A THREE-PHASE BOOST DC-AC CONVERTER
African Journals Online (AJOL)
dc-ac converter (inverter) based on the dc-dc boost converters. ... Sliding mode controllers are designed to perform a robust control for the ... Computer simulations and spectral analysis demon- ... the conventional three-phase buck inverter,.
Ac-dc converter firing error detection
International Nuclear Information System (INIS)
Gould, O.L.
1996-01-01
Each of the twelve Booster Main Magnet Power Supply modules consist of two three-phase, full-wave rectifier bridges in series to provide a 560 VDC maximum output. The harmonic contents of the twelve-pulse ac-dc converter output are multiples of the 60 Hz ac power input, with a predominant 720 Hz signal greater than 14 dB in magnitude above the closest harmonic components at maximum output. The 720 Hz harmonic is typically greater than 20 dB below the 500 VDC output signal under normal operation. Extracting specific harmonics from the rectifier output signal of a 6, 12, or 24 pulse ac-dc converter allows the detection of SCR firing angle errors or complete misfires. A bandpass filter provides the input signal to a frequency-to-voltage converter. Comparing the output of the frequency-to-voltage converter to a reference voltage level provides an indication of the magnitude of the harmonics in the ac-dc converter output signal
Martinez-Rodrigo, Fernando; Herrero-De Lucas, Luis Carlos; de Pablo, Santiago; Rey-Boue, Alexis B.
2017-01-01
This paper examines the question of how to use project-based learning to increase student performance and satisfaction in a power electronics course addressing the topics of dc/dc and dc/ac converters, the assembly of a dc/dc converter, and the use of a commercial speed drive. A detailed presentation of the methodology is shown, and the results…
A novel wireless power and data transmission AC to DC converter for an implantable device.
Liu, Jhao-Yan; Tang, Kea-Tiong
2013-01-01
This article presents a novel AC to DC converter implemented by standard CMOS technology, applied for wireless power transmission. This circuit combines the functions of the rectifier and DC to DC converter, rather than using the rectifier to convert AC to DC and then supplying the required voltage with regulator as in the transitional method. This modification can reduce the power consumption and the area of the circuit. This circuit also transfers the loading condition back to the external circuit by the load shift keying(LSK), determining if the input power is not enough or excessive, which increases the efficiency of the total system. The AC to DC converter is fabricated with the TSMC 90nm CMOS process. The circuit area is 0.071mm(2). The circuit can produce a 1V DC voltage with maximum output current of 10mA from an AC input ranging from 1.5V to 2V, at 1MHz to 10MHz.
Fixed switching frequency applied in single-phase boost AC to DC converter
International Nuclear Information System (INIS)
Chen, T.-C.; Ren, T.-J.; Ou, J.-C.
2009-01-01
The fixed switching frequency control for a single-phase boost AC to DC converter to achieve a sinusoidal line current and unity power factor is proposed in this paper. The relation between the line current error and the fixed switching frequency was developed. For a limit line current error, the minimum switching frequency for a boost AC to DC converter can be achieved. The proposed scheme was implemented using a 32-bit digital signal processor TMS320C32. Simulations and experimental results demonstrate the feasibility and fast dynamic response of the proposed control strategy.
Liwen Pan; Chengning Zhang
2016-01-01
This paper presents an on-board vehicular battery charger that integrates bidirectional AC/DC converter and DC/DC converter to achieve high power density for application in electric vehicles (EVs). The integrated charger is able to transfer electrical energy between the battery pack and the electric traction system and to function as an AC/DC battery charger. The integrated charger topology is presented and the design of passive components is discussed. The control schemes are developed for m...
Directory of Open Access Journals (Sweden)
Robert Antonio Salas-Puente
2018-03-01
Full Text Available In this paper, a centralized control strategy for the efficient power management of power converters composing a hybrid AC/DC microgrid is explained. The study is focused on the converters connected to the DC bus. The proposed power management algorithm is implemented in a microgrid central processor which is based on assigning several operation functions to each of the generators, loads and energy storage systems in the microgrid. The power flows between the DC and AC buses are studied in several operational scenarios to verify the proposed control. Experimental and simulation results demonstrate that the algorithm allows control of the power dispatch inside the microgrid properly by performing the following tasks: communication among power converters, the grid operator and loads; connection and disconnection of loads; control of the power exchange between the distributed generators and the energy storage system and, finally, supervision of the power dispatch limit set by the grid operator.
Large Signal Model of a Four-quadrant AC to DC Converter for Accelerator Magnets
De la Calle, R; Rinaldi, L; Völker, F V
2001-01-01
This paper presents the large signal model of a four-quadrant AC to DC converter, which is expected to be used in the area of particle accelerators. The system’s first stage is composed of a three-phase boost PWM (Pulse Width Modulated) rectifier with DSP (Digital Signal Processing) based power factor correction (PFC) and output voltage regulation. The second stage is a full-bridge PWM inverter that allows fast four-quadrant operation. The structure is fully reversible, and an additional resistance (brake chopper) is not needed to dissipate the energy when the beam deflection magnet acts as generator.
A single-phase PWM controlled AC to DC converter based on control of unity displacement power factor
Funabiki, Shigeyuki
1990-01-01
A modified pulse-width modulation (PWM) technique that improves the displacement power factor and the input power factor of a single-phase AC to DC converter is discussed. The modified converter is shown to have a high input power factor and allows the of DC voltage from zero to more than the maximum value of the source voltage. The displacement power factor is unity, and the input power factor is almost unity in the wide range of current command
A Dual-Buck–Boost AC/DC Converter for DC Nanogrid With Three Terminal Outputs
DEFF Research Database (Denmark)
Wu, Weimin; Wang, Houqing; Liu, Yuan
2017-01-01
Due to the widely used dc characterized loads and more distributed power generation sources, the dc nanogrid becomes more and more popular, and it is seen as an alternative to the ac grid. For safety considerations, the dc nanogrid should provide reliable grounding for the residential loads...... such as the low-voltage ac power system. There are three typical grounding configurations for a dc nanogrid: the united grounding, the unidirectional grounding, and the virtual isolated grounding. Each grounding configuration has its own specifications to ac/dc converters. In this paper, a dual-buck-boost ac/dc...... converter for use in the united-grounding-configuration-based dc nanogrid with three terminal outputs is proposed. The working principle of this converter is presented in detail through analyzing the equivalent circuits. Experiments are carried out to verify the theoretical analysis....
AC-DC PFC Converter Using Combination of Flyback Converter and Full-bridge DC-DC Converter
Directory of Open Access Journals (Sweden)
Moh. Zaenal Efendi
2014-06-01
Full Text Available This paper presents a combination of power factor correction converter using Flyback converter and Full-bridge dc-dc converter in series connection. Flyback converter is operated in discontinuous conduction mode so that it can serve as a power factor correction converter and meanwhile Full-bridge dc-dc converter is used for dc regulator. This converter system is designed to produce a 86 Volt of output voltage and 2 A of output current. Both simulation and experiment results show that the power factor of this converter achieves up to 0.99 and meets harmonic standard of IEC61000-3-2. Keywords: Flyback Converter, Full-bridge DC-DC Converter, Power Factor Correction.
Fuzzy Controlled Parallel AC-DC Converter for PFC
Directory of Open Access Journals (Sweden)
M Subba Rao
2011-01-01
Full Text Available Paralleling of converter modules is a well-known technique that is often used in medium-power applications to achieve the desired output power by using smaller size of high frequency transformers and inductors. In this paper, a parallel-connected single-phase PFC topology using flyback and forward converters is proposed to improve the output voltage regulation with simultaneous input power factor correction (PFC and control. The goal of the control is to stabilize the output voltage of the converter against the load variations. The paper presents the derivation of fuzzy control rules for the dc/dc converter circuit and control algorithm for regulating the dc/dc converter. This paper presents a design example and circuit analysis for 200 W power supply. The proposed approach offers cost effective, compact and efficient AC/DC converter by the use of parallel power processing. MATLAB/SIMULINK is used for implementation and simulation results show the performance improvement.
Directory of Open Access Journals (Sweden)
Liwen Pan
2016-06-01
Full Text Available This paper presents an on-board vehicular battery charger that integrates bidirectional AC/DC converter and DC/DC converter to achieve high power density for application in electric vehicles (EVs. The integrated charger is able to transfer electrical energy between the battery pack and the electric traction system and to function as an AC/DC battery charger. The integrated charger topology is presented and the design of passive components is discussed. The control schemes are developed for motor drive system and battery-charging system with a power pulsation reduction circuit. Simulation results in MATLAB/Simulink and experiments on a 30-kW motor drive and 3.3-kW AC/DC charging prototype validate the performance of the proposed technology. In addition, power losses, efficiency comparison and thermal stress for the integrated charger are illustrated. The results of the analyses show the validity of the advanced integrated charger for electric vehicles.
Interlink Converter with Linear Quadratic Regulator Based Current Control for Hybrid AC/DC Microgrid
Directory of Open Access Journals (Sweden)
Dwi Riana Aryani
2017-11-01
Full Text Available A hybrid alternate current/direct current (AC/DC microgrid consists of an AC subgrid and a DC subgrid, and the subgrids are connected through the interlink bidirectional AC/DC converter. In the stand-alone operation mode, it is desirable that the interlink bidirectional AC/DC converter manages proportional power sharing between the subgrids by transferring power from the under-loaded subgrid to the over-loaded one. In terms of system security, the interlink bidirectional AC/DC converter takes an important role, so proper control strategies need to be established. In addition, it is assumed that a battery energy storage system is installed in one subgrid, and the coordinated control of interlink bidirectional AC/DC converter and battery energy storage system converter is required so that the power sharing scheme between subgrids becomes more efficient. For the purpose of designing a tracking controller for the power sharing by interlink bidirectional AC/DC converter in a hybrid AC/DC microgrid, a droop control method generates a power reference for interlink bidirectional AC/DC converter based on the deviation of the system frequency and voltages first and then interlink bidirectional AC/DC converter needs to transfer the power reference to the over-loaded subgrid. For efficiency of this power transferring, a linear quadratic regulator with exponential weighting for the current regulation of interlink bidirectional AC/DC converter is designed in such a way that the resulting microgrid can operate robustly against various uncertainties and the power sharing is carried out quickly. Simulation results show that the proposed interlink bidirectional AC/DC converter control strategy provides robust and efficient power sharing scheme between the subgrids without deteriorating the secure system operation.
Three-Level AC-DC-AC Z-Source Converter Using Reduced Passive Component Count
DEFF Research Database (Denmark)
Loh, Poh Chiang; Gao, Feng; Tan, Pee-Chin
2009-01-01
This paper presents a three-level ac-dc-ac Z-source converter with output voltage buck-boost capability. The converter is implemented by connecting a low-cost front-end diode rectifier to a neutral-point-clamped inverter through a single X-shaped LC impedance network. The inverter is controlled...... to switch with a three-level output voltage, where the middle neutral potential is uniquely tapped from the star-point of a wye-connected capacitive filter placed before the front-end diode rectifier for input current filtering. Through careful control, the resulting converter can produce the correct volt...
Autonomous Operation of a Hybrid AC/DC Microgrid with Multiple Interlinking Converters
DEFF Research Database (Denmark)
Peyghami, Saeed; Mokhtari, Hossein; Blaabjerg, Frede
2018-01-01
Applying conventional dc-voltage based droop approaches for hybrid ac/dc microgrids interconnected by a single interlinking converter (IC) can properly manage the power flow among ac and dc subgrids. However, due to the effect of line resistances, these approaches may create a circulating power a...
Bidirectional dc-to-dc Power Converter
Griesbach, C. R.
1986-01-01
Solid-state, series-resonant converter uses high-voltage thyristors. Converter used either to convert high-voltage, low-current dc power to lowvoltage, high current power or reverse. Taking advantage of newly-available high-voltage thyristors to provide better reliability and efficiency than traditional converters that use vacuum tubes as power switches. New converter essentially maintenance free and provides greatly increased mean time between failures. Attractive in industrial applications whether or not bidirectional capability is required.
single-phase dc phase dc-ac boost converter ac boost converter
African Journals Online (AJOL)
User
systems, need to step-up the DC input voltage. increase the ... design also makes for extra parts, greater system and weight, [1-3]. ... proposes a new design for high performance sin ... SYSTEM ANALYSIS. 2. ..... from the simulation study.
Directory of Open Access Journals (Sweden)
Rui Li
2016-12-01
Full Text Available The AC voltage control of a DC/DC converter based on the modular multilevel converter (MMC is considered under normal operation and during a local DC fault. By actively setting the AC voltage according to the two DC voltages of the DC/DC converter, the modulation index can be near unity, and the DC voltage is effectively utilized to output higher AC voltage. This significantly decreases submodule (SM capacitance and conduction losses of the DC/DC converter, yielding reduced capital cost, volume, and higher efficiency. Additionally, the AC voltage is limited in the controllable range of both the MMCs in the DC/DC converter; thus, over-modulation and uncontrolled currents are actively avoided. The AC voltage control of the DC/DC converter during local DC faults, i.e., standby operation, is also proposed, where only the MMC connected on the faulty cable is blocked, while the other MMC remains operational with zero AC voltage output. Thus, the capacitor voltages can be regulated at the rated value and the decrease of the SM capacitor voltages after the blocking of the DC/DC converter is avoided. Moreover, the fault can still be isolated as quickly as the conventional approach, where both MMCs are blocked and the DC/DC converter is not exposed to the risk of overcurrent. The proposed AC voltage control strategy is assessed in a three-terminal high-voltage direct current (HVDC system incorporating a DC/DC converter, and the simulation results confirm its feasibility.
DEFF Research Database (Denmark)
Wu, Weimin; Qin, Weibo; Wang, Houqin
2017-01-01
the “Buck” mode, the control-to-grid current transfer function of this dual “Buck-Boost” AC/DC converter has a movable zero, which is related to the input power and the output DC voltage. When the input power increases, the movable zero will slide to the lower frequency range. And then, the gain between...... the cut-off frequency point and the resonant frequency of LCL filter will swell up, resulting in reduced amplitude margin and suppressed bandwidth of system. Based on the theoretical analysis, a new dynamic pole placement compensation control design method is proposed for this dual AC/DC converter...
DEFF Research Database (Denmark)
Blaabjerg, Frede; Aquila, A. Dell; Liserre, Marco
2004-01-01
of dc/dc converters via a 50 Hz frequency-shift. The input admittance is calculated and measured for two study examples (a three-phase active rectifier and a single-phase photovoltaic inverter). These examples show that the purpose of a well designed controller for grid-connected converters......A systematic approach to study dc/ac and ac/dc converters without the use of synchronous transformation is proposed. The use of a frequency-shift technique allows a straightforward analysis of single-phase and three-phase systems. The study of dc/ac and of ac/dc converters is reported to the study...... is to minimize the input admittance in order to make the grid converter more robust to grid disturbance....
Determination of input/output characteristics of full-bridge AC/DC/DC converter for arc welding
Stefanov, Goce; Karadzinov, Ljupco; Sarac, Vasilija; Cingoski, Vlatko; Gelev, Saso
2016-01-01
This paper describes the design and practical implementation of AC/DC/DC converter in mode of arc welding. An analysis of the operation of AC/DC/DC converter and its input/output characteristics are determined with computer simulations. The practical part is consisted of AC/DC/DC converter prototype for arc welding with output power of 3 kW and switching frequency of 64 kHz. The operation of AC/DC/DC converter is validated with experimental measurements.
Optimization Control of Bidirectional Cascaded DC-AC Converter Systems
DEFF Research Database (Denmark)
Tian, Yanjun
in bidirectional cascaded converter. This research work analyses the control strategies based on the topology of dual active bridges converter cascaded with a three phase inverter. It firstly proposed a dc link voltage and active power coordinative control method for this cascaded topology, and it can reduce dc....... The connections of the renewable energy sources to the power system are mostly through the power electronic converters. Moreover, for high controllability and flexibility, power electronic devices are gradually acting as the interface between different networks in power systems, promoting conventional power...... the bidirectional power flow in the distribution level of power systems. Therefore direct contact of converters introduces significant uncertainties to power system, especially for the stability and reliability. This dissertation studies the optimization control of the two stages directly connected converters...
A new DC/AC boost transformerless converter in application of photovoltaic power generation
DEFF Research Database (Denmark)
Wei, Mo; Loh, Poh Chiang; Blaabjerg, Frede
2011-01-01
This paper presents a new DC/AC boost transformerless converter in the applications of photovoltaic (PV) power generation. A new circuit topology of single phase full bridge power inverter with additional DC/DC boost stage is proposed. The proposed topology overcomes two commonly existing......, and then converts the DC into AC to supply the load. A special modulation technique is proposed to eliminate the leakage current which is commonly presents in PV transformerless power generation, helps to increase the system efficiency and output performance....
Enhanced DC-Link Capacitor Voltage Balancing Control of DC–AC Multilevel Multileg Converters
DEFF Research Database (Denmark)
Busquets-Monge, Sergio; Maheshwari, Ram Krishan; Nicolas-Apruzzese, Joan
2015-01-01
This paper presents a capacitor voltage balancing control applicable to any multilevel dc–ac converter formed by a single set of series-connected capacitors implementing the dc link and semiconductor devices, such as the diode-clamped topology. The control is defined for any number of dc-link vol......This paper presents a capacitor voltage balancing control applicable to any multilevel dc–ac converter formed by a single set of series-connected capacitors implementing the dc link and semiconductor devices, such as the diode-clamped topology. The control is defined for any number of dc...
Improved Design Methods for Robust Single- and Three-Phase ac-dc-ac Power Converters
DEFF Research Database (Denmark)
Qin, Zian
. The approaches for improving their performance, in terms of the voltage stress, efficiency, power density, cost, loss distribution, and temperature, will be studied. The structure of the thesis is as follows, Chapter 1 presents the introduction and motivation of the whole project as well as the background...... becomes a emerging challenge. Accordingly, installation of sustainable power generators like wind turbines and solar panels has experienced a large increase during the last decades. Meanwhile, power electronics converters, as interfaces in electrical system, are delivering approximately 80 % electricity...... back-to-back, and meanwhile improve the harmonics, control flexibility, and thermal distribution between the switches. Afterwards, active power decoupling methods for single-phase inverters or rectifiers that are similar to the single-phase ac-dc-ac converter, are studied in Chapter 4...
Final design of the Korean AC/DC converters for the ITER coil power supply system
Energy Technology Data Exchange (ETDEWEB)
Oh, Jong-Seok, E-mail: jsoh@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Choi, Jungwan; Suh, Jae-Hak; Choi, Jihyun [ITER Korea, National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Lee, Lacksang; Kim, Changwoo; Park, Hyungjin; Jo, Seongman; Lee, Seungyun; Hwang, Kwangcheol; Liu, Hyoyol [Dawonsys Corp., Siheung 429-450 (Korea, Republic of); Hong, Ki-Don; Sim, Dong-Joon; Lee, Jang-Soo [Hyosung Corp., Gongdeok-Dong, Seoul 121-720 (Korea, Republic of); Lee, Eui-Jae; Kwon, Yang-Hae; Lee, Dae-Yeol; Ko, Ki-Won; Kim, Jong-Min [Mobiis Corp., Yangjae-dong, Seoul 137-888 (Korea, Republic of); Song, Inho [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); and others
2015-10-15
The final design of the ITER TF, CS, CC and VS AC/DC converters has been completed to implement ITER requirements following the detailed design and refinements of the preliminary design. The number of parallel thyristors and the rating of fuses are coordinated to keep those devices within the explosion limit even under most severe fault conditions. The impedance of the converter transformer has been optimized taking into account the energization inrush current, short circuit current, reactive power consumption and the available DC voltage. To ensure system integrity, AC/DC converters are mechanically divided into transformers, AC busbars, 6-pulse bridges, DC interconnecting busbars and DC reactors, and then all subsystems are decoupled by flexible links. To provide stable real time network communication down to the converters, a one GbE link is deployed between master controllers and local controllers. IEEE 1588 is implemented to the embedded controllers for precision time synchronization. This paper describes the detailed solutions implemented in the final design for the ITER AC/DC converters with R&D results of converter prototypes.
A Switched Capacitor Based AC/DC Resonant Converter for High Frequency AC Power Generation
Directory of Open Access Journals (Sweden)
Cuidong Xu
2015-09-01
Full Text Available A switched capacitor based AC-DC resonant power converter is proposed for high frequency power generation output conversion. This converter is suitable for small scale, high frequency wind power generation. It has a high conversion ratio to provide a step down from high voltage to low voltage for easy use. The voltage conversion ratio of conventional switched capacitor power converters is fixed to n, 1/n or −1/n (n is the switched capacitor cell. In this paper, A circuit which can provide n, 1/n and 2n/m of the voltage conversion ratio is presented (n is stepping up the switched capacitor cell, m is stepping down the switching capacitor cell. The conversion ratio can be changed greatly by using only two switches. A resonant tank is used to assist in zero current switching, and hence the current spike, which usually exists in a classical switching switched capacitor converter, can be eliminated. Both easy operation and efficiency are possible. Principles of operation, computer simulations and experimental results of the proposed circuit are presented. General analysis and design methods are given. The experimental result verifies the theoretical analysis of high frequency AC power generation.
Research & Implementation of AC - DC Converter with High Power Factor & High Efficiency
Directory of Open Access Journals (Sweden)
Hsiou-Hsian Nien
2014-05-01
Full Text Available In this paper, we design and develop a high power factor, high efficiency two-stage AC - DC power converter. This paper proposes a two-stage AC - DC power converter. The first stage is boost active power factor correction circuit. The latter stage is near constant frequency LLC resonant converter. In addition to traditional LLC high efficiency advantages, light-load conversion efficiency of this power converter can be improved. And it possesses high power factor and near constant frequency operating characteristics, can significantly reduce the electromagnetic interference. This paper first discusses the main structure and control manner of power factor correction circuit. And then by the LLC resonant converter equivalent model proceed to circuit analysis to determine the important parameters of the converter circuit elements. Then design a variable frequency resonant tank. The resonant frequency can change automatically on the basis of the load to reach near constant frequency operation and a purpose of high efficiency. Finally, actually design and produce an AC – DC power converter with output of 190W to verify the characteristics and feasibility of this converter. The experimental results show that in a very light load (9.5 W the efficiency is as high as 81%, the highest efficiency of 88% (90 W. Full load efficiency is 87%. At 19 W ~ 190 W power changes, the operating frequency change is only 0.4 kHz (AC 110 V and 0.3 kHz (AC 220 V.
Atmel Microcontroller Based Soft Switched PWM ZVS Full Bridge DC to DC Converter
Directory of Open Access Journals (Sweden)
DEEPAK KUMAR NAYAK
2010-12-01
Full Text Available This paper deals with the simulation and implementation of soft switched PWM ZVS full bridge DC to DC converter. The 48V DC is efficiently reduced to 12V DC using a DC to DC converter. This converter has advantages like reduced switching losses, stresses and EMI. Input DC is converted into high frequency AC and it is stepped down to 12V level. Later it is rectified using a full wave rectifier. Laboratory model of microcontroller based DC to DC converter is fabricated and tested. The experimental results are compared with the simulation results.
Three new DC-to-DC Single-Switch Converters
Directory of Open Access Journals (Sweden)
Barry W. Williams
2017-06-01
Full Text Available This paper presents a new family of three previously unidentified dc-to-dc converters, buck, boost, and buck-boost voltage-transfer-function topologies, which offer advantageous transformer coupling features and low capacitor dc voltage stressing. The three single-switch, single-diode, converters offer the same features as basic dc-to-dc converters, such as the buck function with continuous output current and the boost function with continuous input current. Converter time-domain simulations and experimental results (including transformer coupling support and extol the dc-to-dc converter concepts and analysis presented.
Design of a DC-AC Link Converter for 500W Residential Wind Generator
Directory of Open Access Journals (Sweden)
Riza Muhida
2012-12-01
Full Text Available As one of alternative sources of renewable energy, wind energy has an excellence prospect in Indonesia, particularly in coastal and hilly areas which have potential wind to generate electricity for residential uses. There is urgent need to locally develop low cost inverter of wind generator system for residential use. Recent developments in power electronic converters and embedded computing allow improvement of power electronic converter devices that enable integration of microcontrollers in its design. In this project, an inverter circuit with suitable control scheme design was developed. The circuit was to be used with a selected topology of Wind Energy Conversion System (WECS to convert electricity generated by a 500W direct-drive permanent magnet type wind generator which is typical for residential use. From single phase AC output of the generator, a rectifier circuit is designed to convert AC to DC voltage. Then a DC-DC boost converter is used to step up the voltage to a nominal DC voltage suitable for domestic use. The proposed inverter then will convert the DC voltage to sinusoidal AC. The duty cycle of sinusoidal Pulse-Width Modulated (SPWM signal controlling switches in the inverter was generated by a microcontroller. The lab-scale experimental rig involves simulation of wind generator by running a geared DC motor coupled with 500W wind generator where the prototype circuit was connected at the generator output. The experimental circuit produced single phase 240V sinusoidal AC voltage with frequency of 50Hz. Measured total harmonics distortion (THD of the voltage across load was 4.0% which is within the limit of 5% as recommended by IEEE Standard 519-1992.
Comparative evaluation of soft-switching, bidirectional, isolated AC/DC converter topologies
Everts, J.; Krismer, F.; Van den Keybus, J.; Driesen, Johan; Kolar, J.W.
2012-01-01
For realizing bidirectional and isolated AC/DC converters, soft-switching techniques/topologies seem to be a favourable choice as they enable a further loss and volume reduction of the system. Contrary to the traditional dual-stage approach, using a power factor corrector (PFC) stage in series with
DEFF Research Database (Denmark)
Bifaretti, Steffano; Zanchetta, Pericle; Iov, Florin
2008-01-01
The paper proposes a novel power conversion system for Universal and Flexible Power Management (UNIFLEX-PM) in Future Electricity Network. Its structure is based on a back-to-back three-phase AC-DC 7-level converter; each AC side is connected to a different PCC, representing the main grid and....../or various distributed generation systems. Effective and accurate power flow control is demonstrated through simulation in Matlab- Simulink environment on a model based on a two-port structure and using a Predictive Control technique. Control of different Power flow profiles has been successfully tested...
Modelling and Control Design of a Dual Buck-Boost AC/DC Converter Used in the DC Nano-Grid
DEFF Research Database (Denmark)
Wu, Weimin; Liu, Yuan; Wang, Houqing
2016-01-01
Due to widely used DC characterized loads and more distributed power generation sources, the DC Nano-grid becomes more and more popular and seen as an alternative to the AC-grid in future. For the safety considerations, the DC Nano-grid should provide reliable grounding for the residential loads...... like the low voltage AC power system. In this paper, a dual Buck-Boost AC/DC converter for use in the united grounding configuration based DC Nano-grid with three terminal outputs is proposed. It will be much easy to construct an efficient DC Nano-grid based on the existing low AC power system by using...
Transition towards DC micro grids: From an AC to a hybrid AC and DC energy infrastructure
Directory of Open Access Journals (Sweden)
Evi Ploumpidou
2017-12-01
Full Text Available Our electricity is predominantly powered by alternating current (AC, ever since the War of Currents ended in the favor of Nicola Tesla at the end of the 19th century. However, lots of the appliances we use, such as electronics and lights with light-emitting diode (LED technology, work internally on direct current (DC and it is projected that the number of these appliances will increase in the near future. Another contributor to the increase in DC consumption is the ongoing electrification of mobility (Electric Vehicles (EVs. At the same time, photovoltaics (PV generate DC voltages, while the most common storage technologies also use DC. In order to integrate all these appliances and technologies to the existing AC grid, there is a need for converters which introduce power losses. By distributing DC power to DC devices instead of converting it to AC first, it is possible to avoid substantial energy losses that occur every time electricity is converted. This situation initiated the concept for the implementation of the DC-Flexhouse project. A prototype DC installation will be developed and tested in one of the buildings of the developing living lab area called the District of Tomorrow (De Wijk van Morgen which is located in Heerlen, the Netherlands. A neighborhood cooperative (Vrieheide cooperatie is also part of the consortium in order to address the aspect of social acceptance. Although DC seems to be a promising solution for a more sustainable energy system, the business case is still debatable due to both technology- and market-related challenges. The current energy infrastructure is predominantly based on AC, manufacturers produce devices based on AC standards and people are using many AC products across a long life span. This Smart Energy Buildings & Cities (SEB&C PDEng project is a contribution to the DC-Flexhouse project. The aim is to analyze the challenges in the transition to DC micro grids, assess the market potential of DC
DEFF Research Database (Denmark)
Liu, Xiong; Wang, Peng; Loh, Poh Chiang
2011-01-01
This paper proposes an approach for DC-link second-order harmonic power cancellation in single-phase AC/DC/AC converter with reduced number of switches. The proposed six-switch converter has two bridges with three switches in each of them, where the middle switch in each bridge is shared by the A...
Electrical properties of a piezoelectric transformer for an AC-DC converter
International Nuclear Information System (INIS)
Park, Yong-Wook
2010-01-01
The electrical properties of a ring/dot piezoelectric transformer were analyzed for applications as an AC-DC converter using the step-down behavior of a piezoelectric transformer. The ring/dot piezoelectric transformer was prepared using Pb(Mn 1/3 Nb 2/3 )O 3 and Pb(Zn 1/3 Nb 2/3 )O 3 modified Pb(Zr,Ti)O 3 ceramics sintered at a relatively low temperature of 930 .deg. C for 90 min. When the transformer was matched with a load resistance of 1000 Ω, it transferred a maximum power of 27 W. The maximum power was produced at a dc output voltage of 30 V and a matching load resistance of 1000 Ω. While the manufactured ring/dot piezoelectric transformer released the maximum power at a resonance frequency of 71 kHz, the available frequency bandwidth was about 1 kHz at most due to strong frequency dependence of the piezoelectric transformer. The output dc current was highly improved up to 905 mA because no anisotropy of poling direction existed in the ring/dot piezoelectric transformer. Under a commercial input of 220 V ac , AC-DC converter successfully produced 27 W at 30 V dc and 905 mA.
Nonlinear control of voltage source converters in AC-DC power system.
Dash, P K; Nayak, N
2014-07-01
This paper presents the design of a robust nonlinear controller for a parallel AC-DC power system using a Lyapunov function-based sliding mode control (LYPSMC) strategy. The inputs for the proposed control scheme are the DC voltage and reactive power errors at the converter station and the active and reactive power errors at the inverter station of the voltage-source converter-based high voltage direct current transmission (VSC-HVDC) link. The stability and robust tracking of the system parameters are ensured by applying the Lyapunov direct method. Also the gains of the sliding mode control (SMC) are made adaptive using the stability conditions of the Lyapunov function. The proposed control strategy offers invariant stability to a class of systems having modeling uncertainties due to parameter changes and exogenous inputs. Comprehensive computer simulations are carried out to verify the proposed control scheme under several system disturbances like changes in short-circuit ratio, converter parametric changes, and faults on the converter and inverter buses for single generating system connected to the power grid in a single machine infinite-bus AC-DC network and also for a 3-machine two-area power system. Furthermore, a second order super twisting sliding mode control scheme has been presented in this paper that provides a higher degree of nonlinearity than the LYPSMC and damps faster the converter and inverter voltage and power oscillations. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Faisal, A.; Hasan, S.; Suherman
2018-03-01
AC-DC converter is widely used in the commercial industry even for daily purposes. The AC-DC converter is used to convert AC voltage into DC. In order to obtain the desired output voltage, the converter usually has a controllable regulator. This paper discusses buck boost regulator with a power MOSFET as switching component which is adjusted based on the duty cycle of pulse width modulation (PWM). The main problems of the buck boost converter at start up are the high overshoot, the long peak time and rise time. This paper compares the effectiveness of two control techniques: proportional integral derivative (PID) and fuzzy logic control in controlling the buck boost converter through simulations. The results show that the PID is more sensitive to voltage change than fuzzy logic. However, PID generates higher overshoot, long peak time and rise time. On the other hand, fuzzy logic generates no overshoot and shorter rise time.
Wind-powered asynchronous AC/DC/AC converter system. [for electric power supply regulation
Reitan, D. K.
1973-01-01
Two asynchronous ac/dc/ac systems are modelled that utilize wind power to drive a variable or constant hertz alternator. The first system employs a high power 60-hertz inverter tie to the large backup supply of the power company to either supplement them from wind energy, storage, or from a combination of both at a preset desired current; rectifier and inverter are identical and operate in either mode depending on the silicon control rectifier firing angle. The second system employs the same rectification but from a 60-hertz alternator arrangement; it provides mainly dc output, some sinusoidal 60-hertz from the wind bus and some high harmonic content 60-hertz from an 800-watt inverter.
A Robust Suboptimal Current Control of an Interlink Converter for a Hybrid AC/DC Microgrid
Directory of Open Access Journals (Sweden)
Ismi Rosyiana Fitri
2018-05-01
Full Text Available A hybrid AC/DC microgrid is established with the aim of exploiting numerous types of renewable energy to meet the needs of different loads. The microgrid is decomposed by AC DC sub-grids which are connected by an interlink converter (IC. To maintain the security and reliability of the microgrid, an automatic controller for the interlink converter is needed. In this paper, we propose a Linear Matrix Inequalities (LMI-based current control method for the interlink converter. As the main features here, the interlink converter permits bidirectional power exchange between both sub-grids when a power–demand imbalance occurs in one sub-grid regardless of the converter system parameters. Simulations with various filter parameters are performed using the Matlab/Simulink software to validate the effectiveness of the proposed controller. In comparison with the existing Linear Quadratic Regulator (LQR-based current control, the proposed method is more robust against unknown system parameters and high load perturbation.
Energy Technology Data Exchange (ETDEWEB)
Sato, K; Ichinokura, O; Jinzenji, T [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Tajima, K [Akita University, Akita (Japan). Mining College
1991-04-30
This paper reports on a numerical analysis of transient response of an orthogonal-core type dc-ac converter that takes place when the external ac system connected is cut off from it. A model of magnetic circuit of the orthogonal core is presented, which has magnetic inductances to represent effects produced by hysteresis that are connected in series with magnetic reluctances, thereby making it possible to divide each of primary and secondary winding current into magnetization current associated with magnetic reluctances and iron-loss current due to hysteresis. Moreover, a numerical model of the orthogonal core is derived from expressions for non-linear characteristics of these reluctances and inductances to make use of it for analyses employing the circuit simulator SPICE. Transient response of the present converter, namely time variation of both voltage and current in its every part, to the sudden change in condition that is caused by switching off the ac system connected to its secondary side is calculated, while applying square-wave voltage to its primary side. It is noted that calculated wave forms of both secondary winding current and open-circuit voltage are fairly in good agreement with those obtained by an experiment performed on the same condition. 4 refs., 9 figs., 1 tab.
Fajingbesi, F. E.; Midi, N. S.; Khan, S.
2017-06-01
Green energy sources or renewable energy system generally utilize modular approach in their design. This sort of power sources are generally in DC form or in single cases AC. Due to high fluctuation in the natural origin of this energy (wind & solar) source they are stored as DC. DC power however are difficult to transfer over long distances hence DC to AC converters and storage system are very important in green energy system design. In this work we have designed a novel multilevel DC to AC converter that takes into account the modular design of green energy systems. A power conversion efficiency of 99% with reduced total harmonic distortion (THD) was recorded from our simulated system design.
Design of AC-DC Grid Connected Converter using Multi-Objective Optimization
Directory of Open Access Journals (Sweden)
Piasecki Szymon
2014-05-01
Full Text Available Power electronic circuits, in particular AC-DC converters are complex systems, many different parameters and objectives have to be taken into account during the design process. Implementation of Multi-Objective Optimization (MOO seems to be attractive idea, which used as designer supporting tool gives possibility for better analysis of the designed system. This paper presents a short introduction to the MOO applied in the field of power electronics. Short introduction to the subject is given in section I. Then, optimization process and its elements are briefly described in section II. Design procedure with proposed optimization parameters and performance indices for AC-DC Grid Connected Converter (GCC interfacing distributed systems is introduced in section III. Some preliminary optimization results, achieved on the basis of analytical and simulation study, are shown at each stage of designing process. Described optimization parameters and performance indices are part of developed global optimization method dedicated for ACDC GCC introduced in section IV. Described optimization method is under development and only short introduction and basic assumptions are presented. In section V laboratory prototype of high efficient and compact 14 kVA AC-DC converter is introduced. The converter is elaborated based on performed designing and optimization procedure with the use of silicon carbide (SiC power semiconductors. Finally, the paper is summarized and concluded in section VI. In presented work theoretical research are conducted in parallel with laboratory prototyping e.g. all theoretical ideas are verified in laboratory using modern DSP microcontrollers and prototypes of the ACDC GCC.
Preliminary design of the ITER AC/DC converters supplied by the Korean Domestic Agency
International Nuclear Information System (INIS)
Oh, J.S.; Choi, J.; Suh, J.H.; Liu, H.; Hwang, K.; Chung, I.; Lee, S.; Kang, J.; Park, H.; Jung, W.; Jo, S.; Gweon, H.; Lee, Y.; Lee, W.; Kim, J.B.; Han, S.H.; Hong, G.D.; Lee, J.S.; Lee, B.W.; Yeo, C.H.
2013-01-01
Highlights: ► A self-supporting aluminium structure and symmetrical thyristor assembly are devised to assure a strong and reliable ITER converter. ► Converters are designed to be installable in a compact space with three times higher power density than normal industrial installations. ► Heating of the building structure due to high magnetic field by converters are identified and certain solutions are addressed in the building design. ► A cooperative fast control scheme is adopted to compensate fast reactive power change of up to the level of 900 Mvar. -- Abstract: The preliminary design for ITER AC/DC converters under the responsibility of the Korean Domestic Agency is performed on the basis of the engineering experience of previous R and D for a full-scale 6-pulse CS (Central Solenoid) converter unit. This paper describes key features of the preliminary design for the respective sub-systems; integrated self-supporting aluminium structure and symmetrical thyristor assembly for strong and reliable converters, optimised impedance of the converter transformer to limit short circuit current, coaxial-type AC bus bars to shield high magnetic field around wall penetrations, compact components to fit into given building space. The insulation and the minimisation of electrical loops of concrete rebar below the converter installations are essential to prevent floor heating. Required output voltage or current of converters is provided by a conventional controller. A master controller is designed to collect predicted reactive powers from each converter and deliver processed data to the reactive power compensation (RPC) system to improve the regulation speed of the RPC controller with fast feed-forward compensation under fast reactive power transients
Preliminary design of the ITER AC/DC converters supplied by the Korean Domestic Agency
Energy Technology Data Exchange (ETDEWEB)
Oh, J.S., E-mail: jsoh@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Choi, J.; Suh, J.H. [ITER Korea, National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Liu, H.; Hwang, K.; Chung, I.; Lee, S.; Kang, J.; Park, H.; Jung, W.; Jo, S.; Gweon, H.; Lee, Y.; Lee, W. [Dawonsys Corp., Siheung 429-450 (Korea, Republic of); Kim, J.B.; Han, S.H.; Hong, G.D.; Lee, J.S.; Lee, B.W.; Yeo, C.H. [Hyosung Corp., 450, Gongdeok-Dong, Seoul 121-720 (Korea, Republic of); and others
2013-10-15
Highlights: ► A self-supporting aluminium structure and symmetrical thyristor assembly are devised to assure a strong and reliable ITER converter. ► Converters are designed to be installable in a compact space with three times higher power density than normal industrial installations. ► Heating of the building structure due to high magnetic field by converters are identified and certain solutions are addressed in the building design. ► A cooperative fast control scheme is adopted to compensate fast reactive power change of up to the level of 900 Mvar. -- Abstract: The preliminary design for ITER AC/DC converters under the responsibility of the Korean Domestic Agency is performed on the basis of the engineering experience of previous R and D for a full-scale 6-pulse CS (Central Solenoid) converter unit. This paper describes key features of the preliminary design for the respective sub-systems; integrated self-supporting aluminium structure and symmetrical thyristor assembly for strong and reliable converters, optimised impedance of the converter transformer to limit short circuit current, coaxial-type AC bus bars to shield high magnetic field around wall penetrations, compact components to fit into given building space. The insulation and the minimisation of electrical loops of concrete rebar below the converter installations are essential to prevent floor heating. Required output voltage or current of converters is provided by a conventional controller. A master controller is designed to collect predicted reactive powers from each converter and deliver processed data to the reactive power compensation (RPC) system to improve the regulation speed of the RPC controller with fast feed-forward compensation under fast reactive power transients.
Directory of Open Access Journals (Sweden)
M. Akherraz
1997-12-01
Full Text Available This paper presents an in-depth analytical and experimental investigation of an indirect DC-DC converter. The DC-AC conversion is a full bridge based on IGBT power modules, and the AC-DC conversion is done via a high frequency AC link and a first diode bridge. The AC link, which consists of snubbing capacitors and a variable air-gap transformer, is analytically designed to fulfill Zero Voltage commutation requirement. The proposed converter is simulated using PSPICE and a prototype is designed built and tested in the laboratory. PSPICE simulation and experimental results are presented and compared.
An isolated bridgeless AC-DC PFC converter using a LC resonant voltage doubler rectifier
Lee, Sin-woo; Do, Hyun-Lark
2016-12-01
This paper proposed an isolated bridgeless AC-DC power factor correction (PFC) converter using a LC resonant voltage doubler rectifier. The proposed converter is based on isolated conventional single-ended primary inductance converter (SEPIC) PFC converter. The conduction loss of rectification is reduced than a conventional one because the proposed converter is designed to eliminate a full-bridge rectifier at an input stage. Moreover, for zero-current switching (ZCS) operation and low voltage stresses of output diodes, the secondary of the proposed converter is designed as voltage doubler with a LC resonant tank. Additionally, an input-output electrical isolation is provided for safety standard. In conclusion, high power factor is achieved and efficiency is improved. The operational principles, steady-state analysis and design equations of the proposed converter are described in detail. Experimental results from a 60 W prototype at a constant switching frequency 100 kHz are presented to verify the performance of the proposed converter.
Analysis of an AC-DC full-controlled converter supplying two DC-Series-Motor loads
International Nuclear Information System (INIS)
Al-Hindawi, Mohammed M.; Al-Turki, Yusuf A.; Al-Subaie, Obaid T.
2000-01-01
Phase-controlled converters are widely used because these converters are simple, less expensive, reliable, and do not require any communication circuit. Series motors are extensively used in many applications that require both high starting torque and essentially constant horse power. This paper is concerned with the detailed study of the performance characteristics of an AC-DC full-controlled converter supplying two DC-series-motor loads. The converter loads combination is simulated on a digital computer. Different modes of operation (continuous and discontinuous converter currents) are considered. The critical firing angle at which the mode of operation changes from one mode to another is deduced. The performance characteristics such input power factor, supply current distortion factor, supply current fundamental power factor, torque speed, and motor current ripple factor have been derived and studied for both constant firing angle and constant load factor have been derived and studied for both constant firing angle and constant load power of one motor. Waveforms for each load current and converter current are investigated for different modes of operation. (author)
An improved soft switched PWM interleaved boost AC-DC converter
International Nuclear Information System (INIS)
Genc, Naci; Iskender, Ires
2011-01-01
In this paper, an improved soft switched two cell interleaved boost AC/DC converter with high power factor is proposed and investigated. A new auxiliary circuit is designed and added to two cell interleaved boost converter to reduce the switching losses. The proposed auxiliary circuit is implemented using only one auxiliary switch and a minimum number of passive components without an important increase in the cost and complexity of the converter. The main advantage of this auxiliary circuit is that it not only provides zero-voltage-transition (ZVT) for the main switches but also provides soft switching for the auxiliary switch and diodes. Though all semiconductor devices operate under soft switching, they do not have any additional voltage and current stresses. The proposed converter operates successfully in soft switching operation mode for a wide range of input voltage level and the load. In addition, it has advantages such as fewer structure complications, lower cost and ease of control. In the study, the transition modes for describing the behavior of the proposed converter in one switching period are described. A prototype with 600 W output power, 50 kHz/cell switching frequency, input line voltage of 110-220 V rms and an output voltage of 400 V dc has been implemented. Analysis, design and the control circuitry are also presented in the paper.
DEFF Research Database (Denmark)
Lu, Xiaonan; Guerrero, Josep M.; Teodorescu, Remus
2011-01-01
With the penetration of renewable energy in modern power system, microgrid has become a popular application worldwide. In this paper, parallel-connected bidirectional converters for AC and DC hybrid microgrid application are proposed as an efficient interface. To reach the goal of bidirectional...... power conversion, both rectifier and inverter modes are analyzed. In order to achieve high performance operation, hierarchical control system is accomplished. The control system is designed in stationary frame, with harmonic compensation in parallel and no coupled terms between axes. In this control...
SCM Handbooks for dc-to-dc Converters
Lee, F.; Mohmoud, M.; Yu, Y.
1984-01-01
Two documents aid in design of control modules for dc-to-dc converters. Features of SCM include: Adaptive stability, power component stress limiting, implementation of various control laws, unified design approach. Analysis and quidelines contained in handbooks enable engineer to design SCM circuit and confidently predict resulting overall performance.
Dc-To-Dc Converter Uses Reverse Conduction Of MOSFET's
Gruber, Robert P.; Gott, Robert W.
1991-01-01
In modified high-power, phase-controlled, full-bridge, pulse-width-modulated dc-to-dc converters, switching devices power metal oxide/semiconductor field-effect transistors (MOSFET's). Decreases dissipation of power during switching by eliminating approximately 0.7-V forward voltage drop in anti-parallel diodes. Energy-conversion efficiency increased.
Hadri-Hamida, A.; Allag, A.; Hammoudi, M. Y.; Mimoune, S. M.; Zerouali, S.; Ayad, M. Y.; Becherif, M.; Miliani, E.; Miraoui, A.
2009-04-01
This paper presents a new control strategy for a three phase PWM converter, which consists of applying an adaptive nonlinear control. The input-output feedback linearization approach is based on the exact cancellation of the nonlinearity, for this reason, this technique is not efficient, because system parameters can vary. First a nonlinear system modelling is derived with state variables of the input current and the output voltage by using power balance of the input and output, the nonlinear adaptive backstepping control can compensate the nonlinearities in the nominal system and the uncertainties. Simulation results are obtained using Matlab/Simulink. These results show how the adaptive backstepping law updates the system parameters and provide an efficient control design both for tracking and regulation in order to improve the power factor.
Hierarchical Control of Parallel AC-DC Converter Interfaces for Hybrid Microgrids
DEFF Research Database (Denmark)
Lu, Xiaonan; Guerrero, Josep M.; Sun, Kai
2014-01-01
In this paper, a hierarchical control system for parallel power electronics interfaces between ac bus and dc bus in a hybrid microgrid is presented. Both standalone and grid-connected operation modes in the dc side of the microgrid are analyzed. Concretely, a three-level hierarchical control system...... equal or proportional dc load current sharing. The common secondary control level is designed to eliminate the dc bus voltage deviation produced by the droop control, with dc bus voltage in the hybrid microgrid boosted to an acceptable range. After guaranteeing the performance of the dc side standalone...
Chapter 5: Modeling and Control of Three-Phase AC/DC Converter Including Phase-Locked Loop
DEFF Research Database (Denmark)
Zhou, Dao; Song, Yipeng; Blaabjerg, Frede
2018-01-01
In this chapter, a mathematical model of the power circuit of a three-phase AC/DC converter is developed in the stationary and synchronous reference frames. Then, the operation principle of the phasor locked loop is addressed to exact the angle information of the power grid to realize the accurat...
An overview of power electronics applications in fuel cell systems: DC and AC converters.
Ali, M S; Kamarudin, S K; Masdar, M S; Mohamed, A
2014-01-01
Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter.
