oxide. The ceramic coating was comprised of two layers, an outer loose layer and an inner dense layer. The ceramic coating was mainly composed of forsterite phase Mg{sub 2}SiO{sub 4} and MgO; the formation of MgO was similar to conversional anodizing technology, while formation of Mg{sub 2}SiO{sub 4} was attributed to a high temperature phase transformation reaction. Presence of Si and O indicated that the electrolyte components had intensively incorporated into coatings.

  5. Corrosion characterization of micro-arc oxidization composite electrophoretic coating on AZ31B magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Congjie [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Jiang, Bailing [School of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816 (China); Liu, Ming [General Motors China Science Lab, Shanghai 201206 (China); Ge, Yanfeng [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China)

    2015-02-05

    Highlights: • A new protective composite coatings were prepared on AZ31B Mg alloy. • The E-coat locked into MAO coat by discharge channels forming a smoother and compact surface without defects. • Comparing with MAO coat, the MAOE composite coat could provide an excellent barrier for bare Mg against corrosion attack. - Abstract: A two layer composite coating system was applied on the surface of AZ31B magnesium alloy by Micro-arc Oxidation (MAO) plus electrophoretic coat (E-coat) technique. The Mg sample coated with MAO plus E-coat (MAOE) was compared with bare Mg and Mg sample coated by MAO only. The surface microstructure and cross section of bare and coated Mg before and after corrosion were examined by Scanning Electron Microscopy (SEM). The corrosion performance of bare and coated Mg was evaluated using electrochemical measurement and hydrogen evolution test. The results indicated that the corrosion resistance of AZ31B Mg alloy was significantly improved by MAOE composite coating. The corrosion mechanism of bare and coated Mg is discussed.

  6. Tribological properties of duplex MAO/DLC coatings on magnesium alloy using combined microarc oxidation and filtered cathodic arc deposition

    International Nuclear Information System (INIS)

    Liang Jun; Wang Peng; Hu Litian; Hao Jingcheng

    2007-01-01

    The combined microarc oxidation (MAO) and filtered cathode arc deposition process was used to deposit duplex MAO/DLC coating on AM60B magnesium alloy. The microstructure and composition of the resulting duplex coating were analyzed by Raman spectroscopy, X-ray photoelectron spectroscope (XPS) and scanning electron microscope (SEM). The tribological behaviors of the duplex coating were studied by ball-on-disk friction testing. It is found that the Ti-doped DLC thin film could be successfully deposited onto the polished MAO coating. The duplex MAO/DLC coating exhibits a better tribological property than the DLC or MAO monolayer on Mg alloy substrate, owing to the MAO coating served as an intermediate layer provides improved load support for the soft Mg alloy substrate and the DLC top coating exhibits low friction coefficient

  7. Effect of phosphate additives on the microstructure, bioactivity, and degradability of microarc oxidation coatings on Mg-Zn-Ca-Mn alloy.

    Science.gov (United States)

    Dou, Jinhe; You, Qiongya; Gu, Guochao; Chen, Chuanzhong; Zhang, Xihua

    2016-09-20

    Calcium phosphate coatings were prepared on the surface of self-designed Mg-Zn-Ca-Mn alloy using microarc oxidization technology. To characterize the microstructures, cross-section morphologies, and compositions of the coatings, the authors used scanning electron microscopy equipped with an energy-disperse spectrometer, x-ray diffraction, and Fourier transform infrared spectroscopy. Potentiodynamic polarization in the simulated body fluid (SBF) was used to evaluate the corrosion behaviors of the samples. An SBF immersion test was used to evaluate the coating bioactivity and degradability. After the immersion tests, some bonelike apatite formed on the coating surfaces indicate that bioactivity of the coatings is excellent. The coating prepared in electrolyte containing (NaPO3)6 had slower degradation rate after immersion test for 21 days.

  8. High-temperature Corrosion Resistance of Composite Coating Prepared by Micro-arc Oxidation Combined with Pack Cementation Aluminizing

    Directory of Open Access Journals (Sweden)

    HUANG Zu-jiang

    2018-01-01

    Full Text Available Al2O3 ceramic film was obtained by micro-arc oxidation (MAO process on Al/C103 specimen, which was prepared by pack cementation aluminizing technology on C103 niobium alloy. With the aid of XRD and SEM equipped with EDS, chemical compositions and microstructures of the composite coatings before and after high-temperature corrosion were analyzed. The behavior and mechanism of the composite coatings in high-temperature oxidation and hot corrosion were also investigated. The results indicate that oxidation mass gain at 1000℃ for 10h of the Al/C103 specimen is 6.98mg/cm2, and it is 2.89mg/cm2 of the MAO/Al/C103 specimen. However, the mass gain of MAO/Al/C103 specimen (57.52mg/cm2 is higher than that of Al/C103 specimen (28.08mg/cm2 after oxidation 20h. After hot corrosion in 75%Na2SO4 and 25%NaCl at 900℃ for 50h, the mass gain of Al/C103 and MAO/Al/C103 specimens are 70.54mg/cm2 and 55.71mg/cm2 respectively, Al2O3 and perovskite NaNbO3 phases are formed on the surface; the diffusion of molten salt is suppressed, due to part of NaNbO3 accumulated in the MAO micropores. Therefore, MAO/Al/C103 specimen exhibits better hot corrosion resistance.

  9. Initial stages of AZ91 Mg alloy micro-arc anodizing: Growth mechanisms and effect on the corrosion resistance

    International Nuclear Information System (INIS)

    Veys-Renaux, Delphine; Rocca, Emmanuel; Martin, Julien; Henrion, Gérard

    2014-01-01

    Graphical abstract: - Highlights: • The dielectric breakdown occurs for a specific value of capacitance. • Before breakdown, Si is incorporated to the anodic film under MgSiO 3 form. • After breakdown, Si is incorporated to the anodic film also under Mg 2 SiO 4 form. • The presence of Mg 2 SiO 4 in the anodic film provides good corrosion resistance due to sealing of the porosities. - Abstract: In the framework of the new ecological regulations, micro-arc oxidation (MAO) appears as an alternative to usual processes in the field of corrosion protection of Mg alloys. In this work, the initial stages of anodic layer growth in KOH-based electrolytes are studied up to and beyond the initiation of the micro-arc regime. The properties of the first anodized film preceding the occurrence of the dielectric breakdown (corresponding to the start of the micro-arc regime) are mainly determined by the incorporation of additives (fluorides or silicates) in the film, as shown by in situ electrochemical measurements. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and micro-Raman spectroscopy reveal both the change of morphology and chemical state of silicate and fluoride in the anodized layer before and after the micro-arc regime. In terms of electrochemical behaviour, investigated by stationary methods and electrochemical impedance spectroscopy (EIS) in reference corrosive water, the anodic film grown in the silicate medium provides the best corrosion resistance thanks to a thick layer containing Mg 2 SiO 4 , whose degradation products seal the porosities of the coating

  10. Corrosion resistance of micro-arc oxidation coatings formed on aluminum alloy with addition of Al2O3

    Science.gov (United States)

    Zhang, Y.; Chen, Y.; Du, H. Q.; Zhao, YW

    2018-03-01

    Micro-arc oxidation (MAO) coatings were formed on the aluminum alloy in silicate-based electrolyte without and with the addition of Al2O3. It is showed that the coating produced in 7 g l‑1 Al2O3-containing electrolyte was of the most superior corrosion resistance. Besides, the corrosion properties of the coatings were studied by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) test in both 0.5 M and 1 M NaCl solution. The results proved that the coating is capable to protect the substrate from the corrosion of aggressive Cl‑ in 0.5 M NaCl after 384 h immersion. However, it can not offer protection to the aluminum alloy substrate after 384 h immersion in 1 M NaCl solution. The schematic diagrams illustrate the corrosion process and matched well with the corrosion test results.

  11. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xinhua, E-mail: xhxu_tju@eyou.com [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Lu Ping; Guo Meiqing; Fang Mingzhong [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2010-02-01

    A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly(DL-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.

  12. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release

    International Nuclear Information System (INIS)

    Xu Xinhua; Lu Ping; Guo Meiqing; Fang Mingzhong

    2010-01-01

    A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly(DL-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.

  13. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release

    Science.gov (United States)

    Xu, Xinhua; Lu, Ping; Guo, Meiqing; Fang, Mingzhong

    2010-02-01

    A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly( DL-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.

  14. Corrosion resistance and calcium–phosphorus precipitation of micro-arc oxidized magnesium for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lichen; Cui, Chunxiang, E-mail: hutcui@hebut.edu.cn; Wang, Xin; Liu, Shuangjin; Bu, Shaojing; Wang, Qingzhou; Qi, Yumin

    2015-03-01

    Highlights: • Hydroxyapatite (HA) powders were added to the electrolyte. • The HA powders have participated in the formation reactions of MAO coating. • The growth efficiency of MAO coating was greatly enhanced owing to the HA addition. • The specimen anodized in the HA-containing electrolyte has a better corrosion resistance. • The specimen anodized in the HA-containing electrolyte can more efficiently induce Ca–P precipitation. - Abstract: To improve the corrosion resistance of magnesium, micro-arc oxidation (MAO) coatings were prepared on magnesium substrates in an aqueous solution with and without hydroxyapatite (HA) powders addition. The micrographs of scanning electron microscopy (SEM), the energy dispersive spectrometer (EDS) spectra, and X-ray diffraction (XRD) analysis show that the HA powders added into the electrolyte have participated in the formation reactions of MAO coating and the growth efficiency of MAO coating is greatly enhanced. Potentiodynamic polarization tests and immersion tests in simulated body fluid (SBF) confirm that the specimen anodized in the HA-containing electrolyte has a better corrosion resistance than the specimen anodized in the HA-free electrolyte. Immersion tests also indicate that the specimen anodized in the HA-containing electrolyte can more efficiently induce Ca–P precipitation compared with the specimen anodized in the HA-free electrolyte.

  15. In Vitro Analysis of Electrophoretic Deposited Fluoridated Hydroxyapatite Coating on Micro-arc Oxidized AZ91 Magnesium Alloy for Biomaterials Applications

    Science.gov (United States)

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Vashaee, Daryoosh; Tayebi, Lobat

    2015-03-01

    Magnesium (Mg) alloys have been recently introduced as a biodegradable implant for orthopedic applications. However, their fast corrosion, low bioactivity, and mechanical integrity have limited their clinical applications. The main aim of this research was to improve such properties of the AZ91 Mg alloy through surface modifications. For this purpose, nanostructured fluoridated hydroxyapatite (FHA) was coated on AZ91 Mg alloy by micro-arc oxidation and electrophoretic deposition method. The coated alloy was characterized through scanning electron microscopy, transmission electron microscopy, X-ray diffraction, in vitro corrosion tests, mechanical tests, and cytocompatibility evaluation. The results confirmed the improvement of the corrosion resistance, in vitro bioactivity, mechanical integrity, and the cytocompatibility of the coated Mg alloy. Therefore, the nanostructured FHA coating can offer a promising way to improve the properties of the Mg alloy for orthopedic applications.

  16. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, A.R., E-mail: arribeiro@inmetro.gov.br [Department of Periodontology, Araraquara Dental School, University Estadual Paulista, Rua Humaitá 1680, 14801-903 Araraquara, São Paulo (Brazil); Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Brazilian Branch of Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN/Br) (Brazil); Oliveira, F., E-mail: fernando@dem.uminho.pt [Brazilian Branch of Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN/Br) (Brazil); Centre for Mechanical and Materials Technologies, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); Boldrini, L.C., E-mail: lcboldrini@inmetro.gov.br [Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Leite, P.E., E-mail: leitepec@gmail.com [Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Falagan-Lotsch, P., E-mail: prifalagan@gmail.com [Directory of Metrology Applied to Life Science, National Institute of Metrology Quality and Technology, Av. N. S. das Graças 50, Xerém, Duque de Caxias, Rio de Janeiro (Brazil); Linhares, A.B.R., E-mail: adrianalinhares@hotmail.com [Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University, Niterói (Brazil); and others

    2015-09-01

    Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. - Highlights: • A nanometric-structured calcium-rich amorphous layer with improved bioactivity was produced on titanium surfaces.

  17. Micro-arc oxidation as a tool to develop multifunctional calcium-rich surfaces for dental implant applications

    International Nuclear Information System (INIS)

    Ribeiro, A.R.; Oliveira, F.; Boldrini, L.C.; Leite, P.E.; Falagan-Lotsch, P.; Linhares, A.B.R.

    2015-01-01

    Titanium (Ti) is commonly used in dental implant applications. Surface modification strategies are being followed in last years in order to build Ti oxide-based surfaces that can fulfill, simultaneously, the following requirements: induced cell attachment and adhesion, while providing a superior corrosion and tribocorrosion performance. In this work micro-arc oxidation (MAO) was used as a tool for the growth of a nanostructured bioactive titanium oxide layer aimed to enhance cell attachment and adhesion for dental implant applications. Characterization of the surfaces was performed, in terms of morphology, topography, chemical composition and crystalline structure. Primary human osteoblast adhesion on the developed surfaces was investigated in detail by electronic and atomic force microscopy as well as immunocytochemistry. Also an investigation on the early cytokine production was performed. Results show that a relatively thick hybrid and graded oxide layer was produced on the Ti surface, being constituted by a mixture of anatase, rutile and amorphous phases where calcium (Ca) and phosphorous (P) were incorporated. An outermost nanometric-thick amorphous oxide layer rich in Ca was present in the film. This amorphous layer, rich in Ca, improved fibroblast viability and metabolic activity as well as osteoblast adhesion. High-resolution techniques allowed to understand that osteoblasts adhered less in the crystalline-rich regions while they preferentially adhere and spread over in the Ca-rich amorphous oxide layer. Also, these surfaces induce higher amounts of IFN-γ cytokine secretion, which is known to regulate inflammatory responses, bone microarchitecture as well as cytoskeleton reorganization and cellular spreading. These surfaces are promising in the context of dental implants, since they might lead to faster osseointegration. - Highlights: • A nanometric-structured calcium-rich amorphous layer with improved bioactivity was produced on titanium surfaces.

  18. Effect of current density on the microstructure and corrosion resistance of microarc oxidized ZK60 magnesium alloy.

    Science.gov (United States)

    You, Qiongya; Yu, Huijun; Wang, Hui; Pan, Yaokun; Chen, Chuanzhong

    2014-09-01

    The application of magnesium alloys as biomaterials is limited by their poor corrosion behavior. Microarc oxidation (MAO) treatment was used to prepare ceramic coatings on ZK60 magnesium alloys in order to overcome the poor corrosion resistance. The process was conducted at different current densities (3.5 and 9.0 A/dm(2)), and the effect of current density on the process was studied. The microstructure, elemental distribution, and phase composition of the MAO coatings were characterized by scanning electron microscopy, energy-dispersive x-ray spectrometry, and x-ray diffraction, respectively. The increment of current density contributes to the increase of thickness. A new phase Mg2SiO4 was detected as the current density increased to 9.0 A/dm(2). A homogeneous distribution of micropores could be observed in the coating produced at 3.5 A/dm(2), while the surface morphology of the coating formed at 9.0 A/dm(2) was more rough and apparent microcracks could be observed. The coating obtained at 3.5 A/dm(2) possessed a better anticorrosion behavior.

  19. MICRO-ARC DIELECTRIC COATINGS ON ALUMINUM ALLOYS OF GRINDING WHEEL FRAMEWORKS

    Directory of Open Access Journals (Sweden)

    Yury GUTSALENKO

    2018-05-01

    Full Text Available It is presented the development of local electrically insulating coatings for tool of the technologies of high-efficient processing with the introduction the energy of electrical discharges into the cutting zone to maintain a working capacity of grinding wheels with diamond-metal composition of the working part. Development is an alternative to the electrical insulation upgrade of spindle units of universal grinding machines. The dielectric properties of micro-arc oxide coatings on deformable aluminum alloys formed on an alternating current in the regime of an arbitrarily falling power in alkali-silicate solutions have been studied. Information about the features of practical implementation of development is given.

  20. Effect of alumina sol addition to micro-arc oxidation electrolyte on the properties of MAO coatings formed on magnesium alloy AZ91D

    International Nuclear Information System (INIS)

    Laleh, M.; Rouhaghdam, A. Sabour; Shahrabi, T.; Shanghi, A.

    2010-01-01

    Oxide coatings were formed on AZ91D magnesium alloy using micro-arc oxidation process in alkaline electrolyte without and with addition of alumina sol. The microstructures and compositions of the MAO coatings were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD). Corrosion behaviors of the coatings were evaluated with electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in 3.5%NaCl solution. Porosities of the coatings were measured by potentiodynamic polarization tests. It was found that the coating produced in the electrolyte with alumina sol has more compact and uniform morphology than that produced in the electrolyte without alumina sol. The results of corrosion tests showed that the coating formed in electrolyte with alumina sol enhances the corrosion resistance of the substrate significantly. XRD patterns showed that the coating produced in the electrolyte with alumina sol has more MgAl 2 O 4 phase than MgO.

  1. Microarc oxidation coating covered Ti implants with micro-scale gouges formed by a multi-step treatment for improving osseointegration.

    Science.gov (United States)

    Bai, Yixin; Zhou, Rui; Cao, Jianyun; Wei, Daqing; Du, Qing; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu

    2017-07-01

    The sub-microporous microarc oxidation (MAO) coating covered Ti implant with micro-scale gouges has been fabricated via a multi-step MAO process to overcome the compromised bone-implant integration. The as-prepared implant has been further mediated by post-heat treatment to compare the effects of -OH functional group and the nano-scale orange peel-like morphology on osseointegration. The bone regeneration, bone-implant contact interface, and biomechanical push-out force of the modified Ti implant have been discussed thoroughly in this work. The greatly improved push-out force for the MAO coated Ti implants with micro-scale gouges could be attributed to the excellent mechanical interlocking effect between implants and biologically meshed bone tissues. Attributed to the -OH functional group which promotes synostosis between the biologically meshed bone and the gouge surface of implant, the multi-step MAO process could be an effective strategy to improve the osseointegration of Ti implant. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Microscopic observations of osteoblast growth on micro-arc oxidized β titanium

    Science.gov (United States)

    Chen, Hsien-Te; Chung, Chi-Jen; Yang, Tsai-Ching; Tang, Chin-Hsin; He, Ju-Liang

    2013-02-01

    Titanium alloys are widely used in orthopedic and dental implants, owing to their excellent physical properties and biocompatibility. By using the micro-arc oxidation (MAO), we generated anatase-rich (A-TiO2) and rutile-rich (R-TiO2) titanium dioxide coatings, individually on β-Ti alloy, in which the latter achieved an enhanced in vitro and in vivo performance. Thoroughly elucidating how the osteoblasts interact with TiO2 coatings is of worthwhile interest. This study adopts the focused ion beam (FIB) to section off the TiO2 coated samples for further scanning electron microscope (SEM) and transmission electron microscope (TEM) observation. The detailed crystal structures of the TiO2 coated specimens are also characterized. Experimental results indicate osteoblasts adhered more tenaciously and grew conformably with more lamellipodia extent on the R-TiO2 specimen than on the A-TiO2 and raw β-Ti specimens. FIB/SEM cross-sectional images of the cell/TiO2 interface revealed micro gaps between the cell membrane and contact surface of A-TiO2 specimen, while it was not found on the R-TiO2 specimen. Additionally, the number of adhered and proliferated cells on the R-TiO2 specimen was visually greater than the others. Closely examining EDS line scans and elemental mappings of the FIB/TEM cross-sectional images of the cell/TiO2 interface reveals both the cell body and interior space of the TiO2 coating contain nitrogen and sulfur (the biological elements in cell). This finding supports the assumption that osteoblast can grow into the porous structure of TiO2 coatings and demonstrating that the R-TiO2 coating formed by MAO serves the best for β-Ti alloys as orthopedic and dental implants.

  3. The effect of TiO2 coating on biological NiTi alloys after micro-arc oxidation treatment for corrosion resistance.

    Science.gov (United States)

    Sukuroglu, Ebru Emine; Sukuroglu, Suleyman; Akar, Kubra; Totik, Yasar; Efeoglu, Ihsan; Arslan, Ersin

    2017-08-01

    NiTi alloys exhibit good properties, such as shape memory behavior, high corrosion resistant, having the closest elasticity modulus of a human bone and superior biocompatibility properties. However, the surface problems that arise during the use of this alloy limit the usage in the industry and health sector. In recent years, micro-arc oxidation method is used to improve the surface properties and increase the usage of these alloys. In this study, the TiO 2 coatings were deposited on the NiTi substrates. The surface topography, morphology, crystallographic structure, and thickness of the coatings were determined using scanning electron microscopy and X-ray diffraction. The corrosion properties were investigated using potentiostat test unit in two different media such as NaCl solution and simulated body fluid. The results show that the coated samples have higher corrosion resistance than uncoated samples in the two different media.

  4. Composite coating prepared by micro-arc oxidation followed by sol-gel process and in vitro degradation properties

    International Nuclear Information System (INIS)

    Zhang Yi; Bai Kuifeng; Fu Zhenya; Zhang Caili; Zhou Huan; Wang Liguo; Zhu Shijie; Guan Shaokang; Li Dongsheng; Hu Junhua

    2012-01-01

    A Mg phosphate coating was prepared on home-developed Mg-Zn-Ca alloy to improve its anticorrosion performance in simulated body fluid (SBF, Kokubo solution). The coating was prepared by micro-arc oxidation (MAO) method at the working voltage of 120-140 V. Evident improvement of anticorrosion was obtained even through the surface was porous. To further diminish the contact with SBF, a TiO 2 layer was coated on the porous MAO layer by sol-gel dip coating followed by an annealing treatment. The coatings were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS). The electrochemical performance of the MAO and TiO 2 /MAO coated alloys was evaluated by anodic polarization measurements. The pores on Mg phosphate layer provided accommodation sites for the subsequent TiO 2 sol-gel coating which sealed the pores and hence significantly enhanced the anticorrosion while single MAO coating only improve anticorrosion within a limited range. The present result indicates that fabrication of composite coatings is a significant strategy to improve the corrosion resistance of Mg-Zn-Ca alloy and other alloys, thus enhancing the potential of using Mg alloys as bio-implants.

  5. A preliminary study on investigating the attachment of soft tissue onto micro-arc oxidized titanium alloy implants

    International Nuclear Information System (INIS)

    Chen, G J; Wang, Z; Bai, H; Li, J M; Cai, H

    2009-01-01

    Intraosseous transcutaneous amputation prostheses (ITAP) rely on the integrity of the soft tissue-implant interface as a barrier to exogenous agents, and in the prevention of avulsion and marsupilization. This experimental work aimed at the in vivo evaluation of soft tissue attachment to Ti alloy (Ti 6 Al 4 V) transcutaneous custom-made screws treated by a micro-arc oxidation (MAO) method. Prior to implantation, the surface of the MAO treated implants was analyzed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and x-ray diffraction (XRD). The experimental model comprised implantation of 16 transcutaneous screws (two groups: MAO and machined (control); total eight implants/group) in the medial aspect of the left tibia of eight female goats. The animals were euthanized at eight weeks and the samples harvested and processed for histological and histomorphometrical analysis of soft tissue attachment to the implant surface. Significant higher soft tissue attachment was observed in the MAO-modified group compared to the control. The in vivo data indicated that MAO-modified Ti alloy could be a useful biomaterial for tissue engineering and benefit applications where bone-anchored transcutaneous implants are used.

  6. Effects of Voltage on Microstructure and Corrosion Resistance of Micro-arc Oxidation Ceramic Coatings Formed on KBM10 Magnesium Alloy

    Science.gov (United States)

    Lu, J. P.; Cao, G. P.; Quan, G. F.; Wang, C.; Zhuang, J. J.; Song, R. G.

    2018-01-01

    Micro-arc oxidation (MAO) coatings on KBM10 magnesium alloy were prepared in an electrolyte system with sodium silicate, potassium hydroxide, sodium tungstate, and citric acid. The effects of voltage on the microstructure and corrosion resistance of MAO coatings were studied using stereoscopic microscopy, scanning electron microscopy, x-ray diffraction, scratch tests, potentiodynamic polarization, and electrochemical impedance spectroscopy. The results showed that the roughness of the MAO coatings, diameter, and number of pores increase with the increase in voltage. The coating formed at the voltage of 350 V exhibited the best adhesive strength when evaluated by the automatic scratch tester. The coatings were mainly composed of MgO, MgWO4, and Mg2SiO4, and the content of Mg2SiO4 increased with the increase in voltage. The corrosion resistance of MAO coatings could be improved by changing the applied voltage, and the best corrosion resistance of MAO coating was observed at the voltage of 350 V.

  7. A comparison of corrosion, tribocorrosion and electrochemical impedance properties of pure Ti and Ti6Al4V alloy treated by micro-arc oxidation process

    Science.gov (United States)

    Fazel, M.; Salimijazi, H. R.; Golozar, M. A.; Garsivaz jazi, M. R.

    2015-01-01

    In this paper, the micro-arc oxidation (MAO) coatings were performed on pure Ti and Ti6Al4V samples at 180 V. The results indicated that unlike the volcanic morphology of oxide layer on pure Ti, a cortex-like morphology with irregular vermiform slots was seen on MAO/Ti6Al4V sample. According to polarization curves, the corrosion resistance of untreated samples was significantly increased by MAO process. The electrochemical impedance spectroscopy analysis showed a lower capacitance of barrier layer (led to higher resistance) for MAO/Ti specimens. This indicates that corrosive ions diffusion throughout the oxide film would be more difficult resulted in a higher corrosion resistance. Tribocorrosion results illustrated that the potential of untreated samples was dropped sharply to very low negative values. However, the lower wear volume loss was achieved for Ti6Al4V alloy. SEM images of worn surfaces demonstrated the local detachment of oxide layer within the wear track of MAO/Ti sample. Conversely, no delamination was detected in MAO/Ti6Al4V and a mild abrasive wear was the dominant mechanism.

  8. Superior biocompatibility and osteogenic efficacy of micro-arc oxidation-treated titanium implants in the canine mandible

    International Nuclear Information System (INIS)

    Ran Wei; Guo Bing; Shu Dalong; Tian Zhihui; Nan Kaihui; Wang Yingjun

    2009-01-01

    The aim of this paper is to test implantation outcomes and osteogenic efficacy of plasma micro-arc oxidation (MAO)-treated titanium implants in dogs. Thirty-six pure titanium implants (18 MAO-treated, 18 untreated) were inserted into the mandibles of nine adult beagles and allowed to heal under non-weight-bearing conditions. Implant stability and interface characteristics were evaluated at 4, 8 and 12 weeks post-implantation. Methods included scanning electron microscopy, mechanical testing, histological analysis and computer-quantified tissue morphology. Osseointegration was achieved in both groups, but occurred earlier and more extensively in the MAO group. Areas of direct bone/implant contact were approximately nine times higher in the MAO group than in the control group at 12 weeks (65.85% versus 7.37%, respectively; p < 0.01). Bone-implant shear strength in the MAO group (71.4, 147.2 and 266.3 MPa at weeks 4, 8 and 12, respectively) was higher than in the control group (4.3, 7.1, and 11.8 MPa at weeks 4, 8 and 12, respectively), at all assessments (all, p < 0.01). MAO treatment of titanium implants promotes more rapid formation of new bone, and increases bone-implant shear strength compared to untreated titanium implants.

  9. The effect of microarc oxidation and excimer laser processing on the microstructure and corrosion resistance of Zr–1Nb alloy

    International Nuclear Information System (INIS)

    Yang, Jiaoxi; Wang, Xin; Wen, Qiang; Wang, Xibing; Wang, Rongshan; Zhang, Yanwei; Xue, Wenbin

    2015-01-01

    The main purpose of this research was to investigate the effect of microarc oxidation (MAO) and excimer laser processing on the corrosion resistance of Zr–1Nb alloy in service environment. The pre-oxide film was fabricated on the surface of Zr–1Nb cladding tubes by MAO processing, and then subjected to KrF excimer laser irradiation. The surface morphology of the pre-oxide film was observed using a scanning electron microscope; phase compositions and quantities were determined using an X-ray diffraction; surface roughness was determined using a profilometer; and thermal expansion coefficient was measured using a dilatometer. Autoclave experiments were conducted for 94 days in an aqueous condition of 360 °C under 18.6 MPa in 0.01 mol/L LiOH solutions. The results showed that MAO + laser treatment resulted in a significant increase in the corrosion resistance of Zr–1Nb cladding tubes at high temperatures, because laser melting and etching could lead to a reduction in surface roughness and an increase in compactness of the pre-oxide film, and laser processing could promote the transformation of m-ZrO 2 phase to t-ZrO 2 phase. The best corrosion resistance was obtained when the pulse energy was 500 mJ, scanning speed was 0.13 mm/s, and pulse number was 2400. - Highlights: • Pre-oxide film was fabricated on Zr–1Nb cladding tube by MAO+ excimer laser processing. • Excimer laser processing induced the transformation of m-ZrO 2 to t-ZrO 2 . • The Rietveld quantitative analysis of the pre-oxide film was made. • We investigated the high temperature corrosion and corrosion mechanism of the oxide film. • The parameters of MAO+ excimer laser processing were optimized.

  10. The effect of microarc oxidation and excimer laser processing on the microstructure and corrosion resistance of Zr–1Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jiaoxi, E-mail: yangjiaoxi@bjut.edu.cn [Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China); Wang, Xin; Wen, Qiang; Wang, Xibing [Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China); Wang, Rongshan; Zhang, Yanwei [Suzhou Nuclear Power Research Institute, Suzhou 215004 (China); Xue, Wenbin [College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2015-12-15

    The main purpose of this research was to investigate the effect of microarc oxidation (MAO) and excimer laser processing on the corrosion resistance of Zr–1Nb alloy in service environment. The pre-oxide film was fabricated on the surface of Zr–1Nb cladding tubes by MAO processing, and then subjected to KrF excimer laser irradiation. The surface morphology of the pre-oxide film was observed using a scanning electron microscope; phase compositions and quantities were determined using an X-ray diffraction; surface roughness was determined using a profilometer; and thermal expansion coefficient was measured using a dilatometer. Autoclave experiments were conducted for 94 days in an aqueous condition of 360 °C under 18.6 MPa in 0.01 mol/L LiOH solutions. The results showed that MAO + laser treatment resulted in a significant increase in the corrosion resistance of Zr–1Nb cladding tubes at high temperatures, because laser melting and etching could lead to a reduction in surface roughness and an increase in compactness of the pre-oxide film, and laser processing could promote the transformation of m-ZrO{sub 2} phase to t-ZrO{sub 2} phase. The best corrosion resistance was obtained when the pulse energy was 500 mJ, scanning speed was 0.13 mm/s, and pulse number was 2400. - Highlights: • Pre-oxide film was fabricated on Zr–1Nb cladding tube by MAO+ excimer laser processing. • Excimer laser processing induced the transformation of m-ZrO{sub 2} to t-ZrO{sub 2}. • The Rietveld quantitative analysis of the pre-oxide film was made. • We investigated the high temperature corrosion and corrosion mechanism of the oxide film. • The parameters of MAO+ excimer laser processing were optimized.

  11. Influence of KMnO4 Concentrationon Infrared Emissivity of Coatings Formed on TC4 Alloys by Micro-Arc Oxidation

    Science.gov (United States)

    Li, Ying; Li, Chaozhong; Hu, Dan; Li, Zhengxian; Xi, Zhengping

    2017-01-01

    Ceramic coatings with high emissivity were fabricated on TC4 alloys by micro-arc oxidation technique (MAO) in mixed silicate and phosphate electrolytes with varying KMnO4 addition. The microstructure, phase and chemical composition were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), and the infrared emissivity of the MAO coatings was measured in a waveband of 5–20 μm. The results show that the thickness of the coatings increased with the addition of KMnO4, but the roughness of the coatings first decreased and then increased slightly due to the inhibitory effect of KMnO4 on Na2SiO3 deposition. The main phase composition of the coatings was anatase and rutile TiO2, amorphous form of SiO2 and MnO2. The infrared emissivity value of the coatings strongly depended on KMnO4 concentration, the coating formed at the concentration of 0.8 g/L KMnO4 reached the highest and an average of up to 0.87 was observed. PMID:29137192

  12. Zirconium Micro-Arc Oxidation as a Method for Producing Heat Insulation Elements in Spacecraft

    Directory of Open Access Journals (Sweden)

    V. K. Shatalov

    2014-01-01

    Full Text Available Application of coatings on the surface of materials as well as their composition and structure control in the near-surface layer enables us to use properties of base material and modified layers in the most rational and profitable way and save expensive and rare metals and alloys.The space telescope of T-170M will be the main tool of the international space observatory "Spektr-UF".It is being understood that the main mirror shade, which is in the outer space and has a considerable height will act as a radiator cooling a unit (cage of the main mirror. Therefore it is necessary to create heat insulation between the shade of the main mirror and the frame of the main mirror unit. From the thermal calculations a detail to provide heat insulation must possess thermal conductivity, at most, 2,5 and a conditional limit of fluidity for compression, at least, 125 MPas to ensure that the shade diaphragms position of the main mirror is stable with respect to the optical system of telescope.Considering that oxide of zirconium possesses one of the lowest thermal conductivities among oxides of metals, it is offered to use zirconium, as a material of base, and to put the MAO-covering (micro-arc oxide on its surface.As a result of studying the features of MAO-coverings on zirconium it is:1 found that the composite material consisting of zirconium and MAO-covering on it, has low thermal conductivity (less than 2 , and thus, because of small oxide layer thickness against the thickness of base material, possesses the mechanical properties which are slightly different from the pure zirconium ones;2 found that the composite material possesses the low gas release, allowing its use in the outer space conditions; the material processed in two electrolytes i.e. phosphate and acid ones has the lowest gas release;3 found that with growing thickness of MAO-covering its porosity decreases, thus the average pore diameter grows thereby leading to increasing thermal

  13. Preparation of Porous F-WO3/TiO2 Films with Visible-Light Photocatalytic Activity by Microarc Oxidation

    Directory of Open Access Journals (Sweden)

    Chung-Wei Yeh

    2012-01-01

    Full Text Available Porous F-WO3/TiO2 (mTiO2 films are prepared on titanium sheet substrates using microarc oxidation (MAO technique. The X-ray diffraction patterns show that visible-light (Vis enabling mTiO2 films with a very high content of anatase TiO2 and high loading of WO3 are successfully synthesized at a low applied voltage of 300 V using electrolyte contenting NaF and Na2WO4 without subsequent heat treatment. The cross-sectional transmission electron microscopy micrograph reveals that the mTiO2 films feature porous networks connected by many micron pores. The diffused reflection spectrum displays broad absorbance across the UV-Vis regions and a significant red shift in the band gap energy (∼2.23 eV for the mTiO2 film. Owing to the high specific surface area from the porous microstructure, the mTiO2 film shows a 61% and 50% rate increase in the photocatalytic dye degradation, as compared with the N,C-codoped TiO2 films under UV and Vis irradiation, respectively.

  14. Improving the corrosion resistance of Mg–4.0Zn–0.2Ca alloy by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Y.H. [The First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Zhang, B.P., E-mail: zhangbp@sxicc.ac.cn [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Lu, C.X. [National Engineering Laboratory for Carbon Fiber Technology, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Geng, L. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2013-12-01

    In this paper, corrosion resistance of the Mg–4.0Zn–0.2Ca alloy was modified by micro-arc oxidation (MAO) process. The microstructure and phase constituents of MAO layer were characterized by SEM, XRD and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of MAO treated Mg–4.0Zn–0.2Ca alloy in the simulated body fluid were characterized by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The microstructure results indicated that a kind of ceramic film was composed by MgO and MgF{sub 2} was formed on the surface of Mg–4.0Zn–0.2Ca alloy after MAO treatment. The electrochemical test reveals that the corrosion resistance of MAO treated samples increase 1 order of magnitude. The mechanical intensity test showed that the MAO treated samples has suitable mechanical properties. - Highlights: • Ceramic layer which is composited by MgO and MgF{sub 2} is prepared to improve the corrosion resistance of Mg–4.0Zn–0.2Ca alloy. • MAO treatment does not affect the mechanical properties of the Mg–4.0Zn–0.2Ca alloy. • After 30-day immersion in SBF, the mechanical properties of MAO coated samples are still enough for bone fixed.

  15. Improving the corrosion resistance of Mg–4.0Zn–0.2Ca alloy by micro-arc oxidation

    International Nuclear Information System (INIS)

    Xia, Y.H.; Zhang, B.P.; Lu, C.X.; Geng, L.

    2013-01-01

    In this paper, corrosion resistance of the Mg–4.0Zn–0.2Ca alloy was modified by micro-arc oxidation (MAO) process. The microstructure and phase constituents of MAO layer were characterized by SEM, XRD and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of MAO treated Mg–4.0Zn–0.2Ca alloy in the simulated body fluid were characterized by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The microstructure results indicated that a kind of ceramic film was composed by MgO and MgF 2 was formed on the surface of Mg–4.0Zn–0.2Ca alloy after MAO treatment. The electrochemical test reveals that the corrosion resistance of MAO treated samples increase 1 order of magnitude. The mechanical intensity test showed that the MAO treated samples has suitable mechanical properties. - Highlights: • Ceramic layer which is composited by MgO and MgF 2 is prepared to improve the corrosion resistance of Mg–4.0Zn–0.2Ca alloy. • MAO treatment does not affect the mechanical properties of the Mg–4.0Zn–0.2Ca alloy. • After 30-day immersion in SBF, the mechanical properties of MAO coated samples are still enough for bone fixed

  16. Preparation and characterization of HA microflowers coating on AZ31 magnesium alloy by micro-arc oxidation and a solution treatment

    Science.gov (United States)

    Tang, Hui; Yu, Dezhen; Luo, Yan; Wang, Fuping

    2013-01-01

    Magnesium and its alloys are potential biodegradable implant materials due to their attractive biological properties. But the use of magnesium is still hampered by its poor corrosion resistance in physiological fluids. In this work, hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. The microstructure and composition are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The potentiodynamic polarization and electrochemical impedance spectroscopy are studied in simulated body fluid (SBF) solution, and the apatite-forming ability is studied also. The results show that the corrosion resistance of the magnesium alloy has been enhanced by MAO coating. And the solution treatment can improve the corrosion resistance of the MAO sample, by forming a barrier layer on the surface of the MAO coating, and by penetrating into the outer layer of the MAO film, sealing the micropores and micro-cracks existed in the MAO coating. In addition, the MAO-ST coating also exhibits a high ability to form apatite.

  17. In vitro degradation and biocompatibility of a strontium-containing micro-arc oxidation coating on the biodegradable ZK60 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xiao [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Yang, Xiaoming [Panyu Hospital of Chinese Medicine, 65 Qiaodong Road, Guangzhou 511400 (China); Tan, Lili, E-mail: lltan@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Li, Mei [Hospital of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010 (China); Wang, Xin [College of Chemistry, Liaoning University, 66 Chongshanzhong Road, Shenyang 110036 (China); Zhang, Yu, E-mail: luck_2001@126.com [Hospital of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010 (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Hu, Zhuangqi [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Qiu, Jianhong [Trauson Medical Instrument Co., Ltd., Changzhou 213163 (China)

    2014-01-01

    Magnesium alloys are promising biodegradable implant candidates for orthopedic application. In the present study, a phosphate-based micro-arc oxidation (MAO) coating was applied on the ZK60 alloy to decrease its initial degradation rate. Strontium (Sr) was incorporated into the coating in order to improve the bioactivity of the coating. The in vitro degradation studies showed that the MAO coating containing Sr owned a better initial corrosion resistance, which was mainly attributed to the superior inner barrier layer, and a better long-term protective ability, probably owning to its larger thickness, superior inner barrier layer and the superior apatite formation ability. The degradation of MAO coating was accompanied by the formation of degradation layer and Ca-P deposition layer. The in vitro cell tests demonstrated that the incorporation of Sr into the MAO coating enhanced both the proliferation of preosteoblast cells and the alkaline phosphatase activity of the murine bone marrow stromal cells. In conclusion, the MAO coating with Sr is a promising surface treatment for the biodegradable magnesium alloys.

  18. Electrochemical corrosion behavior of composite MAO/sol-gel coatings on magnesium alloy AZ91D using combined micro-arc oxidation and sol-gel technique

    International Nuclear Information System (INIS)

    Shang Wei; Chen Baizhen; Shi Xichang; Chen Ya; Xiao Xiang

    2009-01-01

    Protective composite coatings were obtained on a magnesium alloy by micro-arc oxidation (MAO) and sol-gel technique. The coatings consisted of a MAO layer and a sol-gel layer. The microstructure and composition of the MAO coating and the composite coatings were analyzed by scanning electron microscopy (SEM) and energy dispersive X-rays (EDX). Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and total immersion tests were used to evaluate the corrosion behavior of these coatings in a 3.5 wt.% NaCl solution. The results show that the sol-gel layer provides corrosion protection by physically sealing the pores in the MAO coating and acting as a barrier. The composite coatings can suppress the corrosion process by preventing the corrosive ions from transferring or diffusing to the magnesium alloy substrate. This enhances the corrosion resistance of the magnesium alloy AZ91D significantly

  19. In vitro degradation and electrochemical corrosion evaluations of microarc oxidized pure Mg, Mg-Ca and Mg-Ca-Zn alloys for biomedical applications.

    Science.gov (United States)

    Pan, Yaokun; He, Siyu; Wang, Diangang; Huang, Danlan; Zheng, Tingting; Wang, Siqi; Dong, Pan; Chen, Chuanzhong

    2015-02-01

    Calcium phosphate (CaP) ceramic coatings were fabricated on pure magnesium (Mg) and self-designed Mg-0.6Ca, Mg-0.55Ca-1.74Zn alloys by microarc oxidation (MAO). The coating formation, growth and biomineralization mechanisms were discussed. The coating degradability and bioactivity were evaluated by immersion tests in trishydroxymethyl-aminomethane hydrochloric acid (Tris-HCl) buffer and simulated body fluid (SBF) solutions, respectively. The coatings and corrosion products were characterized by scanning electron microscope (SEM), X-ray diffractometer (XRD), X-ray photoelectron spectrometer (XPS) and fourier transform infrared spectrometer (FT-IR). The electrochemical workstation was used to investigate the electrochemical corrosion behaviors of substrates and coatings. Results showed that Mg-0.55Ca-1.74Zn alloy exhibits the highest mechanical strength and electrochemical corrosion resistance among the three alloys. The MAO-coated Mg-0.55Ca-1.74Zn alloy has the potential to be served as a biodegradable implant. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Application of the particle backscattering methods for the study of new oxide protective coatings at the surface of Al and Mg alloys

    International Nuclear Information System (INIS)

    Apelfeld, A.V.; Bespalova, O.V.; Borisov, A.M.; Dunkin, O.N.; Goryaga, N.G.; Kulikauskas, V.S.; Romanovsky, E.A.; Semenov, S.V.; Souminov, I.V.

    2000-01-01

    Rutherford (1.5 MeV 4 He + ) and Nuclear (7.7 MeV H + ) Backscattering Spectrometry were used for investigation of oxide protective coatings on the surface of Al and Mg alloys obtained by microarc oxidation (MAO). A model of microarc coating formation is proposed. For Mg alloy, the structure of MAO coating with very high corrosion resistance was determined

  1. Evolution of micro-arc oxidation behaviors of the hot-dipping aluminum coatings on Q235 steel substrate

    International Nuclear Information System (INIS)

    Lu Lihong; Shen Dejiu; Zhang Jingwu; Song Jian; Li Liang

    2011-01-01

    Micro-arc oxidation (MAO) is not applicable to prepare ceramic coatings on the surface of steel directly. In this work, hybrid method of MAO and hot-dipping aluminum (HDA) were employed to fabricate composite ceramic coatings on the surface of Q235 steel. The evolution of MAO coatings, such as growth rate, thickness of the total coatings, ingrown and outgrown coatings, cross section and surface morphologies and phase composition of the ceramic coatings were studied. The results indicate that both the current density and the processing time can affect the total thickness, the growth rate and the ratio of ingrown and outgrown thickness of the ceramic coatings. The total thickness, outgrown thickness and growth rate have maximum values with the processing time prolonged. The time when the maximum value appears decreases and the ingrown dominant turns to outgrown dominant little by little with the current density increasing. The composite coatings obtained by this hybrid method consists of three layers from inside to outside, i.e. Fe-Al alloy layer next to the substrate, aluminum layer between the Fe-Al layer and the ceramic coatings which is as the top exterior layer. Metallurgical bonding was observed between every of the two layers. There are many micro-pores and micro-cracks, which act as discharge channels and result of quick and non-uniform cooling of melted sections in the MAO coatings. The phase composition of the ceramic coatings is mainly composed of amorphous phase and crystal Al 2 O 3 oxides. The crystal Al 2 O 3 phase includes κ-Al 2 O 3 , θ-Al 2 O 3 and β-Al 2 O 3 . Compared with the others, the β-Al 2 O 3 content is the least. The MAO process can be divided into three periods, namely the common anodic oxidation stage, the stable MAO stage and the ceramic coatings destroyed stage. The exterior loose part of the ceramic coatings was destroyed badly in the last period which should be avoided during the MAO process.

  2. Microarc-oxidized titanium surfaces functionalized with microRNA-21-loaded chitosan/hyaluronic acid nanoparticles promote the osteogenic differentiation of human bone marrow mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Wang Z

    2015-10-01

    Full Text Available Zhongshan Wang,1,* Guangsheng Wu,2,3,* Zhihong Feng,1 Shizhu Bai,1 Yan Dong,1 Guofeng Wu,1 Yimin Zhao1 1State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, 2State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi’an, People’s Republic of China; 3Qingdao First Sanatorium, Jinan Military Region, Qingdao, Shandong Province, People’s Republic of China *These authors contributed equally to this work Abstract: Dental implants have been widely used for the replacement of missing teeth in the clinic, but further improvements are needed to meet the clinical demands for faster and tighter osseointegration. In this study, we fabricated safe and biocompatible chitosan (CS/hyaluronic acid (HA nanoparticles to deliver microRNA-21 (miR-21 and thereby accelerate osteogenesis in human bone marrow mesenchymal stem cells (hBMMSCs. The CS/HA/miR-21 nanoparticles were cross-linked with 0.2% gel solution onto microarc oxidation (MAO-treated titanium (Ti surfaces to fabricate the miR-21-functionalized MAO Ti surface, resulting in the development of a novel coating for reverse transfection. To characterize the CS/HA/miR-21 nanoparticles, their particle size, zeta potential, surface morphology, and gel retardation ability were sequentially investigated. Their biological effects, such as cell viability, cytotoxicity, and expression of osteogenic genes by hBMMSCs on the miR-21-functionalized MAO Ti surfaces, were evaluated. Finally, we explored appropriate CS/HA/miR-21 nanoparticles with a CS/HA ratio of 4:1 and N/P ratio 20:1 for transfection, which presented good spherical morphology, an average diameter of 160.4±10.75 nm, and a positive zeta potential. The miR-21-functionalized MAO Ti surfaces demonstrated cell viability, cytotoxicity, and cell spreading comparable to those exhibited by naked MAO Ti surfaces and led to significantly higher

  3. MC3T3-E1 cell response of amorphous phase/TiO{sub 2} nanocrystal composite coating prepared by microarc oxidation on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Rui [Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wei, Daqing, E-mail: daqingwei@hit.edu.cn [Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yang, Haoyue; Feng, Wei [Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Cheng, Su [Department of Mechanical Engineering, School of Architecture and Civil Engineering, Harbin University of Science and Technology, Harbin 150001 (China); Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu [Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2014-06-01

    Bioactive amorphous phase/TiO{sub 2} nanocrystal (APTN) composite coatings were fabricated by microarc oxidation (MAO) on Ti. The APTN coatings are composed of much amorphous phase with Si, Na, Ca, Ti and O elements and a few TiO{sub 2} nanocrystals. With increasing applied voltage, the micropore density of the APTN coating decreases and the micropore size of the APTN coating increases. The results indicate that less MC3T3-E1 cells attach on the APTN coatings as compared to Ti. However, the APTN coatings greatly enhance the cell proliferation ability and the activity of alkaline phosphatase. The amorphous phase and the concentrations of the released Ca and Si from the APTN coatings during cell culture have significant effects on the cell response. - Highlights: • Amorphous phase/TiO2 nanocrystal (APTN) composite coatings were fabricated. • The MC3T3-E1 cell response of the APTN coatings was evaluated. • The APTN coatings greatly enhanced the cell proliferation ability.

  4. Formation of Microcracks During Micro-Arc Oxidation in a Phytic Acid-Containing Solution on Two-Phase AZ91HP

    Science.gov (United States)

    Zhang, R. F.; Chang, W. H.; Jiang, L. F.; Qu, B.; Zhang, S. F.; Qiao, L. P.; Xiang, J. H.

    2016-04-01

    Micro-arc oxidation (MAO) is an effective method to produce ceramic coatings on magnesium alloys and can considerably improve their corrosion resistance. The coating properties are closely related with microcracks, which are always inevitably developed on the coating surface. In order to find out the formation and development regularity of microcracks, anodic coatings developed on two-phase AZ91HP after different anodizing times were fabricated in a solution containing environmentally friendly organic electrolyte phytic acid. The results show that anodic film is initially developed on the α phase. At 50 s, anodic coatings begin to develop on the β phase, evidencing the formation of a rough area. Due to the coating successive development, the microcracks initially appear at the boundary between the initially formed coating on the α phase and the subsequently developed coating on the β phase. With the prolonging treatment time, the microcracks near the β phase become evident. After treating for 3 min, the originally rough area on the β phase disappears and the coatings become almost uniform with microcracks randomly distributed on the sample surface. Inorganic phosphates are found in MAO coatings, suggesting that phytate salts are decomposed due to the high instantaneous temperature on the sample surface resulted from spark discharge.

  5. Innovative application of AC-voltammetry in the characterization of oxides nanolayers formed on metals, under the effect of AC-perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, V.; Lazzari, L.; Ormellesse, M. [Politecnico di Milano, Milan (Italy). Dept. of Chemistry, Materials and Chemical Engineering; Spinelli, P. [Politecnico di Torino, Torino (Italy). Dept. of Materials Science and Chemical Engineering

    2008-07-01

    Stray AC-currents have been reported to cause many cases of unwanted corrosion on metallic structures. This study characterized the formation and stability of the surface oxide film formed on mild steel under the effect of AC voltage in a very basic environment. The response of the system to DC signals was examined, along with its reversibility to AC perturbations. SEM analysis was used to complement AC-Voltammetry. Reaction mechanisms responsible for the AC-corrosion were formulated. AC-Voltammetry involves the application of a controlled sinusoidal voltage onto a solid working electrode while it is being swept in a DC-voltage range, with the faradaic or capacitative components of the resulting AC-current being recorded. The innovative aspect is the application of AC-V to characterize its nano-surface while it is being affected by AC-signals. It was concluded that the AC-V can be useful for the study of redox processes occurring at the surface of a reactive electrode and for the application of a considerable AC perturbation to the electrode in a potentiostatically controlled way. According to the electrochemistry of the double layer, there are 3 main reactions in the NaOH 1M media that are not reversible to DC nor to AC perturbations in the range of cathodic protection of mild steel. When designing metallic systems susceptible to stray currents, the AC-V could quantify the final faradaic, resistive and capacitative responses. 6 refs., 1 fig.

  6. Ac conductivity and dielectric spectroscopy studies on tin oxide thin films formed by spray deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Barış, Behzad, E-mail: behzadbaris@gmail.com

    2014-04-01

    Au/tin oxide/n-Si (1 0 0) structure has been created by forming a tin oxide (SnO{sub 2}) on n-type Si by using the spray deposition technique. The ac electrical conductivity (σ{sub ac}) and dielectric properties of the structure have been investigated between 30 kHz and 1 MHz at room temperature. The values of ε', ε″, tanδ, σ{sub ac}, M' and M″ were determined as 1.404, 0.357, 0.253, 1.99×10{sup −7} S/cm, 0.665 and 0.168 for 1 MHz and 6.377, 6.411, 1.005, 1.07×10{sup −7} S/cm, 0.077 and 0.078 for 30 kHz at zero bias, respectively. These changes were attributed to variation of the charge carriers from the interface traps located between semiconductor and metal in the band gap. It is concluded that the values of the ε', ε″ and tanδ increase with decreasing frequency while a decrease is seen in σ{sub ac} and the real (M') and imaginary (M″) components of the electrical modulus. The M″ parameter of the structure has a relaxation peak as a function of frequency for each examined voltage. The relaxation time of M″(τ{sub M″}) varies from 0.053 ns to 0.018 ns with increasing voltage. The variation of Cole–Cole plots of the sample shows that there is one relaxation.

  7. Preparation and characterization of a calcium-phosphate-silicon coating on a Mg-Zn-Ca alloy via two-step micro-arc oxidation.

    Science.gov (United States)

    Dou, Jinhe; Chen, Yang; Chi, Yiming; Li, Huancai; Gu, Guochao; Chen, Chuanzhong

    2017-06-14

    Magnesium alloys are the most promising implant materials due to their excellent biodegradability. However, their high degradation rate limits their practical application. In this study, we produced a calcium-phosphate (Ca-P) coating and a calcium-phosphate-silicon (Ca-P-Si) coating via one-step and two-step micro-arc oxidation processes, respectively. The microstructure and chemical composition of the MAO coatings were characterized using SEM, XRD and EDS. The degradation behaviors of the MAO coatings and the substrate were investigated using electrochemical techniques and immersion tests in simulated body fluid (SBF). The results show that the silicate was successfully incorporated into the Ca-P coating in the second MAO step, and this also increased the thickness of the coating. The Ca-P-Si coatings remarkably reduced the corrosion rate of the Mg alloy and Ca-P coating during 18 days of immersion in SBF. In addition, the bone-like apatite layer on the sample surface demonstrated the good biomineralization ability of the Ca-P-Si coating. Potentiodynamic polarization results showed that the MAO coating could clearly enhance the corrosion resistance of the Mg alloy. Moreover, we propose the growth mechanism of the MAO coating in the second step.

  8. Evolution of micro-arc oxidation behaviors of the hot-dipping aluminum coatings on Q235 steel substrate

    Energy Technology Data Exchange (ETDEWEB)

    Lu Lihong, E-mail: llh_qc@163.com [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China) and Research Department, The Chinese People' s Armed Police Academy, Langfang 065000 (China); Shen Dejiu; Zhang Jingwu [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Song Jian; Li Liang [Tsinghua University, State Key Laboratory of Automotive Safety and Energy, Beijing 100084 (China)

    2011-02-15

    Micro-arc oxidation (MAO) is not applicable to prepare ceramic coatings on the surface of steel directly. In this work, hybrid method of MAO and hot-dipping aluminum (HDA) were employed to fabricate composite ceramic coatings on the surface of Q235 steel. The evolution of MAO coatings, such as growth rate, thickness of the total coatings, ingrown and outgrown coatings, cross section and surface morphologies and phase composition of the ceramic coatings were studied. The results indicate that both the current density and the processing time can affect the total thickness, the growth rate and the ratio of ingrown and outgrown thickness of the ceramic coatings. The total thickness, outgrown thickness and growth rate have maximum values with the processing time prolonged. The time when the maximum value appears decreases and the ingrown dominant turns to outgrown dominant little by little with the current density increasing. The composite coatings obtained by this hybrid method consists of three layers from inside to outside, i.e. Fe-Al alloy layer next to the substrate, aluminum layer between the Fe-Al layer and the ceramic coatings which is as the top exterior layer. Metallurgical bonding was observed between every of the two layers. There are many micro-pores and micro-cracks, which act as discharge channels and result of quick and non-uniform cooling of melted sections in the MAO coatings. The phase composition of the ceramic coatings is mainly composed of amorphous phase and crystal Al{sub 2}O{sub 3} oxides. The crystal Al{sub 2}O{sub 3} phase includes {kappa}-Al{sub 2}O{sub 3}, {theta}-Al{sub 2}O{sub 3} and {beta}-Al{sub 2}O{sub 3}. Compared with the others, the {beta}-Al{sub 2}O{sub 3} content is the least. The MAO process can be divided into three periods, namely the common anodic oxidation stage, the stable MAO stage and the ceramic coatings destroyed stage. The exterior loose part of the ceramic coatings was destroyed badly in the last period which should be

  9. Whole tissue AC susceptibility after superparamagnetic iron oxide contrast agent administration in a rat model

    International Nuclear Information System (INIS)

    Lazaro, Francisco Jose; Gutierrez, Lucia; Rosa Abadia, Ana; Soledad Romero, Maria; Lopez, Antonio; Jesus Munoz, Maria

    2007-01-01

    A magnetic AC susceptibility characterisation of rat tissues after intravenous administration of superparamagnetic iron oxide (Endorem ( R)), at the same dose as established for Magnetic Resonance Imaging (MRI) contrast enhancement in humans, has been carried out. The measurements reveal the presence of the contrast agent as well as that of physiological ferritin in liver and spleen while no traces have been magnetically detected in heart and kidney. This preliminary work opens suggestive possibilities for future biodistribution studies of any type of magnetic carriers

  10. In situ composite coating of titania-hydroxyapatite on titanium substrate by micro-arc oxidation coupled with electrophoretic deposition processing

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yu [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kim, Kyoung-A. [Department of Oral and Maxillofacial Radiology, School of Dentistry and Institute of Oral Bio Science, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Park, Il Song, E-mail: ilsong@chonbuk.ac.kr [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lee, Sook Jeong [Neural Injury Research Lab, Department of Neurology, Asan life Science Institute, University, of Ulsan, College of Medicine, Seoul 138-736 (Korea, Republic of); Bae, Tae Sung [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lee, Min Ho, E-mail: mh@jbnu.ac.kr [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2011-09-15

    Highlights: {center_dot} HA/TiO{sub 2} coating were prepared by a MAO and EPD technique. {center_dot} The NaOH electrolyte solution containing HA particles is employed. {center_dot} MAO and EPD treatment enhances the corrosion resistance and bioactivity of titanium. - Abstract: In situ composite coating of hydroxyapatite (HA)/TiO{sub 2} were produced on titanium (Ti) substrate by micro-arc oxidation coupled with electrophoretic deposition (MAO and EPD) technique with different concentrations of HA particles in the 0.2 M NaOH electrolyte solution. The surface morphology and chemical composition of the hybrid coating were effected by HA concentration. The amount of HA particles incorporated into coating layer increased with increasing HA concentration used in the electrolyte solution. The corrosion behavior of the coating layer in simulated body fluids (SBF) was evaluated using a potentiodynamic polarization test. The corrosion resistance of the coated sample was increased compared to the untreated Ti sample. The in vitro bioactivity assessment showed that the MAO and EPD treated Ti substrate possessed higher apatite-forming ability than the untreated Ti. Moreover, the apatite-forming ability had a positive correlation with HA concentration. In addition, the cell behavior was also examined using cell proliferation assay and alkaline phosphatase ability. The coating formed at HA concentration of 5 g/L exhibited the highest cell ability.

  11. In vitro degradation and electrochemical corrosion evaluations of microarc oxidized pure Mg, Mg–Ca and Mg–Ca–Zn alloys for biomedical applications

    International Nuclear Information System (INIS)

    Pan, Yaokun; He, Siyu; Wang, Diangang; Huang, Danlan; Zheng, Tingting; Wang, Siqi; Dong, Pan; Chen, Chuanzhong

    2015-01-01

    Calcium phosphate (CaP) ceramic coatings were fabricated on pure magnesium (Mg) and self-designed Mg–0.6Ca, Mg–0.55Ca–1.74Zn alloys by microarc oxidation (MAO). The coating formation, growth and biomineralization mechanisms were discussed. The coating degradability and bioactivity were evaluated by immersion tests in trishydroxymethyl–aminomethane hydrochloric acid (Tris–HCl) buffer and simulated body fluid (SBF) solutions, respectively. The coatings and corrosion products were characterized by scanning electron microscope (SEM), X-ray diffractometer (XRD), X-ray photoelectron spectrometer (XPS) and fourier transform infrared spectrometer (FT-IR). The electrochemical workstation was used to investigate the electrochemical corrosion behaviors of substrates and coatings. Results showed that Mg–0.55Ca–1.74Zn alloy exhibits the highest mechanical strength and electrochemical corrosion resistance among the three alloys. The MAO-coated Mg–0.55Ca–1.74Zn alloy has the potential to be served as a biodegradable implant. - Highlights: • Ca and Zn are suitable alloying elements in the development of novel Mg implants. • Micropore and crack are two factors affecting the MAO coating corrosion behavior. • Dissolution and precipitation of apatites on MAO coating are reversible reactions

  12. In vitro degradation and electrochemical corrosion evaluations of microarc oxidized pure Mg, Mg–Ca and Mg–Ca–Zn alloys for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yaokun; He, Siyu; Wang, Diangang, E-mail: wangdg@sdu.edu.cn; Huang, Danlan; Zheng, Tingting; Wang, Siqi; Dong, Pan; Chen, Chuanzhong, E-mail: czchen@sdu.edu.cn

    2015-02-01

    Calcium phosphate (CaP) ceramic coatings were fabricated on pure magnesium (Mg) and self-designed Mg–0.6Ca, Mg–0.55Ca–1.74Zn alloys by microarc oxidation (MAO). The coating formation, growth and biomineralization mechanisms were discussed. The coating degradability and bioactivity were evaluated by immersion tests in trishydroxymethyl–aminomethane hydrochloric acid (Tris–HCl) buffer and simulated body fluid (SBF) solutions, respectively. The coatings and corrosion products were characterized by scanning electron microscope (SEM), X-ray diffractometer (XRD), X-ray photoelectron spectrometer (XPS) and fourier transform infrared spectrometer (FT-IR). The electrochemical workstation was used to investigate the electrochemical corrosion behaviors of substrates and coatings. Results showed that Mg–0.55Ca–1.74Zn alloy exhibits the highest mechanical strength and electrochemical corrosion resistance among the three alloys. The MAO-coated Mg–0.55Ca–1.74Zn alloy has the potential to be served as a biodegradable implant. - Highlights: • Ca and Zn are suitable alloying elements in the development of novel Mg implants. • Micropore and crack are two factors affecting the MAO coating corrosion behavior. • Dissolution and precipitation of apatites on MAO coating are reversible reactions.

  13. Long-term corrosion inhibition mechanism of microarc oxidation coated AZ31 Mg alloys for biomedical applications

    International Nuclear Information System (INIS)

    Gu, Yanhong; Bandopadhyay, Sukumar; Chen, Cheng-fu; Ning, Chengyun; Guo, Yuanjun

    2013-01-01

    Highlights: ► The corrosion behavior is significantly affected by the long-term immersion. ► The degradation is inhibited due to the corrosion product layer. ► The corrosion resistance is enhanced by optimized MAO electrolyte concentrations. ► The corrosion inhibition mechanism is presented by a Flash animation. - Abstract: This paper addresses the long-term corrosion behavior of microarc oxidation coated Mg alloys immersed in simulated body fluid for 28 days. The coatings on AZ31 Mg alloys were produced in the electrolyte of sodium phosphate (Na 3 PO 4 ) at the concentration of 20 g/L, 30 g/L and 40 g/L, respectively. Scanning electron microscope (SEM) and optical micrograph were used to observe the microstructure of the samples before and after corrosion. The composition of the MAO coating and corrosion products were determined by X-Ray Diffraction (XRD). Corrosion product identification showed that hydroxyapatite (HA) was formed on the surface of the corroded samples. The ratio of Ca/P in HA determined by the X-ray Fluorescence (XRF) technique showed that HA is an acceptable biocompatible implant material. The potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were employed to characterize the corrosion rate and the electrochemical impedance. The corrosion resistance of the coated Mg alloys can be enhanced by optimizing the electrolyte concentrations for fabricating samples, and is enhanced after immersing the coated samples in simulated body fluid for more than 14 days. The enhanced corrosion resistance after long-term immersion is attributed to a corrosion product layer formed on the sample surface. The inhibition mechanism of the corrosion process is discussed and presented with an animation

  14. Structure and properties of a duplex coating combining micro-arc oxidation and baking layer on AZ91D Mg alloy

    Science.gov (United States)

    Cui, Xue-Jun; Li, Ming-Tian; Yang, Rui-Song; Yu, Zu-Xiao

    2016-02-01

    A duplex coating (called MAOB coating) was fabricated on AZ91D Mg alloy by combining the process of micro-arc oxidation (MAO) with baking coating (B-coating). The structure, composition, corrosion resistance, and tribological behaviour of the coatings were investigated using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electrochemical and long-term immersion test, and ball-on-disc friction test. The results show that a dense 92 μm thick B-coating was tightly deposited onto the MAO-coated Mg alloy and exhibited a good mechanical interlock along the rough interface. Compared with the MAO-coated sample, the corrosion current density of the MAOB-coated Mg alloy decreased by two or three orders of magnitude and no corrosion phenomenon was observed during a long-term immersion test of about 500 h (severe corrosion pits were found for MAO-treated samples after about 168 h of immersion). The frictional coefficient values of the MAOB coating were similar to those of the MAO coating using dry sliding tests, while the B-coating on the MAO-coated surface significantly improved the wear resistance of the AZ91D Mg alloy. All of these results indicate that a B-coating can be used to further protect Mg alloys from corrosion and wear by providing a thick, dense barrier.