Circuit description of unipolar DC-to-DC converters for APS storage ring quadrupoles and sextupoles
International Nuclear Information System (INIS)
McGhee, D.G.
1993-01-01
This paper describes the control, interlock, and power circuits for 680 unipolar switch mode DC-to-DC converters used to regulate the Advanced Photon Sources (APS's) storage ring quadrupole and sextupole magnet currents. Quadrupole current stability is ± 6x10 -5 and the sextupole current stability is ±3x10 -4 . The stability is obtained with pulse width modulation, operating at a switching frequency of 20kHz with full current switching. The converters are housed in 200 cabinets located on top of the storage ring tunnel. Raw DC power is distributed from 80 AC-to-DC power supplies, four at each of 20 locations around the storage ring. Voltages, currents, and temperatures are computer monitored and logged for the converters and magnets. All converters and magnets are water cooled with the flow and pressure monitored at the inlet and outlet of groups. Water is interlocked with the raw power supplies and not the individual converters
Triple voltage dc-to-dc converter and method
Su, Gui-Jia
2008-08-05
A circuit and method of providing three dc voltage buses and transforming power between a low voltage dc converter and a high voltage dc converter, by coupling a primary dc power circuit and a secondary dc power circuit through an isolation transformer; providing the gating signals to power semiconductor switches in the primary and secondary circuits to control power flow between the primary and secondary circuits and by controlling a phase shift between the primary voltage and the secondary voltage. The primary dc power circuit and the secondary dc power circuit each further comprising at least two tank capacitances arranged in series as a tank leg, at least two resonant switching devices arranged in series with each other and arranged in parallel with the tank leg, and at least one voltage source arranged in parallel with the tank leg and the resonant switching devices, said resonant switching devices including power semiconductor switches that are operated by gating signals. Additional embodiments having a center-tapped battery on the low voltage side and a plurality of modules on both the low voltage side and the high voltage side are also disclosed for the purpose of reducing ripple current and for reducing the size of the components.
Luo, Fang Lin
2003-01-01
DC/DC conversion techniques have undergone rapid development in recent decades. With the pioneering work of these authors, DC/DC converters have now moved into their sixth generation. This book offers a concise, practical presentation of DC/DC converters, summarizing the spectrum of conversion tecnologies and presentingmany new ideas and more than 100 new topologies. Nowhere else in the literature are DC/DC converters so logically sorted and systematically introduced, and nowhere else can readers find detailed information on prototype topologies that represent a major contribution to modern power engineering. More than 320 figures, 60 tables, and 500 formulae facilitate understand and provide precise data.
A Three-Phase Boost DC-AC Converter | Odeh | Nigerian Journal of ...
African Journals Online (AJOL)
Sliding mode controllers are designed to perform a robust control for the three boost dc-dc converters. Computer simulations and spectral analysis demonstrate the feasibility of the proposed three-phase inverter. The inverter is intended to be used in three-phase electric drives and uninterruptible power supply (UPS) ...
Directory of Open Access Journals (Sweden)
Zeyan Lv
2018-04-01
Full Text Available This paper proposes a distributed coordination control for multiple bidirectional power converters (BPCs in a hybrid AC/DC microgrid with consideration of state-of-charge (SOC of storages. The researched hybrid AC/DC microgrid is composed of both AC and DC subgrids connected by multiple parallel BPCs. In the literature, the storages of a hybrid microgrid are considered to allocate in only the AC subgrid or DC subgrid, which reduces the reliability of the whole system, especially during the islanded mode. Besides, the SOC management has not been considered in BPCs’ operating strategy. This paper considers a hybrid microgrid topology which has energy storages in both AC side and DC side. This ensures the reliability while increasing the complexity of the control strategy at the same time. Further, a distributed coordination control method for multiple BPCs based on SOC was proposed to enhance the reliability of hybrid microgrid. Finally, the performance of the proposed control methods was verified by real-time hardware-in-loop (HIL tests.
Light-weight DC to very high voltage DC converter
Druce, R.L.; Kirbie, H.C.; Newton, M.A.
1998-06-30
A DC-DC converter capable of generating outputs of 100 KV without a transformer comprises a silicon opening switch (SOS) diode connected to allow a charging current from a capacitor to flow into an inductor. When a specified amount of charge has flowed through the SOS diode, it opens up abruptly; and the consequential collapsing field of the inductor causes a voltage and current reversal that is steered into a load capacitor by an output diode. A switch across the series combination of the capacitor, inductor, and SOS diode closes to periodically reset the SOS diode by inducing a forward-biased current. 1 fig.
Light-weight DC to very high voltage DC converter
Energy Technology Data Exchange (ETDEWEB)
Druce, Robert L. (Union City, CA); Kirbie, Hugh C. (Dublin, CA); Newton, Mark A. (Livermore, CA)
1998-01-01
A DC-DC converter capable of generating outputs of 100 KV without a transformer comprises a silicon opening switch (SOS) diode connected to allow a charging current from a capacitor to flow into an inductor. When a specified amount of charge has flowed through the SOS diode, it opens up abruptly; and the consequential collapsing field of the inductor causes a voltage and current reversal that is steered into a load capacitor by an output diode. A switch across the series combination of the capacitor, inductor, and SOS diode closes to periodically reset the SOS diode by inducing a forward-biased current.
Converter DC/AC Multilevel of Three Cells: Modeling and Simulation
Directory of Open Access Journals (Sweden)
Julián Peláez-Restrepo
2013-11-01
Full Text Available This paper presents a three-cell converter DC / AC. Multilevel topologies are attracting attention in the industry, obtained as a ripple on the state variables much smaller, and reduces stress on the switching devices. The topology used in this work is known in the technical literature as floating capacitor multilevel inverter, which imposes the challenge of balancing the voltage across each cell switching using floating capacitors, besides obtaining a sinusoidal signal regulated. The paper presents the averaged model of the inverter, and results obtained through simulation.
A CMOS integrated voltage and power efficient AC/DC converter for energy harvesting applications
International Nuclear Information System (INIS)
Peters, Christian; Ortmanns, Maurits; Manoli, Yiannos; Spreemann, Dirk
2008-01-01
In this paper, a fully CMOS integrated active AC/DC converter for energy harvesting applications is presented. The rectifier is realized in a standard 0.35 µm CMOS process without special process options. It works as a full wave rectifier and can be separated into two stages—one passive and one active. The active part is powered from the storage capacitor and consumes about 600 nA at 2 V supply. The input voltage amplitude range is between 1.25 and 3.75 V, and the operating frequency range is from 1 Hz to as much as several 100 kHz. The series voltage drop over the rectifier is less than 20 mV. Measurements in combination with an electromagnetic harvester show a significant increase in the achievable output voltage and power compared to a common, discrete Schottky diode rectifier. The measured efficiency of the rectifier is over 95%. Measurements show a negligible temperature influence on the output voltage between −40 °C and +125 °C
Three-Phase Multistage System (DC-AC-DC-AC for Connecting Solar Cells to the Grid
Directory of Open Access Journals (Sweden)
Mahmudreza Changizian
2017-11-01
Full Text Available Inverter systems that feed electrical power from photovoltaic (PV system into the grid must convert the direct current of the PV array into the alternating current of the grid. In many applications, it is important for a converter to be lightweight, highly reliable, input/output isolated, flexible and operable in a boost mode. These features can be achieved by using a High-Frequency inverter which involves an isolated DC-DC stage and DC-AC section, which provides AC output. This paper proposes a new three phase topology, based on multi stage converter and PV system in order to use in medium and high power applications. The Perturb and Observe (P&O method is used for maximum power point tracking (MPPT control of PV array. The switching control signals for three-phase inverter are provided by hysteresis control method. Also, the comparison between the proposed topology and traditional structures has been conducted and finally the simulation researches are performed in a closed-loop control system by MATLAB/Simulink software to verify the operation of the proposed structure. The results represent better performance of the introduced system over traditional topologies.
Dehkordi, N. Mahdian; Sadati, N.; Hamzeh, M.
2017-09-01
This paper presents a robust dc-link voltage as well as a current control strategy for a bidirectional interlink converter (BIC) in a hybrid ac/dc microgrid. To enhance the dc-bus voltage control, conventional methods strive to measure and feedforward the load or source power in the dc-bus control scheme. However, the conventional feedforward-based approaches require remote measurement with communications. Moreover, conventional methods suffer from stability and performance issues, mainly due to the use of the small-signal-based control design method. To overcome these issues, in this paper, the power from DG units of the dc subgrid imposed on the BIC is considered an unmeasurable disturbance signal. In the proposed method, in contrast to existing methods, using the nonlinear model of BIC, a robust controller that does not need the remote measurement with communications effectively rejects the impact of the disturbance signal imposed on the BIC's dc-link voltage. To avoid communication links, the robust controller has a plug-and-play feature that makes it possible to add a DG/load to or remove it from the dc subgrid without distorting the hybrid microgrid stability. Finally, Monte Carlo simulations are conducted to confirm the effectiveness of the proposed control strategy in MATLAB/SimPowerSystems software environment.
Examples of digital simulation of AC-DC power converter with the Electromagnetic Transients Program
International Nuclear Information System (INIS)
Tanahashi, Shugo; Yamada, Shuichi; Mugishima, Mituo; Kitagawa, Shiro.
1989-03-01
This article gives a practical guidance for analysis of power converter circuits using the Electromagnetic Transients Program (EMTP). First how to use the program is shown with two simple examples; (1) a power supply with three-phase diode bridge and (2) a feedback system for current control. Then its application to more complicated system is shown with an example of a power supply for Compact Helical System (CHS), where a hybrid power supply with multi-phase diode and thyristor bridges, and two three-phase thyristor converters are driven by an AC generator. (author)
Full wave dc-to-dc converter using energy storage transformers
Moore, E. T.; Wilson, T. G.
1969-01-01
Full wave dc-to-dc converter, for an ion thrustor, uses energy storage transformers to provide a method of dc-to-dc conversion and regulation. The converter has a high degree of physical simplicity, is lightweight and has high efficiency.
DEFF Research Database (Denmark)
Poulsen, Søren; Andersen, Michael Andreas E.
2004-01-01
This paper proposes a novel control topology for a mains isolated single conversion audio amplifier and DC-AC converters. The topology is made for use in audio applications, and differs from prior art in terms of significantly reduced distortion as well as lower system complexity. The topology can...
International Nuclear Information System (INIS)
Mohammed, K G; Ramli, A Q; Amirulddin, U A U
2013-01-01
This paper proposes the design of a new bi-directional DC-AC rotary converter machine to convert a d.c. voltage to three-phase voltage and vice-versa using a two-stage energy conversion machine. The rotary converter consists of two main stages which are combined into single frame. These two stages are constructed from three main electromagnetic components. The first inner electromagnetic component represents the input stage that enables the DC power generated by solar energy from photo-voltaic cells to be transformed by the second and third components electro-magnetically to produce multi-phase voltages at the output stage. At the same time, extra kinetic energy from wind, which is sufficiently available, can be added to existing torque on the second electromagnetic component. Both of these input energies will add up to the final energy generated at the output terminals. Therefore, the machine will be able to convert solar and wind energies to the output terminals simultaneously. If the solar energy is low, the available wind energy will be able to provide energy to the output terminals and at the same time charges the batteries which are connected as backup system. At this moment, the machine behaves as wind turbine. The energy output from the machine benefits from two energy sources which are solar and wind. At night when the solar energy is not available and also the load is low, the wind energy is able to charge the batteries and at the same time provides output electrical power to the remaining the load. Therefore, the proposed system will have high usage of available renewable energy as compared to separated wind or solar systems. MATLAB codes are used to calculate the required dimensions, the magnetic and electrical circuits parameters to design of the new bi-directional rotary converter machine.
dc Arc Fault Effect on Hybrid ac/dc Microgrid
Fatima, Zahra
The advent of distributed energy resources (DER) and reliability and stability problems of the conventional grid system has given rise to the wide spread deployment of microgrids. Microgrids provide many advantages by incorporating renewable energy sources and increasing the reliability of the grid by isolating from the main grid in case of an outage. AC microgrids have been installed all over the world, but dc microgrids have been gaining interest due to the advantages they provide over ac microgrids. However the entire power network backbone is still ac and dc microgrids require expensive converters to connect to the ac power network. As a result hybrid ac/dc microgrids are gaining more attention as it combines the advantages of both ac and dc microgrids such as direct integration of ac and dc systems with minimum number of conversions which increases the efficiency by reducing energy losses. Although dc electric systems offer many advantages such as no synchronization and no reactive power, successful implementation of dc systems requires appropriate protection strategies. One unique protection challenge brought by the dc systems is dc arc faults. A dc arc fault is generated when there is a gap in the conductor due to insulation degradation and current is used to bridge the gap, resulting in an arc with very high temperature. Such a fault if it goes undetected and is not extinguished can cause damage to the entire system and cause fires. The purpose of the research is to study the effect of the dc arc fault at different locations in the hybrid ac/dc microgrid and provide insight on the reliability of the grid components when it is impacted by arc faults at various locations in the grid. The impact of dc arc fault at different locations on the performance of the PV array, wind generation, and constant power loads (CPL) interfaced with dc/dc converters is studied. MATLAB/Simulink is used to model the hybrid ac/dc microgrid and arc fault.
A Feed-Forward Controlled AC-DC Boost Converter for Biomedical Implants
DEFF Research Database (Denmark)
Jiang, Hao; Lan, Di; Lin, Dahsien
2012-01-01
Miniaturization is important to make implants clinic friendly. Wireless power transfer is an essential technology to miniaturize implants by reducing their battery size or completely eliminating their batteries. Traditionally, a pair of inductively-coupled coils operating at radio-frequency (RF...... than 2.1% of its mean. The measured load regulation is 0.4 V/kΩ. The estimated conversion efficiency excluding the power consumption of the control circuits reaches 75%. The converter in this paper has the potential to reduce the size of the receiving coil and yet achieve desirable DC output voltage...
Development of a green mode DC/DC converter available to portable nuclear instrument
International Nuclear Information System (INIS)
Gao Feiyan; Wu Longxiong; Tan Wei; Tang Yaogeng
2010-01-01
A green mode DC/DC converter was developed which suitable to the portable nuclear instrument which is powered by battery and is sometime at stand-by mode. Some updated control approaches such as pseudo-resonant type power supply control and synchronous rectification were adopted to makethe DC/DC converter operate with low power consumption and high efficiency. The test results the battery can be prolonged with this converter. (authors)
Directory of Open Access Journals (Sweden)
Yuanwei Zhu
2018-06-01
Full Text Available Based on the existing acknowledgment that space charge modulates AC and DC breakdown of insulating materials, this investigation promotes the related investigation into the situations of more complex electrical stress, i.e., AC-DC combined voltages. Experimentally, the AC-DC breakdown characteristics of oil impregnated paper insulation were systematically investigated. The effects of pre-applied voltage waveform, AC component ratio, and sample thickness on AC-DC breakdown characteristics were analyzed. After that, based on an improved bipolar charge transport model, the space charge profiles and the space charge induced electric field distortion during AC-DC breakdown were numerically simulated to explain the differences in breakdown characteristics between the pre-applied AC and pre-applied DC methods under AC-DC combined voltages. It is concluded that large amounts of homo-charges are accumulated during AC-DC breakdown, which results in significantly distorted inner electric field, leading to variations of breakdown characteristics of oil impregnated paper insulation. Therefore, space charges under AC-DC combined voltages must be considered in the design of converter transformers. In addition, this investigation could provide supporting breakdown data for insulation design of converter transformers and could promote better understanding on the breakdown mechanism of insulating materials subjected to AC-DC combined voltages.
DC to DC power converters and methods of controlling the same
Steigerwald, Robert Louis; Elasser, Ahmed; Sabate, Juan Antonio; Todorovic, Maja Harfman; Agamy, Mohammed
2012-12-11
A power generation system configured to provide direct current (DC) power to a DC link is described. The system includes a first power generation unit configured to output DC power. The system also includes a first DC to DC converter comprising an input section and an output section. The output section of the first DC to DC converter is coupled in series with the first power generation unit. The first DC to DC converter is configured to process a first portion of the DC power output by the first power generation unit and to provide an unprocessed second portion of the DC power output of the first power generation unit to the output section.
The application of standardized control and interface circuits to three dc to dc power converters.
Yu, Y.; Biess, J. J.; Schoenfeld, A. D.; Lalli, V. R.
1973-01-01
Standardized control and interface circuits were applied to the three most commonly used dc to dc converters: the buck-boost converter, the series-switching buck regulator, and the pulse-modulated parallel inverter. The two-loop ASDTIC regulation control concept was implemented by using a common analog control signal processor and a novel digital control signal processor. This resulted in control circuit standardization and superior static and dynamic performance of the three dc-to-dc converters. Power components stress control, through active peak current limiting and recovery of switching losses, was applied to enhance reliability and converter efficiency.
Computer Simulation of Phase Shifted Series Resonant DC to DC Converter
Directory of Open Access Journals (Sweden)
P. PARVATHY
2016-01-01
Full Text Available This paper deals with digital simulation of phase shifted series resonant DC to DC converter using Matlab Simulink. The Simulink models for open loop and closed loop systems are developed and they are used for simulation studies. This converter is capable of producing ripple free DC output. Switching losses and switching stresses are reduced by using soft switching. This converter has advantages like high power density and low switching losses. Theoretical predictions are well supported by the simulation results.
DEFF Research Database (Denmark)
Forouzesh, Mojtaba; Siwakoti, Yam P.; Gorji, Saman A.
2017-01-01
on the general law and framework of the development of next-generation step-up dc-dc converters, this paper aims to comprehensively review and classify various step-up dc-dc converters based on their characteristics and voltage-boosting techniques. In addition, the advantages and disadvantages of these voltage...
A high gain modified SEPIC DC-to-DC boost converter for renewable energy application
DEFF Research Database (Denmark)
Maroti, Pandav Kiran; Padmanaban, Sanjeevikumar; Bhaskar, Mahajan Sagar
2017-01-01
The proposed work present the modified high gain Single Ended Primary Inductance Converter (SEPIC) for renewable energy applications. The voltage gain of proposed converter is very highly related to conventional dc-to-dc converter and recently projected converter based on conventional converter....... The key feature of projected converter is only one controlled device and voltage gain is increased without using a transformer and coupled inductor structure. The voltage gain of projected converter is increased by 10 times compared to the SEPIC converter by adding one extra inductor and capacitor...... in SEPIC converter for a duty ratio of 90%. The detailed analysis of the voltage gain with the voltage drop across passive device and working of projected converter is deliberated in details in the paper. The projected converter is simulated in Matrix Laboratory software (2014). The simulation results...
Efficient Wide Range Converters (EWiRaC): A new family of high efficient AC-DC Converters
DEFF Research Database (Denmark)
Petersen, Lars; Andersen, Michael Andreas E.
2006-01-01
The performance in terms of efficiency of the existing power supplies used for PFC is very dependent on the input voltage range. The boost converter is the most commonly used PFC converter because of its simplicity and high efficiency. But, the boost converter as well as other known converters...... suffers a major penalty in efficiency when used at the low end of the voltage range (90VAC) in a universal voltage range application (90-270VAC). This paper addresses this problem by suggesting a new family of converters that effectively reduces the apparent voltage range with a factor of 2 by changing...... the converter topology according to the input voltage. This new converter type has been named: efficient wide range converter (EWiRaC). The performance of the EWiRaC is experimental verified in a universal input range (90-270VAC) application with an output voltage of 185VDC capable of 500W output power. The EWi...
A resonant dc-dc power converter assembly
DEFF Research Database (Denmark)
2015-01-01
The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor of the s......The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor...... of the second resonant DC-DC power converter are configured for magnetically coupling the first and second resonant DC-DC power converters to each other to forcing substantially 180 degrees phase shift, or forcing substantially 0 degree phase shift, between corresponding resonant voltage waveforms of the first...
Ripple Mitigation with Improved Line-Load Transients Response in Two-Stage DC-DC-AC Converter
DEFF Research Database (Denmark)
Gautam, Aditya R.; Gaurav, Kumar; Guerrero, Josep M.
2018-01-01
. The front-end boost converter in the considered two-stage converter interfaces a battery bank and single phase inverter fed loads. The control shapes the output impedance of boost converter to reduce the ripple component at battery input. Secondly, the proposed controller achieves good dynamic performance...
High Step-Up DC—DC Converter for AC Photovoltaic Module with MPPT Control
Sundar, Govindasamy; Karthick, Narashiman; Rama Reddy, Sasi
2014-08-01
This paper presents the high gain step-up BOOST converter which is essential to step up the low output voltage from PV panel to the high voltage according to the requirement of the application. In this paper a high gain BOOST converter with coupled inductor technique is proposed with the MPPT control. Without extreme duty ratios and the numerous turns-ratios of a coupled inductor this converter achieves a high step-up voltage-conversion ratio and the leakage energy of the coupled inductor is efficiently recycled to the load. MPPT control used to extract the maximum power from PV panel by controlling the Duty ratio of the converter. The PV panel, BOOST converter and the MPPT are modeled using Sim Power System blocks in MATLAB/SIMULINK environment. The prototype model of the proposed converter has been implemented with the maximum measured efficiency is up to 95.4% and full-load efficiency is 93.1%.
Controlling DC-DC converters by chaos-based pulse width modulation to reduce EMI
International Nuclear Information System (INIS)
Li Hong; Zhang Bo; Li Zhong; Halang, Wolfgang A.; Chen Guanrong
2009-01-01
In this paper, periodic and chaotic behaviors of DC-DC converters under certain parametric conditions are simulated, experimentally verified, and analyzed. Motivated by the work of J.H.B. Deane and D.C. Hamill in 1996, where chaotic phenomena are useful in suppressing electromagnetic interference (EMI) by adjusting the parameters of the DC-DC converter and making it operate in chaos, a chaos-based pulse width modulation (CPWM) is proposed to distribute the harmonics of the DC-DC converters continuously and evenly over a wide frequency range, thereby reducing the EMI. The output waves and spectral properties of the EMI are simulated and analyzed as the carrier frequency or amplitude changes with regard to different chaotic maps. Simulation and experimental results are given to illustrate the effectiveness of the proposed CPWM, which provides a good example of applying chaos theory in engineering practice.
Geetha, A.; Subramani, C.; Thamizh Thentral, T. M.; Krithika, V.; Usha, S.
2018-04-01
Non isolated Bidirectional DC-DC Converter (NIBDDC) is a good interface between DC source and inverter Fed induction motor drive. This paper deals with comparison between open loop and PI controlled Bidirectional DC to DC Converter Inverter System (BDDCIS). The modelling and control of BDDC is becomes an important issue. Open loop BDDCIS and closed loop PI controlled BDDCIS are designed, modelled and simulated using Matlab- simulink and their results are presented. The investigations indicate superior performance of PI controlled BDDCIS. The proposed BDDCIS has advantages like bidirectional power transfer ability, reduced hardware count and improved dynamic response.
DEFF Research Database (Denmark)
Busquets-Monge, S.; Maheshwari, Ram Krishan; Munk-Nielsen, Stig
2013-01-01
This paper presents a novel PWM strategy for nlevel three-leg semiconductor-clamped dc-ac converters in the overmodulation region, with dc-link capacitor voltage balance in every switching cycle. The strategy is based on the virtual-vector concept. Suitable reference vector trajectories are selec......This paper presents a novel PWM strategy for nlevel three-leg semiconductor-clamped dc-ac converters in the overmodulation region, with dc-link capacitor voltage balance in every switching cycle. The strategy is based on the virtual-vector concept. Suitable reference vector trajectories...
DEFF Research Database (Denmark)
Zhang, Zhe; Mira Albert, Maria del Carmen; Andersen, Michael A. E.
2017-01-01
This paper presents two configurations of dualinput (DI) or three-port (TPC) isolated dc-dc converters for hybrid renewable energy systems such as photovoltaics and batteries. These two converters are derived by integrating an interleaved boost converter and a single-active bridge converter...... and control perspective, distinct in operation principles, voltage/power transfer functions, loss distributions, soft-switching constraints, and power efficiency under the same operating conditions. Moreover, the inductor design differs greatly between these two cases. In this paper, a comprehensive...
DEFF Research Database (Denmark)
Forouzesh, Mojtaba; Siwakoti, Yam P.; Gorji, Saman A.
2017-01-01
on the general law and framework of the development of next-generation step-up dc-dc converters, this paper aims to comprehensively review and classify various step-up dc-dc converters based on their characteristics and voltage-boosting techniques. In addition, the advantages and disadvantages of these voltage......DC-DC converters with voltage boost capability are widely used in a large number of power conversion applications, from fraction-of-volt to tens of thousands of volts at power levels from milliwatts to megawatts. The literature has reported on various voltage-boosting techniques, in which......-boosting techniques and associated converters are discussed in detail. Finally, broad applications of dc-dc converters are presented and summarized with comparative study of different voltage-boosting techniques....
Design of a DC-AC Link Converter for 500W Residential Wind Generator
Riza Muhida; Ahmad Firdaus A. Zaidi; Afzeri Tamsir; Rudi Irawan
2012-01-01
As one of alternative sources of renewable energy, wind energy has an excellence prospect in Indonesia, particularly in coastal and hilly areas which have potential wind to generate electricity for residential uses. There is urgent need to locally develop low cost inverter of wind generator system for residential use. Recent developments in power electronic converters and embedded computing allow improvement of power electronic converter devices that enable integration of microcontrollers in...
Design of coolant distribution system (CDS) for ITER PF AC/DC converter
Energy Technology Data Exchange (ETDEWEB)
Guo, Bin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Song, Zhiquan, E-mail: zhquansong@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Fu, Peng; Xu, Xuesong; Li, Chuan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, Min; Dong, Lin [China International Nuclear Fusion Energy Program Execution Center, Beijing 100862 (China)
2016-10-15
Highlights: • System process and arrangement has been proposed to meet the multiple requirements from the converter system. • Thermal hydraulic analysis model has been developed to size and predict the system operation behavior. • Prototype test has been performed to validate the proposed design methodology. - Abstract: The Poloidal Field (PF) converter unit, playing an essential role in the plasma shape and position control in vertical and horizontal direction, which is an important part of ITER power supply system. As an important subsystem of the converter unit, the coolant distribution system has the function to distribute the cooling water from ITER component cooling water system (CCWS) to its main components at the required flow rate, pressure and temperature. This paper presents the thermal hydraulic design of coolant distribution system for the ITER PF converter unit. Different operational requirements of the PF converter unit regarding flow rate, temperature and pressure have been analyzed to design the system process and arrangement. A thermal-hydraulic analysis model has been built to size the system and predict the flow rate and temperature distribution of the system under the normal operation. Based on the system thermal-hydraulic analysis results, the system pressure profile has been plotted to evaluate the pressure behavior along each client flow path. A CDS prototype for the ITER PF converter has been constructed and some experiments have been performed on it. A good agreement of the flow distribution and temperature behavior between the simulated and test results validate the proposed design methodology.
Feasibility analysis of fuzzy logic control for ITER Poloidal field (PF) AC/DC converter system
Energy Technology Data Exchange (ETDEWEB)
Hassan, Mahmood Ul; Fu, Peng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China (China); Song, Zhiquan, E-mail: zhquansong@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Chen, Xiaojiao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China (China); Zhang, Xiuqing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Humayun, Muhammad [Shanghai Jiaotong University (China)
2017-05-15
Highlights: • The implementation of the Fuzzy controller for the ITER PF converter system is presented. • The comparison of the FLC and PI simulation are investigated. • The FLC single and parallel bridge operation are presented. • Fuzzification and Defuzzification algorithms are presented using FLC controller. - Abstract: This paper describes the feasibility analysis of the fuzzy logic control to increase the performance of the ITER poloidal field (PF) converter systems. A fuzzy-logic-based controller is designed for ITER PF converter system, using the traditional PI controller and Fuzzy controller (FC), the dynamic behavior and transient response of the PF converter system are compared under normal operation by analysis and simulation. The analysis results show that the fuzzy logic control can achieve better operation performance than PI control.
State trajectories used to observe and control dc-to-dc converters
Burns, W. W., III; Wilson, T. G.
1976-01-01
State-plane analysis techniques are employed to study the voltage stepup energy-storage dc-to-dc converter. Within this framework, an example converter operating under the influence of a constant on-time and a constant frequency controller is examined. Qualitative insight gained through this approach is used to develop a conceptual free-running control law for the voltage stepup converter which can achieve steady-state operation in one on/off cycle of control. Digital computer simulation data are presented to illustrate and verify the theoretical discussions presented.
International Nuclear Information System (INIS)
Srivastava, Gaurava Deep; Kulkarni, R.D.
2015-01-01
In nuclear power plants, fuel is subjected to a wide range of power and temperature transients during normal and abnormal conditions. The reactor setback and step-back power pattern, fast temperature profile occurred during Loss of Coolant Accident and decay power followed by shutdown of power plant are the typical transients in nuclear power plant. For a variety of reactor engineering and reactor safety related study, one needs to simulate these transients in experimental facility. In experimental facilities, high response AC-DC converters are used to handle these power and temperature transients safely in a controlled manner for generating a database which is utilized for design of thermal hydraulic system, development of computer codes, study of reliability of reactor safety system, etc. for nuclear power plants. The paper presents the methodology developed for simulating the typical reactor decay power transient in an experimental facility. The design and simulation of AC-DC power electronic converter of 3 MW capacity is also presented. The microcontroller based programmable ramp generator is designed and hardware implemented for feeding reference voltage to the closed loop control system of AC-DC converter for obtaining the decay power profile at the converter output. The typical decay power transient of the nuclear power plant is divided into several small power ramps for simulating the transient. The signal corresponding to each power ramp is generated by programmable ramp generator and fed to the comparator for generating control signal for the converter. The actual decay power transient obtained from the converter is compared with the theoretical decay power transient. (author)
Resonance propagation of parallel-operated DC-AC converters with LCL filters
DEFF Research Database (Denmark)
Lu, Xiaonan; Liserre, Marco; Sun, Kai
2012-01-01
filter has higher power density, its resonance problem should be noticed. In a large renewable energy farm, multiple converters inside are connected in parallel. In this way, the analysis of the resonance problem should be expanded. Compared to a conventional single LCL filter system, additional...... performance is also influenced. In this paper, the resonance propagation of parallel converter system with a local capacitor for reactive power compensation is analyzed in detail. Simulation and experiment results support the theoretical analyses.......With the higher penetration of renewable energy into modern power system, power electronics converters are most commonly employed as the interfaces to the grid. At the same time, to deal with high frequency harmonic components, LCL filters are usually adopted. Although compared to L-filters, LCL...
Current Mode Control for LLC Series Resonant DC-to-DC Converters
Directory of Open Access Journals (Sweden)
Jinhaeng Jang
2015-06-01
Full Text Available Conventional voltage mode control only offers limited performance for LLC series resonant DC-to-DC converters experiencing wide variations in operational conditions. When the existing voltage mode control is employed, the closed-loop performance of the converter is directly affected by unavoidable changes in power stage dynamics. Thus, a specific control design optimized at one particular operating point could become unacceptable when the operational condition is varied. This paper presents a new current mode control scheme which could consistently provide good closed-loop performance for LLC resonant converters for the entire operational range. The proposed control scheme employs an additional feedback from the current of the resonant tank network to overcome the limitation of the existing voltage mode control. The superiority of the proposed current mode control over the conventional voltage mode control is verified using an experimental 150 W LLC series resonant DC-to-DC converter.
A resonant dc-dc power converter assembly
Madsen, Mickey Pierre
2015-01-01
The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor of the second resonant DC-DC power converter are configured for magnetically coupling the first and second resonant DC-DC power converters to each other to forcing substantially 180 degrees phase shift, or fo...
Current Mode Control for LLC Series Resonant DC-to-DC Converters
Jinhaeng Jang; Syam Kumar Pidaparthy; Byungcho Choi
2015-01-01
Conventional voltage mode control only offers limited performance for LLC series resonant DC-to-DC converters experiencing wide variations in operational conditions. When the existing voltage mode control is employed, the closed-loop performance of the converter is directly affected by unavoidable changes in power stage dynamics. Thus, a specific control design optimized at one particular operating point could become unacceptable when the operational condition is varied. This paper presents a...
Minimizing the total harmonic distortion for a 3 kW, 20 kHz ac to dc converter using SPICE
Lollar, Louis F.; Kapustka, Robert E.
1988-01-01
This paper describes the SPICE model of a transformer-rectified-filter (TRF) circuit and the Micro-CAP (Microcomputer Circuit Analysis Program) model and their application. The models were used to develop an actual circuit with reduced input current THD. The SPICE analysis consistently predicted the THD improvements in actual circuits as various designs were attempted. In an effort to predict and verify load regulation, the incorporation of saturable inductor models significantly improved the fidelity of the TRF circuit output voltage.
Efficiency estimation method of three-wired AC to DC line transfer
Solovev, S. V.; Bardanov, A. I.
2018-05-01
The development of power semiconductor converters technology expands the scope of their application to medium voltage distribution networks (6-35 kV). Particularly rectifiers and inverters of appropriate power capacity complement the topology of such voltage level networks with the DC links and lines. The article presents a coefficient that allows taking into account the increase of transmission line capacity depending on the parameters of it. The application of the coefficient is presented by the example of transfer three-wired AC line to DC in various methods. Dependences of the change in the capacity from the load power factor of the line and the reactive component of the resistance of the transmission line are obtained. Conclusions are drawn about the most efficient ways of converting a three-wired AC line to direct current.
DC-to-DC converter comprising a reconfigurable capacitor unit
2008-01-01
The present invention relates to a configurable trench multi-capacitor device comprising a trench in a semiconductor substrate. The trench has a lateral extension exceeding 10 micrometer and a trench filling includes a number of at least four electrically conductive capacitor-electrode layers. A
DC-to-DC converter comprising a reconfigurable capacitor unit
Klootwijk, J.H.; Bergveld, H.J.; Roozeboom, F.; Reefman, D.; Ruigrok, J.
2013-01-01
The present invention relates to a configurable trench multi-capacitor device comprising a trench in a semiconductor substrate. The trench has a lateral extension exceeding 10 micrometer and a trench filling includes a number of at least four electrically conductive capacitor-electrode layers. A
DC response of dust to low frequency AC signals
McKinlay, Michael; Konopka, Uwe; Thomas, Edward
2017-10-01
Macroscopic changes in the shape and equilibrium position of clouds of charged microparticles suspended in a plasma have been observed in response to low frequency AC signals. In these experiments, dusty plasmas consisting of 2-micron diameter silica microspheres suspended between an anode and cathode in an argon, DC glow discharge plasma are produced in a grounded, 6-way cross vacuum chamber. An AC signal, produced by a function generator and amplified by a bipolar op-amp, is superimposed onto the potential from the cathode. The frequencies of the applied AC signals, ranging from tens to hundreds of kHz, are comparable to the ion-neutral collision frequency; well below the ion/electron plasma frequencies, but also considerably higher than the dust plasma frequency. This presentation will detail the experimental setup, present documentation and categorization of observations of the dust response, and present an initial model of the response. This work is supported by funding from the US Dept. of Energy, Grant Number DE-SC0016330, and by the National Science Foundation, Grant Number PHY-1613087.
Rf-to-dc power converters for wireless powering
Ouda, Mahmoud Hamdy
2016-12-01
Various examples are provided related to radio frequency (RF) to direct current (DC) power conversion. In one example, a RF-to-DC converter includes a fully cross-coupled rectification circuit including a pair of forward rectifying transistors and a feedback circuit configured to provide feedback bias signals to gates of the pair of forward rectifying transistors via feedback branch elements. In another example, a method includes receiving a radio frequency (RF) signal; rectifying the RF signal via a fully cross-coupled rectification circuit including a pair of forward rectifying transistors; and providing a DC output voltage from an output connection of the fully cross-coupled rectification circuit, where gating of the pair of forward rectifying transistors is controlled by feedback bias signals provided to gates of the pair of forward rectifying transistors via feedback branch elements.
Directory of Open Access Journals (Sweden)
Mohd Tariq
2014-12-01
Full Text Available The paper presents the modeling, simulation and digital implementation of power quality improvement of DC drives by using multi pulse AC–DC converter. As it is a well-known fact that power quality determines the fitness of electrical power to consumer devices, hence an effort has been made to improve power quality in this work. Simulation and digital implementation with the help of MATLAB/Simulink has been done and results obtained are discussed in detail to verify the theoretical results. The multipulse converter was connected with DC drives and was run at no load condition to find out the transient and steady state performances. FFT analysis has been performed and Total Harmonic Distortion (THD results obtained at different pulses are shown here.
Pulse-width modulated DC-DC power converters
Kazimierczuk, Marian K
2008-01-01
This book studies switch-mode power supplies (SMPS) in great detail. This type of converter changes an unregulated DC voltage into a high-frequency pulse-width modulated (PWM) voltage controlled by varying the duty cycle, then changes the PWM AC voltage to a regulated DC voltage at a high efficiency by rectification and filtering. Used to supply electronic circuits, this converter saves energy and space in the overall system. With concept-orientated explanations, this book offers state-of-the-art SMPS technology and promotes an understanding of the principle operations of PWM converters,
International Nuclear Information System (INIS)
Soomro, M.A.; Helepoto, I.A.
2014-01-01
The recent development of semiconductor technology and wide spread use of power electronic devices in power system have open the era of the power system harmonics due to increasing penetration of non-linear loads. Harmonics are widely admitted as most important issues of power quality which must be eliminated to maintain power system reliability. The tolerable THD (Total Harmonic Distortion) values must be bounded in well-defined limits recognized by IEEE-519 standard. In this work, in order to eliminate the current harmonics produced by non-linear loads, six pulse multiplication converter technique in conjunction with STSSHPE (Single Tuned Shunt Harmonic Passive Filter) is proposed. The proposed model has the capacity of harmonic cancellation of the dominant 3rd order harmonics. Besides that, the 5th and 7th order harmonics are also reduced to a diminishing level. The hardware model has been experimentally tested by PQA (Power Quality Analyzer) and simulation model is designed using MATLAB software. The acquired results have been measured by considering THD values in terms of current and voltage. Furthermore, they have been compared against IEEE-519 performance standards. The prosed model, successfully bounds the total harmonic distortion under defined limits by IEEE-519 standard. (author)
Full range ZVS DC-DC converter
International Nuclear Information System (INIS)
Upadhyay, Rinki; Badapanda, M.K.; Hannurkar, P.R.
2011-01-01
A 500 V, 24 Amp DC-DC converter with digital signal processor (DSP) based control and protection has been designed, fabricated and tested. Its power circuit consists of IGBT based single phase inverter bridge, ferrite transformer and diode rectifier. All IGBTs in the inverter bridge are operated in zero voltage switching (ZVS) mode to minimize switching losses thereby increasing the efficiency of the converter significantly. The efficiency of this converter is measured to be greater than 97% at full load. In a conventional full bridge inverter, typically ZVS is achieved under full load condition while at light load ZVS is lost. An auxiliary LC circuit has been intentionally incorporated in this converter to achieve ZVS even at light loaded conditions. Detailed simulation of the converter circuit is carried out and crucial waveforms have been presented in this paper. Microchip make dsPIC30F2020 DSP is employed to provide phase shifted PWMs to IGBTs in the inverter bridge. All the crucial parameters are also monitored by this DSP and in case of any unfavorable conditions, the converter is tripped off. Suitable experiments were carried out in this DC-DC converter under different loaded conditions and a close match between the simulated and experimental results were obtained. Such DC-DC converters can be connected in series or parallel for the development of solid state modular power supplies for various applications. (author)
International Nuclear Information System (INIS)
Boenig, H.J.; Nielsen, R.G.; Sueker, K.H.
1984-01-01
The design philosophy and the operating behavior of a 5.5 kA, +-2.5 kV converter, being the electrical interface between a high voltage transmission system and a 30 MJ superconducting coil, are documented in this paper. Converter short circuit tests, load tests under various control conditions, dc breaker tests for magnet current interruption, and converter failure modes are described
Directory of Open Access Journals (Sweden)
M. Khalilzadeh
2016-12-01
Full Text Available In this paper, a stochastic approach is proposed for reliability assessment of bidirectional DC-DC converters, including the fault-tolerant ones. This type of converters can be used in a smart DC grid, feeding DC loads such as home appliances and plug-in hybrid electric vehicles (PHEVs. The reliability of bidirectional DC-DC converters is of such an importance, due to the key role of the expected increasingly utilization of DC grids in modern Smart Grid. Markov processes are suggested for reliability modeling and consequently calculating the expected effective lifetime of bidirectional converters. A three-leg bidirectional interleaved converter using data of Toyota Prius 2012 hybrid electric vehicle is used as a case study. Besides, the influence of environment and ambient temperature on converter lifetime is studied. The impact of modeling the reliability of the converter and adding reliability constraints on the technical design procedure of the converter is also investigated. In order to investigate the effect of leg increase on the lifetime of the converter, single leg to five-leg interleave DC-DC converters are studied considering economical aspect and the results are extrapolated for six and seven-leg converters. The proposed method could be generalized so that the number of legs and input and output capacitors could be an arbitrary number.
International Nuclear Information System (INIS)
Fathabadi, Hassan
2014-01-01
Highlights: • Novel hybrid power source including AC feature for using in electric/hybrid vehicles. • Minimizing the energy loss in electric/hybrid vehicles by using the proposed system. • Suitable AC wave form for braking/accelerating purposes in electric/hybrid vehicles. • A novelty is that the harmonic generated by the added AC feature is really zero. • Another novelty is the capability of choosing arbitrary frequency for AC feature. - Abstract: This paper presents a novel hybrid power source, including a Li-ion battery together with an interface, which generates simultaneously electrical energy with the forms of both DC and AC for electric vehicles. A novel and high benefits approach is applied to convert the electrical energy of the Li-ion battery from DC form to single-phase symmetric pulse-width modulation (PWM)-AC form. Harmonic generation is one of the important problems when electrical energy is converted from DC to AC but there are not any generated harmonic during the DC/AC conversion using the proposed technique. The proposed system will be widely used in electric/hybrid vehicles because it has many benefits. Minimizing the energy loss (saving energy), no generated harmonic (it is really zero), the capability of arbitrary/necessary frequency selection for output AC voltage and the ability of long distance energy transmission are some novelties and advantages of the proposed system. The proposed hybrid power source including DC/AC PWM inverter is simulated in Proteus 6 software environment and a laboratory-based prototype of the hybrid power source is constructed to validate the theoretical and simulation results. Simulation and experimental results are presented to prove the superiority of the proposed hybrid power supply
Milind Metha, Manish; Tutki, Sanjay; Rajan, Aju; Elangovan, D.; Arunkumar, G.
2017-11-01
With the current rate of depletion of the fossil fuel the need to switch on to the renewable energy sources is the need of the hour. Thus the need for new and efficient converters arises so as to replace the existing less efficient diesel and petroleum IC engines with renewable energy sources. The PHEVs, which have been launched in the market, and Upcoming PHEVs have converters around 380V to 400V generated with a power range between 2KW to 2.8KW. The fundamental target of this paper is to plan a productive converter keeping in mind cost and size restriction. In this paper, a two-stage dc-dc converter is proposed. The proposed converter is utilized to venture up a voltage from 24V (photovoltaic source) to a yield voltage of 400V to take care of a power demand of 2.4kW for a plug-in hybrid electric vehicle (PHEV) application considering the real time scenario of PHEV. This paper talks about in detail why the current fed converter is utilized alongside a voltage doubler thus minimizing the transformer turns thereby reducing the overall size of the final product. Simulation results along with calculation for the duty cycle of the firing sequence for different value of transformer turns are presented for a prototype unit.
Experimental study of dynamic behaviors and routes to chaos in DC-DC boost converters
International Nuclear Information System (INIS)
Cafagna, D.; Grassi, G.
2005-01-01
This paper illustrates an experimental study of a current-programmed DC-DC boost converter, with the aim of investigating possible pathways through which the converter may enter chaos. In particular, based on experimental measurements, it is shown that variations of input voltage and reference current can generate periodic, subharmonic, quasi-periodic and chaotic behaviors
DEFF Research Database (Denmark)
Yang, Xi-jun; Qu, Hao; Yao, Chen
2014-01-01
As for high power plasma power supply, due to high efficiency and flexibility, multi-channel interleaved multi-stage paralleled Buck DC-DC Converter becomes the first choice. In the paper, two-channel interleaved two- stage paralleled Buck DC-DC Converter powered by three-phase AC power supply...
Coordinated Control Scheme for Ancillary Services from Offshore Wind Power Plants to AC and DC Grids
DEFF Research Database (Denmark)
Sakamuri, Jayachandra N.; Altin, Müfit; Hansen, Anca Daniela
2016-01-01
This paper proposes a new approach of providing ancillary services to AC and DC grids from offshore wind power plants (OWPPs), connected through multi-terminal HVDC network. A coordinated control scheme where OWPP’s AC grid frequency modulated according to DC grid voltage variations is used...... to detect and provide the ancillary service requirements of both AC and DC grids, is proposed in this paper. In particular, control strategies for onshore frequency control, fault ridethrough support in the onshore grid, and DC grid voltage control are considered. The proposed control scheme involves only...
DEFF Research Database (Denmark)
Wang, Haojie; Han, Minxiao; Han, Renke
2018-01-01
This paper proposes a decentralized current-sharing control strategy to endow fast transient response to paralleled DC-DC converters systems, such as DC microgrids or distributed power systems. The proposed controller consist of two main control loops: an external voltage droop control for current......-sharing proposes and an internal current loop. The external droop control loop is designed as a voltage loop with embedded virtual impedance, which avoids the use of a slow voltage loop and a separate extra virtual impedance loop that may limit the system bandwidth. The internal current loop, thanks...... and the proposed embedded-virtual-impedance based I-V droop. In order to compare the dynamic response performances between two droop controllers, their state-space models have been developed and analyzed in this paper. The results show that the dynamic response of the I-V droop control is faster than...
Song, Sen; McCune, Robert C.; Shen, Weidian; Wang, Yar-Ming
One task under the U.S. Automotive Materials Partnership (USAMP) "Magnesium Front End Research and Development" (MFERD) Project has been the evaluation of methodologies for the assessment of protective capability for a variety of proposed protection schemes for this hypothesized multi-material, articulated structure. Techniques which consider the entire protection system, including both pretreatments and topcoats are of interest. In recent years, an adaptation of the classical electrochemical impedance spectroscopy (EIS) approach using an intermediate cathodic DC polarization step (viz. AC/DC/AC) has been employed to accelerate breakdown of coating protection, specifically at the polymer-pretreatment interface. This work reports outcomes of studies to employ the AC/DC/AC approach for comparison of protective coatings to various magnesium alloys considered for front end structures. In at least one instance, the protective coating system breakdown could be attributed to the poorer intrinsic corrosion resistance of the sheet material (AZ31) relative to die-cast AM60B.
Directory of Open Access Journals (Sweden)
Yangyang He
2018-03-01
Full Text Available In order to improve the simulation speed of the AC/DC hybrid grid, the inductance/capacitance (L/C switch model for line-commutated converter of high-voltage direct current (LCC-HVDC is presented in this study. The time domain modeling method is used to analyze the circuit of L/C switch model for the six-pulse system in LCC-HVDC in a switching period. A parameter setting method of L/C switch model is proposed considering the transient response, the steady state performance, switching losses and simulation error of the switch. The inductance/capacitance (L/C switch model for LCC-HVDC has the advantage of keeping the admittance matrix unchanged regardless of the change of switching state, which improves the simulation efficiency. Finally, the validity of the parameter setting method is verified. Compared with the test results of PSCAD/EMTDC, the accuracy of the proposed LCC-HVDC simulation model is proved. The model is suitable for real-time or offline simulation of AC/DC hybrid grid.
A DC to 3-phase series-resonant converter with low harmonic distortion
Huisman, H.; Haan, de S.W.H.
1985-01-01
A type of dc to 3-phase series-resonant converter (s.r.converter) or potentially submegawatt industrial applications is presented. The converter provides variable-frequency sine-wave currents, with low harmonic distortion at the output terminals, and with the frequency ranging from -200 through dc
Security analysis of interconnected AC/DC systems
DEFF Research Database (Denmark)
Eriksson, Robert
2015-01-01
This paper analyses N-1 security in an interconnected ac/dc transmission system using power transfer distribution factors (PTDFs). In the case of a dc converter outage the power needs to be redistributed among the remaining converter to maintain power balance and operation of the dc grid...... any line or transformer limits. Simulations were performed in a model of the Nordic power system where a dc grid is placed on top. The simulation supports the method as a tool to consider transfer limits in the grid to avoid violate the same and increase the security after a converter outage........ The redistribution of power has a sudden effect on the power-flow in the interconnected ac system. This may cause overloading of lines and transformers resulting in disconnection of equipment, and as a consequence cascading failure. The PTDF is used as a method to analyze and avoid violating limits by in the dc...
Auxiliary resonant DC tank converter
Peng, Fang Z.
2000-01-01
An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.
Simulation and performance enhancement of the air cooling system in a DC/AC power converter station
Energy Technology Data Exchange (ETDEWEB)
Lozowy, R.; El-Shaboury, A.; Soliman, H.; Ormiston, S. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Mechanical and Manufacturing Engineering
2010-07-01
This study analyzed the flow structure and heat transfer in a large 3-dimensional domain with turbulence, mixed convection, an impinging jet, and flow over heated blocks. The objective was to better understand turbulent mixed-convection cooling of heat-generating bodies in 3-dimensional enclosures, which is important to industry. The cooling of 2 thyristor valve halls was simulated. Each valve hall housed 3 towers that contained electronics used in DC/AC power conversion. The simulation results included the magnitudes of the net air flows for all the inter-block gaps and the maximum temperature in each gap. A parametric study was also performed to investigate the effects of the air inlet location, size and aspect ratio. The effects of the air injection angle on cooling effectiveness was also examined. The study showed that for fixed inlet mass flow rate, significant improvement in the cooling effectiveness can be obtained by changing the injection angle of the inlet air jet, the location of the inlet grill, or the size of the inlet grill. It was concluded that these study results may be relevant to other applications, such as the design of power transformers, the design of cooling systems for spent nuclear fuel and computer server cooling racks. 13 refs., 12 figs.
Directory of Open Access Journals (Sweden)
Rusalin Lucian R. Păun
2008-05-01
Full Text Available This paper propose a new control technique forsingle – phase AC – AC converters used for a on-line UPSwith a good dynamic response, a reduced-partscomponents, a good output characteristic, a good powerfactorcorrection(PFC. This converter no needs anisolation transformer. A power factor correction rectifierand an inverter with the proposed control scheme has beendesigned and simulated using Caspoc2007, validating theconcept.
DC electric springs with DC/DC converters
DEFF Research Database (Denmark)
Wang, Qingsong; Cheng, Ming; Jiang, Yunlei
2016-01-01
The concept of DC electric spring (DCES) was recently proposed to solve the stability issue caused by integrating intermittent renewable energy sources (RESs) to DC microgrids. In this paper, a new topology of DCES is proposed based on DC/DC converters. The proposed DCES consists of a bi-directio......The concept of DC electric spring (DCES) was recently proposed to solve the stability issue caused by integrating intermittent renewable energy sources (RESs) to DC microgrids. In this paper, a new topology of DCES is proposed based on DC/DC converters. The proposed DCES consists of a bi...... and/or constant discharging for batteries is adopted and four operating modes are analyzed as charging-positive, charging-negative, discharging-positive and discharging-negative modes. An additional mechanism for fast charging or fast discharging is also designed to secure normal operation...... of batteries. With the proposed DCES, the power fluctuations due to intermittent RESs can be passed to non-critical loads (NCLs) and batteries while power on critical loads (CLs) is kept stable. This is possibly the first attempt to design a DCES with only DC/DC converters. The performances of the proposed...
National Research Council Canada - National Science Library
Floodeen, David
1998-01-01
The objective of this thesis is two-fold. The first goal is to expand the operational capabilities of the Ship's Service Converter Module control algorithm for a DC-to-DC converter using the Universal Controller...
Control of hybrid AC/DC microgrid under islanding operational conditions
DEFF Research Database (Denmark)
Ding, G.; Gao, F.; Zhang, S.
2014-01-01
This paper presents control methods for hybrid AC/DC microgrid under islanding operation condition. The control schemes for AC sub-microgrid and DC sub-microgrid are investigated according to the power sharing requirement and operational reliability. In addition, the key control schemes...... of interlinking converter with DC-link capacitor or energy storage, which will devote to the proper power sharing between AC and DC sub-microgrids to maintain AC and DC side voltage stable, is reviewed. Combining the specific control methods developed for AC and DC sub-microgrids with interlinking converter......, the whole hybrid AC/DC microgrid can manage the power flow transferred between sub-microgrids for improving on the operational quality and efficiency....
DEFF Research Database (Denmark)
Gohil, Ghanshyamsinh Vijaysinh; Wang, Huai; Liserre, Marco
2014-01-01
A method to selectively control the amount of dc link voltage ripple by processing desired reactive power by a DC/DC converter in isolated AC/DC or AC/DC/AC system is proposed. The concept can reduce the dc link capacitors used for balancing the input and output power and thereby limiting...... the voltage ripple. It allows the use of smaller dc link capacitor and hence a longer lifetime and at the same time high power density and low cost can be achieved. The isolated DC/DC converter is controlled to process the desired reactive power in addition to the active power. The control system to achieve...
DC injection into low voltage AC networks
Energy Technology Data Exchange (ETDEWEB)
NONE
2005-07-01
This report summarises the results of a study investigating the impact of levels of injected DC current injections on a low voltage AC distribution network systems in order to recommend acceptable limits of DC from microgeneration. Relevant literature is reviewed, and the impact of DC levels in distribution transformers, transformer modelling, and instrumental transformers are discussed. The impact of DC in residual current devices (RCD) and in domestic electricity watt hour meters is examined along with DC enhanced corrosion, corrosion failure, and the measurement of DC current injection. Sources of DC injection outlined include DC from computer power supplies, network faults, geomagnetic phenomena, lighting circuits/dimmers, and embedded generators.
A single-phase embedded Z-source DC-AC inverter.
Kim, Se-Jin; Lim, Young-Cheol
2014-01-01
In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively.
Transformerless dc-Isolated Converter
Rippel, Wally E.
1987-01-01
Efficient voltage converter employs capacitive instead of transformer coupling to provide dc isolation. Offers buck/boost operation, minimal filtering, and low parts count, with possible application in photovoltaic power inverters, power supplies and battery charges. In photovoltaic inverter circuit with transformerless converter, Q2, Q3, Q4, and Q5 form line-commutated inverter. Switching losses and stresses nil because switching performed when current is zero.
Control of improved full-bridge three-level DC/DC converter for wind turbines in a DC grid
DEFF Research Database (Denmark)
Deng, Fujin; Chen, Zhe
2013-01-01
transformer in the IFBTL dc/dc converter. A modulation strategy, including two operation modes, is proposed for the IFBTL dc/dc converter. Then, a voltage balancing control strategy is proposed for the IFBTL dc/dc converter. Furthermore, the control of the wind turbine based on the IFBTL dc/dc converter......This paper presents an improved full-bridge three-level (IFBTL) dc/dc converter for a wind turbine in a dc grid by inserting a passive filter into the dc/dc converter to improve the performance of the converter. The passive filter can effectively reduce the voltage stress of the medium frequency...
Schoenfeld, A. D.; Yu, Y.
1973-01-01
Versatile standardized pulse modulation nondissipatively regulated control signal processing circuits were applied to three most commonly used dc to dc power converter configurations: (1) the series switching buck-regulator, (2) the pulse modulated parallel inverter, and (3) the buck-boost converter. The unique control concept and the commonality of control functions for all switching regulators have resulted in improved static and dynamic performance and control circuit standardization. New power-circuit technology was also applied to enhance reliability and to achieve optimum weight and efficiency.
Sheppard-Taylor Isolated High Boost DC-DC Converter
DEFF Research Database (Denmark)
Chub, Andrii; Siwakoti, Yam Prasad; Vinnikov, Dmitri
2017-01-01
This paper presents a new galvanically isolated step-up dc-dc converter intended for low-power but high step-up applications. The proposed converter is capable of regulating output voltage within a wide range of the input voltage or load variations. In contrast to competitors, the converter can...
TOPOLOGICAL REVIEW AND ANALYSIS OF DC-DC BOOST CONVERTERS
Directory of Open Access Journals (Sweden)
V. INDRA GANDHI
2017-06-01
Full Text Available DC voltage boost up is essential in numerous applications; especially considering Photovoltaic (PV based renewable power generation system. The conventional DC-DC boost converter is the most admired configuration for this scheme, even if the converter efficiency is restricted at duty cycle near to maximum value. In order to find solution to the problem and improve its conversion capability, many converter configurations have been implemented so far. With this circumstance, this research work proposes to give overview of a few most imperative research works related to DC-DC boost converters. Some configurations are covered and classified basically based on the application. The major benefits and disadvantages related to the available techniques are also briefly conveyed. At last, a proper evaluation is recognized among the important types of DC-DC boost converters in terms of efficiency, number of components, and stability.
Autonomous Operation of Hybrid Microgrid With AC and DC Subgrids
DEFF Research Database (Denmark)
Chiang Loh, Poh; Li, Ding; Kang Chai, Yi
2013-01-01
sources distributed throughout the two types of subgrids, which is certainly tougher than previous efforts developed for only ac or dc microgrid. This wider scope of control has not yet been investigated, and would certainly rely on the coordinated operation of dc sources, ac sources, and interlinking...... converters. Suitable control and normalization schemes are now developed for controlling them with the overall hybrid microgrid performance already verified in simulation and experiment.......This paper investigates on power-sharing issues of an autonomous hybrid microgrid. Unlike existing microgrids which are purely ac, the hybrid microgrid studied here comprises dc and ac subgrids interconnected by power electronic interfaces. The main challenge here is to manage power flows among all...
Early Oscillation Detection for DC/DC Converter Fault Diagnosis
Wang, Bright L.
2011-01-01
The electrical power system of a spacecraft plays a very critical role for space mission success. Such a modern power system may contain numerous hybrid DC/DC converters both inside the power system electronics (PSE) units and onboard most of the flight electronics modules. One of the faulty conditions for DC/DC converter that poses serious threats to mission safety is the random occurrence of oscillation related to inherent instability characteristics of the DC/DC converters and design deficiency of the power systems. To ensure the highest reliability of the power system, oscillations in any form shall be promptly detected during part level testing, system integration tests, flight health monitoring, and on-board fault diagnosis. The popular gain/phase margin analysis method is capable of predicting stability levels of DC/DC converters, but it is limited only to verification of designs and to part-level testing on some of the models. This method has to inject noise signals into the control loop circuitry as required, thus, interrupts the DC/DC converter's normal operation and increases risks of degrading and damaging the flight unit. A novel technique to detect oscillations at early stage for flight hybrid DC/DC converters was developed.
Analysis of DC/DC Converter Efficiency for Energy Storage System Based on Bidirectional Fuel Cells
DEFF Research Database (Denmark)
Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.
2013-01-01
interface to the grid. In power electronics, the converter efficiency is characterized at fixed operating voltage for various output power. This type of characterization is not suitable for fuel cells, since as the power from the fuel cell increases, the cell voltage decreases. This paper analyses how......Renewable energy sources are fluctuating depending on the availability of the energy source. For this reason, energy storage is becoming more important and bidirectional fuel cells represent an attractive technology. Fuel cells require highcurrent low-voltage dc-dc or dc-ac converters as power...... the fuel cell I-V characteristics influences the power electronics converter efficiency and their consequence on the overall system. A loaddependent efficiency curve is presented based on experimental results from a 6 kW dc-dc converter prototype including the most suitable control strategy which maximizes...
Digital model for harmonic interactions in AC/DC/AC systems
Energy Technology Data Exchange (ETDEWEB)
Guarini, A P; Rangel, R D; Pilotto, L A.S.; Pinto, R J; Passos, Junior, R [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)
1994-12-31
The main purpose of this paper is to present a model for calculation of HVdc converter harmonics taking into account the influence of the harmonic interactions between the ac systems in dc link transmissions. The ideas and methodologies used in the model development take into account the dc current ripple and ac voltage distortion in the ac systems. The theory of switching functions is applied to contemplate for the frequency conversions between the ac and dc sides, in an iterative process. It is possible then to obtain, even in balanced situations, non-characteristic harmonics that are produced by frequencies originated in the other terminal, which can be significant in a strongly coupled system, such as back-to-back configuration. (author) 9 refs., 3 figs.
On and off controlled resonant dc-dc power converter
DEFF Research Database (Denmark)
2015-01-01
The present invention relates to a resonant DC-DC power converter comprising an input side circuit comprising a positive and a negative input terminal for receipt of an input voltage or current and an output side circuit comprising positive and negative output terminals for supply of a converter...... output voltage and connection to a converter load. The resonant DC-DC power converter further comprises a rectification circuit connected between an output of a resonant network and the output side circuit. The resonant network is configured for alternatingly being charged from the input voltage...... or current and discharged through the rectification circuit by a first controllable switch arrangement in accordance with a first switch control signal. A second controllable switch arrangement of the resonant DC-DC power converter is configured to select a first impedance characteristic of the resonant...
High-frequency high-voltage high-power DC-to-DC converters
Wilson, T. G.; Owen, H. A.; Wilson, P. M.
1982-09-01
A simple analysis of the current and voltage waveshapes associated with the power transistor and the power diode in an example current-or-voltage step-up (buck-boost) converter is presented. The purpose of the analysis is to provide an overview of the problems and design trade-offs which must be addressed as high-power high-voltage converters are operated at switching frequencies in the range of 100 kHz and beyond. Although the analysis focuses on the current-or-voltage step-up converter as the vehicle for discussion, the basic principles presented are applicable to other converter topologies as well.
Y-source impedance-network-based isolated boost DC/DC converter
DEFF Research Database (Denmark)
Siwakoti, Yam P.; Town, Graham; Loh, Poh Chiang
2014-01-01
A dc-dc converter with very high voltage gain is proposed in this paper for any medium-power application requiring a high voltage boost with galvanic isolation. The proposed converter topology can be realized using only two switches. With this topology a very high voltage boost can be achieved even...... with a relatively low duty cycle of the switches, and the gain obtainable is presently not matched by any existing impedance network based converter operated at the same duty ratio. The proposed converter has a Y-source impedance network to boost the voltage at the intermediate dc-link side and a push......-pull transformer for square-wave AC inversion and isolation. The voltage-doubler rectifier provides a constant dc voltage at the output stage. A theoretical analysis of the converter is presented, supported by simulation and experimental results. A 250 W down-scaled prototype was implemented in the laboratory...
Dc to ac field conversion due to leaky-wave excitation in a plasma slab behind an ionization front
International Nuclear Information System (INIS)
Kostin, V A; Vvedenskii, N V
2015-01-01
We present a way for generating coherent tunable electromagnetic radiation through dc to ac field conversion by an ionization front. The conversion is caused by the excitation of leaky waves behind the transversely limited ionization front propagating in a uniform electrostatic field. This differs significantly from the well-known dc-to-ac-radiation-converter models which consider Doppler-like frequency conversion by a transversely unlimited ionization front propagating in a spatially periodic electric field. We explore the dispersion properties and excitation of these leaky waves radiated through the transverse plasma boundary at the Cherenkov angle to the direction of propagation of a superluminal ionization front as dependent on the parameters of the plasma produced and on the speed of the ionization front. It is shown that not only the center frequency but also the duration and waveform of the generated pulse may significantly depend on the speed of the ionization front. The results indicate the possibility of using such converters based on planar photoconductive antennas to create sources of microwave and terahertz radiation with controllable waveforms that are transformed from video to radio pulse when the angle of incident ionizing radiation is tuned. (paper)
Sfakianakis, G.; Everts, J.; Lomonova, E.A.
2015-01-01
This paper is divided into three main parts. In the first part, i.e. Section II, a general outline of the system level aspects regarding battery chargers (power converters) for plug-in electric vehicles (PEVs) is given. Thereby, the different charging modes of the converters, the corresponding power
R dump converter without DC link capacitor for an 8/6 SRM: experimental investigation.
Kavitha, Pasumalaithevan; Umamaheswari, Bhaskaran
2015-01-01
The objective of this paper is to investigate the performance of 8/6 switched reluctance motor (SRM) when excited with sinusoidal voltage. The conventional R dump converter provides DC excitation with the help of capacitor. In this paper the converter used is the modified R dump converter without DC link capacitor providing AC or sinusoidal excitation. Torque ripple and speed ripple are investigated based on hysteresis current control. Constant and sinusoidal current references are considered for comparison in both DC and AC excitation. Extensive theoretical and experimental investigations are made to bring out the merits and demerits of AC versus DC excitation. It is shown that the constructionally simple SRM can be favorably controlled with simple R dump converter with direct AC excitation without need for DC link capacitor. A 4-phase 8/6 0.5 kW SRM is used for experimentation.
DEFF Research Database (Denmark)
Xu, Fengda; Guo, Qinglai; Sun, Hongbin
2015-01-01
For an AC/DC coupled transmission system, the change of transmission power on the DC lines will significantly influence the AC systems’ voltage. This paper describes a method to coordinated control the reactive power of power plants and shunt capacitors at DC converter stations nearby, in order t...
DEFF Research Database (Denmark)
2015-01-01
The present invention relates to a step-up DC-DC power converter which comprises a primary side circuit and a secondary side circuit coupled through a galvanic isolation barrier. The primary side circuit comprises a positive and a negative input terminal for receipt of an input voltage and an input...... being charged from the input voltage and discharged to the output capacitor through the galvanic isolation barrier in accordance with a switch control signal to produce the converter output voltage. The step-up DC-DC power converter comprises an electrical short-circuit connection across the galvanic...
DC-to-AC inverter ratio failure detector
Ebersole, T. J.; Andrews, R. E.
1975-01-01
Failure detection technique is based upon input-output ratios, which is independent of inverter loading. Since inverter has fixed relationship between V-in/V-out and I-in/I-out, failure detection criteria are based on this ratio, which is simply inverter transformer turns ratio, K, equal to primary turns divided by secondary turns.
A Control Strategy of DC Building Microgrid Connected to the Neighborhood and AC Power Network
Directory of Open Access Journals (Sweden)
Thi Thuong Huyen Ma
2017-05-01
Full Text Available Recently, the use of DC microgrid distribution system has become more attractive than traditional AC systems due to their energy efficiency and ability to easily integrate with renewable energy sources and batteries. This paper proposes a 500 V DC microgrid which consists of a 20 kWp photovoltaic panel, batteries, and DC loads. A hierarchical control strategy to ensure balance power of the DC microgrid and the maintenance of common DC bus voltage is presented. The capability of exchanging power energy of the microgrid with the power system of neighborhood buildings is also considered. Typical operation modes are simulated in the Matlab/simulink environment to confirm the good performance of the controllers and the efficiency of appropriately controlling the charge–discharge of the battery system. This research is expected to bring benefits to the design and operation of the system, such as reducing the capacity of batteries, increasing the self-supply of buildings, and decreasing the electricity demand from the AC grid.
PENGGUNAAN FUZZY LOGIC UNTUK KONTROL PARALLEL CONVERTER DC-DC
Directory of Open Access Journals (Sweden)
Bambang Prio Hartono
2012-09-01
Full Text Available Abstract: Using system fuzzy logic as control technology have been used on low load dc-dc converter with combined parallel compiled dc-dc converter can obtain big load. With existence of differrence of component parameter and each parallel compiled converter can obtained different current and voltage output. Function of controller for to do adjustment, so that current which is applied to load by each converter can be obtained difference error as small as possible or same. The object of research is developing design of large signal dc-dc converter which is combined with using FLC so that obtain better performance. To get better performance have been made plant model and simulation with CDE method. The more systematic system and design is needed to overcome bigger load on dc-dc converter, so that parallel compiled current master slave control system on dc-dc converter with using fuzzy logic controller is used. Result of research showed that error or difference of current which is applied to load can handled by fuzzy logic controller. Technic of current and voltage controller co to do adjustment current and voltage distribution equally to load. Distribution of iL1,iL2 and output voltage Vo on dc-dc converter with load 2,25 until 7,875 and voltage 100 until 120 volt, load current beetwen 12 until 48, % relatif error Vo 0,4% until 0,9%.
Three-port DC-DC converter with new integrated transformer for DC Distribution Systems
DEFF Research Database (Denmark)
Ouyang, Ziwei; Andersen, Michael A. E.
2014-01-01
A new integrated transformer for three-port dc-dc converter is proposed to overcome the power coupling effect existed in some known multiple inputs dc-dc converters. Orthogonal primary windings arrangement and in series connection of diagonal secondary Windings enables a fully power decoupling...
New perspectives on the dynamics of AC and DC plasma arcs exposed to cross-fields
International Nuclear Information System (INIS)
Abdo, Youssef; Rohani, Vandad; Cauneau, François; Fulcheri, Laurent
2017-01-01
Interactions between an arc and external fields are crucially important for the design and the optimization of modern plasma torches. Multiple studies have been conducted to help better understand the behavior of DC and AC current arcs exposed to external and ‘ self-induced ’ magnetic fields, but the theoretical foundations remain very poorly explored. An analytical investigation has therefore been carried out in order to study the general behavior of DC and AC arcs under the effect of random cross-fields. A simple differential equation describing the general behavior of a planar DC or AC arc has been obtained. Several dimensionless numbers that depend primarily on arc and field parameters and the main arc characteristics (temperature, electric field strength) have also been determined. Their magnitude indicates the general tendency pattern of the arc evolution. The analytical results for many case studies have been validated using an MHD numerical model. The main purpose of this investigation was deriving a practical analytical model for the electric arc, rendering possible its stabilization and control, and the enhancement of the plasma torch power. (paper)
New perspectives on the dynamics of AC and DC plasma arcs exposed to cross-fields
Abdo, Youssef; Rohani, Vandad; Cauneau, François; Fulcheri, Laurent
2017-02-01
Interactions between an arc and external fields are crucially important for the design and the optimization of modern plasma torches. Multiple studies have been conducted to help better understand the behavior of DC and AC current arcs exposed to external and ‘self-induced’ magnetic fields, but the theoretical foundations remain very poorly explored. An analytical investigation has therefore been carried out in order to study the general behavior of DC and AC arcs under the effect of random cross-fields. A simple differential equation describing the general behavior of a planar DC or AC arc has been obtained. Several dimensionless numbers that depend primarily on arc and field parameters and the main arc characteristics (temperature, electric field strength) have also been determined. Their magnitude indicates the general tendency pattern of the arc evolution. The analytical results for many case studies have been validated using an MHD numerical model. The main purpose of this investigation was deriving a practical analytical model for the electric arc, rendering possible its stabilization and control, and the enhancement of the plasma torch power.
Directory of Open Access Journals (Sweden)
Fuangpian Phanupong
2016-01-01
Full Text Available Nowadays, using of High Voltage Direct Current (HVDC transmission to maximize the transmission efficiency, bulk power transmission, connection of renewable power source from wind farm to the grid is of prime concern for the utility. However, due to the high electric field stress from Direct Current (DC line, the corona discharge can easily be occurred at the conductor surface leading to transmission loss. Therefore, the polarity effect of DC lines on corona inception and breakdown voltage should be investigated. In this work, the effect of DC polarity and Alternating Current (AC field stress on corona inception voltage and corona discharge is investigated on various test objects, such as High Voltage (HV needle, needle at ground plane, internal defect, surface discharge, underground cable without cable termination, cable termination with simulated defect and bare overhead conductor. The corona discharge is measured by partial discharge measurement device with high-frequency current transformer. Finally, the relationship between supply voltage and discharge intensity on each DC polarity and AC field stress can be successfully determined.
Coordination Control Strategy for AC/DC Hybrid Microgrids in Stand-Alone Mode
Directory of Open Access Journals (Sweden)
Dwi Riana Aryani
2016-06-01
Full Text Available Interest in DC microgrids is rapidly increasing along with the improvement of DC power technology because of its advantages. To support the integration process of DC microgrids with the existing AC utility grids, the form of hybrid AC/DC microgrids is considered for higher power conversion efficiency, lower component cost and better power quality. In the system, AC and DC portions are connected through interlink bidirectional AC/DC converters (IC with a proper control system and power management. In the stand-alone operation mode of AC/DC hybrid microgrids, the control of power injection through the IC is crucial in order to maintain the system security. This paper mainly deals with a coordination control strategy of IC and a battery energy storage system (BESS converter under stand-alone operation. A coordinated control strategy for the IC, which considers the state of charge (SOC level of BESS and the load shedding scheme as the last resort, is proposed to obtain better power sharing between AC and DC subgrids. The scheme will be tested with a hybrid AC/DC microgrid, using the tool of the PSCAD/EMTDC software.
Directory of Open Access Journals (Sweden)
Noroozian
2009-06-01
Full Text Available This paper presents the modeling and simulation of a proton exchange membrane fuel cell (PEMFC generation system for off-grid and on-grid operation and configuration. A fuel cell DG system consists of a fuel cell power plant, a DC/DC converter and a DC/AC inverter. The dynamic model for fuel cell array and its power electronic interfacing are presented also a multi-input single output (MISO DC/DC converter and its control scheme is proposed and analyzed. This DC/DC converter is capable of interfacing fuel cell arrays to the DC/AC inverter. Also the mathematical model of the inverter is obtained by using average technique. Then the novel control strategy of DC/AC inverter for different operating conditions is demonstrated. The simulation results show the effectiveness of the suggested control systems under both on-grid and off-grid operation modes.
Combined operation of AC and DC distribution system with distributed generation units
International Nuclear Information System (INIS)
Noroozian, R.; Abedi, M.; Gharehpetian, G.
2010-01-01
This paper presents a DC distribution system which has been supplied by external AC systems as well as local DG units in order to demonstrate an overall solution to power quality issue. In this paper, the proposed operation method is demonstrated by simulation of power transfer between external AC systems, DG units, AC and DC loads. The power flow control in DC distribution system has been achieved by network converters and DG converters. Also, the mathematical model of the network, DG and load converters are obtained by using the average technique, which allows converter systems accurately simulated and control strategies for this converters is achieved. A suitable control strategy for network converters has been proposed that involves DC voltage droop regulator and novel instantaneous power regulation scheme. Also, a novel control technique has been proposed for DG converters. In this paper, a novel control system based on stationary and synchronously rotating reference frame has been proposed for load converters for supplying AC loads connected to the DC bus by balanced voltages. The several case studies have been studied based on proposed methods. The simulation results show that DC distribution systems including DG units can improve the power quality at the point of common coupling (PCC) in the power distribution system or industrial power system. (authors)
Isolated step-down DC -DC converter for electric vehicles
Kukovinets, O. V.; Sidorov, K. M.; Yutt, V. E.
2018-02-01
Modern motor-vehicle industrial sector is moving rapidly now towards the electricity-driving cars production, improving their range and efficiency of components, and in particular the step-down DC/DC converter to supply the onboard circuit 12/24V of electric vehicle from the high-voltage battery. The purpose of this article - to identify the best circuitry topology to design an advanced step-down DC/DC converters with the smallest mass, volume, highest efficiency and power. And this will have a positive effect on driving distance of electric vehicle (EV). On the basis of computational research of existing and implemented circuit topologies of step-down DC/DC converters (serial resonant converter, full bridge with phase-shifting converter, LLC resonant converter) a comprehensive analysis was carried out on the following characteristics: specific volume, specific weight, power, efficiency. The data obtained was the basis for the best technical option - LLC resonant converter. The results can serve as a guide material in the process of components design of the traction equipment for electric vehicles, providing for the best technical solutions in the design and manufacturing of converting equipment, self-contained power supply systems and advanced driver assistance systems.
Autonomous power management for interlinked AC-DC microgrids
DEFF Research Database (Denmark)
Nutkani, Inam Ullah; Meegahapola, Lasantha; Andrew, Loh Poh Chiang
2018-01-01
of the DC micro-grid before importing power from the interlinked AC microgrid. This strategy enables voltage regulation in the DC microgrid, and also reduces the number of converters in operation. The proposed scheme is fully autonomous while it retains the plug-n-play features for generators and tie......The existing power management schemes for inter-linked AC-DC microgrids have several operational drawbacks. Some of the existing control schemes are designed with the main objective of sharing power among the interlinked microgrids based on their loading conditions, while other schemes regulate...... the voltage of the interlinked microgrids without considering the specific loading conditions. However, the existing schemes cannot achieve both objectives efficiently. To address these issues, an autonomous power management scheme is proposed, which explicitly considers the specific loading condition...
A highly sensitive RF-to-DC power converter with an extended dynamic range
Almansouri, Abdullah Saud Mohammed; Ouda, Mahmoud H.; Salama, Khaled N.
2017-01-01
This paper proposes a highly sensitive RF-to-DC power converter with an extended dynamic range that is designed to operate at the medical band 433 MHz and simulated using 0.18 μm CMOS technology. Compared to the conventional fully cross
High voltage direct current transmission converters, systems and DC grids
Jovcic, Dragan
2015-01-01
This comprehensive reference guides the reader through all HVDC technologies, including LCC (Line Commutated Converter), 2-level VSC and VSC HVDC based on modular multilevel converters (MMC) for an in-depth understanding of converters, system level design, operating principles and modeling. Written in a tutorial style, the book also describes the key principles of design, control, protection and operation of DC transmission grids, which will be substantially different from the practice with AC transmission grids. The first dedicated reference to the latest HVDC technologies and DC grid developments; this is an essential resource for graduate students and researchers as well as engineers and professionals working on the design, modeling and operation of DC grids and HVDC.
DESIGN OPTIMIZATION OF RESONANT DC-DC CONVERTERS
Belqasem Aljafari
2016-01-01
Resonant DC/DC converters are the class of converters, which have L-C resonant tank serving as a major part of the power conversion process. The fundamental concept of the resonant converter is that the circulating energy in an L-C resonant circuit is manageable by changing the operating frequency, and therefore the converter can condition the input power to the desired output voltage. The development in power conversion technology is steady demand for high power efficiency and high power den...
Simultaneous distribution of AC and DC power
Polese, Luigi Gentile
2015-09-15
A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.
Rf-to-dc power converters for wireless powering
Ouda, Mahmoud Hamdy; Salama, Khaled N.
2016-01-01
feedback circuit configured to provide feedback bias signals to gates of the pair of forward rectifying transistors via feedback branch elements. In another example, a method includes receiving a radio frequency (RF) signal; rectifying the RF signal via a
DEFF Research Database (Denmark)
Davari, Pooya; Zare, Firuz; Blaabjerg, Frede
2015-01-01
, which need to be considered in order to be competitive in the market. Therefore, having a flexibility to meet various requirements imposed by the standard recommendations or costumer needs is at most desirable. This makes the generated harmonic current mitigation a challenging task especially with three......-phase diode bridge rectifier, which still is preferred in many power electronic systems. This paper addresses a novel current modulation strategy using a single-switch boost three-phase diode bridge rectifier. The proposed method can selectively mitigate current harmonics, which makes it suitable...
Lan, Chunbo; Tang, Lihua; Harne, Ryan L.
2018-05-01
Nonlinear piezoelectric energy harvester (PEH) has been widely investigated during the past few years. Among the majority of these researches, a pure resistive load is used to evaluate power output. To power conventional electronics in practical application, the alternating current (AC) generated by nonlinear PEH needs to be transformed into a direct current (DC) and rectifying circuits are required to interface the device and electronic load. This paper aims at exploring the critical influences of AC and DC interface circuits on nonlinear PEH. As a representative nonlinear PEH, we fabricate and evaluate a monostable PEH in terms of generated power and useful operating bandwidth when it is connected to AC and DC interface circuits. Firstly, the harmonic balance analysis and equivalent circuit representation method are utilized to tackle the modeling of nonlinear energy harvesters connected to AC and DC interface circuits. The performances of the monostable PEH connected to these interface circuits are then analyzed and compared, focusing on the influences of the varying load, excitation and electromechanical coupling strength on the nonlinear dynamics, bandwidth and harvested power. Subsequently, the behaviors of the monostable PEH with AC and DC interface circuits are verified by experiment. Results indicate that both AC and DC interface circuits have a peculiar influence on the power peak shifting and operational bandwidth of the monostable PEH, which is quite different from that on the linear PEH.
Family of multiport bidirectional DC-DC converters
Tao, H.; Kotsopoulos, A.; Duarte, J.L.; Hendrix, M.A.M.
2006-01-01
Multiport DC-DC converters are of potential interest in applications such as generation systems utilising multiple sustainable energy sources. A family of multiport bidirectional DC-DC converters derived from a general topology is presented. The topology shows a combination of DC-link and magnetic
Adapting AC Lines to DC Grids for Large-Scale Renewable Power Transmission
Directory of Open Access Journals (Sweden)
D. Marene Larruskain
2014-10-01
Full Text Available All over the world, governments of different countries are nowadays promoting the use of clean energies in order to achieve sustainable energy systems. In this scenario, since the installed capacity is continuously increasing, renewable sources can play an important role. Notwithstanding that, some important problems may appear when connecting these sources to the grid, being the overload of distribution lines one of the most relevant. In fact, renewable generation is usually connected to the nearest AC grid, although this HV system may not have been designed considering distributed generation. In the particular case of large wind farms, the electrical grid has to transmit all the power generated by wind energy and, as a consequence, the AC system may get overloaded. It is therefore necessary to determine the impact of wind power transmission so that appropriate measures can be taken. Not only are these measures influenced by the amount of power transmitted, but also by the quality of the transmitted power, due to the output voltage fluctuation caused by the highly variable nature of wind. When designing a power grid, although AC systems are usually the most economical solution because of its highly proven technology, HVDC may arise in some cases (e.g. offshore wind farms as an interesting alternative, offering some added values such as lower losses and better controllability. This way, HVDC technology can solve most of the aforementioned problems and has a good potential for future use. Additionally, the fast development of power electronics based on new and powerful semiconductor devices allow the spread of innovative technologies, such as VSC-HVDC, which can be applied to create DC grids. This paper focuses on the main aspects involved in adapting the existing overhead AC lines to DC grids, with the objective of improving the transmission of distributed renewable energy to the centers of consumption.
Wilson, T. G.
1981-01-01
Utilizing knowledge gained from past experience with experimental current-or-voltage step-up dc-to-dc converter power stages operating at output powers up to and in excess of 2 kW, a new experimental current-or-voltage step-up power stage using paralleled bipolar junction transistors (BJTs) as the controlled power switch, was constructed during the current reporting period. The major motivation behind the construction of this new experimental power stage was to improve the circuit layout so as to reduce the effects of stray circuit parasitic inductances resulting from excess circuit lead lengths and circuit loops, and to take advantage of the layout improvements which could be made when some recently-available power components, particularly power diodes and polypropylene filter capacitors, were incorporated into the design.
Radiated electromagnetic emissions of DC-DC converters
International Nuclear Information System (INIS)
Feld, L; Jussen, R; Karpinski, W; Klein, K; Sammet, J; Wlochal, M
2010-01-01
For the CMS tracker at SLHC a new powering scheme is considered to be mandatory to allow the detector to provide at least the same performance as today at the LHC. The baseline solution of CMS foresees the use of DC-DC converters to provide larger currents with smaller losses. An important component of most converters are inductors which, however, tend to radiate the switching noise generated by the converter. The emissions of different inductors have been measured and simulated, the coil design has been optimized and noise susceptibility measurements, with present CMS hardware, have been performed. This article summarizes the results.
RESONANT STEP-DOWN DC-DC POWER CONVERTERS
DEFF Research Database (Denmark)
2015-01-01
The present invention relates to a resonant step-down DC-DC power converter which comprises a primary side circuit and a secondary side circuit coupled through a galvanic isolation barrier. The primary side circuit comprises a positive and a negative input terminal for receipt of an input voltage...... charged from the input voltage and discharged to the output capacitor through the galvanic isolation barrier by a semiconductor switch arrangement in accordance with a switch control signal to produce the converter output voltage. The resonant step-down DC-DC power converter comprises an electrical short......-circuit connection across the galvanic isolation barrier connecting, in a first case, the second negative electrode of the output capacitor to the positive input terminal of the primary side circuit or, in a second case, connecting the second positive electrode of the output capacitor to the negative input terminal...
DEFF Research Database (Denmark)
Zhou, Bo; Ai, Xiaomeng; Fang, Jiakun
2017-01-01
With the rapid development and deployment of voltage source converter (VSC) based HVDC, the traditional power system is evolving to the hybrid AC-DC grid. New optimization methods are urgently needed for these hybrid AC-DC power systems. In this paper, mixed-integer second order cone programming...... (MISOCP) for the hybrid AC-DC power systems is proposed. The second order cone (SOC) relaxation is adopted to transform the AC and DC power flow constraints to MISOCP. Several IEEE test systems are used to validate the proposed MISCOP formulation of the optimal power flow (OPF) and unit commitment (UC...
Decentralized Interleaving of Paralleled Dc-Dc Buck Converters: Preprint
Energy Technology Data Exchange (ETDEWEB)
Johnson, Brian B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rodriguez, Miguel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sinha, Mohit [University of Minnesota; Dhople, Sairaj [University of Minnesota; Poon, Jason [University of California at Berkeley
2017-09-01
We present a decentralized control strategy that yields switch interleaving among parallel connected dc-dc buck converters without communication. The proposed method is based on the digital implementation of the dynamics of a nonlinear oscillator circuit as the controller. Each controller is fully decentralized, i.e., it only requires the locally measured output current to synthesize the pulse width modulation (PWM) carrier waveform. By virtue of the intrinsic electrical coupling between converters, the nonlinear oscillator-based controllers converge to an interleaved state with uniform phase-spacing across PWM carriers. To the knowledge of the authors, this work represents the first fully decentralized strategy for switch interleaving of paralleled dc-dc buck converters.
Energy Technology Data Exchange (ETDEWEB)
Silveira, George Cajazeiras [Centro Federal de Educacao Tecnologica do Ceara (CEFET/CE), Fortaleza, CE (Brazil); Torrico-Bascope, Rene P. [Universidade Federal do Ceara (PPGEE/UFC), Fortaleza, CE (Brazil). Programa de Pos Graduacao em Engenharia Eletrica; Borges Neto, Manuel Rangel [Centro Federal de Educacao Tecnologica de Petrolina (CEFET-PET), PE (Brazil)
2008-07-01
A non-isolated DC-AC converter with high voltage gain with two output sinusoidal voltage - 110 V and 220 V - and frequency 60 Hz for application in autonomous systems of electric power is proposed in this work. This topology consists of a boost converter with high voltage gain, based on three-state switching cell combined with a double half bridge inverter. This configuration type the size and the cost are reduced and the efficiency is gotten better, due to the reduced number of switches. The converters that compose this topology operate with high frequency, reducing the volume of the magnetic materials. can be mention as important characteristics: the voltage stress across the switches of the boost converter are low, due they be naturally clamped by one output filter capacitor, which allows the utilization of switches with lower conduction resistances, and the waveforms of the output voltage of the double half bridge inverter supplies for the load it is sinusoidal and it possesses low harmonic content. (author)
Discharging a DC bus capacitor of an electrical converter system
Kajouke, Lateef A; Perisic, Milun; Ransom, Ray M
2014-10-14
A system and method of discharging a bus capacitor of a bidirectional matrix converter of a vehicle are presented here. The method begins by electrically shorting the AC interface of the converter after an AC energy source is disconnected from the AC interface. The method continues by arranging a plurality of switching elements of a second energy conversion module into a discharge configuration to establish an electrical current path from a first terminal of an isolation module, through an inductive element, and to a second terminal of the isolation module. The method also modulates a plurality of switching elements of a first energy conversion module, while maintaining the discharge configuration of the second energy conversion module, to at least partially discharge a DC bus capacitor.
Artificial neural network control of sab dc/dc converter
International Nuclear Information System (INIS)
Mahar, M.A.; Abro, M.R.; Larik, A.S.
2009-01-01
The latest development of power semiconductor devices enable the modern power electronic converters to withstand high voltage and high power applications. Power electronic converters are mostly periodic variable structure systems due to their switched operations. The main drawback of these converters is the generation of oscillations which are developed during the operation of the converters under nonlinear situations. To handle these nonlinearities, various researchers have proposed different control techniques. Power electronic designers are devoting in the further development of converter topologies and their control techniques. SAB (Single Active Bridge) DC/DC converter is a new topology recently introduced by Demetriades. This topology is used in high voltage and high power applications. Because of its smart features, SAB converter has recently drawn attention of many researchers. However, during the operation of SAB converter severe oscillations are generated. In this research work, a novel NNC (Neural Network Controller) model is developed for SAB converter to minimize oscillations generated during its operation. NNC is believed to be an advanced nonlinear and robust controller which has the ability to map the nonlinear behaviour in a negligible response time. The performance of SAB converter with NNC is tested under dynamic region by considering the reference voltage variation and duty ratio variation. The SAB converter is implemented and simulated in MATLAB/Simulink. The simulated results are presented. (author)
High power density dc/dc converter: Selection of converter topology
Divan, Deepakraj M.
1990-01-01
The work involved in the identification and selection of a suitable converter topology is described. Three new dc/dc converter topologies are proposed: Phase-Shifted Single Active Bridge DC/DC Converter; Single Phase Dual Active Bridges DC/DC Converter; and Three Phase Dual Active Bridges DC/DC Converter (Topology C). The salient features of these topologies are: (1) All are minimal in structure, i.e., each consists of an input and output bridge, input and output filter and a transformer, all components essential for a high power dc/dc conversion process; (2) All devices of both the bridges can operate under near zero-voltage conditions, making possible a reduction of device switching losses and hence, an increase in switching frequency; (3) All circuits operate at a constant frequency, thus simplifying the task of the magnetic and filter elements; (4) Since, the leakage inductance of the transformer is used as the main current transfer element, problems associated with the diode reverse recovery are eliminated. Also, this mode of operation allows easy paralleling of multiple modules for extending the power capacity of the system; (5) All circuits are least sensitive to parasitic impedances, infact the parasitics are efficently utilized; and (6) The soft switching transitions, result in low electromagnetic interference. A detailed analysis of each topology was carried out. Based on the analysis, the various device and component ratings for each topology operating at an optimum point, and under the given specifications, are tabulated and discussed.
Burns, W. W., III; Wilson, T. G.
1976-01-01
State-plane analysis techniques are employed to study the voltage step up energy storage dc-to-dc converter. Within this framework, an example converter operating under the influence of a constant on time and a constant frequency controller is examined. Qualitative insight gained through this approach is used to develop a conceptual free running control law for the voltage step up converter which can achieve steady state operation in one on/off cycle of control. Digital computer simulation data is presented to illustrate and verify the theoretical discussions presented.
Unregulated Series Resonant Converter for Interlinking DC Nanogrids
DEFF Research Database (Denmark)
Tomas Manez, Kevin; Zhang, Zhe; Ouyang, Ziwei
2017-01-01
bidirectional converter to interlink a 400V DC bus with a 48V DC bus ispresented. The proposed converter is based on a LLC resonant converter operating as a DC transformer at a fixed frequency and duty cycle without any complex control strategy. A clearand simplified design procedure for high efficiency...
Agamy, Mohammed; Elasser, Ahmed; Sabate, Juan Antonio; Galbraith, Anthony William; Harfman Todorovic, Maja
2014-09-09
A distributed photovoltaic (PV) power plant includes a plurality of distributed dc-dc converters. The dc-dc converters are configured to switch in coordination with one another such that at least one dc-dc converter transfers power to a common dc-bus based upon the total system power available from one or more corresponding strings of PV modules. Due to the coordinated switching of the dc-dc converters, each dc-dc converter transferring power to the common dc-bus continues to operate within its optimal efficiency range as well as to optimize the maximum power point tracking in order to increase the energy yield of the PV power plant.
The performance of the DC motor by the PID controlling PWM DC-DC boost converter
Can, Erol; Sayan, Hasan Hüseyin
2017-01-01
This paper presents the PID controlling direct current (DC) to the direct current boost converter feds DC motor which has a 3.68 kW and 240 V of DC voltage input on its characteristics. What is first formed is the boost converter mathematical model at the design stage. Secondly, a mathematical model of the DC motor is created so that the boost converter with the machine can be established and modeled at the Matlab Simulink. The PID controller is considered for arranging a pulse width modulati...
DEFF Research Database (Denmark)
Chaudhary, Sanjay; Guerrero, Josep M.; Teodorescu, Remus
2015-01-01
The development of distributed generation system and electric vehicles is bound to strain the distribution network. A typical radial distribution feeder suffers from the voltage fluctuation and feeder overload in the presence of a large amount of variable renewable generation. This paper presents...... a concept of enhancing the power handling capacity of distribution networks using dc grid interconnections. Control of both the active and reactive power exchange between the ac feeder and the interconnecting power converter has been proposed for the voltage regulation at the ac feeder terminal. Besides......, the dc grid interconnection also allows the introduction of a common storage system which can be shared by the connected ac feeders, and the dc grid connection to other renewable energy resources. The increased power handling capacity and improved voltage profile of the ac distribution feeder using...
Bi-Directional DC-DC Converter for PHEV Applications
Energy Technology Data Exchange (ETDEWEB)
Abas Goodarzi
2011-01-31
Plug-In Hybrid Electric Vehicles (PHEV) require high power density energy storage system (ESS) for hybrid operation and high energy density ESS for Electric Vehicle (EV) mode range. However, ESS technologies to maximize power density and energy density simultaneously are not commercially feasible. The use of bi-directional DC-DC converter allows use of multiple energy storage, and the flexible DC-link voltages can enhance the system efficiency and reduce component sizing. This will improve fuel consumption, increase the EV mode range, reduce the total weight, reduce battery initial and life cycle cost, and provide flexibility in system design.
10-bit rapid single flux quantum digital-to-analog converter for ac voltage standard
International Nuclear Information System (INIS)
Maezawa, M; Hirayama, F
2008-01-01
Digital-to-analog (D/A) converters based on rapid single flux quantum (RSFQ) technology are under development for ac voltage standard applications. We present design and test results on a prototype 10-bit version integrated on a single chip. The 10-bit chip includes over 6000 Josephson junctions and consumes a bias current exceeding 1 A. To reduce the effects of the high bias current on circuit operation, a custom design method was employed in part and large circuit blocks were divided into smaller ones. The 10-bit chips were fabricated and tested at low speed. The test results suggested that our design approach could manage large bias currents on the order of 1 A per chip
Quasi-Z-Source Half-Bridge DC-DC Converter for Photovoltaic Applications
Vinnikov, D; Chub, A; Husev, O; Zaķis, J
2015-01-01
This paper presents a novel quasi-Z-source halfbridge galvanically isolated DC-DC converter intended for the photovoltaic applications. The topology could be envisioned as an alternative to the boost half-bridge DC-DC converter but the benefit of its symmetric structure reduces the threat of transformer saturation due to the dc flux. The proposed converter features the continuous input current and could be used either with one or two input voltage sources.
Design and Analysis of Two-Phase Boost DC-DC Converter
Taufik Taufik; Tadeus Gunawan; Dale Dolan; Makbul Anwari
2010-01-01
Multiphasing of dc-dc converters has been known to give technical and economical benefits to low voltage high power buck regulator modules. A major advantage of multiphasing dc-dc converters is the improvement of input and output performances in the buck converter. From this aspect, a potential use would be in renewable energy where power quality plays an important factor. This paper presents the design of a 2-phase 200W boost converter for battery charging application. Analysis of results fr...