  15. SOD1 Gene +35A/C (exon3/intron3 Polymorphism in Type 2 Diabetes Mellitus among South Indian Population

    Directory of Open Access Journals (Sweden)

    K. Nithya

    2016-01-01

    Full Text Available Superoxide dismutase is an antioxidant enzyme that is involved in defence mechanisms against oxidative stress. Cu/Zn SOD is a variant that is located in exon3/intron3 boundary. The aim of the present study was to investigate whether the Cu/Zn SOD (+35A/C gene polymorphism is associated with the susceptibility to type 2 diabetes mellitus among south Indian population. The study included patients with type 2 diabetes mellitus (n=100 and healthy controls (n=75. DNA was isolated from the blood and genotyping of Cu/Zn SOD gene polymorphism was done by polymerase chain reaction based restriction fragment length polymorphism method. Occurrence of different genotypes and normal (A and mutant (C allele frequencies were determined. The frequency of the three genotypes of the total subjects was as follows: homozygous wild-type A/A (95%, heterozygous genotype A/C (3%, and homozygous mutant C/C (2%. The mutant (C allele and the mutant genotypes (AC/CC were found to be completely absent among the patients with type 2 diabetes mellitus. Absence of mutant genotype (CC shows that the Cu/Zn SOD gene polymorphism may not be associated with the susceptibility to type 2 diabetes mellitus among south Indian population.

  16. Influence of nanosized carbon particles on the formation of the structure and properties of microarc ceramic coatings based on aluminum alloys

    International Nuclear Information System (INIS)

    Vityaz', P.A.; Komarov, A.I.; Komarova, V.I.

    2013-01-01

    A carbon-composite material based on a ceramic coating formed on aluminum alloys due to microarc oxidation and nanostructured carbon synthesized by the electric breakdown of liquid hydrocarbon (cyclohexane) is developed. The highest concentration of carbon nanoparticles is recorded in the coating surface coating 30-50 (μm in depth and also near the interface coating - base. It is shown that the nanocarbon introduced in electrolytes enhances the content of high-temperature modifications of aluminum oxide α-Al 2 O 3 by a factor of 3, as compared to the coating resulting in a solution without additives. The latter achieves higher tribomechanical properties - the 1.6-fold increase of microhardness, the multiple growth of wear resistance in the high pressure range (45,60 MPa) with a simultaneous reduction of the coefficient 2-9 times. (authors)

  17. Influence of sodium silicate concentration on structural and tribological properties of microarc oxidation coatings on 2017A aluminum alloy substrate

    International Nuclear Information System (INIS)

    Polat, Aytekin; Makaraci, Murat; Usta, Metin

    2010-01-01

    In this paper, thick and hard oxide coatings resistant to wear were produced on 2017A-T6 Al alloy by the microarc oxidation (MAO) technique in an alkali electrolyte consisting of different sodium silicate concentrations (0-8 g/l). The coatings were characterized by means of optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and surface profilometry. Microhardness, scratch adhesion and pin-on-disk sliding wear tests were also performed to evaluate the tribological properties of the coatings. The influence of sodium silicate concentration on the structural and tribological properties of the MAO coatings was discussed. Results reveal that increasing sodium silicate concentration from 0 to 8 g/l in the electrolyte caused an increase in the electrolyte conductivity (from 7.71 to 18.1 mS/cm) and a decrease in positive final voltage (from 627 to 590 V) in the MAO process. In response to the increase in sodium silicate concentration, the thickness, surface roughness (R a ) and critical load (L c ) corresponding to adhesive failure of the coatings were increased simultaneously from 74 to 144 μm, and 4.4 to 6.58 μm, and 127.76 to 198.54 N, respectively. At the same time, the phase structure and composition of the coatings also varied by the participation of silicate ions in the reactions and their incorporation into the coating structure. Moreover, it was observed that the coating formed in the low sodium silicate concentration (4 g/l) had higher surface hardness (2020 HV) and improved wear resistance than the one (1800 HV) formed in the high sodium silicate concentration (8 g/l). The coatings produced in three different electrolytic solutions provided an excellent wear resistance and a load carrying capacity compared to the uncoated aluminum alloy.

  18. Tribological Behaviour of the Ceramic Coating Formed on Magnesium Alloy

    International Nuclear Information System (INIS)

    Chen Fei; Zhou Hai; Chen Qiang; Ge Yuanjing; Lv Fanxiu

    2007-01-01

    Micro-arc oxidation is a recently developed surface treatment technology under anodic oxidation. Through micro-arc oxidation, a ceramic coating is directly formed on the surface of magnesium alloy, by which its surface property is significantly improved. In this paper, a dense ceramic oxide coating was prepared on an AZ31 magnesium alloy by micro-arc oxidation in a NaOH-Na 2 SiO 3 -NaB 4 O 7 -(NaPO 3 ) 6 electrolytic solution. Micro-structure, surface morphology and phase composition were analysed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The tribological behavior of the micro-arc oxidation ceramic coating under dry sliding against GCr15 steel was evaluated on a ball-on-disc test rig. The results showed that the AZ31 alloy was characterized by adhesion wear and scuffing under dry sliding against the steel, while the surface micro-arc oxidation ceramic coating experienced much abated adhesion wear and scuffing under the same testing conditions. The micro-arc oxidation ceramic coating showed good friction-reducing and fair antiwear ability in dry sliding against the steel

  19. Preparation of ceramic coating on Ti substrate by Plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance

    Science.gov (United States)

    Shokouhfar, M.; Dehghanian, C.; Baradaran, A.

    2011-01-01

    Ceramic oxide coatings (titania) were produced on Ti by micro-arc oxidation in different aluminate and carbonate based electrolytes. This process was conducted under constant pulsed DC voltage condition. The effect of KOH and NaF in aluminate based solution was also studied. The surface morphology, growth and phase composition of coatings were investigated using scanning electron microscope and X-ray diffraction. Corrosion behavior of the coatings was also examined by potentiodynamic polarization and electrochemical impedance spectroscopy. It was found that the sparking initiation voltage (spark voltage) had a significant effect on the form and properties of coatings. Coatings obtained from potassium aluminate based solution had a lower spark voltage, higher surface homogeneity and a better corrosion resistance than the carbonate based solution. Addition of NaF instead of KOH had improper effects on the homogeneity and adhesion of coatings which in turn caused a poor corrosion protection behavior of the oxide layer. AC impedance curves showed two time constants which is an indication of the coatings with an outer porous layer and an inner compact layer.

  20. Effects of single pulse energy on the properties of ceramic coating prepared by micro-arc oxidation on Ti alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun-Hua [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023 (China); Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Wang, Jin [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Beijing 100084 (China); Lu, Yan [School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023 (China); Du, Mao-Hua [Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Han, Fu-Zhu, E-mail: hanfuzhu@mail.tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Beijing 100084 (China)

    2015-01-01

    Highlights: • Single pulse energy remarkably influences the properties of ceramic coating prepared by MAO on Ti alloy. • The accumulative time of impulse width is an important parameter in the scientific and rational measurement of the film forming law of ceramic coating. • The ceramic coating thickness approximately linearly increases with the cumulative time of impulse width. • Larger impulse width resulted in higher single pulse energy, film forming rates and thicker ceramic coating thickness. • The effects of single pulse energy on the micro-hardness and phase composition of ceramic coating are not as evident as those of frequency and duty cycle. - Abstract: The effects of single pulse energy on the properties of ceramic coating fabricated on a Ti–6Al–4V alloy via micro-arc oxidation (MAO) in aqueous solutions containing aluminate, phosphate, and some additives are investigated. The thickness, micro-hardness, surface and cross-sectional morphology, surface roughness, and compositions of the ceramic coating are studied using eddy current thickness meter, micro-hardness tester, JB-4C Precision Surface roughness meter, scanning electron microscopy (SEM) and X-ray diffraction (XRD). Single pulse energy remarkably influences the ceramic coating properties. The accumulative time of impulse width is an important parameter in the scientific and rational measurement of the film forming law of ceramic coating. The ceramic coating thickness approximately linearly increases with the cumulative time of impulse width. Larger impulse width resulted in higher single pulse energy, film forming rates and thicker ceramic coating thickness. The sizes of oxide particles, micro-pores and micro-cracks slightly increase with impulse width and single pulse energy. The main surface conversion products generated during MAO process in aqueous solutions containing aluminate are rutile TiO{sub 2}, anatase TiO{sub 2}, and a large amount of Al{sub 2}TiO{sub 5}. The effects of

  1. Structure and properties of a duplex coating combining micro-arc oxidation and baking layer on AZ91D Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xue-Jun; Li, Ming-Tian; Yang, Rui-Song; Yu, Zu-Xiao [Material Corrosion and Protection Key Laboratory of Sichuan province, Sichuan University of Science and Engineering, Zigong 643000 (China); College of Materials and Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000 (China)

    2016-02-15

    Graphical abstract: - Highlights: • A duplex coating was fabricated through combining MAO and baking layer. • A baking coating with a thickness of 92 μm was created on MAO-coated Mg alloy. • The duplex coating noticeably improved the corrosion resistance of Mg alloy. • The related corrosion and wear mechanisms were investigated. - Abstract: A duplex coating (called MAOB coating) was fabricated on AZ91D Mg alloy by combining the process of micro-arc oxidation (MAO) with baking coating (B-coating). The structure, composition, corrosion resistance, and tribological behaviour of the coatings were investigated using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electrochemical and long-term immersion test, and ball-on-disc friction test. The results show that a dense 92 μm thick B-coating was tightly deposited onto the MAO-coated Mg alloy and exhibited a good mechanical interlock along the rough interface. Compared with the MAO-coated sample, the corrosion current density of the MAOB-coated Mg alloy decreased by two or three orders of magnitude and no corrosion phenomenon was observed during a long-term immersion test of about 500 h (severe corrosion pits were found for MAO-treated samples after about 168 h of immersion). The frictional coefficient values of the MAOB coating were similar to those of the MAO coating using dry sliding tests, while the B-coating on the MAO-coated surface significantly improved the wear resistance of the AZ91D Mg alloy. All of these results indicate that a B-coating can be used to further protect Mg alloys from corrosion and wear by providing a thick, dense barrier.

  2. AC plasma electrolytic oxidation of magnesium with zirconia nanoparticles

    International Nuclear Information System (INIS)

    Arrabal, R.; Matykina, E.; Viejo, F.; Skeldon, P.; Thompson, G.E.; Merino, M.C.

    2008-01-01

    The incorporation of monoclinic zirconia nanoparticles and their subsequent transformation is examined for coatings formed on magnesium by plasma electrolytic oxidation under AC conditions in silicate electrolyte. The coatings are shown to comprise two main layers, with nanoparticles entering the coating at the coating surface and through short-circuit paths to the region of the interface between the inner and outer coating layers. Under local heating of microdischarges, the zirconia reacts with magnesium species to form Mg 2 Zr 5 O 12 in the outer coating layer. Relatively little zirconium is present in the inner coating layer. In contrast, silicon species are present in both coating layers, with reduced amounts in the inner layer

  3. Structure, MC3T3-E1 cell response, and osseointegration of macroporous titanium implants covered by a bioactive microarc oxidation coating with microporous structure.

    Science.gov (United States)

    Zhou, Rui; Wei, Daqing; Cheng, Su; Feng, Wei; Du, Qing; Yang, Haoyue; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu

    2014-04-09

    Macroporous Ti with macropores of 50-400 μm size is prepared by sintering Ti microbeads with different diameters of 100, 200, 400, and 600 μm. Bioactive microarc oxidation (MAO) coatings with micropores of 2-5 μm size are prepared on the macroporous Ti. The MAO coatings are composed of a few TiO2 nanocrystals and lots of amorphous phases with Si, Ca, Ti, Na, and O elements. Compared to compact Ti, the MC3T3-E1 cell attachment is prolonged on macroporous Ti without and with MAO coatings; however, the cell proliferation number increases. These results are contributed to the effects of the space structure of macroporous Ti and the surface chemical feature and element dissolution of the MAO coatings during the cell culture. Macroporous Ti both without and with MAO coatings does not cause any adverse effects in vivo. The new bone grows well into the macropores and micropores of macroporous Ti with MAO coatings, showing good mechanical properties in vivo compared to Ti, MAO-treated Ti, and macroporous Ti because of its excellent osseointegration. Moreover, the MAO coatings not only show a high interface bonding strength with new bones but also connect well with macroporous Ti. Furthermore, the pushing out force for macroporous Ti with MAO coatings increases significantly with increasing microbead diameter.

  4. Influence of C3H8O3 in the electrolyte on characteristics and corrosion resistance of the microarc oxidation coatings formed on AZ91D magnesium alloy surface

    International Nuclear Information System (INIS)

    Wu Di; Liu Xiangdong; Lu Kai; Zhang Yaping; Wang Huan

    2009-01-01

    Ceramic coatings were fabricated on AZ91D Mg-alloy substrate by microarc oxidation in Na 2 SiO 3 -NaOH-Na 2 EDTA electrolytes with and without C 3 H 8 O 3 addition. The effects of different concentrations of C 3 H 8 O 3 contained in the electrolyte on coatings thickness were investigated. The surface morphologies, RMS roughness, phase compositions and corrosion resistance property of the ceramic coatings were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and electrochemical corrosion test respectively. It is found that the addition of C 3 H 8 O 3 into silicate electrolyte leads to increase of the unit-area adsorptive capacity of the negative ions at anode-electrolyte interface and thus improves the compactness and corrosion resistance of the MAO coating. The coating thickness decreases gradually with the increase of concentrations of C 3 H 8 O 3 in the electrolyte. The oxide coating formed in base electrolyte containing 4 mL/L C 3 H 8 O 3 exhibits the best surface appearance, the lowest surface RMS roughness (174 nm) and highest corrosion resistance. In addition, both ceramic coatings treated in base electrolyte with and without C 3 H 8 O 3 are mainly composed of periclase MgO and forsterite Mg 2 SiO 4 phase, but no diffraction peak of Mg phase is found in the patterns.

  5. Ionic conductivity in new perovskite type oxides: NaAZrMO6 (A = Ca or Sr; M = Nb or Ta)

    International Nuclear Information System (INIS)

    Rajendran, Deepthi N.; Ravindran Nair, K.; Prabhakar Rao, P.; Sibi, K.S.; Koshy, Peter; Vaidyan, V.K.

    2008-01-01

    New oxides of the type, NaAZrMO 6 (M = Ca or Sr; M = Nb or Ta), have been prepared by the solid-state reaction technique. Phase identification by powder X-ray diffraction (XRD) shows that NaCaZrMO 6 has orthorhombic perovskite type structure (Pnma) and NaSrZrMO 6 has cubic perovskite type structure (Pm3m). The grain morphology observation by scanning electron microscope (SEM) shows well-sintered grains. ac impedance spectra and electrical conductivity measurements in air, oxygen and nitrogen atmospheres indicate that they are probable oxide ion conductors with ionic conductivities of the order of 10 -3 S cm -1 at 750 deg. C

  6. The n-MAO/EPD bio-ceramic composite coating fabricated on ZK60 magnesium alloy using combined micro-arc oxidation with electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ying, E-mail: yxiong@zjut.edu.cn [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Lu, Chao [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Wang, Chao; Song, Renguo [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China)

    2014-12-15

    Highlights: • Adding CeO{sub 2}/ZrO{sub 2} nano-particles to modify the properties of n-MAO coating. • A bio-ceramic n-MAO/EPD composite coating was prepared by two-step methods. • The n-MAO/EPD composite coating with HA has a favorable anti-corrosion effect. - Abstract: A bio-ceramic composite coating was fabricated on ZK60 magnesium (Mg) alloy using combined micro-arc oxidation (MAO) with electrophoretic deposition (EPD) technique. The MAO coating as the basal layer was produced in alkaline electrolyte with (n-MAO coating) and without (MAO coating) the addition of CeO{sub 2} and ZrO{sub 2} nano-particles, respectively. A hydroxyapatite (HA) coating as the covering layer was deposited on the n-MAO coating to improve the biological properties of the coating (n-MAO/EPD composite coating). The morphology and phase composition of three treated coatings were investigated by scanning electron microscope (SEM) and X-ray diffraction (XRD). The corrosion resistance of these coatings was evaluated with potentiodynamic polarization tests and immersion tests in simulated body fluid (SBF) at 36.5 ± 0.5 °C. The XRD spectra showed that the CeO{sub 2} and ZrO{sub 2} peaks can be collected in the n-MAO coating, and HA particles exists in the n-MAO/EPD composite coating. The results of corrosion tests indicated that the n-MAO/EPD composite coating owned increased bioactivity and long-term protective ability compared with the MAO coating and the n-MAO coating. Thus Mg alloy coated with the n-MAO/EPD composite coating should be more suited as biodegradable bone implants.

  7. Physicochemical properties and in vitro cytocompatibility of modified titanium surfaces prepared via micro-arc oxidation with different calcium concentrations

    International Nuclear Information System (INIS)

    Wu, Sui-Dan; Zhang, Hui; Dong, Xu-Dong; Ning, Cheng-Yun; Fok, Alex S.L.; Wang, Yan

    2015-01-01

    Highlights: • MAO coating improves the surface characteristics and cytocompatibility of titanium. • Composition of MAO coating varies with the electrolyte concentration. • MAO coating properties can be optimized by adjusting the electrolyte concentration. • Higher CA concentration contributes to more favorable MAO coating cytocompatibility. - Abstract: Objective: To explore the effect of calcium concentration in the electrolyte solution on the physicochemical properties and biocompatibility of coatings formed by micro-arc oxidation (MAO) on titanium surfaces. Methods: The surfaces of pure titanium plates were modified by MAO in an electrolytic solution containing calcium acetate (CA; C 4 H 6 CaO 4 ) at concentrations of 0.05, 0.1, 0.2, or 0.3 M and β-glycerophosphate disodium salt pentahydrate (β-GP; C 3 H 7 Na 2 O 6 P·5H 2 O) at a fixed concentration of 0.02 M. Surface topography, elemental characteristics, phase composition, and roughness were investigated by scanning electron microscopy, energy-dispersive X-ray analysis, X-ray diffraction, and a surface roughness tester, respectively. To assess the cytocompatibility and osteoinductivity of the surfaces, MC3T3-E1 preosteoblasts were cultured on the surfaces in vitro, and cell morphology, adhesion, proliferation, and differentiation were observed. Results: The porous MAO coating was composed primarily of TiO 2 rutile and anatase. The amount of TiO 2 rutile, the Ca/P ratio, and the surface roughness of the MAO coating increased with increasing CA concentration in the electrolyte solution. Ca 3 (PO 4 ) 2 , CaCO 3 , and CaTiO 3 were formed on MAO-treated surfaces prepared with CA concentrations of 0.2 and 0.3 M. Cell proliferation and differentiation increased with increasing CA concentration, with MC3T3-E1 cells exhibiting favorable morphologies for bone–implant integration. Conclusions: MAO coating improves the surface characteristics and cytocompatibility of titanium for osseointegration. Higher CA

  8. The influences of microwave irradiation and polyol precursor pH on Cu/AC catalyst and its CO oxidation performance

    Science.gov (United States)

    Chuang, Kui-Hao; Shih, Kaimin; Wey, Ming-Yen

    2012-10-01

    This study evaluated the effects of microwave irradiation parameters and the pH of the polyol precursor on the morphological features and catalytic performances of Cu/activated carbon (AC) catalysts. Experimental results of carbon monoxide (CO) oxidation indicated that the highest catalytic activity is achieved when the Cu/AC catalyst is prepared with microwave irradiation at 700 W for 60 s. Scanning electron microscopy revealed the presence of beneficial small copper aciculae on the Cu/AC catalyst under such a microwave irradiation scheme. Further investigation of operational parameters found that the performance of Cu/AC catalysts is enhanced by adopting a pH = 12 polyol precursor solution. With the observation that small cube copper ( 16 nm) aggregates form when a pH = 12 polyol precursor solution is used, this study also demonstrated the importance of controlling the morphology of metal nanoparticles on Cu/AC catalysts when using the microwave-assisted polyol method.

  9. The influences of microwave irradiation and polyol precursor pH on Cu/AC catalyst and its CO oxidation performance

    International Nuclear Information System (INIS)

    Chuang, Kui-Hao; Shih, Kaimin; Wey, Ming-Yen

    2012-01-01

    This study evaluated the effects of microwave irradiation parameters and the pH of the polyol precursor on the morphological features and catalytic performances of Cu/activated carbon (AC) catalysts. Experimental results of carbon monoxide (CO) oxidation indicated that the highest catalytic activity is achieved when the Cu/AC catalyst is prepared with microwave irradiation at 700 W for 60 s. Scanning electron microscopy revealed the presence of beneficial small copper aciculae on the Cu/AC catalyst under such a microwave irradiation scheme. Further investigation of operational parameters found that the performance of Cu/AC catalysts is enhanced by adopting a pH = 12 polyol precursor solution. With the observation that small cube copper (∼16 nm) aggregates form when a pH = 12 polyol precursor solution is used, this study also demonstrated the importance of controlling the morphology of metal nanoparticles on Cu/AC catalysts when using the microwave-assisted polyol method.

  10. Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering

    Science.gov (United States)

    Sheng, Kaixuan; Sun, Yiqing; Li, Chun; Yuan, Wenjing; Shi, Gaoquan

    2012-02-01

    The recent boom in multifunction portable electronic equipments requires the development of compact and miniaturized electronic circuits with high efficiencies, low costs and long lasting time. For the operation of most line-powered electronics, alternating current (ac) line-filters are used to attenuate the leftover ac ripples on direct current (dc) voltage busses. Today, aluminum electrolytic capacitors (AECs) are widely applied for this purpose. However, they are usually the largest components in electronic circuits. Replacing AECs by more compact capacitors will have an immense impact on future electronic devices. Here, we report a double-layer capacitor based on three-dimensional (3D) interpenetrating graphene electrodes fabricated by electrochemical reduction of graphene oxide (ErGO-DLC). At 120-hertz, the ErGO-DLC exhibited a phase angle of -84 degrees, a specific capacitance of 283 microfaradays per centimeter square and a resistor-capacitor (RC) time constant of 1.35 milliseconds, making it capable of replacing AECs for the application of 120-hertz filtering.

  11. Decolorization and mineralization of Allura Red AC aqueous solutions by electrochemical advanced oxidation processes

    International Nuclear Information System (INIS)

    Thiam, Abdoulaye; Sirés, Ignasi; Garrido, José A.; Rodríguez, Rosa M.; Brillas, Enric

    2015-01-01

    Highlights: • Quicker degradation of Allura Red AC in the order EO-H 2 O 2 < EF < PEF with Pt or BDD anode. • Almost total mineralization achieved by the most powerful PEF process with BDD. • Similar decolorization and mineralization rate in SO 4 2− , ClO 4 − and NO 3 − media. • In Cl − medium, only slightly larger decolorization rate but strong inhibition of mineralization. • Identification of aromatic products, carboxylic acids and released NH 4 + , NO 3 − and SO 4 2− ions. - Abstract: The decolorization and mineralization of solutions containing 230 mg L −1 of the food azo dye Allura Red AC at pH 3.0 have been studied upon treatment by electrochemical oxidation with electrogenerated H 2 O 2 (EO-H 2 O 2 ), electro-Fenton (EF) and photoelectro-Fenton (PEF). Experiments were performed with a stirred tank reactor containing a boron-doped diamond (BDD) or Pt anode and an air-diffusion cathode to generate H 2 O 2 . The main oxidants were hydroxyl radicals formed at the anode surface from water oxidation and in the bulk from Fenton’s reaction between H 2 O 2 and added Fe 2+ . The oxidation ability increased in the sequence EO-H 2 O 2 < EF < PEF and faster degradation was always obtained using BDD. PEF process with BDD yielded almost total mineralization following similar trends in SO 4 2− , ClO 4 − and NO 3 − media, whereas in Cl − medium, mineralization was inhibited by the formation of recalcitrant chloroderivatives. GC–MS analysis confirmed the cleavage of the −N=N− bond with formation of two main aromatics in SO 4 2− medium and three chloroaromatics in Cl − solutions. The effective oxidation of final oxalic and oxamic acids by BDD along with the photolysis of Fe(III)-oxalate species by UVA light accounted for the superiority of PEF with BDD. NH 4 + , NO 3 − and SO 4 2− ions were released during the mineralization

  12. SaOS-2 cell response to macro-porous boron-incorporated TiO{sub 2} coating prepared by micro-arc oxidation on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qianli [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Elkhooly, Tarek A. [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Department of Ceramics, Inorganic Chemical Industries Division, National Research Centre, Dokki, 12622 Cairo (Egypt); Liu, Xujie [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Zhang, Ranran; Yang, Xing; Shen, Zhijian [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2016-10-01

    The aims of the present study were to develop boron-incorporated TiO{sub 2} coating (B-TiO{sub 2} coating) through micro-arc oxidation (MAO) and subsequently evaluate the effect of boron incorporation on the in vitro biological performance of the coatings. The physicochemical properties of B-TiO{sub 2} coating and its response to osteoblast like cells (SaOS-2) were investigated compared to the control group without boron (TiO{sub 2} coating). The morphological and X-ray diffraction results showed that both coatings exhibited similar surface topography and phase composition, respectively. However, the incorporation of B led to an enhancement in the surface hydrophilicity of B-TiO{sub 2} coating. The spreading of SaOS-2 cells on B-TiO{sub 2} coating was faster than that on TiO{sub 2} coating. The proliferation rate of SaOS-2 cells cultured on B-TiO{sub 2} decreased after 5 days of culture compared to that on TiO{sub 2} coating. SaOS-2 cells cultured on B-TiO{sub 2} coating exhibited an enhanced alkaline phosphatase (ALP) activity, Collagen I synthesis and in vitro mineralization compared to those on TiO{sub 2} coating. The present findings suggest that B-TiO{sub 2} coating is a promising candidate surface for orthopedic implants. - Highlights: • SaOS-2 cell response to pure TiO{sub 2} and B-TiO{sub 2} coatings was investigated. • Initial cell spreading on B-TiO{sub 2} coating was accelerated compared to that on TiO{sub 2} coating. • Cell proliferation on B-TiO{sub 2} coating was inhibited compared to that on TiO{sub 2} coating. • Cell differentiation on B-TiO{sub 2} coating was enhanced compared to that on TiO{sub 2} coating.

  13. Ac system interruption analysis of an orthogonal-core type dc-ac converter. Koryu keito shadanji no chokko jishinkei dc-ac renkeiyo henkanki no dosa kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K; Ichinokura, O; Jinzenji, T [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Tajima, K [Akita University, Akita (Japan). Mining College

    1991-04-30

    This paper reports on a numerical analysis of transient response of an orthogonal-core type dc-ac converter that takes place when the external ac system connected is cut off from it. A model of magnetic circuit of the orthogonal core is presented, which has magnetic inductances to represent effects produced by hysteresis that are connected in series with magnetic reluctances, thereby making it possible to divide each of primary and secondary winding current into magnetization current associated with magnetic reluctances and iron-loss current due to hysteresis. Moreover, a numerical model of the orthogonal core is derived from expressions for non-linear characteristics of these reluctances and inductances to make use of it for analyses employing the circuit simulator SPICE. Transient response of the present converter, namely time variation of both voltage and current in its every part, to the sudden change in condition that is caused by switching off the ac system connected to its secondary side is calculated, while applying square-wave voltage to its primary side. It is noted that calculated wave forms of both secondary winding current and open-circuit voltage are fairly in good agreement with those obtained by an experiment performed on the same condition. 4 refs., 9 figs., 1 tab.

  14. Two-Dimensional Algal Collection and Assembly by Combining AC-Dielectrophoresis with Fluorescence Detection for Contaminant-Induced Oxidative Stress Sensing

    Directory of Open Access Journals (Sweden)

    Coralie Siebman

    2015-06-01

    Full Text Available An alternative current (AC dielectrophoretic lab-on-chip setup was evaluated as a rapid tool of capture and assembly of microalga Chlamydomonas reinhardtii in two-dimensional (2D close-packed arrays. An electric field of 100 V·cm−1, 100 Hz applied for 30 min was found optimal to collect and assemble the algae into single-layer structures of closely packed cells without inducing cellular oxidative stress. Combined with oxidative stress specific staining and fluorescence microscopy detection, the capability of using the 2D whole-cell assembly on-chip to follow the reactive oxygen species (ROS production and oxidative stress during short-term exposure to several environmental contaminants, including mercury, methylmercury, copper, copper oxide nanoparticles (CuO-NPs, and diuron was explored. The results showed significant increase of the cellular ROS when C. reinhardtii was exposed to high concentrations of methylmercury, CuO-NPs, and 10−5 M Cu. Overall, this study demonstrates the potential of combining AC-dielectrophoretically assembled two-dimensional algal structures with cell metabolic analysis using fluorescence staining, as a rapid analytical tool for probing the effect of contaminants in highly impacted environment.

  15. Phenol oxidation by a sequential CWPO-CWAO treatment with a Fe/AC catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Quintanilla, A. [Area de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain)]. E-mail: asun.quintanilla@uam.es; Fraile, A.F. [Area de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Casas, J.A. [Area de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Rodriguez, J.J. [Area de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain)

    2007-07-31

    Catalytic wet peroxide oxidation (CWPO) of phenol with a homemade Fe/activated carbon (Fe/AC) catalyst has been studied in a stainless steel fixed-bed reactor at different operating conditions (T = 23-100 deg. C, P {sub T} = 1-8 atm, W = 0-2.5 g, and {tau} = 20-320 g{sub CAT} h/g{sub Phenol}). The results show that, thanks to the incorporation of Fe on the activated carbon, phenol conversion improved dramatically, reaching a 90% at 65 deg. C, 2 atm, and 40 g{sub CAT} h/g{sub Phenol}. However, TOC conversion values remain fairly low, (around 5% at 40 g{sub CAT} h/g{sub Phenol}), and no improvement was obtained with the inclusion of Fe. The presence of Fe seems to promote the nondesirable coupling reactions that take place in CWPO of phenol due to the condensation of the ring intermediates (the primary phenol oxidation products). These condensation products are quite refractory to CWPO at the conditions employed. Taking advantage of the high phenol conversions in CWPO and the high phenol mineralization in CWAO, along with the good stability of the Fe/AC catalyst, a CWPO-CWAO sequential treatment has been successfully performed by using a fixed-bed and trickle-bed reactor in series. A CWPO treatment at ambient conditions followed by a CWAO treatment at mild conditions (100 deg. C and 8 atm) is presented as high efficiency process for the decontamination of phenolic wastewaters.

  16. Phenol oxidation by a sequential CWPO-CWAO treatment with a Fe/AC catalyst.

    Science.gov (United States)

    Quintanilla, A; Fraile, A F; Casas, J A; Rodríguez, J J

    2007-07-31

    Catalytic wet peroxide oxidation (CWPO) of phenol with a homemade Fe/activated carbon (Fe/AC) catalyst has been studied in a stainless steel fixed-bed reactor at different operating conditions (T=23-100 degrees C, P(T)=1-8atm, W=0-2.5g, and tau=20-320g(CAT)h/g(Phenol)). The results show that, thanks to the incorporation of Fe on the activated carbon, phenol conversion improved dramatically, reaching a 90% at 65 degrees C, 2atm, and 40g(CAT)h/g(Phenol). However, TOC conversion values remain fairly low, (around 5% at 40g(CAT)h/g(Phenol)), and no improvement was obtained with the inclusion of Fe. The presence of Fe seems to promote the nondesirable coupling reactions that take place in CWPO of phenol due to the condensation of the ring intermediates (the primary phenol oxidation products). These condensation products are quite refractory to CWPO at the conditions employed. Taking advantage of the high phenol conversions in CWPO and the high phenol mineralization in CWAO, along with the good stability of the Fe/AC catalyst, a CWPO-CWAO sequential treatment has been successfully performed by using a fixed-bed and trickle-bed reactor in series. A CWPO treatment at ambient conditions followed by a CWAO treatment at mild conditions (100 degrees C and 8atm) is presented as high efficiency process for the decontamination of phenolic wastewaters.

  17. Phenol oxidation by a sequential CWPO-CWAO treatment with a Fe/AC catalyst

    International Nuclear Information System (INIS)

    Quintanilla, A.; Fraile, A.F.; Casas, J.A.; Rodriguez, J.J.

    2007-01-01

    Catalytic wet peroxide oxidation (CWPO) of phenol with a homemade Fe/activated carbon (Fe/AC) catalyst has been studied in a stainless steel fixed-bed reactor at different operating conditions (T = 23-100 deg. C, P T = 1-8 atm, W = 0-2.5 g, and τ = 20-320 g CAT h/g Phenol ). The results show that, thanks to the incorporation of Fe on the activated carbon, phenol conversion improved dramatically, reaching a 90% at 65 deg. C, 2 atm, and 40 g CAT h/g Phenol . However, TOC conversion values remain fairly low, (around 5% at 40 g CAT h/g Phenol ), and no improvement was obtained with the inclusion of Fe. The presence of Fe seems to promote the nondesirable coupling reactions that take place in CWPO of phenol due to the condensation of the ring intermediates (the primary phenol oxidation products). These condensation products are quite refractory to CWPO at the conditions employed. Taking advantage of the high phenol conversions in CWPO and the high phenol mineralization in CWAO, along with the good stability of the Fe/AC catalyst, a CWPO-CWAO sequential treatment has been successfully performed by using a fixed-bed and trickle-bed reactor in series. A CWPO treatment at ambient conditions followed by a CWAO treatment at mild conditions (100 deg. C and 8 atm) is presented as high efficiency process for the decontamination of phenolic wastewaters

  18. Ionic conductivity in new perovskite type oxides: NaAZrMO{sub 6} (A = Ca or Sr; M = Nb or Ta)

    Energy Technology Data Exchange (ETDEWEB)

    Rajendran, Deepthi N.; Ravindran Nair, K. [Regional Research Laboratory (CSIR), Trivandrum 695019 (India); Prabhakar Rao, P. [Regional Research Laboratory (CSIR), Trivandrum 695019 (India)], E-mail: padala_rao@yahoo.com; Sibi, K.S.; Koshy, Peter [Regional Research Laboratory (CSIR), Trivandrum 695019 (India); Vaidyan, V.K. [Department of Physics, University of Kerala, Trivandrum 695581 (India)

    2008-06-15

    New oxides of the type, NaAZrMO{sub 6} (M = Ca or Sr; M = Nb or Ta), have been prepared by the solid-state reaction technique. Phase identification by powder X-ray diffraction (XRD) shows that NaCaZrMO{sub 6} has orthorhombic perovskite type structure (Pnma) and NaSrZrMO{sub 6} has cubic perovskite type structure (Pm3m). The grain morphology observation by scanning electron microscope (SEM) shows well-sintered grains. ac impedance spectra and electrical conductivity measurements in air, oxygen and nitrogen atmospheres indicate that they are probable oxide ion conductors with ionic conductivities of the order of 10{sup -3} S cm{sup -1} at 750 deg. C.

  19. Microarc-oxidized titanium surfaces functionalized with microRNA-21-loaded chitosan/hyaluronic acid nanoparticles promote the osteogenic differentiation of human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Wang, Zhongshan; Wu, Guangsheng; Feng, Zhihong; Bai, Shizhu; Dong, Yan; Wu, Guofeng; Zhao, Yimin

    2015-01-01

    Dental implants have been widely used for the replacement of missing teeth in the clinic, but further improvements are needed to meet the clinical demands for faster and tighter osseointegration. In this study, we fabricated safe and biocompatible chitosan (CS)/hyaluronic acid (HA) nanoparticles to deliver microRNA-21 (miR-21) and thereby accelerate osteogenesis in human bone marrow mesenchymal stem cells (hBMMSCs). The CS/HA/miR-21 nanoparticles were cross-linked with 0.2% gel solution onto microarc oxidation (MAO)-treated titanium (Ti) surfaces to fabricate the miR-21-functionalized MAO Ti surface, resulting in the development of a novel coating for reverse transfection. To characterize the CS/HA/miR-21 nanoparticles, their particle size, zeta potential, surface morphology, and gel retardation ability were sequentially investigated. Their biological effects, such as cell viability, cytotoxicity, and expression of osteogenic genes by hBMMSCs on the miR-21-functionalized MAO Ti surfaces, were evaluated. Finally, we explored appropriate CS/HA/miR-21 nanoparticles with a CS/HA ratio of 4:1 and N/P ratio 20:1 for transfection, which presented good spherical morphology, an average diameter of 160.4±10.75 nm, and a positive zeta potential. The miR-21-functionalized MAO Ti surfaces demonstrated cell viability, cytotoxicity, and cell spreading comparable to those exhibited by naked MAO Ti surfaces and led to significantly higher expression of osteogenic genes. This novel miR-21-functionalized Ti implant may be used in the clinic to allow more effective and robust osseointegration.

  20. Coordinated control of three-phase AC and DC type EV–ESSs for efficient hybrid microgrid operations

    International Nuclear Information System (INIS)

    Rahman, Md Shamiur; Hossain, M.J.; Lu, Junwei

    2016-01-01

    Highlights: • A coordinated control is proposed for three-phase AC and DC type electric vehicles. • A four-quadrant interlinking converter is designed for hybrid microgrid operations. • Concurrent real irradiation data and commercial load profile are used for testing. • Unbalanced scenario due to single-phase electric vehicle charging is considered. • Improved AC and DC bus voltages and frequency regulations are achieved. - Abstract: This paper presents a three-layered coordinated control to incorporate three-phase (3P) alternating current (AC) and direct current (DC) type electric vehicle energy storage systems (EV–ESSs) for improved hybrid AC/DC microgrid operations. The first layer of the algorithm ensures DC subgrid management by regulating the DC bus voltage and DC side power management. The second and third layer manages AC subgrid by regulating the AC bus voltage and the frequency by managing reactive and active power respectively. The multi-layered coordination is embedded into the microgrid central controller (MGCC) which controls the interlinking controller in between AC and DC microgrid and the interfacing controllers of the participating electric vehicles (EVs) and distributed generation (DG) units. The whole system is designed in MATLAB/SIMULINK® environment resembling the under construction microgrid at Griffith University, Australia. Extensive case studies are performed using real life irradiation data and commercial loads of the campus buildings. Impacts of homogeneous and heterogeneous single-phase EV charging are investigated to observe both balanced and unbalanced scenarios. Synchronization during the transition from the islanded to grid-tied mode is tested considering a contingency situation. From the comparative simulation results it is evident that the proposed controller exhibits effective, reliable and robust performance for all the cases.

  1. Physicochemical properties and in vitro cytocompatibility of modified titanium surfaces prepared via micro-arc oxidation with different calcium concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Sui-Dan; Zhang, Hui [Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Dong, Xu-Dong [Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3 (Canada); Ning, Cheng-Yun [College of Material Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Fok, Alex S.L. [Minnesota Dental Research Center of Biomaterials and Biomechanics, School of Dentistry, University of Minnesota, Minneapolis, MN 55414 (United States); Wang, Yan, E-mail: wyan65@163.com [Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China)

    2015-02-28

    Highlights: • MAO coating improves the surface characteristics and cytocompatibility of titanium. • Composition of MAO coating varies with the electrolyte concentration. • MAO coating properties can be optimized by adjusting the electrolyte concentration. • Higher CA concentration contributes to more favorable MAO coating cytocompatibility. - Abstract: Objective: To explore the effect of calcium concentration in the electrolyte solution on the physicochemical properties and biocompatibility of coatings formed by micro-arc oxidation (MAO) on titanium surfaces. Methods: The surfaces of pure titanium plates were modified by MAO in an electrolytic solution containing calcium acetate (CA; C{sub 4}H{sub 6}CaO{sub 4}) at concentrations of 0.05, 0.1, 0.2, or 0.3 M and β-glycerophosphate disodium salt pentahydrate (β-GP; C{sub 3}H{sub 7}Na{sub 2}O{sub 6}P·5H{sub 2}O) at a fixed concentration of 0.02 M. Surface topography, elemental characteristics, phase composition, and roughness were investigated by scanning electron microscopy, energy-dispersive X-ray analysis, X-ray diffraction, and a surface roughness tester, respectively. To assess the cytocompatibility and osteoinductivity of the surfaces, MC3T3-E1 preosteoblasts were cultured on the surfaces in vitro, and cell morphology, adhesion, proliferation, and differentiation were observed. Results: The porous MAO coating was composed primarily of TiO{sub 2} rutile and anatase. The amount of TiO{sub 2} rutile, the Ca/P ratio, and the surface roughness of the MAO coating increased with increasing CA concentration in the electrolyte solution. Ca{sub 3}(PO{sub 4}){sub 2}, CaCO{sub 3}, and CaTiO{sub 3} were formed on MAO-treated surfaces prepared with CA concentrations of 0.2 and 0.3 M. Cell proliferation and differentiation increased with increasing CA concentration, with MC3T3-E1 cells exhibiting favorable morphologies for bone–implant integration. Conclusions: MAO coating improves the surface characteristics and

  2. Transport ac losses in Bi-2223 multifilamentary tapes - conductor materials aspect

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B A [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge BC2 3QZ (United Kingdom); Majoros, M [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Institute of Electrical Engineering, SAS, Bratislava (Slovakia)

    2000-05-01

    Transport ac losses in technical superconductors based on Bi-2223 tape material are influenced by many parameters. The major factors that define the ac performance of such conductors are the following: the size and number of filaments, their geometrical arrangement in the cross-section of the conductor, the twist pitch length, the resistivity of the matrix, the presence of oxide barriers around the filaments and deformation procedures such as sequential pressing or rolling followed by appropriate thermal treatment. In the present paper the above aspects are addressed from the viewpoint of the materials science of technical conductor design. Transport ac losses at power frequencies in different types of Bi-2223 conductor are presented and analysed. The results of conductor design analysis with respect to the coexistence of the superconductor with other materials in the conductor structure are presented. New concepts for minimization of the transport ac losses are discussed in detail. (author)

  3. Dielectric response and ac conductivity analysis of hafnium oxide nanopowder

    International Nuclear Information System (INIS)

    Karahaliou, P K; Xanthopoulos, N; Krontiras, C A; Georga, S N

    2012-01-01

    The dielectric response of hafnium oxide nanopowder was studied in the frequency range of 10 -2 -10 6 MHz and in the temperature range of 20-180 °C. Broadband dielectric spectroscopy was applied and the experimental results were analyzed and discussed using the electric modulus (M*) and alternating current (ac) conductivity formalisms. The analyses of the dc conductivity and electric modulus data revealed the presence of mechanisms which are thermally activated, both with almost the same activation energy of 1.01 eV. A fitting procedure involving the superposition of the thermally activated dc conductivity, the universal dielectric responce and the near constant loss terms has been used to describe the frequency evolution of the real part of the specific electrical conductivity. The conductivity master curve was obtained, suggesting that the time-temperature superposition principle applies for the studied system, thus implying that the conductivity mechanisms are temperature independent.

  4. Osteoblast growth behavior on porous-structure titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Tian Yuan; Ding Siyang; Peng Hui; Lu Shanming; Wang Guoping [Research Institute of Stomatology, Nanjing Medical University, Nanjing 210029 (China); Xia Lu, E-mail: shelueia@yahoo.com.cn [Research Institute of Stomatology, Nanjing Medical University, Nanjing 210029 (China); Wang Peizhi, E-mail: wangpzi@sina.com [Research Institute of Stomatology, Nanjing Medical University, Nanjing 210029 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Micro-arc oxidation technology formed a porous feature on titanium surface. Black-Right-Pointing-Pointer This porous surface accelerated adhesion, proliferation and differentiation compared with smooth surface. Black-Right-Pointing-Pointer Osteogenesis-related proteins and genes were up regulated by this porous surface. Black-Right-Pointing-Pointer It is anticipated that micro-arc oxidation surface could enhance osteoblastic activity and bone regeneration. - Abstract: A bioavailable surface generated by nano-technology could accelerate implant osteointegration, reduce healing time and enable implants to bear early loading. In this study, a nano-porous surface of titanium wafers was modified using micro-arc oxidation technique; surface of smooth titanium was used as control group. Surface characteristic was evaluated by investigating morphology, roughness and hydrophilicity of titanium wafers. In vitro studies, osteoblastic adhesion, proliferation and ALP activity, as well as gene and protein expressions relative to mineralization were assayed. Our results showed that a crater-liked nano-porous surface with greater roughness and better hydrophilicity were fabricated by micro-arc oxidation. It was further indicated that nano-porous surface could enhance adhesion, proliferation and ALP activity of osteoblasts compared with smooth surfaces. In addition, gene and protein expression of collagen-I, osteocalcin and osteopontin were also obviously increased. In summary, micro-arc oxidized techniques could form an irregular nano-porous morphology on implant surface which is favorable to improve osteoblastic function and prospected to be a potent modification of dental implant.

  5. Osteoblast growth behavior on porous-structure titanium surface

    International Nuclear Information System (INIS)

    Tian Yuan; Ding Siyang; Peng Hui; Lu Shanming; Wang Guoping; Xia Lu; Wang Peizhi

    2012-01-01

    Highlights: ► Micro-arc oxidation technology formed a porous feature on titanium surface. ► This porous surface accelerated adhesion, proliferation and differentiation compared with smooth surface. ► Osteogenesis-related proteins and genes were up regulated by this porous surface. ► It is anticipated that micro-arc oxidation surface could enhance osteoblastic activity and bone regeneration. - Abstract: A bioavailable surface generated by nano-technology could accelerate implant osteointegration, reduce healing time and enable implants to bear early loading. In this study, a nano-porous surface of titanium wafers was modified using micro-arc oxidation technique; surface of smooth titanium was used as control group. Surface characteristic was evaluated by investigating morphology, roughness and hydrophilicity of titanium wafers. In vitro studies, osteoblastic adhesion, proliferation and ALP activity, as well as gene and protein expressions relative to mineralization were assayed. Our results showed that a crater-liked nano-porous surface with greater roughness and better hydrophilicity were fabricated by micro-arc oxidation. It was further indicated that nano-porous surface could enhance adhesion, proliferation and ALP activity of osteoblasts compared with smooth surfaces. In addition, gene and protein expression of collagen-I, osteocalcin and osteopontin were also obviously increased. In summary, micro-arc oxidized techniques could form an irregular nano-porous morphology on implant surface which is favorable to improve osteoblastic function and prospected to be a potent modification of dental implant.

  6. Effects of Activated Carbon Surface Property on Structure and Activity of Ru/AC Catalysts

    Science.gov (United States)

    Xu, S. K.; Li, L. M.; Guo, N. N.

    2018-05-01

    The activated carbon (AC) was modified by supercritical (SC) methanol, HNO3 oxidation, or HNO3 oxidation plus SC methanol, respectively. Then, the original and the modified AC were used as supports for Ru/AC catalysts prepared via the impregnation method. The results showed that the SC methanol modification decreased the content of surface acidic groups of AC. While HNO3 oxidation displayed the opposite behavior. Furthermore, the dispersion of ruthenium and the activity of catalysts were highly dependent on the content of surface acidic groups, and the SC methanol modified sample exhibited the highest activity for hydrogenation of glucose.

  7. Effect of Na2WO4 in Electrolyte on Microstructure and Tribological Behavior of Micro-arc Oxidation Coatings on Ti2AlNb Alloy

    Directory of Open Access Journals (Sweden)

    LIU Xiao-hui

    2018-02-01

    Full Text Available Micro-arc oxidation (MAO ceramic coatings were prepared on Ti2AlNb alloy in silicate/phosphate electrolytes with different concentrations of Na2WO4. The influence of Na2WO4 on the coating growth process, coating structure and composition was analyzed by SEM, XRD and XPS. The tribological behavior of MAO coatings was evaluated by the ball-disc wear test. The results show that the growth rate of MAO coating in electrolyte without Na2WO4 is only 0.08μm/min, meanwhile, the coating is loose and rough, and "networks" connecting with big pores exist on the coating surface.The main phase compositions of this coating are rutile TiO2, anatase TiO2, Al2O3, and Nb2O5. The addition of Na2WO4 in the electrolyte shortens the time before sparking of Ti2AlNb alloy, increases the growth rate of the coating, improves the uniformity of coating and meanwhile, a small amount of WO3 is introduced in the coating. Besides, MAO coatings formed in the participation of Na2WO4 have better wear resistance. Severe abrasive wear occurs when the test is made on Ti2AlNb alloy with Si3N4, the friction coefficient reaches 0.5-0.7. Both the friction coefficient and wear rate decrease obviously when Ti2AlNb is treated by MAO. The friction coefficient and wear rate of MAO coating prepared in the electrolyte with 4g/L Na2WO4 are 0.24 and 6.2×10-4mm3/(N·m, respectively. Only "fish scales" caused by fatigue wear appears on the coating surface.

  8. Decolorization and mineralization of Allura Red AC aqueous solutions by electrochemical advanced oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Thiam, Abdoulaye; Sirés, Ignasi; Garrido, José A.; Rodríguez, Rosa M.; Brillas, Enric, E-mail: brillas@ub.edu

    2015-06-15

    Highlights: • Quicker degradation of Allura Red AC in the order EO-H{sub 2}O{sub 2} < EF < PEF with Pt or BDD anode. • Almost total mineralization achieved by the most powerful PEF process with BDD. • Similar decolorization and mineralization rate in SO{sub 4}{sup 2−}, ClO{sub 4}{sup −} and NO{sub 3}{sup −} media. • In Cl{sup −} medium, only slightly larger decolorization rate but strong inhibition of mineralization. • Identification of aromatic products, carboxylic acids and released NH{sub 4}{sup +}, NO{sub 3}{sup −} and SO{sub 4}{sup 2−} ions. - Abstract: The decolorization and mineralization of solutions containing 230 mg L{sup −1} of the food azo dye Allura Red AC at pH 3.0 have been studied upon treatment by electrochemical oxidation with electrogenerated H{sub 2}O{sub 2} (EO-H{sub 2}O{sub 2}), electro-Fenton (EF) and photoelectro-Fenton (PEF). Experiments were performed with a stirred tank reactor containing a boron-doped diamond (BDD) or Pt anode and an air-diffusion cathode to generate H{sub 2}O{sub 2}. The main oxidants were hydroxyl radicals formed at the anode surface from water oxidation and in the bulk from Fenton’s reaction between H{sub 2}O{sub 2} and added Fe{sup 2+}. The oxidation ability increased in the sequence EO-H{sub 2}O{sub 2} < EF < PEF and faster degradation was always obtained using BDD. PEF process with BDD yielded almost total mineralization following similar trends in SO{sub 4}{sup 2−}, ClO{sub 4}{sup −} and NO{sub 3}{sup −} media, whereas in Cl{sup −} medium, mineralization was inhibited by the formation of recalcitrant chloroderivatives. GC–MS analysis confirmed the cleavage of the −N=N− bond with formation of two main aromatics in SO{sub 4}{sup 2−} medium and three chloroaromatics in Cl{sup −} solutions. The effective oxidation of final oxalic and oxamic acids by BDD along with the photolysis of Fe(III)-oxalate species by UVA light accounted for the superiority of PEF with BDD. NH{sub 4

  9. Self-discharge of AC/AC electrochemical capacitors in salt aqueous electrolyte

    International Nuclear Information System (INIS)

    García-Cruz, L.; Ratajczak, P.; Iniesta, J.; Montiel, V.; Béguin, F.

    2016-01-01

    The self-discharge (SD) of electrochemical capacitors based on activated carbon electrodes (AC/AC capacitors) in aqueous lithium sulfate was examined after applying a three-hour cell potential hold at U i values from 1.0 to 1.6 V. The leakage current measured during the potentiostatic period as well as the amplitude of self-discharge increased with U i ; the cell potential drop was approximately doubled by 10 °C increase of temperature. The potential decay of both negative and positive electrodes was explored separately, by introducing a reference electrode and it was found that the negative electrode contributes essentially to the capacitor self-discharge. A diffusion-controlled mechanism was found at U i ≤ 1.4 V and U i ≤ 1.2 V for the positive and negative electrodes, respectively. At higher U i of 1.6 V, both electrodes display an activation-controlled mechanism due to water oxidation and subsequent carbon oxidation at the positive electrode and water or oxygen reduction at the negative electrode.

  10. Kinetics of solid-gas reactions characterized by scanning AC nano-calorimetry with application to Zr oxidation

    International Nuclear Information System (INIS)

    Xiao, Kechao; Lee, Dongwoo; Vlassak, Joost J.

    2014-01-01

    Scanning AC nano-calorimetry is a recently developed experimental technique capable of measuring the heat capacity of thin-film samples of a material over a wide range of temperatures and heating rates. Here, we describe how this technique can be used to study solid-gas phase reactions by measuring the change in heat capacity of a sample during reaction. We apply this approach to evaluate the oxidation kinetics of thin-film samples of zirconium in air. The results confirm parabolic oxidation kinetics with an activation energy of 0.59 ± 0.03 eV. The nano-calorimetry measurements were performed using a device that contains an array of micromachined nano-calorimeter sensors in an architecture designed for combinatorial studies. We demonstrate that the oxidation kinetics can be quantified using a single sample, thus enabling high-throughput mapping of the composition-dependence of the reaction rate.

  11. Numerical analysis of AC tungsten inert gas welding of aluminum plate in consideration of oxide layer cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Tashiro, Shinichi, E-mail: tashiro@jwri.osaka-u.ac.jp; Miyata, Minoru; Tanaka, Manabu

    2011-08-01

    A unified numerical simulation model of AC TIG welding of the aluminum plate considering energy balance among the electrode, the arc and the base metal and employing an analytical model for calculating cleaning rate of the oxide layer has been developed for investigating heat transport properties and weld pool formation process in AC TIG welding of aluminum plate. As a result of this simulation, it was shown that although the heat flux from the arc onto the base metal increases in EN (Electrode Negative) phase due to the electron condensation, that in EP (Electrode Positive) phase conversely decreases because mainly of cooling caused by the electron emission. Furthermore, the validity of the simulation model was confirmed by comparing to experimental results such as the arc voltage, the area of cleaning zone and the shape of weld pool.

  12. [Effects of different concentrations of MgSiF(6) as electrolyte for micro-arc oxidation on the bond strength between titanium and porcelain].

    Science.gov (United States)

    Yuan, M J; Zhang, S J; Liu, J; Tan, F

    2018-02-09

    Objective: To investigate the effects of different concentrations of MgSiF(6) as electrolyte on the bond strength between titanium and porcelain after micro-arc oxidation (MAO) treatment and screen the suitable concentration of MgSiF(6) that can improve the bond strength between titanium and porcelain. Methods: Four different concentrations of MgSiF(6) (10, 20, 30, 40 g/L) were chosen as MAO reaction solutions. Sandblasting treatment was selected as a control group. After porcelain was fused to each specimen, titanium-porcelain bond strengths were evaluated by the three-point bending test according to ISO 9693. Scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) were adopted to evaluate the morphologies and elemental compositions of both the MAO coatings and the interfaces of the titanium-porcelain restoration. Results: The surface of titanium specimen in the control group was sharp and rough, while specimens in both 10 g/L group and 20 g/L group were porous and homogeneous. However, the pores found on the specimens in the latter group were larger in diameter (approximately 1.0-2.0 μm) than those on the former one (0.2-0.5 μm). The bond strengths of the control group and the experimental groups (10, 20, 30, 40 g/L MgSiF(6)) were (27.08±3.16), (38.18±2.65), (44.75±2.21), (36.44±2.04), (31.04±2.59) MPa, respectively. All the experimental groups showed higher bond strengths than the control group did ( Pporcelain were tight and compact in the 20 g/L group, while different amounts of pores and cracks were visible in the other groups. Additionally, after the three-point bending test, few residual porcelains could be observed on the surfaces of specimens in the control group. Conclusions: MAO treatment with 20 g/L MgSiF(6) on titanium can improve bonding strength between titanium and porcelain.

  13. Spectroscopic Observations and Analysis of the Unusual Type Ia SN1999ac

    International Nuclear Information System (INIS)

    Garavini, G.; Aldering, G.; Amadon, A.; Amanullah, R.; Astier, P.; Balland, C.; Blanc, G.; Conley, A.; Dahlen, T.; Deustua, S.E.; Ellis, R.; Fabbro, S.; Fadeyev, V.; Fan, X.; Folatelli, G.; Frye, B.; Gates, E.L.; Gibbons, R.; Goldhaber, G.; Goldman, B.; Goobar, A.; Groom, D.E.; Haissinski, J.; Hardin, D.; Hook, I.; Howell, D.A.; Kent, S.; Kim, A.G.; Knop, R.A.; Kowalski, M.; Kuznetsova, N.; Lee, B.C.; Lidman, C.; Mendez, J.; Miller, G.J.; Moniez, M.; Mouchet, M.; Mourao, A.; Newberg, H.; Nobili, S.; Nugent, P.E.; Pain, R.; Perdereau, O.; Perlmutter, S.; Quimby, R.; Regnault, N.; Rich, J.; Richards, G.T.; Ruiz-Lapuente, P.; Schaefer, B.E.; Schahmaneche, K.; Smith, E.; Spadafora, A.L.; Stanishev, V.; Thomas, R.C.; Walton, N.A.; Wang, L.; Wood-Vasey, W.M.

    2005-01-01

    The authors present optical spectra of the peculiar Type Ia supernova (SN Ia) 1999ac. The data extend from -15 to +42 days with respect to B-band maximum and reveal an event that is unusual in several respects. prior to B-band maximum, the spectra resemble those of SN 1999aa, a slowly declining event, but possess stronger Si II and Ca II signatures (more characteristic of a spectroscopically normal SN). Spectra after B-band maximum appear more normal. The expansion velocities inferred from the Iron lines appear to be lower than average; whereas, the expansion velocity inferred from Calcium H and K are higher than average. The expansion velocities inferred from the Iron lines appear to be lower than average; whereas, the expansion velocity inferred from Calcium H and K are higher than average. The expansion velocities inferred from Si II are among the slowest ever observed, though SN 1999ac is not particularly dim. The analysis of the parameters v 10 (Si II), R(Si II), v, and Δm 15 further underlines the unique characteristics of SN 1999ac. They find convincing evidence of C II λ6580 in the day -15 spectrum with ejection velocity v > 16,000 km s -1 , but this signature disappears by day -9. This rapid evolution at early times highlights the importance of extremely early-time spectroscopy

  14. Assay Methods for ACS Activity and ACS Phosphorylation by MAP Kinases In Vitro and In Vivo.

    Science.gov (United States)

    Han, Xiaomin; Li, Guojing; Zhang, Shuqun

    2017-01-01

    Ethylene, a gaseous phytohormone, has profound effects on plant growth, development, and adaptation to the environment. Ethylene-regulated processes begin with the induction of ethylene biosynthesis. There are two key steps in ethylene biosynthesis. The first is the biosynthesis of 1-aminocyclopropane-1-carboxylic acid (ACC) from S-Adenosyl-Methionine (SAM), a common precursor in many metabolic pathways, which is catalyzed by ACC synthase (ACS). The second is the oxidative cleavage of ACC to form ethylene under the action of ACC oxidase (ACO). ACC biosynthesis is the committing and generally the rate-limiting step in ethylene biosynthesis. As a result, characterizing the cellular ACS activity and understanding its regulation are important. In this chapter, we detail the methods used to measure, (1) the enzymatic activity of both recombinant and native ACS proteins, and (2) the phosphorylation of ACS protein by mitogen-activated protein kinases (MAPKs) in vivo and in vitro.

  15. AC, DC or EC motor? What type of engine for what purpose?; AC-, DC- oder EC-Motor? Welche Motorausfuehrung fuer welchen Zweck

    Energy Technology Data Exchange (ETDEWEB)

    Zeiff, Andreas; Homburg, Dietrich

    2009-01-15

    Electronics is the key technology in control engineering, but even the best control system requires reliable modules to transmit signals. Modern electric motors have become indispensable here. There are nearly as many motor types as there are applications. Electromagnetic conversion of electric into mechanical power is directly related to motor design. There are AC and DC motors, one-speed motors and variable-speed motors. Rotary momentum and synchronisation can be optimized by selecting the appropriate motor type, as can dynamics and detent torque. Correct selection of the electric motor therefore is essential for an optimal drive concept. (orig.)

  16. AC losses in a type II superconductor strip with inhomogeneous critical current distribution

    International Nuclear Information System (INIS)

    Tsukamoto, Osami

    2005-01-01

    Analytical formulae derived by Brandt and Indenbom (1993 Phys. Rev. B 48 12893-906) and Norris (1970 J. Phys. D: Appl. Phys. 3 489-507) are often used to calculate the magnetization and AC transport current losses in HTS strip conductors, respectively. In these formulae, homogeneous distribution of critical sheet current density σ c in the strip is assumed. However, it is considered that σ c distributions are inhomogeneous in actual HTS strips and that the inhomogeneous σ c distributions cause deviations of the measured AC loss data of actual HTS strips from those formulae. A semi-analytical method to calculate AC transport current and magnetization losses is derived for a type II superconductor strip with inhomogeneous distribution of σ c in the direction of the strip width. The method is derived modifying the analysis of Brandt et al. The validity of the semi-analytical method is shown by comparing the results calculated by this method with those calculated by the Norris and Brandt formulae and by a different method of our previous work and also with experimental data. Moreover, it is shown that the deviation of the measured data from the Norris and Brandt models can be estimated by assuming proper σ c distributions

  17. Numerical Simulation of Stationary AC Tungsten Inert Gas Welding of Aluminum Plate in Consideration of Oxide Layer Cleaning

    Science.gov (United States)

    Tashiro, Shinichi; Tanaka, Manabu

    An unified numerical simulation model of AC TIG welding of the aluminum plate considering energy balance among the electrode, the arc and the base metal and employing an analytical model for calculating cleaning rate of the oxide layer has been developed for investigating heat transport properties and weld pool formation process in AC TIG welding of aluminum plate. As a result of this simulation, it was shown that although the heat flux from the arc onto the base metal increases in EN (Electrode Negative) phase due to the electron condensation, that in EP (Electrode Positive) phase conversely decreases because mainly of cooling caused by the electron emission. Furthermore, the validity of the simulation model was confirmed by comparing to experimental results such as the arc voltage, the area of cleaning zone and the shape of weld pool.

  18. Negative hydrogen ion beam extraction from an AC heated cathode driven Bernas-type ion source

    Energy Technology Data Exchange (ETDEWEB)

    Okano, Y.; Miyamoto, N.; Kasuya, T.; Wada, M.

    2015-04-08

    A plasma grid structure was installed to a Bernas-type ion source used for ion implantation equipment. A negative hydrogen (H{sup −}) ion beam was extracted by an AC driven ion source by adjusting the bias to the plasma grid. The extracted electron current was reduced by positively biasing the plasma grid, while an optimum plasma grid bias voltage for negative ion beam extraction was found to be positive 3 V with respect to the arc chamber. Source operations with AC cathode heating show extraction characteristics almost identical to that with DC cathode heating, except a minute increase in H{sup −} current at higher frequency of cathode heating current.

  19. Investigation of plate-type barrier ozonizers with AC and pulse power supplies

    International Nuclear Information System (INIS)

    Krasnij, V.V.; Gubarev, S.P.; Pogoghev, D.P.; Sokolova, O.T.

    2002-01-01

    In this paper the experimental results on the investigation of plate-type reactors operated on the base of barrier discharge have been presented. Different reactors with planar, strip, and trench electrodes were investigated. Such reactors operated under atmospheric pressure with ac and pulse power sources with voltage of up to 10 kV, frequency up to 12 kHz. Using atomized spectroscopy system the measurements of the main specifications of the reactors such as ozone yielding rate, the temperature in the reactor and the air flow rate were carried out

  20. Deletion of the AcMNPV core gene ac109 results in budded virions that are non-infectious

    International Nuclear Information System (INIS)

    Fang Minggang; Nie, Yingchao; Theilmann, David A.

    2009-01-01

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac109 is a core gene and its function in the virus life cycle is unknown. To determine its role in the baculovirus life cycle, we used the AcMNPV bacmid system to generate an ac109 deletion virus (vAc 109KO ). Fluorescence and light microscopy showed that transfection of vAc 109KO results in a single-cell infection phenotype. Viral DNA replication is unaffected and the development of occlusion bodies in vAc 109KO -transfected cells evidenced progression to the very late phases of viral infection. Western blot and confocal immunofluorescence analysis showed that AC109 is expressed in the cytoplasm and nucleus throughout infection. In addition, AC109 is a structural protein as it was detected in both budded virus (BV) and occlusion derived virus in both the envelope and nucleocapsid fractions. Titration assays by qPCR and TCID 50 showed that vAc 109KO produced BV but the virions are non-infectious. The vAc 109KO BV were indistinguishable from the BV of repaired and wild type control viruses as determined by negative staining and electron microscopy.

  1. Magnéli oxides as promising n-type thermoelectrics

    Directory of Open Access Journals (Sweden)

    Gregor Kieslich

    2014-10-01

    Full Text Available The discovery of a large thermopower in cobalt oxides in 1997 lead to a surge of interest in oxides for thermoelectric application. Whereas conversion efficiencies of p-type oxides can compete with non-oxide materials, n-type oxides show significantly lower thermoelectric performances. In this context so-called Magnéli oxides have recently gained attention as promising n-type thermoelectrics. A combination of crystallographic shear and intrinsic disorder lead to relatively low thermal conductivities and metallic-like electrical conductivities in Magnéli oxides. Current peak-zT values of 0.3 around 1100 K for titanium and tungsten Magnéli oxides are encouraging for future research. Here, we put Magnéli oxides into context of n-type oxide thermoelectrics and give a perspective where future research can bring us.