High Current Planar Transformer for Very High Efficiency Isolated Boost DC-DC Converters
DEFF Research Database (Denmark)
Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.
2014-01-01
This paper presents a design and optimization of a high current planar transformer for very high efficiency dc-dc isolated boost converters. The analysis considers different winding arrangements, including very high copper thickness windings. The analysis is focused on the winding ac-resistance a......This paper presents a design and optimization of a high current planar transformer for very high efficiency dc-dc isolated boost converters. The analysis considers different winding arrangements, including very high copper thickness windings. The analysis is focused on the winding ac......-resistance and transformer leakage inductance. Design and optimization procedures are validated based on an experimental prototype of a 6 kW dcdc isolated full bridge boost converter developed on fully planar magnetics. The prototype is rated at 30-80 V 0-80 A on the low voltage side and 700-800 V on the high voltage side...... with a peak efficiency of 97.8% at 80 V 3.5 kW. Results highlights that thick copper windings can provide good performance at low switching frequencies due to the high transformer filling factor. PCB windings can also provide very high efficiency if stacked in parallel utilizing the transformer winding window...
User's design handbook for a Standardized Control Module (SCM) for DC to DC Converters, volume 2
Lee, F. C.
1980-01-01
A unified design procedure is presented for selecting the key SCM control parameters for an arbitrarily given power stage configuration and parameter values, such that all regulator performance specifications can be met and optimized concurrently in a single design attempt. All key results and performance indices, for buck, boost, and buck/boost switching regulators which are relevant to SCM design considerations are included to facilitate frequent references.
Modeling and analysis of fractional order DC-DC converter.
Radwan, Ahmed G; Emira, Ahmed A; AbdelAty, Amr M; Azar, Ahmad Taher
2017-07-11
Due to the non-idealities of commercial inductors, the demand for a better model that accurately describe their dynamic response is elevated. So, the fractional order models of Buck, Boost and Buck-Boost DC-DC converters are presented in this paper. The detailed analysis is made for the two most common modes of converter operation: Continuous Conduction Mode (CCM) and Discontinuous Conduction Mode (DCM). Closed form time domain expressions are derived for inductor currents, voltage gain, average current, conduction time and power efficiency where the effect of the fractional order inductor is found to be strongly present. For example, the peak inductor current at steady state increases with decreasing the inductor order. Advanced Design Systems (ADS) circuit simulations are used to verify the derived formulas, where the fractional order inductor is simulated using Valsa Constant Phase Element (CPE) approximation and Generalized Impedance Converter (GIC). Different simulation results are introduced with good matching to the theoretical formulas for the three DC-DC converter topologies under different fractional orders. A comprehensive comparison with the recently published literature is presented to show the advantages and disadvantages of each approach. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Gas tube-switched high voltage DC power converter
She, Xu; Bray, James William; Sommerer, Timothy John; Chokhawala, Rahul
2018-05-15
A direct current (DC)-DC converter includes a transformer and a gas tube-switched inverter circuit. The transformer includes a primary winding and a secondary winding. The gas tube-switched inverter circuit includes first and second inverter load terminals and first and second inverter input terminals. The first and second inverter load terminals are coupled to the primary winding. The first and second inverter input terminals are couplable to a DC node. The gas tube-switched inverter circuit further includes a plurality of gas tube switches respectively coupled between the first and second inverter load terminals and the first and second inverter input terminals. The plurality of gas tube switches is configured to operate to generate an alternating current (AC) voltage at the primary winding.
Hybrid AC-High Voltage DC Grid Stability and Controls
Yu, Jicheng
The growth of energy demands in recent years has been increasing faster than the expansion of transmission facility construction. This tendency cooperating with the continuous investing on the renewable energy resources drives the research, development, and construction of HVDC projects to create a more reliable, affordable, and environmentally friendly power grid. Constructing the hybrid AC-HVDC grid is a significant move in the development of the HVDC techniques; the form of dc system is evolving from the point-to-point stand-alone dc links to the embedded HVDC system and the multi-terminal HVDC (MTDC) system. The MTDC is a solution for the renewable energy interconnections, and the MTDC grids can improve the power system reliability, flexibility in economic dispatches, and converter/cable utilizing efficiencies. The dissertation reviews the HVDC technologies, discusses the stability issues regarding the ac and HVDC connections, proposes a novel power oscillation control strategy to improve system stability, and develops a nonlinear voltage droop control strategy for the MTDC grid. To verify the effectiveness the proposed power oscillation control strategy, a long distance paralleled AC-HVDC transmission test system is employed. Based on the PSCAD/EMTDC platform simulation results, the proposed power oscillation control strategy can improve the system dynamic performance and attenuate the power oscillations effectively. To validate the nonlinear voltage droop control strategy, three droop controls schemes are designed according to the proposed nonlinear voltage droop control design procedures. These control schemes are tested in a hybrid AC-MTDC system. The hybrid AC-MTDC system, which is first proposed in this dissertation, consists of two ac grids, two wind farms and a five-terminal HVDC grid connecting them. Simulation studies are performed in the PSCAD/EMTDC platform. According to the simulation results, all the three design schemes have their unique salient
Study of Power Flow Algorithm of AC/DC Distribution System including VSC-MTDC
Directory of Open Access Journals (Sweden)
Haifeng Liang
2015-08-01
Full Text Available In recent years, distributed generation and a large number of sensitive AC and DC loads have been connected to distribution networks, which introduce a series of challenges to distribution network operators (DNOs. In addition, the advantages of DC distribution networks, such as the energy conservation and emission reduction, mean that the voltage source converter based multi-terminal direct current (VSC-MTDC for AC/DC distribution systems demonstrates a great potential, hence drawing growing research interest. In this paper, considering losses of the reactor, the filter and the converter, a mathematical model of VSC-HVDC for the load flow analysis is derived. An AC/DC distribution network architecture has been built, based on which the differences in modified equations of the VSC-MTDC-based network under different control modes are analyzed. In addition, corresponding interface functions under five control modes are provided, and a back/forward iterative algorithm which is applied to power flow calculation of the AC/DC distribution system including VSC-MTDC is proposed. Finally, by calculating the power flow of the modified IEEE14 AC/DC distribution network, the efficiency and validity of the model and algorithm are evaluated. With various distributed generations connected to the network at appropriate locations, power flow results show that network losses and utilization of transmission networks are effectively reduced.
Single-stage three-phase AC to DC conversion with isolation and Bi-directional power flow
Vermulst, B.J.D.; Duarte, J.L.; Wijnands, C.G.E.; Lomonova, E.A.
2014-01-01
An approach for three-phase AC to DC conversion is proposed, which consists of a single-stage while offering galvanic isolation, soft-switching, bi-directional power flow and a significant reduction of inductive and capacitive energy storage. Two elements enable this approach, namely a neutral
DC Voltage Droop Control Implementation in the AC/DC Power Flow Algorithm: Combinational Approach
DEFF Research Database (Denmark)
Akhter, F.; Macpherson, D.E.; Harrison, G.P.
2015-01-01
of operational flexibility, as more than one VSC station controls the DC link voltage of the MTDC system. This model enables the study of the effects of DC droop control on the power flows of the combined AC/DC system for steady state studies after VSC station outages or transient conditions without needing...... to use its complete dynamic model. Further, the proposed approach can be extended to include multiple AC and DC grids for combined AC/DC power flow analysis. The algorithm is implemented by modifying the MATPOWER based MATACDC program and the results shows that the algorithm works efficiently....
Jou, H. L.; Wu, J. C.; Lin, J. H.; Su, W. N.; Wu, T. S.; Lin, Y. T.
2017-11-01
The operation strategy for a small-capacity grid-tied DC-coupling power converter interface (GDPCI) integrating wind energy, solar energy and battery energy storage is proposed. The GDPCI is composed of a wind generator, a solar module set a battery bank, a boost DC-DC power converter (DDPC), a bidirectional DDPC power converter, an AC-DC power converter (ADPC) and a five-level DC-AC inverter (DAI). A solar module set, a wind generator and a battery bank are coupled to the common DC bus through the boost DDPC, the ADPC and the bidirectional DDPC, respectively. For verifying the performance of the GDPCI under different operation modes, computer simulation is carried out by PSIM.
The Topologies Research of a Soft Switching Bidirectional DC/DC Converter
DEFF Research Database (Denmark)
Zhang, Qi; Zhang, Yongping; Sun, Xiangdong
2017-01-01
A soft-switching solution implemented to the traditional bidirectional DC/DC converter is developed. The soft-switching cell, which composed of three auxiliary switches, one resonant capacitor and one resonant inductor, is equipped in the traditional bidirectional DC/DC converter to realize circuit...... circle. And the proposed topology of bidirectional soft-switching dc-dc converter(TASBC) performs ideal soft switching at boost operations. The characteristics of the proposed converter has been verified by MATLAB simulations and experimental results....
DEFF Research Database (Denmark)
Soliman, Hammam Abdelaal Hammam; Wang, Huai; Blaabjerg, Frede
2016-01-01
of the aforementioned challenges and shortcomings. In this paper, a pure software condition monitoring method based on Artificial Neural Network (ANN) algorithm is proposed. The implemented ANN estimates the capacitance of the dc-link capacitor in a back-to-back converter. The error analysis of the estimated results......The reliability of dc-link capacitors in power electronic converters is one of the critical aspects to be considered in modern power converter design. The observation of their ageing process and the estimation of their health status have been an attractive subject for the industrial field and hence...
Equivalence of Primary Control Strategies for AC and DC Microgrids
Directory of Open Access Journals (Sweden)
Eneko Unamuno
2017-01-01
Full Text Available Microgrid frequency and voltage regulation is a challenging task, as classical generators with rotational inertia are usually replaced by converter-interfaced systems that inherently do not provide any inertial response. The aim of this paper is to analyse and compare autonomous primary control techniques for alternating current (AC and direct current (DC microgrids that improve this transient behaviour. In this context, a virtual synchronous machine (VSM technique is investigated for AC microgrids, and its behaviour for different values of emulated inertia and droop slopes is tested. Regarding DC microgrids, a virtual-impedance-based algorithm inspired by the operation concept of VSMs is proposed. The results demonstrate that the proposed strategy can be configured to have an analogous behaviour to VSM techniques by varying the control parameters of the integrated virtual-impedances. This means that the steady-state and transient behaviour of converters employing these strategies can be configured independently. As shown in the simulations, this is an interesting feature that could be, for instance, employed for the integration of different dynamic generation or storage systems, such as batteries or supercapacitors.
Protection of AC and DC Microgrids
DEFF Research Database (Denmark)
Beheshtaein, Siavash; Savaghebi, Mehdi; Quintero, Juan Carlos Vasquez
2015-01-01
and DC microgrids, and then investigates the existing and promising solutions for the corresponding challenges. To the authors’ knowledge, three parts of smart grids are required to be developed to facilitate implementation of protection scheme in microgrids. The main requirements and open issues......In future, distributed energy resources (RESs) will be utilized at consumption points. As a consequence, power flow and fault current would be bidirectional and topologydependent; and hence the conventional protection strategies would be inefficient. This paper categorizes the main challenges in AC...
Very High Frequency Half Bridge DC/DC Converter
DEFF Research Database (Denmark)
Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.
2014-01-01
This paper presents the first, off chip, class DE (resonant half bridge) converter working in the Very High Frequency (VHF) range. The benefits of using half bridge circuits both in the inverter and rectifier part of a VHF resonant dc/dc converter are analyzed and design equations for all...
Autonomous Operation of Hybrid Microgrid with AC and DC Sub-Grids
DEFF Research Database (Denmark)
Loh, Poh Chiang; Blaabjerg, Frede
2011-01-01
the power flow among all the sources distributed throughout the two types of sub-grids, which certainly is tougher than previous efforts developed for only either ac or dc microgrid. This wider scope of control has not yet been investigated, and would certainly rely on the coordinated operation of dc...... sources, ac sources and interlinking converters. Suitable control and normalization schemes are therefore developed for controlling them with results presented for showing the overall performance of the hybrid microgrid.......This paper investigates on the active and reactive power sharing of an autonomous hybrid microgrid. Unlike existing microgrids which are purely ac, the hybrid microgrid studied here comprises dc and ac sub-grids, interconnected by power electronic interfaces. The main challenge here is to manage...
Novel composite resonance DC-DC converter with voltage doubler rectifier
Kato, Hisatsugu; Matsuo, Hirohumi; Eguchi, Masaki; Sakamoto, Yukitaka; Nakaishi, Masaki
2009-01-01
This paper deals with a novel composite resonance DC-DC converter with the voltage doubler rectifier, which is developed to be applied to the power conditioner of the photovoltaic generation system. The proposed DC-DC converter has the current and voltage resonance functions. Therefore, the output voltage regulation can be achieved for the large variations of the input voltage and load. Also, this converter has the high power efficiency. The maximum power efficiency 96.1% can be realized.
Method to predetermine current/power flow change in a dc grid
DEFF Research Database (Denmark)
2017-01-01
occurs at one of the AC/DC converters; establishing a generalized droop feedback gain matrix G; controlling current/power flow within DC grid towards predefined setpoints, by use of control law. The invention presents an analytical approach to derive the generalized feedback gain allowing......The invention relates to a method for controlling current/power flow within a power transmission system, comprising two or more interconnected converter stations. The method comprises the steps of: providing a DC admittance matrix given from the DC grid; providing a current distribution matrix...... for a number of, such as for all possible AC/DC converter outages; providing a DC bus voltage vector for the DC grid; the DC bus voltage vector being a vector containing the values of the voltage change at the AC/DC converters, measured at the AC/DC converters, before, during and after a forced current change...
Five-Level Active-Neutral-Point-Clamped DC/DC Converter for Medium-Voltage DC Grids
DEFF Research Database (Denmark)
Liu, Dong; Deng, Fujin; Chen, Zhe
2017-01-01
This paper proposes a five-level active-neutralpoint- clamped (5L-ANPC) dc/dc converter for applications in medium voltage dc (MVDC) grids. A modulation strategy is proposed for the 5L-ANPC dc/dc converter to generate multilevel voltage waveforms, which can effectively reduce voltage change rate dv...... effectively eliminate high voltage leaps caused by the dead time effect. In addition, a capacitor voltage control strategy is proposed for the 5L-ANPC dc/dc converter to ensure the balanced flying capacitor voltage and desired five-level voltage waveforms. Finally, simulation and experimental studies...
Directory of Open Access Journals (Sweden)
Chih-Lung Shen
2015-09-01
Full Text Available In this paper, an integrated three-voltage-booster DC-DC (direct current to direct current converter is proposed to achieve high voltage gain for renewable-energy generation systems. The proposed converter integrates three voltage-boosters into one power stage, which is composed of an active switch, a coupled-inductor, five diodes, and five capacitors. As compared with conventional high step-up converters, it has a lower component count. In addition, the features of leakage-energy recycling and switching loss reduction can be accomplished for conversion efficiency improvement. While the active switch is turned off, the converter can inherently clamp the voltage across power switch and suppress voltage spikes. Moreover, the reverse-recovery currents of all diodes can be alleviated by leakage inductance. A 200 W prototype operating at 100 kHz switching frequency with 36 V input and 400 V output is implemented to verify the theoretical analysis and to demonstrate the feasibility of the proposed high step-up DC-DC converter.
A highly sensitive RF-to-DC power converter with an extended dynamic range
Almansouri, Abdullah Saud Mohammed
2017-10-24
This paper proposes a highly sensitive RF-to-DC power converter with an extended dynamic range that is designed to operate at the medical band 433 MHz and simulated using 0.18 μm CMOS technology. Compared to the conventional fully cross-coupled rectifier, the proposed design offers 3.2× the dynamic range. It is also highly sensitive and requires −18 dBm of input power to produce a 1 V-output voltage when operating with a 100 kΩ load. Furthermore, the proposed design offers an open circuit sensitivity of −23.4 dBm and a peak power conversion efficiency of 67%.
Multi Bus DC-DC Converter in Electric Hybrid Vehicles
Krithika, V.; Subramaniam, C.; Sridharan, R.; Geetha, A.
2018-04-01
This paper is cotncerned with the design, simulation and fabrication of the prototype of a Multi bus DC- DC converter operating from 42V DC and delivering 14V DC and 260V DC. As a result, three DC buses are interconnected through a single power electronic circuitry. Such a requirement is energized in the development of a hybrid electric automobile which uses the technology of fuel cell. This is implemented by using a Bidirectional DC-DC converter configuration which is ideally suitable for multiple outputs with mutual electrical isolation. For the sake of reduced size and cost of step-up transformer, selection of a high frequency switching cycle at 10 KHz was done.
DEFF Research Database (Denmark)
Zhang, Huaguang; Zhou, Jianguo; Sun, Qiuye
2017-01-01
This paper investigates the coordinated power sharing issues of interlinked ac/dc microgrids. An appropriate control strategy is developed to control the interlinking converter (IC) to realize proportional power sharing between ac and dc microgrids. The proposed strategy mainly includes two parts...
Direct AC–AC grid interface converter for ocean wave energy system
International Nuclear Information System (INIS)
Tsang, K.M.; Chan, W.L.
2015-01-01
Highlights: • Novel power grid interface converter for ocean wave energy system. • Unlike conventional approach, generator output is directly converted into fixed frequency AC for synchronous connection. • High conversion efficient and power quality could be achieved. - Abstract: Ocean wave energy is very promising. However, existing systems are using rectifying circuits to convert variable voltage and variable frequency output of electric generator into DC voltage and then use grid-tied inverter to connect to the power grid. Such arrangement will not only reduce the overall efficient but also increase the cost of the system. A direct AC–AC converter is a desirable solution. In this paper, a six-switch AC–AC converter has been proposed as a single phase grid-connected interface. New switching scheme has been derived for the converter such that the virtual input AC–DC conversion and the output DC–AC conversion can be decoupled. State-space averaging model and pulse width modulation scheme have been derived for the converter. As the input and the output operations can be decoupled, two independent controllers have been designed to handle the input AC–DC regulation and the output DC–AC regulation. The proposed scheme demands for two separate duty ratios and novel switching scheme has been derived to realize the combined duty ratios in one switching cycle. Power regulation, harmonics elimination and power factor correction control algorithms have also been derived for the converter when it is connected to the supply grid. Experimental results of a small scale model are included to demonstrate the effectiveness of the proposed switching and control schemes
A high voltage ratio and low ripple interleaved DC-DC converter for fuel cell applications.
Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih
2012-01-01
This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters.
Elimination of output voltage oscillations in DC-DC converter using PWM with PI controller
Directory of Open Access Journals (Sweden)
Sreenivasappa Veeranna Bhupasandra
2010-01-01
Full Text Available In this paper the SIMULINK model of a PWM controlled DC-DC converter is modeled using switching function concept to control the speed of the DC motor. The presence of the voltage oscillation cycles due to higher switching frequency in the DC-DC converter is identified. The effect of these oscillations on the output voltage of the converter, Armature current, Developed torque and Speed of the DC motor is analyzed. In order to minimize the oscillation cycles the PI controller is proposed in the PWM controller.
Large Signal Stabilization of Hybrid AC/DC Micro-Grids Using Nonlinear Robust Controller
Directory of Open Access Journals (Sweden)
Reza Pejmanfar
2017-12-01
Full Text Available This paper presents a robust nonlinear integrated controller to improve stability of hybrid AC/DC micro-grids under islanding mode. The proposed controller includes two independent controllers where each one is responsible to control one part of the system. First controller will improve the stability of input DC/DC converter. Using this controller, the voltage of DC bus is fully stabilized such that when a large disturbance occurs, its voltage will become constant without any significant dynamic. The necessity of DC bus regulation which has not been considered in previous studies, is imminent as it not only improves voltage stability of the micro-grid but also protects consumers which are directly connected to the DC bus, against voltage variations. Frequency stability of the micro-grid is provided by the second proposed controller which is applied to output DC/AC converter of the micro-grid. Adaptive method is used to make the controllers proposed in this paper, robust. Duty cycle of converters switches are adjusted such that voltage and frequency of the micro-grid are set on the desired value in minimum possible time under transient disturbances and uncertainty of the loads as well as micro-sources characteristics.
Chaos analysis and chaotic EMI suppression of DC-DC converters
Zhang, Bo
2014-01-01
Introduces chaos theory, its analytical methods and the means to apply chaos to the switching power supply design DC-DC converters are typical switching systems which have plenty of nonlinear behaviors, such as bifurcation and chaos. The nonlinear behaviors of DC-DC converters have been studied heavily over the past 20 years, yet researchers are still unsure of the practical application of bifurcations and chaos in switching converters. The electromagnetic interference (EMI), which resulted from the high rates of changes of voltage and current, has become a major design criterion in DC-DC co
Analysis of high voltage step-up nonisolated DC-DC boost converters
Alisson Alencar Freitas, Antônio; Lessa Tofoli, Fernando; Junior, Edilson Mineiro Sá; Daher, Sergio; Antunes, Fernando Luiz Marcelo
2016-05-01
A high voltage step-up nonisolated DC-DC converter based on coupled inductors suitable to photovoltaic (PV) systems applications is proposed in this paper. Considering that numerous approaches exist to extend the voltage conversion ratio of DC-DC converters that do not use transformers, a detailed comparison is also presented among the proposed converter and other popular topologies such as the conventional boost converter and the quadratic boost converter. The qualitative analysis of the coupled-inductor-based topology is developed so that a design procedure can be obtained, from which an experimental prototype is implemented to validate the theoretical assumptions.
A Direct Power Conversion Topology for Grid Integration of Hybrid AC/DC Energy Resources
DEFF Research Database (Denmark)
Liu, Xiong; Loh, Poh Chiang; Wang, Peng
2013-01-01
This paper proposes a multiple-input versatile matrix converter (VMC) for integrating hybrid ac/dc energy resources and storages to the power grid. The VMC is developed from the traditional indirect matrix converter but operates in the reverse-boost mode rather than in the forward-buck mode....... The reverse-boost mode is more relevant here since most renewable sources and energy storages have lower voltages than the grid. The eventual VMC developed uses an alternative nine-switch converter, rather than usual six-switch voltage-source converter, for providing six input terminals in total. One three...
Analysis of a high power, resonant DC-DC converter for DC wind turbines
DEFF Research Database (Denmark)
Dincan, Catalin Gabriel; Kjær, Philip Carne; Chen, Yu-Hsing
2018-01-01
This paper is introducing a new method of operation for a series resonant converter, with intended application in megawatt high-voltage DC wind turbines. Compared to a frequency controlled series resonant converter operated in sub resonant mode, the method (entitled pulse removal technique) allows...
Schwab, J. R.
1979-01-01
Performance data obtained through experimental testing of a 22.4 kW traction motor using two types of excitation are presented. Ripple free dc from a motor-generator set for baseline data and pulse width modulated dc as supplied by a battery pack and chopper controller were used for excitation. For the same average values of input voltage and current, the motor power output was independent of the type of excitation. However, at the same speeds, the motor efficiency at low power output (corresponding to low duty cycle of the controller) was 5 to 10 percentage points lower on chopped dc than on ripple free dc. The chopped dc locked-rotor torque was approximately 1 to 3 percent greater than the ripple free dc torque for the same average current.
Soft switching bidirectional DC-DC converter for ultracapacitor-batteries interface
International Nuclear Information System (INIS)
Adib, Ehsan; Farzanehfard, Hosein
2009-01-01
In this paper a new soft switching bidirectional DC-DC converter is introduced which can be applied as the interface circuit between ultracapacitors and batteries or fuel cells. All semiconductor devices in the proposed converter are soft switched while the control circuit remains PWM. Due to achieved soft switching condition, the energy conversion through the proposed converter is highly efficient. The proposed converter is analyzed and a prototype converter is implemented. The presented experimental results confirm the theoretical analysis.
Soft switching bidirectional DC-DC converter for ultracapacitor-batteries interface
Energy Technology Data Exchange (ETDEWEB)
Adib, Ehsan; Farzanehfard, Hosein [Dept. of Electrical and Computer Engineering, Isfahan Univ. of Technology (Iran)
2009-12-15
In this paper a new soft switching bidirectional DC-DC converter is introduced which can be applied as the interface circuit between ultracapacitors and batteries or fuel cells. All semiconductor devices in the proposed converter are soft switched while the control circuit remains PWM. Due to achieved soft switching condition, the energy conversion through the proposed converter is highly efficient. The proposed converter is analyzed and a prototype converter is implemented. The presented experimental results confirm the theoretical analysis. (author)
Pemodelan Konverter AC – DC Tiga Fasa Dua Arah pada Sepeda Listrik Menggunakan Metode SPWM
Putri, Hellga Afdilah; Hamzah, Amir
2017-01-01
This study is aimed to design and analyze bidirectional converter three phase by using method SPWM on electric bike. This study discusses the three-phase inverter with Sine Pulse WidthModulation (SPWM) method as a three-phase induction motor drive and also the rectifier which has function to convert the AC voltage of the source of three-phase AC into DC voltage that ismodeled by using Matlab / Simulink. The purpose of this study is to get the design of the threephase inverter SPWM as a three-...
CSIR Research Space (South Africa)
Grobler, Inus
2013-09-01
Full Text Available . The military specified DC-DC converters are applicable, spanning from 100 W handheld power managers up to 2 kW DC-DC battery chargers. Circuit layout high frequency effects as well as high frequency impedances of the power components were characterised...
Autonomous Control of Interlinking Converter With Energy Storage in Hybrid AC–DC Microgrid
DEFF Research Database (Denmark)
Loh, Poh Chiang; Li, Ding; Chai, Yi Kang
2013-01-01
, simplicity, and industry relevance of the converter. The desired operating features of the hybrid microgrid can then be added through this interlinking converter. To demonstrate, an appropriate control scheme is now developed for controlling the interlinking converter. The objective is to keep the hybrid......The coexistence of ac and dc subgrids in a hybrid microgrid is likely given that modern distributed sources can either be ac or dc. Linking these subgrids is a power converter, whose topology should preferably be not too unconventional. This is to avoid unnecessary compromises to reliability...... microgrid in autonomous operation with active power proportionally shared among its distributed sources. Power sharing here should depend only on the source ratings and not their placements within the hybrid microgrid. The proposed scheme can also be extended to include energy storage within...
Design of DC-DC Converter and its Control for a Wind Generation System Connected to an Isolated Load
Directory of Open Access Journals (Sweden)
Carlos A. Ramírez Gómez
2013-11-01
Full Text Available A method to design a Buck converter and its control, which are associated to a wind generation system that is feeding an isolated load, is presented in this paper. To design the converter a Thevenin equivalent is deduced, which represents the behavior of the wind turbine, the permanent magnet synchronous generator, and the rectifier. The design of the converter elements guarantees input/output voltages and inductor current ripples of 5 % or less. The output voltage control is developed with a proportional-integral-derivative controller and as design criteria a damping of 0,707 and cutoff frequency of 1/5 converter commutation frequency are selected. The designed controller regulates the output voltage faced load perturbations and wind speed variations.
A Current-Fed Isolated Bidirectional DC-DC Converter
DEFF Research Database (Denmark)
Sun, Xiaofeng; Wu, Xiaoying; Shen, Yanfeng
2017-01-01
This paper proposes a current-fed isolated bidirectional DC-DC converter (CF-IBDC) which has the advantages of wide input voltage range, low input current ripple, low conduction losses, and soft switching over the full operating range. Compared with conventional CF-IBDCs, the voltage spikes...
Comparison of soft and hard-switching effiency in a three-level single phase 60kW dc-ac converter
DEFF Research Database (Denmark)
Munk-Nielsen, Stig; Teodorescu, Remus; Bech, Michael Møller
2003-01-01
Efficiency measurements on a three-level single-phase soft-switched converter are presented and show a slightly improved efficiency compared with the hard-switched converter for output powers higher than 25 % of rated power. The resonant converter switches are Zero Voltage Switched (ZVS......) and a simple resonant circuit is used. Increased resonant converter efficiency enables a reduction in the semiconductor size pr. watt output power or an increase the switching frequency....
Engineering Design of the ITER AC/DC Power Supplies
International Nuclear Information System (INIS)
Oh, B. H.; Lee, K. W.; Hwang, C. K.; Jin, J. T.; Chang, D. S.; Kim, T. S.
2009-02-01
To design high power pulse power supplies, especially in huge power supplies have not designed till now, it is necessary to analyze a system's characteristics and relations with another systems as well as to know high voltage, high current control technologies. Contents of this project are; - Study for the engineering designs changed recently by ITER Organization(IO) and writing specifications for the power supplies to reduce project risk. - Detailed analysis of the AC/DC Converters and writing subtask reports on the Task Agreement. - Study for thyristor numbers, DCR's specifications for Korea-China sharing meetings. - Study for the grounding systems of the ITER power supply system. The results may used as one of reference for practical designs of the high power coil power supplies and also may used in various field such as electroplating, plasma arc furnaces, electric furnaces
A Component-Reduced Zero-Voltage Switching Three-Level DC-DC Converter
DEFF Research Database (Denmark)
Qin, Zian; Pang, Ying; Wang, Huai
2016-01-01
The basic Zero-Voltage Switching (ZVS) three-level DC-DC converter has one clamping capacitor to realize the ZVS of the switches, and two clamping diodes to clamp the voltage of the clamping capacitor. In order to reduce the reverse recovery loss of the diode as well as its cost, this paper...... proposes to remove one of the clamping diodes in basic ZVS three-level DC-DC converter. With less components, the proposed converter can still have a stable clamping capacitor voltage, which is clamped at half of the dc link voltage. Moreover, the ZVS performance will be influenced by removing the clamping...
High-Voltage DC-DC Converter Topology for PV Energy Utilization - Investigation and Implementation
DEFF Research Database (Denmark)
Sanjeevikumar, Padmanaban; Blaabjerg, Frede; Wheeler, Patrick
2017-01-01
This paper exploited the utilization of photovoltaic (PV) energy system with high-voltage (HV) output DC-DC converter. Classical boost converters are used for both renewable energy integration and HV applications, but limited by reducing output/efficiency in performance. Moreover, as parasitic...... elements suppress the power transfer ratio, converter needs to maximize the PV energy utilization. This investigation study focused to include additional parasitic elements (voltage-lift technique) to a standard DC-DC buck converter and to overcome all the above drawbacks to maximize the PV power...
Hybrid Droop Control Strategy Applied to Grid-Supporting Converters in DC Microgrids
DEFF Research Database (Denmark)
Han, Renke; Meng, Lexuan; Guerrero, Josep M.
2017-01-01
The paper proposes a hybrid droop control strategy to enhance the stability and increase maximum constant power loads (CPLs) capability of DC microgrids in a realistic scenario. By capturing the detailed model of inner control loops and hybrid droop control and general dc MG topology, a thorough...
Ac and dc motor flooding times
International Nuclear Information System (INIS)
Crowley, D.A.; Hinton, J.H.
1988-01-01
Reactor safety studies, such as the emergency cooling system (ECS) limits analyses and the probabilistic risk assessment, require that the flood-out times be calculated for the ac and dc motors at the -40 foot level. New calculations are needed because dams of an improved design have been installed between the pump room and motor room, and because updated leak rate calculations have shown that the maximum possible leak rate is larger than that which had been previously calculated. The methodology for calculating the motor flood-out times has also been improved. A computer program has been written to calculate flood-out times for various leak rates and sump pump operabilities. For ECS limits analyses, the worst case dc motor flood-out times are 161 and 297 seconds in LKC and P-areas, respectively. These times are for a 135,468 gpm leak that first flows to the motor room and all of the sump pumps are off
A Novel PPFHB Bidirectional DC-DC Converter for Supercapacitor Application
DEFF Research Database (Denmark)
Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael Andreas E.
2009-01-01
This paper presents a novel bidirectional DC-DC converter for the supercapacitor application. In the proposed converter, push-pull forward with half bridge (PPFHB) voltage doubler structure is used to reduce the number of the power switches and get higher voltage gain. Based on phase-shift modula......This paper presents a novel bidirectional DC-DC converter for the supercapacitor application. In the proposed converter, push-pull forward with half bridge (PPFHB) voltage doubler structure is used to reduce the number of the power switches and get higher voltage gain. Based on phase...
Novel family of quasi-Z-source DC/DC converters derived from current-fed push-pull converters
DEFF Research Database (Denmark)
Chub, Andrii; Husev, Oleksandr; Vinnikov, Dmitri
2014-01-01
This paper is devoted to the step-up quasi-Z-source dc/dc push-pull converter family. The topologies in the family are derived from the isolated boost converter family by replacing input inductors with the quasi-Z-source network. Two new topologies are proposed, analyzed and compared. Theoretical...
Design and Testing of Boost Type DC/DC Converter for DC Motor Control Applications
Samman, Faizal Arya; Akil, Yusri Syam; Noor, Nirwan A.
2017-01-01
in The Proceeding of The 2nd International Symposium on Smart Material and Mechatronics 2015 This paper presents the design and testing of a boost type DC/DC converter circuit, which can be used for DC motor control applications. The Boost converter is designed using DC chopper and DC chopper cascade configurations. The experimental setup was made by connecting the boost converter circuit with four types of DC motor, i.e. self-excited DC motor shunt, series, compound and separately exci...
DEFF Research Database (Denmark)
Rodriguez, Pedro; Busquets-Monge, Sergio; Blaabjerg, Frede
2011-01-01
This work presents the development of the space vector pulse width modulation (SVPWM) of a new multi-level converter topology. First, the proposed converter and its natural space vector diagram are presented. Secondly, a modified space vector diagram based on the virtual-vectors technique is show...
Ultra-high Efficiency DC-DC Converter using GaN Devices
DEFF Research Database (Denmark)
Ramachandran, Rakesh
2016-01-01
properties of GaN devices can be utilized in power converters to make them more compact and highly efficient. This thesis entitled “Ultra-high Efficiency DC-DC Converter using GaN devices” focuses on achieving ultra-high conversion efficiency in an isolated dc-dc converter by the optimal utilization of Ga...... for many decades. However, the rate of improvement slowed as the silicon power materials asymptotically approached its theoretical bounds. Compared to Si, wideband gap materials such as Silicon Carbide (SiC) and Gallium Nitride (GaN) are promising semiconductors for power devices due to their superior...... in this thesis. Efficiency measurements from the hardware prototype of both the topologies are also presented in this thesis. Finally, the bidirectional operation of an optimized isolated dc-dc converter is presented. The optimized converter has achieved an ultra-high efficiency of 98.8% in both directions...
Test Results of Selected Commercial DC/DC Converters under Cryogenic Temperatures - A Digest
Patterson, Richard; Hammoud, Ahmad
2010-01-01
DC/DC converters are widely used in space power systems in the areas of power management and distribution, signal conditioning, and motor control. Design of DC/DC converters to survive cryogenic temperatures will improve the power system performance, simplify design, and reduce development and launch costs. In this work, the performance of nine COTS modular, low-tomedium power DC/DC converters was investigated under cryogenic temperatures. The converters were evaluated in terms of their output regulation, efficiency, and input and output currents. At a given temperature, these properties were obtained at various input voltages and at different load levels. A summary on the performance of the tested converters was given. More comprehensive testing and in-depth analysis of performance under long-term exposure to extreme temperatures are deemed necessary to establish the suitability of these and other devices for use in the harsh environment of space exploration missions.
Study on the Control Algorithm of Two-Stage DC-DC Converter for Electric Vehicles
Directory of Open Access Journals (Sweden)
Changhao Piao
2014-01-01
Full Text Available The fast response, high efficiency, and good reliability are very important characteristics to electric vehicles (EVs dc/dc converters. Two-stage dc-dc converter is a kind of dc-dc topologies that can offer those characteristics to EVs. Presently, nonlinear control is an active area of research in the field of the control algorithm of dc-dc converters. However, very few papers research on two-stage converter for EVs. In this paper, a fixed switching frequency sliding mode (FSFSM controller and double-integral sliding mode (DISM controller for two-stage dc-dc converter are proposed. And a conventional linear control (lag is chosen as the comparison. The performances of the proposed FSFSM controller are compared with those obtained by the lag controller. In consequence, the satisfactory simulation and experiment results show that the FSFSM controller is capable of offering good large-signal operations with fast dynamical responses to the converter. At last, some other simulation results are presented to prove that the DISM controller is a promising method for the converter to eliminate the steady-state error.
DEFF Research Database (Denmark)
Hu, Zhenda; Wu, Rui; Yang, Xiaodong
2014-01-01
With the development of High Voltage DC Transmission (HVDC) technology, there will be more and more HVDC-AC hybrid transmission system in the world. A basic challenge in HVDC-AC hybrid transmission systems is to optimize the power sharing between DC and AC lines, which become more severe when sup...... control strategy of Modular Multi-level Converter in VSC-HVDC, which can optimize converter output power according to passive network loading variation. Proposal method is studied with a case study of a VSC-HVDC AC hybrid project by PSCAD/EMTDC simulations....
Interior point algorithm-based power flow optimisation of a combined AC and DC multi-terminal grid
Directory of Open Access Journals (Sweden)
Farhan Beg
2015-01-01
Full Text Available The high cost of power electronic equipment, lower reliability and poor power handling capacity of the semiconductor devices had stalled the deployment of systems based on DC (multi-terminal direct current system (MTDC networks. The introduction of voltage source converters (VSCs for transmission has renewed the interest in the development of large interconnected grids based on both alternate current (AC and DC transmission networks. Such a grid platform also realises the added advantage of integrating the renewable energy sources into the grid. Thus a grid based on DC MTDC network is a possible solution to improve energy security and check the increasing supply demand gap. An optimal power solution for combined AC and DC grids obtained by the solution of the interior point algorithm is proposed in this study. Multi-terminal HVDC grids lie at the heart of various suggested transmission capacity increases. A significant difference is observed when MTDC grids are solved for power flows in place of conventional AC grids. This study deals with the power flow problem of a combined MTDC and an AC grid. The AC side is modelled with the full power flow equations and the VSCs are modelled using a connecting line, two generators and an AC node. The VSC and the DC losses are also considered. The optimisation focuses on several different goals. Three different scenarios are presented in an arbitrary grid network with ten AC nodes and five converter stations.
Design and implementation of co-operative control strategy for hybrid AC/DC microgrids
Mahmud, Rasel
This thesis is mainly divided in two major sections: 1) Modeling and control of AC microgrid, DC microgrid, Hybrid AC/DC microgrid using distributed co-operative control, and 2) Development of a four bus laboratory prototype of an AC microgrid system. At first, a distributed cooperative control (DCC) for a DC microgrid considering the state-of-charge (SoC) of the batteries in a typical plug-in-electric-vehicle (PEV) is developed. In DC microgrids, this methodology is developed to assist the load sharing amongst the distributed generation units (DGs), according to their ratings with improved voltage regulation. Subsequently, a DCC based control algorithm for AC microgrid is also investigated to improve the performance of AC microgrid in terms of power sharing among the DGs, voltage regulation and frequency deviation. The results validate the advantages of the proposed methodology as compared to traditional droop control of AC microgrid. The DCC-based control methodology for AC microgrid and DC microgrid are further expanded to develop a DCC-based power management algorithm for hybrid AC/DC microgrid. The developed algorithm for hybrid microgrid controls the power flow through the interfacing converter (IC) between the AC and DC microgrids. This will facilitate the power sharing between the DGs according to their power ratings. Moreover, it enables the fixed scheduled power delivery at different operating conditions, while maintaining good voltage regulation and improved frequency profile. The second section provides a detailed explanation and step-by-step design and development of an AC/DC microgrid testbed. Controllers for the three-phase inverters are designed and tested on different generation units along with their corresponding inductor-capacitor-inductor (LCL) filters to eliminate the switching frequency harmonics. Electric power distribution line models are developed to form the microgrid network topology. Voltage and current sensors are placed in the proper
Design of current source DC/DC converter and inverter for 2kW fuel cell application
DEFF Research Database (Denmark)
Andreiciks, A.; Steiks, I.; Krievs, O.
2013-01-01
In order to use hydrogen fuel cell in domestic applications either as main power supply or backup power source, the low DC output voltage of the fuel cell has to be matched to the voltage level and frequency of the utility grid AC voltage. The interfacing power converter systems usually consist...... system is designed for interfacing a 2kW proton exchange membrane (PEM) fuel cell....
Comparative evaluation of bidirectional dual active bridge DC-DC converter variants
Sfakianakis, G.; Everts, J.; Huisman, H.; Lomonova, E.A.
2016-01-01
For the realization of DC-DC converters in automotive industry, the Dual Active Bridge (DAB) converter seems to be a promising choice because of its soft-switching and high-power-density capability. Contrary to the traditional 3 level - 3 level (3-3L) DAB, a 3 level - 5 level (3-5L) DAB can operate
Single Event Burnout in DC-DC Converters for the LHC Experiments
Energy Technology Data Exchange (ETDEWEB)
Claudio H. Rivetta et al.
2001-09-24
High voltage transistors in DC-DC converters are prone to catastrophic Single Event Burnout in the LHC radiation environment. This paper presents a systematic methodology to analyze single event effects sensitivity in converters and proposes solutions based on de-rating input voltage and output current or voltage.
A DC-DC Converter with Wide Input Voltage Range for Fuel Cell and Supercapacitor Application
DEFF Research Database (Denmark)
Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael Andreas E.
2009-01-01
This paper proposes a novel phase-shift plus duty cycle controlled hybrid bi-directional DC-DC converter based on fuel cells and supercapacitors. The described converter employs two high frequency transformers to couple the half-bridge and full-bridge circuits together in the primary side...
Silva-Ortigoza, R.; Silva-Ortigoza, G.; Hernandez-Guzman, V. M.; Saldana-Gonzalez, G.; Marcelino-Aranda, M.; Marciano-Melchor, M.
2012-01-01
We introduce a dc/dc boost power converter as a didactic prototype intended to support courses on electric circuit analysis experimentally. The corresponding mathematical model is obtained, the converter is designed and an experimental setup is described, constructed and tested. Simplicity of construction as well as low cost of components renders…
High-power three-port three-phase bidirectional DC-DC converter
Tao, H.; Duarte, J.L.; Hendrix, M.A.M.
2007-01-01
This paper proposes a three-port three-phase bidirectional dc-dc converter suitable for high-power applications. The converter combines a slow primary source and a fast storage to power a common load (e.g., an inverter). Since this type of system is gaining popularity in sustainable energy
Magnetically coupled high-gain Y-source isolated DC/DC converter
DEFF Research Database (Denmark)
Siwakoti, Yam P.; Loh, Poh Chiang; Blaabjerg, Frede
2014-01-01
A new form of magnetically coupled DC/DC converter is proposed for medium power applications (250 W to 2 kW), requiring a high-voltage gain, short inductive charging time and galvanic isolation. The proposed converter can be realised using a unique Y-source impedance network and a two-switch push...
International Nuclear Information System (INIS)
Silva-Ortigoza, R; Marciano-Melchor, M; Silva-Ortigoza, G; Hernández-Guzmán, V M; Saldaña-González, G; Marcelino-Aranda, M
2012-01-01
We introduce a dc/dc boost power converter as a didactic prototype intended to support courses on electric circuit analysis experimentally. The corresponding mathematical model is obtained, the converter is designed and an experimental setup is described, constructed and tested. Simplicity of construction as well as low cost of components renders the feasible introduction of this equipment in undergraduate laboratories. (paper)
Selection of DC/DC converter for offshore wind farms with MVDC power collection
DEFF Research Database (Denmark)
Dincan, Catalin Gabriel; Kjær, Philip Carne; Chen, Yu-Hsing
2017-01-01
Four DC/DC converters are analyzed and compared with respects to availability, efficiency, ratings, repair costs and power density. Intended application is offshore wind farms with MVDC power collection. The selected topology is a new series resonant converter, which offers 99% efficiency across...
Directory of Open Access Journals (Sweden)
Eka Prasetyono
2015-09-01
Full Text Available Bidirectional DC-DC converter is needed in the energy storage system. The converter topology used in this paper was a non-isolated bidirectional DC-DC buck-boost converter. This converter worked in two ways, which the charging mode stored energy into battery when load current was less than nominal main DC current (set point and discharging mode transferred energy from battery to the load when its current exceeded set point value. Both of these modes worked automatically according to the load current. The charging and discharging currents were controlled by fuzzy logic controller which was implemented on microcontroller ARM Cortex-M4F STM32F407VG. This paper compares two types of fuzzy membership function (triangular and sigmoid in controlling bidirectional DC-DC converter. The results showed that fuzzy logic controller with triangle membership function and sigmoid as control bidirectional DC-DC converter had no significant different response, both had an average error for charging and discharging process under 4% with ripple current on the main DC bus around 0.5%. The computing time of program for fuzzy logic controller with triangular membership functions had 19.01% faster than sigmoid, and fuzzy logic computation time on a microcontroller with hardware floating point was 60% faster than software floating point.
Precharge strategies for isolated modular DC-DC converters under two different start-up conditions
DEFF Research Database (Denmark)
Zhang, Yi; Wang, Huai; Li, Binbin
2017-01-01
The isolated modular DC-DC converter (IMDCC) is a new topology designed to connect high-voltage direct current (HVDC) lines with different voltage levels, which ties two DC grids by using two modular multilevel converters (MMCs) via a medium-frequency transformer. Due to the large value of capaci......The isolated modular DC-DC converter (IMDCC) is a new topology designed to connect high-voltage direct current (HVDC) lines with different voltage levels, which ties two DC grids by using two modular multilevel converters (MMCs) via a medium-frequency transformer. Due to the large value...... of capacitance in the IMDCC, proper precharge strategies before the start-up are significant for the safety and reliability of the whole system. This paper presents two closed-loop precharge control strategies to fully charge the sub-module (SM) capacitors of the IMDCC, considering two different start...
DEFF Research Database (Denmark)
Maroti, Pandav Kiran; Padmanaban, Sanjeevikumar; Blaabjerg, Frede
2017-01-01
The proposed work is on the Modified SEPIC Converter (MSC) and its different configuration with switched inductor structure (SI). In this paper, five different configuration of modified SEPIC Converter namely-Modified SEPIC converter without switched inductor configuration (MSC-LLL), Modified SEP...
Modified High Voltage Conversion Inverting Cuk DC-DC Converter for Renewable Energy Application
DEFF Research Database (Denmark)
Maroti, Pandav Kiran; Padmanaban, Sanjeevikumar; Wheeler, Patrick
2017-01-01
controlled device DC-DC topology. The voltage conversion ratio of proposed converter has increased by ten times of the conventional Cuk converterat a duty ratio of 90%. The detailed analysis of the voltage conversion ratio and losses occur due to internal resistance of components is done in the paper......The proposed exertion represents the modified high voltage conversion Cuk converter for renewable energy application. The proposed Cuk converter is a combination of the conventional boost converter and Cuk converter. The arrangement of the proposed converter make, such as, it becomes the single...
Modeling, Analysis and Control of Different DC-DC Converter Topologies for Photo Voltaic Emulator
Directory of Open Access Journals (Sweden)
Mohammad Tauquir Iqbal
2016-05-01
Full Text Available This paper presents the modeling, analysis and control of different DC-DC converter topologies to emulate the photovoltaic (PV system. A PV emulator is basically a DC-DC converter having same electrical characteristics that of solar PV panel. The emulator helps to achieve real characteristics of PV system in a better way in an environment where using actual PV systems can produce inconsistent results due to variation in weather conditions. The paper describes different types of DC-DC converters like buck, Resonant and Quasi Resonant Converter. The complete system is modelled in MATLAB® Simulink SimPowerSystem software package. The Simulation results obtained from the MATLAB® Simulink SimPowerSystem software package for different topologies under steady and dynamic conditions are analyzed and presented. An evaluation table is also presented at the end of the paper, presenting the effectiveness of each topology.