  2. A new therapeutic approach for type 1 diabetes: rationale for GNbAC1 an anti-HERV-W-Env monoclonal antibody.

    Science.gov (United States)

    Curtin, Francois; Bernard, Corinne; Levet, Sandrine; Perron, Hervé; Porchet, Hervé; Médina, Julie; Malpass, Sam; Lloyd, David; Simpson, Richard

    2018-05-10

    We describe a newly identified therapeutic target for type 1 diabetes: an envelope protein of endogenous retroviral origin called Human Endogenous Retrovirus W Envelope (HERV-W-Env). HERV-W-Env was found to be detected in the blood of around 60% of type 1 diabetes (T1D) patients and is expressed in acinar pancreatic cells of 75% of T1D patients at post-mortem examination. Preclinical experiments showed that this protein displays direct cytotoxicity on human β-islet cells. In vivo HERV-W-Env impairs the insulin and glucose metabolism in transgenic mice expressing HERV-W-Env. GNbAC1, an IgG4 monoclonal antibody has been developed to specifically target HERV-W-Env and to neutralize the effect of HERV-W-Env in vitro and in vivo. GNbAC1 is currently in clinical development for multiple sclerosis and more than 300 subjects have been administered with GNbAC1 so far. GNbAC1 is now tested in T1D in the RAINBOW-T1D study: a randomized placebo controlled study with the objective of showing the safety and pharmacodynamics response of GNbAC1 in patients suffering from T1D with a maximum duration of 4 years. GNbAC1 is tested versus placebo at the dose of 6 mg/kg in 60 patients during 6 repeated administrations during 6 months, a 6-month open-label extension will follow. The primary endpoint will assess safety and secondary endpoints the pharmacodynamic responses to GNbAC1. GNbAC1 targeting HERV-W-Env is currently in clinical development in T1D with the first safety and pharmacodynamic study. If the study results are positive, this may open the door to the development of an innovative non-immunomodulatory disease modifying treatment for T1D. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. The HST/ACS Coma Cluster Survey : VI. Colour gradients in giant and dwarf early-type galaxies

    NARCIS (Netherlands)

    den Brok, M.; Peletier, R. F.; Valentijn, E. A.; Balcells, Marc; Carter, D.; Erwin, P.; Ferguson, H. C.; Goudfrooij, P.; Graham, A. W.; Hammer, D.; Lucey, J. R.; Trentham, N.; Guzman, R.; Hoyos, C.; Kleijn, G. Verdoes; Jogee, S.; Karick, A. M.; Marinova, I.; Mouhcine, M.; Weinzirl, T.

    Using deep, high-spatial-resolution imaging from the Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS) Coma Cluster Treasury Survey, we determine colour profiles of early-type galaxies in the Coma cluster. From 176 galaxies brighter than M-F814W(AB) = -15 mag that are either

  4. Characterization of the Micro-Arc Coatings Containing β-Tricalcium Phosphate Particles on Mg-0.8Ca Alloy

    Directory of Open Access Journals (Sweden)

    Mariya B. Sedelnikova

    2018-04-01

    Full Text Available The characterization of the microstructure, morphology, topography, composition, and physical and chemical properties of the coatings containing β-tricalcium phosphate (β-TCP particles deposited by the micro-arc oxidation (MAO method on biodegradable Mg-0.8Ca alloy has been performed. The electrolyte for the MAO process included the following components: Na2HPO4·12H2O, NaOH, NaF, and β-Ca3(PO42 (β-TCP. The coating morphology, microstructure, and compositions have been studied using scanning electron microscopy (SEM, transmission electron microscopy (TEM, energy-dispersive X-ray spectroscopy (EDX, and X-ray diffraction (XRD. With increasing of the MAO voltage from 350 to 500 V, the coating thickness and surface average roughness of the coatings increased linearly from 6 to 150 µm and from 2 to 8 µm, respectively. The coating deposited at 350 V had more homogeneous porous morphology with numerous pores similar by sizes (2–3 µm than the coatings formed at 450–500 V. The β-TCP isometric particles were included in the coating surface. The XRD recognized the amorphous-crystalline structure in the coatings with incorporation of the following phases: β-TCP, α-TCP, MgO (periclase and hydroxyapatite (HA. The corrosion experiments showed that the biodegradation rate of the Mg-0.8Ca alloy coated by calcium phosphates is almost 10 times less than that of uncoated alloy.

  5. Extension to AC Loss Minimisation in High Temperature Superconductors

    National Research Council Canada - National Science Library

    Campbell, Archie

    2004-01-01

    ...: (a) Measure the AC losses of appropriate Yttrium Barium Copper Oxide (YBCO) samples with strong potential for minimizing losses at high frequencies and magnetic fields with the existing equipment. (b...

  6. Recent Developments in p-Type Oxide Semiconductor Materials and Devices

    KAUST Repository

    Wang, Zhenwei

    2016-02-16

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

  7. Recent Developments in p-Type Oxide Semiconductor Materials and Devices

    KAUST Repository

    Wang, Zhenwei; Nayak, Pradipta K.; Caraveo-Frescas, Jesus Alfonso; Alshareef, Husam N.

    2016-01-01

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

  8. Assessment of sperm quality, oxidative stress injury as well as ACP, AC and PDE expression in patients with oligoasthenozoospermia before and after qilin pill treatment

    Directory of Open Access Journals (Sweden)

    Shi-Jun Zhang

    2016-09-01

    Full Text Available Objective: To analyze the sperm quality, oxidative stress injury as well as ACP, AC and PDE expression in patients with oligoasthenozoospermia before and after qilin pill treatment. Methods: A total of 60 patients with oligoasthenozoospermia were randomly divided into observation group and control group, control group received routine western medicine treatment, observation group received qilin pill + conventional western medicine treatment, and then differences in sperm quality, oxidative stress injury, ACP, AC and PDE expression, etc. were compared between two groups after treatment. Results: Semen volume and sperm density in semen samples of observation group after qilin pill treatment were higher than those of control group; serum FSH and LH levels were lower than those of control group, and the T level was higher than that of control group; ROS and MDA levels in seminal plasma were lower than those of control group, and SOD level was higher than that of control group; ACP, AC, α-Glu and Fru levels in seminal plasma were higher than those of control group, and PDE level was lower than that of control group. Conclusion: Qilin pill can improve sperm quality and optimize testicular internal environment in patients with oligoasthenozoospermia, and it has positive clinical significance.

  9. Hepatoprotective Effects of Antrodia cinnamomea: The Modulation of Oxidative Stress Signaling in a Mouse Model of Alcohol-Induced Acute Liver Injury

    Directory of Open Access Journals (Sweden)

    Yange Liu

    2017-01-01

    Full Text Available In the present study, the components of A. cinnamomea (AC mycelia were systematically analyzed. Subsequently, its hepatoprotective effects and the underlying mechanisms were explored using a mouse model of acute alcohol-induced liver injury. AC contained 25 types of fatty acid, 16 types of amino acid, 3 types of nucleotide, and 8 types of mineral. The hepatoprotective effects were observed after 2 weeks of AC treatment at doses of 75 mg/kg, 225 mg/kg, and 675 mg/kg in the mouse model. These effects were indicated by the changes in the levels of aspartate aminotransferase, alanine aminotransferase, several oxidation-related factors, and inflammatory cytokines in serum and/or liver samples. AC reduced the incidence rate of necrosis, inflammatory infiltration, fatty droplets formation, and cell apoptosis in liver detecting via histological and TUNEL assay. In addition, AC reduced the expression of cleaved caspase-3, -8, and -9 and the levels of phosphor-protein kinase B (Akt and phosphor-nuclear factor-κB (NF-κB in the liver samples. Collectively, AC-mediated hepatoprotective effects in a mouse model of acute alcohol-induced liver injury are the result of reduction in oxidative stress. This may be associated with Akt/NF-κB signaling. These results provide valuable evidence to support the use of A. cinnamomea as a functional food and/or medicine.

  10. The preparation and corrosion behaviors of MAO coating on AZ91D with rare earth conversion precursor film

    Energy Technology Data Exchange (ETDEWEB)

    Cai Jingshun [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); Cao Fahe, E-mail: nelson_cao@zju.edu.cn [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); Chang Linrong; Zheng Junjun [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); Zhang Jianqing; Cao Chunan [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); State Key Laboratory for Corrosion and Protection, Institute of Metal Research, The Chinese Academy of Sciences, Shenyang 110016 (China)

    2011-02-01

    A novel kind of micro-arc oxidation (MAO) coating was prepared on magnesium alloy surface coated with rare earth conversion film (RE-film) in an alkaline aluminum oxidation electrolyte by AC power source. Inspection of scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) microspectroscopy, the structure and composition of MAO coating formed on AZ91D with RE-film under different applied voltages were investigated and the performance of the optimized MAO coating compared with the MAO coating directly formed on magnesium alloy. As the pretreatment of magnesium alloy with RE-film, the cerium oxides can be incorporated into the MAO coatings, reduce porosity of the MAO coating surface and enhance the thickness of MAO coating. These structure features and the cerium oxides incorporated into the MAO coating result in greatly improved corrosion resistance. Base on electrochemistry impedance spectroscopy (EIS) measurement, the electronic structure and composition analysis of the MAO coating, a double-layer structure, with a compact inner layer and a porous outer layer, of the coating was proposed for understanding its corrosion process.

  11. The preparation and corrosion behaviors of MAO coating on AZ91D with rare earth conversion precursor film

    International Nuclear Information System (INIS)

    Cai Jingshun; Cao Fahe; Chang Linrong; Zheng Junjun; Zhang Jianqing; Cao Chunan

    2011-01-01

    A novel kind of micro-arc oxidation (MAO) coating was prepared on magnesium alloy surface coated with rare earth conversion film (RE-film) in an alkaline aluminum oxidation electrolyte by AC power source. Inspection of scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) microspectroscopy, the structure and composition of MAO coating formed on AZ91D with RE-film under different applied voltages were investigated and the performance of the optimized MAO coating compared with the MAO coating directly formed on magnesium alloy. As the pretreatment of magnesium alloy with RE-film, the cerium oxides can be incorporated into the MAO coatings, reduce porosity of the MAO coating surface and enhance the thickness of MAO coating. These structure features and the cerium oxides incorporated into the MAO coating result in greatly improved corrosion resistance. Base on electrochemistry impedance spectroscopy (EIS) measurement, the electronic structure and composition analysis of the MAO coating, a double-layer structure, with a compact inner layer and a porous outer layer, of the coating was proposed for understanding its corrosion process.

  12. AC susceptibility of thin Pb films in intermediate and mixed state

    Energy Technology Data Exchange (ETDEWEB)

    Janu, Zdenek, E-mail: janu@fzu.cz [Institute of Physics of the AS CR, v.v.i., Na Slovance 2, CZ-182 21 Prague 8 (Czech Republic); Svindrych, Zdenek [Institute of Physics of the AS CR, v.v.i., Na Slovance 2, CZ-182 21 Prague 8 (Czech Republic); Trunecek, Otakar [Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 3, CZ-121 16 Prague 2 (Czech Republic); Kus, Peter; Plecenik, Andrej [Komenius University in Bratislava, Faculty of Mathematics, Physics, and Informatics, Mlynska dolina, 842 48 Bratislava 4 (Slovakia)

    2011-12-15

    Thickness dependent transition in AC susceptibility between intermediate and mixed state in type-I superconducting films. The temperature induced crossover between reversible and irreversible behavior was observed in the thicker film. The temperature dependence of the AC susceptibility in mixed state follows prediction of model based on Bean critical state. The temperature dependence of the harmonics of the complex AC susceptibility in the intermediate state is explained. Thin films of type I superconductors of a thickness comparable or less than a flux penetration length behave like type II superconductors in a mixed state. With decreasing film thickness normal domains carrying a magnetic flux get smaller with smaller number of flux quanta per domain and finally transform into single quantum flux lines, i.e. quantum vortices similar to those found in type II superconductors. We give an evidence of this behavior from the measurements of the nonlinear response of a total magnetic moment to an applied AC magnetic field, directly from the temperature dependence of an AC susceptibility.

  13. A Three-Phase Dual-Input Matrix Converter for Grid Integration of Two AC Type Energy Resources

    DEFF Research Database (Denmark)

    Liu, Xiong; Wang, Peng; Chiang Loh, Poh

    2013-01-01

    This paper proposes a novel dual-input matrix converter (DIMC) to integrate two three-phase ac type energy resources to a power grid. The proposed matrix converter is developed based on the traditional indirect matrix converter under reverse power flow operation mode, but with its six......-to-output voltage boost capability since power flows from the converter’s voltage source side to its current source side. Commanded currents can be extracted from the two input sources to the grid. The proposed control and modulation schemes guarantee sinusoidal input and output waveforms as well as unity input......-switch voltage source converter replaced by a nine-switch configuration. With the additional three switches, the proposed DIMC can provide six in put terminals, which make it possible to integrate two independent ac sources into a single grid-tied power electronics interface. The proposed converter has input...

  14. P -type transparent conducting oxides

    International Nuclear Information System (INIS)

    Zhang, Kelvin H L; Xi, Kai; Blamire, Mark G; Egdell, Russell G

    2016-01-01

    Transparent conducting oxides constitute a unique class of materials combining properties of electrical conductivity and optical transparency in a single material. They are needed for a wide range of applications including solar cells, flat panel displays, touch screens, light emitting diodes and transparent electronics. Most of the commercially available TCOs are n -type, such as Sn doped In 2 O 3 , Al doped ZnO, and F doped SnO 2 . However, the development of efficient p -type TCOs remains an outstanding challenge. This challenge is thought to be due to the localized nature of the O 2 p derived valence band which leads to difficulty in introducing shallow acceptors and large hole effective masses. In 1997 Hosono and co-workers (1997 Nature 389 939) proposed the concept of ‘chemical modulation of the valence band’ to mitigate this problem using hybridization of O 2 p orbitals with close-shell Cu 3 d 10 orbitals. This work has sparked tremendous interest in designing p -TCO materials together with deep understanding the underlying materials physics. In this article, we will provide a comprehensive review on traditional and recently emergent p -TCOs, including Cu + -based delafossites, layered oxychalcogenides, nd 6 spinel oxides, Cr 3+ -based oxides (3 d 3 ) and post-transition metal oxides with lone pair state (ns 2 ). We will focus our discussions on the basic materials physics of these materials in terms of electronic structures, doping and defect properties for p -type conductivity and optical properties. Device applications based on p -TCOs for transparent p – n junctions will also be briefly discussed. (topical review)

  15. p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation.

    Science.gov (United States)

    Chen, Le; Yang, Jinhui; Klaus, Shannon; Lee, Lyman J; Woods-Robinson, Rachel; Ma, Jie; Lum, Yanwei; Cooper, Jason K; Toma, Francesca M; Wang, Lin-Wang; Sharp, Ian D; Bell, Alexis T; Ager, Joel W

    2015-08-05

    Achieving stable operation of photoanodes used as components of solar water splitting devices is critical to realizing the promise of this renewable energy technology. It is shown that p-type transparent conducting oxides (p-TCOs) can function both as a selective hole contact and corrosion protection layer for photoanodes used in light-driven water oxidation. Using NiCo2O4 as the p-TCO and n-type Si as a prototypical light absorber, a rectifying heterojunction capable of light driven water oxidation was created. By placing the charge separating junction in the Si using a np(+) structure and by incorporating a highly active heterogeneous Ni-Fe oxygen evolution catalyst, efficient light-driven water oxidation can be achieved. In this structure, oxygen evolution under AM1.5G illumination occurs at 0.95 V vs RHE, and the current density at the reversible potential for water oxidation (1.23 V vs RHE) is >25 mA cm(-2). Stable operation was confirmed by observing a constant current density over 72 h and by sensitive measurements of corrosion products in the electrolyte. In situ Raman spectroscopy was employed to investigate structural transformation of NiCo2O4 during electrochemical oxidation. The interface between the light absorber and p-TCO is crucial to produce selective hole conduction to the surface under illumination. For example, annealing to produce more crystalline NiCo2O4 produces only small changes in its hole conductivity, while a thicker SiOx layer is formed at the n-Si/p-NiCo2O4 interface, greatly reducing the PEC performance. The generality of the p-TCO protection approach is demonstrated by multihour, stable, water oxidation with n-InP/p-NiCo2O4 heterojunction photoanodes.

  16. Mitochondrial oxidative function and type 2 diabetes

    DEFF Research Database (Denmark)

    Rabøl, Rasmus; Boushel, Robert; Dela, Flemming

    2006-01-01

    The cause of insulin resistance and type 2 diabetes is unknown. The major part of insulin-mediated glucose disposal takes place in the skeletal muscle, and increased amounts of intramyocellular lipid has been associated with insulin resistance and linked to decreased activity of mitochondrial...... oxidative phosphorylation. This review will cover the present knowledge and literature on the topics of the activity of oxidative enzymes and the electron transport chain (ETC) in skeletal muscle of patients with type 2 diabetes. Different methods of studying mitochondrial function are described, including...... biochemical measurements of oxidative enzyme and electron transport activity, isolation of mitochondria for measurements of respiration, and ATP production and indirect measurements of ATP production using nuclear magnetic resonance (NMR) - spectroscopy. Biochemical markers of mitochondrial content are also...

  17. AcMNPV ac143 (odv-e18) is essential for mediating budded virus production and is the 30th baculovirus core gene

    International Nuclear Information System (INIS)

    McCarthy, Christina B.; Theilmann, David A.

    2008-01-01

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac143 (odv-e18) is a late gene that encodes for a predicted 9.6 kDa structural protein that locates to the occlusion derived viral envelope and viral induced intranuclear microvesicles [Braunagel, S.C., He, H., Ramamurthy, P., and Summers, M.D. (1996). Transcription, translation, and cellular localization of three Autographa californica nuclear polyhedrosis virus structural proteins: ODV-E18, ODV-E35, and ODV-EC27. Virology 222, 100-114.]. In this study we demonstrate that ac143 is actually a previously unrecognized core gene and that it is essential for mediating budded virus production. To examine the role of ac143 in the baculovirus life cycle, we used the AcMNPV bacmid system to generate an ac143 knockout (KO) virus (AcBAC ac142REP-ac143KO ). Fluorescence and light microscopy showed that infection by AcBAC ac142REP-ac143KO is limited to a single cell and titration assays confirmed that AcBAC ac142REP-ac143KO was unable to produce budded virus (BV). Progression to very late phases of the viral infection was evidenced by the development of occlusion bodies in the nuclei of transfected cells. This correlated with the fact that viral DNA replication was unaffected in AcBAC ac142REP-ac143KO transfected cells. The entire ac143 promoter, which includes three late promoter motifs, is contained within the ac142 open reading frame. Different deletion mutants of this region showed that the integrity of the ac142-ac143 core gene cluster was required for the bacmids to display wild-type patterns of viral replication, BV production and RNA transcription

  18. Proportional-Integral-Resonant AC Current Controller

    Directory of Open Access Journals (Sweden)

    STOJIC, D.

    2017-02-01

    Full Text Available In this paper an improved stationary-frame AC current controller based on the proportional-integral-resonant control action (PIR is proposed. Namely, the novel two-parameter PIR controller is applied in the stationary-frame AC current control, accompanied by the corresponding parameter-tuning procedure. In this way, the proportional-resonant (PR controller, common in the stationary-frame AC current control, is extended by the integral (I action in order to enable the AC current DC component tracking, and, also, to enable the DC disturbance compensation, caused by the voltage source inverter (VSI nonidealities and by nonlinear loads. The proposed controller parameter-tuning procedure is based on the three-phase back-EMF-type load, which corresponds to a wide range of AC power converter applications, such as AC motor drives, uninterruptible power supplies, and active filters. While the PIR controllers commonly have three parameters, the novel controller has two. Also, the provided parameter-tuning procedure needs only one parameter to be tuned in relation to the load and power converter model parameters, since the second controller parameter is directly derived from the required controller bandwidth value. The dynamic performance of the proposed controller is verified by means of simulation and experimental runs.

  19. Development of low AC loss windings for superconducting traction transformer

    International Nuclear Information System (INIS)

    Kamijo, H; Hata, H; Fukumoto, Y; Tomioka, A; Bohno, T; Yamada, H; Ayai, N; Yamasaki, K; Kato, T; Iwakuma, M; Funaki, K

    2010-01-01

    We have been developing a light weight and high efficiency superconducting traction transformer for railway rolling stock. We designed and fabricated a prototype superconducting traction transformer of a floor-mount type for Shinkansen rolling stock in 2004. We performed the type-test, the system-test, and the vibration-test. Consequently, we could verify that the transformer satisfied the requirement almost exactly as initially planned. However, there have been raised some problems to be solved to put superconducting traction transformer into practical use such that AC loss of the superconducting tape must be lower and the capacity of the refrigerator must be larger. Especially it is the most important to reduce the AC loss of superconducting windings for lightweight and high efficiency. The AC loss must be reduced near the theoretical value of superconducting tape with multifilament. In this study, we fabricated and evaluated the Bi2223 tapes as introduced various measures to reduce the AC loss. We confirmed that the AC loss of the narrow type of Bi2223 tapes with twist of filaments is lower, and we fabricated windings of this tape for use in superconducting traction transformer.

  20. A.C. losses in current-carrying superconductors

    International Nuclear Information System (INIS)

    Reuver, J.L. de.

    1985-01-01

    The feasibility of superconductors for alternating current use depends on successful reduction of losses. Moreover, the demand for large field amplitudes is a stimulation for investigating the nature of a.c. losses (e.g. in the set of poloidal coils in a TOKAMAK). In this thesis, measurements are performed at a.c. superconductivity. Attention is given to various external field conditions as well as to self-field instability. Measurements are performed on different types of wires. A type of wire is searched for with both low losses and a good stabilization under self-field conditions. (G.J.P.)

  1. Electrocatalysis and kinetics of the direct alcohol fuel cells. DEMS and ac voltammetry studies

    Energy Technology Data Exchange (ETDEWEB)

    Othman Mostafa, Ehab Mostafa

    2013-01-11

    For the direct methanol fuel cell (DMFC) operating at low temperature, the main problem that arises at the anode is its poisoning (deactivation) due to the accumulation of the fuel adsorption product (CO{sub ad}) which can only be oxidized at high potentials (> 0.7 V). For low temperature direct ethanol fuel cells (DEFCs), the main problem that arises at the anode, beside its poisoning by ethanol adsorption products (CO{sub ad} and CH{sub x,ad}), is the incomplete ethanol oxidation due to the difficulty of (C-C) bond breaking. In the previous types of fuel cells, a sluggish oxygen reduction reaction (ORR) kinetics was observed at the cathode which results in a large voltage drop. Such behavior is due to strong inhibition of the cathodic ORR, resulting in high overpotentials and therefore, significant deterioration in the energy conversion efficiency of the cell. The slow kinetic behavior stems from the difficulty of (O=O) bond breaking. In order to model the conditions of continuous oxidation/reduction in a fuel cell, the continuous mass transfer to the electrode surface is necessary. Therefore, mass spectrometry and AC voltammetry measurements presented here were done using the thin layer flow through cell. This thesis aims at a determination of the rate constant of single reaction steps during the oxidation of CO, methanol and ethanol at different platinum surfaces. Towards that aim, I investigated the electrocatalytic oxidation and adsorption rate of methanol (chapter 3) and the electrocatalytic oxidation of ethanol (chapter 4) at different Pt surfaces, using DEMS. In chapter 5, the potential dependence of the bulk and adsorbed methanol oxidation reaction rate (presented by the apparent transfer coefficient, {alpha}') and the corresponding Tafel slope of the reaction have been determined under convection conditions using a potential modulation ac voltammetry technique. Finally, as an application of the method presented in chapter 5, my work in chapter 6

  2. Increased Ac excision (iae): Arabidopsis thaliana mutations affecting Ac transposition

    International Nuclear Information System (INIS)

    Jarvis, P.; Belzile, F.; Page, T.; Dean, C.

    1997-01-01

    The maize transposable element Ac is highly active in the heterologous hosts tobacco and tomato, but shows very much reduced levels of activity in Arabidopsis. A mutagenesis experiment was undertaken with the aim of identifying Arabidopsis host factors responsible for the observed low levels of Ac activity. Seed from a line carrying a single copy of the Ac element inserted into the streptomycin phosphotransferase (SPT) reporter fusion, and which displayed typically low levels of Ac activity, were mutagenized using gamma rays. Nineteen mutants displaying high levels of somatic Ac activity, as judged by their highly variegated phenotypes, were isolated after screening the M2 generation on streptomycin-containing medium. The mutations fall into two complementation groups, iae1 and iae2, are unlinked to the SPT::Ac locus and segregate in a Mendelian fashion. The iae1 mutation is recessive and the iae2 mutation is semi-dominant. The iae1 and iae2 mutants show 550- and 70-fold increases, respectively, in the average number of Ac excision sectors per cotyledon. The IAE1 locus maps to chromosome 2, whereas the SPT::Ac reporter maps to chromosome 3. A molecular study of Ac activity in the iae1 mutant confirmed the very high levels of Ac excision predicted using the phenotypic assay, but revealed only low levels of Ac re-insertion. Analyses of germinal transposition in the iae1 mutant demonstrated an average germinal excision frequency of 3% and a frequency of independent Ac re-insertions following germinal excision of 22%. The iae mutants represents a possible means of improving the efficiency of Ac/Ds transposon tagging systems in Arabidopsis, and will enable the dissection of host involvement in Ac transposition and the mechanisms employed for controlling transposable element activity

  3. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption – Catalytic wet air oxidation on activated carbons

    International Nuclear Information System (INIS)

    Quesada-Peñate, I.; Julcour-Lebigue, C.; Jáuregui-Haza, U.J.; Wilhelm, A.M.; Delmas, H.

    2012-01-01

    Highlights: ► Three activated carbons (AC) compared as adsorbents and oxidation catalysts. ► Similar evolution for catalytic and adsorptive properties of AC over reuses. ► Acidic and mesoporous AC to be preferred, despite lower initial efficiency. ► Oxidative degradation of paracetamol improves biodegradability. ► Convenient hybrid adsorption–regenerative oxidation process for continuous treatment. - Abstract: The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  4. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Quesada-Penate, I. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Julcour-Lebigue, C., E-mail: carine.julcour@ensiacet.fr [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Jauregui-Haza, U. J. [Instituto Superior de Tecnologias y Ciencias Aplicadas, Ave. Salvador Allende y Luaces, Habana (Cuba); Wilhelm, A. M.; Delmas, H. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France)

    2012-06-30

    Highlights: Black-Right-Pointing-Pointer Three activated carbons (AC) compared as adsorbents and oxidation catalysts. Black-Right-Pointing-Pointer Similar evolution for catalytic and adsorptive properties of AC over reuses. Black-Right-Pointing-Pointer Acidic and mesoporous AC to be preferred, despite lower initial efficiency. Black-Right-Pointing-Pointer Oxidative degradation of paracetamol improves biodegradability. Black-Right-Pointing-Pointer Convenient hybrid adsorption-regenerative oxidation process for continuous treatment. - Abstract: The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  5. AC Initiation System.

    Science.gov (United States)

    An ac initiation system is described which uses three ac transmission signals interlocked for safety by frequency, phase, and power discrimination...The ac initiation system is pre-armed by the application of two ac signals have the proper phases, and activates a load when an ac power signal of the proper frequency and power level is applied. (Author)

  6. Scandium-doped zinc cadmium oxide as a new stable n-type oxide thermoelectric material

    DEFF Research Database (Denmark)

    Han, Li; Christensen, Dennis Valbjørn; Bhowmik, Arghya

    2016-01-01

    Scandium-doped zinc cadmium oxide (Sc-doped ZnCdO) is proposed as a new n-type oxide thermoelectric material. The material is sintered in air to maintain the oxygen stoichiometry and avoid instability issues. The successful alloying of CdO with ZnO at a molar ratio of 1 : 9 significantly reduced...... is a good candidate for improving the overall conversion efficiencies in oxide thermoelectric modules. Meanwhile, Sc-doped ZnCdO is robust in air at high temperatures, whereas other n-type materials, such as Al-doped ZnO, will experience rapid degradation of their electrical conductivity and ZT....

  7. Micro-hole array fluorescent sensor based on AC-Dielectrophoresis (DEP) for simultaneous analysis of nano-molecules

    Science.gov (United States)

    Kim, Hye Jin; Kang, Dong-Hoon; Lee, Eunji; Hwang, Kyo Seon; Shin, Hyun-Joon; Kim, Jinsik

    2018-02-01

    We propose a simple fluorescent bio-chip based on two types of alternative current-dielectrophoretic (AC-DEP) force, attractive (positive DEP) and repulsive (negative DEP) force, for simultaneous nano-molecules analysis. Various radius of micro-holes on the bio-chip are designed to apply the different AC-DEP forces, and the nano-molecules are concentrated inside the micro-hole arrays according to the intensity of the DEP force. The bio-chip was fabricated by Micro Electro Mechanical system (MEMS) technique, and was composed of two layers; a SiO2 layer and Ta/Pt layer were accomplished for an insulation layer and a top electrode with micro-hole arrays to apply electric fields for DEP force, respectively. Each SiO2 and Ta/Pt layers were deposited by thermal oxidation and sputtering, and micro-hole arrays were fabricated with Inductively Coupled Plasma (ICP) etching process. For generation of each positive and negative DEP at micro-holes, we applied two types of sine-wave AC voltage with different frequency range alternately. The intensity of the DEP force was controlled by the radius of the micro-hole and size of nano-molecule, and calculated with COMSOL multi-physics. Three types of nano-molecules labelled with different fluorescent dye were used and the intensity of nano-molecules was examined by the fluorescent optical analysis after applying the DEP force. By analyzing the fluorescent intensities of the nano-molecules, we verify the various nano-molecules in analyte are located successfully inside corresponding micro-holes with different radius according to their size.

  8. Study on ac losses of HTS coil carrying ac transport current

    International Nuclear Information System (INIS)

    Dai Taozhen; Tang Yuejin; Li Jingdong; Zhou Yusheng; Cheng Shijie; Pan Yuan

    2005-01-01

    Ac loss has an important influence on the thermal performances of HTS coil. It is necessary to quantify ac loss to ascertain its impact on coil stability and for sizing the coil refrigeration system. In this paper, we analyzed in detail the ac loss components, hysteresis loss, eddy loss and flux flow loss in the pancake HTS coil carrying ac transport current by finite element method. We also investigated the distribution of the ac losses in the coil to study the effects of magnetic field distribution on ac losses

  9. Effects of an anti-oxidative ACAT inhibitor on apoptosis/necrosis and cholesterol accumulation under oxidative stress in THP-1 cell-derived foam cells.

    Science.gov (United States)

    Miike, Tomohiro; Shirahase, Hiroaki; Jino, Hiroshi; Kunishiro, Kazuyoshi; Kanda, Mamoru; Kurahashi, Kazuyoshi

    2008-01-02

    THP-1 cell-derived foam cells were exposed to oxidative stress through combined treatment with acetylated LDL (acLDL) and copper ions (Cu2+). The foam cells showed caspase-dependent apoptotic changes on exposure to oxidative stress for 6 h, and necrotic changes with the leakage of LDH after 24 h. KY-455, an anti-oxidative ACAT inhibitor, and ascorbic acid (VC) but not YM-750, an ACAT inhibitor, prevented apoptotic and necrotic changes. These preventive effects of KY-455 and VC were accompanied by the inhibition of lipid peroxidation in culture medium containing acLDL and Cu2+, suggesting the involvement of oxidized acLDL in apoptosis and necrosis. Foam cells accumulated esterified cholesterol (EC) for 24 h in the presence of acLDL without Cu2+, which was suppressed by KY-455 and YM-750. Foam cells showed necrotic changes and died in the presence of acLDL and Cu2+. KY-455 but not YM-750 prevented cell death and reduced the amount of EC accumulated. The foam cells treated with VC further accumulated EC without necrotic changes for 24 h even in the presence of acLDL and Cu2+. YM-750 as well as KY-455 inhibited lipid accumulation when co-incubated with VC in foam cells exposed to oxidative stress. It is concluded that an anti-oxidative ACAT inhibitor or the combination of an antioxidant and an ACAT inhibitor protects foam cells from oxidative stress and effectively reduces cholesterol levels, which would be a promising approach in anti-atherosclerotic therapy.

  10. Multi-phase AC/AC step-down converter for distribution systems

    Science.gov (United States)

    Aeloiza, Eddy C.; Burgos, Rolando P.

    2017-10-25

    A step-down AC/AC converter for use in an electric distribution system includes at least one chopper circuit for each one of a plurality of phases of the AC power, each chopper circuit including a four-quadrant switch coupled in series between primary and secondary sides of the chopper circuit and a current-bidirectional two-quadrant switch coupled between the secondary side of the chopper circuit and a common node. Each current-bidirectional two-quadrant switch is oriented in the same direction, with respect to the secondary side of the corresponding chopper circuit and the common node. The converter further includes a control circuit configured to pulse-width-modulate control inputs of the switches, to convert a first multiphase AC voltage at the primary sides of the chopper circuits to a second multiphase AC voltage at the secondary sides of the chopper circuits, the second multiphase AC voltage being lower in voltage than the first multiphase AC voltage.

  11. 钛合金微弧氧化羟基磷灰石生物活性涂层的摩擦磨损性能研究%Research on Friction and Wear Properties of Micro-arc Oxidation Bioceramic Coating Containing Hydroxyapatite on Ti Alloy

    Institute of Scientific and Technical Information of China (English)

    杨喜臻

    2013-01-01

    Took micro-arc oxidation welding technology, bioceramic coating containing hydroxyapatite (HA) was in-situ synthesized on Ti alloy, the friction and wear properties of the bioceramic coating were studied. The affecting discipline such as wearing time and electric current density and their laws were obtained in the experiment. The results showed that the friction coefficient of bioceramic coating containing hydroxyapatite was first increased and then decreased with the friction time, while the friction coefficient was first decreased and then increased when electricity density increased.%采用微弧氧化技术,在钛合金表面原位合成含有羟基磷灰石的生物活性陶瓷涂层,研究了陶瓷涂层的摩擦磨损性能,得出了不同磨损时间和不同微弧氧化电流密度对陶瓷涂层耐磨性的影响规律.结果表明,含有羟基磷灰石的陶瓷涂层,其摩擦因数随摩擦磨损时间的增加而先增大后减小,其耐磨性随微弧氧化电流密度的增加而先减小后增大.

  12. ACAC Converters for UPS

    Directory of Open Access Journals (Sweden)

    Rusalin Lucian R. Păun

    2008-05-01

    Full Text Available This paper propose a new control technique forsingle – phase ACAC converters used for a on-line UPSwith a good dynamic response, a reduced-partscomponents, a good output characteristic, a good powerfactorcorrection(PFC. This converter no needs anisolation transformer. A power factor correction rectifierand an inverter with the proposed control scheme has beendesigned and simulated using Caspoc2007, validating theconcept.

  13. Performance of AC/graphite capacitors at high weight ratios of AC/graphite

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongyu [IM and T Ltd., Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan); Yoshio, Masaki [Advanced Research Center, Department of Applied Chemistry, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan)

    2008-03-01

    The effect of negative to positive electrode materials' weight ratio on the electrochemical performance of both activated carbon (AC)/AC and AC/graphite capacitors has been investigated, especially in the terms of capacity and cycle-ability. The limited capacity charge mode has been proposed to improve the cycle performance of AC/graphite capacitors at high weight ratios of AC/graphite. (author)

  14. Irradiation and examination results of the AC-3 mixed-carbide test

    International Nuclear Information System (INIS)

    Mason, R.E.; Hoth, C.W.; Stratton, R.W.; Botta, F.

    1992-01-01

    The AC-3 test was a cooperative Swiss/US irradiation test of mixed-carbide, (U,Pr)C, fuel pins in the Fast Flux Test Facility. The test included 25 Swiss-fabricated sphere-pac-type fuel pins and 66 U.S. fabricated pellet-type fuel pins. The test was designed to operate at prototypical fast reactor conditions to provide a direct comparison of the irradiation performance of the two fuel types. The test design and fuel fabrication processes used for the AC-3 test are presented

  15. Microstructure and oxidative degradation behavior of silicon carbide fiber Hi-Nicalon type S

    International Nuclear Information System (INIS)

    Takeda, M.; Urano, A.; Sakamoto, J.; Imai, Y.

    1998-01-01

    Polycarbosilane-derived SiC fibers, Nicalon, Hi-Nicalon, and Hi-Nicalon type S were exposed for 1 to 100 h at 1273-1773 K in air. Oxide layer growth and tensile strength change of these fibers were examined after the oxidation test. As a result, three types of SiC fibers decreased their strength as oxide layer thickness increased. Fracture origins were determined at near the oxide layer-fiber interface. Adhered fibers arised from softening of silicon oxide at high temperature were also observed. In this study, Hi-Nicalon type S showed better oxidation resistance than other polycarbosilane-derived SiC fibers after 1673 K or higher temperature exposure in air for 10 h. This result was explained by the poreless silicon oxide layer structure of Hi-Nicalon type S. (orig.)

  16. p-type Mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells.

    Science.gov (United States)

    Wang, Kuo-Chin; Jeng, Jun-Yuan; Shen, Po-Shen; Chang, Yu-Cheng; Diau, Eric Wei-Guang; Tsai, Cheng-Hung; Chao, Tzu-Yang; Hsu, Hsu-Cheng; Lin, Pei-Ying; Chen, Peter; Guo, Tzung-Fang; Wen, Ten-Chin

    2014-04-23

    In this article, we present a new paradigm for organometallic hybrid perovskite solar cell using NiO inorganic metal oxide nanocrystalline as p-type electrode material and realized the first mesoscopic NiO/perovskite/[6,6]-phenyl C61-butyric acid methyl ester (PC61BM) heterojunction photovoltaic device. The photo-induced transient absorption spectroscopy results verified that the architecture is an effective p-type sensitized junction, which is the first inorganic p-type, metal oxide contact material for perovskite-based solar cell. Power conversion efficiency of 9.51% was achieved under AM 1.5 G illumination, which significantly surpassed the reported conventional p-type dye-sensitized solar cells. The replacement of the organic hole transport materials by a p-type metal oxide has the advantages to provide robust device architecture for further development of all-inorganic perovskite-based thin-film solar cells and tandem photovoltaics.

  17. Fiber type-specific nitric oxide protects oxidative myofibers against cachectic stimuli.

    Directory of Open Access Journals (Sweden)

    Zengli Yu

    2008-05-01

    Full Text Available Oxidative skeletal muscles are more resistant than glycolytic muscles to cachexia caused by chronic heart failure and other chronic diseases. The molecular mechanism for the protection associated with oxidative phenotype remains elusive. We hypothesized that differences in reactive oxygen species (ROS and nitric oxide (NO determine the fiber type susceptibility. Here, we show that intraperitoneal injection of endotoxin (lipopolysaccharide, LPS in mice resulted in higher level of ROS and greater expression of muscle-specific E3 ubiqitin ligases, muscle atrophy F-box (MAFbx/atrogin-1 and muscle RING finger-1 (MuRF1, in glycolytic white vastus lateralis muscle than in oxidative soleus muscle. By contrast, NO production, inducible NO synthase (iNos and antioxidant gene expression were greatly enhanced in oxidative, but not in glycolytic muscles, suggesting that NO mediates protection against muscle wasting. NO donors enhanced iNos and antioxidant gene expression and blocked cytokine/endotoxin-induced MAFbx/atrogin-1 expression in cultured myoblasts and in skeletal muscle in vivo. Our studies reveal a novel protective mechanism in oxidative myofibers mediated by enhanced iNos and antioxidant gene expression and suggest a significant value of enhanced NO signaling as a new therapeutic strategy for cachexia.

  18. Superconducting three element synchronous ac machine

    International Nuclear Information System (INIS)

    Boyer, L.; Chabrerie, J.P.; Mailfert, A.; Renard, M.

    1975-01-01

    There is a growing interest in ac superconducting machines. Of several new concepts proposed for these machines in the last years one of the most promising seems to be the ''three elements'' concept which allows the cancellation of the torque acting on the superconducting field winding, thus overcoming some of the major contraints. This concept leads to a device of induction-type generator. A synchronous, three element superconducting ac machine is described, in which a room temperature, dc fed rotating winding is inserted between the superconducting field winding and the ac armature. The steady-state machine theory is developed, the flux linkages are established, and the torque expressions are derived. The condition for zero torque on the field winding, as well as the resulting electrical equations of the machine, are given. The theoretical behavior of the machine is studied, using phasor diagrams and assuming for the superconducting field winding either a constant current or a constant flux condition

  19. Autonomous Operation of Hybrid Microgrid With AC and DC Subgrids

    DEFF Research Database (Denmark)

    Chiang Loh, Poh; Li, Ding; Kang Chai, Yi

    2013-01-01

    sources distributed throughout the two types of subgrids, which is certainly tougher than previous efforts developed for only ac or dc microgrid. This wider scope of control has not yet been investigated, and would certainly rely on the coordinated operation of dc sources, ac sources, and interlinking...... converters. Suitable control and normalization schemes are now developed for controlling them with the overall hybrid microgrid performance already verified in simulation and experiment.......This paper investigates on power-sharing issues of an autonomous hybrid microgrid. Unlike existing microgrids which are purely ac, the hybrid microgrid studied here comprises dc and ac subgrids interconnected by power electronic interfaces. The main challenge here is to manage power flows among all...

  20. Investigation of phase stability and oxide ion performance in new perovskite-type bismuth vanadate

    International Nuclear Information System (INIS)

    Al-Alas, Ahlam; Beg, Saba; Al-Areqi, Niyazi A.S.

    2012-01-01

    Samples of the BICDVOX system, formulated as Bi 4 Cd x V 2−x O 11−(3x/2)−δ in the Cd substitution range 0 ≤ x ≤ 0.25 were synthesized using the standard solid state reaction.The correlation between phase stability and oxide ion performance were investigated by variable temperature XRPD, DSC and AC impedance spectroscopy. The substitution of V 5+ by Cd 2+ exhibited different phase transitions upon varying composition. For compositions with x ≤ 0.05, two successive transitions; α↔β↔γ are evident, while the β↔γ transition exists in the composition range 0.05 4+ → V 5+ re–oxidation results in increased defect trapping effects in the system at higher temperatures. -- Highlights: ► γ-Stabilized BICDVOX at lower dopant concentrations. ► Good oxide-ion conductivity at lower temperatures. ► High temperature-vanadium reduction with lower dopant concentrations.

  1. Wasted Heat Engine Utilization in Central AC Condenser Type Water Chiller for Economical Energy Water Heaters

    Directory of Open Access Journals (Sweden)

    I Made Rasta

    2012-11-01

    Full Text Available Central AC type water chiller is a refrigeration machine that release heat to environment. Heat energy that released to environment comes from room heat load that absorbed by machine and heat from compressor. The best form in using this loss energy is heat recovery water heater technology, where this machine will take heat from condenser by a heat exchanger to heating water. Refrigerant will flow in the heat exchanger before entering condenser, after that refrigerant flow to other components such as, expansion valve, evaporator, compressor and than return again to condenser, this process will be cycling regularly (closed cycle. Based on experimental and analysis result especially for AC with capacity 2 Pk, and tank capacity 75 liter, with water heater recovery device obtained that: (1 Compressor power consumption decrease from 1.66 kW to 1.59kW. (2 Heat rejected from condenser and used by water heater has ratio 4.683 kJ/s and 1.59 kJ/s, with water heater efficiency is 32.2%. (3 Maximum water temperature can be reached are in range 34oC – 47.5oC in 10-150 minutes and flow rate is 0.5 – 2.5 liter /min

  2. Preparation and characterization of amorphous SiO2 coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets

    International Nuclear Information System (INIS)

    Xu, J.L.; Xiao, Q.F.; Mei, D.D.; Zhong, Z.C.; Tong, Y.X.; Zheng, Y.F.; Li, L.

    2017-01-01

    Amorphous SiO 2 coatings were prepared on sintered NdFeB magnets by micro-arc oxidation (MAO) in silicate solution. The surface and cross-sectional morphologies, element and phase composition, corrosion resistance and magnetic properties of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and physical properties measurements system (PPMS). The results showed that the surface morphologies of the coatings exhibited the “coral reef” like structure, different from the typical MAO porous structure. With increasing the voltages, the thickness of the coatings increased from 12.72 to 19.90 µm, the content of Si element increased, while the contents of Fe, Nd and P elements decreased. The coatings were mainly composed of amorphous SiO 2 and a few amorphous Fe 2 O 3 and Nd 2 O 3 . The amorphous SiO 2 coatings presented excellent thermal shock resistance, while the thermal shock resistance decreased with increasing the voltages. The corrosion resistance of the coatings increased with increasing the voltages, and it could be enhanced by one order of magnitude compared to the uncoated NdFeB magnets. The MAO coatings slightly decreased the magnetic properties of the NdFeB samples in different degrees. - Highlights: • Amorphous SiO 2 coatings were prepared on sintered NdFeB magnets by micro-arc oxidation. • The coatings presented excellent thermal shock resistance. • The corrosion resistance could be enhanced by one order of magnitude. • The MAO coatings slightly decreased the magnetic properties of the NdFeB samples.

  3. l-Glucitol Catabolism in Stenotrophomonas maltophilia Ac

    Science.gov (United States)

    Brechtel, Elke; Huwig, Alexander; Giffhorn, Friedrich

    2002-01-01

    The carbohydrate catabolism of the bacterium Stenotrophomonas maltophilia Ac (previously named Pseudomonas sp. strain Ac), which is known to convert the unnatural polyol l-glucitol to d-sorbose during growth on the former as the sole source of carbon and energy, was studied in detail. All enzymes operating in a pathway that channels l-glucitol via d-sorbose into compounds of the intermediary metabolism were demonstrated, and for some prominent reactions the products of conversion were identified. d-Sorbose was converted by C-3 epimerization to d-tagatose, which, in turn, was isomerized to d-galactose. d-Galactose was the initial substrate of the De Ley-Doudoroff pathway, involving reactions of NAD-dependent oxidation of d-galactose to d-galactonate, its dehydration to 2-keto-3-deoxy-d-galactonate, and its phosphorylation to 2-keto-3-deoxy-d-galactonate 6-phosphate. Finally, aldol cleavage yielded pyruvate and d-glycerate 3-phosphate as the central metabolic intermediates. PMID:11823194

  4. Wettability and corrosion of alumina embedded nanocomposite MAO coating on nanocrystalline AZ31B magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gheytani, M.; Aliofkhazraei, M., E-mail: maliofkh@gmail.com; Bagheri, H.R.; Masiha, H.R.; Rouhaghdam, A. Sabour

    2015-11-15

    In this paper, micro- and nanocrystalline AZ31B magnesium alloy were coated by micro-arc oxidation method. In order to fabricate nanocrystalline surface layer, surface mechanical attrition treatment was performed and nano-grains with average size of 5–10 nm were formed on the surface of the samples. Coating process was carried out at different conditions including two coating times and two types of electrolyte. Alumina nanoparticles were utilized as suspension in electrolyte to form nanocomposite coatings by micro-arc oxidation method. Potentiodynamic polarization, percentage of porosity, and wettability tests were performed to study various characteristics of the coated samples. The results of scanning electron microscope imply that samples coated in silicate-based electrolyte involve much lower surface porosity (∼25%). Besides, the results of wettability test indicated that the maximum surface tension with deionized water is for nanocrystalline sample. In this regard, the sample coated in silicate-based suspension was 4 times more hydrophilic than the microcrystalline sample. - Highlights: • MAO in phosphate electrolyte needs higher energy as compared to silicate electrolyte. • Less porosity and finer grain size on free surface of the silicate-based coatings. • Observed porosity from top surface of coating shows the effect of the final MAO sparks. • SMAT affects surface roughness and accelerates growth kinetics.

  5. Preparation and characterization of amorphous SiO{sub 2} coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Xu, J.L., E-mail: jlxu@nchu.edu.cn [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Xiao, Q.F.; Mei, D.D. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Zhong, Z.C., E-mail: zzhong2014@sina.com [The Institute for Rare Earth Magnetic Materials and Devices, Jiangxi University of Science and Technology, Ganzhou 341000 (China); Tong, Y.X. [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Zheng, Y.F., E-mail: yfzheng@pku.edu.cn [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China); Li, L. [Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001 (China)

    2017-03-15

    Amorphous SiO{sub 2} coatings were prepared on sintered NdFeB magnets by micro-arc oxidation (MAO) in silicate solution. The surface and cross-sectional morphologies, element and phase composition, corrosion resistance and magnetic properties of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and physical properties measurements system (PPMS). The results showed that the surface morphologies of the coatings exhibited the “coral reef” like structure, different from the typical MAO porous structure. With increasing the voltages, the thickness of the coatings increased from 12.72 to 19.90 µm, the content of Si element increased, while the contents of Fe, Nd and P elements decreased. The coatings were mainly composed of amorphous SiO{sub 2} and a few amorphous Fe{sub 2}O{sub 3} and Nd{sub 2}O{sub 3}. The amorphous SiO{sub 2} coatings presented excellent thermal shock resistance, while the thermal shock resistance decreased with increasing the voltages. The corrosion resistance of the coatings increased with increasing the voltages, and it could be enhanced by one order of magnitude compared to the uncoated NdFeB magnets. The MAO coatings slightly decreased the magnetic properties of the NdFeB samples in different degrees. - Highlights: • Amorphous SiO{sub 2} coatings were prepared on sintered NdFeB magnets by micro-arc oxidation. • The coatings presented excellent thermal shock resistance. • The corrosion resistance could be enhanced by one order of magnitude. • The MAO coatings slightly decreased the magnetic properties of the NdFeB samples.

  6. Landfill methane oxidation across climate types in the U.S.

    Science.gov (United States)

    Chanton, Jeffrey; Abichou, Tarek; Langford, Claire; Hater, Gary; Green, Roger; Goldsmith, Doug; Swan, Nathan

    2011-01-01

    Methane oxidation in landfill covers was determined by stable isotope analyses over 37 seasonal sampling events at 20 landfills with intermediate covers over four years. Values were calculated two ways: by assuming no isotopic fractionation during gas transport, which produces a conservative or minimum estimate, and by assuming limited isotopic fractionation with gas transport producing a higher estimate. Thus bracketed, the best assessment of mean oxidation within the soil covers from chamber captured emitted CH(4) was 37.5 ± 3.5%. The fraction of CH(4) oxidized refers to the fraction of CH(4) delivered to the base of the cover that was oxidized to CO(2) and partitioned to microbial biomass instead of being emitted to the atmosphere as CH(4) expressed as a percentage. Air samples were also collected at the surface of the landfill, and represent CH(4) from soil, from leaking infrastructure, and from cover defects. A similar assessment of this data set yields 36.1 ± 7.2% oxidation. Landfills in five climate types were investigated. The fraction oxidized in arid sites was significantly greater than oxidation in mediterranean sites, or cool and warm continental sites. Sub tropical sites had significantly lower CH(4) oxidation than the other types of sites. This relationship may be explained by the observed inverse relationship between cover loading and fractional CH(4) oxidation.

  7. Oxidized template-synthesized mesoporous carbon with pH-dependent adsorption activity: A promising adsorbent for removal of hydrophilic ionic liquid

    Science.gov (United States)

    Zhang, Ling; Cao, Wugang; Alvarez, Pedro J. J.; Qu, Xiaolei; Fu, Heyun; Zheng, Shourong; Xu, Zhaoyi; Zhu, Dongqiang

    2018-05-01

    Aiming to remove ionic liquid pollutants from water, an ordered mesoporous carbon CMK-3 (OMC) was prepared and modified by oxidation with nitric acid. A commercial microporous activated carbon adsorbent, Filtrasorb-300 (AC), was used as benchmark. Boehm titration showed that oxidized OMC had a substantially higher oxygen content than oxidized AC. Adsorption of the hydrophilic imidazolium-based ionic liquid 1-Butyl-3-methylimidazolium chloride ([Bmim]Cl) on OMC and AC was well-described by the Freundlich isotherm model. Surface oxidation markedly enhanced [Bmim]Cl adsorption by both OMC and AC. Nevertheless, [Bmim]Cl adsorption was much higher on oxidized OMC than on oxidized AC. Increasing pH had negligible influence on [Bmim]Cl adsorption on pristine OMC, but enhanced adsorption on oxidized OMC. Regeneration tests showed stable performance of oxidized OMC over five adsorption-desorption cycles. Thus, oxidized OMC can be a highly effective adsorbent for the removal of hydrophilic ionic liquids from water.

  8. ac18 is not essential for the propagation of Autographa californica multiple nucleopolyhedrovirus

    International Nuclear Information System (INIS)

    Wang Yanjie; Wu Wenbi; Li Zhaofei; Yuan Meijin; Feng Guozhong; Yu Qian; Yang Kai; Pang Yi

    2007-01-01

    orf18 (ac18) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a highly conserved gene in lepidopteran nucleopolyhedroviruses, but its function remains unknown. In this study, an ac18 knockout AcMNPV bacmid was generated to determine the role of ac18 in baculovirus life cycle. After transfection of Sf-9 cells, the ac18-null mutant showed similar infection pattern to the parent virus and the ac18 repair virus with respect to the production of infectious budded virus, occlusion bodies, or the formation of nucleocapsids as visualized by electron microscopy. The deletion mutant did not reduce AcMNPV infectivity for Trichoplusia ni in LD 50 bioassay; however, it did take 24 h longer for deleted mutant to kill T. ni larvae than wild-type virus in LT 50 bioassay. Our results demonstrate that ac18 is not essential for viral propagation both in vitro and in vivo, but it may play a role in efficient virus infection in T. ni larvae

  9. Peltier ac calorimeter

    OpenAIRE

    Jung, D. H.; Moon, I. K.; Jeong, Y. H.

    2001-01-01

    A new ac calorimeter, utilizing the Peltier effect of a thermocouple junction as an ac power source, is described. This Peltier ac calorimeter allows to measure the absolute value of heat capacity of small solid samples with sub-milligrams of mass. The calorimeter can also be used as a dynamic one with a dynamic range of several decades at low frequencies.

  10. Digital model for harmonic interactions in AC/DC/AC systems

    Energy Technology Data Exchange (ETDEWEB)

    Guarini, A P; Rangel, R D; Pilotto, L A.S.; Pinto, R J; Passos, Junior, R [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)

    1994-12-31

    The main purpose of this paper is to present a model for calculation of HVdc converter harmonics taking into account the influence of the harmonic interactions between the ac systems in dc link transmissions. The ideas and methodologies used in the model development take into account the dc current ripple and ac voltage distortion in the ac systems. The theory of switching functions is applied to contemplate for the frequency conversions between the ac and dc sides, in an iterative process. It is possible then to obtain, even in balanced situations, non-characteristic harmonics that are produced by frequencies originated in the other terminal, which can be significant in a strongly coupled system, such as back-to-back configuration. (author) 9 refs., 3 figs.

  11. Iron oxidation in different types of groundwater of Western Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Serikov, Leonid V.; Tropina, Elena A.; Shiyan, Liudmila N. [Tomsk Polytechnic Univ., Tomsk (Russian Federation); Frimmel, Fritz H.; Metreveli, George; Delay, Markus [Univ. of Karlsruhe, Engler-Bunte-Inst. (Germany)

    2009-04-15

    Background, aim, and scope The groundwaters of Western Siberia contain high concentrations of iron, manganese, silicon, ammonium, and, in several cases, hydrogen sulfide, carbonic acids, and dissolved organic substances. Generally, the groundwaters of Western Siberia can be divided into two major types: one type with a relatively low concentration of humic substances and high hardness (water of A type) and a second type with a relatively low hardness and high concentration of humic substances (water of B type). For drinking water production, the waters of A type are mostly treated in the classical way by aeration followed by sand bed filtration. The waters of B type often show problems when treated for iron removal. A part of iron practically does not form the floes or particles suitable for filtration or sedimentation. The aim of this work was to determine the oxidizability of Fe(II), to characterize the iron colloids, and to investigate the complexation of the iron ions with humic substances and the coagulation of the iron colloids in the presence of dissolved organic matter. Materials and methods Water samples of the A and B types were taken from bore holes in Western Siberia (A type: in Tomsk and Tomsk region, B type: in Beliy Yar and Kargasok). Depth of sampling was about 200 m below surface. The oxidation of the groundwater samples by air oxygen and ozone was done in a bubble reactor consisting of a glass cylinder with a gas-inlet tube. To produce ozone, a compact ozone generator developed by Tomsk Polytechnic University was used. For the characterization of the colloids in the water of B type, the particle size distribution and the zeta potential were measured. To investigate the formation of complexes between iron and humic substances in the water of B type, size exclusion chromatography was used. The coagulation behavior of iron in the presence of dissolved organic substances was investigated at different pH values. The agglomerates were detected by

  12. Bending Strength of EN AC-44200 – Al2O3 Composites at Elevated Temperatures

    OpenAIRE

    Kurzawa A.; Kaczmar J. W.

    2017-01-01

    The paper presents results of bend tests at elevated temperatures of aluminium alloy EN AC-44200 (AlSi12) based composite materials reinforced with aluminium oxide particles. The examined materials were manufactured by squeeze casting. Preforms made of Al2O3 particles, with volumetric fraction 10, 20, 30 and 40 vol.% of particles joined with sodium silicate bridges were used as reinforcement. The preforms were characterised by open porosity ensuring proper infiltration with the EN AC-44200 (A...

  13. Complex study of transport AC loss in various 2G HTS racetrack coils

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yiran, E-mail: yc315@cam.ac.uk [University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Zhang, Min; Chudy, Michal; Matsuda, Koichi; Coombs, Tim [University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2013-04-15

    Highlights: ► Comparing transport AC losses of two types of 2G HTS racetrack coils. ► The magnetic substrate in the MAG RABITS coil is the main difference. ► Experimental data agree well with simulation results. ► The transport AC loss in the MAG RABITS coil is 36% higher than that in the IBAD coil. ► It is better to keep all the substrate non-magnetic. -- Abstract: HTS racetrack coils are becoming important elements of an emerging number of superconducting devices such as generators or motors. In these devices the issue of AC loss is crucial, as performance and cooling power are derived from this quantity. This paper presents a comparative study of transport AC loss in two different types of 2G HTS racetrack coils. In this study, both experimental measurements and computer simulation approaches were employed. All the experiments were performed using classical AC electrical method. The finite-element computer model was used to estimate electromagnetic properties and calculate transport AC loss. The main difference between the characterized coils is covered inside tape architectures. While one coil uses tape based on RABITS magnetic substrate, the second coil uses a non-magnetic tape. Ferromagnetic loss caused by a magnetic substrate is an important issue involved in the total AC loss. As a result, the coil with the magnetic substrate surprised with high AC loss and rather low performance.

  14. Effect of alkali content on AC conductivity of borate glasses containing two transition metals

    International Nuclear Information System (INIS)

    Kashif, I.; Rahman, Samy A.; Soliman, A.A.; Ibrahim, E.M.; Abdel-Khalek, E.K.; Mostafa, A.G.; Sanad, A.M.

    2009-01-01

    Sodium borate glasses containing iron and molybdenum ions with the total concentration of transition ions constant and gradual substitution of sodium oxide (network modifier) by borate oxide (network former) was prepared. Densities, molar volume, DC and AC conductivities are measured. The trends of these properties are attributed to changes in the glass network structure. Their DC and AC conductivity increased with increasing NaO concentration. The increase of AC conductivity of sodium borate glasses is attributed to the chemical composition and the hopping mechanism of conduction. Measurements of the dielectric constant (ε) and dielectric loss (tan δ) as a function of frequency (50 Hz-100 kHz) and temperature (RT-600 K) indicate that the increase in dielectric constant and loss (ε and tan δ) values with increasing sodium ion content could be attributed to the assumption that Fe and Mo ions tend to assume network-forming position in the glass compositions studied. The variation of the value of frequency exponent s for all glass samples as the function of temperature at a definite frequency indicates that the value of s decreases with increasing the temperature which agrees with the correlated barrier-hopping (CBH) model.

  15. Hydrogen poisoning of the CO oxidation reaction on Pt and Pd under ultrahigh vacuum conditions

    International Nuclear Information System (INIS)

    Strozier, J.A.

    1977-01-01

    The poisoning by hydrogen of the catalyzed oxidation of CO on Pt and Pd under ultrahigh vacuum conditions was investigated. ac pulsing techniques are used in which the pressure of the reactant CO in the reaction chamber is modulated periodically by means of a fast piezoelectric ultrahigh vacuum valve, and the ac component of the product CO 2 is recorded mass spectroscopically by phase-sensitive techniques. The ac CO 2 production rate is measured as a function of hydrogen pressure (1 - 10 x 10 -9 toor) at constant CO and O 2 pressures (approximately equal to 5 x 10 -8 torr), and constant temperature (approximately equal to 700 K). Exact theoretical calculations of CO 2 production rates were carried out employing several models, i.e., oxygen burn-off by hydrogen, incorporating both the Eley-Rideal and Langmuir-Hinshelwood mechanisms. From a comparison with the experimental results, the probable reaction is of the Langmuir-Hinshelwood type and the relevant rate constant is also determined. These results are compared with other results in the literature on hydrogen oxidation on the surface of Pt

  16. Estimation of the Binding Free Energy of AC1NX476 to HIV-1 Protease Wild Type and Mutations Using Free Energy Perturbation Method.

    Science.gov (United States)

    Ngo, Son Tung; Mai, Binh Khanh; Hiep, Dinh Minh; Li, Mai Suan

    2015-10-01

    The binding mechanism of AC1NX476 to HIV-1 protease wild type and mutations was studied by the docking and molecular dynamics simulations. The binding free energy was calculated using the double-annihilation binding free energy method. It is shown that the binding affinity of AC1NX476 to wild type is higher than not only ritonavir but also darunavir, making AC1NX476 become attractive candidate for HIV treatment. Our theoretical results are in excellent agreement with the experimental data as the correlation coefficient between calculated and experimentally measured binding free energies R = 0.993. Residues Asp25-A, Asp29-A, Asp30-A, Ile47-A, Gly48-A, and Val50-A from chain A, and Asp25-B from chain B play a crucial role in the ligand binding. The mutations were found to reduce the receptor-ligand interaction by widening the binding cavity, and the binding propensity is mainly driven by the van der Waals interaction. Our finding may be useful for designing potential drugs to combat with HIV. © 2015 John Wiley & Sons A/S.

  17. Electrochemical studies on nanometal oxide-activated carbon composite electrodes for aqueous supercapacitors

    Science.gov (United States)

    Ho, Mui Yen; Khiew, Poi Sim; Isa, Dino; Chiu, Wee Siong

    2014-11-01

    In present study, the electrochemical performance of eco-friendly and cost-effective titanium oxide (TiO2)-based and zinc oxide-based nanocomposite electrodes were studied in neutral aqueous Na2SO3 electrolyte, respectively. The electrochemical properties of these composite electrodes were studied using cyclic voltammetry (CV), galvanostatic charge-discharge (CD) and electrochemical impedance spectroscopy (EIS). The experimental results reveal that these two nanocomposite electrodes achieve the highest specific capacitance at fairly low oxide loading onto activated carbon (AC) electrodes, respectively. Considerable enhancement of the electrochemical properties of TiO2/AC and ZnO/AC nanocomposite electrodes is achieved via synergistic effects contributed from the nanostructured metal oxides and the high surface area mesoporous AC. Cations and anions from metal oxides and aqueous electrolyte such as Ti4+, Zn2+, Na+ and SO32- can occupy some pores within the high-surface-area AC electrodes, forming the electric double layer at the electrode-electrolyte interface. Additionally, both TiO2 and ZnO nanoparticles can provide favourable surface adsorption sites for SO32- anions which subsequently facilitate the faradaic processes for pseudocapacitive effect. These two systems provide the low cost material electrodes and the low environmental impact electrolyte which offer the increased charge storage without compromising charge storage kinetics.

  18. ACS Zero Point Verification

    Science.gov (United States)

    Dolphin, Andrew

    2005-07-01

    The uncertainties in the photometric zero points create a fundamental limit to the accuracy of photometry. The current state of the ACS calibration is surprisingly poor, with zero point uncertainties of 0.03 magnitudes. The reason for this is that the ACS calibrations are based primarily on semi-emprical synthetic zero points and observations of fields too crowded for accurate ground-based photometry. I propose to remedy this problem by obtaining ACS images of the omega Cen standard field with all nine broadband ACS/WFC filters. This will permit the direct determination of the ACS zero points by comparison with excellent ground-based photometry, and should reduce their uncertainties to less than 0.01 magnitudes. A second benefit is that it will facilitate the comparison of the WFPC2 and ACS photometric systems, which will be important as WFPC2 is phased out and ACS becomes HST's primary imager. Finally, three of the filters will be repeated from my Cycle 12 observations, allowing for a measurement of any change in sensitivity.

  19. Superconducting ac cable

    Science.gov (United States)

    Schmidt, F.

    1980-11-01

    The components of a superconducting 110 kV ac cable for power ratings or = 2000 MVA were developed. The cable design is of the semiflexible type, with a rigid cryogenic envelope containing a flexible hollow coaxial cable core. The cable core consists of spirally wound Nb-A1 composite wires electrically insulated by high pressure polyethylene tape wrappings. A 35 m long single phase test cable with full load terminals rated at 110 kV and 10 kA was constructed and successfully tested. The results obtained prove the technical feasibility and capability of this cable design.

  20. Superconducting ac cable

    International Nuclear Information System (INIS)

    Schmidt, F.

    1980-01-01

    The components of a superconducting 110 kV ac cable for power ratings >= 2000 MVA have been developed. The cable design especially considered was of the semiflexible type, with a rigid cryogenic envelope and flexible hollow coaxial cable cores pulled into the former. The cable core consists of spirally wound Nb-Al composite wires and a HDPE-tape wrapped electrical insulation. A 35 m long single phase test cable with full load terminations for 110 kV and 10 kA was constructed and successfully tested. The results obtained prove the technical feasibility and capability of our cable design. (orig.) [de

  1. AcT-2: a novel myotropic and antimicrobial type 2 tryptophyllin from the skin secretion of the Central American red-eyed leaf frog, Agalychnis callidryas.

    Science.gov (United States)

    Ge, Lilin; Lyu, Peng; Zhou, Mei; Zhang, Huiling; Wan, Yuantai; Li, Bin; Li, Renjie; Wang, Lei; Chen, Tianbao; Shaw, Chris

    2014-01-01

    Tryptophyllins are a diverse family of amphibian peptides originally found in extracts of phyllomedusine frog skin by chemical means. Their biological activities remain obscure. Here we describe the isolation and preliminary pharmacological characterization of a novel type 2 tryptophyllin, named AcT-2, from the skin secretion of the red-eyed leaf frog, Agalychnis callidryas. The peptide was initially identified during smooth muscle pharmacological screening of skin secretion HPLC fractions and the unique primary structure--GMRPPWF-NH2--was established by both Edman degradation and electrospray MS/MS fragmentation sequencing. A. cDNA encoding the biosynthetic precursor of AcT-2 was successfully cloned from a skin secretion-derived cDNA library by means of RACE PCR and this contained an open-reading frame consisting of 62 amino acid residues with a single AcT-2 encoding sequence located towards the C-terminus. A synthetic replicate of AcT-2 was found to relax arterial smooth muscle (EC50 = 5.1 nM) and to contract rat urinary bladder smooth muscle (EC50 = 9.3 μ M). The peptide could also inhibit the growth of the microorganisms, Staphylococcus aureus, (MIC = 256 mg/L) Escherichia coli (MIC = 512 mg/L), and Candida albicans (128 mg/L). AcT-2 is thus the first amphibian skin tryptophyllin found to possess both myotropic and antimicrobial activities.

  2. The Use of AC-DC-AC Methods in Assessing Corrosion Resistance Performance of Coating Systems for Magnesium Alloys

    Science.gov (United States)

    McCune, Robert C.; Upadhyay, Vinod; Wang, Yar-Ming; Battocchi, Dante

    The potential utility of AC-DC-AC electrochemical methods in comparative measures of corrosion-resisting coating system performance for magnesium alloys under consideration for the USAMP "Magnesium Front End Research and Development" project was previously shown in this forum [1]. Additional studies of this approach using statistically-designed experiments have been conducted with focus on alloy types, pretreatment, topcoat material and topcoat thickness as the variables. Additionally, sample coupons made for these designed experiments were also subjected to a typical automotive cyclic corrosion test cycle (SAE J2334) as well as ASTM B117 for comparison of relative performance. Results of these studies are presented along with advantages and limitations of the proposed methodology.

  3. Autonomous Operation of Hybrid Microgrid with AC and DC Sub-Grids

    DEFF Research Database (Denmark)

    Loh, Poh Chiang; Blaabjerg, Frede

    2011-01-01

    the power flow among all the sources distributed throughout the two types of sub-grids, which certainly is tougher than previous efforts developed for only either ac or dc microgrid. This wider scope of control has not yet been investigated, and would certainly rely on the coordinated operation of dc...... sources, ac sources and interlinking converters. Suitable control and normalization schemes are therefore developed for controlling them with results presented for showing the overall performance of the hybrid microgrid.......This paper investigates on the active and reactive power sharing of an autonomous hybrid microgrid. Unlike existing microgrids which are purely ac, the hybrid microgrid studied here comprises dc and ac sub-grids, interconnected by power electronic interfaces. The main challenge here is to manage...

  4. Partial oxidation of municipal sludge with activited carbon catalyst in supercritical water

    International Nuclear Information System (INIS)

    Guo Yang; Wang Shuzhong; Gong Yanmeng; Xu Donghai; Tang Xingying; Ma Honghe

    2010-01-01

    The partial oxidation (POX) characteristics of municipal sludge in supercritical water (SCW) were investigated by using batch reactor. Effects of reaction parameters such as oxidant equivalent ratio (OER), reaction time and temperature were investigated. Activated carbon (AC) could effectively improve the mole fraction of H 2 in gas product at low OER. However, high OER (greater than 0.3) not only led to the combustion reaction of CO and H 2 , but also caused corrosion of reactor inner wall. Hydrogenation and polymerization of the intermediate products are possible reasons for the relative low COD removal rate in our tests. Metal oxide leached from the reactor inner wall and the main components of the granular sludge were deposited in the AC catalyst. Reaction time had more significant effect on BET surface area of AC than OER had. Long reaction time led to the methanation reaction following hydrolysis and oxidation reaction of AC in SCW in the presence of oxygen. Correspondingly, the possible reaction mechanisms were proposed.

  5. THE ACS FORNAX CLUSTER SURVEY. X. COLOR GRADIENTS OF GLOBULAR CLUSTER SYSTEMS IN EARLY-TYPE GALAXIES

    International Nuclear Information System (INIS)

    Liu Chengze; Peng, Eric W.; Jordan, Andres; Ferrarese, Laura; Blakeslee, John P.; Cote, Patrick; Mei, Simona

    2011-01-01

    We use the largest homogeneous sample of globular clusters (GCs), drawn from the ACS Virgo Cluster Survey (ACSVCS) and ACS Fornax Cluster Survey (ACSFCS), to investigate the color gradients of GC systems in 76 early-type galaxies. We find that most GC systems possess an obvious negative gradient in (g-z) color with radius (bluer outward), which is consistent with previous work. For GC systems displaying color bimodality, both metal-rich and metal-poor GC subpopulations present shallower but significant color gradients on average, and the mean color gradients of these two subpopulations are of roughly equal strength. The field of view of ACS mainly restricts us to measuring the inner gradients of the studied GC systems. These gradients, however, can introduce an aperture bias when measuring the mean colors of GC subpopulations from relatively narrow central pointings. Inferred corrections to previous work imply a reduced significance for the relation between the mean color of metal-poor GCs and their host galaxy luminosity. The GC color gradients also show a dependence with host galaxy mass where the gradients are weakest at the ends of the mass spectrum-in massive galaxies and dwarf galaxies-and strongest in galaxies of intermediate mass, around a stellar mass of M * ∼10 10 M sun . We also measure color gradients for field stars in the host galaxies. We find that GC color gradients are systematically steeper than field star color gradients, but the shape of the gradient-mass relation is the same for both. If gradients are caused by rapid dissipational collapse and weakened by merging, these color gradients support a picture where the inner GC systems of most intermediate-mass and massive galaxies formed early and rapidly with the most massive galaxies having experienced greater merging. The lack of strong gradients in the GC systems of dwarfs, which probably have not experienced many recent major mergers, suggests that low-mass halos were inefficient at retaining

  6. AC electrical conductivity and dielectric relaxation studies on n-type organic thin films of N, N‧-Dimethyl-3,4,9,10-perylenedicarboximide (DMPDC)

    Science.gov (United States)

    Qashou, Saleem I.; Darwish, A. A. A.; Rashad, M.; Khattari, Z.

    2017-11-01

    Both Alternating current (AC) conductivity and dielectric behavior of n-type organic thin films of N, N‧-Dimethyl-3,4,9,10-perylenedicarboximide (DMPDC) have been investigated. Fourier transformation infrared (FTIR) spectroscopy is used for identifying both powder and film bonds which confirm that there are no observed changes in the bonds between the DMPDC powder and evaporated films. The dependence of AC conductivity on the temperature for DMPDC evaporated films was explained by the correlated barrier hopping (CBH) model. The calculated barrier height using CBH model shows a decreasing behavior with increasing temperature. The mechanism of dielectric relaxation was interpreted on the basis of the modulus of the complex dielectric. The calculated activation energy of the relaxation process was found to be 0.055 eV.

  7. Aragonite coating solutions (ACS) based on artificial seawater

    Science.gov (United States)

    Tas, A. Cuneyt

    2015-03-01

    Aragonite (CaCO3, calcium carbonate) is an abundant biomaterial of marine life. It is the dominant inorganic phase of coral reefs, mollusc bivalve shells and the stalactites or stalagmites of geological sediments. Inorganic and initially precipitate-free aragonite coating solutions (ACS) of pH 7.4 were developed in this study to deposit monolayers of aragonite spherules or ooids on biomaterial (e.g., UHMWPE, ultrahigh molecular weight polyethylene) surfaces soaked in ACS at 30 °C. The ACS solutions of this study have been developed for the surface engineering of synthetic biomaterials. The abiotic ACS solutions, enriched with calcium and bicarbonate ions at different concentrations, essentially mimicked the artificial seawater composition and started to deposit aragonite after a long (4 h) incubation period at the tropical sea surface temperature of 30 °C. While numerous techniques for the solution deposition of calcium hydroxyapatite (Ca10(PO4)6(OH)2), of low thermodynamic solubility, on synthetic biomaterials have been demonstrated, procedures related to the solution-based surface deposition of high solubility aragonite remained uncommon. Monolayers of aragonite ooids deposited at 30 °C on UHMWPE substrates soaked in organic-free ACS solutions were found to possess nano-structures similar to the mortar-and-brick-type botryoids observed in biogenic marine shells. Samples were characterized using SEM, XRD, FTIR, ICP-AES and contact angle goniometry.

  8. Low Offset AC Correlator.

    Science.gov (United States)

    This patent describes a low offset AC correlator avoids DC offset and low frequency noise by frequency operating the correlation signal so that low...noise, low level AC amplification can be substituted for DC amplification. Subsequently, the high level AC signal is demodulated to a DC level. (Author)

  9. AC power supply systems

    International Nuclear Information System (INIS)

    Law, H.

    1987-01-01

    An ac power supply system includes a rectifier fed by a normal ac supply, and an inverter connected to the rectifier by a dc link, the inverter being effective to invert the dc output of the receiver at a required frequency to provide an ac output. A dc backup power supply of lower voltage than the normal dc output of the rectifier is connected across the dc link such that the ac output of the rectifier is derived from the backup supply if the voltage of the output of the inverter falls below that of the backup supply. The dc backup power may be derived from a backup ac supply. Use in pumping coolant in nuclear reactor is envisaged. (author)

  10. AC Application of HTS Conductors in Highly Dynamic Electric Motors

    International Nuclear Information System (INIS)

    Oswald, B; Best, K-J; Setzer, M; Duffner, E; Soell, M; Gawalek, W; Kovalev, L K

    2006-01-01

    Based on recent investigations we design highly dynamic electric motors up to 400 kW and linear motors up to 120 kN linear force using HTS bulk material and HTS tapes. The introduction of HTS tapes into AC applications in electric motors needs fundamental studies on double pancake coils under transversal magnetic fields. First theoretical and experimental results on AC field distributions in double-pancake-coils and corresponding AC losses will be presented. Based on these results the simulation of the motor performance confirms extremely high power density and efficiency of both types of electric motors. Improved characteristics of rare earth permanent magnets used in our motors at low temperatures give an additional technological benefit

  11. [Accidents of the everyday life (AcVC) in children in Dakar: about 201 cases].

    Science.gov (United States)

    Mohamed, Azhar Salim; Sagna, Aloïse; Fall, Mbaye; Ndoye, Ndeye Aby; Mbaye, Papa Alassane; Fall, Aimé Lakh; Diaby, Alou; Ndour, Oumar; Ngom, Gabriel

    2017-01-01

    Accidents of everyday life (AcVC) are common in children and can led to disabling injuries and death. This study aimed to analyze the epidemiological aspects of AcVC and the related injury mechanisms in Dakar. We conducted a descriptive, cross-sectional study conducted from 1 January 2013 to 30 June 2013. All the children victims of domestic accidents, sport and leisure accidents or school accidents were included. We studied some general parameters and some parameters related to each type of AcVC. Two hundred and one children were included, accounting for 27% of emergency consultations. There were 148 boys and 53 girls. Children less than 5 years of age were most affected (37.8%). Football and wrestling game were the main causes of AcVC. AcVC occur mainly at home (58.2%) and in the areas of sport and recreation (31.8%). The fractures predominated in the different types of AcVC: 54.9% of domestic accidents, 68.8% of sport and recreation accidents and 40% of school accidents. From an epidemiological perspective, our results are superimposable to literature. Fractures predominated contrary to literature where bruises were preponderant. Wrestling game is the main cause of these fractures, after football. The acquisition of knowledge about the epidemiological aspects of AcVC and the related injury mechanisms will allow for prevention campaigns in Dakar.

  12. AcT-2: A Novel Myotropic and Antimicrobial Type 2 Tryptophyllin from the Skin Secretion of the Central American Red-Eyed Leaf Frog, Agalychnis callidryas

    Directory of Open Access Journals (Sweden)

    Lilin Ge

    2014-01-01

    Full Text Available Tryptophyllins are a diverse family of amphibian peptides originally found in extracts of phyllomedusine frog skin by chemical means. Their biological activities remain obscure. Here we describe the isolation and preliminary pharmacological characterization of a novel type 2 tryptophyllin, named AcT-2, from the skin secretion of the red-eyed leaf frog, Agalychnis callidryas. The peptide was initially identified during smooth muscle pharmacological screening of skin secretion HPLC fractions and the unique primary structure—GMRPPWF-NH2—was established by both Edman degradation and electrospray MS/MS fragmentation sequencing. A. cDNA encoding the biosynthetic precursor of AcT-2 was successfully cloned from a skin secretion-derived cDNA library by means of RACE PCR and this contained an open-reading frame consisting of 62 amino acid residues with a single AcT-2 encoding sequence located towards the C-terminus. A synthetic replicate of AcT-2 was found to relax arterial smooth muscle (EC50 = 5.1 nM and to contract rat urinary bladder smooth muscle (EC50 = 9.3 μM. The peptide could also inhibit the growth of the microorganisms, Staphylococcus aureus, (MIC = 256 mg/L Escherichia coli (MIC = 512 mg/L, and Candida albicans (128 mg/L. AcT-2 is thus the first amphibian skin tryptophyllin found to possess both myotropic and antimicrobial activities.

  13. ACS Photometric Zero Point Verification

    Science.gov (United States)

    Dolphin, Andrew

    2003-07-01

    The uncertainties in the photometric zero points create a fundamental limit to the accuracy of photometry. The current state of the ACS calibration is surprisingly poor, with zero point uncertainties of 0.03 magnitudes in the Johnson filters. The reason for this is that ACS observations of excellent ground-based standard fields, such as the omega Cen field used for WFPC2 calibrations, have not been obtained. Instead, the ACS photometric calibrations are based primarily on semi-emprical synthetic zero points and observations of fields too crowded for accurate ground-based photometry. I propose to remedy this problem by obtaining ACS broadband images of the omega Cen standard field with both the WFC and HRC. This will permit the direct determination of the ACS transformations, and is expected to double the accuracy to which the ACS zero points are known. A second benefit is that it will facilitate the comparison of the WFPC2 and ACS photometric systems, which will be important as WFPC2 is phased out and ACS becomes HST's primary imager.

  14. Removal and recovery of gas-phase element mercury by metal oxide-loaded activated carbon

    International Nuclear Information System (INIS)

    Mei Zhijian; Shen Zhemin; Zhao Qingjie; Wang Wenhua; Zhang Yejian

    2008-01-01

    The reusability of Co 3 O 4 (AC-Co), MnO 2 (AC-Mn) and CuCoO 4 (AC-CC) loaded activated carbon (AC) and their element mercury removal efficiency had been studied using a laboratory-scale fixed-bed reactor under simulated flue gas conditions. Tests showed that spent AC-Co could be regenerated through heating at 673 K under N 2 atmosphere and the enrichment regenerated Hg 0 could be collected to eliminate the secondary pollution. Regenerated AC-Mn and AC-CC's Hg 0 removal efficiency decreased greatly due to AC's decomposition and MnO 2 's crystal structure variation. Compared with AC and metal oxides, metal oxide-loaded AC had higher Hg 0 capture ability and capacity due to AC huge surface areas and lots of function groups. TGA analysis results showed that AC-Co and AC-Mn's HgO adsorptive capacity at 523 K reached 19.8 mg g -1 and 5.21 mg g -1 , respectively. High loading values and adsorption temperatures were beneficial to AC-Co's Hg 0 removal efficiency. However, CuCoO 4 and MnO 2 's AC decomposition ability had negative effect on AC-CC and AC-Mn's performance, respectively, especially at high adsorption temperatures and loading values. SO 2 tests showed that AC-CC had higher anti SO 2 -poisoning ability than AC-Co and AC-Mn

  15. ACS6, a Hydrogen sulfide-donating derivative of sildenafil, inhibits homocysteine-induced apoptosis by preservation of mitochondrial function

    Directory of Open Access Journals (Sweden)

    Tang Xiao-Qing

    2011-08-01

    Full Text Available Abstract Background The hydrogen sulfide-releasing sildenafil, ACS6, has been demonstrated to inhibit superoxide formation through donating hydrogen sulfide (H2S. We have found that H2S antagonizes homocysteine-induced oxidative stress and neurotoxicity. The aim of the present study is to explore the protection of ACS6 against homocysteine-triggered cytotoxicity and apoptosis and the molecular mechanisms underlying in PC12 cells. Methods Cell viability was determined by Cell Counting Kit-8 assay. Cell apoptosis was observed using the chromatin dye Hoechst 33258 and analyzed by Flow Cytometry after propidium iodide staining. Mitochondrial membrane potential was monitored using the fluorescent dye Rh123. Intracellular reactive oxygen species were determined by oxidative conversion of cell permeable 2',7'-dichlorfluorescein-diacetate to fluorescent 2',7'-dichlorfluorescein. The expression of cleaved caspase-3 and bcl-2 and the accumulation of cytosolic cytochrome c were analyzed by Western blot. Results We show that ACS6 protects PC12 cells against cytotoxicity and apoptosis induced by homocysteine and blocks homocysteine-triggered cytochrome c release and caspase-3 activation. ACS6 treatment results in not only prevention of homocysteine-caused mitochondrial membrane potential (Δψ loss and reactive oxygen species (ROS overproduction but also reversal of Bcl-2 down-expression. Conclusions These results indicate that ACS6 protects PC12 cells against homocysteine-induced cytotoxicity and apoptosis by preservation of mitochondrial function though inhibiting both loss of Δψ and accumulation of ROS as well as modulating the expression of Bcl-2. Our study provides evidence both for a neuroprotective effect of ACS6 and for further evaluation of ACS6 as novel neuroprotectants for Alzheimer's disease associated with homocysteine.

  16. SULFATE RADICAL-BASED ADVANCED OXIDATION PROCESSES- ACS MEETING

    Science.gov (United States)

    This paper will present an overview of sulfate radical-based advanced oxidation technologies for the destruction of environmentally toxic chemicals in wastewater, industrial water, groundwater and sources of water supply. The paper will include fundamental aspects of the generati...

  17. Specific histone modification responds to arsenic-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Lu [Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou (China); Li, Jun [Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou (China); Zhan, Zhengbao; Chen, Liping; Li, Daochuan; Bai, Qing; Gao, Chen; Li, Jie; Zeng, Xiaowen; He, Zhini; Wang, Shan; Xiao, Yongmei [Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou (China); Chen, Wen, E-mail: chenwen@mail.sysu.edu.cn [Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou (China); Zhang, Aihua, E-mail: aihuagzykd@163.com [Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou (China)

    2016-07-01

    To explore whether specific histone modifications are associated with arsenic-induced oxidative damage, we recruited 138 arsenic-exposed and arsenicosis subjects from Jiaole Village, Xinren County of Guizhou province, China where the residents were exposed to arsenic from indoor coal burning. 77 villagers from Shang Batian Village that were not exposed to high arsenic coal served as the control group. The concentrations of urine and hair arsenic in the arsenic-exposure group were 2.4-fold and 2.1-fold (all P < 0.001) higher, respectively, than those of the control group. Global histone modifications in human peripheral lymphocytes (PBLCs) were examined by ELISA. The results showed that altered global levels of H3K18ac, H3K9me2, and H3K36me3 correlated with both urinary and hair-arsenic levels of the subjects. Notably, H3K36me3 and H3K18ac modifications were associated with urinary 8-OHdG (H3K36me3: β = 0.16; P = 0.042, H3K18ac: β = − 0.24; P = 0.001). We also found that the modifications of H3K18ac and H3K36me3 were enriched in the promoters of oxidative stress response (OSR) genes in human embryonic kidney (HEK) cells and HaCaT cells, providing evidence that H3K18ac and H3K36me3 modifications mediate transcriptional regulation of OSR genes in response to NaAsO{sub 2} treatment. Particularly, we found that reduced H3K18ac modification correlated with suppressed expression of OSR genes in HEK cells with long term arsenic treatment and in PBLCs of all the subjects. Taken together, we reveal a critical role for specific histone modification in response to arsenic-induced oxidative damage. - Highlights: • H3K18ac, H3K9me2 and H3K36me3 were associated with arsenic exposed levels. • H3K18ac and H3K36me3 were correlated with oxidative damage induced by arsenic. • H3K18ac and H3K36me3 might involve in transcriptional regulation of OSR genes. • Dysregulation of H3K18ac and H3K36me3 might be biomarkers of arsenic toxicity.

  18. Specific histone modification responds to arsenic-induced oxidative stress

    International Nuclear Information System (INIS)

    Ma, Lu; Li, Jun; Zhan, Zhengbao; Chen, Liping; Li, Daochuan; Bai, Qing; Gao, Chen; Li, Jie; Zeng, Xiaowen; He, Zhini; Wang, Shan; Xiao, Yongmei; Chen, Wen; Zhang, Aihua

    2016-01-01

    To explore whether specific histone modifications are associated with arsenic-induced oxidative damage, we recruited 138 arsenic-exposed and arsenicosis subjects from Jiaole Village, Xinren County of Guizhou province, China where the residents were exposed to arsenic from indoor coal burning. 77 villagers from Shang Batian Village that were not exposed to high arsenic coal served as the control group. The concentrations of urine and hair arsenic in the arsenic-exposure group were 2.4-fold and 2.1-fold (all P < 0.001) higher, respectively, than those of the control group. Global histone modifications in human peripheral lymphocytes (PBLCs) were examined by ELISA. The results showed that altered global levels of H3K18ac, H3K9me2, and H3K36me3 correlated with both urinary and hair-arsenic levels of the subjects. Notably, H3K36me3 and H3K18ac modifications were associated with urinary 8-OHdG (H3K36me3: β = 0.16; P = 0.042, H3K18ac: β = − 0.24; P = 0.001). We also found that the modifications of H3K18ac and H3K36me3 were enriched in the promoters of oxidative stress response (OSR) genes in human embryonic kidney (HEK) cells and HaCaT cells, providing evidence that H3K18ac and H3K36me3 modifications mediate transcriptional regulation of OSR genes in response to NaAsO 2 treatment. Particularly, we found that reduced H3K18ac modification correlated with suppressed expression of OSR genes in HEK cells with long term arsenic treatment and in PBLCs of all the subjects. Taken together, we reveal a critical role for specific histone modification in response to arsenic-induced oxidative damage. - Highlights: • H3K18ac, H3K9me2 and H3K36me3 were associated with arsenic exposed levels. • H3K18ac and H3K36me3 were correlated with oxidative damage induced by arsenic. • H3K18ac and H3K36me3 might involve in transcriptional regulation of OSR genes. • Dysregulation of H3K18ac and H3K36me3 might be biomarkers of arsenic toxicity.

  19. P-type Oxide Semiconductors for Transparent & Energy Efficient Electronics

    KAUST Repository

    Wang, Zhenwei

    2018-03-11

    Emerging transparent semiconducting oxide (TSO) materials have achieved their initial commercial success in the display industry. Due to the advanced electrical performance, TSOs have been adopted either to improve the performance of traditional displays or to demonstrate the novel transparent and flexible displays. However, due to the lack of feasible p-type TSOs, the applications of TSOs is limited to unipolar (n-type TSOs) based devices. Compared with the prosperous n-type TSOs, the performance of p-type counterparts is lag behind. However, after years of discovery, several p-type TSOs are confirmed with promising performance, for example, tin monoxide (SnO). By using p-type SnO, excellent transistor field-effect mobility of 6.7 cm2 V-1 s-1 has been achieved. Motivated by this encouraging performance, this dissertation is devoted to further evaluate the feasibility of integrating p-type SnO in p-n junctions and complementary metal oxide semiconductor (CMOS) devices. CMOS inverters are fabricated using p-type SnO and in-situ formed n-type tin dioxide (SnO2). The semiconductors are simultaneously sputtered, which simplifies the process of CMOS inverters. The in-situ formation of SnO2 phase is achieved by selectively sputtering additional capping layer, which serves as oxygen source and helps to balance the process temperature for both types of semiconductors. Oxides based p-n junctions are demonstrated between p-type SnO and n-type SnO2 by magnetron sputtering method. Diode operating ideality factor of 3.4 and rectification ratio of 103 are achieved. A large temperature induced knee voltage shift of 20 mV oC-1 is observed, and explained by the large band gap and shallow states in SnO, which allows minor adjustment of band structure in response to the temperature change. Finally, p-type SnO is used to demonstrating the hybrid van der Waals heterojunctions (vdWHs) with two-dimensional molybdenum disulfide (2D MoS2) by mechanical exfoliation. The hybrid vdWHs show

  20. AC Conductivity Studies of Lithium Based Phospho Vanadate Glasses

    International Nuclear Information System (INIS)

    Nagendra, K.; Babu, G. Satish; Gowda, Veeranna; Reddy, C. Narayana

    2011-01-01

    Glasses in the system xLi 2 SO 4 -20Li 2 O-(80-x) [80P 2 O 5 -20V 2 O 5 ](5≥x≥20 mol%) has been prepared by melt quenching method. Dc and ac conductivity has been studied over a wide range of frequency (10 Hz to 10 MHz) and temperature (298 K-523 K). The dc conductivity found to increase with increase of Li 2 SO 4 concentration. The ac conductivities have been fitted to the Almond-West type single power law equation σ(ω) = σ(0)+Aω s where 's' is the power law exponent. The ac conductivity found to increase with increase of Li 2 SO 4 concentration. An attempt is made to elucidate the enhancement of lithium ion conduction in phosphor-vanadate glasses by considering the expansion of network structure.

  1. FLUIDIC AC AMPLIFIERS.

    Science.gov (United States)

    Several fluidic tuned AC Amplifiers were designed and tested. Interstage tuning and feedback designs are considered. Good results were obtained...corresponding Q’s as high as 12. Element designs and test results of one, two, and three stage amplifiers are presented. AC Modulated Carrier Systems

  2. A catechol oxidase AcPPO from cherimoya (Annona cherimola Mill.) is localized to the Golgi apparatus.

    Science.gov (United States)

    Olmedo, Patricio; Moreno, Adrián A; Sanhueza, Dayan; Balic, Iván; Silva-Sanzana, Christian; Zepeda, Baltasar; Verdonk, Julian C; Arriagada, César; Meneses, Claudio; Campos-Vargas, Reinaldo

    2018-01-01

    Cherimoya (Annona cherimola) is an exotic fruit with attractive organoleptic characteristics. However, it is highly perishable and susceptible to postharvest browning. In fresh fruit, browning is primarily caused by the polyphenol oxidase (PPO) enzyme catalyzing the oxidation of o-diphenols to quinones, which polymerize to form brown melanin pigment. There is no consensus in the literature regarding a specific role of PPO, and its subcellular localization in different plant species is mainly described within plastids. The present work determined the subcellular localization of a PPO protein from cherimoya (AcPPO). The obtained results revealed that the AcPPO- green fluorescent protein co-localized with a Golgi apparatus marker, and AcPPO activity was present in Golgi apparatus-enriched fractions. Likewise, transient expression assays revealed that AcPPO remained active in Golgi apparatus-enriched fractions obtained from tobacco leaves. These results suggest a putative function of AcPPO in the Golgi apparatus of cherimoya, providing new perspectives on PPO functionality in the secretory pathway, its effects on cherimoya physiology, and the evolution of this enzyme. Copyright © 2017. Published by Elsevier B.V.

  3. Ultrasound-assisted oxidation of dibenzothiophene with phosphotungstic acid supported on activated carbon.

    Science.gov (United States)

    Liu, Liyan; Zhang, Yu; Tan, Wei

    2014-05-01

    Phosphotungstic acid (HPW) supported on activated carbon (AC) was applied to catalyze deep oxidation desulfurization of fuel oil with the assist of ultrasound. The sulfur-conversion rate was evaluated by measuring the concentration of dibenzothiophene (DBT) in n-octane before and after the oxidation. Supporting HPW on AC has been verified to play a positive role in UAOD process by a series of contrast tests, where only HPW, AC or a mixture of free HPW and AC was used. The influences of catalyst dose, ultrasound power, reaction temperature, H2O2:oil volume ratio and the reuse of catalyst on the catalytic oxidation desulfurization kinetics were investigated. The DBT conversion rate of the reaction catalyzed by supported HPW under ultrasound irradiation was higher than the summation of the reactions with HPW only and AC only as catalyst. With the increase of loading amount of HPW on AC, ultrasound power, H2O2:oil volume ratio and reaction temperature, the catalytic oxidation reactivity of DBT would be enhanced. The optimum loading amount of HPW was 10%, exceed which DBT conversion would no longer increase obviously. DBT could be completely converted under the optimized conditions (volume ratio of H2O2 to model oil: 1:10, mass ratio of the supported HPW to model oil: 1.25%, temperature: 70°C) after 9 min of ultrasound irradiation. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. 78 FR 49318 - Availability of Draft Advisory Circular (AC) 90-106A and AC 20-167A

    Science.gov (United States)

    2013-08-13

    ...] Availability of Draft Advisory Circular (AC) 90-106A and AC 20- 167A AGENCY: Federal Aviation Administration... of draft Advisory Circular (AC) 90-106A, Enhanced Flight Vision Systems and draft AC 20- 167A... Federal holidays. FOR FURTHER INFORMATION CONTACT: For technical questions concerning draft AC 90-106A...

  5. Development of a hardware-based AC microgrid for AC stability assessment

    Science.gov (United States)

    Swanson, Robert R.

    As more power electronic-based devices enable the development of high-bandwidth AC microgrids, the topic of microgrid power distribution stability has become of increased interest. Recently, researchers have proposed a relatively straightforward method to assess the stability of AC systems based upon the time-constants of sources, the net bus capacitance, and the rate limits of sources. In this research, a focus has been to develop a hardware test system to evaluate AC system stability. As a first step, a time domain model of a two converter microgrid was established in which a three phase inverter acts as a power source and an active rectifier serves as an adjustable constant power AC load. The constant power load can be utilized to create rapid power flow transients to the generating system. As a second step, the inverter and active rectifier were designed using a Smart Power Module IGBT for switching and an embedded microcontroller as a processor for algorithm implementation. The inverter and active rectifier were designed to operate simultaneously using a synchronization signal to ensure each respective local controller operates in a common reference frame. Finally, the physical system was created and initial testing performed to validate the hardware functionality as a variable amplitude and variable frequency AC system.

  6. A nonlinear model for AC induced corrosion

    Directory of Open Access Journals (Sweden)

    N. Ida

    2012-09-01

    Full Text Available The modeling of corrosion poses particular difficulties. The understanding of corrosion as an electrochemical process has led to simple capacitive-resistive models that take into account the resistance of the electrolytic cell and the capacitive effect of the surface potential at the interface between conductors and the electrolyte. In some models nonlinear conduction effects have been added to account for more complex observed behavior. While these models are sufficient to describe the behavior in systems with cathodic protection, the behavior in the presence of induced AC currents from power lines and from RF sources cannot be accounted for and are insufficient to describe the effects observed in the field. Field observations have shown that a rectifying effect exists that affects the cathodic protection potential and this effect is responsible for corrosion in the presence of AC currents. The rectifying effects of the metal-corrosion interface are totally missing from current models. This work proposes a nonlinear model based on finite element analysis that takes into account the nonlinear behavior of the metal-oxide interface and promises to improve modeling by including the rectification effects at the interface.

  7. ac driving amplitude dependent systematic error in scanning Kelvin probe microscope measurements: Detection and correction

    International Nuclear Information System (INIS)

    Wu Yan; Shannon, Mark A.

    2006-01-01

    The dependence of the contact potential difference (CPD) reading on the ac driving amplitude in scanning Kelvin probe microscope (SKPM) hinders researchers from quantifying true material properties. We show theoretically and demonstrate experimentally that an ac driving amplitude dependence in the SKPM measurement can come from a systematic error, and it is common for all tip sample systems as long as there is a nonzero tracking error in the feedback control loop of the instrument. We further propose a methodology to detect and to correct the ac driving amplitude dependent systematic error in SKPM measurements. The true contact potential difference can be found by applying a linear regression to the measured CPD versus one over ac driving amplitude data. Two scenarios are studied: (a) when the surface being scanned by SKPM is not semiconducting and there is an ac driving amplitude dependent systematic error; (b) when a semiconductor surface is probed and asymmetric band bending occurs when the systematic error is present. Experiments are conducted using a commercial SKPM and CPD measurement results of two systems: platinum-iridium/gap/gold and platinum-iridium/gap/thermal oxide/silicon are discussed

  8. Highly n-Type Titanium Oxide as an Electronically Active Support for Platinum in the Catalytic Oxidation of Carbon Monoxide

    KAUST Repository

    Baker, L. Robert

    2011-08-18

    The role of the oxide-metal interface in determining the activity and selectivity of chemical reactions catalyzed by metal particles on an oxide support is an important topic in science and industry. A proposed mechanism for this strong metal-support interaction is electronic activation of surface adsorbates by charge carriers. Motivated by the goal of using electronic activation to drive nonthermal chemistry, we investigated the ability of the oxide support to mediate charge transfer. We report an approximately 2-fold increase in the turnover rate of catalytic carbon monoxide oxidation on platinum nanoparticles supported on stoichiometric titanium dioxide (TiO2) when the TiO2 is made highly n-type by fluorine (F) doping. However, for nonstoichiometric titanium oxide (TiOX<2) the effect of F on the turnover rate is negligible. Studies of the titanium oxide electronic structure show that the energy of free electrons in the oxide determines the rate of reaction. These results suggest that highly n-type TiO2 electronically activates adsorbed oxygen (O) by electron spillover to form an active O- intermediate. © 2011 American Chemical Society.

  9. The Effects of Theta and Gamma tACS on Working Memory and Electrophysiology

    Directory of Open Access Journals (Sweden)

    Anja Pahor

    2018-01-01

    Full Text Available A single blind sham-controlled study was conducted to explore the effects of theta and gamma transcranial alternating current stimulation (tACS on offline performance on working memory tasks. In order to systematically investigate how specific parameters of tACS affect working memory, we manipulated the frequency of stimulation (theta frequency vs. gamma frequency, the type of task (n-back vs. change detection task and the content of the tasks (verbal vs. figural stimuli. A repeated measures design was used that consisted of three sessions: theta tACS, gamma tACS and sham tACS. In total, four experiments were conducted which differed only with respect to placement of tACS electrodes (bilateral frontal, bilateral parietal, left fronto-parietal and right-fronto parietal. Healthy female students (N = 72 were randomly assigned to one of these groups, hence we were able to assess the efficacy of theta and gamma tACS applied over different brain areas, contrasted against sham stimulation. The pre-post/sham resting electroencephalogram (EEG analysis showed that theta tACS significantly affected theta amplitude, whereas gamma tACS had no significant effect on EEG amplitude in any of the frequency bands of interest. Gamma tACS did not significantly affect working memory performance compared to sham, and theta tACS led to inconsistent changes in performance on the n-back tasks. Active theta tACS significantly affected P3 amplitude and latency during performance on the n-back tasks in the bilateral parietal and right-fronto parietal protocols.

  10. Fabrication of birnessite-type layered manganese oxide films for super capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.K.; Dorval-Douville, G.; Favier, F. [Montpellier-2 Univ., LAMMI, UMR CNRS 5072, 34 (France)

    2004-07-01

    Birnessite-type layered manganese oxide films were anodically deposited at the surface of an inexpensive stainless steel. MnSO{sub 4} plating solutions were used at various potentials and for various durations. X-ray diffraction and scanning electron microscopy were used to examine the material structure and surface morphologies of obtained manganese oxide films. The capacitive characteristics and stability of these oxides were systematically investigated by means of cyclic voltammetry method in aqueous electrolytes. Deposition conditions affected the oxides structure and morphologies, and consequently greatly affected their electrochemical capacitance performance. (authors)

  11. Phase-locking of driven vortex lattices with transverse ac force and periodic pinning

    International Nuclear Information System (INIS)

    Reichhardt, Charles; Kolton, Alejandro B.; Dominguez, Daniel; Gronbech-Jensen, Niels

    2001-01-01

    For a vortex lattice moving in a periodic array we show analytically and numerically that a new type of phase locking occurs in the presence of a longitudinal dc driving force and a transverse ac driving force. This phase locking is distinct from the Shapiro step phase locking found with longitudinal ac drives. We show that an increase in critical current and a fundamental phase-locked step width scale with the square of the driving ac amplitude. Our results should carry over to other systems such as vortex motion in Josephson-junction arrays

  12. Thermal oxidation of Ni films for p-type thin-film transistors

    KAUST Repository

    Jiang, Jie; Wang, Xinghui; Zhang, Qing; Li, Jingqi; Zhang, Xixiang

    2013-01-01

    p-Type nanocrystal NiO-based thin-film transistors (TFTs) are fabricated by simply oxidizing thin Ni films at temperatures as low as 400 °C. The highest field-effect mobility in a linear region and the current on-off ratio are found to be 5.2 cm2 V-1 s-1 and 2.2 × 103, respectively. X-ray diffraction, transmission electron microscopy and electrical performances of the TFTs with "top contact" and "bottom contact" channels suggest that the upper parts of the Ni films are clearly oxidized. In contrast, the lower parts in contact with the gate dielectric are partially oxidized to form a quasi-discontinuous Ni layer, which does not fully shield the gate electric field, but still conduct the source and drain current. This simple method for producing p-type TFTs may be promising for the next-generation oxide-based electronic applications. © 2013 the Owner Societies.

  13. Biological response of Sr-containing coating with various surface treatments on titanium substrate for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shih-Ping [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China); Lee, Tzer-Min, E-mail: tmlee@mail.ncku.edu.tw [Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan (China); School of Dentistry, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Lui, Truan-Sheng [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China)

    2015-08-15

    Graphical abstract: - Highlights: • Sr-containing coating prepared by plasma spraying and micro-arc oxidation process, respectively. • MAO coating stimulated high ECM-like structures of cells on early stage. • Sr-containing specimens had high cell responses on late stage. • Sr-MAO coating is a desirable implant surface treatment for clinical applications. - Abstract: An implant requires a suitable surface to trigger osteointegration. The surface characteristics and chemical composition are important factors in this process. Plasma spraying and micro-arc oxidation can be used to fabricate rough and porous structures for medical applications. Strontium (Sr) has been shown to prevent osteoporosis in vitro and in vivo. However, few scientists have evaluated the biological response of Sr-containing coatings on different surface treatments. In this study, a sand-blasted (SB) surface (as the control), plasma-sprayed hydroxyapatite (HA) and Sr-substituted HA coatings (HAPS and SrHAPS, respectively), calcium phosphate and Sr-containing calcium phosphate micro-arc oxidation surface (CPM and SrCPM, respectively) were analyzed in terms of human osteoblastic cell (MG63) response. Sr was confirmed to be incorporated into the surface. SrHAPS and SrCPM specimens had higher cell responses than those of the HAPS and CPM groups, respectively. The cells cultured on SrCPM and SrHAPS specimens exhibited high proliferation and differentiation. However, CPM and SrCPM specimens stimulated more ECM-like structures than other specimens. The results show that Sr-containing coatings have good characteristics that enhance cell response. The SrCPM coating is a suitable implant surface treatment for clinical applications.

  14. Biological response of Sr-containing coating with various surface treatments on titanium substrate for medical applications

    International Nuclear Information System (INIS)

    Yang, Shih-Ping; Lee, Tzer-Min; Lui, Truan-Sheng

    2015-01-01

    Graphical abstract: - Highlights: • Sr-containing coating prepared by plasma spraying and micro-arc oxidation process, respectively. • MAO coating stimulated high ECM-like structures of cells on early stage. • Sr-containing specimens had high cell responses on late stage. • Sr-MAO coating is a desirable implant surface treatment for clinical applications. - Abstract: An implant requires a suitable surface to trigger osteointegration. The surface characteristics and chemical composition are important factors in this process. Plasma spraying and micro-arc oxidation can be used to fabricate rough and porous structures for medical applications. Strontium (Sr) has been shown to prevent osteoporosis in vitro and in vivo. However, few scientists have evaluated the biological response of Sr-containing coatings on different surface treatments. In this study, a sand-blasted (SB) surface (as the control), plasma-sprayed hydroxyapatite (HA) and Sr-substituted HA coatings (HAPS and SrHAPS, respectively), calcium phosphate and Sr-containing calcium phosphate micro-arc oxidation surface (CPM and SrCPM, respectively) were analyzed in terms of human osteoblastic cell (MG63) response. Sr was confirmed to be incorporated into the surface. SrHAPS and SrCPM specimens had higher cell responses than those of the HAPS and CPM groups, respectively. The cells cultured on SrCPM and SrHAPS specimens exhibited high proliferation and differentiation. However, CPM and SrCPM specimens stimulated more ECM-like structures than other specimens. The results show that Sr-containing coatings have good characteristics that enhance cell response. The SrCPM coating is a suitable implant surface treatment for clinical applications

  15. Demonstration of high-performance p-type tin oxide thin-film transistors using argon-plasma surface treatments

    Science.gov (United States)

    Bae, Sang-Dae; Kwon, Soo-Hun; Jeong, Hwan-Seok; Kwon, Hyuck-In

    2017-07-01

    In this work, we investigated the effects of low-temperature argon (Ar)-plasma surface treatments on the physical and chemical structures of p-type tin oxide thin-films and the electrical performance of p-type tin oxide thin-film transistors (TFTs). From the x-ray photoelectron spectroscopy measurement, we found that SnO was the dominant phase in the deposited tin oxide thin-film, and the Ar-plasma treatment partially transformed the tin oxide phase from SnO to SnO2 by oxidation. The resistivity of the tin oxide thin-film increased with the plasma-treatment time because of the reduced hole concentration. In addition, the root-mean-square roughness of the tin oxide thin-film decreased as the plasma-treatment time increased. The p-type oxide TFT with an Ar-plasma-treated tin oxide thin-film exhibited excellent electrical performance with a high current on-off ratio (5.2 × 106) and a low off-current (1.2 × 10-12 A), which demonstrates that the low-temperature Ar-plasma treatment is a simple and effective method for improving the electrical performance of p-type tin oxide TFTs.

  16. Lamin A/C might be involved in the EMT signalling pathway.

    Science.gov (United States)

    Zuo, Lingkun; Zhao, Huanying; Yang, Ronghui; Wang, Liyong; Ma, Hui; Xu, Xiaoxue; Zhou, Ping; Kong, Lu

    2018-07-15

    We have previously reported a heterogeneous expression pattern of the nuclear membrane protein lamin A/C in low- and high-Gleason score (GS) prostate cancer (PC) tissues, and we have now found that this change is not associated with LMNA mutations. This expression pattern appears to be similar to the process of epithelial to mesenchymal transition (EMT) or to that of mesenchymal to epithelial transition (MET). The role of lamin A/C in EMT or MET in PC remains unclear. Therefore, we first investigated the expression levels of and the associations between lamin A/C and several common EMT markers, such as E-cadherin, N-cadherin, β-catenin, snail, slug and vimentin in PC tissues with different GS values and in different cell lines with varying invasion abilities. Our results suggest that lamin A/C might constitute a type of epithelial marker that better signifies EMT and MET in PC tissue, since a decrease in lamin A/C expression in GS 4 + 5 cases is likely associated with the EMT process, while the re-expression of lamin A/C in GS 5 + 4 cases is likely linked with MET. The detailed GS better exhibited the changes in lamin A/C and the EMT markers examined. Lamin A/C overexpression or knockdown had an impact on EMT biomarkers in a cell model by direct regulation of β-catenin. Hence, we suggest that lamin A/C might serve as a reliable epithelial biomarker for the distinction of PC cell differentiation and might also be a fundamental factor in the occurrence of EMT or MET in PC. Copyright © 2018. Published by Elsevier B.V.

  17. Development of magneto-rheologial fluid (MRF) based clutch for output torque control of AC motors

    Science.gov (United States)

    Nguyen, Q. Hung; Do, H. M. Hieu; Nguyen, V. Quoc; Nguyen, N. Diep; Le, D. Thang

    2018-03-01

    In industry, the AC motor is widely used because of low price, power availability, low cost maintenance. The main disadvantages of AC motors compared to DC motors are difficulty in speed and torque control, requiring expensive controllers with complex control algorithms. This is the basic limitations in the widespread adoption of AC motor systems for industrial automation. One feasible solution for AC motor control is using MRF (magneto-rheological fluid) based clutches (shortly called MR clutches) Although there have been many studies on MR clutches, most of these clutches used traditional configuration with coils wound on the middle cylindrical part and a compotator is used to supply power to the coils. Therefore, this type of MR clutches possesses many disadvantages such as high friction and unstable applied current due to commutator, complex structure which causes difficulty in manufacture, assembly, and maintenance. In addition, the bottleneck problem of magnetic field is also a challenging issue. In this research, we will develop a new type of MR clutches that overcomes the abovementioned disadvantages of traditional MR clutches and more suitable for application in controlling of AC motor. Besides, in this study, speed and torque control system for AC motors using developed MR clutches is designed and experimental validated.

  18. Estimating BrAC from transdermal alcohol concentration data using the BrAC estimator software program.

    Science.gov (United States)

    Luczak, Susan E; Rosen, I Gary

    2014-08-01

    Transdermal alcohol sensor (TAS) devices have the potential to allow researchers and clinicians to unobtrusively collect naturalistic drinking data for weeks at a time, but the transdermal alcohol concentration (TAC) data these devices produce do not consistently correspond with breath alcohol concentration (BrAC) data. We present and test the BrAC Estimator software, a program designed to produce individualized estimates of BrAC from TAC data by fitting mathematical models to a specific person wearing a specific TAS device. Two TAS devices were worn simultaneously by 1 participant for 18 days. The trial began with a laboratory alcohol session to calibrate the model and was followed by a field trial with 10 drinking episodes. Model parameter estimates and fit indices were compared across drinking episodes to examine the calibration phase of the software. Software-generated estimates of peak BrAC, time of peak BrAC, and area under the BrAC curve were compared with breath analyzer data to examine the estimation phase of the software. In this single-subject design with breath analyzer peak BrAC scores ranging from 0.013 to 0.057, the software created consistent models for the 2 TAS devices, despite differences in raw TAC data, and was able to compensate for the attenuation of peak BrAC and latency of the time of peak BrAC that are typically observed in TAC data. This software program represents an important initial step for making it possible for non mathematician researchers and clinicians to obtain estimates of BrAC from TAC data in naturalistic drinking environments. Future research with more participants and greater variation in alcohol consumption levels and patterns, as well as examination of gain scheduling calibration procedures and nonlinear models of diffusion, will help to determine how precise these software models can become. Copyright © 2014 by the Research Society on Alcoholism.

  19. Removal and recovery of gas-phase element mercury by metal oxide-loaded activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Mei Zhijian [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China); Shen Zhemin [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China)], E-mail: pnyql520@hotmail.com; Zhao Qingjie [Shanghai Academy of Environmental Science, 508 Qin-Zhou Road, Shanghai 200233 (China); Wang Wenhua; Zhang Yejian [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China)

    2008-04-01

    The reusability of Co{sub 3}O{sub 4} (AC-Co), MnO{sub 2} (AC-Mn) and CuCoO{sub 4} (AC-CC) loaded activated carbon (AC) and their element mercury removal efficiency had been studied using a laboratory-scale fixed-bed reactor under simulated flue gas conditions. Tests showed that spent AC-Co could be regenerated through heating at 673 K under N{sub 2} atmosphere and the enrichment regenerated Hg{sup 0} could be collected to eliminate the secondary pollution. Regenerated AC-Mn and AC-CC's Hg{sup 0} removal efficiency decreased greatly due to AC's decomposition and MnO{sub 2}'s crystal structure variation. Compared with AC and metal oxides, metal oxide-loaded AC had higher Hg{sup 0} capture ability and capacity due to AC huge surface areas and lots of function groups. TGA analysis results showed that AC-Co and AC-Mn's HgO adsorptive capacity at 523 K reached 19.8 mg g{sup -1} and 5.21 mg g{sup -1}, respectively. High loading values and adsorption temperatures were beneficial to AC-Co's Hg{sup 0} removal efficiency. However, CuCoO{sub 4} and MnO{sub 2}'s AC decomposition ability had negative effect on AC-CC and AC-Mn's performance, respectively, especially at high adsorption temperatures and loading values. SO{sub 2} tests showed that AC-CC had higher anti SO{sub 2}-poisoning ability than AC-Co and AC-Mn.

  20. High-Speed Visualization of Evaporation Phenomena from Tungsten Based Electrode in Multi-Phase AC Arc

    Science.gov (United States)

    Tanaka, Manabu; Hashizume, Taro; Imatsuji, Tomoyuki; Nawata, Yushi; Watanabe, Takayuki

    2015-09-01

    A multi-phase AC arc has been developed for applications in various fields of engineering because it possesses unique advantages such as high energy efficiency. However, understanding of fundamental phenomena in the multi-phase AC arc is still insufficient for practical use. Purpose of this study is to investigate electrode erosion mechanism by high-speed visualization of the electrode metal vapor in the arc. Results indicated that the electrode mainly evaporated at anodic period, leading to the arc constriction. Moreover, evaporation of W electrode with 2wt% La2O3 at the anodic period was much higher than that with 2wt% ThO2. This can be explained by different properties of these oxide additives. Evaporation of the oxide additive resulted in the arc constriction, which accelerated the evaporation of W electrode. Therefore, addition of La2O3 with lower melting and boiling point than ThO2 lead to stronger arc constriction, resulting in severer evaporation of W electrode.

  1. Compressive Strength of EN AC-44200 Based Composite Materials Strengthened with α-Al2O3 Particles

    OpenAIRE

    Kurzawa A.; Kaczmar J. W.

    2017-01-01

    The paper presents results of compressive strength investigations of EN AC-44200 based aluminum alloy composite materials reinforced with aluminum oxide particles at ambient and at temperatures of 100, 200 and 250°C. They were manufactured by squeeze casting of the porous preforms made of α-Al2O3 particles with liquid aluminum alloy EN AC-44200. The composite materials were reinforced with preforms characterized by the porosities of 90, 80, 70 and 60 vol. %, thus the alumina content in the co...

  2. Electrical conductivity of uranium-antimony oxide catalysts

    International Nuclear Information System (INIS)

    Golunski, S.E.; Nevell, T.G.; Hucknall, D.J.

    1985-01-01

    The relative ionic and electronic contributions to the electrical conductivity of a uranium-antimony oxide catalyst and of USbO 5 have been determined from measurements of a.c. and d.c. conductance. Under inert atmospheres (390 to 775 K) conduction in the catalyst (predominantly USb 3 O 10 together with small proportions of Sb 2 O 4 and USbO 5 ) is associated with both electronic and effectively charged atomic point defects. Only electronic conduction occurs in USbO 5 . Under oxygen (10 to 70 kPa, 493 to 682 K) both materials are n-type semiconductors at higher temperatures, but at lower temperatures semiconducting behaviour varies with the pressure of oxygen. Heating USbO 5 in oxygen induces an ionic contribution to conductivity. Ionic conduction in the catalyst is eliminated by heating in hydrogen or propene at 470 K but is restored by heating in oxygen. It is suggested that both charged oxygen vacancies and interstitial oxide ions are involved in interactions of gaseous components with uranium-antimony oxides. With alkenes, interstitial oxide ions give rise to the products of selective partial oxidation. (author)

  3. Electrical conductivity of uranium-antimony oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Golunski, S.E.; Nevell, T.G. (Portsmouth Polytechnic (UK)); Hucknall, D.J. (Southampton Univ. (UK). Dept. of Chemistry)

    1985-05-01

    The relative ionic and electronic contributions to the electrical conductivity of a uranium-antimony oxide catalyst and of USbO/sub 5/ have been determined from measurements of a.c. and d.c. conductance. Under inert atmospheres (390 to 775 K) conduction in the catalyst (predominantly USb/sub 3/O/sub 10/ together with small proportions of Sb/sub 2/O/sub 4/ and USbO/sub 5/) is associated with both electronic and effectively charged atomic point defects. Only electronic conduction occurs in USbO/sub 5/. Under oxygen (10 to 70 kPa, 493 to 682 K) both materials are n-type semiconductors at higher temperatures, but at lower temperatures semiconducting behaviour varies with the pressure of oxygen. Heating USbO/sub 5/ in oxygen induces an ionic contribution to conductivity. Ionic conduction in the catalyst is eliminated by heating in hydrogen or propene at 470 K but is restored by heating in oxygen. It is suggested that both charged oxygen vacancies and interstitial oxide ions are involved in interactions of gaseous components with uranium-antimony oxides. With alkenes, interstitial oxide ions give rise to the products of selective partial oxidation.

  4. Association of Oxidative Stress and Obesity with Insulin Resistance in Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Das, P; Biswas, S; Mukherjee, S; Bandyopadhyay, S K

    2016-01-01

    Oxidative stress occurs due to delicate imbalance between pro-oxidant and anti oxidant forces in our system. It has been found to be associated with many morbidities but its association with obesity and insulin resistance is still controversial. Here in our study we examined 167 patients of recent onset type 2 diabetes mellitus and 60 age sex matched non-diabetic control. Body Mass Index (BMI), abdominal circumference, fasting blood glucose, serum insulin and plasma Malondealdehyde (MDA, marker for oxidative stress) were measured in them. On the basis of BMI, subjects were divided into obese (BMI≥25) and non obese (BMIobese and non-obese sub groups. Insulin resistance score showed positive correlation with BMI, abdominal circumference, and plasma MDA, strength of association being highest with abdominal circumference. Plasma MDA was found to have positive correlation with physical parameters. Study concludes that, obesity mainly central type may predispose to insulin resistance and oxidative stress may be a crucial factor in its pathogenesis. Thus, oxidative stress may be the connecting link between obesity and type 2 diabetes mellitus, two on going global epidemics.

  5. The Ethylene Biosynthesis Gene CitACS4 Regulates Monoecy/Andromonoecy in Watermelon (Citrullus lanatus).

    Science.gov (United States)

    Manzano, Susana; Aguado, Encarnación; Martínez, Cecilia; Megías, Zoraida; García, Alicia; Jamilena, Manuel

    2016-01-01

    Monoecious and andromonoecious cultivars of watermelon are characterised by the production of male and female flower or male and hermaphrodite flowers, respectively. The segregation analysis in the offspring of crosses between monoecious and andromonoecious lines has demonstrated that this trait is controlled by a single gene pair, being the monoecious allele M semi-dominant to the andromonoecious allele A. The two studied F1 hybrids (MA) had a predominantly monoecious phenotype since both produced not only female flowers, but also bisexual flowers with incomplete stamens, and hermaphrodite flowers with pollen. Given that in other cucurbit species andromonoecy is conferred by mutations in the ethylene biosynthesis genes CmACS7, CsACS2 and CpACS27A we have cloned and characterised CitACS4, the watermelon gene showing the highest similarity with the formers. CitACS4 encoded for a type ACS type III enzyme that is predominantly expressed in pistillate flowers of watermelon. In the andromonoecious line we have detected a missense mutation in a very conserved residue of CitACS4 (C364W) that cosegregates with the andromonoecious phenotype in two independent F2 populations, concomitantly with a reduction in ethylene production in the floral buds that will develop as hermaphrodite flowers. The gene does not however co-segregates with other sex expression traits regulated by ethylene in this species, including pistillate flowering transition and the number of pistillate flowers per plant. These data indicate that CitAC4 is likely to be involved in the biosynthesis of the ethylene required for stamen arrest during the development of female flowers. The C364W mutation would reduce the production of ethylene in pistillate floral buds, promoting the conversion of female into hermaphrodite flowers, and therefore of monoecy into andromonoecy.

  6. Study on AC loss measurements of HTS power cable for standardizing

    Science.gov (United States)

    Mukoyama, Shinichi; Amemiya, Naoyuki; Watanabe, Kazuo; Iijima, Yasuhiro; Mido, Nobuhiro; Masuda, Takao; Morimura, Toshiya; Oya, Masayoshi; Nakano, Tetsutaro; Yamamoto, Kiyoshi

    2017-09-01

    High-temperature superconducting power cables (HTS cables) have been developed for more than 20 years. In addition of the cable developments, the test methods of the HTS cables have been discussed and proposed in many laboratories and companies. Recently the test methods of the HTS cables is required to standardize and to common in the world. CIGRE made the working group (B1-31) for the discussion of the test methods of the HTS cables as a power cable, and published the recommendation of the test method. Additionally, IEC TC20 submitted the New Work Item Proposal (NP) based on the recommendation of CIGRE this year, IEC TC20 and IEC TC90 started the standardization work on Testing of HTS AC cables. However, the individual test method that used to measure a performance of HTS cables hasn’t been established as world’s common methods. The AC loss is one of the most important properties to disseminate low loss and economical efficient HTS cables in the world. We regard to establish the method of the AC loss measurements in rational and in high accuracy. Japan is at a leading position in the AC loss study, because Japanese researchers have studied on the AC loss technically and scientifically, and also developed the effective technologies for the AC loss reduction. The JP domestic commission of TC90 made a working team to discussion the methods of the AC loss measurements for aiming an international standard finally. This paper reports about the AC loss measurement of two type of the HTS conductors, such as a HTS conductor without a HTS shield and a HTS conductor with a HTS shield. The AC loss measurement method is suggested by the electrical method..

  7. Effective Peroxidase-Like Activity of Co-Aminoclay [CoAC] and Its Application for Glucose Detection

    Directory of Open Access Journals (Sweden)

    Han Pill Song

    2018-02-01

    Full Text Available In this study, we describe a novel peroxidase-like activity of Co-aminoclay [CoAC] present at pH ~5.0 and its application to fluorescent biosensor for the determination of H2O2 and glucose. It is synthesized with aminoclays (ACs entrapping cationic metals such as Fe, Cu, Al, Co., Ce, Ni, Mn, and Zn to find enzyme mimicking ACs by sol–gel ambient conditions. Through the screening of catalytic activities by the typical colorimetric reaction employing 2,2′-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic aciddiammonium salt (ABTS as a substrate with or without H2O2, Fe, Cu, and CoACs are found to exhibit peroxidase-like activity, as well as oxidase-like activity was observed from Ce and MnACs. Among them, CoAC shows exceptionally high peroxidase-like activity, presumably due to its ability to induce electron transfer between substrates and H2O2. CoAC is then used to catalyze the oxidation of Amplex® UltraRed (AUR into a fluorescent end product, which enables a sensitive fluorescent detection of H2O2. Moreover, a highly sensitive and selective glucose biosensing strategy is developed, based on enzyme cascade reaction between glucose oxidase (GOx and CoAC. Using this strategy, a highly linear fluorescence enhancement is verified when the concentration of glucose is increased in a wide range from 10 μM to 1 mM with a lower detection limit of 5 μM. The practical diagnostic capability of the assay system is also verified by its use to detect glucose in human blood serum. Based on these results, it is anticipated that CoAC can serve as potent peroxidase mimetics for the detection of clinically important target molecules.

  8. Chronic deficit in nitric oxide elicits oxidative stress and augments T-type calcium-channel contribution to vascular tone of rodent arteries and arterioles

    DEFF Research Database (Denmark)

    Howitt, Lauren; Kuo, Ivana Y; Ellis, Anthie

    2013-01-01

    arteries in vitro and skeletal muscle arterioles in vivo to study the contribution of L-type (1 µmol/L nifedipine) and T-type (1 µmol/L mibefradil, 3 µmol/L NNC 55-0396) calcium channels to vascular tone, following acute or chronic inhibition of nitric oxide. Acute inhibition with l-NAME (10 µmol...... was reversed by acute scavenging of superoxide with tempol (1 mmol/L), or inhibition of NADPH oxidase with apocynin (500 µmol/L) or DPI (5 µmol/L). CONCLUSION: We conclude that nitric oxide deficit produces a significant increase in the contribution of Cav3.1 and Cav3.2 T-type calcium channels to vascular tone......, by regulating the bioavailability of reactive oxygen species produced by NADPH oxidase. Our data provide evidence for a novel causal link between nitric oxide deficit, oxidative stress, and T-type calcium channel function....

  9. Development and Processing of p-type Oxide Thermoelectric Materials

    DEFF Research Database (Denmark)

    Wu, NingYu; Van Nong, Ngo

    The main aim of this research is to investigate and develop well-performing p-type thermoelectric oxide materials that are sufficiently stable at high temperatures for power generating applications involving industrial processes. Presently, the challenges facing the widespread implementation...

  10. Periodontitis and type 2 diabetes: is oxidative stress the mechanistic link?

    LENUS (Irish Health Repository)

    Allen, E M

    2009-05-01

    Periodontitis is a common, chronic inflammatory disease initiated by bacteria which has an increased prevalence and severity in patients with type 2 diabetes. Recent studies indicate that the co-morbid presence of periodontitis can, in turn, adversely affect diabetic status and the treatment of periodontitis can lead to improved metabolic control in diabetes patients. Current evidence points to a bidirectional interrelationship between diabetes and inflammatory periodontitis. The importance of oxidative stress-inflammatory pathways in the pathogenesis of type 2 diabetes and periodontitis has recently received attention. Given the bidirectional relationship between these two conditions, this review discusses the potential synergistic interactions along the oxidative stress-inflammation axis common to both type 2 diabetes and periodontitis, and the implications of this relationship for diabetic patients.

  11. RHIC spin flipper AC dipole controller

    Energy Technology Data Exchange (ETDEWEB)

    Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.

    2011-03-28

    The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.

  12. Roebel assembled coated conductor cables (RACC): Ac-Losses and current carrying potential

    Science.gov (United States)

    Frank, A.; Heller, R.; Goldacker, W.; Kling, A.; Schmidt, C.

    2008-02-01

    Low ac-loss HTS cables for transport currents well above 1 kA are required for application in transformers and generators and are taken into consideration for future generations of fusion reactor coils. Coated conductors (CC) are suitable candidates for high field application at an operation temperature in the range 50-77 K. Ac-field applications require cables with low ac-losses and hence twisting of the individual strands. We solved this problem using the Roebel technique. Short lengths of Roebel bar cables were prepared from industrial DyBCO and YBCO-CC. Meander shaped tapes of 4 or 5 mm width with twist pitches of 123 or 127 mm were cut from the 10 or 12 mm wide CC tapes using a specially designed tool. Eleven or twelve of these strands were assembled to a cable. The electrical and mechanical connection of the tapes was achieved using a silver powder filled conductive epoxy resin. Ac-losses of a short sample in an external ac-field were measured as a function of frequency and field amplitude as well as the coupling current decay time constant. We discuss the results in terms of available theories and compare measured time constants in transverse field with measured coupling losses. Finally the potential of this cable type for ac-use is discussed with respect to ac-losses and current carrying capability.

  13. Roebel assembled coated conductor cables (RACC): Ac-Losses and current carrying potential

    International Nuclear Information System (INIS)

    Frank, A; Heller, R; Goldacker, W; Kling, A; Schmidt, C

    2008-01-01

    Low ac-loss HTS cables for transport currents well above 1 kA are required for application in transformers and generators and are taken into consideration for future generations of fusion reactor coils. Coated conductors (CC) are suitable candidates for high field application at an operation temperature in the range 50-77 K. Ac-field applications require cables with low ac-losses and hence twisting of the individual strands. We solved this problem using the Roebel technique. Short lengths of Roebel bar cables were prepared from industrial DyBCO and YBCO-CC. Meander shaped tapes of 4 or 5 mm width with twist pitches of 123 or 127 mm were cut from the 10 or 12 mm wide CC tapes using a specially designed tool. Eleven or twelve of these strands were assembled to a cable. The electrical and mechanical connection of the tapes was achieved using a silver powder filled conductive epoxy resin. Ac-losses of a short sample in an external ac-field were measured as a function of frequency and field amplitude as well as the coupling current decay time constant. We discuss the results in terms of available theories and compare measured time constants in transverse field with measured coupling losses. Finally the potential of this cable type for ac-use is discussed with respect to ac-losses and current carrying capability

  14. Comparative supercapacitive properties of asymmetry two electrode coin type supercapacitor cells made from MWCNTs/cobalt oxide and MWCNTs/iron oxide nanocomposite

    CSIR Research Space (South Africa)

    Adekunle, AS

    2015-04-01

    Full Text Available Supercapacitive properties of synthesized metal oxide nanoparticles (MO) vis a vis iron oxides (Fe(sub2)O(sub3)) and cobalt oxide (Co(sub3)O(sub4)) nanoparticles integrated with multi-walled carbon nanotubes (MWCNT) in a two-electrode coin cell type...

  15. Aragonite coating solutions (ACS) based on artificial seawater

    International Nuclear Information System (INIS)

    Tas, A. Cuneyt

    2015-01-01

    Graphical abstract: - Highlights: • Developed completely inorganic solutions for the deposition of monolayers of aragonite spherules (or ooids). • Solutions mimicked the artificial seawater. • Biomimetic crystallization was performed at the tropical sea surface temperature of 30 °C. - Abstract: Aragonite (CaCO 3 , calcium carbonate) is an abundant biomaterial of marine life. It is the dominant inorganic phase of coral reefs, mollusc bivalve shells and the stalactites or stalagmites of geological sediments. Inorganic and initially precipitate-free aragonite coating solutions (ACS) of pH 7.4 were developed in this study to deposit monolayers of aragonite spherules or ooids on biomaterial (e.g., UHMWPE, ultrahigh molecular weight polyethylene) surfaces soaked in ACS at 30 °C. The ACS solutions of this study have been developed for the surface engineering of synthetic biomaterials. The abiotic ACS solutions, enriched with calcium and bicarbonate ions at different concentrations, essentially mimicked the artificial seawater composition and started to deposit aragonite after a long (4 h) incubation period at the tropical sea surface temperature of 30 °C. While numerous techniques for the solution deposition of calcium hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ), of low thermodynamic solubility, on synthetic biomaterials have been demonstrated, procedures related to the solution-based surface deposition of high solubility aragonite remained uncommon. Monolayers of aragonite ooids deposited at 30 °C on UHMWPE substrates soaked in organic-free ACS solutions were found to possess nano-structures similar to the mortar-and-brick-type botryoids observed in biogenic marine shells. Samples were characterized using SEM, XRD, FTIR, ICP-AES and contact angle goniometry

  16. Aragonite coating solutions (ACS) based on artificial seawater

    Energy Technology Data Exchange (ETDEWEB)

    Tas, A. Cuneyt, E-mail: c_tas@hotmail.com

    2015-03-01

    Graphical abstract: - Highlights: • Developed completely inorganic solutions for the deposition of monolayers of aragonite spherules (or ooids). • Solutions mimicked the artificial seawater. • Biomimetic crystallization was performed at the tropical sea surface temperature of 30 °C. - Abstract: Aragonite (CaCO{sub 3}, calcium carbonate) is an abundant biomaterial of marine life. It is the dominant inorganic phase of coral reefs, mollusc bivalve shells and the stalactites or stalagmites of geological sediments. Inorganic and initially precipitate-free aragonite coating solutions (ACS) of pH 7.4 were developed in this study to deposit monolayers of aragonite spherules or ooids on biomaterial (e.g., UHMWPE, ultrahigh molecular weight polyethylene) surfaces soaked in ACS at 30 °C. The ACS solutions of this study have been developed for the surface engineering of synthetic biomaterials. The abiotic ACS solutions, enriched with calcium and bicarbonate ions at different concentrations, essentially mimicked the artificial seawater composition and started to deposit aragonite after a long (4 h) incubation period at the tropical sea surface temperature of 30 °C. While numerous techniques for the solution deposition of calcium hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}), of low thermodynamic solubility, on synthetic biomaterials have been demonstrated, procedures related to the solution-based surface deposition of high solubility aragonite remained uncommon. Monolayers of aragonite ooids deposited at 30 °C on UHMWPE substrates soaked in organic-free ACS solutions were found to possess nano-structures similar to the mortar-and-brick-type botryoids observed in biogenic marine shells. Samples were characterized using SEM, XRD, FTIR, ICP-AES and contact angle goniometry.