Application handbook for a Standardized Control Module (SCM) for DC-DC converters, volume 1
Lee, F. C.; Mahmoud, M. F.; Yu, Y.
1980-01-01
The standardized control module (SCM) was developed for application in the buck, boost and buck/boost DC-DC converters. The SCM used multiple feedback loops to provide improved input line and output load regulation, stable feedback control system, good dynamic transient response and adaptive compensation of the control loop for changes in open loop gain and output filter time constraints. The necessary modeling and analysis tools to aid the design engineer in the application of the SCM to DC-DC Converters were developed. The SCM functional block diagram and the different analysis techniques were examined. The average time domain analysis technique was chosen as the basic analytical tool. The power stage transfer functions were developed for the buck, boost and buck/boost converters. The analog signal and digital signal processor transfer functions were developed for the three DC-DC Converter types using the constant on time, constant off time and constant frequency control laws.
Application handbook for a Standardized Control Module (SCM) for DC-DC converters, volume 1
Lee, F. C.; Mahmoud, M. F.; Yu, Y.
1980-04-01
The standardized control module (SCM) was developed for application in the buck, boost and buck/boost DC-DC converters. The SCM used multiple feedback loops to provide improved input line and output load regulation, stable feedback control system, good dynamic transient response and adaptive compensation of the control loop for changes in open loop gain and output filter time constraints. The necessary modeling and analysis tools to aid the design engineer in the application of the SCM to DC-DC Converters were developed. The SCM functional block diagram and the different analysis techniques were examined. The average time domain analysis technique was chosen as the basic analytical tool. The power stage transfer functions were developed for the buck, boost and buck/boost converters. The analog signal and digital signal processor transfer functions were developed for the three DC-DC Converter types using the constant on time, constant off time and constant frequency control laws.
Superconducting energy stabilizer with charging and discharging DC-DC converters
International Nuclear Information System (INIS)
Kim, S.H.; Kostecki, E.L.; DeWinkel, C.C.
1992-01-01
This patent describes a superconducting energy stabilizer having multiple load connections and employing DC-DC conversion for storing energy in a superconducting inductive energy storage device having a first end and a second end, and for releasing the stored energy from the superconducting inductive energy storage device to a load or loads or to a utility or an industrial electrical distribution system, the superconducting energy stabilizer having multiple load connections and employing DC-DC conversion. It comprises: energy storage cell means for supplying energy to the load, discharging DC-DC converter means for releasing energy from the superconducting inductive energy storage device to the energy storage cell means, the discharging DC-DC converter means having input terminals, output terminals, and a discharging control line means for carrying signals controlling the operation of the discharging DC-DC converter means, one of the input terminals of the discharging DC-DC converter means coupled to the first end of the superconducting energy storage device
AC-DC integrated load flow calculation for variable speed offshore wind farms
DEFF Research Database (Denmark)
Zhao, Menghua; Chen, Zhe; Blaabjerg, Frede
2005-01-01
This paper proposes a sequential AC-DC integrated load flow algorithm for variable speed offshore wind farms. In this algorithm, the variable frequency and the control strategy of variable speed wind turbine systems are considered. In addition, the losses of wind turbine systems and the losses...... of converters are also integrated into the load flow algorithm. As a general algorithm, it can be applied to different types of wind farm configurations, and the load flow is related to the wind speed....
Improved Control Strategy for T-type Isolated DC/DC Converters
DEFF Research Database (Denmark)
Liu, Dong; Deng, Fujin; Wang, Yanbo
2017-01-01
T-type isolated DC/DC converters have recently attracted attention due to their numerous advantages, including few components, low cost, and symmetrical operation of transformers. This study proposes an improved control strategy for increasing the efficiency of T-type isolated DC/DC converters....... Under the proposed strategy, the primary circulating current flows through the auxiliary switches (metal–oxide–semiconductor field-effect transistors) instead of their body diodes in free-wheeling periods. Such feature can reduce conduction losses, thereby improving the efficiency of T-type isolated DC...
An improved power control strategy for hybrid AC-DC microgrids
DEFF Research Database (Denmark)
Baharizadeh, Mehdi; Karshenas, Hamid Reza; Guerrero, Josep M.
2018-01-01
This paper presents a new droop-based control strategy for hybrid microgrids (HMG) with improved power sharing. When ac microgrids (AC-MG) and dc microgrids (DC-MG) are present in a distribution grid, there is an opportunity to interconnect them via an interlinking converter (IC) and form a HMG......, the possibility of participation of IC in AC-MG reactive power adds some complexity to a HMG control system. In this paper, a new decentralized control strategy is presented for a HMG which relies on regulating the voltage magnitude of a common bus in each microgrid. In this regard, new droop characteristics...... for sources across both microgrids as well as IC are proposed. The proposed droop characteristics result in better active/reactive power sharing across both microgrids and at the same time results in better voltage regulation. The derivation of new droop characteristics is thoroughly discussed in this paper...
Development of AC-DC power system simulator
International Nuclear Information System (INIS)
Ichikawa, Tatsumi; Ueda, Kiyotaka; Inoue, Toshio
1984-01-01
A modeling and realization technique is described for realtime plant dynamics simulation of nuclear power generating unit in AC-DC power system simulator. Dynamic behavior of reactor system and steam system is important for investigation a further adequate unit control and protection system to system faults in AC and DC power system. Each unit of two nuclear power generating unit in the power system simulator consists of micro generator, DC motors, flywheels and process computer. The DC motor and flywheel simulates dynamic characteristics of steam turbine, and process computer simulates plant dynamics by digital simulation. We have realized real-time plant dynamics simulation by utilizing a high speed process I/O and a high speed digital differential analyzing processor (DDA) in which we builted a newly developed simple plant model. (author)
Power Controllability of Three-phase Converter with Unbalanced AC Source
DEFF Research Database (Denmark)
Ma, Ke; Liserre, Marco; Blaabjerg, Frede
2013-01-01
Three-phase DC-AC power converters suffer from power oscillation and overcurrentt problems in case of unbalanced AC source voltage that can be caused by grid/generator faults. Existing solutions to handle these problems are properly selecting and controlling the positive and negative sequence...... currents. In this work a new series of control strategies which utilize the zero-sequence components are proposed to enhance the power control ability under this adverse conditions. It is concluded that by introducing proper zero sequence current controls and corresponding circuit configurations, the power...... converter can enable more flexible control targets, achieving better performances in the delivered power and load current when suffering from unbalanced AC sources....
Power Controllability of Three-phase Converter with Unbalanced AC Source
DEFF Research Database (Denmark)
Ma, Ke; Chen, Wenjie; Liserre, Marco
2015-01-01
Three-phase DC-AC power converters suffer from power oscillation and overcurrent problems in case of unbalanced AC source voltage that can be caused by grid/generator faults. Existing solutions to handle these problems are properly selecting and controlling the positive and negative sequence...... currents. In this work a new series of control strategies which utilize the zerosequence components are proposed to enhance the power control ability under this adverse condition. It is concluded that by introducing proper zero sequence current controls and corresponding circuit configurations, the power...... converter can enable more flexible control targets, achieving better performances in the delivered power and load current when suffering from unbalanced AC voltage....
Push-pull with recovery stage high-voltage DC converter for PV solar generator
Nguyen, The Vinh; Aillerie, Michel; Petit, Pierre; Pham, Hong Thang; Vo, Thành Vinh
2017-02-01
A lot of systems are basically developed on DC-DC or DC-AC converters including electronic switches such as MOS or bipolar transistors. The limits of efficiency are quickly reached when high output voltages and high input currents are needed. This work presents a new high-efficiency-high-step-up based on push-pull DC-DC converter integrating recovery stages dedicated to smart HVDC distributed architecture in PV solar energy production systems. Appropriate duty cycle ratio assumes that the recovery stage work with parallel charge and discharge to achieve high step-up voltage gain. Besides, the voltage stress on the main switch is reduced with a passive clamp circuit and thus, low on-state resistance Rdson of the main switch can be adopted to reduce conduction losses. Thus, the efficiency of a basic DC-HVDC converter dedicated to renewable energy production can be further improved with such topology. A prototype converter is developed, and experimentally tested for validation.
A suitable model plant for control of the set fuel cell-DC/DC converter
Energy Technology Data Exchange (ETDEWEB)
Andujar, J.M.; Segura, F.; Vasallo, M.J. [Departamento de Ingenieria Electronica, Sistemas Informaticos y Automatica, E.P.S. La Rabida, Universidad de Huelva, Ctra. Huelva - Palos de la Frontera, S/N, 21819 La Rabida - Palos de la Frontera Huelva (Spain)
2008-04-15
In this work a state and transfer function model of the set made up of a proton exchange membrane (PEM) fuel cell and a DC/DC converter is developed. The set is modelled as a plant controlled by the converter duty cycle. In addition to allow setting the plant operating point at any point of its characteristic curve (two interesting points are maximum efficiency and maximum power points), this approach also allows the connection of the fuel cell to other energy generation and storage devices, given that, as they all usually share a single DC bus, a thorough control of the interconnected devices is required. First, the state and transfer function models of the fuel cell and the converter are obtained. Then, both models are related in order to achieve the fuel cell+DC/DC converter set (plant) model. The results of the theoretical developments are validated by simulation on a real fuel cell model. (author)
Disrupted bandcount doubling in an AC-DC boost PFC circuit modeled by a time varying map
DEFF Research Database (Denmark)
Avrutin, Viktor; Zhusubaliyev, Zhanybai T.; Aroudi, Abdelali El
2016-01-01
Power factor correction converters are used in many applications as AC-DC power supplies aiming at maintaining a near unity power factor. Systems of this type are known to exhibit nonlinear phenomena such as sub-harmonic oscillations and chaotic regimes that cannot be described by traditional ave...
A New Sliding Mode Controller for DC/DC Converters in Photovoltaic Systems
Directory of Open Access Journals (Sweden)
M. Sarvi
2013-01-01
Full Text Available DC/DC converters are widely used in many industrial and electrical systems. As DC/DC converters are nonlinear and time-variant systems, the application of linear control techniques for the control of these converters is not suitable. In this paper, a new sliding mode controller is proposed as the indirect control method and compared to a simple direct control method in order to control a buck converter in photovoltaic applications. The solar arrays are dependent power sources with nonlinear voltage-current characteristics under different environmental conditions (insolation and temperature. From this point of view, the DC/DC converter is particularly suitable for the application of the sliding mode control in photovoltaic application, because of its controllable states. Simulations are performed in Matlab/Simulink software. The simulation results are presented for a step change in reference voltage and input voltage as well as step load variations. The simulations results of proposed method are compared with the conventional PID controller. The results show the good performance of the proposed sliding mode controller. The proposed method can be used for the other DC/DC converter.
DC motor operation controlled from a DC/DC power converter in pulse mode with low duty cycle
Stefanov, Goce; Kukuseva, Maja; Citkuseva Dimitrovska, Biljana
2016-01-01
In this paper pulse mode of operation of DC motor controlled by DC/DC power converter is analyzed. DC motor operation with time intervals in which the motor operates without output load is of interest. In this mode it is possible the motor to restore energy. Also, in the paper are represented calculations for the amount of the restored energy in the pulse mode operation of the motor for different duty cycles.
DC-DC power converter research for Orbiter/Station power exchange
Ehsani, M.
1993-01-01
This project was to produce innovative DC-DC power converter concepts which are appropriate for the power exchange between the Orbiter and the Space Station Freedom (SSF). The new converters must interface three regulated power buses on SSF, which are at different voltages, with three fuel cell power buses on the Orbiter which can be at different voltages and should be tracked independently. Power exchange is to be bi-directional between the SSF and the Orbiter. The new converters must satisfy the above operational requirements with better weight, volume, efficiency, and reliability than is available from the present conventional technology. Two families of zero current DC-DC converters were developed and successfully adapted to this application. Most of the converters developed are new and are presented.
A Feedback Passivation Design for DC Microgrid and Its DC/DC Converters
Directory of Open Access Journals (Sweden)
Feifan Ji
2016-12-01
Full Text Available There are difficulties in analyzing the stability of microgrids since they are located on various network structures. However, considering that the network often consists of passive elements, the passivity theory is applied in this paper to solve the above-mentioned problem. It has been formerly shown that when the network is weakly strictly positive real (WSPR, the DC microgrid is stable if all interfaces between the microgrid and converters are made to be passive, which is called interface passivity. Then, the feedback passivation method is proposed for the controller design of various DC–DC converters to achieve the interface passivity. The interface passivity is different from the passivity of closed-loop systems on which the passivity based control (PBC concentrates. The feedback passivation design is detailed for typical buck converters and boost converters in terms of conditions that the controller parameters should satisfy. The theoretical results are verified by a hardware-in-loop real-time labotray (RTLab simulation of a DC microgrid with four generators.
Digital peak current mode control with adaptive slope compensation for DC-DC converters
DEFF Research Database (Denmark)
Andersen, Karsten Holm; Nymand, Morten
2017-01-01
performance and stability of current mode control. The presented method adapt to DC-DC converter operating conditions by estimating the rising and falling inductor current slopes, to apply a current slope compensation value to obtain a constant quality factor. The experimental results verifies the theoretical......This paper presents an adaptive slope compensation method for peak current mode control of digital controlled DC-DC converters, which controls the quality factor of the complex conjugated poles at half the switching frequency. Using quality factor control enables optimization of the dynamic...
DC Pollution of AC Mains due to modern compact fluorescent light lamps and LED lamps
Keyer, Cornelis H.A.; Timens, R.B.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes
2013-01-01
Modern so-called energy efficient equipment often draw current only during a very short period of the period of a power supply mains. This is causing unwanted non-sinusoidal and harmonic currents. In some cases even a single diode is used for rectification causing direct current (DC) in the mains
A direct power conversion topology for grid integrations of hybrid AC/DC resources
DEFF Research Database (Denmark)
Liu, Xiong; Loh, Poh Chiang; Wang, Peng
2012-01-01
and modulation schemes are proposed to extract the commanded current from the input ac/dc sources to the grid and guarantee high quality ac/dc inputs and ac output current waveforms with unity power factors. The proposed modulation scheme for sinusoidal outputs of the VMC is mathematically proved...
Laboratory manual for pulse-width modulated DC-DC power converters
Kazimierczuk, Marian K
2015-01-01
Designed to complement a range of power electronics study resources, this unique lab manual helps students to gain a deep understanding of the operation, modeling, analysis, design, and performance of pulse-width modulated (PWM) DC-DC power converters. Exercises focus on three essential areas of power electronics: open-loop power stages; small-signal modeling, design of feedback loops and PWM DC-DC converter control schemes; and semiconductor devices such as silicon, silicon carbide and gallium nitride. Meeting the standards required by industrial employers, the lab manual combines program
DEFF Research Database (Denmark)
Qin, Zian; Wang, Huai; Blaabjerg, Frede
2014-01-01
Three-phase back-to-back converters have a wide range of applications (e.g. wind turbines) in which the reliability and cost-effectiveness are of great concern. Among other components and interconnections, DC-link capacitors are one of the weak links influenced by environmental stresses (e.......g. ambient temperature, humidity, etc.) and operating stresses (e.g. voltage, ripple current). This paper serves to investigate the ways of reducing ripple current stresses of DC-link capacitors in back-toback converters. The outcome could benefit to achieve either an extended lifetime for a designed DC...
Directory of Open Access Journals (Sweden)
Haojie Wang
2016-07-01
Full Text Available It is a common practice for storage batteries to be connected to DC microgrid buses through DC-DC converters for voltage support on islanded operation mode. A feed-forward control based dual-loop constant voltage PI control for three-branch interleaved DC-DC converters (TIDC is proposed for storage batteries in DC microgrids. The working principle of TIDC is analyzed, and the factors influencing the response rate based on the dual-loop constant voltage control for TIDC are discussed, and then the method of feed-forward control for TIDC is studied to improve the response rate for load changing. A prototype of the TIDC is developed and an experimental platform is built. The experiment results show that DC bus voltage sags or swells caused by load changing can be reduced and the time for voltage recovery can be decreased significantly with the proposed feed-forward control.
DEFF Research Database (Denmark)
Wang, Haojie; Han, Minxiao; Yan, Wenli
2016-01-01
It is a common practice for storage batteries to be connected to DC microgrid buses through DC-DC converters for voltage support on islanded operation mode. A feed-forward control based dual-loop constant voltage PI control for three-branch interleaved DC-DC converters (TIDC) is proposed...... for storage batteries in DC microgrids. The working principle of TIDC is analyzed, and the factors influencing the response rate based on the dual-loop constant voltage control for TIDC are discussed, and then the method of feed-forward control for TIDC is studied to improve the response rate for load...... changing. A prototype of the TIDC is developed and an experimental platform is built. The experiment results show that DC bus voltage sags or swells caused by load changing can be reduced and the time for voltage recovery can be decreased significantly with the proposed feed-forward control....
Coordinated control of three-phase AC and DC type EV–ESSs for efficient hybrid microgrid operations
International Nuclear Information System (INIS)
Rahman, Md Shamiur; Hossain, M.J.; Lu, Junwei
2016-01-01
Highlights: • A coordinated control is proposed for three-phase AC and DC type electric vehicles. • A four-quadrant interlinking converter is designed for hybrid microgrid operations. • Concurrent real irradiation data and commercial load profile are used for testing. • Unbalanced scenario due to single-phase electric vehicle charging is considered. • Improved AC and DC bus voltages and frequency regulations are achieved. - Abstract: This paper presents a three-layered coordinated control to incorporate three-phase (3P) alternating current (AC) and direct current (DC) type electric vehicle energy storage systems (EV–ESSs) for improved hybrid AC/DC microgrid operations. The first layer of the algorithm ensures DC subgrid management by regulating the DC bus voltage and DC side power management. The second and third layer manages AC subgrid by regulating the AC bus voltage and the frequency by managing reactive and active power respectively. The multi-layered coordination is embedded into the microgrid central controller (MGCC) which controls the interlinking controller in between AC and DC microgrid and the interfacing controllers of the participating electric vehicles (EVs) and distributed generation (DG) units. The whole system is designed in MATLAB/SIMULINK® environment resembling the under construction microgrid at Griffith University, Australia. Extensive case studies are performed using real life irradiation data and commercial loads of the campus buildings. Impacts of homogeneous and heterogeneous single-phase EV charging are investigated to observe both balanced and unbalanced scenarios. Synchronization during the transition from the islanded to grid-tied mode is tested considering a contingency situation. From the comparative simulation results it is evident that the proposed controller exhibits effective, reliable and robust performance for all the cases.
Padmanaban, Sanjeevikumar; Grandi, Gabriele; Blaabjerg, Frede; Wheeler, Patrick; Siano, Pierluigi; Hammami, Manel
2017-01-01
Classical DC-DC converters used in high voltage direct current (HVDC) power transmission systems, lack in terms of efficiency, reduced transfer gain and increased cost with sensor (voltage/current) numbers. Besides, the internal self-parasitic behavior of the power components reduces the output voltage and efficiency of classical HV converters. This paper deals with extra high-voltage (EHV) dc-dc boost converter by the application of voltage-lift technique to overcome the aforementioned defic...
A Novel Quasi-SEPIC High-Voltage Boost DC-DC Converter
DEFF Research Database (Denmark)
Siwakoti, Yam Prasad; N. Soltani, Mohsen; Blaabjerg, Frede
2017-01-01
This paper proposes a modified coupled-inductor SEPIC dc-dc converter for low power and high voltage gain applications such as for piezoelectric drive systems. The converter uses the same components as of SEPIC converter with an additional diode. Compared to conventional topologies with similar...... voltage gain expression, the proposed topology uses less components to achieve same or even higher voltage gain. This helps to design a very compact and light weight converter with higher power density at lower cost. Due to brevity, the principle of operation, theoretical analysis and comparison supported...
DC-DC Converter Topology Assessment for Large Scale Distributed Photovoltaic Plant Architectures
Energy Technology Data Exchange (ETDEWEB)
Agamy, Mohammed S; Harfman-Todorovic, Maja; Elasser, Ahmed; Sabate, Juan A; Steigerwald, Robert L; Jiang, Yan; Essakiappan, Somasundaram
2011-07-01
Distributed photovoltaic (PV) plant architectures are emerging as a replacement for the classical central inverter based systems. However, power converters of smaller ratings may have a negative impact on system efficiency, reliability and cost. Therefore, it is necessary to design converters with very high efficiency and simpler topologies in order not to offset the benefits gained by using distributed PV systems. In this paper an evaluation of the selection criteria for dc-dc converters for distributed PV systems is performed; this evaluation includes efficiency, simplicity of design, reliability and cost. Based on this evaluation, recommendations can be made as to which class of converters is best fit for this application.
Improvement of burst-mode control of piezoelectric transformer based DC/DC converter
International Nuclear Information System (INIS)
Vasic, Dejan; Liu, Yuan-Ping; Costa, François; Schwander, Denis; Wu, Wen-Jong
2013-01-01
Burst-mode operation is adopted sometimes in piezoelectric transformer based converters for two major purposes: (1) to achieve voltage regulation in DC/DC converters and (2) to achieve dimming control in backlight inverters. Burst-mode control enables the converter to operate at a constant switching frequency as well as to maintain good efficiency at light load conditions. However, in practice, the piezoelectric transformer cannot instantly stop vibrating in the burst-mode due to its high quality factor. The delay in the output voltage change resulting from this behavior influences the accuracy of the regulation. This paper proposes a control strategy to make the piezoelectric transformer stop more quickly so as to enhance the accuracy of burst-mode control. The proposed method only modifies the control signal of the burst-mode driving circuit. The proposed control strategy is verified by experiments in a step-down 9 W DC/DC converter. (paper)
Very High Frequency Resonant DC/DC Converters for LED Lighting
DEFF Research Database (Denmark)
Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.
2013-01-01
This paper presents a very high frequency DC/DC converter for LED lighting. Several resonant topologies are compared and their usability discussed. At the end the resonant SEPIC converter is chosen based on the achievable power density and total bill of material. Simulations of a 51 MHz converter...... with 40 V input and 15 V output are made. The simulation shows possibility of achieving efficiency up to 87 % even with a HEXFET Power MOSFET. Three prototypes of the simulated converter are implemented showing good correlation with simulations. The prototypes have efficiencies up to 84 % and power...
Generalized model of a bidirectional DC-DC converter
Hinov, Nikolay; Arnaudov, Dimitar; Penev, Dimitar
2017-12-01
The following paperwork presents models of bidirectional converters. A classic bidirectional converter and a new bidirectional circuit based on a ZCS resonant converter are investigated and compared. The developed models of these converters allow comparison between their characteristics showing their advantages and disadvantages. The models allow precise models of energy storage elements to be implemented as well, which is useful for examination of energy storage systems.
State-plane analysis of zero-voltage-switching resonant dc/dc power converters
Kazimierczuk, Marian K.; Morse, William D.
The state-plane analysis technique for the zero-voltage-switching resonant dc/dc power converter family of topologies, namely the buck, boost, buck-boost, and Cuk converters is established. The state plane provides a compression of information that allows the designer to uniquely examine the nonlinear dynamics of resonant converter operation. Utilizing the state plane, resonant converter modes of operation are examined and the switching frequencies are derived for the boundaries between these modes, including the boundary of energy conversion.
High Voltage Coil Current Sensor for DC-DC Converters Employing DDCC
Directory of Open Access Journals (Sweden)
M. Drinovsky
2015-12-01
Full Text Available Current sensor is an integral part of every switching converter. It is used for over-current protection, regulation and in case of multiphase converters for balancing. A new high voltage current sensor for coil-based current sensing in DC-DC converters is presented. The sensor employs DDCC with high voltage input stage and gain trimming. The circuit has been simulated and implemented in 0.35 um BCD technology as part of a multiphase DC-DC converter where its function has been verified. The circuit is able to sustain common mode voltage on the input up to 40 V, it occupies 0.387*0.345 mm2 and consumes 3.2 mW typically.
Multi-phase AC/AC step-down converter for distribution systems
Aeloiza, Eddy C.; Burgos, Rolando P.
2017-10-25
A step-down AC/AC converter for use in an electric distribution system includes at least one chopper circuit for each one of a plurality of phases of the AC power, each chopper circuit including a four-quadrant switch coupled in series between primary and secondary sides of the chopper circuit and a current-bidirectional two-quadrant switch coupled between the secondary side of the chopper circuit and a common node. Each current-bidirectional two-quadrant switch is oriented in the same direction, with respect to the secondary side of the corresponding chopper circuit and the common node. The converter further includes a control circuit configured to pulse-width-modulate control inputs of the switches, to convert a first multiphase AC voltage at the primary sides of the chopper circuits to a second multiphase AC voltage at the secondary sides of the chopper circuits, the second multiphase AC voltage being lower in voltage than the first multiphase AC voltage.
Differential Mode EMI Filter Design for Isolated DC-DC Boost Converter
DEFF Research Database (Denmark)
Makda, Ishtiyaq Ahmed; Nymand, Morten
2014-01-01
A Differential Mode EMI filter for a low input voltage high-current isolated dc-dc boost converter is designed and presented in this paper. The primary side Differential Mode noise voltage is low due to the high transformer turn ratio, however, the input current is very high and since the EMI limit...... also does not change for such converters, it requires greatly optimized design approach for the filter including the correct sizing of the filter components. A complete analytical filter design process is carried out such a way that the Differential Mode noise voltage source in the converter...... is identified first. The DM noise model is then established and based on the harmonic analysis of the noise source voltage waveform, the complete Differential Mode EMI filter, including the filter resonance damping branch, is designed for a 3kW isolated dc-dc boost converter. The noise model and its theoretical...
LPV model for PV cell and fractional control of DC/DC converter for photovoltaic systems
Martínez González, Rubén; Bolea Monte, Yolanda; Grau Saldes, Antoni; Martínez García, Herminio
2011-01-01
This paper deals with the fractional modelling of a DC-DC converter, suitable in solar-powered electrical generation systems, and the design of a fractional controller for the aforementioned switching converter. A new model for PV cells is proposed in order to obtain a linear equation for V-I characteristic via scheduling dependence of temperature and irradiance. Due to the fractional nature of the ultracapacitors this kind of controller gives a suitable and good performance. Peer Reviewed
LPV model for PV cells and fractional control of DC/DC converter for photovoltaic systems
Martínez González, Rubén; Bolea Monte, Yolanda; Grau Saldes, Antoni; Martínez García, Herminio
2011-01-01
This paper deals with the fractional modelling of a DC-DC converter, suitable in solar-powered electrical generation systems, and the design of a fractional controller for the aforementioned switching converter. A new model for PV cells is proposed in order to obtain a linear equation for VI characteristic via scheduling dependence of temperature and irradiance. Due to the fractional nature of the ultracapacitors this kind of controller gives a suitable and good performance. Peer Rev...
DEFF Research Database (Denmark)
Pelan, Ovidiu; Cornea, Octavian; Muntean, Nicolae
2014-01-01
This paper presents and discusses design considerations and efficiency investigation of a conventional step-down and a hybrid switched-capacitor DC-DC converter. Three MOSFETs with low on-resistance have been tested for each converter in order to find the most adequate switch for this application....... The experimental results and comparative efficiency graphs were obtained with a 1kW laboratory prototype dedicated for a 42/14V dual voltage automotive system....
Reliability study of high gain DC-DC converters based on RRPP I-IIA ...
Indian Academy of Sciences (India)
J DIVYA NAVAMANI
2018-05-10
May 10, 2018 ... Energy Storage Modules (ESM), Propulsion Motor Mod- ules (PMM) and ... All Electric Ship (AES) is the best way to power all the loads in the ship ... also used to derive quadratic step down DC-DC converters. [6]. The attractive ...... Exhibition on Ecological Vehicles and Renewable Energies,. TamilNadu ...
Investigation of DC-DC Boost Converter for Reliability of Operational Planning
DEFF Research Database (Denmark)
Khazraj, Hesam; Ashouri, Mani; Silva, Filipe Miguel Faria da
2018-01-01
of the interests related to reliability is the power semiconductor switches, which are the most vulnerable elements. The failure of one-power switches can reduce the system reliability. Interleaved technique for DC-DC converters is a redundant strategy to improve the reliability, but at the cost of increasing...
Design and implementation of current fed DC-DC converter for PHEV application using renewable source
Milind Metha, Manish; Tutki, Sanjay; Rajan, Aju; Elangovan, D.; Arunkumar, G.
2017-11-01
As the fossil fuels are depleting day by day, the use of renewable energy sources came into existence and they evolved a lot lately. To increase efficiency and productivity in the hybrid vehicles, the existence less efficient petroleum and diesel IC engines need to be replaced with the new and efficient converters with renewable energy sources. This has to be done in such a way that impacts three factors mainly: cost, efficiency and reliability. The PHEVs that have been launched and the upcoming PHEVs using converters with voltage range around 380V to 400V generated with power ranges between 2.4KW to 2.8KW. The basic motto of this paper is to design a prolific converter while considering the factor such as cost and size. In this paper, a two stage DC-DC converter is proposed and the proposed DC-DC converter is utilized to endeavour voltage from 24V (photovoltaic source) to a yield voltage of 400V and to meet the power demand of 250W, since only one panel is being used for this proposed paper. This paper discuss in detail about why and how the current fed DC-DC converter is utilized along with a voltage doubler, thus reducing transformer turns and thereby reducing overall size of the product. Simulation and hardware results have been presented along with calculations for duty cycle required for firing sequence for different values of transformer turns.
Spectral shaping of a randomized PWM DC-DC converter using maximum entropy probability distributions
CSIR Research Space (South Africa)
Dove, Albert
2017-01-01
Full Text Available maintaining constraints in a DC-DC converter is investigated. A probability distribution whose aim is to ensure maximal harmonic spreading and yet mainaint constraints is presented. The PDFs are determined from a direct application of the method of Maximum...
Floating high step-down stacked dc-dc converter based on buck-boost cells
Tibola, G.; Duarte, J.L.; Blinov, A.
2015-01-01
In some high power dc-dc applications, where high voltage is present, a converter with high step-down ratio is required in order to provide an isolated low power auxiliary supply. This requirement represents a challenge and many topologies are currently being researched. The analysis of a
Design and Implementation of Digital Current Mode Controller for DC-DC Converters
DEFF Research Database (Denmark)
Taeed, Fazel
to be regulated by a closed-loop controller. The Peak Current Mode Control (PCMC) is one of the most promising control methods for dc-dc converters. It has been known for high bandwidth (speed), and inherent current protection. Increasing the controller bandwidth decreases the output filter size and cost. Analog...
Energy Technology Data Exchange (ETDEWEB)
Magnusson, N., E-mail: niklas.magnusson@sintef.no [SINTEF Energy Research, NO-7465 Trondheim (Norway); Abrahamsen, A.B. [DTU Wind Energy, Technical University of Denmark, DK-4000 Roskilde (Denmark); Liu, D. [Electrical Power Processing Group, TU Delft, Mekelweg 4, NL-2628 CD Delft (Netherlands); Runde, M. [SINTEF Energy Research, NO-7465 Trondheim (Norway); Polinder, H. [Electrical Power Processing Group, TU Delft, Mekelweg 4, NL-2628 CD Delft (Netherlands)
2014-11-15
Highlights: • A method for calculating hysteresis losses in the low AC – high DC magnetic field and transport current range has been shown. • The method can be used in the design of wind turbine generators for calculating the losses in the generator DC rotor. • First estimates indicate tolerable current ripple in the 0.1% range for a 4 T DC MgB{sub 2} generator rotor coil. - Abstract: MgB{sub 2} superconductors are considered for generator field coils for direct drive wind turbine generators. In such coils, the losses generated by AC magnetic fields may generate excessive local heating and add to the thermal load, which must be removed by the cooling system. These losses must be evaluated in the design of the generator to ensure a sufficient overall efficiency. A major loss component is the hysteresis losses in the superconductor itself. In the high DC – low AC current and magnetic field region experimental results still lack for MgB{sub 2} conductors. In this article we reason towards a simplified theoretical treatment of the hysteresis losses based on available models in the literature with the aim of setting the basis for estimation of the allowable magnetic fields and current ripples in superconducting generator coils intended for large wind turbine direct drive generators. The resulting equations use the DC in-field critical current, the geometry of the superconductor and the magnitude of the AC magnetic field component as parameters. This simplified approach can be valuable in the design of MgB{sub 2} DC coils in the 1–4 T range with low AC magnetic field and current ripples.
Characterization of diode valve in medium voltage dc/dc converter for wind turbines
DEFF Research Database (Denmark)
Dincan, Catalin Gabriel; Kjær, Philip Carne
2016-01-01
This paper proposes a methodology for characterization of medium voltage (MV), medium frequency (MF) rectifier diode valve. The intended application is for 10MW dc/dc converters used in DC offshore wind turbines. Sensitivity to semiconductor component parameter variation, snubber component tolera...... tolerance, influence of temperature and stray capacitance are analyzed. It is concluded that the largest impact on sensitivity is given by reverse recovery charge variation and differences of temperature between adjacent devices....
Hu, Xiaojing; Li, Qiang; Zhang, Hao; Guo, Ziming; Zhao, Kun; Li, Xinpeng
2018-06-01
Based on the Monte Carlo method, an improved risk assessment method for hybrid AC/DC power system with VSC station considering the operation status of generators, converter stations, AC lines and DC lines is proposed. According to the sequential AC/DC power flow algorithm, node voltage and line active power are solved, and then the operation risk indices of node voltage over-limit and line active power over-limit are calculated. Finally, an improved two-area IEEE RTS-96 system is taken as a case to analyze and assessment its operation risk. The results show that the proposed model and method can intuitively and directly reflect the weak nodes and weak lines of the system, which can provide some reference for the dispatching department.
Directory of Open Access Journals (Sweden)
Hu Xiaojing
2018-01-01
Full Text Available Based on the Monte Carlo method, an improved risk assessment method for hybrid AC/DC power system with VSC station considering the operation status of generators, converter stations, AC lines and DC lines is proposed. According to the sequential AC/DC power flow algorithm, node voltage and line active power are solved, and then the operation risk indices of node voltage over-limit and line active power over-limit are calculated. Finally, an improved two-area IEEE RTS-96 system is taken as a case to analyze and assessment its operation risk. The results show that the proposed model and method can intuitively and directly reflect the weak nodes and weak lines of the system, which can provide some reference for the dispatching department.
Coordinating Flexibility under Uncertainty in Multi-Area AC and DC Grids
DEFF Research Database (Denmark)
Halilbasic, Lejla; Chatzivasileiadis, Spyros; Pinson, Pierre
2017-01-01
In the future, mixed AC and DC grids, spanning multiple areas operated by different transmission system operators (TSO), are expected to offer the necessary controllability for integrating large amounts of intermittent renewable generation. This is facilitated by high voltage direct current...... transmission based on voltage source converter technology that can offer recourse actions in the form of preventive and corrective control of both active and reactive power. Market-clearing procedures, based on optimal power flow algorithms, need to be revised to account for DC transmission, flexibility...... and privacy requirements. To this end, we propose a decentralized two-stage stochastic market-clearing algorithm that incorporates meshed DC grids and allows the sharing of flexibility resources between areas. The benefit of this approach lies in its pricing mechanism, used for coordinating the different area...
Wide-Range Adaptive RF-to-DC Power Converter for UHF RFIDs
Ouda, Mahmoud H.
2016-07-27
A wide-range, differential, cross-coupled rectifier is proposed with an extended dynamic range of input RF power that enables wireless powering from varying distances. The proposed architecture mitigates the reverse-leakage problem in conven- tional, cross-coupled rectifiers without degrading sensitivity. A prototype is designed for UHF RFID applications, and is imple- mented using 0.18 μ m CMOS technology. On-chip measurements demonstrate a sensitivity of − 18 dBm for 1 V output over a 100 k Ω load and a peak RF-to-DC power conversion efficiency of 65%. A conventional, fully cross-coupled rectifier is fabricated along- side for comparison and the proposed rectifier shows more than 2 × increase in dynamic range and a 25% boosting in output voltage than the conventional rectifier
Energy Technology Data Exchange (ETDEWEB)
Inarida, S.; Ito, S.; Nakamura, K. [Hitachi, Ltd., Tokyo (Japan)
1995-09-20
A thyristor converter is superior to GTO converter from a view point of weight and efficiency. Therefore, the thyristor converter is the best answer for AC inverter rolling stock, especially for commuter and interurban trains, in the next several years. For a thyristor converter, it is very important to prevent the commutative failure even when the category voltage decreases, in order to continue regenerating operation to sustain the brake torque. In a conventional system, a series resistance is inserted between the thyristor bridge and LC filter where the DC stage voltage is decreased enough to keep the regenerating power. The conventional thyristor enables regenerating braking in the whole operational region, but result in low power factor and efficiency. This paper proposes a new regenerating method to improve the power factor and efficiency, which keep regenerating power with no series resistance and higher DC stage voltage. Simulation results show the effectiveness of the method. 4 refs., 14 figs., 1 tab.
A Fixed-Frequency Bidirectional Resonant DC-DC Converter Suitable for Wide Voltage Gain Range
DEFF Research Database (Denmark)
Shen, Yanfeng; Wang, Huai; Blaabjerg, Frede
2017-01-01
This paper proposes a new bidirectional resonant dc-dc converter suitable for wide voltage gain range applications (e.g., energy storage systems). The proposed converter overcomes the narrow voltage gain range of conventional resonant DC-DC converters, and meanwhile achieves high efficiency...... and characteristics of the proposed converter are analyzed. Finally, a 1-kW converter prototype is built and the experimental results verify the theoretical analyses....
DEFF Research Database (Denmark)
Bhaskar, Mahajan Sagar; Kulkarni, Rishi M.; Padmanaban, Sanjeevi Kumar
2016-01-01
In this paper hybrid non isolated/ non inverting Nx interleaved DC-DC multilevel Boost Converter for renewable energy applications is presented. The presented hybrid topology is derived from the conventional interleaved converter and the Nx Multilevel boost converter. In renewable energy...... applications, generated energy cannot be directly used at application end. In most of the cases it needs to be stepped up with DC-DC converter at operating voltage levels as per the requirement of the application. Though conventional boost converter can theoretically be used for this purpose, but obtaining...
Directory of Open Access Journals (Sweden)
R. Silva-Ortigoza
2014-01-01
Full Text Available This paper presents a hierarchical controller that carries out the angular velocity trajectory tracking task for a DC motor driven by a DC/DC Buck converter. The high level control is related to the DC motor and the low level control is dedicated to the DC/DC Buck converter; both controls are designed via differential flatness. The high level control provides a desired voltage profile for the DC motor to achieve the tracking of a desired angular velocity trajectory. Then, a low level control is designed to ensure that the output voltage of the DC/DC Buck converter tracks the voltage profile imposed by the high level control. In order to experimentally verify the hierarchical controller performance, a DS1104 electronic board from dSPACE and Matlab-Simulink are used. The switched implementation of the hierarchical average controller is accomplished by means of pulse width modulation. Experimental results of the hierarchical controller for the velocity trajectory tracking task show good performance and robustness against the uncertainties associated with different system parameters.
Energy Technology Data Exchange (ETDEWEB)
Cacciato, M.; Giulii Capponi, F. [Rome Univ., ' La Sapienza' , Dept. of Electrical Engineering (Italy)
2004-07-01
Among innovative conversion systems for alternative energy, Fuel Cells (FCs) are ideal in applications as distributed power generation or automotive. The connection of FCs to domestic or industrial loads requires a DC/AC converter also acting as a energy buffer to match the different dynamics of FCs and loads. In the last years, a new type of electrolytic capacitors called Super- Capacitors (SCs), has been designed using double layers technology. Such components are able to store more energy than electrolytic capacitors maintaining the capability to swap it at high power levels. Firstly, different solution used to connect SCs to a FC based conversion system are considered. Then, a comparison of bi-directional DC/DC converters designed to manage SCs energy is performed. Finally, the converter design and a laboratory prototype of the adopted solution are reported. (authors)
SUBCONTRACT REPORT: DC-DC Converter for Fuel Cell and Hybrid Vehicles
Energy Technology Data Exchange (ETDEWEB)
Marlino, Laura D [ORNL; Zhu, Lizhi [Ballard Power Systems/Siemens VDO
2007-07-01
The goal of this project is to develop and fabricate a 5kW dc-dc converter with a baseline 14V output capability for fuel cell and hybrid vehicles. The major objectives for this dc-dc converter technology are to meet: Higher efficiency (92%); High coolant temperature,e capability (105 C); High reliability (15 Years/150,000miles); Smaller volume (5L); Lower weight (6kg); and Lower cost ($75/kW). The key technical challenge for these converters is the 105 C coolant temperatures. The power switches and magnetics must be designed to sustain these operating temperatures reliably, without a large cost/mass/volume penalty.
A high voltage gain quasi Z-source isolated DC/DC converter
DEFF Research Database (Denmark)
Siwakoti, Yam P.; Blaabjerg, Frede; Loh, Poh Chiang
2014-01-01
A compact quasi-Z-source DC/DC converter is presented with high voltage gain, isolated output, and improved efficiency. The improvements in size and performance were achieved by using a square wave inverter with only two output switches driving an isolating transformer in push-pull mode, followed...... by a voltage doubling output rectifier. The converter is well-suited to applications requiring a high voltage gain, especially renewable energy sources such as photovoltaic and fuel-cell power supplies. To demonstrate the converter's performance a prototype designed to output 400 V at 500 W was constructed...
High-Efficiency Photovoltaic System Using Partially-Connected DC-DC Converter
Uno, Masatoshi; Kukita, Akio; Tanaka, Koji
Power conversion electronics for photovoltaic (PV) systems are desired to operate as efficiently as possible to exploit the power generated by PV modules. This paper proposes a novel PV system in which a dc-dc converter is partially connected to series-connected PV modules. The proposed system achieves high power-conversion efficiency by reducing the passing power and input/output voltages of the converter. The theoretical operating principle was experimentally validated. Resultant efficiency performances of the proposed and conventional systems demonstrated that the proposed system was more efficient in terms of power conversion though the identical converter was used for the both systems.
Design and modelling of high gain DC-DC converters for fuel cell hybrid electric vehicles
Elangovan, D.; Karthigeyan, V.; Subhanu, B.; Ashwin, M.; Arunkumar, G.
2017-11-01
Transportation (Diesel and petrol internal combustion engine vehicles) approximately contributes to 25.5% of total CO2 emission. Thus diesel and petrol engine vehicles are the most dominant contributors of CO2 emission which leads global warming which causes climate change. The problem of CO2 emission and global warming can be reduced by focusing on renewable energy vehicles. Out of the available renewable energy sources fuel cell is the only source which has reasonable efficiency and can be used in vehicles. But the main disadvantage of fuel cell is its slow response time. So energy storage systems like batteries and super capacitors are used in parallel with the fuel cell. Fuel cell is used during steady state vehicle operation while during transient conditions like starting, acceleration and braking batteries and super capacitors can supply or absorb energy. In this paper a unidirectional fuel cell DC-DC converter and bidirectional energy storage system DC-DC converter is proposed, which can interface dc sources at different voltage levels to the dc bus and also it can independently control the power flow from each energy source to the dc bus and vice versa. The proposed converters are designed and simulated using PSIM version 9.1.1 and gate pulse pattern, input and output voltage waveforms of the converters for steady state operation are studied.
Move to Solar-DC at Home Premises
Indian Academy of Sciences (India)
48V DC line as an additional power line at home. Highly power-efficient usage of Solar; Low-power from grid alone converted from AC-DC. Designed to have minimal loss. Battery can be added with higher efficiency (no convertors), if required.
Research of digital controlled DC/DC converter based on STC12C5410AD
Chen, Dan-Jiang; Jin, Xin; Xiao, Zhi-Hong
2010-02-01
In order to study application of digital control technology on DC/DC converter, principle of increment mode PID control algorithm was analyzed in the paper. Then, a SCM named STC12C5410AD was introduced with its internal resources and characteristics. The PID control algorithm can be implemented easily based on it. The output of PID control was used to change the value of a variable that is 255 times than duty cycle, and this reduced the error of calculation. The valid of the presented algorithm was verified by an experiment for a BUCK DC/DC converter. The experimental results indicated that output voltage of the BUCK converter is stable with low ripple.
Practical Design Guidelines of qZSI Based Step-Up DC/DC Converter
Zakis, Janis; Vinnikov, Dmitri; Roasto, Indrek; Jalakas, Tanel
2010-01-01
This paper presents some design guidelines for a new voltage fed step-up DC/DC isolated converter. The most significant advantage of proposed converter is voltage buck-boost operation on single stage. The most promising application for proposed converter is in the field of distributed power generation e.g. fuel cells or photovoltaic. The most sensitive issues - such as power losses caused by high currents in the input side of converter and high transient overvoltages across the inverter bridge caused by stray inductances were discussed and solved. The proposals and recommendations to overcome these issues are given in the paper. The Selection and design guidelines of converter elements are proposed and explained. The prototype of proposed converter was built and experimentally tested. Some results are presented and evaluated.
Sliding-mode control of single input multiple output DC-DC converter
Zhang, Libo; Sun, Yihan; Luo, Tiejian; Wan, Qiyang
2016-10-01
Various voltage levels are required in the vehicle mounted power system. A conventional solution is to utilize an independent multiple output DC-DC converter whose cost is high and control scheme is complicated. In this paper, we design a novel SIMO DC-DC converter with sliding mode controller. The proposed converter can boost the voltage of a low-voltage input power source to a controllable high-voltage DC bus and middle-voltage output terminals, which endow the converter with characteristics of simple structure, low cost, and convenient control. In addition, the sliding mode control (SMC) technique applied in our converter can enhance the performances of a certain SIMO DC-DC converter topology. The high-voltage DC bus can be regarded as the main power source to the high-voltage facility of the vehicle mounted power system, and the middle-voltage output terminals can supply power to the low-voltage equipment on an automobile. In the respect of control algorithm, it is the first time to propose the SMC-PID (Proportion Integration Differentiation) control algorithm, in which the SMC algorithm is utilized and the PID control is attended to the conventional SMC algorithm. The PID control increases the dynamic ability of the SMC algorithm by establishing the corresponding SMC surface and introducing the attached integral of voltage error, which endow the sliding-control system with excellent dynamic performance. At last, we established the MATLAB/SIMULINK simulation model, tested performance of the system, and built the hardware prototype based on Digital Signal Processor (DSP). Results show that the sliding mode control is able to track a required trajectory, which has robustness against the uncertainties and disturbances.
Roset, B.J.P.; Lazar, M.; Heemels, W.P.M.H.; Nijmeijer, H.
2007-01-01
Abstract—This paper focuses on the synthesis of nonlinear Model Predictive Controllers that can guarantee robustness with respect to measurement noise. The input-to-state stability framework is employed to analyze the robustness of the resulting Model Predictive Control (MPC) closed-loop system. It
Wide Temperature Range DC-DC Boost Converters for Command/Control/Drive Electronics, Phase I
National Aeronautics and Space Administration — We shall develop wide temperature range DC-DC boost converters that can be fabricated using commercial CMOS foundries. The boost converters will increase the low...