  17. The relations between hydrodynamic characteristics and interbedding oxidation zone type uranium mineralization

    International Nuclear Information System (INIS)

    Bai Jingping

    2001-01-01

    Infiltrating type hydrodynamic way controls the formation of interbedding oxidation zone type uranium deposit. The author analyzes hydrodynamic condition of Songliao basin and concludes that during evolution and development of Songliao basin, Water-bearing petrofabric of Mingshui Formation and above inherit completely infiltrating hydrodynamic way as they were deposited and that Sifangtai Formation inherit the way to some extent, that below Sifangtai Formation water bearing petrofabric were completely reformed in northern part of Songliao watershed. The contact line between infiltrating and out filtrating type hydrodynamic way, e.g. underground water dividing lines formed in different geological period, restricts development of interbedding oxidation zone in this period and controls uranium mineralization

  18. Synthesis and catalytic activity of Birnessite-Type Manganese Oxide synthesized by solvent-free method

    Science.gov (United States)

    Siregar, S. S.; Awaluddin, A.

    2018-04-01

    Redox reaction between KMnO4 and glucose usingsolvent-free method produces the octahedral layer birnessite-type manganese oxide. The effects of mole ratios, temperatures, and calcinations time on the structures and crystallinity of the oxides were studied throughthe X-ray powder diffraction analysis. The mole ratio of KMnO4/glucose (1:3) produces the purebirnessite with low crystallinity, whereas the mole ratio of KMnO4/glucose (3:1) yields high crystalline birnessite with minor components of hausmannite-type manganese oxide.The increasing of the temperature and calcinations times (300-700 °C and 3-7 h, respectively) willimprove the crystallinity and the purity of the as-synthesized oxide. Further experiments also showed that the as-syntesized octahedral layer birnessite-type manganese oxides have catalytic activity on the degradation of methylene blue (MB) dye with H2O2 as oxidant. The results revealed that the effective degradation could be achieved only in the presence of both the birnessite and H2O2, whereas without the addition of catalyst (H2O2only) or addition of H2O2 (catalyst only), the 3.5% and 15.5% of MB removal were obtained, respectively.

  19. The AC photovoltaic module is here!

    Science.gov (United States)

    Strong, Steven J.; Wohlgemuth, John H.; Wills, Robert H.

    1997-02-01

    This paper describes the design, development, and performance results of a large-area photovoltaic module whose electrical output is ac power suitable for direct connection to the utility grid. The large-area ac PV module features a dedicated, integrally mounted, high-efficiency dc-to-ac power inverter with a nominal output of 250 watts (STC) at 120 Vac, 60 H, that is fully compatible with utility power. The module's output is connected directly to the building's conventional ac distribution system without need for any dc wiring, string combiners, dc ground-fault protection or additional power-conditioning equipment. With its advantages, the ac photovoltaic module promises to become a universal building block for use in all utility-interactive PV systems. This paper discusses AC Module design aspects and utility interface issues (including islanding).

  20. IBX-mediated oxidation of unactivated cyclic amines: application in highly diastereoselective oxidative Ugi-type and aza-Friedel-Crafts reactions.

    Science.gov (United States)

    de Graaff, C; Bensch, L; van Lint, Matthijs J; Ruijter, E; Orru, R V A

    2015-10-28

    The first o-iodoxybenzoic acid (IBX) mediated oxidation of unactivated amines to imines is described. A range of meso-pyrrolidines were shown to be suitable substrates. The chemical space was further explored with one-pot oxidative Ugi-type and aza-Friedel-Crafts reactions, which proved to be highly diastereoselective.

  1. Data for spatial characterization of AC signal propagation over primary neuron dendrites

    Directory of Open Access Journals (Sweden)

    Hojeong Kim

    2016-03-01

    Full Text Available Action potentials generated near the soma propagate not only into the axonal nerve connecting to the adjacent neurons but also into the dendrites interacting with a diversity of synaptic inputs as well as voltage gated ion channels. Measuring voltage attenuation factors between the soma and all single points of the dendrites in the anatomically reconstructed primary neurons with the same cable properties, we report the signal propagation data showing how the alternating current (AC signal such as action potentials back-propagates over the dendrites among different types of primary neurons. Fitting equations and their parameter values for the data are also presented to quantitatively capture the spatial profile of AC signal propagation from the soma to the dendrites in primary neurons. Our data is supplemental to our original study for the dependency of dendritic signal propagation and excitability, and their relationship on the cell type-specific structure in primary neurons (DOI: 10.1016/j.neulet.2015.10.017 [1]. Keywords: Primary neurons, Dendritic signal processing, AC signal propagation, Voltage attenuation analysis

  2. AC impedance electrochemical modeling of lithium-ion positive electrodes

    International Nuclear Information System (INIS)

    Dees, D.; Gunen, E.; Abraham, D.; Jansen, A.; Prakash, J.

    2004-01-01

    Under Department of Energy's Advanced Technology Development Program,various analytical diagnostic studies are being carried out to examine the lithium-ion battery technology for hybrid electric vehicle applications, and a series of electrochemical studies are being conducted to examine the performance of these batteries. An electrochemical model was developed to associate changes that were observed in the post-test analytical diagnostic studies with the electrochemical performance loss during testing of lithium ion batteries. While both electrodes in the lithium-ion cell have been studied using a similar electrochemical model, the discussion here is limited to modeling of the positive electrode. The positive electrode under study has a composite structure made of a layered nickel oxide (LiNi 0.8 Co 0.15 Al 0.05 O 2 ) active material, a carbon black and graphite additive for distributing current, and a PVDF binder all on an aluminum current collector. The electrolyte is 1.2M LiPF 6 dissolved in a mixture of EC and EMC and a Celgard micro-porous membrane is used as the separator. Planar test cells (positive/separator/negative) were constructed with a special fixture and two separator membranes that allowed the placement of a micro-reference electrode between the separator membranes (1). Electrochemical studies including AC impedance spectroscopy were then conducted on the individual electrodes to examine the performance and ageing effects in the cell. The model was developed by following the work of Professor Newman at Berkeley (2). The solid electrolyte interface (SEI) region, based on post-test analytical results, was assumed to be a film on the oxide and an oxide layer at the surface of the oxide. A double layer capacity was added in parallel with the Butler-Volmer kinetic expression. The pertinent reaction, thermodynamic, and transport equations were linearized for a small sinusoidal perturbation (3). The resulting system of differential equations was solved

  3. Levitação acústica

    OpenAIRE

    Andrade, Marco Aurélio Brizzotti; Pérez, Nicolás; Adamowski, Julio Cezar

    2015-01-01

    A levitação acústica pode ser uma ferramenta valiosa para auxiliar estudantes de graduação a aprender conceitos básicos de física, tais como movimento harmônico simples, ondas acústicas estacionárias, e energia potencial. Neste artigo, apresentamos o princípio de funcionamento de um levitador acústico e explicamos como aplicar as equações básicas da acústica para determinar a força de radiação acústica que atua numa esfera em uma onda estacionária. Acoustic levitation can be a valuable too...

  4. Modelling and measurement of ac loss in BSCCO/Ag-tape windings

    International Nuclear Information System (INIS)

    Oomen, M P; Nanke, R; Leghissa, M

    2003-01-01

    High-temperature superconducting (HTS) transformers promise decreased weight and volume and higher efficiency. A 1 MVA HTS railway transformer was built and tested at Siemens AG. This paper deals with the prediction of ac loss in the BSCCO/Ag-tape windings. In a railway transformer the tape carries ac current in alternating field, the temperature differs from 77 K, tapes are stacked or cabled and overcurrents and higher harmonics occur. In ac-loss literature these issues are treated separately, if at all. We have developed a model that predicts the ac loss in sets of BSCCO/Ag-tape coils, and deals with the above-mentioned issues. The effect of higher harmonics on the loss in HTS tapes is considered for the first time. The paper gives a complete overview of the model equations and required input parameters. The model is validated over a wide range of the input parameters, using the measured critical current and ac loss of single tapes, single coils and sets of coils in the 1 MVA transformer. An accuracy of around 25% is achieved in all relevant cases. Presently the model is developed further, in order to describe other HTS materials and other types of applications

  5. Facile synthesis of birnessite-type manganese oxide nanoparticles as supercapacitor electrode materials.

    Science.gov (United States)

    Liu, Lihu; Luo, Yao; Tan, Wenfeng; Zhang, Yashan; Liu, Fan; Qiu, Guohong

    2016-11-15

    Manganese oxides are environmentally benign supercapacitor electrode materials and, in particular, birnessite-type structure shows very promising electrochemical performance. In this work, nanostructured birnessite was facilely prepared by adding dropwise NH2OH·HCl to KMnO4 solution under ambient temperature and pressure. In order to fully exploit the potential of birnessite-type manganese oxide electrode materials, the effects of specific surface area, pore size, content of K(+), and manganese average oxidation state (Mn AOS) on their electrochemical performance were studied. The results showed that with the increase of NH2OH·HCl, the Mn AOS decreased and the corresponding pore sizes and specific surface area of birnessite increased. The synthesized nanostructured birnessite showed the highest specific capacitance of 245Fg(-1) at a current density of 0.1Ag(-1) within a potential range of 0-0.9V, and excellent cycle stability with a capacitance retention rate of 92% after 3000 cycles at a current density of 1.0Ag(-1). The present work implies that specific capacitance is mainly affected by specific surface area and pore volume, and provides a new method for the facile preparation of birnessite-type manganese oxide with excellent capacitive performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Magnesium Aminoclay-Fe3O4 (MgAC-Fe3O4 Hybrid Composites for Harvesting of Mixed Microalgae

    Directory of Open Access Journals (Sweden)

    Bohwa Kim

    2018-05-01

    Full Text Available In this paper, we describe the synthesis of magnesium aminoclay-iron oxide (MgAC-Fe3O4 hybrid composites for microalgae-harvesting application. MgAC-templated Fe3O4 nanoparticles (NPs were synthesized in different ratios of MgAC and Fe3O4 NPs. The uniform distribution of Fe3O4 NPs in the MgAC matrix was confirmed by transmission electron microscopy (TEM. According to obtained X-ray diffraction (XRD patterns, increased MgAC loading leads to decreased intensity of the composites’ (311 plane of Fe3O4 NPs. For harvesting of Chlorella sp. KR-1, Scenedesmus obliquus and mixed microalgae (Chlorella sp. KR-1/ Scenedesmus obliquus, the optimal pH was 4.0. At higher pHs, the microalgae-harvesting efficiencies fell. Sample #1, which had the highest MgAC concentration, showed the most stability: the harvesting efficiencies for Chlorella sp. KR-1, Scenedesmus obliquus, and mixed microalgae were reduced only to ~50% at pH = 10.0. The electrostatic interaction between MgAC and the Fe3O4 NPs in the hybrid samples by microalgae, as confirmed by zeta potential measurements, were attributed to the harvesting mechanisms. Moreover, the zeta potentials of the MgAC-Fe3O4 hybrid composites were reduced as pH was increased, thus diminishing the microalgae-harvesting efficiencies.

  7. Approaches to building single-stage AC/AC conversion switch-mode audio power amplifiers

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2004-01-01

    This paper discusses the possible topologies and promising approaches towards direct single-phase AC-AC conversion of the mains voltage for audio applications. When compared to standard Class-D switching audio power amplifiers with a separate power supply, it is expected that direct conversion...

  8. Introduction to AC machine design

    CERN Document Server

    Lipo, Thomas A

    2018-01-01

    AC electrical machine design is a key skill set for developing competitive electric motors and generators for applications in industry, aerospace, and defense. This book presents a thorough treatment of AC machine design, starting from basic electromagnetic principles and continuing through the various design aspects of an induction machine. Introduction to AC Machine Design includes one chapter each on the design of permanent magnet machines, synchronous machines, and thermal design. It also offers a basic treatment of the use of finite elements to compute the magnetic field within a machine without interfering with the initial comprehension of the core subject matter. Based on the author's notes, as well as after years of classroom instruction, Introduction to AC Machine Design: * Brings to light more advanced principles of machine design--not just the basic principles of AC and DC machine behavior * Introduces electrical machine design to neophytes while also being a resource for experienced designers * ...

  9. Microarc Oxidation of the High-Silicon Aluminum AK12D Alloy

    Directory of Open Access Journals (Sweden)

    S. K. Kiseleva

    2015-01-01

    Full Text Available The aim of work is to study how the high-silicon aluminum AK12D alloy microstructure and MAO-process modes influence on characteristics (microhardness, porosity and thickness of the oxide layer of formed surface layer.Experimental methods of study:1 MAO processing of AK12D alloy disc-shaped samples. MAO modes features are concentration of electrolyte components – soluble water glass Na2SiO3 and potassium hydroxide (KOH. The content of two components both the soluble water glass and the potassium hydroxide was changed at once, with their concentration ratio remaining constant;2 metallographic analysis of AK12D alloy structure using an optical microscope «Olympus GX51»;3 image analysis of the system "alloy AK12D - MAO - layer" using a scanning electron microscope «JEOL JSM 6490LV»;4 hardness evaluation of the MAO-layers using a micro-hardness tester «Struers Duramin».The porosity, microhardness and thickness of MAO-layer formed on samples with different initial structures are analyzed in detail. Attention is paid to the influence of MAO process modes on the quality layer.It has been proved that the MAO processing allows reaching quality coverage with high microhardness values of 1200-1300HV and thickness up to 114 μm on high-silicon aluminum alloy. It has been found that the initial microstructure of alloy greatly affects the thickness of the MAO - layer. The paper explains the observed effect using the physical principles of MAO process and the nature of silicon particles distribution in the billet volume.It has been shown that increasing concentration of sodium silicate and potassium hydroxide in the electrolyte results in thicker coating and high microhardness.It has been revealed that high microhardness is observed in the thicker MAO-layers.Conclusions:1 The microstructure of aluminum AK12D alloy and concentration of electrolyte components - liquid glass Na2SiO3 and potassium hydroxide affect the quality of coating resulted from MAO

  10. Electrical transport properties of manganese containing pyrochlore type semiconducting oxides using impedance analyses

    International Nuclear Information System (INIS)

    Sumi, S.; Prabhakar Rao, P.; Mahesh, S.K.; Koshy, Peter

    2012-01-01

    Graphical abstract: DC conductivity variation of CaCe 1−x Mn x SnNbO 7−δ (x = 0, 0.2, 0.4 and 0.6) with inverse of temperature. Variation of conductivity with Mn concentration at 600 °C is shown in the inset. Display Omitted Highlights: ► We have observed that the structural ordering as well as grain size increase with Mn substitution. ► Impedance analysis proved that a correlated barrier hopping type conduction mechanism is involved in the materials. ► Activation energy as well as electrical conductivity increases with increase in Mn substitution. ► Localization of electrons associated with Mn 2+ and structural ordering are the key factors for the increased activation energy with Mn substitution. ► All the materials showed good NTC thermistor properties. -- Abstract: A new series of manganese containing pyrochlore type semiconducting oxides CaCe 1−x Mn x SnNbO 7−δ (x = 0, 0.2, 0.4 and 0.6) have been synthesized to study the effect of Mn substitution on the structure, microstructure and electrical properties of these samples. X-ray diffraction and scanning electron microscopy studies revealed an increase of structural ordering and grain size respectively with increase of Mn substitution. Rietveld analysis and Raman spectroscopy were also employed to corroborate the XRD results. The bulk resistance measurements with temperature exhibit negative temperature coefficient behavior. The impedance analysis of the samples revealed a non-Debye type relaxation existed in the materials. The ac conductivity variation with temperature and frequency indicates a correlated barrier hopping type conduction mechanism in these materials. The barrier height and the intersite separation for hopping influence the electrical conductivity of these samples and are found to be a function of localization of electrons associated with the Mn 2+ ions and the unit cell volume respectively. The Mn substitution increases both electrical conductivity and activation energy

  11. A photocatalytic approach in micro arc oxidation of WO3-TiO2 nano porous semiconductors under pulse current

    International Nuclear Information System (INIS)

    Bayati, M.R.; Golestani-Fard, F.; Moshfegh, A.Z.; Molaei, R.

    2011-01-01

    Graphical abstract: WO3-TiO2 layers were fabricated via microarc oxidation process and effect of the electrical current type on their photocatalytic performance under UV and visible illuminations was investigated. Highlights: → WO3-TiO2 layers were grown by MAO under pulse current for the first time. → Effect of the frequency and duty cycle on properties of the layers was studied. → A correlation between catalytic performance and growth conditions was proposed. - Abstract: Since ultraviolet (UV) irradiation cannot be applied for a long time in practical applications, it is necessary to develop a narrow band gap photocatalyst to decompose environmental pollutants under visible irradiation. In this research, (WO 3 ) x -(TiO 2 ) 1-x nano-porous layers were fabricated by micro arc oxidation (MAO) and influence of the electrical current type on their physical and chemical properties was investigated. Morphological studies, performed by SEM technique, revealed that pore size and roughness decreased with the frequency and increased with the duty cycle. The pulse-grown layers had a finer structure when compared to those fabricated under direct current. XRD and XPS results showed that the layers consisted of anatase, rutile, and tungsten oxide phases. Applying pulse current resulted in higher anatase relative contents. Band gap energies of the MAO-grown TiO 2 and WO 3 -TiO 2 layers were respectively measured as 3.14 and 2.96 eV. The layers fabricated under pulse current exhibited higher photoactivity under ultraviolet and visible illuminations as compared to the layers grown under direct current. Methylene blue (MB) was used as a model material to examine photocatalytic performance of the layers. Maximum MB-photodegradation reaction rate constants over the pulse-synthesized WO 3 -TiO 2 layers were measured as 0.0269 and 0.0129 min -1 for ultraviolet and visible irradiations. For layers grown under direct current, the rate constants were lower, i.e. 0.0228 and 0

  12. The Effect of the Feedback Controller on Superconducting Tokamak AC Losses + AC-CRPP user manual

    International Nuclear Information System (INIS)

    Schaerz, B.; Bruzzone, P.; Favez, J.Y.; Lister, J.B.; Zapretilina, E.

    2001-11-01

    Superconducting coils in a Tokamak are subject to AC losses when the field transverse to the coil current varies. A simple model to evaluate the AC losses has been derived and benchmarked against a complete model used in the ITER design procedure. The influence of the feedback control strategy on the AC losses is examined using this model. An improved controller is proposed, based on this study. (author)

  13. Study of the Effect of Transport Current and Combined Transverse and Longitudinal Fields on the AC Loss in NET Prototype Conductors

    NARCIS (Netherlands)

    Nijhuis, Arend; ten Kate, Herman H.J.

    1994-01-01

    AC losses in cables carrying DC as well as AC transport currents at different DC background fields up to 2T have been measured on three types of Nb3Sn subcables in a new test facility. In this facility it is possible to apply sinusoidal transverse AC fields up to dB/dt=5T/s and longitudinal AC

  14. From iron coordination compounds to metal oxide nanoparticles.

    Science.gov (United States)

    Iacob, Mihail; Racles, Carmen; Tugui, Codrin; Stiubianu, George; Bele, Adrian; Sacarescu, Liviu; Timpu, Daniel; Cazacu, Maria

    2016-01-01

    Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe 2 III Fe II O(CH 3 COO) 6 (H 2 O) 3 ]·2H 2 O (FeAc1), μ 3 -oxo trinuclear iron(III) acetate, [Fe 3 O(CH 3 COO) 6 (H 2 O) 3 ]NO 3 ∙4H 2 O (FeAc2), iron furoate, [Fe 3 O(C 4 H 3 OCOO) 6 (CH 3 OH) 3 ]NO 3 ∙2CH 3 OH (FeF), iron chromium furoate, FeCr 2 O(C 4 H 3 OCOO) 6 (CH 3 OH) 3 ]NO 3 ∙2CH 3 OH (FeCrF), and an iron complex with an original macromolecular ligand (FePAZ) were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination) or using a nonconventional energy source (i.e., microwave or ultrasonic treatment) to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles.

  15. From iron coordination compounds to metal oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Mihail Iacob

    2016-12-01

    Full Text Available Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe2IIIFeIIO(CH3COO6(H2O3]·2H2O (FeAc1, μ3-oxo trinuclear iron(III acetate, [Fe3O(CH3COO6(H2O3]NO3∙4H2O (FeAc2, iron furoate, [Fe3O(C4H3OCOO6(CH3OH3]NO3∙2CH3OH (FeF, iron chromium furoate, FeCr2O(C4H3OCOO6(CH3OH3]NO3∙2CH3OH (FeCrF, and an iron complex with an original macromolecular ligand (FePAZ were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination or using a nonconventional energy source (i.e., microwave or ultrasonic treatment to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles.

  16. K Chandra

    Indian Academy of Sciences (India)

    Ceramic coated Y1 magnesium alloy surfaces by microarc oxidation process for ... in which ceramic coating is directly formed on the surface of magnesium alloy, ... Effect of carbon on corrosion resistance of powder-processed Fe–0.35%P alloys ... strength of CNT and carbon fibre reinforced, epoxy-matrix hybrid composite.

  17. The enhancement of time-stepping procedures in SYVAC A/C

    International Nuclear Information System (INIS)

    Broyd, T.W.

    1986-01-01

    This report summarises the work carried out an SYVAC A/C between February and May 1985 aimed at improving the way in which time-stepping procedures are handled. The majority of the work was concerned with three types of problem, viz: i) Long vault release, short geosphere response ii) Short vault release, long geosphere response iii) Short vault release, short geosphere response The report contains details of changes to the logic and structure of SYVAC A/C, as well as the results of code implementation tests. It has been written primarily for members of the UK SYVAC development team, and should not be used or referred to in isolation. (author)

  18. Application of ac impedance in fuel cell research and development

    Energy Technology Data Exchange (ETDEWEB)

    Selman, J R; Lin, Y P [Illinois Inst. of Tech., Chicago, IL (United States). Dept. of Chemical Engineering

    1993-10-01

    In applying ac impedance to fuel cells and their porous (gas diffusion) electrodes the emphasis lies on different fuel cell components, and their properties, according to the fuel cell type. The focus has been directed at the electrode/electrolyte interface in MCFC and PAFC, whereas in SOFC and PEMFC the ionic/electronic conductivity of the electrolyte or the characteristics of its composite with the electrocatalyst is of primary interest. The limitations of ac impedance in fuel cell application are in part due to difficulties of interpretation and in part due to experimental difficulties because of the generally fast electrode reaction kinetics. Further research directions are indicated. (author)

  19. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons.

    Science.gov (United States)

    Quesada-Peñate, I; Julcour-Lebigue, C; Jáuregui-Haza, U J; Wilhelm, A M; Delmas, H

    2012-06-30

    The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. High voltage AC/AC electrochemical capacitor operating at low temperature in salt aqueous electrolyte

    Science.gov (United States)

    Abbas, Qamar; Béguin, François

    2016-06-01

    We demonstrate that an activated carbon (AC)-based electrochemical capacitor implementing aqueous lithium sulfate electrolyte in 7:3 vol:vol water/methanol mixture can operate down to -40 °C with good electrochemical performance. Three-electrode cell investigations show that the faradaic contributions related with hydrogen chemisorption in the negative AC electrode are thermodynamically unfavored at -40 °C, enabling the system to work as a typical electrical double-layer (EDL) capacitor. After prolonged floating of the AC/AC capacitor at 1.6 V and -40°C, the capacitance, equivalent series resistance and efficiency remain constant, demonstrating the absence of ageing related with side redox reactions at this temperature. Interestingly, when temperature is increased back to 24 °C, the redox behavior due to hydrogen storage reappears and the system behaves as a freshly prepared one.

  1. A novel technique for hydrogen production from hog-manure in supercritical partial oxidation (SCWPO)

    Energy Technology Data Exchange (ETDEWEB)

    Youssef, Emhemmed A.; Charpentier, Paul [Western Ontario Univ., London, ON (Canada). Dept. of Chemical and Biochemical Engineering; Nakhla, George [Western Ontario Univ., London, ON (Canada). Dept. of Chemical and Biochemical Engineering; Western Ontario Univ., London, ON (Canada). Dept. of Civil and Environmental Engineering; Elbeshbishy, Elsayed; Hafez, Hisham [Western Ontario Univ., London, ON (Canada). Dept. of Civil and Environmental Engineering

    2010-07-01

    In this study, the catalytic hydrogen production from hog manure using supercritical water partial oxidation was investigated in a batch reactor at a temperature of 500 C, and pressure of 28 MPa using several metallic catalysts. Hog manure was characterized by a total and soluble chemical oxygen demand (TCOD, SCOD) of 57000 and 28000 mg/L, total and volatile suspended solids (TSS, VSS) of 25000, 19000, and ammonia of 2400 mg/L, respectively. The order of H{sub 2} production was the following: Pd/AC > Ru/Al{sub 2}O{sub 3} > Ru/AC > AC > NaOH. The order of COD reduction efficiency was as follows: NaOH > Ru/AC > AC > Ru/Al{sub 2}O{sub 3} > Pd/AC. The behaviour of the volatile fatty acids (VFA's), ethanol, methanol, ammonia, H{sub 2}S, and Sulfate was investigated experimentally and discussed. A 35 % reduction in the H{sub 2} and CH{sub 4} yields was observed in the sequential gasification partial oxidation (oxidant at an 80 % of theoretical requirement) experiments compared to the gasification experiments (catalyst only). Moreover, this reduction in gas yields was coincided with a 45 % reduction in the liquid effluent chemical oxygen demand (COD), 60 % reduction of the ammonia concentration in the liquid effluent, and 20 % reduction in the H{sub 2}S concentration in the effluent gas. (orig.)

  2. AcEST: DK954361 [AcEST

    Lifescience Database Archive (English)

    Full Text Available in 5-4 OS=Homo sap... 33 1.1 sp|Q9DBY1|SYVN1_MOUSE E3 ubiquitin-protein ligase synoviolin OS=... 33 1.4 sp|Q...86TM6|SYVN1_HUMAN E3 ubiquitin-protein ligase synoviolin OS=... 33 1.4 sp|O55188|DMP1_MOUSE Dentin matrix ac

  3. Effects of Surface Structure and Chemical Composition of Binary Ti Alloys on Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Ok-Sung Han

    2016-07-01

    Full Text Available Binary Ti alloys containing Fe, Mo, V and Zr were micro-arc oxidized and hydrothermally treated to obtain micro- and nano-porous layers. This study aimed to investigate cell differentiation on micro and micro/nanoporous oxide layers of Ti alloys. The properties of the porous layer formed on Ti alloys were characterized by X-ray diffraction pattern, microstructural and elemental analyses and inductively coupled plasma mass spectrometry (ICP-MS method. The MTT assay, total protein production and alkaline phosphatase (ALPase activity were evaluated using human osteoblast-like cells (MG-63. Microporous structures of micro-arc oxidized Ti alloys were changed to micro/nanoporous surfaces after hydrothermal treatment. Micro/nanoporous surfaces consisted of acicular TiO2 nanoparticles and micron-sized hydroxyapatite particles. From ICP and MTT tests, the Mo and V ions released from porous oxide layers were positive for cell viability, while the released Fe ions were negative for cell viability. Although the micro/nanoporous surfaces led to a lower total protein content than the polished and microporous Ti surfaces after cell incubation for 7 days, they caused higher ALPase activities after 7 days and 14 days of incubation except for V-containing microporous surfaces. The micro/nanoporous surfaces of Ti alloys were more efficient in inducing MG-63 cell differentiation.

  4. Inkjet-printed p-type nickel oxide thin-film transistor

    Science.gov (United States)

    Hu, Hailong; Zhu, Jingguang; Chen, Maosheng; Guo, Tailiang; Li, Fushan

    2018-05-01

    High-performance inkjet-printed nickel oxide thin-film transistors (TFTs) with Al2O3 high-k dielectric have been fabricated using a sol-gel precursor ink. The "coffee ring" effect during the printing process was facilely restrained by modifying the viscosity of the ink to control the outward capillary flow. The impacts on the device performance was studied in detail in consideration of annealing temperature of the nickel oxide film and the properties of dielectric layer. The optimized switching ability of the device were achieved at an annealing temperature of 280 °C on a 50-nm-thick Al2O3 dielectric layer, with a hole mobility of 0.78 cm2/V·s, threshold voltage of -0.6 V and on/off current ratio of 5.3 × 104. The as-printed p-type oxide TFTs show potential application in low-cost, large-area complementary electronic devices.

  5. 21 CFR 886.4440 - AC-powered magnet.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered magnet. 886.4440 Section 886.4440 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4440 AC-powered magnet. (a) Identification. An AC-powered magnet is an AC-powered device that generates a magnetic field intended to find and remove...

  6. Sol–gel synthesis of nanostructured indium tin oxide with controlled morphology and porosity

    Energy Technology Data Exchange (ETDEWEB)

    Kőrösi, László, E-mail: ltkorosi@gmail.com [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632 Pécs (Hungary); Scarpellini, Alice [Department of Nanochemistry, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Petrik, Péter [Institute for Technical Physics and Materials Science, Konkoly-Thege út 29-33, H-1121 Budapest (Hungary); Papp, Szilvia [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632 Pécs (Hungary); Dékány, Imre [MTA-SZTE Supramolecular and Nanostructured Materials Research Group, University of Szeged, Dóm tér 8, H-6720 Szeged (Hungary)

    2014-11-30

    Graphical abstract: - Highlights: • Nanocrystalline ITO thin films and powders were prepared by a sol–gel method. • The nature of the compounds used for hydrolysis plays a key role in the morphology. • Hydrolysis of In{sup 3+}/Sn{sup 4+} with EA led to a rod-like morphology. • Monodisperse spherical ITO nanoparticles were obtained on the use of AC. • ITO{sub E}A was highly porous, while ITO{sub A}C contained densely packed nanocrystals. - Abstract: Nanostructured indium tin oxide (ITO) powders and thin films differing in morphology and porosity were prepared by a sol–gel method. In{sup 3+} and Sn{sup 4+} were hydrolyzed in aqueous medium through the use of ethanolamine (EA) or sodium acetate (AC). X-ray diffraction measurements demonstrated that both EA and AC furnished indium tin hydroxide, which became nanocrystalline after aging for one day. The indium tin hydroxide samples calcined at 550 °C afforded ITO with a cubic crystal structure, but the morphology differed significantly, depending on the agent used for hydrolysis. Electron microscopy revealed the formation of round monodisperse nanoparticles when AC was used, whereas the application of EA led to rod-like ITO nanoparticles. Both types of nanoparticles were suitable for the preparation of transparent and conductive ITO thin films. The influence of the morphology and porosity on the optical properties is discussed.

  7. Impact of ac/dc spark anodizing on the corrosion resistance of Al-Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Alsrayheen, Enam, E-mail: ealsrayh@ucalgary.ca [Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary AB, T2N 1N4 (Canada); McLeod, Eric, E-mail: hmolero@ucalgary.ca [Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary AB, T2N 1N4 (Canada); Rateick, Richard, E-mail: richard.rateick@honeywell.com [Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary AB, T2N 1N4 (Canada); Molero, Hebert, E-mail: Eric.McLeod@stmu.ab.ca [Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary AB, T2N 1N4 (Canada); Birss, Viola, E-mail: birss@ucalgary.ca [Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary AB, T2N 1N4 (Canada)

    2011-07-01

    An ac/dc spark anodization method was used to deposit an oxide film (6 {+-} 3 {mu}m in thickness) on the Al-Cu alloy AA2219. The oxide films were formed at 10 mA/cm{sup 2} for 30 min in an alkaline silicate solution, showing three main stages of growth. Scanning electron microscopy and electron microprobe analysis revealed that the oxide films are not uniform and consist of three main layers, an inner Al-rich barrier layer ({approx}1 {mu}m), an intermediate Al-Si mixed oxide layer ({approx}2 {+-} 1 {mu}m), and an outer porous Si-rich layer ({approx}3 {+-} 3 {mu}m). In addition, microscopic analysis showed that the Al{sub 2}Cu intermetallics present in the alloy have not been excessively oxidized during the anodization process and thus are retained beneath the oxide film, as desired. The coating passivity and corrosion resistance, evaluated using linear sweep voltammetry (LSV) in pH 7 borate buffer solution and electrochemical impedance spectroscopy (EIS) in 0.86 M NaCl solution, respectively, were both significantly improved after spark-anodization.

  8. Reduced lipid oxidation in myotubes established from obese and type 2 diabetic subjects

    DEFF Research Database (Denmark)

    Gaster, Michael

    2009-01-01

    To date, it is unknown whether reduced lipid oxidation of skeletal muscle of obese and obese type 2 diabetic (T2D) subjects partly is based on reduced oxidation of endogenous lipids. Palmitate (PA) accumulation, total oxidation and lipolysis were not different between myotubes established from lean...... both for endogenous and exogenous lipids. Thus myotubes established from obese and obese T2D subjects express a reduced complete oxidation of endogenous lipids. Two cardinal principles govern the reduced lipid oxidation in obese and diabetic myotubes; firstly, an impaired coupling between endogenous...... lipid and mitochondria in obese and obese diabetic myotubes and secondly, a mismatch between beta-oxidation and citric acid cycle in obese diabetic myotubes....

  9. AC impedance spectroscopy of NASICON type Na3Fe2(PO4)3 ceramic

    Science.gov (United States)

    Mandal, Biswajit; Thakur, A. K.

    2018-05-01

    Super ionic conductors (e.g.; A3M2(XO4)3, A=Li, Na) have received attention in applied research due to their interesting electrochemical property and inherently high ionic conductivity [1]. However, structural and compatibility requirements for fast ion transport is stringent and it plays a crucial role. In A3M2(XO4)3, a suitable cage formation in the crystal framework due to corner sharing arrangement of XO4 tetrahedra and MO6 octahedra creates voids that acts as host/guest site for cation transport. In this work, we report Nasicon structure Na3Fe2(PO4)3 (NFP) prepared via sol-gel route mediated by citric acid. Structural analysis confirmed that NFP sample belongs to monoclinic crystal structure having Cc space group (S. G. No 9) with lattice parameters, a=15.106 Å, b=8.722 Å, c=8.775 Å and β=124.96°. Electrical properties of the prepared sample have been studied by AC impedance spectroscopy technique. The AC conductivity results indicated typical signature of ionically conducting system.

  10. A novel Graphene Oxide film: Synthesis and Dielectric properties

    Science.gov (United States)

    Canimkurbey, Betul; San, Sait Eren; Yasin, Muhammad; Köse, Muhammet Erkan

    In this work, we used Hummers method to synthesize Graphene Oxide (GO) and its parallel plate impedance spectroscopic technique to investigate dielectric properties. Graphene Oxide films were coated using drop casting method on ITO substrate. To analyze film morphology, atomic force microscopy was used. Dielectrics measurements of the samples were performed using impedance analyzer (HP-4194) in frequency range (100 Hz to 10MHz) at different temperatures. It was observed that the films' AC conductivity σac varied with angular frequency, ω as ωS, with Sdirect current (DC) and Correlated Barrier Hopping (CBH) conductivity mechanisms at low and high frequency ranges, respectively. Using solution processed Graphene Oxide will provide potential for organic electronic applications through its photon absorption and transmittance capability in the visible range and excellent electrical parameters.

  11. Electrodeformation of multi-bilayer spherical concentric membranes by AC electric fields

    Science.gov (United States)

    Lira-Escobedo, J.; Arauz-Lara, J.; Aranda-Espinoza, H.; Adlerz, K.; Viveros-Mendez, P. X.; Aranda-Espinoza, S.

    2017-09-01

    It is now well established that external stresses alter the behaviour of cells, where such alterations can be as profound as changes in gene expression. A type of stresses of particular interest are those due to alternating-current (AC) electric fields. The effect of AC fields on cells is still not well understood, in particular it is not clear how these fields affect the cell nucleus and other organelles. Here, we propose that one possible mechanism is through the deformation of the membranes. In order to investigate the effect of AC fields on the morphological changes of the cell organelles, we modelled the cell as two concentric bilayer membranes. This model allows us to obtain the deformations induced by the AC field by balancing the elastic energy and the work done by the Maxwell stresses. Morphological phase diagrams are obtained as a function of the frequency and the electrical properties of the media and membranes. We demonstrate that the organelle shapes can be changed without modifying the shape of the external cell membrane and that the organelle deformation transitions can be used to measure, for example, the conductivity of the nucleus.

  12. Inhibition of acrolein-stimulated MUC5AC expression by Platycodon grandiflorum root-derived saponin in A549 cells.

    Science.gov (United States)

    Choi, Jae Ho; Hwang, Yong Pil; Han, Eun Hee; Kim, Hyung Gyun; Park, Bong Hwan; Lee, Hyun Sun; Park, Byung Keun; Lee, Young Chun; Chung, Young Chul; Jeong, Hye Gwang

    2011-09-01

    Mucin overproduction is a hallmark of chronic airway diseases such as chronic obstructive pulmonary disease. In this study, we investigated the inhibition of acrolein-induced expression of mucin 5, subtypes A and C (MUC5AC) by Changkil saponin (CKS) in A549 cells. Acrolein, a known toxin in tobacco smoke and an endogenous mediator of oxidative stress, increases the expression of airway MUC5AC, a major component of airway mucus. CKS, a Platycodon grandiflorum root-derived saponin, inhibited acrolein-induced MUC5AC expression and activity, through the suppression of NF-κB activation. CKS also repressed acrolein-induced phosphorylation of ERK1/2, JNK1/2, and p38MAPK, which are upstream signaling molecules that control MUC5AC expression. In addition, the MAPK inhibitors PD98059 (ERK1/2), SP600125 (JNK1/2), and SB203580 (p38 MAPK), and a PKC delta inhibitor (rottlerin; PKCδ) inhibited acrolein-induced MUC5AC expression and activity. CKS repressed acrolein-induced phosphorylation of PKCδ. Moreover, a reactive oxygen species (ROS) inhibitor, N-acetylcysteine, inhibited acrolein-induced MUC5AC expression and activity through the suppression of PKCδ and MAPK activation, and CKS repressed acrolein-induced ROS production. These results suggest that CKS suppresses acrolein-induced MUC5AC expression by inhibiting the activation of NF-κB via ROS-PKCδ-MAPK signaling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Hydrodeoxygenation of oxidized distilled bio-oil for the production of gasoline fuel type

    International Nuclear Information System (INIS)

    Luo, Yan; Guda, Vamshi Krishna; Hassan, El Barbary; Steele, Philip H.; Mitchell, Brian; Yu, Fei

    2016-01-01

    Highlights: • Oxidation had more influence on the yield of total hydrocarbons than distillation. • The highest total hydrocarbon yield was obtained from oxidized distilled bio-oil. • The 2nd-stage hydrocarbons were in the range of gasoline fuel boiling points. • The main products for upgrading of oxidized bio-oil were aliphatic hydrocarbons. • The main products for upgrading of non-oxidized bio-oil were aromatic hydrocarbons. - Abstract: Distilled and oxidized distilled bio-oils were subjected to 1st-stage mild hydrodeoxygenation and 2nd-stage full hydrodeoxygenation using nickel/silica–alumina catalyst as a means to enhance hydrocarbon yield. Raw bio-oil was treated for hydrodeoxygenation as a control to which to compare study treatments. Following two-stage hydrodeoxygenation, four types of hydrocarbons were mainly comprised of gasoline and had water contents, oxygen contents and total acid numbers of nearly zero and higher heating values of 44–45 MJ/kg. Total hydrocarbon yields for raw bio-oil, oxidized raw bio-oil, distilled bio-oil and oxidized distilled bio-oil were 11.6, 16.2, 12.9 and 20.5 wt.%, respectively. The results indicated that oxidation had the most influence on increasing the yield of gasoline fuel type followed by distillation. Gas chromatography/mass spectrometry characterization showed that 66.0–76.6% of aliphatic hydrocarbons and 19.5–31.6% of aromatic hydrocarbons were the main products for oxidized bio-oils while 35.5–38.7% of aliphatic hydrocarbons and 58.2–63.1% of aromatic hydrocarbons were the main products for non-oxidized bio-oils. Both aliphatic and aromatic hydrocarbons are important components for liquid transportation fuels and chemical products.

  14. Assembling a supercapacitor electrode with dual metal oxides and activated carbon using a liquid phase plasma.

    Science.gov (United States)

    Ki, Seo Jin; Jeon, Ki-Joon; Park, Young-Kwon; Park, Hyunwoong; Jeong, Sangmin; Lee, Heon; Jung, Sang-Chul

    2017-12-01

    Developing supercapacitor electrodes at an affordable cost while improving their energy and/or power density values is still a challenging task. This study introduced a recipe which assembled a novel electrode composite using a liquid phase plasma that was applied to a reactant solution containing an activated carbon (AC) powder with dual metal precursors of iron and manganese. A comparison was made between the composites doped with single and dual metal components as well as among those synthesized under different precursor concentrations and plasma durations. The results showed that increasing the precursor concentration and plasma duration raised the content of both metal oxides in the composites, whereas the deposition conditions were more favorable to iron oxide than manganese oxide, due to its higher standard potential. The composite treated with the longest plasma duration and highest manganese concentration was superior to the others in terms of cyclic stability and equivalent series resistance. In addition, the new composite selected out of them showed better electrochemical performance than the raw AC material only and even two types of single metal-based composites, owing largely to the synergistic effect of the two metal oxides. Therefore, the proposed methodology can be used to modify existing and future composite electrodes to improve their performance with relatively cheap host and guest materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Development of Lithium Stuffed Garnet-Type Oxide Solid Electrolytes with High Ionic Conductivity for Application to All-Solid-State Batteries

    Directory of Open Access Journals (Sweden)

    Ryoji Inada

    2016-07-01

    Full Text Available All-solid-state lithium-ion battery (LiB is expected as one of the next generation energy storage devices because of their high energy density, high safety and excellent cycle stability. Although oxide-based solid electrolyte materials have rather lower conductivity and poor deformability than sulfide-based one, they have other advantages such as their chemical stability and easiness for handling. Among the various oxide-based SEs, lithium stuffed garnet-type oxide with the formula of Li7La3Zr2O12 (LLZ have been widely studied because of their high conductivity above 10-4 Scm-1 at room temperature, excellent thermal performance and stability against Li metal anode.Here, we present our recent progress for the development of garnet-type solid electrolytes with high conductivity by simultaneous substitution of Ta5+ into Zr4+ site and Ba2+ into La3+ site in LLZ. Li+ concentration was fixed to 6.5 per chemical formulae, so that the formulae of our Li garnet-type oxide is expressed as Li6.5La3-xBaxZr1.5-xTa0.5+xO12 (LLBZT and Ba contents x are changed from 0 to 0.3. As results, all LLBZT samples have cubic garnet structure without containing any secondary phases. The lattice parameters of LLBZT decrease with increasing Ba2+ contents x < 0.10 while increase with x from 0.10 to 0.30, possibly due to the simultaneous change of Ba2+ and Ta5+ substitution levels. Relative densities of LLBZT are in the range between 89% and 93% and not influenced so much by the compositions. From AC impedance spectroscopy measurements, the total (bulk + grain conductivity at 27ºC of LLBZT shows its maximum value of 8.34 x 10-4 S cm-1 at x = 0.10, which is slightly higher than the conductivity (= 7.94 x 10-4 S cm-1 of LLZT without substituting Ba (x = 0. Activation energy of the conductivity tends to become lower by Ba substation, while excess Ba substitution degrades the conductivity in LLBZT. LLBZT has wide electrochemical potential window of 0-6 V vs. Li+/Li and

  16. Simultaneous distribution of AC and DC power

    Science.gov (United States)

    Polese, Luigi Gentile

    2015-09-15

    A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.

  17. Isolation of MA-ACS Gene Family and Expression Study of MA-ACS1 Gene in Musa acuminata Cultivar Pisang Ambon Lumut

    Directory of Open Access Journals (Sweden)

    LISTYA UTAMI KARMAWAN

    2009-03-01

    Full Text Available Musa acuminata cultivar pisang ambon lumut is a native climacteric fruit from Indonesia. Climacteric fruit ripening process is triggered by the gaseous plant hormone ethylene. The rate limiting enzyme involved in ethylene biosynthesis is ACC synthase (ACS which is encoded by ACS gene family. The objective of this study is to identify MA-ACS gene family in M. acuminata cultivar pisang ambon lumut and to study the MA-ACS1 gene expression. The result showed that there were nine M. acuminata ACS gene family members called MA-ACS1–9. Two of them (MA-ACS1 and MA-ACS2 were assessed using reverse transcriptase PCR (RT-PCR for gene expression study and it was only MA-ACS1 correlated with fruit ripening. The MA-ACS1 gene fragment has been successfully isolated and characterized and it has three introns, four exons, and one stop codon. It also shows highest homology with MACS1 gene from M. acuminata cultivar Hsian Jien Chiao (GenBank accession number AF056164. Expression analysis of MA-ACS1 using quantitative PCR (qPCR showed that MA-ACS1 gene expression increased significantly in the third day, reached maximum at the fifth day, and then decreased in the seventh day after harvesting. The qPCR expression analysis result correlated with the result of physical analysis during fruit ripening.

  18. Universality of ac conduction in disordered solids

    DEFF Research Database (Denmark)

    Dyre, Jeppe; Schrøder, Thomas

    2000-01-01

    The striking similarity of ac conduction in quite different disordered solids is discussed in terms of experimental results, modeling, and computer simulations. After giving an overview of experiment, a macroscopic and a microscopic model are reviewed. For both models the normalized ac conductivity...... as a function of a suitably scaled frequency becomes independent of details of the disorder in the extreme disorder limit, i.e., when the local randomly varying mobilities cover many orders of magnitude. The two universal ac conductivities are similar, but not identical; both are examples of unusual non......-power-law universalities. It is argued that ac universality reflects an underlying percolation determining dc as well as ac conductivity in the extreme disorder limit. Three analytical approximations to the universal ac conductivities are presented and compared to computer simulations. Finally, model predictions...

  19. Synthesizing new types of ultrathin 2D metal oxide nanosheets via half-successive ion layer adsorption and reaction

    Science.gov (United States)

    Gao, Linjie; Li, Yaguang; Xiao, Mu; Wang, Shufang; Fu, Guangsheng; Wang, Lianzhou

    2017-06-01

    Two-dimensional (2D) metal oxide nanosheets have demonstrated their great potential in a broad range of applications. The existing synthesis strategies are mainly preparing 2D nanosheets from layered and specific transition metal oxides. How to prepare the other types of metal oxides as ultrathin 2D nanosheets remains unsolved, especially for metal oxides containing alkali, alkaline earth metal, and multiple metal elements. Herein, we developed a half-successive ion layer adsorption and reaction (SILAR) method, which could synthesize those types of metal oxides as ultrathin 2D nanosheets. The synthesized 2D metal oxides nanosheets are within 1 nm level thickness and 500 m2 · g-1 level surface area. This method allows us to develop many new types of ultrathin 2D metal oxides nanosheets that have never been prepared before.

  20. Synthesis, characterization and AC conductivity studies of silver doped conducting polyaniline/graphene/SrTiO3 composites

    Science.gov (United States)

    Vinay, K.; Shivakumar, K.; Ravikiran, Y. T.; Revanasiddappa, M.

    2018-05-01

    The present work is an investigation of ac conduction behaviour and dielectric response of Polyaniline/Ag/Graphene/SrTiO3 (PAGS) composite prepared by in-situ chemical oxidative interfacial polymerization using (NH4)2S2O8 as an oxidising agent at 0-5°C. The structural characterization of the samples was examined using FT-IR and XRD techniques. The ac conductivity and dielectric response of synthesized polymer composites were investigated at room temperature in the frequency range varying from 5 × 101 - 5 × 106 Hz using HIOKI make 3532-50 LCR Hi-tester. The ac conductivity increases with increase in frequency and follows the regular trend, the real dielectric constant (ɛ') and imaginary dielectric constant (ɛ'') decreases with increase in frequency and exhibits almost zero dielectric loss at higher frequencies, which suggests that the composite is a lossless material at frequencies beyond 3Hz.

  1. Sensorless AC electric motor control robust advanced design techniques and applications

    CERN Document Server

    Glumineau, Alain

    2015-01-01

    This monograph shows the reader how to avoid the burdens of sensor cost, reduced internal physical space, and system complexity in the control of AC motors. Many applications fields—electric vehicles, wind- and wave-energy converters and robotics, among them—will benefit. Sensorless AC Electric Motor Control describes the elimination of physical sensors and their replacement with observers, i.e., software sensors. Robustness is introduced to overcome problems associated with the unavoidable imperfection of knowledge of machine parameters—resistance, inertia, and so on—encountered in real systems. The details of a large number of speed- and/or position-sensorless ideas for different types of permanent-magnet synchronous motors and induction motors are presented along with several novel observer designs for electrical machines. Control strategies are developed using high-order, sliding-mode and quasi-continuous-sliding-mode techniques and two types of observer–controller schemes based on backstepping ...

  2. Alpha decay 225 Ac → 221Fr

    International Nuclear Information System (INIS)

    Gromov, K. Ya.; Gorozhankin, V.M.; Malov, L.A.; Fominykh, V.I.; Tsupko-Sitnikov, V.V.; Chumin, V.G.; Jakushev, E.A.; Kudrya, S.A.; Sergienko, V.A.; Malikov, Sh.R.

    2004-01-01

    Full text: Considerable attention has been given to nuclei with A = 220 - 230 recently. In this region there occurs transition from the spherical to the deformed nuclear shape, which gives rise to some specific features in the nuclear structure. In particular, negative parity levels with low excitation energies have been found in even-even nuclei from this region [1, 2]. One of the nuclei allowing experimental investigation of the above properties is 221 Fr. The nuclide 221 Fr is from the region of isotopes which does not include stable nuclei and thus it cannot be studied in several-nucleon transfer reactions. In addition, the neutron excess in this nucleus makes it impossible to study the nucleus in reactions with heavy ions. Experimental information on the 221 Fr level structure can only be gained from investigation of the 225 Ac (T 1/2 = 10 days) alpha decay or the 221 Rn (T 1/2 = 25 min) beta decay. In the latter case the possibilities of the investigation are restricted by difficulties in making of 221 Rn sources. Therefore, most information on the structure and properties of 221 Fr is derived from investigation of the 225 Ac α -decay [3]. In-depth investigation of ( α - γ )- coincidences at the 225 Ac decay is carried out. Twenty-one new weak γ - rays are found; 18 γ-rays earlier ascribed to the 225 Ac decay are not confirmed. The quantitative analysis of the ( α - γ )- coincidences makes it possible to find the intensity of 221 Fr levels by the decay and multipolarities of five weak γ -transitions. The conversion electron spectrum is investigated in the range of 5 † 24 keV with a high (some 20 eV) energy resolution. A new M1 type 10.6-keV γ-transition is found. The proposed 225 Ac decay scheme includes 31 excited 221 Fr states. Parities are established for 16 of them. Possible spin values are proposed for 221 Fr levels. Properties of excited 221 Fr states are satisfactorily described by the quasiparticle-phonon nuclear model without the

  3. A simple model to estimate the optimal doping of p - Type oxide superconductors

    Directory of Open Access Journals (Sweden)

    Adir Moysés Luiz

    2008-12-01

    Full Text Available Oxygen doping of superconductors is discussed. Doping high-Tc superconductors with oxygen seems to be more efficient than other doping procedures. Using the assumption of double valence fluctuations, we present a simple model to estimate the optimal doping of p-type oxide superconductors. The experimental values of oxygen content for optimal doping of the most important p-type oxide superconductors can be accounted for adequately using this simple model. We expect that our simple model will encourage further experimental and theoretical researches in superconducting materials.

  4. Silicon heterojunction solar cells with novel fluorinated n-type nanocrystalline silicon oxide emitters on p-type crystalline silicon

    Science.gov (United States)

    Dhar, Sukanta; Mandal, Sourav; Das, Gourab; Mukhopadhyay, Sumita; Pratim Ray, Partha; Banerjee, Chandan; Barua, Asok Kumar

    2015-08-01

    A novel fluorinated phosphorus doped silicon oxide based nanocrystalline material have been used to prepare heterojunction solar cells on flat p-type crystalline silicon (c-Si) Czochralski (CZ) wafers. The n-type nc-SiO:F:H material were deposited by radio frequency plasma enhanced chemical vapor deposition. Deposited films were characterized in detail by using atomic force microscopy (AFM), high resolution transmission electron microscopy (HRTEM), Raman, fourier transform infrared spectroscopy (FTIR) and optoelectronics properties have been studied using temperature dependent conductivity measurement, Ellipsometry, UV-vis spectrum analysis etc. It is observed that the cell fabricated with fluorinated silicon oxide emitter showing higher initial efficiency (η = 15.64%, Jsc = 32.10 mA/cm2, Voc = 0.630 V, FF = 0.77) for 1 cm2 cell area compare to conventional n-a-Si:H emitter (14.73%) on flat c-Si wafer. These results indicate that n type nc-SiO:F:H material is a promising candidate for heterojunction solar cell on p-type crystalline wafers. The high Jsc value is associated with excellent quantum efficiencies at short wavelengths (<500 nm).

  5. Pixel-based CTE Correction of ACS/WFC: Modifications To The ACS Calibration Pipeline (CALACS)

    Science.gov (United States)

    Smith, Linda J.; Anderson, J.; Armstrong, A.; Avila, R.; Bedin, L.; Chiaberge, M.; Davis, M.; Ferguson, B.; Fruchter, A.; Golimowski, D.; Grogin, N.; Hack, W.; Lim, P. L.; Lucas, R.; Maybhate, A.; McMaster, M.; Ogaz, S.; Suchkov, A.; Ubeda, L.

    2012-01-01

    The Advanced Camera for Surveys (ACS) was installed on the Hubble Space Telescope (HST) nearly ten years ago. Over the last decade, continuous exposure to the harsh radiation environment has degraded the charge transfer efficiency (CTE) of the CCDs. The worsening CTE impacts the science that can be obtained by altering the photometric, astrometric and morphological characteristics of sources, particularly those farthest from the readout amplifiers. To ameliorate these effects, Anderson & Bedin (2010, PASP, 122, 1035) developed a pixel-based empirical approach to correcting ACS data by characterizing the CTE profiles of trails behind warm pixels in dark exposures. The success of this technique means that it is now possible to correct full-frame ACS/WFC images for CTE degradation in the standard data calibration and reduction pipeline CALACS. Over the past year, the ACS team at STScI has developed, refined and tested the new software. The details of this work are described in separate posters. The new code is more effective at low flux levels (repair ACS electronics) and pixel-based CTE correction. In addition to the standard cosmic ray corrected, flat-fielded and drizzled data products (crj, flt and drz files) there are three new equivalent files (crc, flc and drc) which contain the CTE-corrected data products. The user community will be able to choose whether to use the standard or CTE-corrected products.

  6. Effect of glassy carbon properties on the electrochemical deposition of platinum nano-catalyst and its activity for methanol oxidation

    Directory of Open Access Journals (Sweden)

    SANJA TERZIC

    2007-02-01

    Full Text Available The effects of the properties of glassy carbon on the deposition of platinum particles and the electrocatalytic activity of platinum supported on glassy carbon (GC/Pt for methanol oxidation in alkaline and acidic solutions were studied. Platinum was potentiostatically deposited on two glassy carbon samples, thermally treated at different temperatures, which were either polished or anodicaly polarised in acid (GCOX-AC/Pt and in alkali (GCOX-AL/Pt. Anodic polarisation of glassy carbon, either in alkaline or acidic solution, enhances the activity of both types of GC/Pt electrodes for methanol oxidation. The activity of the catalysts follows the change in the properties of the glassy carbon support upon anodic treatment. The specific activity of the GCOX-AL/Pt electrode for this reaction in alkali is increased only a few times in comparison with the activity of the GC/Pt one. On the other hand, the specific activity of the GCOX-AC/Pt electrode for methanol oxidation in acid is about one order of magnitude higher than that of the GC/Pt electrode. The role of the substrate on the properties of catalyst is discussed in detail.

  7. Low-Cost Voltage Zero-Crossing Detector for AC-Grid Applications

    Directory of Open Access Journals (Sweden)

    Vorobyov Maxim

    2014-10-01

    Full Text Available Renewable energy sources and energy storage devices are becoming more popular. Some of them like small hydropower turbines, wind turbines and diesel generators produce AC voltage with different frequency and voltage than the main grid. For them power electronics converters are necessary. Power electronics converters presented in industry use two or three level energy conversion, although direct AC to AC converters exist, but one of the main problems is the switch commutation when current or voltage is crossing the zero point. Zero crossing sensors are used to solve this problem. They consist of current or voltage measurement unit and zero crossing detector. Different approaches are used for zero crossing: hardware or software. Hardware approach is simple but it has low precision. Software approach has high precision but it is complicated and expensive. In this paper a simple low cost high precision approach is presented. It takes all advantages from both approaches. While tested with two types of microcontrollers the precision of experimental measurement is 25 μs - 40 μs.

  8. First thin AC-coupled silicon strip sensors on 8-inch wafers

    Energy Technology Data Exchange (ETDEWEB)

    Bergauer, T., E-mail: thomas.bergauer@oeaw.ac.at [Institute of High Energy Physics of the Austrian Academy of Sciences, Nikolsdorfer Gasse 18, 1050 Wien (Vienna) (Austria); Dragicevic, M.; König, A. [Institute of High Energy Physics of the Austrian Academy of Sciences, Nikolsdorfer Gasse 18, 1050 Wien (Vienna) (Austria); Hacker, J.; Bartl, U. [Infineon Technologies Austria AG, Siemensstrasse 2, 9500 Villach (Austria)

    2016-09-11

    The Institute of High Energy Physics (HEPHY) in Vienna and the semiconductor manufacturer Infineon Technologies Austria AG developed a production process for planar AC-coupled silicon strip sensors manufactured on 200 μm thick 8-inch p-type wafers. In late 2015, the first wafers were delivered featuring the world's largest AC-coupled silicon strip sensors. Detailed electrical measurements were carried out at HEPHY, where single strip and global parameters were measured. Mechanical studies were conducted and the long-term behavior was investigated using a climate chamber. Furthermore, the electrical properties of various test structures were investigated to validate the quality of the manufacturing process.

  9. AcMNPV

    African Journals Online (AJOL)

    USER

    2010-08-16

    Aug 16, 2010 ... biosynthesis pathway and plays an important role in insect growth and .... Construction and propagation of recombined AcMNPV. The recombined ... infected by virus increased with incubation time (Figure. 3). The growth of ...

  10. Non-sparking anodization process of AZ91D magnesium alloy under low AC voltage

    International Nuclear Information System (INIS)

    Li, Weiping; Li, Wen; Zhu, Liqun; Liu, Huicong; Wang, Xiaofang

    2013-01-01

    Highlights: ► Four different processes appear on magnesium alloys with applied voltage increase. ► Non-sparking film formation process occurred in the range of 6–10 V AC. ► The film was composed of Mg 2 SiO 4 with a stable growth rate in 30 min. ► Film growth was a balance of electrochemical dissolution and chemical deposition. -- Abstract: Anodization is widely recognized as one of the most important surface treatments for magnesium alloys. However, since high voltage oxidation films are limited in some applications due to porosity and brittleness, it is worthwhile to explore the non-sparking oxidizing process. In this work, AZ91D was electrochemically anodized at different AC voltages in an electrolyte containing 120 g/L NaOH and 80 g/L Na 2 SiO 3 ·9H 2 O. The effects of voltage on the surface morphology, composition and reaction process, especially the non-sparking discharge anodic film formation process, were investigated. The results showed that four different processes would appear according to the applied voltage variation from 6 V to 40 V, and that the non-sparking film formation process occurred in the range of 6–10 V. The film formed on the AZ91D surface under 10 V AC was mainly composed of Mg 2 SiO 4 with a lamellar structure. The horizontal and vertical expansion of the lamellar structure resulted in the formation of a multi-layered structure with a stable, linear growth rate for 30 min. The non-sparking film formation process can be considered to be the result of a balance of electrochemical dissolution and chemical deposition reaction

  11. AcSDKP is down-regulated in anaemia induced by Trypanosoma ...

    African Journals Online (AJOL)

    In order to get ... IL-10 is a type II anti-inflammatory cytokine, produced by ... Anaemia commonly results from destruction of erythrocytes in the peripheral blood and failure of the bone marrow .... nonviable cells that have compromised membranes and was used to .... where it shows that AcSDKP is maintained in stable levels.

  12. Modeling and reliability analysis of three phase z-source AC-AC converter

    Directory of Open Access Journals (Sweden)

    Prasad Hanuman

    2017-12-01

    Full Text Available This paper presents the small signal modeling using the state space averaging technique and reliability analysis of a three-phase z-source ac-ac converter. By controlling the shoot-through duty ratio, it can operate in buck-boost mode and maintain desired output voltage during voltage sag and surge condition. It has faster dynamic response and higher efficiency as compared to the traditional voltage regulator. Small signal analysis derives different control transfer functions and this leads to design a suitable controller for a closed loop system during supply voltage variation. The closed loop system of the converter with a PID controller eliminates the transients in output voltage and provides steady state regulated output. The proposed model designed in the RT-LAB and executed in a field programming gate array (FPGA-based real-time digital simulator at a fixedtime step of 10 μs and a constant switching frequency of 10 kHz. The simulator was developed using very high speed integrated circuit hardware description language (VHDL, making it versatile and moveable. Hardware-in-the-loop (HIL simulation results are presented to justify the MATLAB simulation results during supply voltage variation of the three phase z-source ac-ac converter. The reliability analysis has been applied to the converter to find out the failure rate of its different components.

  13. A Simple and General Approach to Determination of Self and Mutual Inductances for AC machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Ritchie, Ewen

    2011-01-01

    Modelling of AC electrical machines plays an important role in electrical engineering education related to electrical machine design and control. One of the fundamental requirements in AC machine modelling is to derive the self and mutual inductances, which could be position dependant. Theories...... developed so far for inductance determination are often associated with complicated machine magnetic field analysis, which exhibits a difficulty for most students. This paper describes a simple and general approach to the determination of self and mutual inductances of different types of AC machines. A new...... determination are given for a 3-phase, salient-pole synchronous machine, and an induction machine....

  14. Potentiometric studies of acid-base interactions in substituted 4-nitropyridine N-oxide systems

    International Nuclear Information System (INIS)

    Gurzynski, Lukasz; Puszko, Aniela; Ostrzechowska, Agnieszka; Makowski, Mariusz; Chmurzynski, Lech

    2006-01-01

    (Acid+base) equilibrium constants, involving the acidity (pK a AC ) and cationic homoconjugation constants (in the form of lgK BHB + AC ), have been determined by the potentiometric method in 13 systems formed by substituted 4-nitropyridine N-oxides in the polar aprotic solvent, acetone (AC). The derivatives covered a wide range of proton-acceptor properties and inherent diversified tendencies towards formation of hydrogen-bonded homocomplexed cations. In addition, the constant values (expressed as pK a AN andlgK BHB + AN ) for two of the systems studied, N-oxides of 2-methylamino- and 2-ethylamino-4-nitropyridine, were determined in acetonitrile (AN). The acidity constants in the non-aqueous media studied have been found to change in line with their substituent effects and the sequence of acidity changes in water. The values of the cationic homoconjugation constants increased with increasing basicity of the N-oxides and decreased with increasing solvent basicity

  15. Potentiometric studies of acid-base interactions in substituted 4-nitropyridine N-oxide systems

    Energy Technology Data Exchange (ETDEWEB)

    Gurzynski, Lukasz [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Puszko, Aniela [Department of Organic Chemistry, School of Economics, Wroclaw (Poland); Ostrzechowska, Agnieszka [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Makowski, Mariusz [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Chmurzynski, Lech [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland)]. E-mail: lech@chem.univ.gda.pl

    2006-05-15

    (Acid+base) equilibrium constants, involving the acidity (pK{sub a}{sup AC}) and cationic homoconjugation constants (in the form of lgK{sub BHB{sup +}}{sup AC}), have been determined by the potentiometric method in 13 systems formed by substituted 4-nitropyridine N-oxides in the polar aprotic solvent, acetone (AC). The derivatives covered a wide range of proton-acceptor properties and inherent diversified tendencies towards formation of hydrogen-bonded homocomplexed cations. In addition, the constant values (expressed as pK{sub a}{sup AN}andlgK{sub BHB{sup +}}{sup AN}) for two of the systems studied, N-oxides of 2-methylamino- and 2-ethylamino-4-nitropyridine, were determined in acetonitrile (AN). The acidity constants in the non-aqueous media studied have been found to change in line with their substituent effects and the sequence of acidity changes in water. The values of the cationic homoconjugation constants increased with increasing basicity of the N-oxides and decreased with increasing solvent basicity.

  16. Oxidative Stress: A Pathogenic Mechanism for Niemann-Pick Type C Disease

    Directory of Open Access Journals (Sweden)

    Mary Carmen Vázquez

    2012-01-01

    Full Text Available Niemann-Pick type C (NPC disease is a neurovisceral atypical lipid storage disorder involving the accumulation of cholesterol and other lipids in the late endocytic pathway. The pathogenic mechanism that links the accumulation of intracellular cholesterol with cell death in NPC disease in both the CNS and the liver is currently unknown. Oxidative stress has been observed in the livers and brains of NPC mice and in different NPC cellular models. Moreover, there is evidence of an elevation of oxidative stress markers in the serumof NPC patients. Recent evidence strongly suggests that mitochondrial dysfunction plays an important role in NPC pathogenesis and that mitochondria could be a significant source of oxidative stress in this disease. In this context, the accumulation of vitamin E in the late endosomal/lysosomal compartments in NPC could lead to a potential decrease of its bioavailability and could be another possible cause of oxidative damage. Another possible source of reactive species in NPC is the diminished activity of different antioxidant enzymes. Moreover, because NPC is mainly caused by the accumulation of free cholesterol, oxidized cholesterol derivatives produced by oxidative stress may contribute to the pathogenesis of the disease.

  17. Mutation Glu82Lys in lamin A/C gene is associated with cardiomyopathy and conduction defect

    International Nuclear Information System (INIS)

    Wang Hu; Wang Jizheng; Zheng Weiyue; Wang Xiaojian; Wang Shuxia; Song Lei; Zou Yubao; Yao Yan; Hui Rutai

    2006-01-01

    Dilated cardiomyopathy is a form of heart muscle disease characterized by impaired systolic function and ventricular dilation. The mutations in lamin A/C gene have been linked to dilated cardiomyopathy. We screened genetic mutations in a large Chinese family of 50 members including members with dilated cardiomyopathy and found a Glu82Lys substitution mutation in the rod domain of the lamin A/C protein in eight family members, three of them have been diagnosed as dilated cardiomyopathy, one presented with heart dilation. The pathogenic mechanism of lamin A/C gene defect is poorly understood. Glu82Lys mutated lamin A/C and wild type protein was transfected into HEK293 cells. The mutated protein was not properly localized at the inner nuclear membrane and the emerin protein, which interacts with lamin A/C, was also aberrantly distributed. The nuclear membrane structure was disrupted and heterochromatin was aggregated aberrantly in the nucleus of the HEK293 cells stably transfected with mutated lamin A/C gene as determined by transmission electron microscopy

  18. Approaches to building single-stage AC/AC conversion switch-mode audio power amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    This paper discusses the possible topologies and promising approaches towards direct single-phase AC-AC conversion of the mains voltage for audio applications. When compared to standard Class-D switching audio power amplifiers with a separate power supply, it is expected that direct conversion will provide better efficiency and higher level of integration, leading to lower component count, volume and cost, but at the expense of a minor performance deterioration. (au)

  19. TIDES-ACS Trial: comparison of titanium-nitride-oxide coated bio-active-stent to the drug (everolimus)-eluting stent in acute coronary syndrome. Study design and objectives.

    Science.gov (United States)

    Colkesen, E B; Eefting, F D; Rensing, B J; Suttorp, M J; Ten Berg, J M; Karjalainen, P P; Van Der Heyden, J A

    2015-02-01

    Drug-eluting stents (DES), delivering antiproliferative drugs from a durable polymer, have shown to reduce in-stent restenosis after percutaneous coronary intervention (PCI) compared to bare-metal stents (BMS). However, they have been associated with a hypersensitivity reaction, delayed healing, and incomplete endothelialization, which may contribute to an increased risk of late stent thrombosis. Consequently, a prolonged duration of dual antiplatelet therapy (DAPT) is needed, with an increased risk of bleeding complication. A number of stent technologies are being developed in an attempt to modify late thrombotic events and DAPT duration. The Optimax™ stent is such a novel, next generation bioactive stent (BAS), in which a thicker layer of titanium-nitride-oxide coating is inserted over the stent struts. The rationale of this is to obtain more efficient and rapid vascular healing at the site of the stent implantation. The aim of TIDES-ACS Trial is to compare clinical outcome in patients presenting with ACS, treated with PCI using Optimax-BAS versus Synergy™-EES. Second objective is to explore whether the Optimax™-BAS use is superior compared with Synergy™-EES use with respect of hard end points (cardiac death, myocardial infarction [MI] and major bleeding). A prospective, randomized, multicenter trial (ClinicalTrials.gov Identifier: NCT02049229), will be conducted in interventional centres in Finland (six centres), France (five centres) and Holland (two centres), including a total of 1800 patients.

  20. Defect studies in copper-based p-type transparent conducting oxides

    Science.gov (United States)

    Ameena, Fnu

    Among other intrinsic open-volume defects, copper vacancy (VCu) has been theoretically identified as the major acceptor in p-type Cu-based semiconducting transparent oxides, which has potential as low-cost photovoltaic absorbers in semi-transparent solar cells. A series of positron annihilation experiments with pure Cu, Cu2O, and CuO presented strong presence of VCu and its complexes in the copper oxides. The lifetime data also showed that the density of VCu was becoming higher as the oxidation state of Cu increased which was consistent with the decrease in the formation energy of VCu. Doppler broadening measurements further indicated that electrons with low momentum made more contribution to the contributed as pure Cu oxidizes to copper oxides. The metastable defects are known to be generated in Cu2O upon illumination and it has been known to affect the performance of Cu2O-based hetero-junctions used in solar cells. The metastable effect was studied using positron annihilation lifetime spectroscopy and its data showed the change in the defect population upon light exposure and the minimal effect of light-induced electron density increase in the bulk of materials to the average lifetime of the positrons. The change in the defect population is concluded to be related to the dissociation and association of VCu -- V Cu complexes. For example, the shorter lifetime under light was ascribed to the annihilation with smaller size vacancies, which explains the dissociation of the complexes with light illumination. Doppler broadening of the annihilation was independent of light illumination, which suggested that the chemical nature of the defects remained without change upon their dissociation and association -- only the size distribution of copper vacancies varied. The delafossite metal oxides, CuMIIIO2 are emerging wide-bandgap p-type semiconductors. In this research, the formation energies of structural vacancies are calculated using Van Vechten cavity model as an attempt

  1. The synthesis of Ag/polypyrrole coaxial nanocables via ion adsorption method using different oxidants

    Science.gov (United States)

    Qiu, Teng; Xie, Huxiao; Zhang, Jiangru; Zahoor, Amad; Li, Xiaoyu

    2011-03-01

    Ag/polypyrrole (PPy) coaxial nanocables (NCs) were synthesized by an ion adsorption method. In this method, the pre-made Ag nanowires (NWs) were dispersed in the aqueous solution of copper acetate (Cu(Ac)2), and the Cu2+ ions adsorbed onto the surface of Ag NWs can oxidize pyrrole monomers to polymerize into uniform PPy sheath outside Ag NWs after the Cu(Ac)2-treated Ag NWs were re-dispersed in the aqueous solution of pyrrole. The morphology of NCs was characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM). The relationship between the thickness of polymer sheath and the concentration of Cu(Ac)2 was established. As Cu(Ac)2 which served as the oxidant can also be replaced by AgNO3 in this synthesis, the differences on the structure of polymer sheath caused by different oxidants were studied by surface-enhanced Raman scattering (SERS), high-resolution transmission electron microscope (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). Comparing with the characterization results of Ag/PPy NCs synthesized using AgNO3 as the oxidant which indicates the random arrangement of PPy chains at the interface between polymer sheath and Ag NWs, PPy chain oxidized by Cu2+ tends to show a relatively ordered conformation at the interface with the pyrrole rings identically taking the plane vertical to the surface of Ag NWs. In addition, although the main part of the polymer sheath was composed of PPy whatever kind of oxidant was used, the sheath of the NCs oxidized by Cu2+ is typical for the existence of Cu(I)-pyrrole coordinate structures with strong Cu(I)-N bond signal shown in XPS characterization.

  2. The synthesis of Ag/polypyrrole coaxial nanocables via ion adsorption method using different oxidants

    International Nuclear Information System (INIS)

    Qiu Teng; Xie Huxiao; Zhang Jiangru; Zahoor, Amad; Li Xiaoyu

    2011-01-01

    Ag/polypyrrole (PPy) coaxial nanocables (NCs) were synthesized by an ion adsorption method. In this method, the pre-made Ag nanowires (NWs) were dispersed in the aqueous solution of copper acetate (Cu(Ac) 2 ), and the Cu 2+ ions adsorbed onto the surface of Ag NWs can oxidize pyrrole monomers to polymerize into uniform PPy sheath outside Ag NWs after the Cu(Ac) 2 -treated Ag NWs were re-dispersed in the aqueous solution of pyrrole. The morphology of NCs was characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM). The relationship between the thickness of polymer sheath and the concentration of Cu(Ac) 2 was established. As Cu(Ac) 2 which served as the oxidant can also be replaced by AgNO 3 in this synthesis, the differences on the structure of polymer sheath caused by different oxidants were studied by surface-enhanced Raman scattering (SERS), high-resolution transmission electron microscope (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). Comparing with the characterization results of Ag/PPy NCs synthesized using AgNO 3 as the oxidant which indicates the random arrangement of PPy chains at the interface between polymer sheath and Ag NWs, PPy chain oxidized by Cu 2+ tends to show a relatively ordered conformation at the interface with the pyrrole rings identically taking the plane vertical to the surface of Ag NWs. In addition, although the main part of the polymer sheath was composed of PPy whatever kind of oxidant was used, the sheath of the NCs oxidized by Cu 2+ is typical for the existence of Cu(I)–pyrrole coordinate structures with strong Cu(I)–N bond signal shown in XPS characterization.

  3. Heterojunction solar cell with 6% efficiency based on an n-type aluminum-gallium-oxide thin film and p-type sodium-doped Cu2O sheet

    Science.gov (United States)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2015-02-01

    In this paper, we describe efforts to enhance the efficiency of Cu2O-based heterojunction solar cells fabricated with an aluminum-gallium-oxide (Al-Ga-O) thin film as the n-type layer and a p-type sodium (Na)-doped Cu2O (Cu2O:Na) sheet prepared by thermally oxidizing copper sheets. The optimal Al content [X; Al/(Ga + Al) atomic ratio] of an AlX-Ga1-X-O thin-film n-type layer was found to be approximately 2.5 at. %. The optimized resistivity was approximately 15 Ω cm for n-type AlX-Ga1-X-O/p-type Cu2O:Na heterojunction solar cells. A MgF2/AZO/Al0.025-Ga0.975-O/Cu2O:Na heterojunction solar cell with 6.1% efficiency was fabricated using a 60-nm-thick n-type oxide thin-film layer and a 0.2-mm-thick Cu2O:Na sheet with the optimized resistivity.

  4. Nanoscale capacitance imaging with attofarad resolution using ac current sensing atomic force microscopy

    International Nuclear Information System (INIS)

    Fumagalli, L; Ferrari, G; Sampietro, M; Casuso, I; MartInez, E; Samitier, J; Gomila, G

    2006-01-01

    Nanoscale capacitance imaging with attofarad resolution (∼1 aF) of a nano-structured oxide thin film, using ac current sensing atomic force microscopy, is reported. Capacitance images are shown to follow the topographic profile of the oxide closely, with nanometre vertical resolution. A comparison between experimental data and theoretical models shows that the capacitance variations observed in the measurements can be mainly associated with the capacitance probed by the tip apex and not with positional changes of stray capacitance contributions. Capacitance versus distance measurements further support this conclusion. The application of this technique to the characterization of samples with non-voltage-dependent capacitance, such as very thin dielectric films, self-assembled monolayers and biological membranes, can provide new insight into the dielectric properties at the nanoscale

  5. Nanoscale capacitance imaging with attofarad resolution using ac current sensing atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fumagalli, L [Dipartimento di Elettronica e Informazione, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 (Italy); Ferrari, G [Dipartimento di Elettronica e Informazione, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 (Italy); Sampietro, M [Dipartimento di Elettronica e Informazione, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 (Italy); Casuso, I [Departament d' Electronica, Universitat de Barcelona, C/MartIi Franques 1, 08028 Barcelona (Spain); MartInez, E [Plataforma de Nanotecnologia, Parc Cientific de Barcelona, C/ Josep Samitier 1-5, 08028-Barcelona (Spain); Samitier, J [Departament d' Electronica, Universitat de Barcelona, C/MartIi Franques 1, 08028 Barcelona (Spain); Gomila, G [Departament d' Electronica, Universitat de Barcelona, C/MartIi Franques 1, 08028 Barcelona (Spain)

    2006-09-28

    Nanoscale capacitance imaging with attofarad resolution ({approx}1 aF) of a nano-structured oxide thin film, using ac current sensing atomic force microscopy, is reported. Capacitance images are shown to follow the topographic profile of the oxide closely, with nanometre vertical resolution. A comparison between experimental data and theoretical models shows that the capacitance variations observed in the measurements can be mainly associated with the capacitance probed by the tip apex and not with positional changes of stray capacitance contributions. Capacitance versus distance measurements further support this conclusion. The application of this technique to the characterization of samples with non-voltage-dependent capacitance, such as very thin dielectric films, self-assembled monolayers and biological membranes, can provide new insight into the dielectric properties at the nanoscale.

  6. Low ac loss geometries in YBCO coated conductors

    International Nuclear Information System (INIS)

    Duckworth, R.C.; List, F.A.; Paranthaman, M.P.; Rupich, M.W.; Zhang, W.; Xie, Y.Y.; Selvamanickam, V.

    2007-01-01

    Reduction of ac losses in applied ac fields can be accomplished through either the creation of filaments and bridging in YBCO coated conductors or by an assembly of narrow width YBCO tapes. The ac losses for each of these geometries were measured at 77 K in perpendicular ac fields up to 100 mT. Despite physical isolation of the filaments, coupling losses were still present in the samples when compared to the expected hysteretic loss. In addition to filamentary conductors the assembly of stacked YBCO conductor provides an alternative method of ac loss reduction. When compared to a 4-mm wide YBCO coated conductor with a critical current of 60 A, the ac loss in a stack of 2-mm wide YBCO coated conductors with a similar total critical current was reduced. While the reduction in ac loss in a 2-mm wide stack coincided with the reduction in the engineering current density of the conductor, further reduction of ac loss was obtained through the splicing of the 2-mm wide tapes with low resistance solders

  7. Low ac loss geometries in YBCO coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, R.C. [Oak Ridge National Laboratory, One Bethel Valley Road, P.O. Box 2008, MS-6305, Oak Ridge, TN 37831-6305 (United States)], E-mail: duckworthrc@ornl.gov; List, F.A.; Paranthaman, M.P. [Oak Ridge National Laboratory, One Bethel Valley Road, P.O. Box 2008, MS-6305, Oak Ridge, TN 37831-6305 (United States); Rupich, M.W.; Zhang, W. [American Superconductor, Two Technology Drive, Westborough, MA 01581 (United States); Xie, Y.Y.; Selvamanickam, V. [SuperPower, 450 Duane Ave, Schenectady, NY 12304 (United States)

    2007-10-01

    Reduction of ac losses in applied ac fields can be accomplished through either the creation of filaments and bridging in YBCO coated conductors or by an assembly of narrow width YBCO tapes. The ac losses for each of these geometries were measured at 77 K in perpendicular ac fields up to 100 mT. Despite physical isolation of the filaments, coupling losses were still present in the samples when compared to the expected hysteretic loss. In addition to filamentary conductors the assembly of stacked YBCO conductor provides an alternative method of ac loss reduction. When compared to a 4-mm wide YBCO coated conductor with a critical current of 60 A, the ac loss in a stack of 2-mm wide YBCO coated conductors with a similar total critical current was reduced. While the reduction in ac loss in a 2-mm wide stack coincided with the reduction in the engineering current density of the conductor, further reduction of ac loss was obtained through the splicing of the 2-mm wide tapes with low resistance solders.

  8. Sodium acetate induces a metabolic alkalosis but not the increase in fatty acid oxidation observed following bicarbonate ingestion in humans.

    Science.gov (United States)

    Smith, Gordon I; Jeukendrup, Asker E; Ball, Derek

    2007-07-01

    We conducted this study to quantify the oxidation of exogenous acetate and to determine the effect of increased acetate availability upon fat and carbohydrate utilization in humans at rest. Eight healthy volunteers (6 males and 2 females) completed 2 separate trials, 7 d apart in a single-blind, randomized, crossover design. On each occasion, respiratory gas and arterialized venous blood samples were taken before and during 180 min following consumption of a drink containing either sodium acetate (NaAc) or NaHCO3 at a dose of 2 mmol/kg body mass. Labeled [1,2 -13C] NaAc was added to the NaAc drink to quantify acetate oxidation. Both sodium salts induced a mild metabolic alkalosis and increased energy expenditure (P < 0.05) to a similar magnitude. NaHCO3 ingestion increased fat utilization from 587 +/- 83 kJ/180 min to 693 +/- 101 kJ/180 min (P = 0.01) with no change in carbohydrate utilization. Following ingestion of NaAc, the amount of fat and carbohydrate utilized did not differ from the preingestion values. However, oxidation of the exogenous acetate almost entirely (90%) replaced the additional fat that had been oxidized during the bicarbonate trial. We determined that 80.1 +/- 2.3% of an exogenous source of acetate is oxidized in humans at rest. Whereas NaHCO3 ingestion increased fat oxidation, a similar response did not occur following NaAc ingestion despite the fact both sodium salts induced a similar increase in energy expenditure and shift in acid-base balance.

  9. Electrical transport properties of nanoplates shaped tungsten oxide embedded poly(vinyl-alcohol) film

    Science.gov (United States)

    Das, Amit Kumar; Chatterjee, Piyali; Meikap, Ajit Kumar

    2018-04-01

    Tungsten oxide (WO3) nanoplates have been synthesized via hydrothermal method. The average crystallite size of the nanoplates is 28.9 ± 0.5 nm. The direct and indirect band gap of WO3 is observed. The AC conductivity of PVA-WO3 composite film has been observed and carrier transport mechanism follows correlated barrier hopping model. The maximum barrier height of the composite film is 0.1 eV. The electric modulus reflects the non-Debye type behaviour of relaxation time which is simulated by Kohlrausch-Willims-Watts (KWW) function.

  10. Metachelins, mannosylated and N-oxidized coprogen-type siderophores from Metarhizium robertsii

    Science.gov (United States)

    Under iron-depleted culture conditions, the entomopathogenic fungus Metarhizium robertsii (Bischoff, Humber, and Rehner) (= M. anisopliae) produces a complex of extracellular siderophores including novel O-glycosylated and/or N-oxidized coprogen-type compounds as well as the known fungal siderophore...

  11. Low temperature synthesis of fluorite-type Ce-based oxides of ...

    Indian Academy of Sciences (India)

    M MALATHI

    F-type oxides can be considered as multi-functional materials due to the ... The photoluminescence property of the rare earth ions was also studied, and the color coordinates were calculated using CIE ... active photocatalysts with a view to utilize solar light. Hence ... It consists of a cylindrical quartz double walled tube with.

  12. Oxidative Stress Parameters in Saliva and Its Association with Periodontal Disease and Types of Bacteria.

    Science.gov (United States)

    Almerich-Silla, Jose Manuel; Montiel-Company, Jose María; Pastor, Sara; Serrano, Felipe; Puig-Silla, Miriam; Dasí, Francisco

    2015-01-01

    To determine the association between oxidative stress parameters with periodontal disease, bleeding, and the presence of different periodontal bacteria. A cross-sectional study in a sample of eighty-six patients, divided into three groups depending on their periodontal status. Thirty-three with chronic periodontitis, sixteen with gingivitis, and thirty-seven with periodontal healthy as control. Oxidative stress biomarkers (8-OHdG and MDA), total antioxidant capacity (TAOC), and the activity of two antioxidant enzymes (GPx and SOD) were determined in saliva. Subgingival plaque samples were obtained from the deepest periodontal pocket and PCR was used to determine the presence of the 6 fimA genotypes of Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia, and Treponema denticola. Periodontal disease was found to be associated with increased oxidative stress parameter levels. These levels rose according to the number and type of different periodontal bacteria found in the periodontal pockets. The presence of different types of periodontal bacteria is predictive independent variables in linear regresion models of oxidative stress parameters as dependent variable, above all 8-OHdG. Oxidative stress parameter levels are correlated with the presence of different types of bacteria. Determination of these levels and periodontal bacteria could be a potent tool for controlling periodontal disease development.

  13. New transition metal oxide fluorides with ReO{sub 3}-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Nakhal, Suliman; Lerch, Martin [Technische Universitaet Berlin (Germany). Inst. fuer Chemie

    2016-08-01

    The new niobium oxide fluorides MNbO{sub 2}F{sub 4} [M = (Cr, Fe)], CrNb{sub 2}O{sub 4}F{sub 5}, and Fe{sub 2}Nb{sub 3}O{sub 6}F{sub 9} were prepared by treatment of chromium or iron nitrate with Nb-containing hydrofluoric acid solutions. Crystal structures were investigated by means of X-ray powder diffraction. All new compounds can be structurally refined in the cubic ReO{sub 3}-type. The iron niobium oxide fluorides are reddish orange, and chromium containing phases exhibit a light green color. The niobium atoms are in the highest formal oxidation state.

  14. AC conductivity and dielectric behavior of bulk Furfurylidenemalononitrile

    Science.gov (United States)

    El-Nahass, M. M.; Ali, H. A. M.

    2012-06-01

    AC conductivity and dielectric behavior for bulk Furfurylidenemalononitrile have been studied over a temperature range (293-333 K) and frequency range (50-5×106 Hz). The frequency dependence of ac conductivity, σac, has been investigated by the universal power law, σac(ω)=Aωs. The variation of the frequency exponent (s) with temperature was analyzed in terms of different conduction mechanisms, and it was found that the correlated barrier hopping (CBH) model is the predominant conduction mechanism. The temperature dependence of σac(ω) showed a linear increase with the increase in temperature at different frequencies. The ac activation energy was determined at different frequencies. Dielectric data were analyzed using complex permittivity and complex electric modulus for bulk Furfurylidenemalononitrile at various temperatures.

  15. Tuning of Activated Carbon for Solvent-Free Oxidation of Cyclohexane

    Directory of Open Access Journals (Sweden)

    Mohammad Sadiq

    2017-01-01

    Full Text Available Activated carbon (AC was prepared from carbonization of phosphoric acid soaked peanut shell at 380°C under inert atmosphere followed by activation with hydrogen peroxide. The AC was characterized by SEM, EDX, FTIR, TGA, and BET surface area and pore size analyzer. The potential of AC as a catalyst for solvent-free oxidation of cyclohexane to cyclohexanol and cyclohexanone (the mixture is known as KA oil in the presence of molecular oxygen at moderate temperature was investigated in a self-designed double-walled three-necked batch reactor. The effect of different reaction parameters/additive was optimized. The maximum productivity value (2.14 mmolg−1 h−1, without base, and 4.85 mmolg−1 h−1, with 0.2 mmol NaOH of the desired product was achieved under optimal reaction parameters: vol 12.5 mL, cat 0.4 g, time 14 h, oxygen flow 40 mL/min (pO2 760 Torr, stirring 1100 rpm, and temp 75°C. The AC shows recyclability for multiple runs without any significant loss in activity. Thus, the AC can be an efficient catalyst, due to low cost, ease of synthesis, easy recovery, nonleaching, and recyclability for multiple uses for the solvent-free oxidation of cyclohexane.

  16. SUBMERGED GRAVEL SCRUBBER DEMONSTRATION AS A PASSIVE AIR CLEANER FOR CONTAINMENT VENTING AND PURGING WITH SODIUM AEROSOLS -- CSTF TESTS AC7 - AC10

    Energy Technology Data Exchange (ETDEWEB)

    HILLIARD, R K.; MCCORMACK, J D.; POSTMA, A K.

    1981-11-01

    Four large-scale air cleaning tests (AC7 - AC10) were performed in the Containment Systems Test Facility (CS'lF) to demonstrate the performance of a Submerged Gravel Scrubber for cleaning the effluent gas from a vented and purged breeder reactor containment vessel. The test article, comprised of a Submerged Gravel Scrubber (SGS) followed by a high efficiency fiber demister, had a design gas flow rate of 0.47 m{sup 3}/s (1000 ft{sup 3}/min) at a pressure drop of 9.0 kPa (36 in. H{sub 2}O). The test aerosol was sodium oxide, sodium hydroxide, or sodium carbonate generated in the 850-m{sup 3} CSTF vessel by continuously spraying sodium into the air-filled vessel while adding steam or carbon dioxide. Approximately 4500 kg (10,000 lb) of sodium was sprayed over a total period of 100 h during the tests. The SGS/Demister system was shown to be highly efficient (removing ~99.98% of the entering sodium aerosol mass), had a high mass loading capacity, and operated in a passive manner, with no electrical requirement. Models for predicting aerosol capture, gas cooling, and pressure drop are developed and compared with experimental results.

  17. Microstructural Evolution of NiCoCrAlHfYSi and NiCoCrAlTaY Coatings Deposited by AC-HVAF and APS

    Science.gov (United States)

    Han, Yujun; Chen, Hongfei; Gao, Dong; Yang, Guang; Liu, Bin; Chu, Yajie; Fan, Jinkai; Gao, Yanfeng

    2017-12-01

    The chemical composition of NiCoCrAlHfYSi with a suitable particle size, deposited using an activated combustion-high velocity air fuel (AC-HVAF) spray, is a potentially promising process because dense, continuous and pure alumina can be formed on the surface of the MCrAlY metallic coatings after isothermal oxidation exposure. The NiCoCrAlHfYSi (Amdry386) and NiCoCrAlTaY (Amdry997) coatings were produced using AC-HVAF and APS, respectively. Isothermal oxidation was subsequently conducted at 1050 °C in air for 200 h. This paper compares the characteristics of four coated samples, including the surface roughness, elastic modulus, hardness, oxide content, microstructural characteristics and phase evolution of thermally grown oxides (TGO). The growth of both the TGO and alumina scales in the TGO of the HVAF386 coating was relatively rapid. The θ- to α-alumina phase transformation was strongly determined by the Hf and Si dopants in the HVAF386 coating. Finally, the extent of grain refinement and deformation storage energy in the HVAF997 coatings were determined to be significantly crucial for the θ- to α-alumina phase transformation.

  18. Differential expression of CK20, β-catenin, and MUC2/5AC/6 in Lynch syndrome and familial colorectal cancer type X

    DEFF Research Database (Denmark)

    Haraldsson, Stefan; Klarskov, Louise; Nilbert, Mef

    2017-01-01

    BACKGROUND: Hereditary non-polyposis colorectal cancer comprises Lynch syndrome and familial colorectal cancer type X (FCCTX). Differences in genetics, demographics and histopathology have been extensively studied. The purpose of this study is to characterize their immunoprofile of markers other...... than MMR proteins. METHODS: We compared the expression patterns of cytokeratins (CK7 and CK20), mucins (MUC2/5 AC/6), CDX2 and β-catenin in Lynch syndrome and FCCTX. RESULTS: Differences were identified for CK20 and nuclear β-catenin, which were significantly more often expressed in FCCTX than in Lynch...... syndrome (p Lynch syndrome tumors compared with FCCTX tumors (p = 0.001,

  19. The relation between intensity and complexity of coronary artery lesion and oxidative stress in patients with acute coronary syndrome.

    Science.gov (United States)

    Turan, Turhan; Menteşe, Ümit; Ağaç, Mustafa Tarık; Akyüz, Ali Rıza; Kul, Selim; Aykan, Ahmet Çağrı; Bektaş, Hüseyin; Korkmaz, Levent; Öztaş Menteşe, Seda; Dursun, İhsan; Çelik, Şükrü

    2015-10-01

    Oxidative stress plays a major role in the development of atherosclerosis. However, the relationship between oxidative stress and complexity and intensity of coronary artery disease is less clear. The aim of this study is to assess the relationship between oxidative stress markers and the complexity and intensity of coronary artery disease in patients with acute coronary syndrome (ACS). Sixty-seven consecutive patients with an early phase of ACS (=22). Likewise patients were divided into two CAD severity groups according to the median Gensini score of 64: less intensive CAD with Gensini score (=64. Blood samples were taken in 1 hour within administration in order to measure total oxidative status (TOS) and total antioxidant capacity (TAC) levels determined by Erel method. Oxidative stress index (OSI) was calculated by TOS /TAC. There was no significant difference between the two SYNTAX groups for oxidative stress markers. Median TOS and OSI values were significantly high in the intensive CAD group (p=0.005, p=0.04, respectively). The Gensini score was positively correlated with TOS and OSI (p=0.003, p=0.02, respectively). Oxidative stress markers may be considered supportive laboratory parameters related to CAD intensity but not complexity in ACS patients.

  20. Non-sparking anodization process of AZ91D magnesium alloy under low AC voltage

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weiping, E-mail: liweiping@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li, Wen [AVIC Beijing Aeronautical Manufacturing Technology Research Institue, Beijing 100024 (China); Zhu, Liqun; Liu, Huicong; Wang, Xiaofang [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2013-04-20

    Highlights: ► Four different processes appear on magnesium alloys with applied voltage increase. ► Non-sparking film formation process occurred in the range of 6–10 V AC. ► The film was composed of Mg{sub 2}SiO{sub 4} with a stable growth rate in 30 min. ► Film growth was a balance of electrochemical dissolution and chemical deposition. -- Abstract: Anodization is widely recognized as one of the most important surface treatments for magnesium alloys. However, since high voltage oxidation films are limited in some applications due to porosity and brittleness, it is worthwhile to explore the non-sparking oxidizing process. In this work, AZ91D was electrochemically anodized at different AC voltages in an electrolyte containing 120 g/L NaOH and 80 g/L Na{sub 2}SiO{sub 3}·9H{sub 2}O. The effects of voltage on the surface morphology, composition and reaction process, especially the non-sparking discharge anodic film formation process, were investigated. The results showed that four different processes would appear according to the applied voltage variation from 6 V to 40 V, and that the non-sparking film formation process occurred in the range of 6–10 V. The film formed on the AZ91D surface under 10 V AC was mainly composed of Mg{sub 2}SiO{sub 4} with a lamellar structure. The horizontal and vertical expansion of the lamellar structure resulted in the formation of a multi-layered structure with a stable, linear growth rate for 30 min. The non-sparking film formation process can be considered to be the result of a balance of electrochemical dissolution and chemical deposition reaction.

  1. Flavin-mediated dual oxidation controls an enzymatic Favorskii-type rearrangement

    Science.gov (United States)

    Louie, Gordon; Noel, Joseph P.; Baran, Phil S.; Palfey, Bruce; Moore, Bradley S.

    2013-01-01

    Flavoproteins catalyze a diversity of fundamental redox reactions and are one of the most studied enzyme families1,2. As monooxygenases, they are universally thought to control oxygenation by means of a peroxyflavin species that transfers a single atom of molecular oxygen to an organic substrate1,3,4. Here we report that the bacterial flavoenzyme EncM5,6 catalyzes the peroxyflavin-independent oxygenation-dehydrogenation dual oxidation of a highly reactive poly(β-carbonyl). The crystal structure of EncM with bound substrate mimics coupled with isotope labeling studies reveal previously unknown flavin redox biochemistry. We show that EncM maintains an unanticipated stable flavin oxygenating species, proposed to be a flavin-N5-oxide, to promote substrate oxidation and trigger a rare Favorskii-type rearrangement that is central to the biosynthesis of the antibiotic enterocin. This work provides new insight into the fine-tuning of the flavin cofactor in offsetting the innate reactivity of a polyketide substrate to direct its efficient electrocyclization. PMID:24162851

  2. Development of Lithium-Stuffed Garnet-Type Oxide Solid Electrolytes with High Ionic Conductivity for Application to All-Solid-State Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Inada, Ryoji, E-mail: inada@ee.tut.ac.jp; Yasuda, Satoshi; Tojo, Masaru; Tsuritani, Keiji; Tojo, Tomohiro; Sakurai, Yoji [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, Toyohashi (Japan)

    2016-07-20

    All-solid-state lithium-ion batteries are expected to be one of the next generations of energy storage devices because of their high energy density, high safety, and excellent cycle stability. Although oxide-based solid electrolyte (SE) materials have rather lower conductivity and poor deformability than sulfide-based ones, they have other advantages, such as their chemical stability and ease of handling. Among the various oxide-based SEs, lithium-stuffed garnet-type oxide, with the formula of Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} (LLZ), has been widely studied because of its high conductivity above 10{sup −4} S cm{sup −1} at room temperature, excellent thermal performance, and stability against Li metal anode. Here, we present our recent progress for the development of garnet-type SEs with high conductivity by simultaneous substitution of Ta{sup 5+} into the Zr{sup 4+} site and Ba{sup 2+} into the La{sup 3+} site in LLZ. Li{sup +} concentration was fixed to 6.5 per chemical formulae, so that the formula of our Li garnet-type oxide is expressed as Li{sub 6.5}La{sub 3−x}Ba{sub x}Zr{sub 1.5−x}Ta{sub 0.5+x}O{sub 12} (LLBZT) and Ba contents x are changed from 0 to 0.3. As a result, all LLBZT samples have a cubic garnet structure without containing any secondary phases. The lattice parameters of LLBZT decrease with increasing Ba{sup 2+} contents x ≤ 0.10 while increase with x from 0.10 to 0.30, possibly due to the simultaneous change of Ba{sup 2+} and Ta{sup 5+} substitution levels. The relative densities of LLBZT are in a range between 89 and 93% and are not influenced in any significant way by the compositions. From the AC impedance spectroscopy measurements, the total (bulk + grain) conductivity at 27°C of LLBZT shows its maximum value of 8.34 × 10{sup −4} S cm{sup −1} at x = 0.10, which is slightly higher than the conductivity (= 7.94 × 10{sup −4} S cm{sup −1}) of LLZT without substituting Ba (x = 0). The activation energy of the conductivity

  3. Antioxidant capacity contributes to protection of ketone bodies against oxidative damage induced during hypoglycemic conditions.

    Science.gov (United States)

    Haces, María L; Hernández-Fonseca, Karla; Medina-Campos, Omar N; Montiel, Teresa; Pedraza-Chaverri, José; Massieu, Lourdes

    2008-05-01

    Ketone bodies play a key role in mammalian energy metabolism during the suckling period. Normally ketone bodies' blood concentration during adulthood is very low, although it can rise during starvation, an exogenous infusion or a ketogenic diet. Whenever ketone bodies' levels increase, their oxidation in the brain rises. For this reason they have been used as protective molecules against refractory epilepsy and in experimental models of ischemia and excitotoxicity. The mechanisms underlying the protective effect of these compounds are not completely understood. Here, we studied a possible antioxidant capacity of ketone bodies and whether it contributes to the protection against oxidative damage induced during hypoglycemia. We report for the first time the scavenging capacity of the ketone bodies, acetoacetate (AcAc) and both the physiological and non-physiological isomers of beta-hydroxybutyrate (D- and L-BHB, respectively), for diverse reactive oxygen species (ROS). Hydroxyl radicals (.OH) were effectively scavenged by D- and L-BHB. In addition, the three ketone bodies were able to reduce cell death and ROS production induced by the glycolysis inhibitor, iodoacetate (IOA), while only D-BHB and AcAc prevented neuronal ATP decline. Finally, in an in vivo model of insulin-induced hypoglycemia, the administration of D- or L-BHB, but not of AcAc, was able to prevent the hypoglycemia-induced increase in lipid peroxidation in the rat hippocampus. Our data suggest that the antioxidant capacity contributes to protection of ketone bodies against oxidative damage in in vitro and in vivo models associated with free radical production and energy impairment.

  4. RNA interference suppression of mucin 5AC (MUC5AC reduces the adhesive and invasive capacity of human pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Yamada Nobuya

    2010-05-01

    Full Text Available Abstract Background MUC5AC is a secretory mucin normally expressed in the surface muconous cells of stomach and bronchial tract. It has been known that MUC5AC de novo expression occurred in the invasive ductal carcinoma and pancreatic intraepithelial neoplasm with no detectable expression in normal pancreas, however, its function remains uncertain. Here, we report the impact of MUC5AC on the adhesive and invasive ability of pancreatic cancer cells. Methods We used two MUC5AC expressing cell lines derived from human pancreatic cancer, SW1990 and BxPC3. Small-interfering (si RNA directed against MUC5AC were used to assess the effects of MUC5AC on invasion and adhesion of pancreas cancer cells in vitro and in vivo. We compared parental cells (SW1990 and BxPC3 with MUC5AC suppressed cells by si RNA (si-SW1990 and si-BxPC3. Results MUC5AC was found to express in more than 80% of pancreatic ductal carcinoma specimens. Next we observed that both of si-SW1990 and si-BxPC3 showed significantly lower adhesion and invasion to extracellular matrix components compared with parental cell lines. Expression of genes associated with adhesion and invasion including several integerins, matrix metalloproteinase (MMP -3 and vascular endothelial growth factor (VEGF were down-regulated in both MUC5AC suppressed cells. Furthermore, production of VEGF and phosphorylation of VEGFR-1 were significantly reduced by MUC5AC down regulation. Both of si-SW1990 and si-BxPC3 attenuated activation of Erk1/2. In vivo, si-SW1990 did not establish subcutaneous tumor in nude mice. Conclusions Knockdown of MUC5AC reduced the ability of pancreatic cancer cells to adhesion and invasion, suggesting that MUC5AC might contribute to the invasive motility of pancreatic cancer cells by enhancing the expression of integrins, MMP-3, VEGF and activating Erk pathway.

  5. Gamma-irradiation produces active chlorine species (ACS) in physiological solutions: Secoisolariciresinol diglucoside (SDG) scavenges ACS - A novel mechanism of DNA radioprotection.

    Science.gov (United States)

    Mishra, Om P; Popov, Anatoliy V; Pietrofesa, Ralph A; Christofidou-Solomidou, Melpo

    2016-09-01

    Secoisolariciresinol diglucoside (SDG), the main lignan in whole grain flaxseed, is a potent antioxidant and free radical scavenger with known radioprotective properties. However, the exact mechanism of SDG radioprotection is not well understood. The current study identified a novel mechanism of DNA radioprotection by SDG in physiological solutions by scavenging active chlorine species (ACS) and reducing chlorinated nucleobases. The ACS scavenging activity of SDG was determined using two highly specific fluoroprobes: hypochlorite-specific 3'-(p-aminophenyl) fluorescein (APF) and hydroxyl radical-sensitive 3'-(p-hydroxyphenyl) fluorescein (HPF). Dopamine, an SDG structural analog, was used for proton (1)H NMR studies to trap primary ACS radicals. Taurine N-chlorination was determined to demonstrate radiation-induced generation of hypochlorite, a secondary ACS. DNA protection was assessed by determining the extent of DNA fragmentation and plasmid DNA relaxation following exposure to ClO(-) and radiation. Purine base chlorination by ClO(-) and γ-radiation was determined by using 2-aminopurine (2-AP), a fluorescent analog of 6-aminopurine. Chloride anions (Cl(-)) consumed >90% of hydroxyl radicals in physiological solutions produced by γ-radiation resulting in ACS formation, which was detected by (1)H NMR. Importantly, SDG scavenged hypochlorite- and γ-radiation-induced ACS. In addition, SDG blunted ACS-induced fragmentation of calf thymus DNA and plasmid DNA relaxation. SDG treatment before or after ACS exposure decreased the ClO(-) or γ-radiation-induced chlorination of 2-AP. Exposure to γ-radiation resulted in increased taurine chlorination, indicative of ClO(-) generation. NMR studies revealed formation of primary ACS radicals (chlorine atoms (Cl) and dichloro radical anions (Cl2¯)), which were trapped by SDG and its structural analog dopamine. We demonstrate that γ-radiation induces the generation of ACS in physiological solutions. SDG treatment scavenged

  6. Hopping models and ac universality

    DEFF Research Database (Denmark)

    Dyre, Jeppe; Schrøder, Thomas

    2002-01-01

    Some general relations for hopping models are established. We proceed to discuss the universality of the ac conductivity which arises in the extreme disorder limit of the random barrier model. It is shown that the relevant dimension entering into the diffusion cluster approximation (DCA) is the h......Some general relations for hopping models are established. We proceed to discuss the universality of the ac conductivity which arises in the extreme disorder limit of the random barrier model. It is shown that the relevant dimension entering into the diffusion cluster approximation (DCA......) is the harmonic (fracton) dimension of the diffusion cluster. The temperature scaling of the dimensionless frequency entering into the DCA is discussed. Finally, some open problems regarding ac universality are listed....

  7. Electrical characterization of a laminar manganese oxide type birnessite; Caracterizacion electrica de un oxido de manganeso laminar tipo birnesita

    Energy Technology Data Exchange (ETDEWEB)

    Arias, N. P.; Becerra, M. E.; Giraldo, O., E-mail: ohgiraldoo@unal.edu.co [Universidad Nacional de Colombia, Sede Manizales, Facultad de Ciencias Exactas y Naturales, Laboratorio de Materiales Nanoestructurados y Funcionales, Carrera 27 No. 64-60, 170004 Manizales (Colombia)

    2015-07-01

    This paper records the characterization of a manganese oxide synthesized by solid state routes which is analogous to natural mineral called birnessite. The analysis of X-ray diffraction and average oxidation state of manganese show that the material has a lamellar structure containing manganese in oxidation states (+4) and (+3). The results of electron microscopy along with surface area and pore size measurements reveal the presence of micro and meso pores in the material. Impedance spectroscopy suggests that high frequency electrical conduction occurs in the volume and on the border of the aggregates; in contrast, ionic conductivity at low frequencies was associated with potassium ions located in the interlaminar region. Ac conductivity values at low frequencies were 1.599 x 10{sup -6} Ω{sup -1} cm{sup -1} and 6.416 x 10{sup -5} Ω{sup -1} cm{sup -1} at high frequencies. These values are associated with an increased probability of electron jumping as frequency increases. These findings contribute to the understanding of electrical conduction processes and provides important information about its potential applications. As a result, this research will prove relevant in the field of batteries, super capacitors and heterogeneous catalysis, among others. (Author)

  8. Using PEGylated iron oxide nanoparticles with ultrahigh relaxivity for MR imaging of an orthotopic model of human hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Wang, Ruizhi; Hu, Yong; Yang, Yuchan; Xu, Wei; Yao, Mingrong; Gao, Dongmei; Zhao, Yan; Zhan, Songhua; Shi, Xiangyang; Wang, Xiaolin

    2017-01-01

    Hepatocellular carcinoma (HCC) is the most common type of liver malignant tumor, which is often diagnosed in advanced stages, resulting in low survival rate. The sensitive diagnosis of early HCC presents a great interest. Herein, a novel superparamagnetic contrast agent composed of iron oxide nanoparticles is reported. Firstly, polyethyleneimine-coated iron oxide (Fe_3O_4@PEI) nanoparticles (NPs) were synthesized via a mild reduction route, followed by their modification of polyethylene glycol monomethyl ether (mPEG-COOH) via 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide hydrochloride coupling chemistry. After acetylation of the remaining PEI amines, the PEGylated Fe_3O_4 (Fe_3O_4@PEI.Ac-mPEG-COOH) NPs were successively characterized via different techniques. The Fe_3O_4@PEI.Ac-mPEG-COOH probes with an Fe_3O_4 NP size of 9 nm are water dispersible and cytocompatible within the given concentration range. The percentages of PEI and m-PEG-COOH on the particles surface are calculated to be 15.5 and 7.2%, respectively. Prior to the administration of Fe_3O_4@PEI.Ac-mPEG-COOH NPs of ultrahigh r_2 relaxivity (461.29 mM"−"1 s"−"1) via tail intravenous injection for MR imaging of HCC, the orthotopic model of HCC was established in the nude mice by surgical transplantation with HCCLM3 cells. The analysis of MR signal intensity (SI) in the orthotopic tumor model demonstrated that the developed Fe_3O_4@PEI.Ac-mPEG-COOH NPs were able to infiltrate into the tumor area through the enhanced permeability and retention (EPR) effect reaching the bottom at 2 h postinjection. The developed Fe_3O_4@PEI.Ac-mPEG-COOH NPs may be further applied for theranostics of different diseases through combing various therapeutic agents.

  9. Transport AC losses in YBCO coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Majoros, M [Ohio State University, Columbus, OH 43210 (United States); Ye, L [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Velichko, A V [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Coombs, T A [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Sumption, M D [Ohio State University, Columbus, OH 43210 (United States); Collings, E W [Ohio State University, Columbus, OH 43210 (United States)

    2007-09-15

    Transport AC loss measurements have been made on YBCO-coated conductors prepared on two different substrate templates-RABiTS (rolling-assisted biaxially textured substrate) and IBAD (ion-beam-assisted deposition). RABiTS samples show higher losses compared with the theoretical values obtained from the critical state model, with constant critical current density, at currents lower than the critical current. An origin of this extra AC loss was demonstrated experimentally by comparison of the AC loss of two samples with different I-V curves. Despite a difference in I-V curves and in the critical currents, their measured losses, as well as the normalized losses, were practically the same. However, the functional dependence of the losses was affected by the ferromagnetic substrate. An influence of the presence of a ferromagnetic substrate on transport AC losses in YBCO film was calculated numerically by the finite element method. The presence of a ferromagnetic substrate increases transport AC losses in YBCO films depending on its relative magnetic permeability. The two loss contributions-transport AC loss in YBCO films and ferromagnetic loss in the substrate-cannot be considered as mutually independent.

  10. AC characterization of bulk organic solar cell in the dark and under illumination

    International Nuclear Information System (INIS)

    Váry, Michal; Perný, Milan; Šály, Vladimír; Packa, Juraj

    2014-01-01

    Highlights: • A study of organic bulk photovoltaic (PV) solar cell. • Current–voltage characteristics in the dark and under illumination. • AC measurements, both under illumination and in the dark conditions. • Equivalent AC circuit. • Effective lifetime assigned with electron–hole recombination and diffusion time of the electron was estimated. - Abstract: Impedance spectroscopy has been used widely to evaluate the transport processes in photovoltaic, mainly based on inorganic semiconductors, structures – solar cells. The aim of this research was to characterize improved organic bulk photovoltaic (PV) solar cells exploiting this method. Progress in technology of investigated organic solar cell involves the use of an active layer based on low band gap type of polymer. The organic PV cell with front transparent electrode and rear metal electrode and active layer produced by Konarka Technologies was analyzed by electrical DC and AC measurements. Current–voltage (I–V) characteristics in the dark and under illumination were measured and basic PV parameters were calculated. AC measurements, both under illumination and in the dark conditions, were processed in order to identify electronic behavior using equivalent AC circuit which was suggested by fitting of measured impedance data. Circuit with the best correlation to measured data is analyzed in details. Voltage and frequency dependences of fitted equivalent circuit components and calculated parameters are explained and presented in the paper

  11. Expression Study of LeGAPDH, LeACO1, LeACS1A, and LeACS2 in Tomato Fruit (Solanum lycopersicum

    Directory of Open Access Journals (Sweden)

    Pijar Riza Anugerah

    2015-10-01

    Full Text Available Tomato is a climacteric fruit, which is characterized by ripening-related increase of respiration and elevated ethylene synthesis. Ethylene is the key hormone in ripening process of climacteric fruits. The objective of this research is to study the expression of three ethylene synthesis genes: LeACO1, LeACS1A, LeACS2, and a housekeeping gene LeGAPDH in ripening tomato fruit. Specific primers have been designed to amplify complementary DNA fragment of LeGAPDH (143 bp, LeACO1 (240 bp, LeACS1A (169 bp, and LeACS2 (148 bp using polymerase chain reaction. Nucleotide BLAST results of the complementary DNA fragments show high similarity with LeGAPDH (NM_001247874.1, LeACO1 (NM_001247095.1, LeACS1A (NM_001246993.1, LeACS2 (NM_001247249.1, respectively. Expression study showed that LeACO1, LeACS1A, LeACS2, and LeGAPDH genes were expressed in ripening tomato fruit. Isolation methods, reference sequences, and primers used in this study can be used in future experiments to study expression of genes responsible for ethylene synthesis using quantitative polymerase chain reaction and to design better strategy for controlling fruit ripening in agroindustry.

  12. Aldehyde-Selective Wacker-Type Oxidation of Unbiased Alkenes Enabled by a Nitrite Co-Catalyst

    KAUST Repository

    Wickens, Zachary K.; Morandi, Bill; Grubbs, Robert H.

    2013-01-01

    Breaking the rules: Reversal of the high Markovnikov selectivity of Wacker-type oxidations was accomplished using a nitrite co-catalyst. Unbiased aliphatic alkenes can be oxidized with high yield and aldehyde selectivity, and several functional groups are tolerated. 18O-labeling experiments indicate that the aldehydic O atom is derived from the nitrite salt.

  13. Aldehyde-Selective Wacker-Type Oxidation of Unbiased Alkenes Enabled by a Nitrite Co-Catalyst

    KAUST Repository

    Wickens, Zachary K.

    2013-09-13

    Breaking the rules: Reversal of the high Markovnikov selectivity of Wacker-type oxidations was accomplished using a nitrite co-catalyst. Unbiased aliphatic alkenes can be oxidized with high yield and aldehyde selectivity, and several functional groups are tolerated. 18O-labeling experiments indicate that the aldehydic O atom is derived from the nitrite salt.

  14. Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge

    Science.gov (United States)

    Williamson, James M.; Trump, Darryl D.; Bletzinger, Peter; Ganguly, Biswa N.

    2006-10-01

    A surface dielectric barrier discharge (DBD) in atmospheric pressure air was excited either by low frequency (0.3-2 kHz) high-voltage ac or by short, high-voltage pulses at repetition rates from 50 to 600 pulses s-1. The short-pulse excited discharge was more diffuse and did not have the pronounced bright multiple cathode spots observed in the ac excited discharge. The discharge voltage, current and average power deposited into the discharge were calculated for both types of excitation. As a measure of plasma-chemical efficiency, the ozone number density was measured by UV absorption as a function of average deposited power. The density of ozone produced by ac excitation did not increase so rapidly as that produced by short-pulse excitation as a function of average power, with a maximum measured density of ~3 × 1015 cm-3 at 25 W. The maximum ozone production achieved by short-pulse excitation was ~8.5 × 1015 cm-3 at 20 W, which was four times greater than that achieved by ac excitation at the same power level.

  15. Dynamic characteristics of corona discharge generated under rainfall condition on AC charged conductors

    Science.gov (United States)

    Xu, Pengfei; Zhang, Bo; Wang, Zezhong; Chen, Shuiming; He, Jinliang

    2017-12-01

    By synchronous measurement of corona current and the water droplet deformation process on a conductor surface, different types of corona discharge are visualized when AC voltage is applied on a line-ground electrode system. The corona characteristics are closely related to the applied voltage and water supply rate. With the increase of AC voltage, the positive Taylor cone discharge firstly appears and then disappears, replaced by the dripping and crashing discharge. Furthermore, the number of pulses in each pulse train increases with the increase of applied voltage. The mechanism of the transfer from the positive Taylor cone discharge to the dripping and crashing discharge is found to be related to the oscillation process of the water droplet. The water supply rate also has a great influence on the characteristics of corona currents. The number of positive pulse trains increases linearly when the water supply rate gets larger, leading to a higher audible noise and radio interference level from the AC corona, which is quite different from that of the DC corona. The difference between the AC and DC coronas under rainfall conditions is analyzed finally.

  16. High glucose alters retinal astrocytes phenotype through increased production of inflammatory cytokines and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Eui Seok Shin

    Full Text Available Astrocytes are macroglial cells that have a crucial role in development of the retinal vasculature and maintenance of the blood-retina-barrier (BRB. Diabetes affects the physiology and function of retinal vascular cells including astrocytes (AC leading to breakdown of BRB. However, the detailed cellular mechanisms leading to retinal AC dysfunction under high glucose conditions remain unclear. Here we show that high glucose conditions did not induce the apoptosis of retinal AC, but instead increased their rate of DNA synthesis and adhesion to extracellular matrix proteins. These alterations were associated with changes in intracellular signaling pathways involved in cell survival, migration and proliferation. High glucose conditions also affected the expression of inflammatory cytokines in retinal AC, activated NF-κB, and prevented their network formation on Matrigel. In addition, we showed that the attenuation of retinal AC migration under high glucose conditions, and capillary morphogenesis of retinal endothelial cells on Matrigel, was mediated through increased oxidative stress. Antioxidant proteins including heme oxygenase-1 and peroxiredoxin-2 levels were also increased in retinal AC under high glucose conditions through nuclear localization of transcription factor nuclear factor-erythroid 2-related factor-2. Together our results demonstrated that high glucose conditions alter the function of retinal AC by increased production of inflammatory cytokines and oxidative stress with significant impact on their proliferation, adhesion, and migration.

  17. Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases

    Directory of Open Access Journals (Sweden)

    Saito Koji

    2005-08-01

    Full Text Available Abstract Background In Arabidopsis, ETO1 (ETHYLENE-OVERPRODUCER1 is a negative regulator of ethylene evolution by interacting with AtACS5, an isoform of the rate-limiting enzyme, 1-aminocyclopropane-1-carboxylate synthases (ACC synthase or ACS, in ethylene biosynthetic pathway. ETO1 directly inhibits the enzymatic activity of AtACS5. In addition, a specific interaction between ETO1 and AtCUL3, a constituent of a new type of E3 ubiquitin ligase complex, suggests the molecular mechanism in promoting AtACS5 degradation by the proteasome-dependent pathway. Because orthologous sequences to ETO1 are found in many plant species including tomato, we transformed tomato with Arabidopsis ETO1 to evaluate its ability to suppress ethylene production in tomato fruits. Results Transgenic tomato lines that overexpress Arabidopsis ETO1 (ETO1-OE did not show a significant delay of fruit ripening. So, we performed yeast two-hybrid assays to investigate potential heterologous interaction between ETO1 and three isozymes of ACC synthases from tomato. In the yeast two-hybrid system, ETO1 interacts with LE-ACS3 as well as AtACS5 but not with LE-ACS2 or LE-ACS4, two major isozymes whose gene expression is induced markedly in ripening fruits. According to the classification of ACC synthases, which is based on the C-terminal amino acid sequences, both LE-ACS3 and AtACS5 are categorized as type 2 isozymes and possess a consensus C-terminal sequence. In contrast, LE-ACS2 and LE-ACS4 are type 1 and type 3 isozymes, respectively, both of which do not possess this specific C-terminal sequence. Yeast two-hybrid analysis using chimeric constructs between LE-ACS2 and LE-ACS3 revealed that the type-2-ACS-specific C-terminal tail is required for interaction with ETO1. When treated with auxin to induce LE-ACS3, seedlings of ETO1-OE produced less ethylene than the wild type, despite comparable expression of the LE-ACS3 gene in the wild type. Conclusion These results suggest that ETO1

  18. A Heavy Metal-Associated Protein (AcHMA1 from the Halophyte, Atriplex canescens (Pursh Nutt., Confers Tolerance to Iron and Other Abiotic Stresses When Expressed in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Xin-Hua Sun

    2014-08-01

    Full Text Available Many heavy metals are essential for metabolic processes, but are toxic at elevated levels. Metal tolerance proteins provide resistance to this toxicity. In this study, we identified and characterized a heavy metal-associated protein, AcHMA1, from the halophyte, Atriplex canescens. Sequence analysis has revealed that AcHMA1 contains two heavy metal binding domains. Treatments with metals (Fe, Cu, Ni, Cd or Pb, PEG6000 and NaHCO3 highly induced AcHMA1 expression in A. canescens, whereas NaCl and low temperature decreased its expression. The role of AcHMA1 in metal stress tolerance was examined using a yeast expression system. Expression of the AcHMA1 gene significantly increased the ability of yeast cells to adapt to and recover from exposure to excess iron. AcHMA1 expression also provided salt, alkaline, osmotic and oxidant stress tolerance in yeast cells. Finally, subcellular localization of an AcHMA1/GFP fusion protein expressed in tobacco cells showed that AcHMA1 was localized in the plasma membrane. Thus, our results suggest that AcHMA1 encodes a membrane-localized metal tolerance protein that mediates the detoxification of iron in eukaryotes. Furthermore, AcHMA1 also participates in the response to abiotic stress.

  19. AC electric field induced dipole-based on-chip 3D cell rotation.

    Science.gov (United States)

    Benhal, Prateek; Chase, J Geoffrey; Gaynor, Paul; Oback, Björn; Wang, Wenhui

    2014-08-07

    The precise rotation of suspended cells is one of the many fundamental manipulations used in a wide range of biotechnological applications such as cell injection and enucleation in nuclear transfer (NT) cloning. Noticeably scarce among the existing rotation techniques is the three-dimensional (3D) rotation of cells on a single chip. Here we present an alternating current (ac) induced electric field-based biochip platform, which has an open-top sub-mm square chamber enclosed by four sidewall electrodes and two bottom electrodes, to achieve rotation about the two axes, thus 3D cell rotation. By applying an ac potential to the four sidewall electrodes, an in-plane (yaw) rotating electric field is generated and in-plane rotation is achieved. Similarly, by applying an ac potential to two opposite sidewall electrodes and the two bottom electrodes, an out-of-plane (pitch) rotating electric field is generated and rolling rotation is achieved. As a prompt proof-of-concept, bottom electrodes were constructed with transparent indium tin oxide (ITO) using the standard lift-off process and the sidewall electrodes were constructed using a low-cost micro-milling process and then assembled to form the chip. Through experiments, we demonstrate rotation of bovine oocytes of ~120 μm diameter about two axes, with the capability of controlling the rotation direction and the rate for each axis through control of the ac potential amplitude, frequency, and phase shift, and cell medium conductivity. The maximum observed rotation rate reached nearly 140° s⁻¹, while a consistent rotation rate reached up to 40° s⁻¹. Rotation rate spectra for zona pellucida-intact and zona pellucida-free oocytes were further compared and found to have no effective difference. This simple, transparent, cheap-to-manufacture, and open-top platform allows additional functional modules to be integrated to become a more powerful cell manipulation system.

  20. Dicty_cDB: FC-AC21 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available FC (Link to library) FC-AC21 (Link to dictyBase) - - - Contig-U15104-1 FC-AC21E (Li...nk to Original site) - - - - - - FC-AC21E 527 Show FC-AC21 Library FC (Link to library) Clone ID FC-AC21 (Link to dict...yBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig Contig-U15104-1 Original site URL http://dict...ce KDSLDVIIFPEMVKLVGLTPNTMEKVLTYFQDNDTIDLSTFPMEIQVEQLSGKYIFICTH KQKDQRCGYCGPILVDQLRDQIKERSLEKEIQVFGTSHVGGHKY... Frames) Frame A: KDSLDVIIFPEMVKLVGLTPNTMEKVLTYFQDNDTIDLSTFPMEIQVEQLSGKYIFICTH KQ

  1. Activated carbon as catalyst for microwave-assisted wet peroxide oxidation of aromatic hydrocarbons.

    Science.gov (United States)

    Garcia-Costa, Alicia L; Lopez-Perela, Lucia; Xu, Xiyan; Zazo, Juan A; Rodriguez, Juan J; Casas, Jose A

    2018-05-21

    This paper addresses the removal of four aromatic hydrocarbons typically found in petrochemical wastewater: benzene (B), toluene (T), o-xylene (X), and naphthalene (N), by microwave-assisted catalytic wet peroxide oxidation (MW-CWPO) using activated carbon (AC) as catalyst. Under the studied conditions, complete pollutant elimination (B, 1.28 mM; T, 1.09 mM; X, 0.94 mM; and N, 0.78 mM) was achieved, with more than 90% TOC removal after only 15-min reaction time, working at 120 °C, pH 0  = 3, AC at 1 g L -1 , and H 2 O 2 at the stoichiometric dose. Furthermore, in the case of toluene, naphthalene, and xylene, the hydroxylation and breakdown of the ring is very rapid and toxic intermediates were not detected. The process follows two steps: (i) pollutant adsorption onto AC followed by (ii) adsorbed compounds oxidation. Thus, MW-CWPO with AC as catalyst appears a promising way for a fast and effective process for B, T, X, and N removal in aqueous phase.

  2. THERMIONIC AC GENERATION

    Science.gov (United States)

    is shown that the maximum ac efficiency is equal to approximately 70% of the corresponding dc value. An illustrative example, including a proposed design for a rather unconventional transformer, is appended. (Author)

  3. 21 CFR 880.6320 - AC-powered medical examination light.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered medical examination light. 880.6320... Miscellaneous Devices § 880.6320 AC-powered medical examination light. (a) Identification. An AC-powered medical examination light is an AC-powered device intended for medical purposes that is used to illuminate body...

  4. Characterization of oxidation products on a ZrFe2-type laves intermetallic exposed to 200degreeC steam

    International Nuclear Information System (INIS)

    Abraham, D. P.; Dietz, N.; Finnegan, N.

    2000-01-01

    The release of radioactive elements from the stainless steel-15 wt% zirconium (SS-15Zr) metal waste form will be governed by the corrosion behavior of ZrFe 2 -type intermetallics phases present in the alloy. In this article, oxidation products that formed on a ZrFe 2 -type intermetallic sample exposed to 200 C steam were characterized by Auger Electron Spectroscopy (AES) and Transmission Electron Microscopy (TEM). The data revealed two oxide layers on the sample surface: an outer crystalline iron-oxide layer and an inner amorphous zirconium-rich layer believed to be zirconium oxide. Thermodynamic considerations indicate that the zirconium-rich layer formed first. The iron-oxide layer appears to have resulted from the diffusion of iron through the zirconium-rich layer to the oxide-vapor interface

  5. Ac-dc converter firing error detection

    International Nuclear Information System (INIS)

    Gould, O.L.

    1996-01-01

    Each of the twelve Booster Main Magnet Power Supply modules consist of two three-phase, full-wave rectifier bridges in series to provide a 560 VDC maximum output. The harmonic contents of the twelve-pulse ac-dc converter output are multiples of the 60 Hz ac power input, with a predominant 720 Hz signal greater than 14 dB in magnitude above the closest harmonic components at maximum output. The 720 Hz harmonic is typically greater than 20 dB below the 500 VDC output signal under normal operation. Extracting specific harmonics from the rectifier output signal of a 6, 12, or 24 pulse ac-dc converter allows the detection of SCR firing angle errors or complete misfires. A bandpass filter provides the input signal to a frequency-to-voltage converter. Comparing the output of the frequency-to-voltage converter to a reference voltage level provides an indication of the magnitude of the harmonics in the ac-dc converter output signal

  6. Metallogenic characteristics, model and exploration prospect for the paleo-interlayer-oxidation type sandstone-hosted uranium deposits in China

    International Nuclear Information System (INIS)

    Huang Jingbai; Li Shengxiang

    2007-01-01

    In this paper, the paleo-interlayer-oxidation type sandstone-hosted uranium deposits occurred in the Meso-Cenozoic continental basins in China are divided into 3 subtype, they are stratum over lapping buried subtype, structure-uplifting destroy subtype and faulted-folding conserved subtype. The metallogenic characteristics, metallogenic model and exploration prospect for these 3 subtypes uranium deposits are discussed. It is proposed that the paleo-interlayer-oxidation type sandstone-hosted uranium deposits, besides the recent interlayer oxidation type sandstone-hosted uranium deposits, are of great prospecting potential in the Meso-Cenozoic continental basins in China. Therefore, the metallogenic theory of these types uranium deposits should be conscientiously summarized and replenished continuously so as to propel forward the exploration of the sandstone-hosted uranium deposits in China. (authors)

  7. Evidence for the role of oxidative stress in the acetylation of histone H3 by ethanol in rat hepatocytes

    Science.gov (United States)

    Choudhury, Mahua; Park, Pil-Hoon; Jackson, Daniel; Shukla, Shivendra D.

    2010-01-01

    The relationship between ethanol induced oxidative stress and acetylation of histone H3 at lysine 9 (H3AcK9) remains unknown and was therefore investigated in primary cultures of rat hepatocytes. Cells were treated with ethanol and a select group of pharmacological agents and the status of H3AcK9 and reactive oxygen species (ROS) were monitored. When hepatocytes were exposed to ethanol (50 mM, 24 hr) in the presence of N-acetyl cystein (ROS reducer) or dietary antioxidants (quercetin, resveratrol), or NADPH oxidase inhibitor apocynin, ethanol induced increases in ROS and H3AcK9, both were significantly reduced. On the other hand, l-buthionine-sulfoximine (ROS inducer) and inhibitor of mitochondrial complex I (rotenone) and III (antimycin) increased ethanol induced H3AcK9 (p<0.01). Oxidative stress also affected ethanol induced alcohol dehydrogenase 1 (ADH1) mRNA expression. These results demonstrate for the first time that oxidative stress is involved in the ethanol induced histone H3 acetylation in hepatocytes. PMID:20705415

  8. Relation of iron stores to oxidative stress in type 2 diabetes | Kundu ...

    African Journals Online (AJOL)

    Relation of iron stores to oxidative stress in type 2 diabetes. ... patients who attended the outpatient and inpatient departments of Medical College, Kolkata. ... levels to MDA levels in the diabetic cases of longer duration of more than 10 years.