A review on DC/DC converter architectures for power fuel cell applications
International Nuclear Information System (INIS)
Kolli, Abdelfatah; Gaillard, Arnaud; De Bernardinis, Alexandre; Bethoux, Olivier; Hissel, Daniel; Khatir, Zoubir
2015-01-01
Highlights: • Different DC/DC power converter topologies for Fuel Cell systems are presented. • Advantages and drawbacks of the DC/DC power converter topologies are detailed. • Wide-BandGap semiconductors are attractive candidates for design of converters. • Wide-BandGap semiconductors improve efficiency and thermal limits of converters. • Different semiconductor technologies are assessed. - Abstract: Fuel cell-based power sources are attractive devices. Through multi-stack architecture, they offer flexibility, reliability, and efficiency. Keys to accessing the market are simplifying its architecture and each components. These include, among others, the power converter enabling the output voltage regulation. This article focuses on this specific component. The present paper gives a comprehensive overview of the power converter interfaces potentially favorable for the automotive, railways, aircrafts and small stationary domains. First, with respect to the strategic development of a modular design, it defines the specifications of a basic interface. Second, it inventories the best architecture opportunities with respect to these requirements. Based on this study, it fully designs a basic module and points out the outstanding contribution of the new developed silicon carbide switch technology. In conclusion, this review article exhibits the importance of choosing the right power converter architecture and the related technology. In this context it is highlighted that the output power interface can be efficient, compact and modular. In addition, its features enable a thermal compatibility with many ways of integrating this component in the global fuel cell based power source.
Advanced DC/AC inverters applications in renewable energy
Luo, Fang Lin
2013-01-01
DC/AC inversion technology is of vital importance for industrial applications, including electrical vehicles and renewable energy systems, which require a large number of inverters. In recent years, inversion technology has developed rapidly, with new topologies improving the power factor and increasing power efficiency. Proposing many novel approaches, Advanced DC/AC Inverters: Applications in Renewable Energy describes advanced DC/AC inverters that can be used for renewable energy systems. The book introduces more than 100 topologies of advanced inverters originally developed by the authors,
DEFF Research Database (Denmark)
Mostaan, Ali; Alizadeh, Ebrahim; Soltani, Mohsen
2014-01-01
and the voltage transfer gain is obtained. It is also demonstrated that the voltage stress on all semiconductor devices is restricted to input voltage which allows the utilization of a power switch with lower drain source resistance. In order to further increase the voltage gain another switched capacitor voltage......Novel step-up DC/DC converter is introduced in this paper. This converter is realized with adding the switched capacitor voltage multiplier cell to the three switch step-down DC/DC converter that has been proposed in the literature. The proposed converter is analyzed in the steady state...
Modeling and reliability analysis of three phase z-source AC-AC converter
Directory of Open Access Journals (Sweden)
Prasad Hanuman
2017-12-01
Full Text Available This paper presents the small signal modeling using the state space averaging technique and reliability analysis of a three-phase z-source ac-ac converter. By controlling the shoot-through duty ratio, it can operate in buck-boost mode and maintain desired output voltage during voltage sag and surge condition. It has faster dynamic response and higher efficiency as compared to the traditional voltage regulator. Small signal analysis derives different control transfer functions and this leads to design a suitable controller for a closed loop system during supply voltage variation. The closed loop system of the converter with a PID controller eliminates the transients in output voltage and provides steady state regulated output. The proposed model designed in the RT-LAB and executed in a field programming gate array (FPGA-based real-time digital simulator at a fixedtime step of 10 μs and a constant switching frequency of 10 kHz. The simulator was developed using very high speed integrated circuit hardware description language (VHDL, making it versatile and moveable. Hardware-in-the-loop (HIL simulation results are presented to justify the MATLAB simulation results during supply voltage variation of the three phase z-source ac-ac converter. The reliability analysis has been applied to the converter to find out the failure rate of its different components.
Directory of Open Access Journals (Sweden)
Dohoon Kwon
2017-10-01
Full Text Available A new modeling method for high voltage direct current (HVDC systems and associated controllers is presented for the power system simulator for engineering (PSS/E simulation environment. The aim is to improve the estimation of the transient DC voltage and current in the event of an AC line-to-ground fault. The proposed method consists primary of three interconnected modules for (a equation conversion; (b control-mode selection; and (c DC-line modeling. Simulation case studies were carried out using PSS/E and a power systems computer aided design/electromagnetic transients including DC (PSCAD/EMTDC model of the Jeju– Haenam HVDC system in Korea. The simulation results are compared with actual operational data and the PSCAD/EMTDC simulation results for an HVDC system during single-phase and three-phase line-to-ground faults, respectively. These comparisons show that the proposed PSS/E modeling method results in the improved estimation of the dynamic variation in the DC voltage and current in the event of an AC network fault, with significant gains in computational efficiency, making it suitable for real-time analysis of HVDC systems.
Load Flow Analysis of Hybrid AC-DC Power System with Offshore Wind Power
DEFF Research Database (Denmark)
Dhua, Debasish; Huang, Shaojun; Wu, Qiuwei
2017-01-01
The offshore wind power has received immense attention because of higher wind speed and lower opposition for construction. A wide range of combinations of high-voltage ACDC transmission have been proposed for integrating offshore wind farms and long-distance power transmission. This paper...... is to model such hybrid AC-DC systems including the interfacing converters, which have several control parameters that can change the load flow of the hybrid systems. Then, the paper proposes a Load Flow algorithm based on the Newton-Raphson method, which covers three different section types...
ITAR Free Commercial-of-the-Shelf DC/DC Converter
Denzinger, Wolfgang; Hintze, Thomas
2014-08-01
A commercial-of-the-shelf (COTS) DC/DC converter for digital space equipment has been developed by ASP under ESA contract with special emphasis on low cost, no use of ITAR listed EEE parts like Mosfets, minimum number of rad-hard digital IC's and a design tolerance against single event effects by appropriate filtering. However, the intention to qualify this discrete converter design for a low cost FM series production was difficult due to the high up-sceening cost of EEE-parts with one lot guarantee and minimum-by. To overcome this problem, in a next step a redesign of the DC/DC converter was performed with all semiconductors like bipolar transistors, rectifiers and zener diodes packaged into hybrids. With this approach it was possible to buy a high number of less expensive wafers or dies from one lot, to perform a lot acceptance test and to integrate the dies into hybrid packages with further up- screening for FM use. The semiconductors have been packaged into three signal hybrids with 44 pins and one power hybrid with 24 pins for the dissipating transistors and rectifiers. The design of the hybrids is such, that all integrated semiconductors can be tested individually. The qualification of four EQM DC/DC converters with different combinations of output voltages has been successfully performed and two FM's have been manufactured and tested.
Impute DC link (IDCL) cell based power converters and control thereof
Divan, Deepakraj M.; Prasai, Anish; Hernendez, Jorge; Moghe, Rohit; Iyer, Amrit; Kandula, Rajendra Prasad
2016-04-26
Power flow controllers based on Imputed DC Link (IDCL) cells are provided. The IDCL cell is a self-contained power electronic building block (PEBB). The IDCL cell may be stacked in series and parallel to achieve power flow control at higher voltage and current levels. Each IDCL cell may comprise a gate drive, a voltage sharing module, and a thermal management component in order to facilitate easy integration of the cell into a variety of applications. By providing direct AC conversion, the IDCL cell based AC/AC converters reduce device count, eliminate the use of electrolytic capacitors that have life and reliability issues, and improve system efficiency compared with similarly rated back-to-back inverter system.
Simulation analysis of cascade controller for DC-DC bank converter
International Nuclear Information System (INIS)
Mahar, M.A.; Abro, M.R.; Larik, A.S.
2009-01-01
Power electronic converters are periodic variable structure systems due to their switched operation. During the last few decades several new dc-dc converter topologies have emerged. Buck converter being simple in topology, has recently drawn attraction of many researchers. Basically, a buck converter is highly underdamped system. In order to overcome the developed oscillations in output of this converter, various control techniques have been proposed. However, these techniques are fraught with many drawbacks. This paper focus on a cascade controller based buck topology. Steady state analysis is given in this paper which shows output voltage and inductor current in detail. Dynamic analysis for line and load variation is also presented. The buck topology is implemented and simulated in MATLAB/Simulink. The simulated results are presented. (author)
Application of digital control techniques for satellite medium power DC-DC converters
Skup, Konrad R.; Grudzinski, Pawel; Nowosielski, Witold; Orleanski, Piotr; Wawrzaszek, Roman
2010-09-01
The objective of this paper is to present a work concerning a digital control loop system for satellite medium power DC-DC converters that is done in Space Research Centre. The whole control process of a described power converter bases on a high speed digital signal processing. The paper presents a development of a FPGA digital controller for voltage mode stabilization that was implemented using VHDL. The described controllers are a classical digital PID controller and a bang-bang controller. The used converter for testing is a simple model of 5-20 W, 200 kHz buck power converter. A high resolution digital PWM approach is presented. Additionally a simple and effective solution of filtering of an analog-to-digital converter output is presented.
Solar fed DC-DC single ended primary inductance converter for low power applications
Narendranath, K. V.; Viswanath, Y.; Babu, K. Suresh; Arunkumar, G.; Elangovan, D.
2017-11-01
This paper presents 34 to 36 volts. SEPIC converter for solar fed applications. Now days, there has been tremendous increase in the usage of solar energy and this solar energy is most valuable energy source available all around the world. The solar energy system require a Dc-Dc converter in order to modulate and govern the changing output of the panel. In this paper, a system comprising of Single Ended Primary Inductance Converter [SEPIC] integrated with solar panel is proposed. This paper proposes SEPIC power converter design that will secure high performance and cost efficiency while powering up a LAMP load. This power converter designed with low output ripple voltage, higher efficiency and less electrical pressure on the power switching elements. The simulation and prototype hardware results are presented in this paper.
Direct switching control of DC-DC power electronic converters using hybrid system theory
Energy Technology Data Exchange (ETDEWEB)
Zhao, J.; Lin, F. [Wayne State Univ., Detroit, MI (United States). Dept. of Electrical and Computer Engineering; Wang, C. [Wayne State Univ., Detroit, MI (United States). Dept. of Electrical and Computer Engineering; Wayne State Univ., Detroit, MI (United States). Div. of Engineering Technology
2010-07-01
A direct switching control (DSC) scheme for power electronics converters was described. The system was designed for use in both traditional and renewable energy applications as well as in electric drive vehicles. The proposed control scheme was based on a detailed hybrid system converter model that used model predictive control (MPC), piecewise affine (PWA) approximations and constrained optimal control methods. A DC-DC converter was modelled as a hybrid machine. Switching among different modes of the DC-DC converter were modelled as discrete events controlled by the hybrid controller. The modelling scheme was applied to a Buck converter. The DSC was used to control the switch of the power converter based on a hybrid machine model. Results of the study showed that the method can be used to regulate output voltage and inductor currents. The method also provides fast transient responses and effectively regulates both currents and voltage. The controller can be used to provide immediate responses to dynamic disturbances and output voltage fluctuations. 23 refs., 7 figs.
DC Vs AC - War Of Currents For Future Power Systems A HVDC Technology Overview
Directory of Open Access Journals (Sweden)
Anil K. Rai
2015-08-01
Full Text Available DC vs AC discussion began in 1880s with development of first commercial power transmission in Wall Street New York. Later when AC technology came into notice by efforts of inventor and researcher Sir Nicola Tesla soon the advantages of AC transmission and AC devices overtook the DC technology. It was hoped that DC technology had lost battle of currents. Today with researches going on FACTS devices and bulk power transmission HVDC has again gained a reputation in power sector. Solution of this centuries old debate is to develop HVDC systems that assists HVAC systems for better performance stability and control
Energy Technology Data Exchange (ETDEWEB)
Agamy, Mohammed S; Harfman-Todorovic, Maja; Elasser, Ahmed; Steigerwald, Robert L; Sabate, Juan A; Chi, Song; McCann, Adam J; Zhang, Li; Mueller, Frank
2012-09-01
In this paper a DC-DC power converter for distributed photovoltaic plant architectures is presented. The proposed converter has the advantages of simplicity, high efficiency, and low cost. High efficiency is achieved by having a portion of the input PV power directly fed forward to the output without being processed by the converter. The operation of this converter also allows for a simplified maximum power point tracker design using fewer measurements
Integrated Three-Port DC-DC Converter for Photovoltaic (PV) Battery Stand-alone Systems
DEFF Research Database (Denmark)
Ouyang, Ziwei; Andersen, Michael A. E.
2016-01-01
of solar energy. Moreover, a novel transformer configuration enables variable turns ratio controlled by the phase between the two current excitations subjected to the primary windings, allowing a wider input/output range. 1 kW experimental prototype has been built to demonstrate a wellmanaged power flow......Several power sources such as PV solar arrays and battery are often used to manage the power flow for a photovoltaic (PV) based stand-alone power system due to the fluctuation nature of solar energy resource, and deliver a continuous power to the users in an appropriate form. Traditionally, three...... different single-input single-output (SISO) dc/dc converters would have been used. To reduce the cost and improve the power density of the system, an integrated three-port isolated dc/dc converter is proposed in this paper. It can realize all functions of the energy delivery due to the fluctuation nature...
DEFF Research Database (Denmark)
Padmanaban, Sanjeevi Kumar; Blaabjerg, Frede; Siano, Pierluigi
2016-01-01
This paper presents the control strategies by Proportional-Integral (P-I) and Fuzzy Logic (FL) for a DC-DC boost power converter for high output voltage configuration. Standard DC-DC converters are traditionally used for high voltage direct current (HVDC) power transmission systems. But, lack its...... converter with inbuilt voltage-lift technique and overcome the aforementioned deficiencies. Further, the control strategy is adapted based on proportional-integral (P-I) and fuzzy logic, closed-loop controller to regulate the outputs and ensure the performances. Complete hardware prototype of EHV converter...... performances in terms of efficiency, reduced transfer gain and increased cost with sensor units. Moreover, the internal self-parasitic components reduce the output voltage and efficiency of classical high voltage converters (HVC). This investigation focused on extra high-voltage (EHV) DC-DC boost power...
DEFF Research Database (Denmark)
Guo, Xiaoqiang; Xu, David; Guerrero, Josep M.
2015-01-01
Back-to-back converters have been typically used to interconnect the microgrids. For a back-to-back current source converter, the dc-link current ripple is one of the important parameters. A large ripple will cause the electromagnetic interference, undesirable high-frequency losses, and system...... instability. Conventionally, with a given switching frequency and rated voltage, the current ripple can be reduced by increasing the dc-link inductor, but it leads to bulky size, high cost and slow dynamic response. In order to solve this problem, this paper reveals that the current ripple can...
Tian, Zhang; Yanfeng, Gong
2017-05-01
In order to solve the contradiction between demand and distribution range of primary energy resource, Ultra High Voltage (UHV) power grids should be developed rapidly to meet development of energy bases and accessing of large-scale renewable energy. This paper reviewed the latest research processes of AC/DC transmission technologies, summarized the characteristics of AC/DC power grids, concluded that China’s power grids certainly enter a new period of large -scale hybrid UHV AC/DC power grids and characteristics of “strong DC and weak AC” becomes increasingly pro minent; possible problems in operation of AC/DC power grids was discussed, and interaction or effect between AC/DC power grids was made an intensive study of; according to above problems in operation of power grids, preliminary scheme is summarized as fo llows: strengthening backbone structures, enhancing AC/DC transmission technologies, promoting protection measures of clean energ y accessing grids, and taking actions to solve stability problems of voltage and frequency etc. It’s valuable for making hybrid UHV AC/DC power grids adapt to operating mode of large power grids, thus guaranteeing security and stability of power system.
National Research Council Canada - National Science Library
Greseth, Gregory
1999-01-01
.... The proposed Navy DC Zonal Electrical Distribution System (DC ZEDS) being designed for the new DD-21 utilizes a rectified ac generator output which is filtered and stepped to usable voltages by local dc-dc converters...
Energy Technology Data Exchange (ETDEWEB)
Polenov, Dieter
2010-01-15
The paper discusses DC/DC converters for integration of double layer condensers into the onboard power system. First, requirements on DC/DC converters are listed and compared on the basis of three exemplary applications. A DC/DC converter concept is developed for decoupling transient high-power loads like electric steering systems. Three different topologies are compared using a specially developed method in order to find the best solution for the given application. In order to establish adequate criteria for selecting the switching frequency and inductivities of storage throttles, the influence of the trottle power change on the switching characteristics of the MOSFETs and on certain ranges of EMP interference emissions is investigated. As methods of optimising the operation of the synchronous rectifiers, parallel connection of Schottky diodes and synchronous rectifiers as well as the variation of the shut-off dead times of synchronous rectifiers were investigated. Further, a concept for converter control was developed in consideration of the intended application and topology. Finally, selected aspects for implementation of the DC/DC converter concept are presented as well as the results of experimental investigations.
Informational model verification of ZVS Buck quasi-resonant DC-DC converter
Vakovsky, Dimiter; Hinov, Nikolay
2016-12-01
The aim of the paper is to create a polymorphic informational model of a ZVS Buck quasi-resonant DC-DC converter for the modeling purposes of the object. For the creation of the model is applied flexible open standards for setting, storing, publishing and exchange of data in distributed information environment. The created model is useful for creation of many and different by type variants with different configuration of the composing elements and different inner model of the examined object.
Distributed control system for parallel-connected DC boost converters
Goldsmith, Steven
2017-08-15
The disclosed invention is a distributed control system for operating a DC bus fed by disparate DC power sources that service a known or unknown load. The voltage sources vary in v-i characteristics and have time-varying, maximum supply capacities. Each source is connected to the bus via a boost converter, which may have different dynamic characteristics and power transfer capacities, but are controlled through PWM. The invention tracks the time-varying power sources and apportions their power contribution while maintaining the DC bus voltage within the specifications. A central digital controller solves the steady-state system for the optimal duty cycle settings that achieve a desired power supply apportionment scheme for a known or predictable DC load. A distributed networked control system is derived from the central system that utilizes communications among controllers to compute a shared estimate of the unknown time-varying load through shared bus current measurements and bus voltage measurements.
Directory of Open Access Journals (Sweden)
Moh. Zaenal Efendi
2013-12-01
Full Text Available This paper presents a design and implementation of a converter which has a high power factor for battery charger application. The converter is a combination of a SEPIC converter and a full-bridge DC-DC converter connected in two stages of series circuit. The SEPIC converter works in discontinuous conduction mode and it serves as a power factor corrector so that the shape of input current waveform follows the shape of input voltage waveform. The full-bridge DC-DC converter serves as a regulator of output voltage and operates at continuous conduction mode. The experimental results show that the power factor of this converter system can be achieved up to 0.96.
Control of the DC-DC Converter used into Energy Generation System
International Nuclear Information System (INIS)
Bizon, Nicu; Oproescu, Mihai
2006-01-01
This paper presents an investigation of the DC-DC Converter controller used into Energy Generation System. The full bridge is used into an Energy Generation System (EGS) as second power interface between the energy source and the high DC bus. The simulation results show that the DC-DC Converter behavior can be improved using a well designed PI control surface. The used Simulink models for the EGS blocks and some design considerations are presented, too. (authors)
Step-Up Partial Power DC-DC Converters for Two-Stage PV Systems with Interleaved Current Performance
Directory of Open Access Journals (Sweden)
Jaime Wladimir Zapata
2018-02-01
Full Text Available This work presents a partial power converter allowing us to obtain, with a single DC-DC converter, the same feature as the classical interleaved operation of two converters. More precisely, the proposed topology performs similarly as the input-parallel output-series (IPOS configuration reducing the current ripple at the input of the system and dividing the individual converters power rating, compared to a single converter. The proposed topology consists of a partial DC-DC converter processing only a fraction of the total power, thus allowing high efficiency. Experimental results are provided to validate the proposed converter topology with a Flyback-based 100 W test bench with a transformer turns ratio n 1 = n 2 . Experimental results show high performances reducing the input current ripple around 30 % , further increasing the conversion efficiency.
Ultra-Step-Up DC-DC Converter with Integrated Autotransformer and Coupled Inductor
DEFF Research Database (Denmark)
Siwakoti, Yam Prasad; Blaabjerg, Frede; Loh, Poh Chiang
2016-01-01
This paper introduces a new single-switch nonisolated dc-dc converter with very high voltage transfer ratio and reduced semiconductor voltage stress. The converter utilizes an integrated autotransformer and a coupled inductor on the same core to achieve a high step-up voltage gain without extreme...... duty cycle. Further, an integrated passive regenerative circuit recycles the leakage energy of the coupled magnetics and transfer the leakage energy to the load, which helps to avoid high voltage spikes across the switch. This feature along with low stress on the switching device enables the designer...
International Nuclear Information System (INIS)
Xiao, Kechao; Vlassak, Joost J.
2015-01-01
Highlights: • We proposed a general data reduction scheme that combines scanning AC and DC calorimetry results for the study of reaction kinetics. • Calorimetry measurements at cooling rates ranging from 30 K/s to 20,000 K/s were achieved. • Upon initial melting, the Bi thin-film sample breaks up into thousands of isolated islands, and highly repeatable nucleation behavior is observed. • The nucleation rate of melted Bi is calculated, which can be well described by classical nucleation theory over a wide range of cooling rates. - Abstract: We study the nucleation behavior of undercooled liquid Bi at cooling rates ranging from 10 1 to 10 4 K/s using a combination of scanning DC and AC nano-calorimetry techniques. Upon initial melting, the Bi thin-film sample breaks up into silicon nitride-coated isolated islands. The number of islands in a typical sample is sufficiently large that highly repeatable nucleation behavior is observed, despite the stochastic nature of the nucleation process. We establish a data reduction technique to evaluate the nucleation rate from DC and AC calorimetry results. The results show that the driving force for the nucleation of melted Bi is well described by classical nucleation theory over a wide range of cooling rates. The proposed technique provides a unique and efficient way to examine nucleation kinetics with cooling rates over several orders of magnitude. The technique is quite general and can be used to evaluate reaction kinetics in other materials
Light weight, high power, high voltage dc/dc converter technologies
Kraus, Robert; Myers, Ira; Baumann, Eric
1990-01-01
Power-conditioning weight reductions by orders of magnitude will be required to enable the megawatt-power-level space systems envisioned by the Strategic Defense Initiative, the Air Force, and NASA. An interagency program has been initiated to develop an 0.1-kg/kW dc/dc converter technology base for these future space applications. Three contractors are in the first phase of a competitive program to develop a megawatt dc/dc converter. Researchers at NASA Lewis Research Center are investigating innovative converter topology control. Three different converter subsystems based on square wave, resonant, and super-resonant topologies are being designed. The components required for the converter designs cover a wide array of technologies. Two different switches, one semiconductor and the other gas, are under development. Issues related to thermal management and material reliability for inductors, transformers, and capacitors are being investigated in order to maximize power density. A brief description of each of the concepts proposed to meet the goals of this program is presented.
DC and AC biasing of a transition edge sensor microcalorimeter
International Nuclear Information System (INIS)
Cunningham, M.F.; Ullom, J.N.; Miyazaki, T.; Drury, O.; Loshak, A.; Berg, M.L. van den; Labov, S.E.
2002-01-01
We are developing AC-biased transition edge sensor (TES) microcalorimeters for use in large arrays with frequency-domain multiplexing. Using DC bias, we have achieved a resolution of 17 eV FWHM at 2.6 keV with a decay time of 90 μs and an effective detector diameter of 300 μm. We have successfully measured thermal pulses with a TES microcalorimeter operated with an AC bias. We present here preliminary results from a single pixel detector operated under DC and AC bias conditions
CSIR Research Space (South Africa)
Coetzer, A
2016-01-01
Full Text Available The design and implementation of a bidirectional current-controlled voltage-regulated DC-DC converter is presented. The converter is required to connect a battery of electrochemical cells (the battery) to an asynchronous motor-drive unit via a...
Five-Level Converter with Low Switching Frequency Applied as DC Voltage Supply
DEFF Research Database (Denmark)
Rasmussen, Tonny Wederberg
1999-01-01
This paper describes the use of a multi-level converter as a DC supply. Equations for the converter will be deduced in the nondissipative case. The equations provide solutions to DC voltage and the angle of converter voltage. In addition the spectrum for the harmonics after the elimination of sel...
Cao, Jia; Yan, Zheng; He, Guangyu
2016-06-01
This paper introduces an efficient algorithm, multi-objective human learning optimization method (MOHLO), to solve AC/DC multi-objective optimal power flow problem (MOPF). Firstly, the model of AC/DC MOPF including wind farms is constructed, where includes three objective functions, operating cost, power loss, and pollutant emission. Combining the non-dominated sorting technique and the crowding distance index, the MOHLO method can be derived, which involves individual learning operator, social learning operator, random exploration learning operator and adaptive strategies. Both the proposed MOHLO method and non-dominated sorting genetic algorithm II (NSGAII) are tested on an improved IEEE 30-bus AC/DC hybrid system. Simulation results show that MOHLO method has excellent search efficiency and the powerful ability of searching optimal. Above all, MOHLO method can obtain more complete pareto front than that by NSGAII method. However, how to choose the optimal solution from pareto front depends mainly on the decision makers who stand from the economic point of view or from the energy saving and emission reduction point of view.
A Two-stage DC-DC Converter for the Fuel Cell-Supercapacitor Hybrid System
DEFF Research Database (Denmark)
Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.
2009-01-01
A wide input range multi-stage converter is proposed with the fuel cells and supercapacitors as a hybrid system. The front-end two-phase boost converter is used to optimize the output power and to reduce the current ripple of fuel cells. The supercapacitor power module is connected by push...... and designed. A 1kW prototype controlled by TMS320F2808 DSP is built in the lab. Simulation and experimental results confirm the feasibility of the proposed two stage dc-dc converter system.......-pull-forward half bridge (PPFHB) converter with coupled inductors in the second stage to handle the slow transient response of the fuel cells and realize the bidirectional power flow control. Moreover, this cascaded structure simplifies the power management. The control strategy for the whole system is analyzed...
Open-circuit fault detection and tolerant operation for a parallel-connected SAB DC-DC converter
DEFF Research Database (Denmark)
Park, Kiwoo; Chen, Zhe
2014-01-01
This paper presents an open-circuit fault detection method and its tolerant control strategy for a Parallel-Connected Single Active Bridge (PCSAB) dc-dc converter. The structural and operational characteristics of the PCSAB converter lead to several advantages especially for high power applicatio...
A new soft-switched high step-up DC-DC converter with dual coupled inductors
DEFF Research Database (Denmark)
Forouzesh, Mojtaba; Shen, Yanfeng; Yari, Keyvan
2017-01-01
This paper introduces a new efficient high step-up dc-dc converter with a shared input path and dual series coupled inductors at the output. This converter is suitable for high power applications due to its shared input current that puts low current stresses on the low voltage side switches...
Spinu, V.; Oliveri, A.; Lazar, M.; Storace, M.
2012-01-01
This paper proposes a method for FPGA implementation of explicit, piecewise af¿ne (PWA) model predictive control (MPC) laws for non-inverting buck-boost DC-DC converters. A novel approach to obtain a PWA model of the power converter is proposed and two explicit MPC laws are derived, i.e., one based
International Nuclear Information System (INIS)
Liu, Yuan-Ping; Vasic, Dejan; Costa, François; Wu, Wen-Jong; Lee, Chih-Kung
2009-01-01
In this paper, we propose a new design procedure to determine the optimal size of a piezoelectric transformer (PT) for DC/DC converter applications. We examined several parameters, which allows us to produce a piezoelectric transformer with optimal efficiency and which has an optimal range for regulating voltage. The characteristics of a piezoelectric transformer (PT) are well known when the load impedance is a pure resistor. However, when piezoelectric transformers are used in AC/DC or DC/DC converter applications, it requires the presence of a rectifier circuit block. A rectifier is usually a nonlinear device which does not act like a pure resistor. We began by modeling a full-wave rectifier directly in order to understand the design constraint variables such as the maximum mechanical current, the piezoelectric transformer configuration, and the energy balance of the PT configuration. In our final design, a stacked disk-type piezoelectric transformer with radial-mode vibration was chosen due to the large number of design parameters required. In our new design procedure, instead of just looking at the typical optimal loading condition of the PT, we used the concept of a maximum mechanical current to determine the new optimal efficiency which is suitable for voltage regulation. From our results we found that the size of the piezoelectric transformer and efficiency are trade-offs which means that they have an inverse relationship. In summary, we developed a new design procedure to determine the optimal size of a piezoelectric transformer, which we found to be small but with high efficiency so as to provide an optimal range for regulating voltage
High-power converters and AC drives
Wu, Bin
2017-01-01
This new edition reflects the recent technological advancements in the MV drive industry, such as advanced multilevel converters and drive configurations. It includes three new chapters, Control of Synchronous Motor Drives, Transformerless MV Drives, and Matrix Converter Fed Drives. In addition, there are extensively revised chapters on Multilevel Voltage Source Inverters and Voltage Source Inverter-Fed Drives. This book includes a systematic analysis on a variety of high-power multilevel converters, illustrates important concepts with simulations and experiments, introduces various megawatt drives produced by world leading drive manufacturers, and addresses practical problems and their mitigations methods.
DEFF Research Database (Denmark)
Yang, Ling; Chen, Yandong; Luo, An
2017-01-01
With the increasing of AC loads injected into DC microgird (MG) through the inverters, the second ripple current (SRC) in the front-end energy storage converter (ESC) and circulating current among the ESCs in DC MG become more and more serious. In this paper, the SRC suppression method by introdu......With the increasing of AC loads injected into DC microgird (MG) through the inverters, the second ripple current (SRC) in the front-end energy storage converter (ESC) and circulating current among the ESCs in DC MG become more and more serious. In this paper, the SRC suppression method...
A VHF Class E DC-DC Converter with Self-Oscillating Gate Driver
DEFF Research Database (Denmark)
Andersen, Toke Meyer; Christensen, Søren K.; Knott, Arnold
2011-01-01
, is inherently resonant, and switching losses are greatly reduced by ensuring Zero Voltage Switching (ZVS) of the power semiconductor devices. A design method to ensure ZVS operation when combining the inverter, rectifier, and gate driver is provided. Several parasitic effects and their influence on converter......This paper describes the analysis and design of a DC-DC converter topology which is operational at frequencies in the Very High Frequency (VHF) band ranging from 30 MHz − 300 MHz. The presented topology, which consists of a class E inverter, class E rectifier, and self-oscillating gate driver...... operation are discussed, and measurement results of a 100 MHz prototype converter are presented and evaluated. The designed prototype converter verifies the described topology....
Control of Power Converters in AC Microgrids
DEFF Research Database (Denmark)
Rocabert, Joan; Luna, Alvaro; Blaabjerg, Frede
2012-01-01
The enabling of ac microgrids in distribution networks allows delivering distributed power and providing grid support services during regular operation of the grid, as well as powering isolated islands in case of faults and contingencies, thus increasing the performance and reliability of the ele......The enabling of ac microgrids in distribution networks allows delivering distributed power and providing grid support services during regular operation of the grid, as well as powering isolated islands in case of faults and contingencies, thus increasing the performance and reliability...
Directory of Open Access Journals (Sweden)
Zheng Wang
2016-01-01
Full Text Available Three-port isolated (TPI bidirectional DC/DC converters have three energy ports and offer advantages of large voltage gain, galvanic isolation ability and high power density. For this reason this kind of converters are suitable to connect different energy sources and loads in electric and hybrid vehicles. The purpose of this paper is to propose chaotic modulation and the related control scheme for TPI bidirectional DC/DC converters, in such a way that the switching harmonic peaks can be suppressed in spectrum and the conducted electromagnetic interference (EMI is reduced. Two chaotic modulation strategies, namely the continuously chaotic modulation and the discretely chaotic modulation are presented. These two chaotic modulation strategies are applied for TPI bidirectional DC/DC converters with shifted-phase angle based control and phase-shifted PWM control. Both simulation and experiments are given to verify the validity of the proposed chaotic modulation-based control schemes.
A Bidirectional Resonant DC-DC Converter Suitable for Wide Voltage Gain Range
DEFF Research Database (Denmark)
Shen, Yanfeng; Wang, Huai; Al-Durra, Ahmed
2018-01-01
This paper proposes a new bidirectional resonant dc-dc converter suitable for wide voltage gain range applications (e.g., energy storage systems). The proposed converter overcomes the narrow voltage gain range of conventional resonant dc-dc converters, and meanwhile achieves high efficiency...... losses. The operation principles and characteristics of the proposed converter are firstly analyzed in this paper. Then the analytical solutions for the voltage gain, soft-switching, and rms currents are derived, which facilitates the parameters design and optimization. Finally, the proposed topology...... and analysis are verified with experimental results obtained from a 1-kW converter prototype....
A soft-switching coupled inductor bidirectional DC-DC converter with high-conversion ratio
Chao, Kuei-Hsiang; Jheng, Yi-Cing
2018-01-01
A soft-switching bidirectional DC-DC converter is presented herein as a way to improve the conversion efficiency of a photovoltaic (PV) system. Adoption of coupled inductors enables the presented converter not only to provide a high-conversion ratio but also to suppress the transient surge voltage via the release of the energy stored in leakage flux of the coupled inductors, and the cost can kept down consequently. A combined use of a switching mechanism and an auxiliary resonant branch enables the converter to successfully perform zero-voltage switching operations on the main switches and improves the efficiency accordingly. It was testified by experiments that our proposed converter works relatively efficiently in full-load working range. Additionally, the framework of the converter intended for testifying has high-conversion ratio. The results of a test, where a generating system using PV module array coupled with batteries as energy storage device was used as the low-voltage input side, and DC link was used as high-voltage side, demonstrated our proposed converter framework with high-conversion ratio on both high-voltage and low-voltage sides.
Calculation of single phase AC and monopolar DC hybrid corona effects
International Nuclear Information System (INIS)
Zhao, T.; Sebo, S.A.; Kasten, D.G.
1996-01-01
Operating a hybrid HVac and HVdc line is an option for increasing the efficiency of power transmission and overcoming the difficulties in obtaining a new right-of-way. This paper proposes a new calculation method for the study of hybrid line corona. The proposed method can be used to calculate dc corona losses and corona currents in dc or ac conductors for single phase ac and monopolar dc hybrid lines. Profiles of electric field strength and ion current density at ground level can be estimated. The effects of the presence of an energized ac conductor on dc conductor corona and dc voltage on ac conductor corona are included in the method. Full-scale and reduced-scale experiments were utilized to investigate the hybrid line corona effects. Verification of the proposed calculation method is given
A Novel Single Switch Transformerless Quadratic DC/DC Buck-Boost Converter
DEFF Research Database (Denmark)
Mostaan, Ali; A. Gorji, Saman; N. Soltani, Mohsen
2017-01-01
A novel quadratic buck-boost DC/DC converter is presented in this study. The proposed converter utilizes only one active switch and can step-up/down the input voltage, while the existing single switch quadratic buck/boost converters can only work in step-up or step-down mode. First, the proposed ...
Series-Connected High Frequency Converters in a DC Microgrid System for DC Light Rail Transit
Directory of Open Access Journals (Sweden)
Bor-Ren Lin
2018-01-01
Full Text Available This paper studies and presents a series-connected high frequency DC/DC converter connected to a DC microgrid system to provide auxiliary power for lighting, control and communication in a DC light rail vehicle. Three converters with low voltage and current stresses of power devices are series-connected with single transformers to convert a high voltage input to a low voltage output for a DC light rail vehicle. Thus, Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs with a low voltage rating and a turn-on resistance are adopted in the proposed circuit topology in order to decrease power losses on power switches and copper losses on transformer windings. A duty cycle control with an asymmetric pulse-width modulation is adopted to control the output voltage at the desired voltage level. It is also adopted to reduce switching losses on MOSFETs due to the resonant behavior from a leakage inductor of an isolated transformer and output capacitor of MOSFETs at the turn-on instant. The feasibility and effectiveness of the proposed circuit have been verified by a laboratory prototype with a 760 V input and a 24 V/60 A output.
A CMOS RF-to-DC Power Converter With 86% Efficiency and -19.2-dBm Sensitivity
Almansouri, Abdullah Saud Mohammed
2018-01-09
This paper proposes an RF-to-dc power converter for ambient wireless powering that is efficient, highly sensitive, and less dependent on the load resistance with an extended dynamic range. The proposed rectifier utilizes a variable biasing technique to control the conduction of the rectifying transistors selectively, hence minimizing the leakage current; unlike the prior work that has a fixed feedback resistors, which limits the efficient operation to a relatively high RF power and causes a drop in the peak power conversion efficiency (PCE). The proposed design is fabricated using a 0.18-μm standard CMOS technology and occupies an area of 8800 μm². The measurement results show an 86% PCE and -19.2-dBm (12 μW) sensitivity when operating at the medical band 433 MHz with a 100-kΩ load. Furthermore, the PCE is 66%, and the sensitivity is -18.2 dBm (15.1 μW) when operating at UHF 900 MHz with a 100-kΩ load.
A CMOS RF-to-DC Power Converter With 86% Efficiency and -19.2-dBm Sensitivity
Almansouri, Abdullah Saud Mohammed; Ouda, Mahmoud H.; Salama, Khaled N.
2018-01-01
This paper proposes an RF-to-dc power converter for ambient wireless powering that is efficient, highly sensitive, and less dependent on the load resistance with an extended dynamic range. The proposed rectifier utilizes a variable biasing technique to control the conduction of the rectifying transistors selectively, hence minimizing the leakage current; unlike the prior work that has a fixed feedback resistors, which limits the efficient operation to a relatively high RF power and causes a drop in the peak power conversion efficiency (PCE). The proposed design is fabricated using a 0.18-μm standard CMOS technology and occupies an area of 8800 μm². The measurement results show an 86% PCE and -19.2-dBm (12 μW) sensitivity when operating at the medical band 433 MHz with a 100-kΩ load. Furthermore, the PCE is 66%, and the sensitivity is -18.2 dBm (15.1 μW) when operating at UHF 900 MHz with a 100-kΩ load.
DEFF Research Database (Denmark)
Liu, Changjin; Xu, Dehong; Zhu, Nan
2013-01-01
Unbalanced grid voltage causes a large second-order harmonic current in the dc-link capacitors as well as dc-voltage fluctuation, which potentially will degrade the lifespan and reliability of the capacitors in voltage source converters. This paper proposes a novel dc-capacitor current control...... method for a grid-side converter (GSC) to eliminate the negative impact of unbalanced grid voltage on the dc-capacitors. In this method, a dc-capacitor current control loop, where a negative-sequence resonant controller is used to increase the loop gain, is added to the conventional GSC current control...... loop. The rejection capability to the unbalanced grid voltage and the stability of the proposed control system are discussed. The second-order harmonic current in the dc capacitor as well as dc-voltage fluctuation is very well eliminated. Hence, the dc capacitors will be more reliable under unbalanced...
Modular Power System Configured with Standard Product Hybrid DC-DC Converters, Phase II
National Aeronautics and Space Administration — VPT proposes an innovative concept whereby complex NASA space power electronic systems can be configured using a small number of qualified hybrid DC-DC converter and...
Control and modulation for loss minimization for dc/dc converters in wind farm
DEFF Research Database (Denmark)
Dincan, Catalin Gabriel; Kjær, Philip Carne
2016-01-01
For a DC wind turbine, a single phase series-resonant converter for unidirectional power is studied. This paper aims to identify and compare impact on electrical losses and component ratings from the choice of three candidate control strategies. The evaluation is purely based on circuit simulatio...
A Four-Phase High Voltage Conversion Ratio Bidirectional DC-DC Converter for Battery Applications
Directory of Open Access Journals (Sweden)
Li-Kun Xue
2015-06-01
Full Text Available This study presents a four-phase interleaved high voltage conversion ratio bidirectional DC-DC converter circuit based on coupled inductors and switched capacitors, which can eliminate the defects of conventional high voltage conversion ratio bidirectional DC-DC converters in terms of high-voltage/current stress, less efficiency and low-power limitation. Parallel channels are used to reduce current stress at the low-voltage side and series connected switched capacitors are used to enlarge voltage conversion ratio, reduce voltage stress and achieve auto current sharing. This paper proposes the operation principle, feature analysis and optimization design considerations. On this basis the objectives of high voltage conversion ratio, low voltage/current stress, high power density, high efficiency and high-power applications can be achieved. Some experimental results based on a 500 W prototype converter (24 V to 48 V at low-voltage side, 400 V at high-voltage side are given to verify the theoretical analysis and the effectiveness of the proposed converter.
A Review of Galvanically Isolated Impedance-Source DC–DC Converters
DEFF Research Database (Denmark)
Chub, Andrii; Vinnikov, Dmitri; Blaabjerg, Frede
2016-01-01
Impedance-source converters, an emerging technology in electric energy conversion, overcome limitations of conventional solutions by the use of specific impedance-source networks. Focus of this paper is on the topologies of galvanically isolated impedance-source dc-dc converters. These converters...... isolated dc-dc converters according to the element that transfers energy from the input to the output: a transformer, a coupled inductor, or their combination. This classification reveals advantages and disadvantages, as well as a wide space for further research. This paper also outlines the most promising...
DEFF Research Database (Denmark)
Ghasemi, N.; Zare, F.; Boora, A.A.
2012-01-01
Multilevel converters, because of the benefits they attract in generating high quality output voltage, are used in several applications. Various modulation and control techniques are introduced by several researchers to control the output voltage of the multilevel converters like space vector...... modulation and harmonic elimination (HE) methods. Multilevel converters may have a DC link with equal or unequal DC voltages. In this study a new HE technique based on the HE method is proposed for multilevel converters with unequal DC link voltage. The DC link voltage levels are considered as additional...
Lowest of AC-DC power output for electrostrictive polymers energy harvesting systems
Meddad, Mounir; Eddiai, Adil; Hajjaji, Abdelowahed; Guyomar, Daniel; Belkhiat, Saad; Boughaleb, Yahia; Chérif, Aida
2013-11-01
Advances in technology led to the development of electronic circuits and sensors with extremely low electricity consumption. At the same time, structural health monitoring, technology and intelligent integrated systems created a need for wireless sensors in hard to reach places in aerospace vehicles and large civil engineering structures. Powering sensors with energy harvesters eliminates the need to replace batteries on a regular basis. Scientists have been forced to search for new power source that are able to harvested energy from their surrounding environment (sunlight, temperature gradients etc.). Electrostrictive polymer belonging to the family of electro-active polymers, offer unique properties for the electromechanical transducer technology has been of particular interest over the last few years in order to replace conventional techniques such as those based on piezoelectric or electromagnetic, these materials are highly attractive for their low-density, with large strain capability that can be as high as two orders of magnitude greater than the striction-limited, rigid and fragile electroactive ceramics. Electrostrictive polymers sensors respond to vibration with an ac output signal, one of the most important objectives of the electronic interface is to realize the required AC-DC conversion. The goal of this paper is to design an active, high efficiency power doubler converter for electrostrictive polymers exclusively uses a fraction of the harvested energy to supply its active devices. The simulation results show that it is possible to obtain a maximum efficiency of the AC-DC converter equal to 80%. Premiliminary experimental measurements were performed and the results obtained are in good agreement with simulations.
Large step-down DC-DC converters with reduced current stress
International Nuclear Information System (INIS)
Ismail, Esam H.
2009-01-01
In this paper, several DC-DC converters with large voltage step-down ratios are introduced. A simple modification in the output section of the conventional buck and quadratic converters can effectively extend the duty-cycle range. Only two additional components (an inductor and diode) are necessary for extending the duty-cycle range. The topologies presented in this paper show an improvement in the duty-cycle (about 40%) over the conventional buck and quadratic converters. Consequently, they are well suited for extreme step-down voltage conversion ratio applications. With extended duty-cycle, the current stress on all components is reduced, leading to a significant improvement of the system losses. The principle of operation, theoretical analysis, and comparison of circuit performances with other step-down converters is discussed regarding voltage and current stress. Experimental results of one prototype rated 40-W and operating at 100 kHz are provided in this paper to verify the performance of this new family of converters. The efficiency of the proposed converters is higher than the quadratic converters
Design of the DC-DC power stage of the capacitor charger for MAXIDISCAP power converters
Cravero, Jean-Marc
2013-01-01
This technical report presents the design of the DC-DC power stage of the capacitor charger for MAXIDISCAP power converters. The power stage is based on a half bridge series resonant converter in Discontinuous Conduction Mode (DCM). This simple and robust topology allows obtaining a current source behavior with a low switching losses power stage. The associated control stage is implemented using a commercial controller which has differenti nternal circuits that allows a high integration of the converter control system. The report presents the design and tuning criteria for the DC-DC converter, including the power stage and the control system.
Systematic design approach of fuzzy PID stabilizer for DC-DC converters
International Nuclear Information System (INIS)
Guesmi, K.; Essounbouli, N.; Hamzaoui, A.
2008-01-01
DC-DC converters process electrical energy by switching between a fixed number of configurations. The objective of controlling these systems is to provide better performances, ensure closed loop stability and guarantee a simple predictable behaviour. Based on a converter averaged model, we propose, in this paper, a systematic design approach of a fuzzy PID. The choice of controller parameters stands on the whole system stability requirements. Extension of the obtained asymptotic stability to structural stability is presented to show that the developed controller ensures also a simple and predictable behaviour of the converter. Finally, we illustrate the efficiency of the proposed fuzzy PID design approach through simulations in voltage mode as well as in current mode control
Systematic design approach of fuzzy PID stabilizer for DC-DC converters
Energy Technology Data Exchange (ETDEWEB)
Guesmi, K.; Essounbouli, N.; Hamzaoui, A. [CReSTIC, IUT de Troyes 09, rue de Quebec BP. 396, 10026 Troyes (France)
2008-10-15
DC-DC converters process electrical energy by switching between a fixed number of configurations. The objective of controlling these systems is to provide better performances, ensure closed loop stability and guarantee a simple predictable behaviour. Based on a converter averaged model, we propose, in this paper, a systematic design approach of a fuzzy PID. The choice of controller parameters stands on the whole system stability requirements. Extension of the obtained asymptotic stability to structural stability is presented to show that the developed controller ensures also a simple and predictable behaviour of the converter. Finally, we illustrate the efficiency of the proposed fuzzy PID design approach through simulations in voltage mode as well as in current mode control. (author)
Stability analysis of a high-step-Up DC grid-connected two-stage boost DC-DC converter
Directory of Open Access Journals (Sweden)
El Aroudi A.
2014-01-01
Full Text Available High conversion ratio switching converters are used whenever there is a need to step-up dc source voltage level to a much higher output dc voltage level such as in photovoltaic systems, telecommunications and in some medical applications. A simple solution for achieving this high conversion ratio is by cascading different stages of dc-dc boost converters. The individual converters in such a cascaded system are usually designed separately applying classical design criteria. However these criteria may not be applicable for the complete cascaded system . This paper first presents a glimpse on the bifurcation behavior that a cascade connection of two boost converters can exhibit. It is shown that the desired periodic orbit can undergo period doubling leading to subharmonic oscillations and chaotic regimes. Then, in order to simplify the analysis the second stage is considered as constant current sink and design-oriented analysis is carried out to obtain stability boundaries in the parameter space by taking into account slope interactions between the state variables in the two-different stages.
Control of a resonant d.c.-link converter for a.c. motor drives
Directory of Open Access Journals (Sweden)
Astrid Petterteig
1992-10-01
Full Text Available This paper presents the control of the resonant d.c.-link converter for a.c. motor drives. This is a low loss converter with higher efficiency than a conventional PWM converter, but it requires complex control. It needs a special control of the resonant d.c.-link voltage in addition to the discrete control of the a.c. side currents. Simulations show how the control of the a.c. currents, the modulation principle, influences the overall performance of the converter.