  9. Transcranial Alternating Current Stimulation (tACS Mechanisms and Protocols

    Directory of Open Access Journals (Sweden)

    Amir V. Tavakoli

    2017-09-01

    Full Text Available Perception, cognition and consciousness can be modulated as a function of oscillating neural activity, while ongoing neuronal dynamics are influenced by synaptic activity and membrane potential. Consequently, transcranial alternating current stimulation (tACS may be used for neurological intervention. The advantageous features of tACS include the biphasic and sinusoidal tACS currents, the ability to entrain large neuronal populations, and subtle control over somatic effects. Through neuromodulation of phasic, neural activity, tACS is a powerful tool to investigate the neural correlates of cognition. The rapid development in this area requires clarity about best practices. Here we briefly introduce tACS and review the most compelling findings in the literature to provide a starting point for using tACS. We suggest that tACS protocols be based on functional brain mechanisms and appropriate control experiments, including active sham and condition blinding.

  10. Spectroscopic AC susceptibility imaging (sASI) of magnetic nanoparticles

    International Nuclear Information System (INIS)

    Ficko, Bradley W.; Nadar, Priyanka M.; Diamond, Solomon G.

    2015-01-01

    This study demonstrates a method for alternating current (AC) susceptibility imaging (ASI) of magnetic nanoparticles (mNPs) using low cost instrumentation. The ASI method uses AC magnetic susceptibility measurements to create tomographic images using an array of drive coils, compensation coils and fluxgate magnetometers. Using a spectroscopic approach in conjunction with ASI, a series of tomographic images can be created for each frequency measurement set and is termed sASI. The advantage of sASI is that mNPs can be simultaneously characterized and imaged in a biological medium. System calibration was performed by fitting the in-phase and out-of-phase susceptibility measurements of an mNP sample with a hydrodynamic diameter of 100 nm to a Brownian relaxation model (R 2 =0.96). Samples of mNPs with core diameters of 10 and 40 nm and a sample of 100 nm hydrodynamic diameter were prepared in 0.5 ml tubes. Three mNP samples were arranged in a randomized array and then scanned using sASI with six frequencies between 425 and 925 Hz. The sASI scans showed the location and quantity of the mNP samples (R 2 =0.97). Biological compatibility of the sASI method was demonstrated by scanning mNPs that were injected into a pork sausage. The mNP response in the biological medium was found to correlate with a calibration sample (R 2 =0.97, p<0.001). These results demonstrate the concept of ASI and advantages of sASI. - Highlights: • Development of an AC susceptibility imaging model. • Comparison of AC susceptibility imaging (ASI) and susceptibility magnitude imaging (SMI). • Demonstration of ASI and spectroscopic ASI (sASI) using three different magnetic nanoparticle types. • SASI scan separation of three different magnetic nanoparticles samples using 5 spectroscopic frequencies. • Demonstration of biological feasibility of sASI

  11. Study on metallogenetic prospect of interlayer oxidation zone sandstone type uranium deposit in Shanganning basin

    International Nuclear Information System (INIS)

    Wang Jinping

    1998-01-01

    As Compared with orogenic zone basin, which the interlayer oxidation zone sandstone type uranium deposits are found, the Shanganning basin a continental platform type basin is distinct either in the geodynamic background and the post-basin hydrogeological evolution or in the appearance of the metallogenetic dynamics-orogenesis. The prediction criteria summarized for interlayer oxidation zone type U-deposits in Middle Asia therefore can not be completely applied in such a basin. Based on analysis of the typical regional geological setting, the hydrogeology of the Meso-Cenozoic cover is studied in detail. Three hydrogeological cycles have been divided, and prospects of uranium deposits have been clarified and the most promising target have been proposed

  12. Effect of proton-conduction in electrolyte on electric efficiency of multi-stage solid oxide fuel cells

    Science.gov (United States)

    Matsuzaki, Yoshio; Tachikawa, Yuya; Somekawa, Takaaki; Hatae, Toru; Matsumoto, Hiroshige; Taniguchi, Shunsuke; Sasaki, Kazunari

    2015-07-01

    Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC).

  13. Three-Level AC-DC-AC Z-Source Converter Using Reduced Passive Component Count

    DEFF Research Database (Denmark)

    Loh, Poh Chiang; Gao, Feng; Tan, Pee-Chin

    2009-01-01

    This paper presents a three-level ac-dc-ac Z-source converter with output voltage buck-boost capability. The converter is implemented by connecting a low-cost front-end diode rectifier to a neutral-point-clamped inverter through a single X-shaped LC impedance network. The inverter is controlled...... to switch with a three-level output voltage, where the middle neutral potential is uniquely tapped from the star-point of a wye-connected capacitive filter placed before the front-end diode rectifier for input current filtering. Through careful control, the resulting converter can produce the correct volt...

  14. Isothermal Kinetics of Catalyzed Air Oxidation of Diesel Soot

    Directory of Open Access Journals (Sweden)

    R. Prasad

    2011-01-01

    Full Text Available To comply with the stringent emission regulations on soot, diesel vehicles manufacturers more and more commonly use diesel particulate filters (DPF. These systems need to be regenerated periodically by burning soot that has been accumulated during the loading of the DPF. Design of the DPF requires rate of soot oxidation. This paper describes the kinetics of catalytic oxidation of diesel soot with air under isothermal conditions. Kinetics data were collected in a specially designed mini-semi-batch reactor. Under the high air flow rate assuming pseudo first order reaction the activation energy of soot oxidation was found to be, Ea = 160 kJ/ mol. ©2010 BCREC UNDIP. All rights reserved(Received: 14th June 2010, Revised: 18th July 2010, Accepted: 9th August 2010[How to Cite: R. Prasad, V.R. Bella. (2010. Isothermal Kinetics of Catalyzed Air Oxidation of Diesel Soot. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2: 95-101. doi:10.9767/bcrec.5.2.796.95-101][DOI:http://dx.doi.org/10.9767/bcrec.5.2.796.95-101 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/796]Cited by in: ACS 1 |

  15. Characterisation of AC1: a naturally decaffeinated coffee

    Directory of Open Access Journals (Sweden)

    Luciana Benjamim Benatti

    2012-01-01

    Full Text Available We compared the biochemical characteristics of the beans of a naturally decaffeinated Arabica coffee (AC1 discovered in 2004 with those of the widely grown Brazilian Arabica cultivar "Mundo Novo" (MN. Although we observed differences during fruit development, the contents of amino acids, organic acids, chlorogenic acids, soluble sugars and trigonelline were similar in the ripe fruits of AC1 and MN. AC1 beans accumulated theobromine, and caffeine was almost entirely absent. Tests on the supply of [2-14C] adenine and enzymatic analysis of theobromine synthase and caffeine synthase in the endosperm of AC1 confirmed that, as in the leaves, caffeine synthesis is blocked during the methylation of theobromine to caffeine. The quality of the final coffee beverage obtained from AC1 was similar to that of MN.

  16. Synthesis and electrical characterization of Graphene Oxide films

    International Nuclear Information System (INIS)

    Yasin, Muhammad; Tauqeer, T.; Zaidi, Syed M.H.; San, Sait E.; Mahmood, Asad; Köse, Muhammet E.; Canimkurbey, Betul; Okutan, Mustafa

    2015-01-01

    In this work, we have synthesized Graphene Oxide (GO) using modified Hummers method and investigated its electrical properties using parallel plate impedance spectroscopic technique. Graphene Oxide films were prepared using drop casting method on Indium Tin Oxide (ITO) coated glass substrate. Atomic force microscopy was used to characterize the films' microstructure and surface topography. Electrical characterization was carried out using LCR meter in frequency regime (100 Hz to 10 MHz) at different temperatures. AC conductivity σ ac of the films was observed to be varied with angular frequency, ω as ω S , with S < 1. The electrical properties of GO were found to be both frequency and temperature dependent. Analysis showed that GO film contains direct current (DC) and Correlated Barrier Hopping (CBH) conductivity mechanisms at low and high frequency ranges, respectively. Photon absorption and transmittance capability in the visible range and excellent electrical parameters of solution processed Graphene Oxide suggest its suitability for the realization of low cost flexible organic solar cells and organic Thin Film Transistors, respectively. - Highlights: • Synthesize and electrical characterization of Graphene Oxide (GO) Film was undertaken. • Temperature dependent impedance spectroscopy was used for electrical analysis. • AFM was used to characterize films' microstructure and surface topography. • Electrical parameters were found to vary with both temperature and frequency. • GO showed DC and CBH conductivity mechanisms at low and high frequency, respectively

  17. A multi-channel AC power supply controller

    International Nuclear Information System (INIS)

    Su Hong; Li Xiaogang; Ma Xiaoli; Zhou Bo; Yin Weiwei

    2003-01-01

    A multi-channel ac power supply controller developed recently by authors is introduced briefly in this paper. This controller is a computer controlled multi-electronic-switch device. This controller was developed for the automatic control and monitoring system of a 220 V ac power supply system, it is a key front-end device of the automatic control and monitoring system. There is an electronic switch in each channel, the rated load power is ≤1 kW/each channel. Another function is to sample the 220 V ac output voltage so that computer can monitor the operation state of each electronic switch. Through these switches, the 220 V ac power supply is applied to some device or apparatus that need to be powered by 220 V ac power supply. In the design, a solid-state relay was employed as an electronic switch. This controller can be connected in cascade mode. There are 8 boxes at most can be connected in cascade mode. The length of control word is 8 bit, which contains addressing information and electronic switch state setting information. The sampling output of the controller is multiplexed. It is only one bit that indicates the operating state of an electronic switch. This controller has been used in an automatic control and monitoring system for 220 V ac power supply system

  18. Bioinformatics and Astrophysics Cluster (BinAc)

    Science.gov (United States)

    Krüger, Jens; Lutz, Volker; Bartusch, Felix; Dilling, Werner; Gorska, Anna; Schäfer, Christoph; Walter, Thomas

    2017-09-01

    BinAC provides central high performance computing capacities for bioinformaticians and astrophysicists from the state of Baden-Württemberg. The bwForCluster BinAC is part of the implementation concept for scientific computing for the universities in Baden-Württemberg. Community specific support is offered through the bwHPC-C5 project.

  19. MAPC transplantation confers a more durable benefit than AC133+ cell transplantation in severe hind limb ischemia.

    Science.gov (United States)

    Aranguren, Xabier L; Pelacho, Beatriz; Peñuelas, Ivan; Abizanda, Gloria; Uriz, Maialen; Ecay, Margarita; Collantaes, María; Araña, Miriam; Beerens, Manu; Coppiello, Giulia; Prieto, Inés; Perez-Ilzarbe, Maitane; Andreu, Enrique J; Luttun, Aernout; Prósper, Felipe

    2011-01-01

    There is a need for comparative studies to determine which cell types are better candidates to remedy ischemia. Here, we compared human AC133(+) cells and multipotent adult progenitor cells (hMAPC) in a mouse model reminiscent of critical limb ischemia. hMAPC or hAC133(+) cell transplantation induced a significant improvement in tissue perfusion (measured by microPET) 15 days posttransplantation compared to controls. This improvement persisted for 30 days in hMAPC-treated but not in hAC133(+)-injected animals. While transplantation of hAC133(+) cells promoted capillary growth, hMAPC transplantation also induced collateral expansion, decreased muscle necrosis/fibrosis, and improved muscle regeneration. Incorporation of differentiated hAC133(+) or hMAPC progeny into new vessels was limited; however, a paracrine angio/arteriogenic effect was demonstrated in animals treated with hMAPC. Accordingly, hMAPC-conditioned, but not hAC133(+)-conditioned, media stimulated vascular cell proliferation and prevented myoblast, endothelial, and smooth muscle cell apoptosis in vitro. Our study suggests that although hAC133(+) cell and hMAPC transplantation both contribute to vascular regeneration in ischemic limbs, hMAPC exert a more robust effect through trophic mechanisms, which translated into collateral and muscle fiber regeneration. This, in turn, conferred tissue protection and regeneration with longer term functional improvement. © 2011 Cognizant Comm. Corp.

  20. Pharmaceutical removal during managed aquifer recharge with pretreatment by advanced oxidation

    KAUST Repository

    Lekkerkerker-Teunissen, Karin

    2012-10-01

    Organic micropollutants (OMPs) are detected in sources for drinking water and treatment possibilities are investigated. Innovative removal technologies are available such as membrane filtration and advanced oxidation, but also biological treatment should be considered. By combining an advanced oxidation process with managed aquifer recharge (MAR), two complementary processes are expected to provide a hybrid system for OMP removal, according to the multiple barrier approach. Laboratory scale batch reactor experiments were conducted to investigate the removal of dissolved organic carbon (DOC) and 14 different pharmaceutically active compounds (PhACs) from MAR influent water and water subjected to oxidation, under different process conditions. A DOC removal of 10% was found in water under oxic (aerobic) conditions for batch reactor experiments, a similar value for DOC removal was observed in the field. Batch reactor experiments for the removal of PhACs showed that the removal of pharmaceuticals ranged from negligible to more than 90%. Under oxic conditions, seven out of 14 pharmaceuticals were removed over 90% and 12 out of 14 pharmaceuticals were removed at more than 50% during 30 days of experiments. Under anoxic conditions, four out of 14 pharmaceuticals were removed over 90% and eight out of 14 pharmaceuticals were removed at more than 50% over 30 days\\' experiments. Carbamazepine and phenazone were persistent both under oxic and anoxic conditions. The PhACs removal efficiency with oxidized water was, for most compounds, comparable to the removal with MAR influent water. Copyright © IWA Publishing 2012.

  1. Pharmaceutical removal during managed aquifer recharge with pretreatment by advanced oxidation

    KAUST Repository

    Lekkerkerker-Teunissen, Karin; Chekol, E. T.; Maeng, Sungkyu; Ghebremichael, Kebreab A.; Houtman, Corine J.; Verliefde, Arne R. D.; Verberk, J. Q J C; Amy, Gary L.; Van Dijk, Johannis C.

    2012-01-01

    Organic micropollutants (OMPs) are detected in sources for drinking water and treatment possibilities are investigated. Innovative removal technologies are available such as membrane filtration and advanced oxidation, but also biological treatment should be considered. By combining an advanced oxidation process with managed aquifer recharge (MAR), two complementary processes are expected to provide a hybrid system for OMP removal, according to the multiple barrier approach. Laboratory scale batch reactor experiments were conducted to investigate the removal of dissolved organic carbon (DOC) and 14 different pharmaceutically active compounds (PhACs) from MAR influent water and water subjected to oxidation, under different process conditions. A DOC removal of 10% was found in water under oxic (aerobic) conditions for batch reactor experiments, a similar value for DOC removal was observed in the field. Batch reactor experiments for the removal of PhACs showed that the removal of pharmaceuticals ranged from negligible to more than 90%. Under oxic conditions, seven out of 14 pharmaceuticals were removed over 90% and 12 out of 14 pharmaceuticals were removed at more than 50% during 30 days of experiments. Under anoxic conditions, four out of 14 pharmaceuticals were removed over 90% and eight out of 14 pharmaceuticals were removed at more than 50% over 30 days' experiments. Carbamazepine and phenazone were persistent both under oxic and anoxic conditions. The PhACs removal efficiency with oxidized water was, for most compounds, comparable to the removal with MAR influent water. Copyright © IWA Publishing 2012.

  2. Ac, La, and Ce radioimpurities in {sup 225}Ac produced in 40-200 MeV proton irradiations of thorium

    Energy Technology Data Exchange (ETDEWEB)

    Engle, Jonathan W.; Ballard, Beau D. [Los Alamos National Laboratory, NM (United States); Weidner, John W. [Air Force Institute of Technology, Wright Patterson Air Force Base, OH (United States); and others

    2014-10-01

    Accelerator production of {sup 225}Ac addresses the global supply deficiency currently inhibiting clinical trials from establishing {sup 225}Ac's therapeutic utility, provided that the accelerator product is of sufficient radionuclidic purity for patient use. Two proton activation experiments utilizing the stacked foil technique between 40 and 200 MeV were employed to study the likely co-formation of radionuclides expected to be especially challenging to separate from {sup 225}Ac. Foils were assayed by nondestructive γ-spectroscopy and by α-spectroscopy of chemically processed target material. Nuclear formation cross sections for the radionuclides {sup 226}Ac and {sup 227}Ac as well as lower lanthanide radioisotopes {sup 139}Ce, {sup 141}Ce, {sup 143}Ce, and {sup 140}La whose elemental ionic radii closely match that of actinium were measured and are reported. The predictions of the latest MCNP6 event generators are compared with measured data, as they permit estimation of the formation rates of other radionuclides whose decay emissions are not clearly discerned in the complex spectra collected from {sup 232}Th(p,x) fission product mixtures. (orig.)

  3. The Sloan Lens ACS Survey. I. A large spectroscopically selected sample of massive early-type lens galaxies

    NARCIS (Netherlands)

    Bolton, AS; Burles, S; Koopmans, LVE; Treu, T; Moustakas, LA

    2006-01-01

    The Sloan Lens ACS (SLACS) Survey is an efficient Hubble Space Telescope (HST) Snapshot imaging survey for new galaxy-scale strong gravitational lenses. The targeted lens candidates are selected spectroscopically from the Sloan Digital Sky Survey (SDSS) database of galaxy spectra for having multiple

  4. Ac conductivity and dielectric properties of bulk tin phthalocyanine dichloride (SnPcCl 2)

    Science.gov (United States)

    El-Nahass, M. M.; Farid, A. M.; Abd El-Rahman, K. F.; Ali, H. A. M.

    2008-07-01

    The ac conductivity, σac( ω), has been measured for bulk tin phthalocyanine dichloride (SnPcCl 2) in the form of compressed pellet with evaporated ohmic Au electrodes in a temperature range 303-403 K. Ac conductivity, σac( ω), is found to vary as ωs in the frequency range 42 Hz-5×10 6 Hz. At low range of frequency, s<1 and it decreases with the increase in temperature indicating a dominant hopping process. At high range of frequency, s is found to be equal to ≈1.09 and is temperature independent. The dielectric constant, ε1, and dialectic loss, ε2, have been determined for bulk SnPcCl 2. Both ε1 and ε2 decrease with the increase in frequency and increase with the increase in temperature. The Cole-Cole types have been used to determine some parameters such as; the macroscopic relaxation time ( τo), the molecular relaxation time ( τ), the activation energy for relaxation ( Eo) and the distribution parameter ( α). The temperature dependence of τ is expressed by a thermally activated process with the activation energy of 0.299 eV.

  5. Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, James M [Innovative Scientific Solutions, Inc., 2766 Indian Ripple Road, Dayton, Ohio 45440-3638 (United States); Trump, Darryl D [Innovative Scientific Solutions, Inc., 2766 Indian Ripple Road, Dayton, Ohio 45440-3638 (United States); Bletzinger, Peter [Innovative Scientific Solutions, Inc., 2766 Indian Ripple Road, Dayton, Ohio 45440-3638 (United States); Ganguly, Biswa N [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7919 (United States)

    2006-10-21

    A surface dielectric barrier discharge (DBD) in atmospheric pressure air was excited either by low frequency (0.3-2 kHz) high-voltage ac or by short, high-voltage pulses at repetition rates from 50 to 600 pulses s{sup -1}. The short-pulse excited discharge was more diffuse and did not have the pronounced bright multiple cathode spots observed in the ac excited discharge. The discharge voltage, current and average power deposited into the discharge were calculated for both types of excitation. As a measure of plasma-chemical efficiency, the ozone number density was measured by UV absorption as a function of average deposited power. The density of ozone produced by ac excitation did not increase so rapidly as that produced by short-pulse excitation as a function of average power, with a maximum measured density of {approx}3 x 10{sup 15} cm{sup -3} at 25 W. The maximum ozone production achieved by short-pulse excitation was {approx}8.5 x 10{sup 15} cm{sup -3} at 20 W, which was four times greater than that achieved by ac excitation at the same power level.

  6. Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge

    International Nuclear Information System (INIS)

    Williamson, James M; Trump, Darryl D; Bletzinger, Peter; Ganguly, Biswa N

    2006-01-01

    A surface dielectric barrier discharge (DBD) in atmospheric pressure air was excited either by low frequency (0.3-2 kHz) high-voltage ac or by short, high-voltage pulses at repetition rates from 50 to 600 pulses s -1 . The short-pulse excited discharge was more diffuse and did not have the pronounced bright multiple cathode spots observed in the ac excited discharge. The discharge voltage, current and average power deposited into the discharge were calculated for both types of excitation. As a measure of plasma-chemical efficiency, the ozone number density was measured by UV absorption as a function of average deposited power. The density of ozone produced by ac excitation did not increase so rapidly as that produced by short-pulse excitation as a function of average power, with a maximum measured density of ∼3 x 10 15 cm -3 at 25 W. The maximum ozone production achieved by short-pulse excitation was ∼8.5 x 10 15 cm -3 at 20 W, which was four times greater than that achieved by ac excitation at the same power level

  7. Effects of naringin on apoptosis and oxidative stress in type 2 diabetic rats

    Science.gov (United States)

    Adelani, Isaacson; Bankole, Esther; Rotimi, Oluwakemi; Rotimi, Solomon

    2018-04-01

    Oxidative stress and apoptosis have been reported to play major roles in the pathogenesis of Type 2 Diabetes Mellitus (T2DM) through insulin resistance and β-cell dysfunction. Naringin is a citrus derived flavonoid that has been reported for its antioxidant properties. Even though effects of naringin in T2DM related oxidative stress has been reported, varying dose concentration in oxidative stress and mechanism of action involving T2DM related apoptosis is far-fetched. This research studied the effects of naringin at varying dose concentration on apoptosis, biomarkers of organ function and oxidative stress in high fat diet/low-streptozotocin-induced T2DM in albino Wistar rats. Diabetic rats were treated with naringin at 50mg/kg, 100mg/kg and 200mg/kg body weight for 21 days. Some biomarkers of organ function and oxidative stress in the animals were assayed using spectrophotometric techniques. The levels of expression of caspases and apoptotic regulators were quantified using semi-quantitative reverse transcriptase polymerase chain reaction (RT PCR). Enzyme - linked immunosorbent assay was used to determine inducible nitric oxide synthase (iNOS) level. Naringin treatment shows a dose dependent significant (plipid peroxidation, glutathione- s-transferase, glutathione peroxidase and glutathione reductase activities in the liver. Naringin treatment also showed a significant (p<0.05) increase in the expression of caspase 3 and reduction in BCL-2 as against the diabetic control. In addition, there was dose dependent decrease in plasma CO2 concentration and increase in the plasma iNOS concentration as compared to the diabetic control. This result highlights positive effect of naringin as an antioxidant, its role in apoptosis and also reverting the effects of organ damage in type 2 diabetes.

  8. Construction of occluded recombinant baculoviruses containing the full-length cry1Ab and cry1Ac genes from Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    B.M. Ribeiro

    1998-06-01

    Full Text Available The administration of baculoviruses to insects for bioassay purposes is carried out, in most cases, by contamination of food surfaces with a known amount of occlusion bodies (OBs. Since per os infection is the natural route of infection, occluded recombinant viruses containing crystal protein genes (cry1Ab and cry1Ac from Bacillus thuringiensis were constructed for comparison with the baculovirus prototype Autographa californica nucleopolyhedrovirus (AcNPV. The transfer vector pAcUW2B was used for construction of occluded recombinant viruses. The transfer vector containing the crystal protein genes was cotransfected with linearized DNA from a non-occluded recombinant virus. The isolation of recombinant viruses was greatly facilitated by the reduction of background "wild type" virus and the increased proportion of recombinant viruses. Since the recombinant viruses containing full-length and truncated forms of the crystal protein genes did not seem to improve the pathogenicity of the recombinant viruses when compared with the wild type AcNPV, and in order to compare expression levels of the full-length crystal proteins produced by non-occluded and occluded recombinant viruses the full-length cry1Ab and cry1Ac genes were chosen for construction of occluded recombinant viruses. The recombinant viruses containing full-length and truncated forms of the crystal protein genes did not seem to improve its pathogenicity but the size of the larvae infected with the recombinant viruses was significantly smaller than that of larvae infected with the wild type virus.

  9. Transition towards DC micro grids: From an AC to a hybrid AC and DC energy infrastructure

    Directory of Open Access Journals (Sweden)

    Evi Ploumpidou

    2017-12-01

    Full Text Available Our electricity is predominantly powered by alternating current (AC, ever since the War of Currents ended in the favor of Nicola Tesla at the end of the 19th century. However, lots of the appliances we use, such as electronics and lights with light-emitting diode (LED technology, work internally on direct current (DC and it is projected that the number of these appliances will increase in the near future. Another contributor to the increase in DC consumption is the ongoing electrification of mobility (Electric Vehicles (EVs. At the same time, photovoltaics (PV generate DC voltages, while the most common storage technologies also use DC. In order to integrate all these appliances and technologies to the existing AC grid, there is a need for converters which introduce power losses. By distributing DC power to DC devices instead of converting it to AC first, it is possible to avoid substantial energy losses that occur every time electricity is converted. This situation initiated the concept for the implementation of the DC-Flexhouse project. A prototype DC installation will be developed and tested in one of the buildings of the developing living lab area called the District of Tomorrow (De Wijk van Morgen which is located in Heerlen, the Netherlands. A neighborhood cooperative (Vrieheide cooperatie is also part of the consortium in order to address the aspect of social acceptance. Although DC seems to be a promising solution for a more sustainable energy system, the business case is still debatable due to both technology- and market-related challenges. The current energy infrastructure is predominantly based on AC, manufacturers produce devices based on AC standards and people are using many AC products across a long life span. This Smart Energy Buildings & Cities (SEB&C PDEng project is a contribution to the DC-Flexhouse project. The aim is to analyze the challenges in the transition to DC micro grids, assess the market potential of DC

  10. Formation conditions and prospecting criteria for sandstone uranium deposit of interlayer oxidation type

    International Nuclear Information System (INIS)

    Huang Shijie

    1994-01-01

    This paper comprehensively analyses the geotectonic setting and favourable conditions, such as structure of the basin, sedimentary facies and paleogeography, geomorphology and climate, hydrodynamics and hydrogeochemistry, the development of interlayered oxidation etc, necessary for the formation of sandstone uranium deposit of interlayered oxidation type. The following prospecting criteria is proposed, namely: abundant uranium source, arid climate, stable big basin, flat-lying sandstone bed, big alluvial fan, little change in sedimentary facies, intercalation of sandstone and mudstone beds, shallow burying of sandstone bed, well-aquiferous sandstone bed, high permeability of sandstone bed, development of interlayered oxidation, and high content of reductant in sandstone. In addition, the 6 in 1 hydrogenic genetic model is proposed

  11. A method for increasing the surface area of perovskite-type oxides

    Indian Academy of Sciences (India)

    ABO3-type perovskite oxides (A = rare earth element with or without its partial substitution by alkaline earth element, and B = transition element such as Co, Mn, Ni, Fe, etc., with or without its partial substitution by other transition elements) have high potential for their ... In our very recent communication 8, we have reported a ...

  12. Vanadium oxides supported on hydrotalcite-type precursors: the effect of acid-base properties on the oxidation of isopropanol

    Directory of Open Access Journals (Sweden)

    D. M. Meira

    2006-09-01

    Full Text Available Vanadium oxide supported on hydrotalcite-type precursors was studied in the oxidation of isopropanol. Hydrotalcites with different y = Mg/Al ratios were synthesized by the method of coprecipitation nitrates of Mg and Al cations with K2CO3 as precipitant. The decomposition of these hydrotalcite precursors at 450°C yielded homogeneous MgyAlOx mixed oxides that contain the Al+3 cations totally incorporated into the MgO framework. The materials were characterized by chemical analysis, BET superficial area, X-ray diffraction, temperature-programmed reduction (TPR and the reaction of isopropanol, a probe molecule used to evaluate the acid-base properties. The results of TPR showed that the reducibility of V+5 decreased with the increase in magnesium loading in catalysts. The X-ray diffraction patterns of Al-rich hydrotalcite precursors showed the presence of crystalline phases of brucite and gibbsite. It was shown that chemical composition, texture, acid-base properties of the active sites and also Mg/Al ratio strongly affect the formation of the products in the oxidation of isopropanol. The Al-rich catalysts were much more active than the Mg-rich ones, converting isopropanol mainly to propylene.

  13. Vanadium oxides supported on hydrotalcite-type precursors: the effect of acid base properties on the oxidation of isopropanol

    Energy Technology Data Exchange (ETDEWEB)

    Meira, D.M.; Cortez, G.G. [Faculdade de Engenharia Quimica de Lorena, Lorena, SP (Brazil). Dept. de Engenharia Quimica. Lab. de Catalise II]. E-mail: cortez@dequi.faenquil.br; Monteiro, W.R.; Rodrigues, J.A.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Combustao e Propulsao]. E-mail: jajr@lcp.inpe.br

    2006-07-15

    Vanadium oxide supported on hydrotalcite-type precursors was studied in the oxidation of isopropanol. Hydrotalcites with different y = Mg/Al ratios were synthesized by the method of coprecipitation nitrates of Mg and Al cations with K{sub 2}CO{sub 3} as precipitant. The decomposition of these hydrotalcite precursors at 450 deg C yielded homogeneous MgyAlOx mixed oxides that contain the Al{sup +3} cations totally incorporated into the MgO framework. The materials were characterized by chemical analysis, BET superficial area, X-ray diffraction, temperature-programmed reduction (TPR) and the reaction of isopropanol, a probe molecule used to evaluate the acid-base properties. The results of TPR showed that the reducibility of V{sup +5} decreased with the increase in magnesium loading in catalysts. The X-ray diffraction patterns of Al-rich hydrotalcite precursors showed the presence of crystalline phases of brucite and gibbsite. It was shown that chemical composition, texture, acid-base properties of the active sites and also Mg/Al ratio strongly affect the formation of the products in the oxidation of isopropanol. The Al-rich catalysts were much more active than the Mg-rich ones, converting isopropanol mainly to propylene. (author)

  14. Radiation stability of fluorite-type nuclear oxides

    Energy Technology Data Exchange (ETDEWEB)

    Garrido, Frederico [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, CNRS-IN2P3-Universite Paris-Sud, Batiments 104-108, 91405 Orsay Campus (France)], E-mail: Frederico.Garrido@csnsm.in2p3.fr; Vincent, Laetitia [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, CNRS-IN2P3-Universite Paris-Sud, Batiments 104-108, 91405 Orsay Campus (France); Nowicki, Lech [Andrzej Soltan Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland); Sattonnay, Gael [Laboratoire d' Etudes des Materiaux Hors-Equilibre, Institut de Chimie Moleculaire et des Materiaux d' Orsay, UMR 8182, Universite Paris-Sud, Batiment 410, 91405 Orsay Cedex (France); Thome, Lionel [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, CNRS-IN2P3-Universite Paris-Sud, Batiments 104-108, 91405 Orsay Campus (France)

    2008-06-15

    Oxides with the fluorite-type structure are radiation tolerant materials. They are widely used or envisaged in hostile nuclear environments, such as nuclear fuels or inert transmutation matrices for actinide burning. Study of the radiation stability of this class of solids in various radiative fields is of major importance. Two issues which may affect the stability of materials are considered in this work: the production of radiation damage (ballistic contribution); the modification of the matrix composition by doping (chemical contribution). Both contributions may drastically affect the solid stability. Urania and zirconia single crystals were chosen as fluorite-type canonical systems. They were implanted with low-energy inert gases (He or Xe). The damage in-growth, due to both ballistic and chemical contributions, was investigated by in situ RBS/C experiments in the channelling mode and TEM. Two main steps in the disordering kinetics were observed for both inert gases. Relevant key parameters were found to be: the number of displaced lattice atoms created by the slowing-down of energetic ions during the implantation process; the concentration of noble gas atoms in the solid which cause the formation of large stress fields surrounding gas aggregates.

  15. Platelet oxidative stress and its relationship with cardiovascular diseases in type 2 diabetes mellitus patients.

    Science.gov (United States)

    El Haouari, Mohammed

    2017-10-05

    Enhanced platelet activation and thrombosis are linked to various cardiovascular diseases. Among other mechanisms, oxidative stress seems to play a pivotal role in platelet hyperactivity. Indeed, upon stimulation by physiological agonists, human platelets generate and release several types of reactive oxygen species (ROS) such as O2-, H2O2 or OH- , further amplifying the platelet activation response via various signalling pathways, including, formation of isoprostanes, Ca2+ mobilization and NO inactivation. Furthermore, excessive platelet ROS generation, incorporation of free radicals from environment and/or depletion of antioxidants induce pro-oxidant, pro-inflammatory and platelet hyperaggregability effects, leading to the incidence of cardiovascular events. Here, we review the current knowledge regarding the effect of oxidative stress on platelet signaling pathways and its implication in CVD such as type 2 diabetes mellitus. We also summarize the role of natural antioxidants included in vegetables, fruits and medicinal herbs in reducing platelet function via an oxidative stress-mediated mechanism. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. ACS and STEMI treatment: gender-related issues.

    Science.gov (United States)

    Chieffo, Alaide; Buchanan, Gill Louise; Mauri, Fina; Mehilli, Julinda; Vaquerizo, Beatriz; Moynagh, Anouska; Mehran, Roxana; Morice, Marie-Claude

    2012-08-01

    Cardiovascular disease is the leading cause of death amongst women, with acute coronary syndromes (ACS) representing a significant proportion. It has been reported that in women presenting with ACS there is underdiagnosis and consequent undertreatment leading to an increase in hospital and long-term mortality. Several factors have to be taken into account, including lack of awareness both at patient and at physician level. Women are generally not aware of the cardiovascular risk and symptoms, often atypical, and therefore wait longer to seek medical attention. In addition, physicians often underestimate the risk of ACS in women leading to a further delay in accurate diagnosis and timely appropriate treatment, including cardiac catheterisation and primary percutaneous coronary intervention, with consequent delayed revascularisation times. It has been acknowledged by the European Society of Cardiology that gender disparities do exist, with a Class I, Level of Evidence B recommendation that both genders should be treated in the same way when presenting with ACS. However, there is still a lack of awareness and the mission of Women in Innovation, in association with Stent for Life, is to change the perception of women with ACS and to achieve prompt diagnosis and treatment.

  17. Evidence of oxidative stress and mitochondrial dysfunction in spinocerebellar ataxia type 2 (SCA2) patient fibroblasts

    DEFF Research Database (Denmark)

    Cornelius, Nanna; Wardman, Jonathan H; Hargreaves, Iain P

    2017-01-01

    Spinocerebellar ataxia type 2 (SCA2) is a rare neurodegenerative disorder caused by a CAG repeat expansion in the ataxin-2 gene. We show increased oxidative stress, abnormalities in the antioxidant system, changes in complexes involved in oxidative phosphorylation and changes in mitochondrial mor...

  18. Mixed chemical-induced oxidative stress in occupational exposure ...

    African Journals Online (AJOL)

    Mixed chemical-induced oxidative stress in occupational exposure in Nigerians. JI Anetor, SA Yaqub, GO Anetor, AC Nsonwu, FAA Adeniyi, S Fukushima. Abstract. Exposure to single chemicals and associated disorders in occupational environments has received significant attention. Understanding these events holds ...

  19. In vivo study of nanostructured diopside (CaMgSi{sub 2}O{sub 6}) coating on magnesium alloy as biodegradable orthopedic implants

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, Mehdi, E-mail: mrzavi2659@gmail.com [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Savabi, Omid [Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Razavi, Seyed Mohammad [School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Heidari, Fariba; Manshaei, Maziar [Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Vashaee, Daryoosh [School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Tayebi, Lobat, E-mail: lobat.tayebi@okstate.edu [School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States)

    2014-09-15

    Highlights: • In vitro biocompatibility of biodegradable Mg alloy was improved by diopside coating. • In vivo biocompatibility of biodegradable Mg alloy was improved by diopside coating. • Degradation behavior of biodegradable Mg alloy was improved by diopside coating. - Abstract: In order to improve the corrosion resistance and bioactivity of a biodegradable magnesium alloy, we have recently prepared a nanostructured diopside (CaMgSi{sub 2}O{sub 6}) coating on AZ91 magnesium alloy through a combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) method (reported elsewhere). In this work, we performed a detailed biocompatibility analysis of the implants made by this material and compared their performance with those of the uncoated and micro arc oxidized magnesium implants. The biocompatibility evaluation of samples was performed by culturing L-929 cells and in vivo animal study, including implantation of samples in greater trochanter of rabbits, radiography and histological examinations. The results from both the in vitro and in vivo studies indicated that the diopside/MAO coated magnesium implant significantly enhanced cell viability, biodegradation resistance and new bone formation compared with both the uncoated and the micro-arc oxidized magnesium implants. Our data provides an example of how the proper surface treatment of magnesium implants can overcome their drawbacks in terms of high degradation rate and gas bubble formation under physiological conditions.

  20. In vivo study of nanostructured diopside (CaMgSi2O6) coating on magnesium alloy as biodegradable orthopedic implants

    International Nuclear Information System (INIS)

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Razavi, Seyed Mohammad; Heidari, Fariba; Manshaei, Maziar; Vashaee, Daryoosh; Tayebi, Lobat

    2014-01-01

    Highlights: • In vitro biocompatibility of biodegradable Mg alloy was improved by diopside coating. • In vivo biocompatibility of biodegradable Mg alloy was improved by diopside coating. • Degradation behavior of biodegradable Mg alloy was improved by diopside coating. - Abstract: In order to improve the corrosion resistance and bioactivity of a biodegradable magnesium alloy, we have recently prepared a nanostructured diopside (CaMgSi 2 O 6 ) coating on AZ91 magnesium alloy through a combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) method (reported elsewhere). In this work, we performed a detailed biocompatibility analysis of the implants made by this material and compared their performance with those of the uncoated and micro arc oxidized magnesium implants. The biocompatibility evaluation of samples was performed by culturing L-929 cells and in vivo animal study, including implantation of samples in greater trochanter of rabbits, radiography and histological examinations. The results from both the in vitro and in vivo studies indicated that the diopside/MAO coated magnesium implant significantly enhanced cell viability, biodegradation resistance and new bone formation compared with both the uncoated and the micro-arc oxidized magnesium implants. Our data provides an example of how the proper surface treatment of magnesium implants can overcome their drawbacks in terms of high degradation rate and gas bubble formation under physiological conditions

  1. Magnetic Fe2MO4 (M:Fe, Mn) activated carbons: Fabrication, characterization and heterogeneous Fenton oxidation of methyl orange

    International Nuclear Information System (INIS)

    Nguyen, Thi Dung; Phan, Ngoc Hoa; Do, Manh Huy; Ngo, Kim Tham

    2011-01-01

    We present a simple and efficient method for the fabrication of magnetic Fe 2 MO 4 (M:Fe and Mn) activated carbons (Fe 2 MO 4 /AC-H, M:Fe and Mn) by impregnating the activated carbon with simultaneous magnetic precursor and carbon modifying agent followed by calcination. The obtained samples were characterized by nitrogen adsorption isotherms, X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM), and the catalytic activity in heterogeneous Fenton oxidation of methyl orange (MO) was evaluated. The resulting Fe 2 MnO 4 /AC-H showed higher catalytic activity in the methyl orange oxidation than Fe 3 O 4 /AC-H. The effect of operational parameters (pH, catalyst loading H 2 O 2 dosage and initial MO concentration) on degradation performance of the oxidation process was investigated. Stability and reusability of selected catalyst were also tested.

  2. Confirmation of hydroxyl radicals ({sup •} OH) generated in the presence of TiO{sub 2} supported on AC under microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhaohong, E-mail: lnuhjhx@163.com [School of Environmental Science, Liaoning University, Shenyang 110036 (China); Yu, Fengyang; Huang, Lirong; Jiatieli, Jianaerguli; Li, Yuanyuan; Song, Lijun [School of Environmental Science, Liaoning University, Shenyang 110036 (China); Yu, Ning [Experiment Center of Environmental Monitoring of Liaoning Province, Shenyang 110161 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States)

    2014-08-15

    Graphical abstract: - Highlights: • Generation of {sup •} OH in MW integrated with loaded TiO{sub 2}/AC system was confirmed. • Confirmation of {sup •} OH was conducted using radical scavenger such as BHT, MT and VC. • More {sup •} OH was formed using anatase TiO{sub 2}/AC than rutile TiO{sub 2}/AC under MW irradiation. • Effect of mass ratio, irradiation time, catalyst dose and DPCI on {sup •} OH was studied. - Abstract: In order to study the degradation mechanism of technology of microwave (MW) combined with TiO{sub 2} supported on activated carbon (TiO{sub 2}/AC), the reactive oxygen species (ROS) was explored through oxidation of 1,5-diphenyl carbazide (DPCI) to 1,5-diphenyl carbazone (DPCO). Furthermore, 2,6-di-tert-butyl-4-methylphenol (BHT), Mannitol (MT) and Vitamin C (VC) were used as radical scavengers to confirm the generation of the hydroxyl radicals ({sup •} OH). In addition, the influence of some parameters such as TiO{sub 2} mass ratio content, irradiation time, material dose, DPCI concentration and MW power on the determination of {sup •} OH were examined. The results showed that the {sup •} OH could be generated under MW combined with loaded TiO{sub 2}/AC. Also, anatase TiO{sub 2}/AC can generate more {sup •} OH radicals than rutile TiO{sub 2}/AC under MW irradiation. This work would provide new mechanistic insights on the enhanced degradation effect of organic pollutants in water using the supported TiO{sub 2}/AC coupled with MW technology.

  3. Use of an AC/DC/AC Electrochemical Technique to Assess the Durability of Protection Systems for Magnesium Alloys

    Science.gov (United States)

    Song, Sen; McCune, Robert C.; Shen, Weidian; Wang, Yar-Ming

    One task under the U.S. Automotive Materials Partnership (USAMP) "Magnesium Front End Research and Development" (MFERD) Project has been the evaluation of methodologies for the assessment of protective capability for a variety of proposed protection schemes for this hypothesized multi-material, articulated structure. Techniques which consider the entire protection system, including both pretreatments and topcoats are of interest. In recent years, an adaptation of the classical electrochemical impedance spectroscopy (EIS) approach using an intermediate cathodic DC polarization step (viz. AC/DC/AC) has been employed to accelerate breakdown of coating protection, specifically at the polymer-pretreatment interface. This work reports outcomes of studies to employ the AC/DC/AC approach for comparison of protective coatings to various magnesium alloys considered for front end structures. In at least one instance, the protective coating system breakdown could be attributed to the poorer intrinsic corrosion resistance of the sheet material (AZ31) relative to die-cast AM60B.

  4. Should fee-for-service be for all guideline-advocated acute coronary syndrome (ACS) care? Observations from the Snapshot ACS study.

    Science.gov (United States)

    Briffa, Thomas G; Hammett, Christopher J; Cross, David B; Macisaac, Andrew I; Rankin, James M; Board, Neville; Carr, Bridie; Hyun, Karice K; French, John; Brieger, David B; Chew, Derek P

    2015-09-01

    The aim of the present study was to explore the association of health insurance status on the provision of guideline-advocated acute coronary syndrome (ACS) care in Australia. Consecutive hospitalisations of suspected ACS from 14 to 27 May 2012 enrolled in the Snapshot study of Australian and New Zealand patients were evaluated. Descriptive and logistic regression analysis was performed to evaluate the association of patient risk and insurance status with the receipt of care. In all, 3391 patients with suspected ACS from 247 hospitals (23 private) were enrolled in the present study. One-third of patients declared private insurance coverage; of these, 27.9% (304/1088) presented to private facilities. Compared with public patients, privately insured patients were more likely to undergo in-patient echocardiography and receive early angiography; furthermore, in those with a discharge diagnosis of ACS, there was a higher rate of revascularisation (P fee-for-service. In contrast, proportionately fewer privately insured ACS patients were discharged on selected guideline therapies and were referred to a secondary prevention program (P = 0.056), neither of which directly attracts a fee. Typically, as GRACE (the Global Registry of Acute Coronary Events) risk score rose, so did the level of ACS care; however, propensity-adjusted analyses showed lower in-hospital adverse events among the insured group (odds ratio 0.68; 95% confidence interval 0.52-0.88; P = 0.004). Fee-for-service reimbursement may explain differences in the provision of selected guideline-advocated components of ACS care between privately insured and public patients.

  5. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, G [Jefferson Lab (United States)

    2014-07-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  6. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [JLAB

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  7. Safe-commutation principle for direct single-phase AC-AC converters for use in audio power amplification

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    This paper presents an alternative safe commutation principle for a single phase bidirectional bridge, for use in the new generation of direct single-stage AC-AC audio power amplifiers. As compared with the bridge commutation with load current or source voltage sensing, in this approach it is not required to do any measurements, thus making it more reliable. Initial testing made on the prototype prove the feasibility of the approach. (au)

  8. Serum oxidant and antioxidant status of patients with chronic tension-type headache: possible effects of medical treatment.

    Science.gov (United States)

    Gökçe Çokal, Burcu; Aytaç, Bilal; Durak, Zahide Esra; Güneş, Hafize Nalan; Öztürk, Bahadır; Keskin Güler, Selda; Durak, İlker; Yoldaş, Tahir Kurtuluş

    2015-10-01

    Tension-type headache (TTH) is one of the most common and costly primary types of headache in clinical practice, with an unknown etiology. This study assessed to investigate oxidative and antioxidative status in patients with chronic tension-type headache (CTTH), and to evaluate possible effect of medical treatment. The study included 41 CTTH patients and 19 age- and sex-matched healthy subjects without headache as controls. The CTTH group comprised 20 patients receiving treatment and 21 untreated patients. We evaluated oxidant/antioxidant status by measuring serum malondialdehyde (MDA) levels and activities of antioxidant enzymes, namely glutathione peroxidase (GSH-Px) and catalase (CAT). Comparison of oxidative parameters in the patient and control groups revealed significantly lower CAT activities and higher MDA level and GSH-Px activities in the patient group. In the CTTH group, serum CAT activities were found to be significantly decreased in patient groups, while serum MDA levels and GSH-Px activities were found to be higher in the untreated CTTH patients. These findings suggest that oxidative stress is increased in the patients with CTTH, and medical treatment abolishes the stress in part. It has been concluded that antioxidant support might be helpful for the patients with CTTH to prevent oxidant stress and peroxidation damages further.

  9. Ac irreversibility line of bismuth-based high temperature superconductors

    International Nuclear Information System (INIS)

    Mehdaoui, A.; Beille, J.; Berling, D.; Loegel, B.; Noudem, J.G.; Tournier, R.

    1997-01-01

    We discuss the magnetic properties of lead doped Bi-2223 bulk samples obtained through combined magnetic melt texturing and hot pressing (MMTHP). The ac complex susceptibility measurements are achieved over a broad ac field range (1 Oe ac <100 Oe) and show highly anisotropic properties. The intergranular coupling is improved in the direction perpendicular to the applied stress and magnetic field direction, and an intragranular loss peak is observed for the first time. A comparison is made with other bismuth-based compounds and it is shown that the MMTHP process shifts the ac irreversibility line (ac IL) toward higher fields. It is also shown that all the ac IL close-quote s for quasi 2D bismuth-based compounds show a nearly quadratic temperature dependence and deviate therefore strongly from the linear behavior observed in quasi 3D compounds and expected from a critical state model.copyright 1997 Materials Research Society

  10. Power loss and energy density of the asymmetric ultracapacitor loaded with molybdenum doped manganese oxide

    International Nuclear Information System (INIS)

    Wang, Yue-Sheng; Tsai, Dah-Shyang; Chung, Wen-Hung; Syu, Yong-Sin; Huang, Ying-Sheng

    2012-01-01

    Highlights: ► Mo-doping (15 mol%) enhances capacitance and diminishes oxide resistance. ► Influences of Mo-doped MnO 2 are analyzed at the level of capacitor power and energy. ► Polarization loss of the asymmetric capacitor is more than that of the symmetric one. ► Pseudocapacitance benefit on energy is evaluated with power and current densities. - Abstract: Ultracapacitors of asymmetric configuration have been prepared with activated carbon (AC) and undoped or Mo-doped manganese oxide (MnO 2 ) in 1.0 M Na 2 SO 4 electrolyte. Phase analysis shows the AC powder, 1–15 μm in size, contains both disordered and graphitic structures, and the undoped and Mo-doped oxide powder, 0.05–0.20 μm in particle size, mainly involves amorphous MnO 2 and MoO 2 . CV results indicate the single electrode of AC plus 10 wt% Mo-doped MnO 2 (A9O M 1) is superior to the electrode with undoped MnO 2 or high content of doped MnO 2 , exhibiting features of double layer capacitance at high scan rate and pseudocapacitance characteristics at low scan rate. When assembled with a negative electrode of AC, the capacitor of positive A9O M 1 electrode demonstrates the least power loss among three asymmetric capacitors. This asymmetric capacitor also shows a higher capacitance than the symmetric AC capacitor when the current density is less than 8.0 A g −1 in 1.8 V potential window. But a higher electrode resistance of A9O M 1, in contrast with AC, compromises its capacitance plus. When the energy density of A9O M 1 asymmetric capacitor is compared with that of symmetric AC capacitor at the same power level, the capacitance benefit on energy density is restricted to current density ≤ 3.0 A g −1 .

  11. ACS-Hach Programs: Supporting Excellence in High School Chemistry Teaching

    Science.gov (United States)

    Taylor, Terri

    2009-05-01

    In January 2009, the ACS received a gift of approximately $33 million from the Hach Scientific Foundation, the largest gift in the society's 133-year history. The foundation's programs will be continued by the ACS and will complement pre-existing ACS resources that support high school chemistry teaching. Three activities serve as the pillars of the ACS-Hach programs—the High School Chemistry Grant Program, the Second Career Teacher Scholarship Program, and the Land Grant University Scholars Program. Collectively, the ACS-Hach programs support high school chemistry teaching and learning by responding to the needs of both in-service and pre-service secondary teachers. The goals of each of the ACS-Hach programs align well with the ACS Mission—to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and its people.

  12. Chemoproteomic Profiling of Acetanilide Herbicides Reveals Their Role in Inhibiting Fatty Acid Oxidation.

    Science.gov (United States)

    Counihan, Jessica L; Duckering, Megan; Dalvie, Esha; Ku, Wan-Min; Bateman, Leslie A; Fisher, Karl J; Nomura, Daniel K

    2017-03-17

    Acetanilide herbicides are among the most widely used pesticides in the United States, but their toxicological potential and mechanisms remain poorly understood. Here, we have used chemoproteomic platforms to map proteome-wide cysteine reactivity of acetochlor (AC), the most widely used acetanilide herbicide, in vivo in mice. We show that AC directly reacts with >20 protein targets in vivo in mouse liver, including the catalytic cysteines of several thiolase enzymes involved in mitochondrial and peroxisomal fatty acid oxidation. We show that the fatty acids that are not oxidized, due to impaired fatty acid oxidation, are instead diverted into other lipid pathways, resulting in heightened free fatty acids, triglycerides, cholesteryl esters, and other lipid species in the liver. Our findings show the utility of chemoproteomic approaches for identifying novel mechanisms of toxicity associated with environmental chemicals like acetanilide herbicides.

  13. Two very long chain fatty acid acyl-CoA synthetase genes, acs-20 and acs-22, have roles in the cuticle surface barrier in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Eriko Kage-Nakadai

    Full Text Available In multicellular organisms, the surface barrier is essential for maintaining the internal environment. In mammals, the barrier is the stratum corneum. Fatty acid transport protein 4 (FATP4 is a key factor involved in forming the stratum corneum barrier. Mice lacking Fatp4 display early neonatal lethality with features such as tight, thick, and shiny skin, and a defective skin barrier. These symptoms are strikingly similar to those of a human skin disease called restrictive dermopathy. FATP4 is a member of the FATP family that possesses acyl-CoA synthetase activity for very long chain fatty acids. How Fatp4 contributes to skin barrier function, however, remains to be elucidated. In the present study, we characterized two Caenorhabditis elegans genes, acs-20 and acs-22, that are homologous to mammalian FATPs. Animals with mutant acs-20 exhibited defects in the cuticle barrier, which normally prevents the penetration of small molecules. acs-20 mutant animals also exhibited abnormalities in the cuticle structure, but not in epidermal cell fate or cell integrity. The acs-22 mutants rarely showed a barrier defect, whereas acs-20;acs-22 double mutants had severely disrupted barrier function. Moreover, the barrier defects of acs-20 and acs-20;acs-22 mutants were rescued by acs-20, acs-22, or human Fatp4 transgenes. We further demonstrated that the incorporation of exogenous very long chain fatty acids into sphingomyelin was reduced in acs-20 and acs-22 mutants. These findings indicate that C. elegans Fatp4 homologue(s have a crucial role in the surface barrier function and this model might be useful for studying the fundamental molecular mechanisms underlying human skin barrier and relevant diseases.

  14. Nitric oxide-induced calcium release: activation of type 1 ryanodine receptor by endogenous nitric oxide.

    Science.gov (United States)

    Kakizawa, Sho; Yamazawa, Toshiko; Iino, Masamitsu

    2013-01-01

    Ryanodine receptors (RyRs), located in the sarcoplasmic/endoplasmic reticulum (SR/ER) membrane, are required for intracellular Ca2+ release that is involved in a wide range of cellular functions. In addition to Ca2+-induced Ca2+ release in cardiac cells and voltage-induced Ca2+ release in skeletal muscle cells, we recently identified another mode of intracellular Ca2+ mobilization mediated by RyR, i.e., nitric oxide-induced Ca2+ release (NICR), in cerebellar Purkinje cells. NICR is evoked by neuronal activity, is dependent on S-nitrosylation of type 1 RyR (RyR1) and is involved in the induction of long-term potentiation (LTP) of cerebellar synapses. In this addendum, we examined whether peroxynitrite, which is produced by the reaction of nitric oxide with superoxide, may also have an effect on the Ca2+ release via RyR1 and the cerebellar LTP. We found that scavengers of peroxynitrite have no significant effect either on the Ca2+ release via RyR1 or on the cerebellar LTP. We also found that an application of a high concentration of peroxynitrite does not reproduce neuronal activity-dependent Ca2+ release in Purkinje cells. These results support that NICR is induced by endogenous nitric oxide produced by neuronal activity through S-nitrosylation of RyR1.

  15. Magnetic irreversibility in granular superconductors: ac susceptibility study

    International Nuclear Information System (INIS)

    Perez, F.; Obradors, X.; Fontcuberta, J.; Vallet, M.; Gonzalez-Calbet, J.

    1991-01-01

    Ac susceptibility measurements of a ceramic weak-coupled superconductor in very low ac fields (2mG, 111Hz) are reported. We present evidence for the observation of the magnetic irreversibility following a ZFC-FC thermal cycling by means of ac susceptibilty measurements. It is shown that this technique also reflect local magnetic field effects in granular superconductors, as previously suggested in microwave surface resistance and I-V characteristics. (orig.)

  16. Tin-antimony oxide oxidation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Frank J. [Open University, Department of Chemistry (United Kingdom)

    1998-12-15

    Tin-antimony oxide catalysts for the selective oxidation of hydrocarbons have been made by precipitation techniques. The dehydration of the amorphous dried precipitate by calcination at increasingly higher temperatures induces the crystallisation of a rutile-related tin dioxide-type phase and the segregation of antimony oxides which volatilise at elevated temperatures. The rutile-related tin dioxide-type phase contains antimony(V) in the bulk and antimony(III) in the surface. Specific catalytic activity for the oxidative dehydrogenation of butene to butadiene is associated with materials with large concentrations of antimony(III) in the surface.

  17. Unidirectional oxide hetero-interface thin-film diode

    International Nuclear Information System (INIS)

    Park, Youngmin; Lee, Eungkyu; Lee, Jinwon; Lim, Keon-Hee; Kim, Youn Sang

    2015-01-01

    The unidirectional thin-film diode based on oxide hetero-interface, which is well compatible with conventional thin-film fabrication process, is presented. With the metal anode/electron-transporting oxide (ETO)/electron-injecting oxide (EIO)/metal cathode structure, it exhibits that electrical currents ohmically flow at the ETO/EIO hetero-interfaces for only positive voltages showing current density (J)-rectifying ratio of ∼10 5 at 5 V. The electrical properties (ex, current levels, and working device yields) of the thin-film diode (TFD) are systematically controlled by changing oxide layer thickness. Moreover, we show that the oxide hetero-interface TFD clearly rectifies an AC input within frequency (f) range of 10 2  Hz < f < 10 6  Hz, providing a high feasibility for practical applications

  18. Unidirectional oxide hetero-interface thin-film diode

    Energy Technology Data Exchange (ETDEWEB)

    Park, Youngmin; Lee, Eungkyu; Lee, Jinwon; Lim, Keon-Hee [Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Youn Sang, E-mail: younskim@snu.ac.kr [Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Advanced Institute of Convergence Technology, Gyeonggi-do 443-270 (Korea, Republic of)

    2015-10-05

    The unidirectional thin-film diode based on oxide hetero-interface, which is well compatible with conventional thin-film fabrication process, is presented. With the metal anode/electron-transporting oxide (ETO)/electron-injecting oxide (EIO)/metal cathode structure, it exhibits that electrical currents ohmically flow at the ETO/EIO hetero-interfaces for only positive voltages showing current density (J)-rectifying ratio of ∼10{sup 5} at 5 V. The electrical properties (ex, current levels, and working device yields) of the thin-film diode (TFD) are systematically controlled by changing oxide layer thickness. Moreover, we show that the oxide hetero-interface TFD clearly rectifies an AC input within frequency (f) range of 10{sup 2} Hz < f < 10{sup 6} Hz, providing a high feasibility for practical applications.

  19. Control of hybrid AC/DC microgrid under islanding operational conditions

    DEFF Research Database (Denmark)

    Ding, G.; Gao, F.; Zhang, S.

    2014-01-01

    This paper presents control methods for hybrid AC/DC microgrid under islanding operation condition. The control schemes for AC sub-microgrid and DC sub-microgrid are investigated according to the power sharing requirement and operational reliability. In addition, the key control schemes...... of interlinking converter with DC-link capacitor or energy storage, which will devote to the proper power sharing between AC and DC sub-microgrids to maintain AC and DC side voltage stable, is reviewed. Combining the specific control methods developed for AC and DC sub-microgrids with interlinking converter......, the whole hybrid AC/DC microgrid can manage the power flow transferred between sub-microgrids for improving on the operational quality and efficiency....

  20. Ac irreversibility line of bismuth-based high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Mehdaoui, A. [Laboratoire de Physique et de Spectroscopie Electronique, URA 1435 Faculte des Sciences, Universite de Haute Alsace 4, rue des Freres Lumiere, 68093 Mulhouse Cedex (France); Beille, J. [Laboratoire Louis Neel, CNRS, BP 166, 38042 Grenoble Cedex 9 (France); Berling, D.; Loegel, B. [Laboratoire de Physique et de Spectroscopie Electronique, URA 1435 Faculte des Sciences, Universite de Haute Alsace 4, rue des Freres Lumiere, 68093 Mulhouse Cedex (France); Noudem, J.G.; Tournier, R. [EPM-MATFORMAG, Laboratoire dElaboration par Procede Magnetique, CNRS, BP 166, 38042 Grenoble Cedex 9 (France)

    1997-09-01

    We discuss the magnetic properties of lead doped Bi-2223 bulk samples obtained through combined magnetic melt texturing and hot pressing (MMTHP). The ac complex susceptibility measurements are achieved over a broad ac field range (1 Oe{lt}h{sub ac}{lt}100 Oe) and show highly anisotropic properties. The intergranular coupling is improved in the direction perpendicular to the applied stress and magnetic field direction, and an intragranular loss peak is observed for the first time. A comparison is made with other bismuth-based compounds and it is shown that the MMTHP process shifts the ac irreversibility line (ac IL) toward higher fields. It is also shown that all the ac IL{close_quote}s for quasi 2D bismuth-based compounds show a nearly quadratic temperature dependence and deviate therefore strongly from the linear behavior observed in quasi 3D compounds and expected from a critical state model.{copyright} {ital 1997 Materials Research Society.}

  1. Wind-powered asynchronous AC/DC/AC converter system. [for electric power supply regulation

    Science.gov (United States)

    Reitan, D. K.

    1973-01-01

    Two asynchronous ac/dc/ac systems are modelled that utilize wind power to drive a variable or constant hertz alternator. The first system employs a high power 60-hertz inverter tie to the large backup supply of the power company to either supplement them from wind energy, storage, or from a combination of both at a preset desired current; rectifier and inverter are identical and operate in either mode depending on the silicon control rectifier firing angle. The second system employs the same rectification but from a 60-hertz alternator arrangement; it provides mainly dc output, some sinusoidal 60-hertz from the wind bus and some high harmonic content 60-hertz from an 800-watt inverter.

  2. Formation of cellular films consisting of wurtzite-type zinc oxide nanosheets by mediation of phosphate anions

    International Nuclear Information System (INIS)

    Yamabi, Satoshi; Yahiro, Junko; Iwai, Satoko; Imai, Hiroaki

    2005-01-01

    We successfully prepared a wide variety of wurtzite-type zinc oxide films exhibiting columnar, cellular and densely packed morphologies in a simple aqueous solution system containing phosphate anions. As the phosphate concentration increased, the shape of crystalline units composing the films varied from hexagonal needles into seaweed-like sheets. A novel type of open cellular structures was obtained by assembly of nanoscale zinc oxide sheets covered with phosphate. Specific adsorption of phosphate anions on (001) of the wurtzite-type crystal flattened the crystal grains, and then induced the structural evolution into a cellular form. A blue shift of the absorption edge suggested that the quantum size effect occurred in the nanoscale platy crystals composing the cellular films

  3. Clinical Relevance of Biomarkers of Oxidative Stress

    DEFF Research Database (Denmark)

    Frijhoff, Jeroen; Winyard, Paul G; Zarkovic, Neven

    2015-01-01

    SIGNIFICANCE: Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino ac....... The vast diversity in oxidative stress between diseases and conditions has to be taken into account when selecting the most appropriate biomarker.......SIGNIFICANCE: Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino...... acids. RECENT ADVANCES: An increased understanding of the biology behind diseases and redox biology has led to more specific and sensitive tools to measure oxidative stress markers, which are very diverse and sometimes very low in abundance. CRITICAL ISSUES: The literature is very heterogeneous...

  4. High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis

    International Nuclear Information System (INIS)

    Joung, Daeha; Chunder, A; Zhai, Lei; Khondaker, Saiful I

    2010-01-01

    We demonstrate high yield fabrication of field effect transistors (FET) using chemically reduced graphene oxide (RGO) sheets. The RGO sheets suspended in water were assembled between prefabricated gold source and drain electrodes using ac dielectrophoresis. With the application of a backgate voltage, 60% of the devices showed p-type FET behavior, while the remaining 40% showed ambipolar behavior. After mild thermal annealing at 200 deg. C, all ambipolar RGO FET remained ambipolar with increased hole and electron mobility, while 60% of the p-type RGO devices were transformed to ambipolar. The maximum hole and electron mobilities of the devices were 4.0 and 1.5 cm 2 V -1 s -1 respectively. High yield assembly of chemically derived RGO FET will have significant impact in scaled up fabrication of graphene based nanoelectronic devices.

  5. Influence of AC system design on the realisation of tractive efforts by high adhesion locomotives

    Science.gov (United States)

    Spiryagin, Maksym; Wolfs, Peter; Cole, Colin; Stichel, Sebastian; Berg, Mats; Manfred, Plöchl

    2017-08-01

    The main task for heavy haul railway operators is to reduce the cost of exported minerals and enhance the long-term viability of rail transport operations through increasing productivity by running longer and heavier trains. The common opinion is that this is achievable by means of implementation of high adhesion locomotives with advanced AC traction technologies. Modern AC high adhesion locomotives are very complex mechatronic systems and can be designed with two alternative traction topologies of either bogie or individual axle controls. This paper describes a modelling approach for these two types of AC traction systems with the application of an advanced co-simulation methodology, where an electrical system and a traction algorithm are modelled in Matlab/Simulink, and a mechanical system is modelled in a multibody software package. Although the paper concentrates on the analysis of the functioning for these two types of traction control systems, the choice of reference slip values also has an influence on the performance of both systems. All these design variations and issues have been simulated for various adhesion conditions at the wheel-rail interface and their influence on the high traction performance of a locomotive equipped with two three-axle bogies has been discussed.

  6. A Case Study of Wind-PV-Thermal-Bundled AC/DC Power Transmission from a Weak AC Network

    Science.gov (United States)

    Xiao, H. W.; Du, W. J.; Wang, H. F.; Song, Y. T.; Wang, Q.; Ding, J.; Chen, D. Z.; Wei, W.

    2017-05-01

    Wind power generation and photovoltaic (PV) power generation bundled with the support by conventional thermal generation enables the generation controllable and more suitable for being sent over to remote load centre which are beneficial for the stability of weak sending end systems. Meanwhile, HVDC for long-distance power transmission is of many significant technique advantages. Hence the effects of wind-PV-thermal-bundled power transmission by AC/DC on power system have become an actively pursued research subject recently. Firstly, this paper introduces the technical merits and difficulties of wind-photovoltaic-thermal bundled power transmission by AC/DC systems in terms of meeting the requirement of large-scale renewable power transmission. Secondly, a system model which contains a weak wind-PV-thermal-bundled sending end system and a receiving end system in together with a parallel AC/DC interconnection transmission system is established. Finally, the significant impacts of several factors which includes the power transmission ratio between the DC and AC line, the distance between the sending end system and receiving end system, the penetration rate of wind power and the sending end system structure on system stability are studied.

  7. Temperature-independent sensors based on perovskite-type oxides

    International Nuclear Information System (INIS)

    Zaza, F.; Frangini, S.; Masci, A.; Leoncini, J.; Pasquali, M.; Luisetto, I.; Tuti, S.

    2013-01-01

    The need of energy security and environment sustainability drives toward the development of energy technology in order to enhance the performance of internal combustion engines. Gas sensors play a key role for controlling the fuel oxygen ratio and monitoring the pollution emissions. The perovskite-type oxides can be synthesized for an extremely wide variety of combinations of chemical elements, allowing to design materials with suitable properties for sensing application. Lanthanum strontium ferrites, such as La 0.7 Sr 0.3 FeO 3 , are suitable oxygen sensing materials with temperature-independence conductivity, but they have low chemical stability under reducing conditions. The addition of aluminum into the perovskite structure improves the material properties in order to develop suitable oxygen sensing probes for lean burn engine control systems. Perovskite-type oxides with formula (La 0.7 Sr 0.3 )(Al x Fe 1−x )O 3 was synthesized by the citrate-nitrate combustion synthesis method. XRD analyses, show that it was synthesized a phase-pure powder belonging to the perovskite structure. Aluminum affects both the unit cell parameters, by shrinking the unit cell, and the powder morphology, by promoting the synthesis of particles with small crystallite size and large specific surface area. The partial substitution of iron with aluminum improves the chemical stability under reducing gas conditions and modulates the oxygen sensitivity by affecting the relative amount of Fe 4+ and Fe 3+ , as confirmed from TPR profiles. In the same time, the addition of aluminum does not affects the temperature-independent properties of lanthanum strontium ferrites. Indeed, the electrical measurements show that (La 0.7 Sr 0.3 )(Al x Fe 1−x )O 3 perovskites have temperature-independence conductivity from 900 K

  8. Temperature-independent sensors based on perovskite-type oxides

    Energy Technology Data Exchange (ETDEWEB)

    Zaza, F.; Frangini, S.; Masci, A. [ENEA-Casaccia R.C., Via Anguillarese 301, 00123 S.Maria di Galeria, Rome (Italy); Leoncini, J.; Pasquali, M. [University La Sapienza, Piazza Via del Castro Laurenziano 7, 00161 Rome (Italy); Luisetto, I.; Tuti, S. [University RomaTre, Rome 00146 (Italy)

    2014-06-19

    The need of energy security and environment sustainability drives toward the development of energy technology in order to enhance the performance of internal combustion engines. Gas sensors play a key role for controlling the fuel oxygen ratio and monitoring the pollution emissions. The perovskite-type oxides can be synthesized for an extremely wide variety of combinations of chemical elements, allowing to design materials with suitable properties for sensing application. Lanthanum strontium ferrites, such as La{sub 0.7}Sr{sub 0.3}FeO{sub 3}, are suitable oxygen sensing materials with temperature-independence conductivity, but they have low chemical stability under reducing conditions. The addition of aluminum into the perovskite structure improves the material properties in order to develop suitable oxygen sensing probes for lean burn engine control systems. Perovskite-type oxides with formula (La{sub 0.7}Sr{sub 0.3})(Al{sub x}Fe{sub 1−x})O{sub 3} was synthesized by the citrate-nitrate combustion synthesis method. XRD analyses, show that it was synthesized a phase-pure powder belonging to the perovskite structure. Aluminum affects both the unit cell parameters, by shrinking the unit cell, and the powder morphology, by promoting the synthesis of particles with small crystallite size and large specific surface area. The partial substitution of iron with aluminum improves the chemical stability under reducing gas conditions and modulates the oxygen sensitivity by affecting the relative amount of Fe{sup 4+} and Fe{sup 3+}, as confirmed from TPR profiles. In the same time, the addition of aluminum does not affects the temperature-independent properties of lanthanum strontium ferrites. Indeed, the electrical measurements show that (La{sub 0.7}Sr{sub 0.3})(Al{sub x}Fe{sub 1−x})O{sub 3} perovskites have temperature-independence conductivity from 900 K.

  9. Synthesis of p-type nickel oxide nanosheets on n-type titanium dioxide nanorod arrays for p-n heterojunction-based UV photosensor

    Science.gov (United States)

    Yusoff, M. M.; Mamat, M. H.; Malek, M. F.; Abdullah, M. A. R.; Ismail, A. S.; Saidi, S. A.; Mohamed, R.; Suriani, A. B.; Khusaimi, Z.; Rusop, M.

    2018-05-01

    Titanium dioxide (TiO2) nanorod arrays (TNAs) were synthesized and deposited on fluorine tin oxide (FTO)-coated glass substrate using a novel and facile immersion method in a glass container. The synthesis and deposition of p-type nickel oxide (NiO) nanosheets (NS) on the n-type TNAs was investigated in the p-n heterojunction photodiode (PD) for the application of ultraviolet (UV) photosensor. The fabricated TNAs/NiO NS based UV photosensor exhibited a highly increased photocurrent of 4.3 µA under UV radiation (365 nm, 750 µW/cm2) at 1.0 V reverse bias. In this study, the fabricated TNAs/NiO NS p-n heterojunction based photodiode showed potential applications for UV photosensor based on the stable photo-generated current attained under UV radiation.

  10. Fabrication of visible light-triggered photocatalytic materials from the coupling of n-type zinc oxide and p-type copper oxide

    Science.gov (United States)

    Gorospe, A. B.; Herrera, M. U.

    2017-04-01

    Coupling of copper oxide (CuO) and zinc oxide (ZnO) was done by chemical precipitation method. In this method, copper sulfate pentahydrate and zinc sulfate heptahydrate salt precursors were separately dissolved in distilled water; then were mixed together. The copper sulfate-zinc sulfate solution was then combined with a sodium hydroxide solution. The precipitates were collected and washed in distilled water and ethanol several times, then filtered and dried. The dried sample was grounded, and then undergone heat treatment. After heating, the sample was grounded again. Zinc oxide powder and copper oxide powder were also fabricated using chemical precipitation method. X-Ray Diffraction measurements of the coupled CuO/ZnO powder showed the presence of CuO and ZnO in the fabricated sample. Furthermore, other peaks shown by XRD were also identified corresponding to copper, copper (II) oxide, copper sulfate and zinc sulfate. Results of the photocatalytic activity investigation show that the sample exhibited superior photocatalytic degradation of methyl orange under visible light illumination compared to copper oxide powder and zinc oxide powder. This may be attributed to the lower energy gap at the copper oxide-zinc oxide interface, compared to zinc oxide, allowing visible light to trigger its photocatalytic activity.

  11. Fergusonite-type CeNbO{sub 4+δ}: Single crystal growth, symmetry revision and conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Bayliss, Ryan D. [Department of Materials, Imperial College London, Prince Consort Road, London, SW7 2BP (United Kingdom); Pramana, Stevin S.; An, Tao; Wei, Fengxia; Kloc, Christian L. [School of Materials Science and Engineering, 50 Nanyang Avenue, Nanyang Technological University, 639798 (Singapore); White, Andrew J.P. [Chemical Crystallography Laboratory, Department of Chemistry, Imperial College London, Exhibition Road, London, SW7 2AZ (United Kingdom); Skinner, Stephen J. [Department of Materials, Imperial College London, Prince Consort Road, London, SW7 2BP (United Kingdom); White, Timothy J. [School of Materials Science and Engineering, 50 Nanyang Avenue, Nanyang Technological University, 639798 (Singapore); Baikie, Tom, E-mail: tbaikie@ntu.edu.sg [School of Materials Science and Engineering, 50 Nanyang Avenue, Nanyang Technological University, 639798 (Singapore)

    2013-08-15

    Large fergusonite-type (ABO{sub 4}, A=Ce, B=Nb) oxide crystals, a prototype electrolyte composition for solid oxide fuel cells (SOFC), were prepared for the first time in a floating zone mirror furnace under air or argon atmospheres. While CeNbO{sub 4} grown in air contained CeNbO{sub 4.08} as a minor impurity that compromised structural analysis, the argon atmosphere yielded a single phase crystal of monoclinic CeNbO{sub 4}, as confirmed by selected area electron diffraction, powder and single crystal X-ray diffraction. The structure was determined in the standard space group setting C12/c1 (No. 15), rather than the commonly adopted I12/a1. AC impedance spectroscopy conducted under argon found that stoichiometric CeNbO{sub 4} single crystals showed lower conductivity compared to CeNbO{sub 4+δ} confirming interstitial oxygen can penetrate through fergusonite and is responsible for the higher conductivity associated with these oxides. - Graphical abstract: Large fergusonite-type CeNbO{sub 4} crystals were prepared for the first time in a floating zone mirror furnace. Crystal growth in an argon atmosphere yielded a single phase monoclinic CeNbO4, as confirmed by selected area electron diffraction, powder and single crystal X-ray diffraction. The structure was determined in the standard space group setting C12/c1 (No. 15), rather than the commonly adopted I12/a1. AC impedance spectroscopy found CeNbO{sub 4} single crystals showed lower conductivity compared to CeNbO{sub 4+δ} confirming interstitial oxygen can penetrate through fergusonite and is responsible for the higher conductivity associated with these oxides. Highlights: • Preparation of single crystals of CeNbO{sub 4} using a floating zone mirror furnace. • Correction to the crystal symmetry of the monoclinic form of CeNbO{sub 4}. • Report the conductivity of a single crystal of CeNbO{sub 4}.

  12. Small-Signal Analysis of Single-Phase and Three-phase DC/AC and AC/DC PWM Converters with the Frequency-Shift Technique

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Aquila, A. Dell’; Liserre, Marco

    2004-01-01

    of dc/dc converters via a 50 Hz frequency-shift. The input admittance is calculated and measured for two study examples (a three-phase active rectifier and a single-phase photovoltaic inverter). These examples show that the purpose of a well designed controller for grid-connected converters......A systematic approach to study dc/ac and ac/dc converters without the use of synchronous transformation is proposed. The use of a frequency-shift technique allows a straightforward analysis of single-phase and three-phase systems. The study of dc/ac and of ac/dc converters is reported to the study...... is to minimize the input admittance in order to make the grid converter more robust to grid disturbance....

  13. 21 CFR 880.5100 - AC-powered adjustable hospital bed.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false AC-powered adjustable hospital bed. 880.5100 Section 880.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Therapeutic Devices § 880.5100 AC-powered adjustable hospital bed. (a) Identification. An AC-powered...

  14. Nonlinear AC susceptibility, surface and bulk shielding

    Science.gov (United States)

    van der Beek, C. J.; Indenbom, M. V.; D'Anna, G.; Benoit, W.

    1996-02-01

    We calculate the nonlinear AC response of a thin superconducting strip in perpendicular field, shielded by an edge current due to the geometrical barrier. A comparison with the results for infinite samples in parallel field, screened by a surface barrier, and with those for screening by a bulk current in the critical state, shows that the AC response due to a barrier has general features that are independent of geometry, and that are significantly different from those for screening by a bulk current in the critical state. By consequence, the nonlinear (global) AC susceptibility can be used to determine the origin of magnetic irreversibility. A comparison with experiments on a Bi 2Sr 2CaCu 2O 8+δ crystal shows that in this material, the low-frequency AC screening at high temperature is mainly due to the screening by an edge current, and that this is the unique source of the nonlinear magnetic response at temperatures above 40 K.

  15. Adsorption of Polycyclic aromatic hydrocarbons (fluoranthene and anthracenemethanol) by functional graphene oxide and removal by pH and temperature-sensitive coagulation.

    Science.gov (United States)

    Zhang, Caili; Wu, Lin; Cai, Dongqing; Zhang, Caiyun; Wang, Ning; Zhang, Jing; Wu, Zhengyan

    2013-06-12

    A new kind of functional graphene oxide with fine stability in water was fabricated by mixing graphene oxide (GO) and brilliant blue (BB) with a certain weight ratio. The adsorption performance of this mixture of BB and GO (BBGO) to polycyclic aromatic hydrocarbons (anthracenemethanol (AC) and fluoranthene (FL)) was investigated, and the results indicated BBGO possessed adsorption capacity of 1.676 mmol/g and removal efficiency of 72.7% as to AC and adsorption capacity of 2.212 mmol/g and removal efficiency of 93.2% as to FL. After adsorption, pH and temperature-sensitive coagulation (PTC) method was used to remove the AC/BBGO or FL/BBGO complex and proved to be an effective approach to flocculate the AC/BBGO or FL/BBGO complex into large flocs, which tended to be removed from the aqueous solution.

  16. AC BREAKDOWN IN GASES

    Science.gov (United States)

    electron- emission (multipactor) region, and (3) the low-frequency region. The breakdown mechanism in each of these regions is explained. An extensive bibliography on AC breakdown in gases is included.

  17. Differential expression of CK20, β-catenin, and MUC2/5AC/6 in Lynch syndrome and familial colorectal cancer type X.

    Science.gov (United States)

    Haraldsson, Stefan; Klarskov, Louise; Nilbert, Mef; Bernstein, Inge; Bonde, Jesper; Holck, Susanne

    2017-01-01

    Hereditary non-polyposis colorectal cancer comprises Lynch syndrome and familial colorectal cancer type X (FCCTX). Differences in genetics, demographics and histopathology have been extensively studied. The purpose of this study is to characterize their immunoprofile of markers other than MMR proteins. We compared the expression patterns of cytokeratins (CK7 and CK20), mucins (MUC2/5 AC/6), CDX2 and β-catenin in Lynch syndrome and FCCTX. Differences were identified for CK20 and nuclear β-catenin, which were significantly more often expressed in FCCTX than in Lynch syndrome ( p  Lynch syndrome tumors compared with FCCTX tumors ( p  = 0.001, Lynch syndrome with a more sporadic-like profile in the former group and a more distinct profile with frequent MUC6 positivity in the latter group.

  18. Assessing the allelotypic effect of two aminocyclopropane carboxylic acid synthase-encoding genes MdACS1 and MdACS3a on fruit ethylene production and softening in Malus

    Science.gov (United States)

    Dougherty, Laura; Zhu, Yuandi; Xu, Kenong

    2016-01-01

    Phytohormone ethylene largely determines apple fruit shelf life and storability. Previous studies demonstrated that MdACS1 and MdACS3a, which encode 1-aminocyclopropane-1-carboxylic acid synthases (ACS), are crucial in apple fruit ethylene production. MdACS1 is well-known to be intimately involved in the climacteric ethylene burst in fruit ripening, while MdACS3a has been regarded a main regulator for ethylene production transition from system 1 (during fruit development) to system 2 (during fruit ripening). However, MdACS3a was also shown to have limited roles in initiating the ripening process lately. To better assess their roles, fruit ethylene production and softening were evaluated at five time points during a 20-day post-harvest period in 97 Malus accessions and in 34 progeny from 2 controlled crosses. Allelotyping was accomplished using an existing marker (ACS1) for MdACS1 and two markers (CAPS866 and CAPS870) developed here to specifically detect the two null alleles (ACS3a-G289V and Mdacs3a) of MdACS3a. In total, 952 Malus accessions were allelotyped with the three markers. The major findings included: The effect of MdACS1 was significant on fruit ethylene production and softening while that of MdACS3a was less detectable; allele MdACS1–2 was significantly associated with low ethylene and slow softening; under the same background of the MdACS1 allelotypes, null allele Mdacs3a (not ACS3a-G289V) could confer a significant delay of ethylene peak; alleles MdACS1–2 and Mdacs3a (excluding ACS3a-G289V) were highly enriched in M. domestica and M. hybrid when compared with those in M. sieversii. These findings are of practical implications in developing apples of low and delayed ethylene profiles by utilizing the beneficial alleles MdACS1-2 and Mdacs3a. PMID:27231553

  19. AC electric motors control advanced design techniques and applications

    CERN Document Server

    Giri, Fouad

    2013-01-01

    The complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control designmethods to a variety of AC motors. Contributions from over thirty top researchers explain how modern control design methods can be used to achieve tight speed regulation, optimal energetic efficiency, and operation reliability and safety, by considering online state var

  20. Using PEGylated iron oxide nanoparticles with ultrahigh relaxivity for MR imaging of an orthotopic model of human hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruizhi [Fudan University, Shanghai Institute of Medical Imaging, Department of Interventional Radiology, Zhongshan Hospital (China); Hu, Yong [Donghua University, College of Chemistry, Chemical Engineering and Biotechnology (China); Yang, Yuchan; Xu, Wei; Yao, Mingrong [Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Department of Radiology (China); Gao, Dongmei; Zhao, Yan [Fudan University, Liver Cancer Institute, Zhongshan Hospital (China); Zhan, Songhua, E-mail: zhansonghua@sina.com [Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Department of Radiology (China); Shi, Xiangyang, E-mail: xshi@dhu.edu.cn [Donghua University, College of Chemistry, Chemical Engineering and Biotechnology (China); Wang, Xiaolin, E-mail: fduwangxiaolin@hotmail.com [Fudan University, Shanghai Institute of Medical Imaging, Department of Interventional Radiology, Zhongshan Hospital (China)

    2017-02-15

    Hepatocellular carcinoma (HCC) is the most common type of liver malignant tumor, which is often diagnosed in advanced stages, resulting in low survival rate. The sensitive diagnosis of early HCC presents a great interest. Herein, a novel superparamagnetic contrast agent composed of iron oxide nanoparticles is reported. Firstly, polyethyleneimine-coated iron oxide (Fe{sub 3}O{sub 4}@PEI) nanoparticles (NPs) were synthesized via a mild reduction route, followed by their modification of polyethylene glycol monomethyl ether (mPEG-COOH) via 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide hydrochloride coupling chemistry. After acetylation of the remaining PEI amines, the PEGylated Fe{sub 3}O{sub 4} (Fe{sub 3}O{sub 4}@PEI.Ac-mPEG-COOH) NPs were successively characterized via different techniques. The Fe{sub 3}O{sub 4}@PEI.Ac-mPEG-COOH probes with an Fe{sub 3}O{sub 4} NP size of 9 nm are water dispersible and cytocompatible within the given concentration range. The percentages of PEI and m-PEG-COOH on the particles surface are calculated to be 15.5 and 7.2%, respectively. Prior to the administration of Fe{sub 3}O{sub 4}@PEI.Ac-mPEG-COOH NPs of ultrahigh r{sub 2} relaxivity (461.29 mM{sup −1} s{sup −1}) via tail intravenous injection for MR imaging of HCC, the orthotopic model of HCC was established in the nude mice by surgical transplantation with HCCLM3 cells. The analysis of MR signal intensity (SI) in the orthotopic tumor model demonstrated that the developed Fe{sub 3}O{sub 4}@PEI.Ac-mPEG-COOH NPs were able to infiltrate into the tumor area through the enhanced permeability and retention (EPR) effect reaching the bottom at 2 h postinjection. The developed Fe{sub 3}O{sub 4}@PEI.Ac-mPEG-COOH NPs may be further applied for theranostics of different diseases through combing various therapeutic agents.

  1. Pengembangan Sistem Otomatisasi AC dan Lampu Menggunakan Fuzzy dan Raspberry Pi

    Directory of Open Access Journals (Sweden)

    Rudy Ariyanto

    2017-11-01

    Full Text Available Otomatisasi AC dan lampu dilakukan untuk menghemat energi yang digunakan pada kehidupan sehari-hari. Dalam pengembangan otomatisasi AC dan lampu perlu menerapkan sebuah perangkat yang memiliki fungsi maksimal dengan harga yang minimal. Raspberry Pi merupakan perangkat atau modul dengan harga rendah yang mampu melakukan komunikasi wireless tanpa bantuan modul lain. Dalam pengembangan otomatisasi AC dan lampu juga diperlukan sebuah metode yang mampu melakukan kontrol terhadap nyala AC dan lampu. Penerapan metode fuzzy dapat dilakukan untuk menghimpun informasi keadaan ruang yang didapat dari sensor untuk menentukan nyala AC dan lampu secara otomatis. Oleh sebab itu pada penelitian ini mengusulkan pengembangan otomatisasi AC dan lampu menggunakan Raspberry Pi dan Fuzzy. Otomatisasi AC dan lampu menggunakan Raspberry Pi yang menerapkan metode Fuzzy dapat menghemat energi hingga 59,87% dalam hal lama waktu nyala AC dan 57,47% untuk lumenasi lampu

  2. Highly efficient oxidation of amines to imines by singlet oxygen and its application in Ugi-type reactions.

    Science.gov (United States)

    Jiang, Gaoxi; Chen, Jian; Huang, Jie-Sheng; Che, Chi-Ming

    2009-10-15

    A variety of secondary benzylic amines were oxidized to imines in 90% to >99% yields by singlet oxygen generated from oxygen and a porphyrin photosensitizer. On the basis of these reactions, a protocol was developed for oxidative Ugi-type reactions with singlet oxygen as the oxidant. This protocol has been used to synthesize C1- and N-functionalized benzylic amines in up to 96% yields.

  3. Successful enrichment of the ubiquitous freshwater acI Actinobacteria.

    Science.gov (United States)

    Garcia, Sarahi L; McMahon, Katherine D; Grossart, Hans-Peter; Warnecke, Falk

    2014-02-01

    Actinobacteria of the acI lineage are often the numerically dominant bacterial phylum in surface freshwaters, where they can account for > 50% of total bacteria. Despite their abundance, there are no described isolates. In an effort to obtain enrichment of these ubiquitous freshwater Actinobacteria, diluted freshwater samples from Lake Grosse Fuchskuhle, Germany, were incubated in 96-well culture plates. With this method, a successful enrichment containing high abundances of a member of the lineage acI was established. Phylogenetic classification showed that the acI Actinobacteria of the enrichment belonged to the acI-B2 tribe, which seems to prefer acidic lakes. This enrichment grows to low cell densities and thus the oligotrophic nature of acI-B2 was confirmed. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Low-temperature metal-oxide thin-film transistors formed by directly photopatternable and combustible solution synthesis.

    Science.gov (United States)

    Rim, You Seung; Lim, Hyun Soo; Kim, Hyun Jae

    2013-05-01

    We investigated the formation of ultraviolet (UV)-assisted directly patternable solution-processed oxide semiconductor films and successfully fabricated thin-film transistors (TFTs) based on these films. An InGaZnO (IGZO) solution that was modified chemically with benzoylacetone (BzAc), whose chelate rings decomposed via a π-π* transition as result of UV irradiation, was used for the direct patterning. A TFT was fabricated using the directly patterned IGZO film, and it had better electrical characteristics than those of conventional photoresist (PR)-patterned TFTs. In addition, the nitric acid (HNO3) and acetylacetone (AcAc) modified In2O3 (NAc-In2O3) solution exhibited both strong UV absorption and high exothermic reaction. This method not only resulted in the formation of a low-energy path because of the combustion of the chemically modified metal-oxide solution but also allowed for photoreaction-induced direct patterning at low temperatures.

  5. AcEST(EST sequences of Adiantum capillus-veneris and their annotation) - AcEST | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us AcEST AcEST(EST sequences of Adiantum capillus-veneris and their annotation) Data detail Dat...a name AcEST(EST sequences of Adiantum capillus-veneris and their annotation) DOI 10.18908/lsdba.nbdc00839-0...01 Description of data contents EST sequence of Adiantum capillus-veneris and its annotation (clone ID, libr...le search URL http://togodb.biosciencedbc.jp/togodb/view/archive_acest#en Data acquisition method Capillary ...ainst UniProtKB/Swiss-Prot and UniProtKB/TrEMBL databases) Number of data entries Adiantum capillus-veneris

  6. Impedance spectroscopic analysis of composite electrode from activated carbon/conductive materials/ruthenium oxide for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Taer, E.; Awitdrus,; Farma, R. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Department of Physics, Faculty of Mathematics and Natural Sciences, University of Riau, 28293 Pekanbaru, Riau (Indonesia); Deraman, M., E-mail: madra@ukm.my; Talib, I. A.; Ishak, M. M.; Omar, R.; Dolah, B. N. M.; Basri, N. H.; Othman, M. A. R. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Kanwal, S. [ICCBS, H.E.J. Research Institute of Chemistry, University of Karachi, 75270 Karachi (Pakistan)

    2015-04-16

    Activated carbon powders (ACP) were produced from the KOH treated pre-carbonized rubber wood sawdust. Different conductive materials (graphite, carbon black and carbon nanotubes (CNTs)) were added with a binder (polivinylidene fluoride (PVDF)) into ACP to improve the supercapacitive performance of the activated carbon (AC) electrodes. Symmetric supercapacitor cells, fabricated using these AC electrodes and 1 molar H{sub 2}SO{sub 4} electrolyte, were analyzed using a standard electrochemical impedance spectroscopy technique. The addition of graphite, carbon black and CNTs was found effective in reducing the cell resistance from 165 to 68, 23 and 49 Ohm respectively, and increasing the specific capacitance of the AC electrodes from 3 to 7, 17, 32 F g{sup −1} respectively. Since the addition of CNTs can produce the highest specific capacitance, CNTs were chosen as a conductive material to produce AC composite electrodes that were added with 2.5 %, 5 % and 10 % (by weight) electro-active material namely ruthenium oxide; PVDF binder and CNTs contents were kept at 5 % by weight in each AC composite produced. The highest specific capacitance of the cells obtained in this study was 86 F g{sup −1}, i.e. for the cell with the resistance of 15 Ohm and composite electrode consists of 5 % ruthenium oxide.

  7. Design and synthesis of 225Ac radioimmunopharmaceuticals

    International Nuclear Information System (INIS)

    McDevitt, Michael R.; Ma, Dangshe; Simon, Jim; Frank, R. Keith; Scheinberg, David A.

    2002-01-01

    The alpha-particle-emitting radionuclides 213 Bi, 211 At, 224 Ra are under investigation for the treatment of leukemias, gliomas, and ankylosing spondylitis, respectively. 213 Bi and 211 At were attached to monoclonal antibodies and used as targeted immunotherapeutic agents while unconjugated 224 Ra chloride selectively seeks bone. 225 Ac possesses favorable physical properties for radioimmunotherapy (10 d half-life and 4 net alpha particles), but has a history of unfavorable radiolabeling chemistry and poor metal-chelate stability. We selected functionalized derivatives of DOTA as the most promising to pursue from out of a group of potential 225 Ac chelate compounds. A two-step synthetic process employing either MeO-DOTA-NCS or 2B-DOTA-NCS as the chelating moiety was developed to attach 225 Ac to monoclonal antibodies. This method was tested using several different IgG systems. The chelation reaction yield in the first step was 93±8% radiochemically pure (n=26). The second step yielded 225 Ac-DOTA-IgG constructs that were 95±5% radiochemically pure (n=27) and the mean percent immunoreactivity ranged from 25% to 81%, depending on the antibody used. This process has yielded several potential novel targeted 225 Ac-labeled immunotherapeutic agents that may now be evaluated in appropriate model systems and ultimately in humans

  8. Nuclear structure of 231Ac

    International Nuclear Information System (INIS)

    Boutami, R.; Borge, M.J.G.; Mach, H.; Kurcewicz, W.; Fraile, L.M.; Gulda, K.; Aas, A.J.; Garcia-Raffi, L.M.; Lovhoiden, G.; Martinez, T.; Rubio, B.; Tain, J.L.; Tengblad, O.

    2008-01-01

    The low-energy structure of 231 Ac has been investigated by means of γ ray spectroscopy following the β - decay of 231 Ra. Multipolarities of 28 transitions have been established by measuring conversion electrons with a MINI-ORANGE electron spectrometer. The decay scheme of 231 Ra → 231 Ac has been constructed for the first time. The Advanced Time Delayed βγγ(t) method has been used to measure the half-lives of five levels. The moderately fast B(E1) transition rates derived suggest that the octupole effects, albeit weak, are still present in this exotic nucleus

  9. Autographa californica multiple nucleopolyhedrovirus ac53 plays a role in nucleocapsid assembly

    International Nuclear Information System (INIS)

    Liu Chao; Li Zhaofei; Wu Wenbi; Li Lingling; Yuan Meijin; Pan Lijing; Yang Kai; Pang Yi

    2008-01-01

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf53 (ac53) is a highly conserved gene existing in all sequenced Lepidoptera and Hymenoptera baculoviruses, but its function remains unknown. To investigate its role in the baculovirus life cycle, an ac53 deletion virus (vAc ac53KO-PH-GFP ) was generated through homologous recombination in Escherichia coli. Fluorescence and light microscopy and titration analysis revealed that vAc ac53KO-PH-GFP could not produce infectious budded virus in infected Sf9 cells. Real-time PCR demonstrated that the ac53 deletion did not affect the levels of viral DNA replication. Electron microscopy showed that many lucent tubular shells devoid of the nucleoprotein core are present in the virogenic stroma and ring zone, indicating that the ac53 knockout affected nucleocapsid assembly. With a recombinant virus expressing an Ac53-GFP fusion protein, we observed that Ac53 was distributed within the cytoplasm and nucleus at 24 h post-infection, but afterwards accumulated predominantly near the nucleus-cytoplasm boundary. These data demonstrate that ac53 is involved in nucleocapsid assembly and is an essential gene for virus production

  10. Marketingová komunikace AC Sparta Praha

    OpenAIRE

    Fanta, Jan

    2016-01-01

    Title: Marketing communications of AC Sparta Praha Objectives: The main objective of this thesis is to analyze contemporary state of marketing communications with the audience of AC Sparta Praha, identify deficiencies and develop a proposal to improve the marketing communications with fans of this club. Methods: In this thesis have been used methods of case study, analysis of available documents and texts, structured interview with director od marketing, and director of communications and pub...

  11. c-axis ac susceptibility in high-Tc superconductors

    International Nuclear Information System (INIS)

    Waldmann, O.; Lichtschlag, G.; Talalaevskii, A.; Kleiner, R.; Mueller, P.; Steinmeyer, F.; Gerhaeuser, W.

    1996-01-01

    We have investigated the angle and magnetic field dependence of the ac susceptibility in Bi 2 Sr 2 CaCu 2 O 8 and YBa 2 Cu 3 O 7 single crystals at low external fields. The ac field was applied perpendicular to the CuO 2 planes. The first and third harmonics of the ac susceptibility exhibit remarkably sharp features when the dc field component perpendicular to the CuO 2 planes passes a threshold field H th . H th is strongly temperature dependent, but is independent of the parallel field component. We propose a simple model which excellently explains the data. Within this model the peak structures are related to the irreversibility line. We discuss the implications of the model for the interpretation of the ac susceptibility. copyright 1996 The American Physical Society

  12. Fast electric dipole transitions in Ra-Ac nuclei

    International Nuclear Information System (INIS)

    Ahmad, I.

    1985-01-01

    Lifetime of levels in 225 Ra, 225 Ac, and 227 Ac have been measured by delayed coincidence techniques and these have been used to determine the E1 gamma-ray transition probabilities. The reduced E1 transition probabilities. The reduced E1 transition probabilities in 225 Ra and 225 Ac are about two orders of magnitude larger than the values in mid-actinide nuclei. On the other hand, the E1 rate in 227 Ac is similar to those measured in heavier actinides. Previous studies suggest the presence of octupole deformation in all the three nuclei. The present investigation indicates that fast E1 transitions occur for nuclei with octupole deformation. However, the studies also show that there is no one-to-one correspondence between E1 rate and octupole deformation. 13 refs., 4 figs

  13. Nonlinearity exponent of ac conductivity in disordered systems

    International Nuclear Information System (INIS)

    Nandi, U N; Sircar, S; Karmakar, A; Giri, S

    2012-01-01

    We measured the real part of ac conductance Σ(x,f) or Σ(T,f) of iron-doped mixed-valent polycrystalline manganite oxides LaMn 1-x Fe x O 3 as a function of frequency f by varying initial conductance Σ 0 by quenched disorder x at a fixed temperature T (room) and by temperature T at a fixed quenched disorder x. At a fixed temperature T, Σ(x,f) of a sample with fixed x remains almost constant at its zero-frequency dc value Σ 0 at lower frequency. With increase in f, Σ(x,f) increases slowly from Σ 0 and finally increases rapidly following a power law with an exponent s at high frequency. Scaled appropriately, the data for Σ(T,f) and Σ(x,f) fall on the same universal curve, indicating the existence of a general scaling formalism for the ac conductivity in disordered systems. The characteristic frequency f c at which Σ(x,f) or Σ(T,f) increases for the first time from Σ 0 scales with initial conductance Σ 0 as f c ∼ Σ 0 x f , where x f is the onset exponent. The value of x f is nearly equal to one and is found to be independent of x and T. Further, an inverse relationship between x f and s provides a self-consistency check of the systematic description of Σ(x,f) or Σ(T,f). This apparent universal value of x f is discussed within the framework of existing theoretical models and scaling theories. The relevance to other similar disordered systems is also highlighted. (paper)

  14. The spectrographic analysis of plutonium oxide or mixed plutonium oxide/uranium oxide fuel pellets by the dried residue technique

    International Nuclear Information System (INIS)

    Jarbo, G.J.; Faught, P.; Hildebrandt, B.

    1980-05-01

    An emission spectrographic method for the quantitative determination of metallic impurities in plutonium oxide and mixed plutonium oxide/uranium oxide is described. The fuel is dissolved in nitric acid and the plutonium and/or uranium extracted with tributyl phosphate. A small aliquot of the aqueous residue is dried on a 'mini' pyrolitic graphite plate and excited by high voltage AC spark in an oxygen atmosphere. Spectra are recorded in a region which has been specially selected to record simultaneously lines of boron and cadmium in the 2nd order and all the other elements of interest in the 1st order. Indium is used as an internal standard. The excitation of very small quantities of the uraniumm/plutonium free residue by high voltage spark, together with three separate levels of containment reduce the hazards to personnel and the environment to a minimum with limited effect on sensitivity and accuracy of the results. (auth)

  15. Non-Federal participation in AC Intertie: Final environmental impact statement

    International Nuclear Information System (INIS)

    1994-01-01

    This document contains the appendices for the Non-Federal Participation in AC Intertie Final Environmental Impact Statement. It contains all the supporting materials, documents and data for the EIS in nine appendices: A. Life-of-facilities capacity ownership proposal; B. Long-term Intertie access policy; C. Glossary; D. Biological assessment and supporting materials; E. Environmental impacts of generic resource types; F. Technical information on analysis methods and results; G. Affected environment supporting documentation; H. Public involvement activities; and I. Bibliography

  16. Expression of adenylyl cyclase types III and VI in human hyperfunctioning thyroid nodules.

    Science.gov (United States)

    Celano, M; Arturi, F; Presta, I; Bruno, R; Scarpelli, D; Calvagno, M G; Cristofaro, C; Bulotta, S; Giannasio, P; Sacco, R; Filetti, S; Russo, D

    2003-05-30

    Hyperfunctioning thyroid nodules are characterized by the presence of spontaneous somatic mutations responsible for constitutive activation of the cAMP pathway. However, alterations affecting other elements of the cAMP signaling system may counteract the effects of the mutations. In this study, the expression of the adenylyl cyclase (AC) types III and VI was investigated by Western blot in 18 hyperfunctioning thyroid nodules; in 12 samples, we also assessed the presence of TSH receptor (TSHR) or gsp mutations and levels of AC VI and III mRNA. We found that the expression of nodular AC VI (but not AC III) was significantly lower (85.1% of normal, P=0.014) than the expression of both adenylyl cycles types of perinodular tissue from the same patients. Slightly, but not significant differences were detected in nodules with or without mutations and AC protein levels generally showed correlation with the levels of the transcripts detected by RT-PCR. In addition, AC III and AC VI expression levels within a given nodule were characterized by a significant positive correlation. These findings indicate that a diminished expression of AC type VI may be part of the mechanisms occurring in the hyperfunctioning nodules, independently of the presence of TSHR or gsp mutations, which influence the resulting phenotype.

  17. Oxidative Stress Type Influences the Properties of Antioxidants Containing Polyphenols in RINm5F Beta Cells

    Directory of Open Access Journals (Sweden)

    Nathalie Auberval

    2015-01-01

    Full Text Available The in vitro methods currently used to screen bioactive compounds focus on the use of a single model of oxidative stress. However, this simplistic view may lead to conflicting results. The aim of this study was to evaluate the antioxidant properties of two natural extracts (a mix of red wine polyphenols (RWPs and epigallocatechin gallate (EGCG with three models of oxidative stress induced with hydrogen peroxide (H2O2, a mixture of hypoxanthine and xanthine oxidase (HX/XO, or streptozotocin (STZ in RINm5F beta cells. We employed multiple approaches to validate their potential as therapeutic treatment options, including cell viability, reactive oxygen species production, and antioxidant enzymes expression. All three oxidative stresses induced a decrease in cell viability and an increase in apoptosis, whereas the level of ROS production was variable depending on the type of stress. The highest level of ROS was found for the HX/XO-induced stress, an increase that was reflected by higher expression antioxidant enzymes. Further, both antioxidant compounds presented beneficial effects during oxidative stress, but EGCG appeared to be a more efficient antioxidant. These data indicate that the efficiency of natural antioxidants is dependent on both the nature of the compound and the type of oxidative stress generated.

  18. Advanced DC/AC inverters applications in renewable energy

    CERN Document Server

    Luo, Fang Lin

    2013-01-01

    DC/AC inversion technology is of vital importance for industrial applications, including electrical vehicles and renewable energy systems, which require a large number of inverters. In recent years, inversion technology has developed rapidly, with new topologies improving the power factor and increasing power efficiency. Proposing many novel approaches, Advanced DC/AC Inverters: Applications in Renewable Energy describes advanced DC/AC inverters that can be used for renewable energy systems. The book introduces more than 100 topologies of advanced inverters originally developed by the authors,

  19. Nitric Oxide Synthesis Is Reduced in Subjects With Type 2 Diabetes and Nephropathy

    OpenAIRE

    Tessari, Paolo; Cecchet, Diego; Cosma, Alessandra; Vettore, Monica; Coracina, Anna; Millioni, Renato; Iori, Elisabetta; Puricelli, Lucia; Avogaro, Angelo; Vedovato, Monica

    2010-01-01

    OBJECTIVE Nitric oxide (NO) is a key metabolic and vascular regulator. Its production is stimulated by insulin. A reduced urinary excretion of NO products (NOx) is frequently found in type 2 diabetes, particularly in association with nephropathy. However, whether the decreased NOx excretion in type 2 diabetes is caused by a defective NOx production from arginine in response to hyperinsulinemia has never been studied. RESEARCH DESIGN AND METHODS We measured NOx fractional (FSR) and absolute (A...

  20. Deacetylation of H4-K16Ac and heterochromatin assembly in senescence

    Directory of Open Access Journals (Sweden)

    Contrepois Kévin

    2012-08-01

    Full Text Available Abstract Background Cellular senescence is a stress response of mammalian cells leading to a durable arrest of cell proliferation that has been implicated in tumor suppression, wound healing, and aging. The proliferative arrest is mediated by transcriptional repression of genes essential for cell division by the retinoblastoma protein family. This repression is accompanied by varying degrees of heterochromatin assembly, but little is known regarding the molecular mechanisms involved. Results We found that both deacetylation of H4-K16Ac and expression of HMGA1/2 can contribute to DNA compaction during senescence. SIRT2, an NAD-dependent class III histone deacetylase, contributes to H4-K16Ac deacetylation and DNA compaction in human fibroblast cell lines that assemble striking senescence-associated heterochromatin foci (SAHFs. Decreased H4-K16Ac was observed in both replicative and oncogene-induced senescence of these cells. In contrast, this mechanism was inoperative in a fibroblast cell line that did not assemble extensive heterochromatin during senescence. Treatment of senescent cells with trichostatin A, a class I/II histone deacetylase inhibitor, also induced rapid and reversible decondensation of SAHFs. Inhibition of DNA compaction did not significantly affect the stability of the senescent state. Conclusions Variable DNA compaction observed during senescence is explained in part by cell-type specific regulation of H4 deacetylation and HMGA1/2 expression. Deacetylation of H4-K16Ac during senescence may explain reported decreases in this mark during mammalian aging and in cancer cells.

  1. Nitrogen and europium doped TiO2 anodized films with applications in photocatalysis

    International Nuclear Information System (INIS)

    Chi, Choong-Soo; Choi, Jinwook; Jeong, Yongsoo; Lee, Oh Yeon; Oh, Han-Jun

    2011-01-01

    Micro-arc oxidation method is a useful process for mesoporous titanium dioxide films. In order to improve the photocatalytic activity of the TiO 2 film, N-Eu co-doped titania catalyst was synthesized by micro-arc oxidation in the H 2 SO 4 /Eu(NO 3 ) 3 mixture solution. The specific surface area and the roughness of the anodic titania film fabricated in the H 2 SO 4 /Eu(NO 3 ) 3 electrolyte, were increased compared to that of the anodic TiO 2 film prepared in H 2 SO 4 solution. The absorbance response of N-Eu titania film shows a higher adsorption onset toward visible light region, and the incorporated N and Eu ions during anodization as a dopant in the anodic TiO 2 film significantly enhanced the photocatalytic activity for dye degradation. After dye decomposition test for 3 h, dye removal rates for the anodic TiO 2 film were 60.7% and 90.1% for the N-Eu doped titania film. The improvement of the photocatalytic activity was ascribed to the synergistic effects of the surface enlargement and the new electronic state of the TiO 2 band gap by N and Eu co-doping.

  2. Comparison study of different coatings on degradation performance and cell response of Mg-Sr alloy

    International Nuclear Information System (INIS)

    Shangguan, Yongming; Sun, Lina; Wan, Peng; Tan, Lili; Wang, Chengyue; Fan, Xinmin; Qin, Ling; Yang, Ke

    2016-01-01

    To solve the problem of rapid degradation for magnesium-based implants, surface modification especially coating method is widely studied and showed the great potential for clinical application. However, as concerned to the further application and medical translation for biodegradable magnesium alloys, there are still lack of data and comparisons among different coatings on their degradation and biological properties. This work studied three commonly used coatings on Mg-Sr alloy, including micro-arc oxidation coating, electrodeposition coating and chemical conversion coating, and compared these coatings for requirements of favorable degradation and biological performances, how each of these coating systems has performed. Finally the mechanism for the discrepancy between these coatings is proposed. The results indicate that the micro-arc oxidation coating on Mg-Sr alloy exhibited the best corrosion resistance and cell response among these coatings, and is proved to be more suitable for the orthopedic application. - Highlights: • The MAO, PED and Sr-P coating were fabricated on Mg-Sr alloy to evaluate the degradation. • The MAO coating showed the greatest degradation performance among these three coatings. • The PED coating exhibited worse corrosion resistance even than Mg-Sr substrate. • The value of cell proliferation and ALP activity were ranked in the following order: MAO > Sr-P > PED.

  3. Comparison study of different coatings on degradation performance and cell response of Mg-Sr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Shangguan, Yongming [Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Sun, Lina [Jinzhou Medical University, Jinzhou 121000 (China); Wan, Peng, E-mail: pwan@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR (China); Tan, Lili [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Wang, Chengyue [Jinzhou Medical University, Jinzhou 121000 (China); Fan, Xinmin [Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Qin, Ling [Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2016-12-01

    To solve the problem of rapid degradation for magnesium-based implants, surface modification especially coating method is widely studied and showed the great potential for clinical application. However, as concerned to the further application and medical translation for biodegradable magnesium alloys, there are still lack of data and comparisons among different coatings on their degradation and biological properties. This work studied three commonly used coatings on Mg-Sr alloy, including micro-arc oxidation coating, electrodeposition coating and chemical conversion coating, and compared these coatings for requirements of favorable degradation and biological performances, how each of these coating systems has performed. Finally the mechanism for the discrepancy between these coatings is proposed. The results indicate that the micro-arc oxidation coating on Mg-Sr alloy exhibited the best corrosion resistance and cell response among these coatings, and is proved to be more suitable for the orthopedic application. - Highlights: • The MAO, PED and Sr-P coating were fabricated on Mg-Sr alloy to evaluate the degradation. • The MAO coating showed the greatest degradation performance among these three coatings. • The PED coating exhibited worse corrosion resistance even than Mg-Sr substrate. • The value of cell proliferation and ALP activity were ranked in the following order: MAO > Sr-P > PED.

  4. A single-phase embedded Z-source DC-AC inverter.

    Science.gov (United States)

    Kim, Se-Jin; Lim, Young-Cheol

    2014-01-01

    In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively.

  5. THE ACS FORNAX CLUSTER SURVEY. IV. DEPROJECTION OF THE SURFACE BRIGHTNESS PROFILES OF EARLY-TYPE GALAXIES IN THE VIRGO AND FORNAX CLUSTERS: INVESTIGATING THE 'CORE/POWER-LAW DICHOTOMY'

    International Nuclear Information System (INIS)

    Glass, Lisa; Ferrarese, Laura; Cote, Patrick; Blakeslee, John P.; Chen, Chin-Wei; Jordan, Andres; Infante, Leopoldo; Peng, Eric; Mei, Simona; Tonry, John L.; West, Michael J.

    2011-01-01

    Although early observations with the Hubble Space Telescope (HST) pointed to a sharp dichotomy among early-type galaxies in terms of the logarithmic slope γ' of their central surface brightness profiles, several studies in the past few years have called this finding into question. In particular, recent imaging surveys of 143 early-type galaxies belonging to the Virgo and Fornax Clusters using the Advanced Camera for Surveys (ACS) on board HST have not found a dichotomy in γ', but instead a systematic progression from central luminosity deficit to excess relative to the inward extrapolation of the best-fitting global Sersic model. Given that earlier studies also found that the dichotomy persisted when analyzing the deprojected density profile slopes, we investigate the distribution of the three-dimensional luminosity density profiles of the ACS Virgo and Fornax Cluster Survey galaxies. Having fitted the surface brightness profiles with modified Sersic models, we then deproject the galaxies using an Abel integral and measure the inner slopes γ 3D of the resulting luminosity density profiles at various fractions of the effective radius R e . We find no evidence of a dichotomy, but rather, a continuous variation in the central luminosity profiles as a function of galaxy magnitude. We introduce a parameter, Δ 3D , that measures the central deviation of the deprojected luminosity profiles from the global Sersic fit, showing that this parameter varies smoothly and systematically along the luminosity function.

  6. Studies on frequency dependent electrical and dielectric properties of sintered zinc oxide pellets: effects of Al-doping

    Science.gov (United States)

    Tewari, S.; Ghosh, A.; Bhattacharjee, A.

    2016-11-01

    Sintered pellets of zinc oxide (ZnO), both undoped and Al-doped are prepared through a chemical process. Dopant concentration of Aluminium in ZnO [Al/Zn in weight percentage (wt%)] is varied from 0 to 3 wt%. After synthesis structural characterisation of the samples are performed with XRD and SEM-EDAX which confirm that all the samples are of ZnO having polycrystalline nature with particle size from 108.6 to 116 nm. Frequency dependent properties like a.c. conductivity, capacitance, impedance and phase angle are measured in the frequency range 10 Hz to 100 kHz as a function of temperature (in the range 25-150 °C). Nature of a.c. conductivity in these samples indicates hopping type of conduction arising from localised defect states. The frequency and temperature dependent properties under study are found to be as per correlated barrier hoping model. Dielectric and impedance properties studied in the samples indicate distributed relaxation, showing decrease of relaxation time with temperature.

  7. One-step hydrothermal synthesis of sandwich-type NiCo2S4@reduced graphene oxide composite as active electrode material for supercapacitors

    Science.gov (United States)

    Wang, Fangping; Li, Guifang; Zhou, Qianqian; Zheng, Jinfeng; Yang, Caixia; Wang, Qizhao

    2017-12-01

    A facile one step hydrothermal process is developed for the synthesis of NiCo2S4@reduced graphene oxide (NiCo2S4@RGO) composite as electrode for electrochemical supercapacitors. This NiCo2S4@RGO electrode exhibits an ultrahigh specific capacitance of 2003 F g-1 at 1 A g-1 and 1726 F g-1 at 20 A g-1 (86.0% capacitance retention from 1 A g-1 to 20 A g-1), excellent cycling stabilities (86.0% retention after 3500 cycles). Moreover, an asymmetric supercapacitor is successfully assembled by using NiCo2S4@RGO nanoparticle as the positive electrode and active carbon(AC) as the negative electrode in 2 M KOH electrolyte. The fabricated NiCo2S4@RGO//AC asymmetric supercapacitor exhibits a high energy density of 21.9 Wh kg-1 at a power density of 417.1 W kg-1 and still remains an impressive energy density of 13.5 Wh kg-1 at a large power density of 2700 W kg-1. The results demonstrate that the NiCo2S4@RGO composite is a promising electrode material as supercapacitors in energy storage.

  8. PGC-1α mRNA Level and Oxidative Capacity of the Plantaris Muscle in Rats with Metabolic Syndrome, Hypertension, and Type 2 Diabetes

    International Nuclear Information System (INIS)

    Nagatomo, Fumiko; Fujino, Hidemi; Kondo, Hiroyo; Gu, Ning; Takeda, Isao; Ishioka, Noriaki; Tsuda, Kinsuke; Ishihara, Akihiko

    2011-01-01

    We examined the fiber profiles and the mRNA levels of peroxisome proliferator-activated receptors (PPARα and PPARδ/β) and of the PPARγ coactivator-1α (PGC-1α) in the plantaris muscles of 15-week-old control (WR), metabolic syndrome (CP), hypertensive (SHR), and type 2 diabetic (GK) rats. The deep regions in the muscles of SHR and GK rats exhibited lower percentages of high-oxidative type I and IIA fibers and higher percentages of low-oxidative type IIB fibers compared with WR and CP rats. The surface regions in the muscles of CP, SHR, and GK rats exhibited lower percentages of high-oxidative type IIA fibers and higher percentages of low-oxidative type IIB fibers compared with WR rats. The muscles of SHR and GK rats had lower oxidative enzyme activity compared with WR rats. The muscles of SHR rats had the lowest PPARδ/β mRNA level. In addition, the muscles of SHR and GK rats had lower PGC-1α mRNA level compared with WR and CP rats. We concluded that the plantaris muscles of rats with hypertension and type 2 diabetes have lower oxidative capacity, which is associated with the decreased level of PGC-1α mRNA

  9. dc Arc Fault Effect on Hybrid ac/dc Microgrid

    Science.gov (United States)

    Fatima, Zahra

    The advent of distributed energy resources (DER) and reliability and stability problems of the conventional grid system has given rise to the wide spread deployment of microgrids. Microgrids provide many advantages by incorporating renewable energy sources and increasing the reliability of the grid by isolating from the main grid in case of an outage. AC microgrids have been installed all over the world, but dc microgrids have been gaining interest due to the advantages they provide over ac microgrids. However the entire power network backbone is still ac and dc microgrids require expensive converters to connect to the ac power network. As a result hybrid ac/dc microgrids are gaining more attention as it combines the advantages of both ac and dc microgrids such as direct integration of ac and dc systems with minimum number of conversions which increases the efficiency by reducing energy losses. Although dc electric systems offer many advantages such as no synchronization and no reactive power, successful implementation of dc systems requires appropriate protection strategies. One unique protection challenge brought by the dc systems is dc arc faults. A dc arc fault is generated when there is a gap in the conductor due to insulation degradation and current is used to bridge the gap, resulting in an arc with very high temperature. Such a fault if it goes undetected and is not extinguished can cause damage to the entire system and cause fires. The purpose of the research is to study the effect of the dc arc fault at different locations in the hybrid ac/dc microgrid and provide insight on the reliability of the grid components when it is impacted by arc faults at various locations in the grid. The impact of dc arc fault at different locations on the performance of the PV array, wind generation, and constant power loads (CPL) interfaced with dc/dc converters is studied. MATLAB/Simulink is used to model the hybrid ac/dc microgrid and arc fault.

  10. Power Flow Analysis for Low-Voltage AC and DC Microgrids Considering Droop Control and Virtual Impedance

    DEFF Research Database (Denmark)

    Li, Chendan; Chaudhary, Sanjay Kumar; Savaghebi, Mehdi

    2017-01-01

    In the low-voltage (LV) ac microgrids (MGs), with a relatively high R/X ratio, virtual impedance is usually adopted to improve the performance of droop control applied to distributed generators (DGs). At the same time, LV dc MG using virtual impedance as droop control is emerging without adequate...... power flow studies. In this paper, power flow analyses for both ac and dc MGs are formulated and implemented. The mathematical models for both types of MGs considering the concept of virtual impedance are used to be in conformity with the practical control of the DGs. As a result, calculation accuracy...... is improved for both ac and dc MG power flow analyses, comparing with previous methods without considering virtual impedance. Case studies are conducted to verify the proposed power flow analyses in terms of convergence and accuracy. Investigation of the impact to the system of internal control parameters...

  11. SQUIDs De-fluxing Using a Decaying AC Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Matlashov, Andrei Nikolaevich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Semenov, Vasili Kirilovich [State Univ. of New York (SUNY), Plattsburgh, NY (United States); Anderson, Bill [Senior Scientific, LLC, Albuquerque, NM (United States)

    2016-06-08

    Flux trapping is the Achilles’ heel of all superconductor electronics. The most direct way to avoid flux trapping is a prevention of superconductor circuits from exposure to magnetic fields. Unfortunately this is not feasible if the circuits must be exposed to a strong DC magnetic field even for a short period of time. For example, such unavoidable exposures take place in superparamagnetic relaxation measurements (SPMR) and ultra-low field magnetic resonance imaging (ULF MRI) using unshielded thin-film SQUID-based gradiometers. Unshielded SQUIDs stop working after being exposed to DC magnetic fields of only a few Gauss in strength. In this paper we present experimental results with de-fluxing of planar thin-film LTS SQUID-based gradiometers using a strong decaying AC magnetic field. We used four commercial G136 gradiometers for SPMR measurements with up to a 10 mT magnetizing field. Strong 12.9 kHz decaying magnetic field pulses reliably return SQUIDs to normal operation 50 ms after zeroing the DC magnetizing field. This new AC de-fluxing method was also successfully tested with seven other different types of LTS SQUID sensors and has been shown to dissipate extremely low energy.

  12. Magnetic Fe{sub 2}MO{sub 4} (M:Fe, Mn) activated carbons: Fabrication, characterization and heterogeneous Fenton oxidation of methyl orange

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thi Dung [Institute of Chemical Technology, Vietnamese Academy of Science and Technology, 01 Mac Dinh Chi, District 1, Ho Chi Minh (Viet Nam); Phan, Ngoc Hoa [Department of Chemical Technology, Hochiminh University of Technology, 268 Ly Thuong Kiet, District 10, Ho Chi Minh (Viet Nam); Do, Manh Huy, E-mail: huydoma@vast-hcm.ac.vn [Institute of Chemical Technology, Vietnamese Academy of Science and Technology, 01 Mac Dinh Chi, District 1, Ho Chi Minh (Viet Nam); Ngo, Kim Tham [Institute of Chemical Technology, Vietnamese Academy of Science and Technology, 01 Mac Dinh Chi, District 1, Ho Chi Minh (Viet Nam); College of science, Can Tho University, 3/2, Can Tho (Viet Nam)

    2011-01-30

    We present a simple and efficient method for the fabrication of magnetic Fe{sub 2}MO{sub 4} (M:Fe and Mn) activated carbons (Fe{sub 2}MO{sub 4}/AC-H, M:Fe and Mn) by impregnating the activated carbon with simultaneous magnetic precursor and carbon modifying agent followed by calcination. The obtained samples were characterized by nitrogen adsorption isotherms, X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM), and the catalytic activity in heterogeneous Fenton oxidation of methyl orange (MO) was evaluated. The resulting Fe{sub 2}MnO{sub 4}/AC-H showed higher catalytic activity in the methyl orange oxidation than Fe{sub 3}O{sub 4}/AC-H. The effect of operational parameters (pH, catalyst loading H{sub 2}O{sub 2} dosage and initial MO concentration) on degradation performance of the oxidation process was investigated. Stability and reusability of selected catalyst were also tested.

  13. Frequency-dependent tACS modulation of BOLD signal during rhythmic visual stimulation.

    Science.gov (United States)

    Chai, Yuhui; Sheng, Jingwei; Bandettini, Peter A; Gao, Jia-Hong

    2018-05-01

    Transcranial alternating current stimulation (tACS) has emerged as a promising tool for modulating cortical oscillations. In previous electroencephalogram (EEG) studies, tACS has been found to modulate brain oscillatory activity in a frequency-specific manner. However, the spatial distribution and hemodynamic response for this modulation remains poorly understood. Functional magnetic resonance imaging (fMRI) has the advantage of measuring neuronal activity in regions not only below the tACS electrodes but also across the whole brain with high spatial resolution. Here, we measured fMRI signal while applying tACS to modulate rhythmic visual activity. During fMRI acquisition, tACS at different frequencies (4, 8, 16, and 32 Hz) was applied along with visual flicker stimulation at 8 and 16 Hz. We analyzed the blood-oxygen-level-dependent (BOLD) signal difference between tACS-ON vs tACS-OFF, and different frequency combinations (e.g., 4 Hz tACS, 8 Hz flicker vs 8 Hz tACS, 8 Hz flicker). We observed significant tACS modulation effects on BOLD responses when the tACS frequency matched the visual flicker frequency or the second harmonic frequency. The main effects were predominantly seen in regions that were activated by the visual task and targeted by the tACS current distribution. These findings bridge different scientific domains of tACS research and demonstrate that fMRI could localize the tACS effect on stimulus-induced brain rhythms, which could lead to a new approach for understanding the high-level cognitive process shaped by the ongoing oscillatory signal. © 2018 Wiley Periodicals, Inc.

  14. Obligate sugar oxidation in Mesotoga spp., phylum Thermotogae, in the presence of either elemental sulfur or hydrogenotrophic sulfate-reducers as electron acceptor.

    Science.gov (United States)

    Fadhlaoui, Khaled; Ben Hania, Wagdi; Armougom, Fabrice; Bartoli, Manon; Fardeau, Marie-Laure; Erauso, Gaël; Brasseur, Gaël; Aubert, Corinne; Hamdi, Moktar; Brochier-Armanet, Céline; Dolla, Alain; Ollivier, Bernard

    2018-01-01

    Mesotoga prima strain PhosAc3 is a mesophilic representative of the phylum Thermotogae comprising only fermentative bacteria so far. We show that while unable to ferment glucose, this bacterium is able to couple its oxidation to reduction of elemental sulfur. We demonstrate furthermore that M. prima strain PhosAc3 as well as M. prima strain MesG1 and Mesotoga infera are able to grow in syntrophic association with sulfate-reducing bacteria (SRB) acting as hydrogen scavengers through interspecies hydrogen transfer. Hydrogen production was higher in M. prima strain PhosAc3 cells co-cultured with SRB than in cells cultured alone in the presence of elemental sulfur. We propose that the efficient sugar-oxidizing metabolism by M. prima strain PhosAc3 in syntrophic association with a hydrogenotrophic sulfate-reducing bacterium can be extrapolated to all members of the Mesotoga genus. Genome comparison of Thermotogae members suggests that the metabolic difference between Mesotoga and Thermotoga species (sugar oxidation versus fermentation) is mainly due to the absence of the bifurcating [FeFe]-hydrogenase in the former. Such an obligate oxidative process for using sugars, unusual within prokaryotes, is the first reported within the Thermotogae. It is hypothesized to be of primary ecological importance for growth of Mesotoga spp. in the environments that they inhabit. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Apple MdACS6 Regulates Ethylene Biosynthesis During Fruit Development Involving Ethylene-Responsive Factor.

    Science.gov (United States)

    Li, Tong; Tan, Dongmei; Liu, Zhi; Jiang, Zhongyu; Wei, Yun; Zhang, Lichao; Li, Xinyue; Yuan, Hui; Wang, Aide

    2015-10-01

    Ethylene biosynthesis in plants involves different 1-aminocyclopropane-1-carboxylic acid synthase (ACS) genes. The regulation of each ACS gene during fruit development is unclear. Here, we characterized another apple (Malus×domestica) ACS gene, MdACS6. The transcript of MdACS6 was observed not only in fruits but also in other tissues. During fruit development, MdACS6 was initiated at a much earlier stage, whereas MdACS3a and MdACS1 began to be expressed at 35 d before harvest and immediateley after harvest, respectively. Moreover, the enzyme activity of MdACS6 was significantly lower than that of MdACS3a and MdACS1, accounting for the low ethylene biosynthesis in young fruits. Overexpression of MdACS6 (MdACS6-OE) by transient assay in apple showed enhanced ethylene production, and MdACS3a was induced in MdACS6-OE fruits but not in control fruits. In MdACS6 apple fruits silenced by the virus-induced gene silencing (VIGS) system (MdACS6-AN), neither ethylene production nor MdACS3a transcript was detectable. In order to explore the mechanism through which MdACS3a was induced in MdACS6-OE fruits, we investigated the expression of apple ethylene-responsive factor (ERF) genes. The results showed that the expression of MdERF2 was induced in MdACS6-OE fruits and inhibited in MdACS6-AN fruits. Yeast one-hybrid assay showed that MdERF2 protein could bind to the promoter of MdACS3a. Moreover, down-regulation of MdERF2 in apple flesh callus led to a decrease of MdACS3a expression, demonstrating the regulation of MdERF2 on MdACS3a. The mechanism through which MdACS6 regulates the action of MdACS3a was discussed. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Biochar type and factors affecting N transformation, ammonia volatilization, and nitrous oxide emissions

    Science.gov (United States)

    Soil amendment with biochar has shown the potential to improve nitrogen (N) availability for plant uptake and reduce environmental losses via ammonia (NH3) and nitrous oxide (N2O) emissions. There are still many unknowns on how biochar type and soil conditions affect N dynamics and processes associa...

  17. Composition and corrosion properties of high-temperature oxide films on steel type 18-10

    International Nuclear Information System (INIS)

    Vakulenko, B.F.; Morozov, O.N.; Chernysheva, M.V.

    1985-01-01

    The composition and propeties of oxide films, formed in the process of tube production of steel type 18-10, as well as the behaviour of the steels coated with oxide films under operating conditions of NPP heat-exchange equipment at the 20-300 deg C temperatures are determined. It is found, that the films have a good adhesion to the steel surface and repeat the metal structure without interfering with, the surface defect determination. Introduction of the NaNO 2 corrosion inhibitor decreases the film destruction rate to the level of the base metal corrosion. It is found acceptable to use tubes of steel 18-10 coated with dense oxide films in the heat-exchange and water supply systems of NPP

  18. Nontrivial ac spin response in the effective Luttinger model

    International Nuclear Information System (INIS)

    Hu Liangbin; Zhong Jiansong; Hu Kaige

    2006-01-01

    Based on the three-dimensional effective Luttinger Hamiltonian and the exact Heisenberg equations of motion and within a self-consistent semiclassical approximation, we present a theoretical investigation on the nontrivial ac spin responses due to the intrinsic spin-orbit coupling of holes in p-doped bulk semiconductors. We show that the nontrivial ac spin responses induced by the combined action of an ac external electric field and the intrinsic spin-orbit coupling of holes may lead to the generation of a nonvanishing ac spin Hall current in a p-doped bulk semiconductor, which shares some similarities with the dissipationless dc spin Hall current conceived previously and also exhibits some interesting new features that was not found before

  19. [Adsorption and removal of gas-phase Hg(0) over a V2O5/AC catalyst in the presence of SO2].

    Science.gov (United States)

    Wang, Jun-wei; Yang, Jian-li; Liu, Zhen-yu

    2009-12-01

    The adsorption and removal behaviors of gas-phase Hg(0) over V2O5/AC and AC were studied under a simulated flue gas (containing N2, SO2, O2) in a fixed-bed reactor. The influences of the V2O5, loading, SO2 concentration and adsorption temperature on Hg0 adsorption were investigated. The speciation of mercury adsorbed was determined by X-ray photoelectron spectroscopy (XPS). It was found that the V2O5/AC catalyst has a much higher capability than AC for Hg(0) adsorption and removal, mainly because of the catalytic oxidation activity of V2O5. The Hg(0) adsorption capability depends on the V2O5 content of the V2O5/AC catalyst. The amounts of mercury adsorbed increase from 75.9 microg x g(-1) to 89.6 microg x g(-1) (in the absence of O2) and from 115.9 microg x g(-1) to 185.5 microg x g(-1) (in the presence of O2) as the V2O5 loading increases from 0.5% to 1.0%, which are much higher than those over AC under the same conditions (9.6 microg x g(-1) and 23.3 microg x g(-1)). SO2 in the flue gas enhances Hg(0) adsorption over the V2O5/AC catalyst, which is due to the reaction of SO2 and Hg(0) on V2O3/AC. But as the SO2 concentration increases from 500 x 10(-6) to 2000 x 10(-6), the amount of mercury adsorbed has only a slight increase. The optimal temperature for Hg(0) adsorption over the V2O5/AC catalyst is around 150 degrees C, at which the amounts of mercury adsorbed are up to 98.5 microg x g(-1) (in the absence of O2) and 187.7 microg x g(-1) (in the presence of O2). The XPS results indicate the formation of Hg(0) and HgSO4 on the surface of the V2O5/AC catalyst, which confirms the role of V2O5 and SO2.

  20. Effect of metal cation ratio on chemical properties of ZnFe2O4/AC composite and adsorption of organic contaminant

    Science.gov (United States)

    Meilia, Demara; Misbah Khunur, Mochamad; Setianingsih, Tutik

    2018-01-01

    Porous woody char is biochar prepared through pyrolisis. The biochar can be used as adsorbent. In this research, ZnFe2O4/AC composite was synthesized through imregnation of the woody biochar with ZnFe2O4 to study effect of mol ratio of Fe(III) and Zn(II) toward their physicochemistry and adsorption of drug wastewater. Paracetamol was used as adsorbate model. This research was conducted in several steps, including activation of the woody biochar using KOH activator at temperatur 500 °C for 15 min to produce the activated carbon, fungsionalization of the carbon using H2SO4 oxidator (6M) at temperature of 80 °C for 3 h, impregnation of the oxidized activated carbon with Zn-Fe-LDH (Layered Double Hydroxide) at various mol ratio of Fe(III) and Zn(III), including 1:2, 1:3 and 1:4 using NaOH solution (5M) for coprecipitation, and calcination of Zn-Fe-LDH/AC at 950 °C for 5 min to produce ZnFe2O4/AC. FTIR diffraction characterization indicated existence of M-O (M = Zn(II), Fe(III)) and OH functional groups. FTIR spectra showed increasing of bands connected to -OH by increasing of the ratio till the ratio was achieved at 1:4, then decreased again. The ratio mol showed effect on the adsorption of paracetamol. Profile of adsorption value was fit with changing of functional groups. The highest adsorption was achieved at the ratio of 1:4. After calcination it gave the adsorption value of 17,66 mg/g.