Multi-level cascaded DC/DC converters for PV applications
Directory of Open Access Journals (Sweden)
Ahmed A.A. Hafez
2015-12-01
Full Text Available A robust multi-level cascaded DC/DC system for Photovoltaic (PV application is advised in this article. There are three PV generators, each is coupled to a half-bridge buck cell. Each PV-generator–buck-converter channel is controlled such that maximum power is captured independently under different irradiation and temperature levels. The system operation under normal and abnormal conditions was comprehensively investigated. Internal Model Control (IMC technique was adopted for tuning the controllers. An elaborate switching modulation strategy was used to reduce the current ripple and inductor size, while maintaining high efficiency. Annotative, simple and robust remedial strategies were proposed to mitigate different anticipated faults. Comprehensive simulation results in Matlab environment were illustrated for corroborating the performance of the advised cascaded DC/DC system under normal/abnormal conditions. The proposed system enjoys the merits of independency, reduced volumetric dimensions and improved efficiency. Furthermore, the system is inherently fault-tolerant.
International Nuclear Information System (INIS)
Milinski, N.; Milinski, E.
2002-01-01
Amorphous conductors such as liquid metals and alloys are subject to dc conductivity σ calculation here. Principal aim is to explore the impact on σ of the constitutive equation α * = 1, formulated and developed in the preceding papers. The nearly free electrons (NFE) model has been applied. Alkali metals are assumed to fit this model well, and sodium the best. Consequently, the results on these metals have been assumed reliable and relevant for conclusions making. The conclusion we made is: instead of the Fermi radius k f proper for the statistical ensemble in state of thermodynamics equilibrium, a new k ' f number is needed to be introduced into the linear response formula when calculating σ and α * . This k ' f is the length of the corresponding axis of ellipsoid proper for describing the statistical ensemble in the state with dc current. In the traditional interpretation of the linear response formula (Kubo formula) this conversion has been overlooked. Parameters of the mentioned ellipsoids are determined in this paper for a number of liquid metals of valency numbers 1,2,3,4, in addition to a selection of some binary and ternary conducting alloys. It is up to experimental measurements to decide how real this concept of restructuring the statistical ensemble is. (Authors)
Converter topologies and control
Energy Technology Data Exchange (ETDEWEB)
Rodriguez, Fernando; Qin, Hengsi; Chapman, Patrick
2018-05-01
An inverter includes a transformer that includes a first winding, a second winding, and a third winding, a DC-AC inverter electrically coupled to the first winding of the transformer, a cycloconverter electrically coupled to the second winding of the transformer, an active filter electrically coupled to the third winding of the transformer. The DC-AC inverter is adapted to convert the input DC waveform to an AC waveform delivered to the transformer at the first winding. The cycloconverter is adapted to convert an AC waveform received at the second winding of the transformer to the output AC waveform having a grid frequency of the AC grid. The active filter is adapted to sink and source power with one or more energy storage devices based on a mismatch in power between the DC source and the AC grid.
Distributed Control for Autonomous Operation of a Three-Port AC/DC/DS Hybrid Microgrid
DEFF Research Database (Denmark)
Wang, Peng; Jin, Chi; Zhu, Dexuan
2015-01-01
This paper presents a distributed control scheme for reliable autonomous operation of a hybrid three-port ac/dc/distributed storage (ds) microgrid by means of power sharing in individual network, power exchange between ac and dc networks, and power management among three networks. The proposed...... distributed control scheme includes: 1) a fully decentralized control, which is achieved by local power sharing (LPS) in individual ac or dc network, global power sharing (GPS) throughout ac/dc networks, and storage power sharing (SPS) among distributed storages. Upon fully decentralized control, each power...... module can operate independently without communication links. This would benefit for riding through communication malfunction in multilayer supervision control system; 2) a multilevel power exchange control for scheduling LPS, GPS, and SPS has been developed to reduce unnecessary power exchange between...
Efficient Visible Light Communication Transmitters Based on Switching-Mode dc-dc Converters
2018-01-01
Visible light communication (VLC) based on solid-state lighting (SSL) is a promising option either to supplement or to substitute existing radio frequency (RF) wireless communication in indoor environments. VLC systems take advantage of the fast modulation of the visible light that light emitting diodes (LEDs) enable. The switching-mode dc-to-dc converter (SMCdc-dc) must be the cornerstone of the LED driver of VLC transmitters in order to incorporate the communication functionality into LED lighting, keeping high power efficiency. However, the new requirements related to the communication, especially the high bandwidth that the LED driver must achieve, converts the design of the SMCdc-dc into a very challenging task. In this work, three different methods for achieving such a high bandwidth with an SMCdc-dc are presented: increasing the order of the SMCdc-dc output filter, increasing the number of voltage inputs, and increasing the number of phases. These three strategies are combinable and the optimum design depends on the particular VLC application, which determines the requirements of the VLC transmitter. As an example, an experimental VLC transmitter based on a two-phase buck converter with a fourth-order output filter will demonstrate that a bandwidth of several hundred kilohertz (kHz) can be achieved with output power levels close to 10 W and power efficiencies between 85% and 90%. In conclusion, the design strategy presented allows us to incorporate VLC into SSL, achieving high bit rates without damaging the power efficiency of LED lighting. PMID:29642455
Deadbeat control of power leveling unit with bidirectional buck/boost DC/DC converter
Hamasaki, Shin-ichi; Mukai, Ryosuke; Yano, Yoshihiro; Tsuji, Mineo
2014-01-01
As a distributed generation system increases, a stable power supply becomes difficult. Thus control of power leveling (PL) unit is required to maintain the balance of power flow for irregular power generation. The unit is required to respond to change of voltage and bidirectional power flow. So the bidirectional buck/boost DC/DC converter is applied for the control of PL unit in this research. The PL unit with Electric double-layer capacitor (EDLC) is able to absorb change of power, and it is...
Four Quadrants Integrated Transformers for Dual-input Isolated DC-DC Converters
DEFF Research Database (Denmark)
Ouyang, Ziwei; Zhang, Zhe; Andersen, Michael A. E.
2012-01-01
A common limitation of power coupling effect in some known multiple-input dc-dc converters has been addressed in many literatures. In order to overcome this limitation, a new concept for decoupling the primary windings in the integrated multiple-winding transformers based on 3-dimensional (3D...... perpendicular primary windings, a name of “four quadrants integrated transformers” (FQIT) is therefore given to the proposed construction. Since the two primary windings are uncoupled, the FQIT allows the two input power stages to transfer the energy into the output load simultaneously or at any...
Performance evaluation of a DC-AC inverter controlled with ZAD-FPIC
Directory of Open Access Journals (Sweden)
Fredy Edimer Hoyos Velasco
2018-01-01
Full Text Available Introduction: Power converters are used in microgrids to transfer power to the load with a regulated voltage. However, the DC-AC converters present distortions in the waveform that can be improved with the help of real-time controllers. Objective: Evaluate the response in alternating current of the buck converter controlled using ZAD-FPIC technique. Methodology: Based on the differential equations that describe the buck power converter, the ZAD and FPIC controllers are designed, simulations of the complete controlled system are made in Simulink of MATLAB, the system is implemented experimentally, and the controller is executed in real-time with the help of a DS1104 from dSPACE. In the end, several tests are carried out to check the effectiveness of the controller. Results: The results show that the controller allows good stability against different variations in the system and in the load. Conclusions: The ZAD-FPIC technique controls the variable and tracks changes in the waveform, magnitude, and frequency of the reference signal. The controller presents good stability to different tests, tracking the reference signal after each event.
Common mode noise in three-level DC-DC converters
CSIR Research Space (South Africa)
Grobler, Inus
2009-09-01
Full Text Available that three-level buck DC-DC converters in general generate much lower common mode currents than conventional two-level buck converters. Further, reductions in common mode currents are achieved by using the improved three-level topologies that have been...
Y-Source Boost DC/DC Converter for Distributed Generation
DEFF Research Database (Denmark)
Siwakoti, Yam P.; Loh, Poh Chiang; Blaabjerg, Frede
2015-01-01
This paper introduces a versatile Y-source boost dc/dc converter intended for distributed power generation, where high gain is often demanded. The proposed converter uses a Y-source impedance network realized with a tightly coupled three-winding inductor for high voltage boosting that is presently...
Comparison of two different high performance mixed signal controllers for DC/DC converters
DEFF Research Database (Denmark)
Jakobsen, Lars Tønnes; Andersen, Michael Andreas E.
2006-01-01
This paper describes how mixed signal controllers combining a cheap microcontroller with a simple analogue circuit can offer high performance digital control for DC/DC converters. Mixed signal controllers have the same versatility and performance as DSP based controllers. It is important to have...... an engineer experienced in microcontroller programming write the software algorithms to achieve optimal performance. Two mixed signal controller designs based on the same 8-bit microcontroller are compared both theoretically and experimentally. A 16-bit PID compensator with a sampling frequency of 200 k......Hz implemented in the 16 MIPS, 8-bit ATTiny26 microcontroller is demonstrated....
A Bidirectional Multi-Port DC-DC Converter Integrating Voltage Equalizer
DEFF Research Database (Denmark)
Chen, Jianfei; Hou, Shiying; Deng, Fujin
2015-01-01
A novel bidirectional multi-port dc-dc converter integrating voltage equalizer based on switched-capacitor voltage accumulator (SCVA) is proposed. It has two operating modes of charging and discharging for battery modules. All battery modules are connected in series indirectly and can be equalize...... battery modules with different voltages. Simulation results has shown the feasibility of the proposed converter.......A novel bidirectional multi-port dc-dc converter integrating voltage equalizer based on switched-capacitor voltage accumulator (SCVA) is proposed. It has two operating modes of charging and discharging for battery modules. All battery modules are connected in series indirectly and can be equalized...
A Unidirectional DC-DC Autotransformer for DC Grid Application
Directory of Open Access Journals (Sweden)
Meng Zhou
2018-03-01
Full Text Available Conventional unidirectional DC-DC converters for DC grid application employ DC-AC-DC two-stage conversion technology and suffer from high converter cost and power loss. To solve these issues, a unidirectional step-up DC-DC autotransformer (UUDAT and a unidirectional step-down DC-DC autotransformer (DUDAT are studied. The UUDAT and DUDAT are composed of a series connection of diode bridges and voltage source converters. Topologies of UUDAT and DUDAT are detailed. The harmonic and un-controllability issues are discussed. Control and possible application scenarios for UUDAT and DUDAT are depicted. DC fault isolation mechanism and the methods of dimensioning the voltage and power ratings of the components in UUDAT and DUDAT are studied. Extensive simulations on power system level and experiments on a UUDAT and DUDAT prototype verified their technical feasibility.
High-voltage boost quasi-Z-source isolated DC/DC converter
DEFF Research Database (Denmark)
Siwakoti, Yam P.; Blaabjerg, Frede; Loh, Poh Chiang
2014-01-01
converter uses less switches, a smaller common duty cycle and less turns for the transformer when compared with existing topologies. Its size and weight are therefore smaller, whereas its efficiency is higher. It is therefore well-suited for applications, where a wide range of voltage gain is required like...... renewable energy systems, DC power supplies found in telecom, aerospace and electric vehicles. To demonstrate the performance of the proposed converter, a 400 V, 500 W prototype has been implemented in the laboratory. Efficiency of the prototype measured is found to vary from 89.0 to 97.4% when its input...
International comparison of AC-DC current transfer standards
Heine, G.; Garcocz, M.; Waldmann, W.
2017-01-01
The measurements of the international comparison of ac-dc current transfer standards identified as EURAMET.EM-K12 started in June 2012 and were completed in December 2014. Twenty NMIs in the EURAMET region and one NMI in the AFRIMET region took part: BEV (Austria), CMI (Czech Republic), PTB (Germany), METAS (Switzerland), JV (Norway), UME (Turkey), GUM (Poland), IPQ (Portugal), CEM (Spain), INRIM (Italy), SP (Sweden), DANIAmet-MI-Trescal (Denmark), BIM (Bulgaria), MKEH (Hungary), SIQ (Slovenia), LNE (France), NSAI NML (Ireland), VSL (The Netherlands), NPL (United Kingdom), Metrosert (Estonia), NIS (Egypt). The comparison was proposed to link the National Metrology Institutes organised in EURAMET to the key comparison CCEM-K12. The ac-dc current transfer difference of each travelling standard had been measured at its nominal current 10 mA and 5 A at the following frequencies: 10 Hz, 55 Hz, 1 kHz, 10 kHz, 20 kHz, 50 kHz, 100 kHz. The test points were selected to link the results with the equivalent CCEM Key Comparison (CCEM-K12), through five NMIs participating in both EURAMET and CCEM key comparisons (PTB, JV, NPL, SP and BEV). The report shows the degree of equivalence in the EURAMET region and also the degree of equivalence with the corresponding CCEM reference value. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Conventional control and fuzzy control of a dc-dc converter for machine drive
Energy Technology Data Exchange (ETDEWEB)
Radoi, C.; Florescu, A. [Department of Power Electronics `Politecnica` University Bucharest (Romania)
1997-12-31
Fuzzy logic or fuzzy set theory is recently getting increasing emphasis in process control applications. The paper describes an application of fuzzy logic in speed control system that uses a dc-dc converter. The fuzzy control is used to linearize the family of external characteristics of the converter in discontinuous-conduction mode occurring at light load and/or high speed. In order to compare the conventional control with the fuzzy logic control, algorithms have been developed in detail and verified by Microsoft Excel simulation. The simulation study indicates that fuzzy control is a good alternative for conventional control methods, being used particularly in non-linear complex systems ill defined or totally unknown. Where the mathematical model exists, it is useful. The applications of fuzzy set theory in power electronics are almost entirely new; fuzzy logic seems to have a lot of premises in the large industrial control field. (orig.) 2 refs.
SSP Technology Investigation of a High-Voltage DC-DC Converter
Pappas, J. A.; Grady, W. M.; George, Patrick J. (Technical Monitor)
2002-01-01
The goal of this project was to establish the feasibility of a high-voltage DC-DC converter based on a rod-array triggered vacuum switch (RATVS) for the Space Solar Power system. The RATVS has many advantages over silicon and silicon-carbide devices. The RATVS is attractive for this application because it is a high-voltage device that has already been demonstrated at currents in excess of the requirement for an SSP device and at much higher per-device voltages than existing or near-term solid state switching devices. The RATVS packs a much higher specific power rating than any solid-state device and it is likely to be more tolerant of its surroundings in space. In addition, pursuit of an RATVS-based system would provide NASA with a nearer-term and less expensive power converter option for the SSP.
Water calorimetry with thermistor bridge operated in DC and AC mode: comparative results
Energy Technology Data Exchange (ETDEWEB)
Guerra, A S; Laitano, R F; Petrocchi, A [Ist. Nazionale di Metrologia delle Radiazioni Ionizzanti, ENEA, Roma (Italy)
1997-09-01
An experimental study was carried out to find out the optimal conditions for measuring the output signal in a water calorimeter. To this end the thermistor bridge of the calorimeter was operated in AC and in DC mode, respectively. A comparative analysis of these two alternative methods was the made. In the AC mode measurement a lock-in amplifier based experimental assembly was used and compared to the more conventional system based on a high-sensitivty DC amplifier. The AC system resulted to be preferable as far as the short term and long term reproducibility is concerned. (orig.)
Water calorimetry with thermistor bridge operated in DC and AC mode: comparative results
International Nuclear Information System (INIS)
Guerra, A.S.; Laitano, R.F.; Petrocchi, A.
1997-01-01
An experimental study was carried out to find out the optimal conditions for measuring the output signal in a water calorimeter. To this end the thermistor bridge of the calorimeter was operated in AC and in DC mode, respectively. A comparative analysis of these two alternative methods was the made. In the AC mode measurement a lock-in amplifier based experimental assembly was used and compared to the more conventional system based on a high-sensitivty DC amplifier. The AC system resulted to be preferable as far as the short term and long term reproducibility is concerned. (orig.)
Power factor correction (PFC) converters feeding brushless DC ...
African Journals Online (AJOL)
This paper presents a comprehensive study of power factor correction (PFC) converters for feeding brushless DC (BLDC) motor drive. This work explores various configurations of PFC converters which are classified into five different categories of non-isolated, bridgeless (BL) non-isolated, isolated, BL-isolated PFC ...
The 25 kW resonant dc/dc power converter
Robson, R. R.
1983-01-01
The feasibility of processing 25-kW of power with a single, transistorized, series resonant converter stage was demonstrated by the successful design, development, fabrication, and testing of such a device which employs four Westinghouse D7ST transistors in a full-bridge configuration and operates from a 250-to-350 Vdc input bus. The unit has an overall worst-case efficiency of 93.5% at its full rated output of 1000 V and 25 A dc. A solid-state dc input circuit breaker and output-transient-current limiters are included in and integrated into the design. Full circuit details of the converter are presented along with the test data.
DEFF Research Database (Denmark)
Liu, Dong; Deng, Fujin; Chen, Zhe
2017-01-01
The capacitor current would be imbalanced under the conventional control strategy in the half-bridge three-level (HBTL) DC/DC converter due to the effect of the output inductance of the power supply and the input line inductance, which would affect the converter's reliability. This paper proposes...... a pulse-wide modulation (PWM) strategy composed of two operation modes for the HBTL DC/DC converter, which can realize the zero-voltage switching (ZVS) for the efficiency improvement. In addition, a capacitor current balancing control is proposed by alternating the two operation modes of the proposed ZVS...... PWM strategy, which can eliminate the current imbalance among the two input capacitors. Therefore, the proposed control strategy can improve the converter's performance and reliability in: 1) reducing the switching losses and noises of the power switches; 2) balancing the thermal stresses...
DEFF Research Database (Denmark)
Ma, Siyuan; Wang, Haoran; Tang, Junchaojie
2016-01-01
In single-phase inverters, DC-link capacitors are installed at the DC-link to buffer the ripple power between the AC side and DC side. Active decoupling methods introduce additional circuits at the DC side or AC side to partially or fully supply the ripple power. So that the demanded DC-link capa......In single-phase inverters, DC-link capacitors are installed at the DC-link to buffer the ripple power between the AC side and DC side. Active decoupling methods introduce additional circuits at the DC side or AC side to partially or fully supply the ripple power. So that the demanded DC......-link capacitor capacitance can be decreased. However, few research is about the effect of DC side and AC side decoupling on the DC-link capacitor reliability considering its electro-thermal stresses. This paper presents a quantitative analysis on the lifetime of capacitors with power decoupling circuits...... at the DC side and AC side, respectively. The ripple current spectrum of the capacitors is obtained by double Fourier analysis of a H-bridge inverter with natural sampling PWM modulation. A study case is demonstrated by a 2,000 W H-bridge inverter with 400 V DC-link voltage....
Energy Technology Data Exchange (ETDEWEB)
Ljusev, P.
2004-03-15
In this report an isolated PWM DC-AC SICAM with an active capacitive voltage clamp is presented. AC-DC power supply is implemented in its simplest form: diode rectifier followed by a medium-size charge-storage capacitors and possibly with an EMC filter on the mains entrance. Isolation from the AC mains is achieved using a high frequency (HF) transformer, whose voltages are not audio-modulated. The latter simplifies the design and is expected to have many advantages over the approach where the transformer voltages are modulated in regards to the audio signal reference. Input stage is built as a DC-AC inverter (push-pull, half-bridge or a full-bridge) and operated with 50% duty cycle, with all the challenges to avoid transformer saturation and obtain symmetrical operation. On the secondary side the output section is implemented as rectifier+inverter AC-AC stage, i.e. a true bidirectional bridge, which operation is aimed towards amplification of the audio signal. In order to solve the problem with the commutation of the load current, a dead time between the incoming and outgoing bidirectional switch is implemented, while a capacitive voltage clamp is used to keep the induced overvoltage to reasonable levels. The energy stored in the clamping capacitor is not wasted as in the dissipative clamps, but is rather transferred back to the primary side for further processing using an auxiliary isolated single-switch converter, i.e. an active clamping technique is used. (au)
Bifurcation Analysis of a DC-DC Bidirectional Power Converter Operating with Constant Power Loads
Cristiano, Rony; Pagano, Daniel J.; Benadero, Luis; Ponce, Enrique
Direct current (DC) microgrids (MGs) are an emergent option to satisfy new demands for power quality and integration of renewable resources in electrical distribution systems. This work addresses the large-signal stability analysis of a DC-DC bidirectional converter (DBC) connected to a storage device in an islanding MG. This converter is responsible for controlling the balance of power (load demand and generation) under constant power loads (CPLs). In order to control the DC bus voltage through a DBC, we propose a robust sliding mode control (SMC) based on a washout filter. Dynamical systems techniques are exploited to assess the quality of this switching control strategy. In this sense, a bifurcation analysis is performed to study the nonlinear stability of a reduced model of this system. The appearance of different bifurcations when load parameters and control gains are changed is studied in detail. In the specific case of Teixeira Singularity (TS) bifurcation, some experimental results are provided, confirming the mathematical predictions. Both a deeper insight in the dynamic behavior of the controlled system and valuable design criteria are obtained.
Analysis and Controller Design of a Universal Bidirectional DC-DC Converter
Directory of Open Access Journals (Sweden)
Kou-Bin Liu
2016-06-01
Full Text Available In this paper, first the operating principles of a non-isolated universal bidirectional DC-DC converter are studied and analyzed. The presented power converter is capable of operating in all power transferring directions in buck/boost modes. Zero voltage switching can be achieved for all the power switches through proper modulation strategy design, therefore, the presented converter can achieve high efficiency. To further improve the efficiency, the relationship between the phase-shift angle and the overall system efficiency is analyzed in detail, an adaptive phase-shift (APS control method which determines the phase-shift value between gating signals according to the load level is then proposed. As the modulation strategy is a software-based solution, there is no requirement for additional circuits, therefore, it can be implemented easily and instability and noise susceptibility problems can be reduced. To validate the correctness and the effectiveness of the proposed method, a 300 W prototyping circuit is implemented and tested. A low cost dsPIC33FJ16GS502 digital signal controller is adopted in this paper to realize the power flow control, DC-bus voltage regulation and APS control. According to the experimental results, a 12.2% efficiency improvement at light load and 4.0% efficiency improvement at half load can be achieved.
Jayaweera, H. M. P. C.; Muhtaroğlu, Ali
2016-11-01
A novel model based methodology is presented to determine optimal device parameters for the fully integrated ultra low voltage DC-DC converter for energy harvesting applications. The proposed model feasibly contributes to determine the maximum efficient number of charge pump stages to fulfill the voltage requirement of the energy harvester application. The proposed DC-DC converter based power consumption model enables the analytical derivation of the charge pump efficiency when utilized simultaneously with the known LC tank oscillator behavior under resonant conditions, and voltage step up characteristics of the cross-coupled charge pump topology. The verification of the model has been done using a circuit simulator. The optimized system through the established model achieves more than 40% maximum efficiency yielding 0.45 V output with single stage, 0.75 V output with two stages, and 0.9 V with three stages for 2.5 kΩ, 3.5 kΩ and 5 kΩ loads respectively using 0.2 V input.
Alharbi, Salah S.; Alharbi, Saleh S.; Al-bayati, Ali M. S.; Matin, Mohammad
2017-08-01
This paper presents a high-performance dc-dc flyback converter design based on wide bandgap (WBG) semiconductor devices for photovoltaic (PV) applications. Two different power devices, a gallium nitride (GaN)-transistor and a silicon (Si)-MOSFET, are implemented individually in the flyback converter to examine their impact on converter performance. The total power loss of the converter with different power devices is analyzed for various switching frequencies. Converter efficiency is evaluated at different switching frequencies, input voltages, and output power levels. The results reveal that the converter with the GaN-transistor has lower total power loss and better efficiency compared to the converter with the conventional Si-MOSFET.
Directory of Open Access Journals (Sweden)
Muh. Zakiyullah Romdlony
2012-07-01
Full Text Available Well-regulated DC bus voltage is the important point to guarantee the power demand in hybrid vehicle applications. Voltage regulation can be achieved with control method that build switching signal on DC-DC converter. This paper describes design and small scale experimental results of bus voltage regulation control of the DC-DC bidirectional converter with battery and supercapacitor as energy source. The control system consists of two control loops, the outer loop that get DC bus voltage feedback using PI anti-windup back calculation control method. This outer loop will generate a reference current for the inner loop that implement hysteresis control. The inner control loop will compare that reference curent with the source current obtained from the current sensor. Simulation and experimental results show that bus voltage is well-regulated under the load changes with 1% voltage ripple.
Static and Dynamic Characteristics of DC-DC Converter Using a Digital Filter
Kurokawa, Fujio; Okamatsu, Masashi
This paper presents the regulation and dynamic characteristics of the dc-dc converter with digital PID control, the minimum phase FIR filter or the IIR filter, and then the design criterion to improve the dynamic characteristics is discussed. As a result, it is clarified that the DC-DC converter using the IIR filter method has superior performance characteristics. The regulation range is within 1.3%, the undershoot against the step change of the load is less than 2% and the transient time is less than 0.4ms with the IIR filter method. In this case, the switching frequency is 100kHz and the step change of the load R is from 50 Ω to 10 Ω. Further, the superior characteristics are obtained when the first gain, the second gain and the second cut-off frequency are relatively large, and the first cut-off frequency and the passing frequency are relatively low. Moreover, it is important that the gain strongly decreases at the second cut-off frequency because the upper band pass frequency range must be always less than half of the sampling frequency based on the sampling theory.
Sudhakar, N.; Rajasekar, N.; Akhil, Saya; Jyotheeswara Reddy, K.
2017-11-01
The boost converter is the most desirable DC-DC power converter for renewable energy applications for its favorable continuous input current characteristics. In other hand, these DC-DC converters known as practical nonlinear systems are prone to several types of nonlinear phenomena including bifurcation, quasiperiodicity, intermittency and chaos. These undesirable effects has to be controlled for maintaining normal periodic operation of the converter and to ensure the stability. This paper presents an effective solution to control the chaos in solar fed DC-DC boost converter since the converter experiences wide range of input power variation which leads to chaotic phenomena. Controlling of chaos is significantly achieved using optimal circuit parameters obtained through Nelder-Mead Enhanced Bacterial Foraging Optimization Algorithm. The optimization renders the suitable parameters in minimum computational time. The results are compared with the traditional methods. The obtained results of the proposed system ensures the operation of the converter within the controllable region.
Analysis of the Coupling Behavior of PEM Fuel Cells and DC-DC Converters
Directory of Open Access Journals (Sweden)
Achim Kienle
2009-03-01
Full Text Available The connection between PEM fuel cells and common DC-DC converters is examined. The analysis is model-based and done for boost, buck and buck-boost converters. In a first step, the effect of the converter ripples upon the PEM fuel cell is shown. They introduce oscillations in the fuel cell. Their appearance is explained, discussed and possibilities for their suppression are given. After that, the overall behaviors of the coupled fuel cell-converter systems are analyzed. It is shown, that neither stationary multiplicities nor oscillations can be introduced by the couplings and therefore separate control approaches for both the PEMFC and the DC-DC converters are applicable.
Isolated PDM and PWM DC-AC SICAMs[Pulse Density Modulated; Pulse Width Modulated
Energy Technology Data Exchange (ETDEWEB)
Ljusev, P.
2004-03-15
In this report a class of isolated PDM and PWM DC-AC SICAMs is described, which introduce the audio reference only in the output stage. AC-DC power supply is implemented in its simplest form: diode rectifier followed by a medium-size charge-storage capacitor. Isolation from the AC mains is achieved using a high frequency (HF) transformer, receiving the HF voltage pulses from the input 'inverter' stage and transferring them to the output 'rectifier+inverter' stage, which can use either PDM or PWM. The latter stage is then interfaced to the load using an output low-pass filter. Each of the dedicated stages is discussed in detail. Measurements on the master/slave PWM DC-AC SICAM prototype are presented to help benchmarking the performance of this class of SICAMs and identify the advantages and drawbacks. (au)
Zero-voltage DC/DC converter with asymmetric pulse-width modulation for DC micro-grid system
Lin, Bor-Ren
2018-04-01
This paper presents a zero-voltage switching DC/DC converter for DC micro-grid system applications. The proposed circuit includes three half-bridge circuit cells connected in primary-series and secondary-parallel in order to lessen the voltage rating of power switches and current rating of rectifier diodes. Thus, low voltage stress of power MOSFETs can be adopted for high-voltage input applications with high switching frequency operation. In order to achieve low switching losses and high circuit efficiency, asymmetric pulse-width modulation is used to turn on power switches at zero voltage. Flying capacitors are used between each circuit cell to automatically balance input split voltages. Therefore, the voltage stress of each power switch is limited at Vin/3. Finally, a prototype is constructed and experiments are provided to demonstrate the circuit performance.
Research on key technology of planning and design for AC/DC hybrid distribution network
Shen, Yu; Wu, Guilian; Zheng, Huan; Deng, Junpeng; Shi, Pengjia
2018-04-01
With the increasing demand of DC generation and DC load, the development of DC technology, AC and DC distribution network integrating will become an important form of future distribution network. In this paper, the key technology of planning and design for AC/DC hybrid distribution network is proposed, including the selection of AC and DC voltage series, the design of typical grid structure and the comprehensive evaluation method of planning scheme. The research results provide some ideas and directions for the future development of AC/DC hybrid distribution network.
A Case Study of Wind-PV-Thermal-Bundled AC/DC Power Transmission from a Weak AC Network
Xiao, H. W.; Du, W. J.; Wang, H. F.; Song, Y. T.; Wang, Q.; Ding, J.; Chen, D. Z.; Wei, W.
2017-05-01
Wind power generation and photovoltaic (PV) power generation bundled with the support by conventional thermal generation enables the generation controllable and more suitable for being sent over to remote load centre which are beneficial for the stability of weak sending end systems. Meanwhile, HVDC for long-distance power transmission is of many significant technique advantages. Hence the effects of wind-PV-thermal-bundled power transmission by AC/DC on power system have become an actively pursued research subject recently. Firstly, this paper introduces the technical merits and difficulties of wind-photovoltaic-thermal bundled power transmission by AC/DC systems in terms of meeting the requirement of large-scale renewable power transmission. Secondly, a system model which contains a weak wind-PV-thermal-bundled sending end system and a receiving end system in together with a parallel AC/DC interconnection transmission system is established. Finally, the significant impacts of several factors which includes the power transmission ratio between the DC and AC line, the distance between the sending end system and receiving end system, the penetration rate of wind power and the sending end system structure on system stability are studied.
Converter topologies for common mode voltage reduction
Energy Technology Data Exchange (ETDEWEB)
Rodriguez, Fernando
2017-11-21
An inverter includes a three-winding transformer, a DC-AC inverter electrically coupled to the first winding of the transformer, a cycloconverter electrically coupled to the second winding of the transformer, and an active filter electrically coupled to the third winding of the transformer. The DC-AC inverter is adapted to convert the input DC waveform to an AC waveform delivered to the transformer at the first winding. The cycloconverter is adapted to convert an AC waveform received at the second winding of the transformer to the output AC waveform having a grid frequency of the AC grid. The active filter is adapted to sink and source power with one or more energy storage devices based on a mismatch in power between the DC source and the AC grid. At least two of the DC-AC inverter, the cycloconverter, or the active filter are electrically coupled via a common reference electrical interconnect.
A study of DC-DC converters with MCT's for arcjet power supplies
Stuart, Thomas A.
1994-01-01
Many arcjet DC power supplies use PWM full bridge converters with large arrays of parallel FET's. This report investigates an alternative supply using a variable frequency series resonant converter with small arrays of parallel MCT's (metal oxide semiconductor controlled thyristors). The reasons for this approach are to: increase reliability by reducing the number of switching devices; and decrease the surface mounting area of the switching arrays. The variable frequency series resonant approach is used because the relatively slow switching speed of the MCT precludes the use of PWM. The 10 kW converter operated satisfactorily with an efficiency of over 91 percent. Test results indicate this efficiency could be increased further by additional optimization of the series resonant inductor.
Current Control of Grid Converters Connected with Series AC Capacitor
DEFF Research Database (Denmark)
Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang
2015-01-01
The series ac capacitor has recently been used with the transformerless grid-connected converters in the distribution power grids. The capacitive characteristic of the resulting series LC filter restricts the use of conventional synchronous integral or stationary resonant current controllers. Thus...... this paper proposes a fourth-order resonant controller in the stationary frame, which guarantees a zero steady-state current tracking error for the grid converters with series LC filter. This method is then implemented in a three-phase experimental system for verification, where the current harmonics below...... the LC filter resonance frequency are effectively eliminated. Experimental results confirm the validity of the proposed current control scheme....
DC-link Voltage Coordinative-Proportional Control in Cascaded Converter Systems
DEFF Research Database (Denmark)
Tian, Yanjun; Loh, Poh Chiang; Deng, Fujin
2015-01-01
PI controllers are frequently implemented in cascaded converter system to control the DC-link voltage, because they can achieve zero steady state error. However the PI controller adds a pole at the origin point and a zero on the left half plane, and it increases the control system type number......, and then the system is more difficult to control. This paper proposed a DC-link control method for the two stages cascaded converter, and it uses proportional controller for the DC-link voltage control. This control method can achieve zero steady state error on the DC-link voltage; reduce the control system type...
DEFF Research Database (Denmark)
Larsen, Dennis Øland; Vinter, Martin; Jørgensen, Ivan Harald Holger
A switched capacitor dc-dc converter with frequency-planned control is presented. By splitting the output stage switches in eight segments the output voltage can be regulated with a combination of switching frequency and switch conductance. This allows for switching at predetermined frequencies, 31...
Magnetically integrated high step-up resonant DC-DC converter for distributed photovoltaic systems
DEFF Research Database (Denmark)
Vinnikov, Dmitri; Chub, Andrii; Liivik, Elizaveta
2017-01-01
In this paper magnetically integrated resonant single-switch quasi-Z-source DC-DC converter is evaluated as a candidate topology for the low-cost photovoltaic microconverter. The derivation of the topology and its basic operation principle are explained. Generalized design guidelines...
Quasiperiodicity and Torus Breakdown in a Power Electronic DC/DC Converter
DEFF Research Database (Denmark)
Zhusubaliyev, Zhanybai; Soukhoterin, Evgeniy; Mosekilde, Erik
2007-01-01
This paper discusses the mechanisms of torus formation and torus destruction in a dc/dc converter with relay control and hysteresis. We establish a chart of the dynamical modes in the input voltage versus load resistance parameter plane. This chart displays several different torus bifurcations...
Area-Efficiency Trade-Offs in Integrated Switched-Capacitor DC-DC Converters
DEFF Research Database (Denmark)
Spliid, Frederik Monrad; Larsen, Dennis Øland; Knott, Arnold
2016-01-01
This paper analyzes the relationship between efficiency and chip area in a fully integrated switched capacitor voltage divider dc-dc converter implemented in 180nm-technology and a 1/2 topology. A numerical algorithm for choosing the optimal sizes of individual components, in terms of power loss...
Introduction to AC machine design
Lipo, Thomas A
2018-01-01
AC electrical machine design is a key skill set for developing competitive electric motors and generators for applications in industry, aerospace, and defense. This book presents a thorough treatment of AC machine design, starting from basic electromagnetic principles and continuing through the various design aspects of an induction machine. Introduction to AC Machine Design includes one chapter each on the design of permanent magnet machines, synchronous machines, and thermal design. It also offers a basic treatment of the use of finite elements to compute the magnetic field within a machine without interfering with the initial comprehension of the core subject matter. Based on the author's notes, as well as after years of classroom instruction, Introduction to AC Machine Design: * Brings to light more advanced principles of machine design--not just the basic principles of AC and DC machine behavior * Introduces electrical machine design to neophytes while also being a resource for experienced designers * ...
Apparatuses and method for converting electromagnetic radiation to direct current
Kotter, Dale K; Novack, Steven D
2014-09-30
An energy conversion device may include a first antenna and a second antenna configured to generate an AC current responsive to incident radiation, at least one stripline, and a rectifier coupled with the at least one stripline along a length of the at least one stripline. An energy conversion device may also include an array of nanoantennas configured to generate an AC current in response to receiving incident radiation. Each nanoantenna of the array includes a pair of resonant elements, and a shared rectifier operably coupled to the pair of resonant elements, the shared rectifier configured to convert the AC current to a DC current. The energy conversion device may further include a bus structure operably coupled with the array of nanoantennas and configured to receive the DC current from the array of nanoantennas and transmit the DC current away from the array of nanoantennas.
Directory of Open Access Journals (Sweden)
Sumedha Mahajan
2017-04-01
Full Text Available This paper proposes a Capacitor Excited Induction Generator (CEIG-Matrix Converter (MC system for feeding stand-alone AC loads. The variable output voltage magnitude and frequency from CEIG is converted into a constant voltage magnitude and frequency at the load terminals by controlling MC using Space Vector Modulation (SVM technique. This single-stage MC is turned up as a good alternative for the proposed system against commonly used AC/DC/AC two stage power converters. The configuration and implementation of the closed-loop control scheme employing dSPACE 1103 real time controller have been fully described in the paper. The proposed closed-loop controller regulates the AC load voltage irrespective of changes in the prime mover speed and load. A method for predetermining the steady-state performance of the proposed system has been developed and described with relevant analytical expressions. The effectiveness of the proposed system is exemplified through simulation results for various operating conditions. The proposed control technique is further validated using an experimental setup developed in the laboratory.
Multi-cell DC-DC converters : modelling, analysis and control
International Nuclear Information System (INIS)
Feki, M.; El Aroudi, A.; Robert, B.G.M.
2011-01-01
This paper is devoted to modeling of a two-cell DC/DC buck converter, to the analysis of its behavior and to the design of control methods that yield to improve its performances. Various numerical simulations and dynamical aspects of this system are illustrated in the time domain and in the parameter space. Without control, the system may present many undesirable behaviors such as sub-harmonics and chaotic oscillations. The proposed controllers are able to widen the stability range of the system. Optimum values of parameters giving rise to fast response while maintaining stable periodic behavior are given in closed form. However, it is detected that in a certain region of the parameter space, the stabilized periodic orbit may coexist with a chaotic attractor. Boundary between basins of attraction are obtained by means of numerical simulations.
Insulation coordination workstation for AC and DC substations
International Nuclear Information System (INIS)
Booth, R.R.; Hileman, A.R.
1990-01-01
The Insulation Coordination Workstation was designed to aid the substation design engineer in the insulation coordination process. The workstation utilizes state of the art computer technology to present a set of tools necessary for substation insulation coordination, and to support the decision making process for all aspects of insulation coordination. The workstation is currently being developed for personal computers supporting OS/2 Presentation Manager. Modern Computer-Aided Software Engineering (CASE) technology was utilized to create an easily expandable framework which currently consists of four modules, each accessing a central application database. The heart of the workstation is a library of user-friendly application programs for the calculation of important voltage stresses used for the evaluation of insulation coordination. The Oneline Diagram is a graphic interface for data entry into the EPRI distributed EMTP program, which allows the creation of complex systems on the CRT screen using simple mouse clicks and keyboard entries. Station shielding is graphically represented in the Geographic Viewport using a three-dimensional substation model, and the interactive plotting package allows plotting of EPRI EMTP output results on the CRT screen, printer, or pen plotter. The Insulation Coordination Workstation was designed by Advanced Systems Technology (AST), a division of ABB Power Systems, Inc., and sponsored by the Electric Power Research Institute under RP 2323-5, AC/DC Insulation Coordination Workstation
Power flow controller with a fractionally rated back-to-back converter
Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish
2016-03-08
A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.
DEFF Research Database (Denmark)
Liu, Dong; Deng, Fujin; Zhang, Qi
2016-01-01
, the component current stresses in the proposed converters are reduced. More significantly, the combination of the proposed IPOP TL circuit structure and the interleaving control strategy can largely reduce the ripple currents on the two input capacitors not only by doubling the frequencies of the ripple...... currents on two input capacitors but also by counteracting part of these ripple currents according to the operation principle of the proposed converters. Therefore, the proposed IPOP TL DC/DC converters with the interleaving control strategy can improve the performances of the converters in increasing...... the lifetimes of the input capacitors and minimizing the sizes of the input capacitors. Finally, the simulation and experimental results are presented to verify the effectiveness and feasibility of the proposed converters combined with the interleaving control strategy....
Soft Switching Full-Bridge PWM DC/DC Converter Using Secondary Snubber
Directory of Open Access Journals (Sweden)
Jaroslav Dudrik
2009-05-01
Full Text Available A novel full-bridge PWM DC/DCconverter with controlled secondary side rectifier usingsecondary snubber is presented in this paper.Limitation of the circulating current as well as softswitching for all power switches of the inverter isachieved for full load range from no-load to shortcircuit by using controlled rectifier and snubber on thesecondary side. Phase shift PWM control strategy isused for the converter. The principle of operation isexplained and analyzed and the experimental resultson a 1kW, 50 kHz laboratory model of the converterare presented.
New non-linear control strategy for non-isolated DC/DC converter with high voltage ratio
International Nuclear Information System (INIS)
Shahin, A.; Huang, B.; Martin, J.P.; Pierfederici, S.; Davat, B.
2010-01-01
In this paper, a non-isolated DC/DC converter with high voltage ratio is proposed to allow the interface between a low voltage power source like fuel cell and a high voltage DC bus. To take into account the low voltage-high density characteristics of power sources, a cascaded structure composed of two sub-converters has been chosen and allows obtaining a high voltage ratio. The choice of each sub-converter is based on the requirements of the source and its performances. Consequently, we have chosen a three-interleaved boost converter as the 1st sub-converter whereas the 2nd sub-converter is a three-level boost converter. The control of the whole system is realized thanks to energetic trajectories planning based on flatness properties of the system. The control of both the current and the balance of voltage across the output serial capacitors of the three-level boost converter is ensured by non-linear controllers based on a new non-linear model. Experimental results allow validating the proposed power architecture and its associated control.
New non-linear control strategy for non-isolated DC/DC converter with high voltage ratio
Energy Technology Data Exchange (ETDEWEB)
Shahin, A.; Huang, B.; Martin, J.P.; Pierfederici, S.; Davat, B. [Groupe de Recherche en Electronique et en Electrotechnique de Nancy - INPL - Nancy Universite, 2, Avenue de la Foret de Haye, 54516 Vandoeuvre-les-Nancy Cedex (France)
2010-01-15
In this paper, a non-isolated DC/DC converter with high voltage ratio is proposed to allow the interface between a low voltage power source like fuel cell and a high voltage DC bus. To take into account the low voltage-high density characteristics of power sources, a cascaded structure composed of two sub-converters has been chosen and allows obtaining a high voltage ratio. The choice of each sub-converter is based on the requirements of the source and its performances. Consequently, we have chosen a three-interleaved boost converter as the 1st sub-converter whereas the 2nd sub-converter is a three-level boost converter. The control of the whole system is realized thanks to energetic trajectories planning based on flatness properties of the system. The control of both the current and the balance of voltage across the output serial capacitors of the three-level boost converter is ensured by non-linear controllers based on a new non-linear model. Experimental results allow validating the proposed power architecture and its associated control. (author)
Open- and Short-Circuit Fault Identification for a Boost dc/dc Converter in PV MPPT Systems
Directory of Open Access Journals (Sweden)
Diego R. Espinoza Trejo
2018-03-01
Full Text Available This paper proposes a fault identification system for short and open-circuit switch faults (SOCSF for a dc/dc converter acting as a Maximum Power Point Tracker (MPPT in Photovoltaic (PV systems. A closed-loop operation is assumed for the boost dc/dc converter. A linearizing control plus a Proportional-Derivative (PD controller is suggested for PV voltage regulation at the maximum power point (MPP. In this study, the SOCSF are modeled by using an additive fault representation and the fault identification (FI system is synthesized departing from a Luenberger observer. Hence, an FI signal is obtained, which is insensitive to irradiance and load current changes, but affected by the SOCSF. For FI purposes, only the sensors used in the control system are needed. Finally, an experimental evaluation is presented by using a solar array simulator dc power supply and a boost dc/dc converter of 175 W in order to validate the ideas this study exposes.
Real-Time Energy Management System for a Hybrid AC/DC Residential Microgrid
DEFF Research Database (Denmark)
Diaz, Enrique Rodriguez; Palacios-Garcia, Emilio J.; Anvari-Moghaddam, Amjad
2017-01-01
This paper proposes real-time Energy Management System (EMS) for a residential hybrid ac/dc microgrid. The residential microgrid is organized in two different distribution systems. A dc distribution bus which interconnect the renewable energy sources (RES), energy storage systems (ESS...... buildings. This architecture increases the overall efficiency of the distribution by interconnecting the RES and ESS thorough a dc distribution bus, and therefore avoiding unnecessary dc/ac conversion stages. The real-time EMS performs an 24 hours ahead optimization in order to schedule the charge...... setup. The results shown how the operational costs of the system are effectively decreased by 28%, even with non-accurate estimation of the RES generation or building parameters....
Energy Technology Data Exchange (ETDEWEB)
Tsuchiya, Y. [Hachinohe National College of Technology, Aomori (Japan); Sakakibara, T. [Toyohashi University, of Technology, Aichi (Japan)
1997-11-25
The photovoltaic AC fusion converter (PVAC), of which cost reduction of the total system is possible, was developed. PVAC controls the supply of commercial power by preferentially supplying photovoltaic power to loads for realization of energy conservation. Further, setting the maximum output of solar cell less than the rated load, the system was made the one with no need of storage batteries. This system was realized in a hybrid of the conventional rectification technology and the stand-alone maximum power point tracking photovoltaic system technology. The solar cell input efficiency had been measured as 84% at maximum. Main losses are consumption power of power source, switching loss of inverter, and continuity loss of diode. Ninety-seven percent of the commercial power input efficiency was obtained. Main losses are consumption power of power source, continuity loss of diode bridge, and resistance loss of smoothing reactor. The effect of energy conservation by the use of PVAC was also admitted. 6 refs., 7 figs.
Directory of Open Access Journals (Sweden)
Zhong Chen
2017-08-01
Full Text Available A conventional steady-state power flow security check only implements point-by-point assessment, which cannot provide a security margin for system operation. The concept of a steady-state security region is proposed to effectively tackle this problem. Considering that the commissioning of the increasing number of HVDC (High Voltage Direct Current and the fluctuation of renewable energy have significantly affected the operation and control of a conventional AC system, the definition of the steady-state security region of the AC/DC power system is proposed in this paper based on the AC/DC power flow calculation model including LCC/VSC (Line Commutated Converter/Voltage Sourced Converter-HVDC transmission and various AC/DC constraints, and hence the application of the security region is extended. In order to ensure that the proposed security region can accurately provide global security information of the power system under the fluctuations of renewable energy, this paper presents four methods (i.e., a screening method of effective boundary surfaces, a fitting method of boundary surfaces, a safety judging method, and a calculation method of distances and corrected distance between the steady-state operating point and the effective boundary surfaces based on the relation analysis between the steady-state security region geometry and constraints. Also, the physical meaning and probability analysis of the corrected distance are presented. Finally, a case study is demonstrated to test the feasibility of the proposed methods.
Resonance reduction for AC drives with small capacitance in the DC link
DEFF Research Database (Denmark)
Máthé, Lászlo; Török, Lajos; Wang, Dong
2016-01-01
Pulse Width Modulated AC drives equipped with small DC-link capacitor are becoming an attractive solution for electric drive applications with moderate requirements for shaft dynamic performance. However, when these drives are fed from a weak grid a resonance between the line side impedance...... and the DC-link capacitor appears. Due to this resonance, the THD and the partially weighted harmonic distortion of the line currents are increased, which may rise compatibility problems with the AC line harmonic standards. By using vector control the motor drive is transformed into a constant power load...
Directory of Open Access Journals (Sweden)
Sergio Ignacio Serna-Garcés
2016-03-01
Full Text Available Stand-alone power systems based on renewable energy sources are used to replace generators based on fossil fuels. Those renewable power systems also require Energy Storage Devices (ESD interfaced by a charger/discharger power converter, which consist of a bidirectional DC/DC converter, and a DC bus. This paper proposes a single sliding-mode controller (SMC for the charger/discharger DC/DC converter to provide a stable DC bus voltage in any operation condition: charging or discharging the ESD, or even without any power exchange between the ESD and the DC bus. Due to the non-linear nature of the power converter, the SMC parameters are adapted on-line to ensure global stability in any operation condition. Such stability of the adaptive SMC is mathematically demonstrated using analytical expressions for the transversality, reachability and equivalent control conditions. Moreover, a design procedure for the adaptive SMC parameters is provided in order to ensure the dynamic response required for the correct operation of the load. Finally, simulations and experimental tests validate the proposed controller and design procedure.
Efendi, Moh. Zaenal; Windarko, Novie Ayub; Amir, Moh. Faisal
2013-01-01
This paper presents a design and implementation of a converter which has a high power factor for battery charger application. The converter is a combination of a SEPIC converter and a full-bridge DC-DC converter connected in two stages of series circuit. The SEPIC converter works in discontinuous conduction mode and it serves as a power factor corrector so that the shape of input current waveform follows the shape of input voltage waveform. The full-bridge DC-DC converter serves as a regulato...
A Single Phase to Three Phase PFC Half-Bridge Converter Using BLDC Drive with SPWM Technique.
Srinu Duvvada; Manmadha Kumar B
2014-01-01
In this paper, a buck half-bridge DC-DC converter is used as a single-stage power factor correction (PFC) converter for feeding a voltage source inverter (VSI) based permanent magnet brushless DC motor (BLDC) drive. The front end of this PFC converter is a diode bridge rectifier (DBR) fed from single-phase AC mains. The BLDC is used to drive a compressor load of an air conditioner through a three-phase VSI fed from a controlled DC link voltage. The speed of the compressor is controlled to ach...
Directory of Open Access Journals (Sweden)
Yao Liu
2016-08-01
Full Text Available The increasing penetration of renewable generators can be a significant challenge due to the fluctuation of their power generation. Energy storage (ES units are one solution to improve power supply quality and guarantee system stability. In this paper, a hybrid microgrid is built based on photovoltaic (PV generator and ES; and coordinated control is proposed and developed to achieve power management in a decentralized manner. This control scheme contains three different droop strategies according to characteristics of PV and ES. First, the modified droop control is proposed for PV, which can take full utilization of renewable energy and avoid regulating output active power frequently. Second, to maintain the direct current (DC bus voltage stability, a novel droop control incorporating a constant power band is presented for DC-side ES. Third, a cascade droop control is designed for alternating current (AC-side ES. Thus, the ES lifetime is prolonged. Moreover, interlinking converters (ICs provide a bridge between AC/DC buses in a hybrid microgrid. The power control of IC is enabled when the AC- or DC-side suffer from active power demand shortage. In particular, if the AC microgrid does not satisfy the reactive power demand, IC then acts as a static synchronous compensator (STATCOM. The effectiveness of the proposed strategies is verified by simulations.
Fast response double series resonant high-voltage DC-DC converter
International Nuclear Information System (INIS)
Lee, S S; Iqbal, S; Kamarol, M
2012-01-01
In this paper, a novel double series resonant high-voltage dc-dc converter with dual-mode pulse frequency modulation (PFM) control scheme is proposed. The proposed topology consists of two series resonant tanks and hence two resonant currents flow in each switching period. Moreover, it consists of two high-voltage transformer with the leakage inductances are absorbed as resonant inductor in the series resonant tanks. The secondary output of both transformers are rectified and mixed before supplying to load. In the resonant mode operation, the series resonant tanks are energized alternately by controlling two Insulated Gate Bipolar Transistor (IGBT) switches with pulse frequency modulation (PFM). This topology operates in discontinuous conduction mode (DCM) with all IGBT switches operating in zero current switching (ZCS) condition and hence no switching loss occurs. To achieve fast rise in output voltage, a dual-mode PFM control during start-up of the converter is proposed. In this operation, the inverter is started at a high switching frequency and as the output voltage reaches 90% of the target value, the switching frequency is reduced to a value which corresponds to the target output voltage. This can effectively reduce the rise time of the output voltage and prevent overshoot. Experimental results collected from a 100-W laboratory prototype are presented to verify the effectiveness of the proposed system.
Energy Technology Data Exchange (ETDEWEB)
Vaisanen, V.
2012-07-01
Fuel cells are a promising alternative for clean and efficient energy production. A fuel cell is probably the most demanding of all distributed generation power sources. It resembles a solar cell in many ways, but sets strict limits to current ripple, common mode voltages and load variations. The typically low output voltage from the fuel cell stack needs to be boosted to a higher voltage level for grid interfacing. Due to the high electrical efficiency of the fuel cell, there is a need for high efficiency power converters, and in the case of low voltage, high current and galvanic isolation, the implementation of such converters is not a trivial task. This thesis presents galvanically isolated DC-DC converter topologies that have favorable characteristics for fuel cell usage and reviews the topologies from the viewpoint of electrical efficiency and cost efficiency. The focus is on evaluating the design issues when considering a single converter module having large current stresses. The dominating loss mechanism in low voltage, high current applications is conduction losses. In the case of MOSFETs, the conduction losses can be efficiently reduced by paralleling, but in the case of diodes, the effectiveness of paralleling depends strongly on the semiconductor material, diode parameters and output configuration. The transformer winding losses can be a major source of losses if the windings are not optimized according to the topology and the operating conditions. Transformer prototyping can be expensive and time consuming, and thus it is preferable to utilize various calculation methods during the design process in order to evaluate the performance of the transformer. This thesis reviews calculation methods for solid wire, litz wire and copper foil winding losses, and in order to evaluate the applicability of the methods, the calculations are compared against measurements and FEM simulations. By selecting a proper calculation method for each winding type, the winding
A Reconfigurable Series Resonant DC-DC Converter for Wide-Input and Wide-Output Voltages
DEFF Research Database (Denmark)
Shen, Yanfeng; Wang, Huai; Qin, Zian
2017-01-01
This paper proposes a dual-bridge based LC series resonant dc-dc converter. The input inverter unit incorporates two bridge structures, i.e., a full-bridge inverter and a half-bridge inverter. For the output rectifier, it can be a full-bridge rectifier or an asymmetric half-bridge rectifier....... Different from the conventional resonant converter, a fixed-frequency PWM control is employed which makes the optimization of magnetic components easier. The primary-side switches can achieve ZVS and the secondary-side diodes turn off with ZCS. In addition, the root-mean-square (RMS) values...... of the transformer currents do not significantly vary with respect to the voltage variation. Therefore, this converter can maintain high efficiency over a wide voltage range. The topology and operating principle are firstly described. Then the dc voltage gain and the RMS current characteristics are detailed. Finally...
Progress on DC-DC Converters for a Silicon Tracker for the sLHC Upgrade
Dhawan, S; Chen, H; Khanna, R; Kierstead, J; Lanni, F; Lynn, D; Musso, C; Rescia, S; Smith, H; Tipton, P; M. Weber, M
2009-01-01
There is a need for DC-DC converters which can operate in the extremely harsh environment of the sLHC Si Tracker. The environment requires radiation qualification to a total ionizing radiation dose of 50 Mrad and a displacement damage fluence of 5 x 1014 /cm2 of 1 MeV equivalent neutrons. In addition a static magnetic field of 2 Tesla or greater prevents the use of any magnetic components or materials. In February 2007 an Enpirion EN5360 was qualified for the sLHC radiation dosage but the converter has an input voltage limited to a maximum of 5.5V. From a systems point of view this input voltage was not sufficient for the application. Commercial LDMOS FETs have developed using a 0.25 μm process which provided a 12 volt input and were still radiation hard. These results are reported here and in previous papers. Plug in power cards with ×10 voltage ratio are being developed for testing the hybrids with ABCN chips. These plug-in cards have air coils but use commercial chips that are not designed to be radiatio...
DEFF Research Database (Denmark)
Davidsen, Jeppe Gaardsted; Yosef-Hay, Yoni; Larsen, Dennis Øland
2017-01-01
This paper discusses a methodology of minimizing the amount of switches in a multi-topology fully integrated switched capacitor dc-dc converter powered by a super capacitor for energy harvesting purposes. The design of a simple controlling circuit for the multi-topology power stage using a gearbox...... approach is presented with all the required circuits. The converter is able to generate a output voltage of 1.2 V from a 470 mF capacitor charged to 3 V down to 1.4 V. The output voltage is regulated with a ripple voltage below 7 mV. The controlling circuit including buffers with ideal comparators has...
Simulating and Testing a DC-DC Half-Bridge SLR Converter
2013-06-01
future pulse power demands with ship power, a large bank of capacitors or similar rapid discharge source is required. If capacitors are charged...Single Pulsed Avalanche Energy (j) I" Avalanche Current (i) E,, Repetilive Avalanche Energy (i) dv/dt Peak Diode Recovery dv/dt ® Po Total Power...SLR), battery charging, DC-DC, pulse power, power electronics, SLR converter 15. NUMBER OF PAGES 119 16. PRICE CODE 17. SECURITY CLASSIFICATION
Pulsewidth modulated DC-to-DC power conversion circuits, dynamics, and control designs
Choi, Byungcho
2013-01-01
This is the definitive reference for anyone involved in pulsewidth modulated DC-to-DC power conversion Pulsewidth Modulated DC-to-DC Power Conversion: Circuits, Dynamics, and Control Designs provides engineers, researchers, and students in the power electronics field with comprehensive and complete guidance to understanding pulsewidth modulated (PWM) DC-to-DC power converters. Presented in three parts, the book addresses the circuitry and operation of PWM DC-to-DC converters and their dynamic characteristics, along with in-depth discussions of control design of PWM DC-to
Triple Line-Voltage Cascaded VIENNA Converter Applied as the Medium-Voltage AC Drive
Directory of Open Access Journals (Sweden)
Jia Zou
2018-04-01
Full Text Available A novel rectifier based on a triple line-voltage cascaded VIENNA converter (LVC-VC was proposed. Compared to the conventional cascaded H-bridge converters, the switch voltage stress is lower, and the numbers of switches and dc capacitors are fewer under similar operating conditions in the proposed new multilevel converter. The modeling and control for the LVC-VC ware presented. Based on the analysis of the operation principle of the new converter, the power factor correction of the proposed converter was realized by employing a traditional one-cycle control strategy. The minimum average value and maximum harmonic components of the dc-link voltages of the three VIENNA rectifier modules ware calculated. Three VIENNA dc-link voltages were unbalanced under the unbalanced load conditions, so the zero sequence current was injected to the three inner currents for balancing three VIENNA dc-link voltages. Simulation and the results of the experiment verified the availability of the new proposed multilevel converter and the effectiveness of the corresponding control strategy applied.
DEFF Research Database (Denmark)
Siwakoti, Yam P.; Blaabjerg, Frede
2017-01-01
This paper introduces a new single-switch nonisolated dc-dc converter with very high voltage gain and reduced semiconductor voltage stress. The converter utilizes an integrated autotransformer and a coupled inductor on the same core in order to achieve a very high voltage gain without using extreme...... duty cycle. Furthermore, a passive lossless clamp circuit recycles the leakage energy of the coupled magnetics and alleviates the voltage spikes across the main switch. This feature along with low stress on the switching device enables the designer to use a low voltage and low RDS-on MOSFET, which...
DEFF Research Database (Denmark)
Padmanaban, Sanjeevikumar; Grandi, Gabriele; Blaabjerg, Frede
2017-01-01
voltage and efficiency of classical HV converters. This paper deals with extra high-voltage (EHV) dc-dc boost converter by the application of voltage-lift technique to overcome the aforementioned deficiencies. The control strategy is based on classical proportional-integral (P-I) and fuzzy logic closed...... are performed by the DSP. The experimental results provided show good conformity with developed hypothetical predictions. Additionally, the presented study confirms that the fuzzy logic controller provides better performance than classical P-I controller under different perturbation conditions....
GaN-based High Efficiency Bidirectional DC-DC Converter with 10 MHz Switching Frequency
DEFF Research Database (Denmark)
Kruse, Kristian; Zhang, Zhe; Elbo, Mads
2017-01-01
-isolated bidirectional DC-DC converter equipped with Gallium Nitride (GaN) semiconductor transistors is presented. The converter’s operation principles, zero-voltage switching (ZVS) constraints and dead-time effects are studied. Moreover, the optimization and tradeoffs on the adopted high-frequency inductor...... are achieved. Moreover, the measured losses can match the theoretically calculated counterparts well, therefore the design and analysis are verified. However, from the experimental test carried out, it can also be seen, that making a compact converter, even for a GaN-based one, operate at 10 MHz and 100 W...
Influence of Load Modes on Voltage Stability of Receiving Network at DC/AC System
Directory of Open Access Journals (Sweden)
Mao Chizu
2016-01-01
Full Text Available This paper analyses influence of load modes on DC/AC system. Because of widespread use of HVDC, DC/AC system become more complex than before and the present modes used in dispatch and planning departments are not fit in simulation anymore. So it is necessary to find load modes accurately reflecting characteristics of the system. For the sake of the voltage stability, commutation failure, etc. the practical example of the receiving network in a large DC/AC system in China is simulated with BPA, and the influence of Classical Load Mode (CLM and Synthesis load model (SLM on simulation results is studies. Furthermore, some important parameters of SLM are varied respectively among an interval to analyse how they affect the system. According to this practical examples, the result is closely related to load modes and their parameters, and SLM is more conservative but more reasonable than the present modes. The consequences indicate that at critical states, micro variation in parameters may give rise to change in simulation results radically. Thus, correct mode and parameters are important to enhance simulation accuracy of DC/AC system and researches on how they affect the system make senses.
Directory of Open Access Journals (Sweden)
Sergio Ignacio Serna-Garces
2013-10-01
Full Text Available A previous article has presented the members of the asymmetrical interleaved dc/dc switching converters family as very appropriate candidates to interface between photovoltaic or fuel cell generators and their loads because of their reduced ripple and increased current processing capabilities. After a review of the main modeling methods suitable for high-order converters operating, as the asymmetrical interleaved converters (AIC ones, in discontinuous current conduction mode a full-order averaged model has been adapted and improved to describe the dynamic behavior of AIC. The excellent agreement between the mathematical model predictions, the switched simulations and the experimental results has allowed for satisfactory design of a linear-quadratic regulator (LQR in a fuel-cell application example, which demonstrates the usefulness of the improved control-oriented modeling approach when the switching converters operate in discontinuous conduction mode.
Sliding Mode Control of a Bidirectional Buck/Boost DC-DC Converter with Constant Switching Frequency
Directory of Open Access Journals (Sweden)
A. Safari
2018-03-01
Full Text Available In this paper, sliding mode control (SMC for a bidirectional buck/boost DC-DC converter (BDC with constant frequency in continuous conduction mode (CCM is discussed. Since the converter is a high-order converter, the reduced-order sliding manifold is exploited. Because of right-half-plan zero (RHPZ in the converter’s duty ratio to output voltage transfer function, sliding mode current controller is used. This controller benefits from various advantages such as fast dynamic response, robustness, stable and small variation of the settling time over a wide range of operation conditions. Because the converter operates in both step-down and step-up modes, two sliding manifold is derived for each mode. The existence and stability conditions are analyzed for both SMC in step-down and step-up modes. Finally, Simulation results are also provided to justify the feasibility of the controller using MATLAB/Simulink.
Predictive Trailing-Edge Modulation Average Current Control in DC-DC Converters
Directory of Open Access Journals (Sweden)
LASCU, D.
2013-11-01
Full Text Available The paper investigates predictive digital average current control (PDACC in dc/dc converters using trailing-edge modulation (TEM. The study is focused on the recurrence duty cycle equation and then stability analysis is performed. It is demonstrated that average current control using trailing-edge modulation is stable on the whole range of the duty cycle and thus design problems are highly reduced. The analysis is carried out in a general manner, independent of converter topology and therefore the results can then be easily applied for a certain converter (buck, boost, buck-boost, etc.. The theoretical considerations are confirmed for a boost converter first using the MATLAB program based on state-space equations and finally with the CASPOC circuit simulation package.
Tests on conducted electrical noise on a storage ring dc-dc converter cabinet
International Nuclear Information System (INIS)
Carwardine, J.J.
1994-01-01
Electrical noise is produced by switching transients in the power supply converters which excite resonances formed by stray capacitance and cable inductance. This noise is present not only on the load cables, but also on ground cables of the magnet and of the converter cabinet. Since there will eventually be a large number of cabinets running at one time, tests were carried out to characterize the noise and to investigate possible techniques for reducing the levels. The tests were carried out on the test girder and converter cabinet set up in 412 area. There were four magnets installed on the girder -- two 0.5m quadrupoles, a 0.8m quadrupole, and a sextupole. These tests were carried out on one of the 0.5m quadrupoles. It should be noted that with this setup, the raw dc power was supplied at around 70V. In the final configuration, a 0.5m quad will be fed from a 40V raw supply. Consequently, the switching transients observed during the tests are likely to be higher than will occur in reality. Noise currents contain two main components: a low frequency component at around 50kHz, and a higher frequency component at around lMHz. It is the latter component which is of primary concern. Currents measured on the dc load cables typically were around one ampere, while currents into the building ground system were only a few tens of milliamps. Several methods were used to try reducing the noise currents, but only the addition of a series impedance was successful -- other methods either had no effect or increased the ground currents
DEFF Research Database (Denmark)
Zhang, Zhe; Ouyang, Ziwei; Thomsen, Ole Cornelius
2012-01-01
Electrical power system in future uninterruptible power supply (UPS) or electrical vehicle (EV) may employ hybrid energy sources, such as fuel cells and super-capacitors. It will be necessary to efficiently draw the energy from these two sources as well as recharge the energy storage elements...... by the DC bus. In this paper, a bidirectional isolated DC-DC converter controlled by phase-shift and duty cycle for the fuel cell hybrid energy system is analyzed and designed. The proposed topology minimizes the number of switches and their associated gate driver components by using two high frequency...
DEFF Research Database (Denmark)
Guerrero, Josep M.; Vásquez, Juan V.; Teodorescu, Remus
2009-01-01
DC and AC Microgrids are key elements to integrate renewable and distributed energy resources as well as distributed energy storage systems. In the last years, efforts toward the standardization of these Microgrids have been made. In this sense, this paper present the hierarchical control derived...
Reliability of Capacitors for DC-Link Applications in Power Electronic Converters
DEFF Research Database (Denmark)
Wang, Huai; Blaabjerg, Frede
2014-01-01
DC-link capacitors are an important part in the majority of power electronic converters which contribute to cost, size and failure rate on a considerable scale. From capacitor users' viewpoint, this paper presents a review on the improvement of reliability of dc link in power electronic converters...... from two aspects: 1) reliability-oriented dc-link design solutions; 2) conditioning monitoring of dc-link capacitors during operation. Failure mechanisms, failure modes and lifetime models of capacitors suitable for the applications are also discussed as a basis to understand the physics......-of-failure. This review serves to provide a clear picture of the state-of-the-art research in this area and to identify the corresponding challenges and future research directions for capacitors and their dc-link applications....
Al-bayati, Ali M. S.; Alharbi, Salah S.; Alharbi, Saleh S.; Matin, Mohammad
2017-08-01
A highly efficient high step-up dc-dc converter is the major requirement in the integration of low voltage renewable energy sources, such as photovoltaic panel module and fuel cell stacks, with a load or utility. This paper presents the development of an efficient dc-dc single-ended primary-inductor converter (SEPIC) for high step-up applications. Three SEPIC converters are designed and studied using different combinations of power devices: a combination based on all Si power devices using a Si-MOSFET and a Si-diode and termed as Si/Si, a combination based on a hybrid of Si and SiC power devices using the Si-MOSFET and a SiC-Schottky diode and termed as Si/SiC, and a combination based on all SiC power devices using a SiC-MOSFET and the SiC-Schottky diode and termed as SiC/SiC. The switching behavior of the Si-MOSFET and SiC-MOSFET is characterized and analyzed within the different combinations at the converter level. The effect of the diode type on the converter's overall performance is also discussed. The switching energy losses, total power losses, and the overall performance effciency of the converters are measured and reported under different switching frequencies. Furthermore, the potential of the designed converters to operate efficiently at a wide range of input voltages and output powers is studied. The analysis and results show an outstanding performance efficiency of the designed SiC/SiC based converter under a wide range of operating conditions.
A complete dc characterization of a constant-frequency, clamped-mode, series-resonant converter
Tsai, Fu-Sheng; Lee, Fred C.
1988-01-01
The dc behavior of a clamped-mode series-resonant converter is characterized systematically. Given a circuit operating condition, the converter's mode of operation is determined and various circuit parameters are calculated, such as average inductor current (load current), rms inductor current, peak capacitor voltage, rms switch currents, average diode currents, switch turn-on currents, and switch turn-off currents. Regions of operation are defined, and various circuit characteristics are derived to facilitate the converter design.
A Review on Direct Power Control for Applications to Grid Connected PWM Converters
Directory of Open Access Journals (Sweden)
T. A. Trivedi
2015-08-01
Full Text Available The Direct Power Control strategy has become popular as an alternative to the conventional vector oriented control strategy for grid connected PWM converters. In this paper, Direct Power Control as applied to various applications of grid connected converters is reviewed. The Direct Power Control for PWM rectifiers, Grid Connected DC/AC inverters applications such as renewable energy sources interface, Active Power Filters, Doubly Fed Induction Generators and AC-DC-AC converters are discussed. Control strategies such as Look-Up table based control, predictive control, Virtual Flux DPC, Model based DPC and DPC-Space Vector Modulation are critically reviewed. The effects of various key parameters such as selection of switching vector, sampling time, hysteresis band and grid interfacing on performance of direct power controlled converters are presented.
DEFF Research Database (Denmark)
Najjar, Mohammad; Moeini, Amirhossein; Dowlatabadi, Mohammadkazem Bakhshizadeh
2016-01-01
In this paper, the power quality standards such as IEC 61000-3-6, IEC 61000-2-12, EN 50160, and CIGRE WG 36-05 are fulfilled for single- and three-phase medium voltage applications by using Selective Harmonic Mitigation-PWM (SHM-PWM) in a Cascaded H-Bridge (CHB) converter. Furthermore, the ER G5/...
Large-signal stability analysis of two power converters solutions for DC shipboard microgrid
Bosich, Daniele; Gibescu, Madeleine; Sulligoi, Giorgio
2017-01-01
Bus voltage stability is an essential requirement in DC shipboard microgrids. In presence of Constant Power Loads, voltage instability is strictly dependent on RLC filters. This paper evaluates two power converter solutions (Thyristor Converters, TCs, and diode rectifiers + DC-DC Converters, DCs)
Three-phase Resonant DC-link Converter
Munk-Nielsen, Stig
1997-01-01
The purpose of the project is to develop a three-phase resonant converter suitable for standard speed drives. The motivation for working with resonant converters is found in the problem of the standard converter type used today. In standard converter type Pulse Width Modulated-Voltage Source Inverter, PWM-VSI, the switches are subject to high current and voltage stress during switching, which causes losses. The fast switching of modern switches reduces switching losses. Unfortunately this pro...
Directory of Open Access Journals (Sweden)
Adhika Prajna Nandiwardhana
2017-01-01
Full Text Available Penggunaan motor brushless DC telah banyak digunakan dalam berbagai bidang seperti peralatan rumah tangga maupun industri dikarenakan motor ini memiliki struktur yang sederhana, efisiensi dan torsi yang tinggi, serta menggunakan konsep komutasi elektris yang berbeda dari motor DC lainnya. Namun pengoperasian pada umumnya yang menggunakan sumber AC, penyearah serta inverter membuat tingginya nilai harmonisa arus (THD sebesar 73,33% dan power factor sebesar 0,803 dimana nilai ini kurang baik dalam pengaplikasiannya. Pada penelitian ini akan dikaji mengenai proses power factor correction yang mereduksi harmonisa arus (THD sumber AC dengan menggunakan zeta converter dalam pengaplikasian motor brushless DC, serta pengoperasian motor dengan mengamati respon motor terhadap kecepatan referensi yang berubah-ubah dan mengamati kestabilan motor terhadap pembebanan yang bervariasi. Dalam menerapkan metode yang dilakukan pada penelitian ini, pengoperasian motor brushless DC yang telah dirancang dapat bekerja dengan baik meliputi respon motor yang dapat mengikuti kecepatan referensi yang berubah-ubah, serta kestabilan motor dalam mempertahankan kecepatannya pada pembebanan yang bervariasi. Proses power factor correction dapat meningkatkan kualitas daya pada berbagai kecepatan dan mode penerapan yang berbeda-beda, dimana peningkatan tersebut membuktikan kinerja yang baik dalam sistem ini dan memiliki nilai kualitas daya yang baik.
Studies of ZVS soft switching of dual-active-bridge isolated bidirectional DC-DC converters
Xu, Fei; Zhao, Feng; Shi, Qibiao; Wen, Xuhui
2018-05-01
To operate dual-active-bridge isolated bidirectional dc- dc converter (DAB) at high efficiency, the two bridge switches must operate with Zero-Voltage-Switching (ZVS) over as wide an operating range as possible. This paper proposes a new perspective on realizing ZVS in dead-time. An exact theoretical analysis and mathematical mode is built to explain the process of ZVS switching in dead-time under Single Phase Shift (SPS) control strategy. In order to assure the two bridge switches operate on soft switching, every SPS switching point is analyzed. Generally, dead-time will be determined when the power electronic devices is selected. The key factor to realizing ZVS is the size of the end time of resonance comparing to dead-time. Through detailed analysis, it can obtain the conditions of all switches achieving ZVS turn-on and turn-off. Finally, simulation validates the theoretical analysis and some advice are given to realize the ZVS soft switching.
International Nuclear Information System (INIS)
Fernandez, Luis M.; Garcia, Pablo; Garcia, Carlos Andres; Jurado, Francisco
2011-01-01
Research highlights: → Hybrid electric power system for a real surface tramway. → Hybrid system based on PEM fuel cell with dc/dc converter and Ni-MH battery. → New control strategy for the energy management of the tramway. → Hybrid system demonstrated to meet appropriate driving cycle of the tramway. -- Abstract: This paper presents a hybrid electric power system for a real surface tramway. The hybrid system consists of two electrical energy sources integrating a single dc/dc converter to provide the power demanded by the tramway loads (four electric traction motors and auxiliary services): (1) a Polymer Electrolyte Membrane (PEM) fuel cell (FC) as the primary and (2) a rechargeable Ni-MH battery as electrical energy storage to supplement the FC over the driving cycle. According to the requirements of the real driving cycle of the tramway, it was considered a 200 kW PEM FC system with two FCs connected in parallel and a 34 Ah Ni-MH battery. The PEM FC and Ni-MH battery models were designed from commercially available components. The power conditioning system provides the appropriate power for the tramway. It is composed of: (1) a unique dc/dc boot converter which adapts the FC output voltage to the 750 V traction standard dc bus; (2) three phase inverters to drive properly each electric motors; and (3) a braking chopper to dissipate excess of regenerative braking energy. Suitable state machine control architecture is presented for the hybrid system, its objective being to provide demanded power by the driving cycle, optimizing the energy generated. Following this objective, a new state machine control strategy based on eight states decides the operating point of each component of the system and a cascade control structure allows achieving the operating points determined by the strategy. Simulation results of the real driving cycle of the tramway check the adequacy of the hybrid electric power system.
Energy Technology Data Exchange (ETDEWEB)
Fernandez, Luis M., E-mail: luis.fernandez@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Garcia, Pablo, E-mail: pablo.garcia@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Garcia, Carlos Andres, E-mail: carlosandres.garcia@uca.e [Department of Electrical Engineering, EPS Algeciras, University of Cadiz, Avda. Ramon Puyol, s/n. 11202 Algeciras (Cadiz) (Spain); Jurado, Francisco, E-mail: fjurado@ujaen.e [Department of Electrical Engineering, EPS Linares, University of Jaen, C/Alfonso X, No. 28. 23700 Linares (Jaen) (Spain)
2011-05-15
Research highlights: {yields} Hybrid electric power system for a real surface tramway. {yields} Hybrid system based on PEM fuel cell with dc/dc converter and Ni-MH battery. {yields} New control strategy for the energy management of the tramway. {yields} Hybrid system demonstrated to meet appropriate driving cycle of the tramway. -- Abstract: This paper presents a hybrid electric power system for a real surface tramway. The hybrid system consists of two electrical energy sources integrating a single dc/dc converter to provide the power demanded by the tramway loads (four electric traction motors and auxiliary services): (1) a Polymer Electrolyte Membrane (PEM) fuel cell (FC) as the primary and (2) a rechargeable Ni-MH battery as electrical energy storage to supplement the FC over the driving cycle. According to the requirements of the real driving cycle of the tramway, it was considered a 200 kW PEM FC system with two FCs connected in parallel and a 34 Ah Ni-MH battery. The PEM FC and Ni-MH battery models were designed from commercially available components. The power conditioning system provides the appropriate power for the tramway. It is composed of: (1) a unique dc/dc boot converter which adapts the FC output voltage to the 750 V traction standard dc bus; (2) three phase inverters to drive properly each electric motors; and (3) a braking chopper to dissipate excess of regenerative braking energy. Suitable state machine control architecture is presented for the hybrid system, its objective being to provide demanded power by the driving cycle, optimizing the energy generated. Following this objective, a new state machine control strategy based on eight states decides the operating point of each component of the system and a cascade control structure allows achieving the operating points determined by the strategy. Simulation results of the real driving cycle of the tramway check the adequacy of the hybrid electric power system.
International Nuclear Information System (INIS)
García-Chocano, Víctor Manuel; García-Miquel, Héctor
2015-01-01
Giant Magnetoimpedance (GMI) effect has been studied in amorphous glass-coated microwires of composition (Fe 6 Co 94 ) 72.5 Si 12.5 B 15 . The impedance of a 1.5 cm length sample has been characterized by using constant AC currents in the range of 400 µA–4 mA at frequencies from 7 to 15 MHz and DC magnetic fields from −900 to 900 A/m. Double peak responses have been obtained, showing GMI ratios up to 107%. A linear magnetic field sensor for DC and AC field has been designed, using two microwires connected in series with a magnetic bias of 400 A/m with opposite direction in each microwire in order to obtain a linear response from ±70 (A/m) rms for AC magnetic field, and ±100 A/m for DC magnetic field. A closed loop feedback circuit has been implemented to extend the linear range to ±1 kA/m for DC magnetic field. - Highlights: • Giant Magneto Impedance phenomenon has been studied in amorphous microwires. • A combination of two microwires with a bias field has been developed to get a linear response. • An electronic circuit has been developed to obtain a sensor with a linear response. • A feedback coil have been added to increase the measurable range of the sensor
Directory of Open Access Journals (Sweden)
Lee Gyu-sub
2016-01-01
Full Text Available The exhaustion of fossil fuel and the greenhouse gas emission are one of the most significant energy and environmental issues, respectively. Photovoltaic (PV generators and battery energy storage systems (BESSs have been significantly increased for recent years. The BESSs are mainly used for smoothing active power fluctuation of the PV. In this paper, PV–BESSs integration of two DC/DC converters and one AC/DC converter is investigated and DC-link voltage control to compensate the AC voltage deviation is proposed for the PV‒BESS system in low-voltage (LV networks.
Directory of Open Access Journals (Sweden)
Yanni Zhong
2017-03-01
Full Text Available Low-voltage direct-current (LVDC networks offer improved conductor utilisation on existing infrastructure and reduced conversion stages, which can lead to a simpler and more efficient distribution network. However, LVDC networks must continue to support AC loads, requiring efficient, low-distortion DC–AC converters. Additionally, increasing numbers of DC loads on the LVAC network require controlled, low-distortion, unity power factor AC-DC converters with large capacity, and bi-directional capability. An AC–DC/DC–AC converter design is therefore proposed in this study to minimise conversion loss and maximise power quality. Comparative analysis is performed for a conventional IGBT two-level converter, a SiC MOSFET two-level converter, a Si MOSFET modular multi-level converter (MMC and a GaN HEMT MMC, in terms of power loss, reliability, fault tolerance, converter cost and heatsink size. The analysis indicates that the five-level MMC with parallel-connected Si MOSFETs is an efficient, cost-effective converter for low-voltage converter applications. MMC converters suffer negligible switching loss, which enables reduced device switching without loss penalty from increased harmonics and filtering. Optimal extent of parallel-connection for MOSFETs in an MMC is investigated. Experimental results are presented to show the reduction in device stress and electromagnetic interference generating transients through the use of reduced switching and device parallel-connection.
Wind-driven SEIG supplying DC microgrid through a single-stage power converter
Directory of Open Access Journals (Sweden)
Vellapatchi Nayanar
2016-09-01
Full Text Available Nowadays, there is an increased emphasis on utilizing the renewable energy sources and selection of suitable power converters for supplying dc microgrid. Among the various renewable energy sources, wind energy stands first in terms of installed capacity. So, an attempt is made in this paper for supplying dc microgrid utilizing wind energy. A self-excited induction generator has been used in the proposed wind energy conversion system (WECS. A single-stage power converter, namely, semi-converter is connected between the SEIG and dc grid terminals for closed-loop control of the proposed system. A perturb and observe (P&O based maximum power point tracking (MPPT algorithm has been developed and implemented using a dsPIC30F4011 digital controller. In this MPPT algorithm, the firing angle of the converter is adjusted by continuously monitoring the dc grid current for a given wind velocity. For analyzing the proposed system, a MATLAB/Simulink model has been developed by selecting the various components starting from wind-turbine model to the power converter supplying dc microgrid. Successful working of the proposed WECS has also been shown through experimental results obtained on a prototype model developed in the laboratory.
Directory of Open Access Journals (Sweden)
Ramachandran Rakesh
2017-01-01
In this paper, design and implementation of an ultra-high efficiency isolated bi-directional dc-dc converter utilizing GaN devices is presented. Loss modelling of the GaN converter is also included in this paper. The converter has achieved a maximum measured efficiency of 98.8% in both directions of power flow, using the same power components. Hardware prototype of the converter along with the measured efficiency curve is also presented in this paper.
Electrical actuation of electrically conducting and insulating droplets using ac and dc voltages
International Nuclear Information System (INIS)
Kumari, N; Bahadur, V; Garimella, S V
2008-01-01
Electrical actuation of liquid droplets at the microscale offers promising applications in the fields of microfluidics and lab-on-chip devices. Much prior research has targeted the electrical actuation of electrically conducting liquid droplets using dc voltages (classical electrowetting). Electrical actuation of conducting droplets using ac voltages and the actuation of insulating droplets (using dc or ac voltages) has remained relatively unexplored. This paper utilizes an energy-minimization-based analytical framework to study the electrical actuation of a liquid droplet (electrically conducting or insulating) under ac actuation. It is shown that the electromechanical regimes of classical electrowetting, electrowetting under ac actuation and insulating droplet actuation can be extracted from the generic electromechanical actuation framework, depending on the electrical properties of the droplet, the underlying dielectric layer and the frequency of the actuation voltage. This paper also presents experiments which quantify the influence of the ac frequency and the electrical properties of the droplet on its velocity under electrical actuation. The velocities of droplets moving between two parallel plates under ac actuation are experimentally measured; these velocities are then related to the actuation force on the droplet which is predicted by the electromechanical model developed in this work. It is seen that the droplet velocities are strongly dependent on the frequency of the ac actuation voltage; the cut-off ac frequency, above which the droplet fails to actuate, is experimentally determined and related to the electrical conductivity of the liquid. This paper then analyzes and directly compares the various electromechanical regimes for the actuation of droplets in microfluidic applications
International Nuclear Information System (INIS)
Abdelhamid, Tamer H.; Sabzali, Ahmad J.
2008-01-01
This paper presents a new zero voltage transition (ZVT), power factor corrected three phase ac-ac converter with single phase high frequency (HF) link. It is a two stage converter; the first stage is a boost integrated bridge converter (combination of a 3 ph boost converter and a bridge converter) operated at fixed frequency and that operates in two modes at ZVT for all switches and establishes a 1 ph square wave HF link. The second stage is a bi-directional pulse width modulation (PWM) 3 ph bridge that converts the 1 ph HF link to a 3 ph voltage using a novel switching strategy. The converter modes of operation and key equations are outlined. Simulation of the overall system is conducted using Simulink. The switching strategy and its corresponding control circuit are clearly described. Experimental verification of the simulation is conducted for a prototype of 100 V, 500 W at 10 kHz link frequency
Winding design of series AC inductor for dual active bridge converters
DEFF Research Database (Denmark)
Shen, Zhan; Wang, Huai; Shen, Yanfeng
2018-01-01
The ac resistance and parasitic capacitance of the inductor are the primary considerations in the winding design for the dual-active bridge converter (DAB). They are dependent of up to four independent structure variables. The interactive restrictions between those variables makes the design diff...
DEFF Research Database (Denmark)
Forouzesh, Mojtaba; Shen, Yanfeng; Siwakoti, Yam Prasad
2018-01-01
with a common ground connection of the input and output make the proposed topology a proper candidate for a transformer-less grid connected photovoltaic systems. The operating performance, analysis and mathematical derivations of the proposed dc-dc converter have been demonstrated in the paper. Moreover......This paper introduces a non-isolated high step-up dc-dc converter with dual coupled inductors suitable for distributed generation applications. By implementing an input parallel connection, the proposed dc-dc structure inherits shared input current with low ripple, which also requires small...... capacitive filter at its input. Moreover, this topology can reach high voltage gain by using dual coupled inductors in series connection at the output stage. The proposed converter uses active clamp circuits with a shared clamp capacitor for the main switches. In addition to the active clamp circuit...
Directory of Open Access Journals (Sweden)
Johan Forslund
2015-05-01
Full Text Available This paper investigates three load control methods for a marine current energy converter using a vertical axis current turbine (VACT mounted on a permanent magnet synchronous generator (PMSG. The three cases are; a fixed AC load, a fixed pulse width modulated (PWM DC load and DC bus voltage control of a DC load. Experimental results show that the DC bus voltage control reduces the variations of rotational speed by a factor of 3.5 at the cost of slightly increased losses in the generator and transmission lines. For all three cases, the tip speed ratio \\(\\lambda\\ can be kept close to the expected \\(\\lambda_{opt}\\. The power coefficient is estimated to be 0.36 at \\(\\lambda_{opt}\\; however, for all three cases, the average extracted power was about \\(\\sim 19\\\\%. A maximum power point tracking (MPPT system, with or without water velocity measurement, could increase the average extracted power.
International Nuclear Information System (INIS)
Memon, A.A.
2013-01-01
This paper presents a gate driver circuit for the switching devices used in the asymmetrical converter for a switched reluctance machine with reduced number of isolated dc/dc converters. Isolation required in the gate driver circuit of switching devices is indispensable. For the purpose of isolation different arrangements may be used such as pulse transformers. The dc/dc converter for isolation and powering the gate drive circuits is suitable, cheaper in cost and simple to implement. It is also significant that required number of isolation converters is much less than the switches used in converter. In addition, a simple logic circuit has been presented for producing the gate signals at correct phase sequence which is compared with the gated signals directly obtained from the encoder of an existing machine. (author)
Lebron, Ramon C.; Oliver, Angela C.; Bodi, Robert F.
1991-01-01
Power components hardware in support of the Space Station freedom dc Electric Power System were tested. One type of breadboard hardware tested is the dc Load Converter Unit, which constitutes the power interface between the electric power system and the actual load. These units are dc to dc converters that provide the final system regulation before power is delivered to the load. Three load converters were tested: a series resonant converter, a series inductor switch-mode converter, and a switching full-bridge forward converter. The topology, operation principles, and test results are described, in general. A comparative analysis of the three units is given with respect to efficiency, regulation, short circuit behavior (protection), and transient characteristics.
Electrothermal model of choking-coils for the analysis of dc-dc converters
Energy Technology Data Exchange (ETDEWEB)
Gorecki, Krzysztof, E-mail: gorecki@am.gdynia.pl [Gdynia Maritime University, Department of Marine Electronics, Morska 83, Gdynia (Poland); Detka, Kalina [Pomeranian Higher School in Gdynia, Opata Hackiego 8-10, Gdynia (Poland)
2012-09-01
The paper concerns modelling the choking-coil for the needs of the electrothermal analysis of dc-dc converters. A new electrothermal model of the choking-coil is proposed. This model is dedicated for SPICE software and it takes into account nonlinearity of the dependences of the inductance on the current, selfheating and mutual thermal interactions between the core and the winding. The structure of this model is described in detail and its correctness is experimentally verified for the choking-coils with the ferrite and powder cores. Both the characteristics of the choking-coils and the buck converter with these choking-coils were considered. The satisfying agreement between the results of calculations and measurements is obtained.
AC/DC current ratio in a current superimposition variable flux reluctance machine
Kohara, Akira; Hirata, Katsuhiro; Niguchi, Noboru; Takahara, Kazuaki
2018-05-01
We have proposed a current superimposition variable flux reluctance machine for traction motors. The torque-speed characteristics of this machine can be controlled by increasing or decreasing the DC current. In this paper, we discuss an AC/DC current ratio in the current superimposition variable flux reluctance machine. The structure and control method are described, and the characteristics are computed using FEA in several AC/DC ratios.
DEFF Research Database (Denmark)
Schaltz, Erik; Li, Zhihao; Onar, Omer
2009-01-01
Battery/Ultra-capacitor based electrical vehicles (EV) combine two energy sources with different voltage levels and current characteristics. This paper focuses on design and control of a multiple input DC/DC converter, to regulate output voltage from different inputs. The proposed multi-input con......Battery/Ultra-capacitor based electrical vehicles (EV) combine two energy sources with different voltage levels and current characteristics. This paper focuses on design and control of a multiple input DC/DC converter, to regulate output voltage from different inputs. The proposed multi...
Directory of Open Access Journals (Sweden)
Sanjeevikumar Padmanaban
2017-01-01
Full Text Available Classical DC-DC converters used in high voltage direct current (HVDC power transmission systems, lack in terms of efficiency, reduced transfer gain and increased cost with sensor (voltage/current numbers. Besides, the internal self-parasitic behavior of the power components reduces the output voltage and efficiency of classical HV converters. This paper deals with extra high-voltage (EHV dc-dc boost converter by the application of voltage-lift technique to overcome the aforementioned deficiencies. The control strategy is based on classical proportional-integral (P-I and fuzzy logic closed-loop controller to get high and stable output voltage. Complete hardware prototype of EHV is implemented and experimental tasks are carried out with digital signal processor (DSP TMS320F2812. The control algorithms P-I, fuzzy logic and the pulse-width modulation (PWM signals for N-channel MOSFET device are performed by the DSP. The experimental results provided show good conformity with developed hypothetical predictions. Additionally, the presented study confirms that the fuzzy logic controller provides better performance than classical P-I controller under different perturbation conditions.
McCune, Robert C.; Upadhyay, Vinod; Wang, Yar-Ming; Battocchi, Dante
The potential utility of AC-DC-AC electrochemical methods in comparative measures of corrosion-resisting coating system performance for magnesium alloys under consideration for the USAMP "Magnesium Front End Research and Development" project was previously shown in this forum [1]. Additional studies of this approach using statistically-designed experiments have been conducted with focus on alloy types, pretreatment, topcoat material and topcoat thickness as the variables. Additionally, sample coupons made for these designed experiments were also subjected to a typical automotive cyclic corrosion test cycle (SAE J2334) as well as ASTM B117 for comparison of relative performance. Results of these studies are presented along with advantages and limitations of the proposed methodology.
Energy Technology Data Exchange (ETDEWEB)
Zeiff, Andreas; Homburg, Dietrich
2009-01-15
Electronics is the key technology in control engineering, but even the best control system requires reliable modules to transmit signals. Modern electric motors have become indispensable here. There are nearly as many motor types as there are applications. Electromagnetic conversion of electric into mechanical power is directly related to motor design. There are AC and DC motors, one-speed motors and variable-speed motors. Rotary momentum and synchronisation can be optimized by selecting the appropriate motor type, as can dynamics and detent torque. Correct selection of the electric motor therefore is essential for an optimal drive concept. (orig.)
Directory of Open Access Journals (Sweden)
V. V. Subrahmanya Kumar Bhajana
2010-08-01
Full Text Available A closed loop ZVS-ZCS bidirectional dc-dc converter is modeled and appropriate digital simulations are provided. With the ZVS-ZCS concept, the MATLAB simulation results of application to a fuel cell and battery application have been obtained whenever the input voltage exceeds the given 24V, at that time the load voltage will change from 180V to 230V. But due to this usage the load is disturbed and there is instability in the model. Using closed loop the output voltage is stabilized.
Self-oscillating Galvanic Isolated Bidirectional Very High Frequency DC-DC Converter
DEFF Research Database (Denmark)
Pedersen, Jeppe Arnsdorf; Madsen, Mickey Pierre; Knott, Arnold
2015-01-01
This paper describes a galvanic isolated bidirectional Very High Frequency (VHF = 30 MHz - 300MHz) ClassE converter. The reason for increasing the switching frequency is to minimize the passive components in the converter. To make the converter topology bidirectional the rectifier has to be synch......This paper describes a galvanic isolated bidirectional Very High Frequency (VHF = 30 MHz - 300MHz) ClassE converter. The reason for increasing the switching frequency is to minimize the passive components in the converter. To make the converter topology bidirectional the rectifier has...
Family of Step-up DC/DC Converters with Fast Dynamic Response for Low Power Applications
DEFF Research Database (Denmark)
N. Soltani, Mohsen; Mostaan, Ali; Siwakoti, Yam Prasad
2016-01-01
This study presents a family of novel step-up DC/DC converters which do not have a right half plane zero in their transfer function resulting in faster dynamic behaviour of the converters under the load variation. In addition, the voltage stress on all the active switches and diodes is as low...
Three-phase Resonant DC-link Converter
DEFF Research Database (Denmark)
Munk-Nielsen, Stig
The purpose of the project is to develop a three-phase resonant converter suitable for standard speed drives. The motivation for working with resonant converters is found in the problem of the standard converter type used today. In standard converter type Pulse Width Modulated-Voltage Source...... Inverter, PWM-VSI, the switches are subject to high current and voltage stress during switching, which causes losses. The fast switching of modern switches reduces switching losses. Unfortunately this procedure increased dv/dt and the size of the input/output filters of the PWM-SVI must be increased...
Multistability and Torus Reconstruction in a DC–DC Converter With Multilevel Control
DEFF Research Database (Denmark)
Zhusubaliyev, Zhanybai T.; Mosekilde, Erik; Pavlova, Elena V.
2013-01-01
By virtue of their limited size and relatively low costs, multilevel dc-dc converters have come to play an important role in modern industrial power supply systems. When operating in a regime of high corrector gain, such converters can display a variety of new dynamic phenomena associated...... with the appearance of additional oscillatory modes. Starting in a state where four pairs of stable and unstable period-6 cycles coexist with the basic period-1 cycle, the paper describes a sequence of smooth and nonsmooth bifurcations through which the cycles and their basins of attraction transform as the output...
International Nuclear Information System (INIS)
Yu-Yan, Shen; Xiao-Gang, Chen; Wei, Cui; Yan-Hua, Hao; Qian-Qian, Li
2009-01-01
This paper uses the perturbation method to study effective response of nonlinear cylindrical coated composites. Under the external AC and DC electric field E a (1 + sin ωt), the local potentials of composites at all harmonic frequencies are induced. An effective nonlinear response to composite is given for the cylindrical coated inclusions in the dilute limit. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Electrorotation of novel electroactive polymer composites in uniform DC and AC electric fields
International Nuclear Information System (INIS)
Zrinyi, Miklós; Nakano, Masami; Tsujita, Teppei
2012-01-01
Novel electroactive polymer composites have been developed that could spin in uniform DC and AC electric fields. The angular displacement as well as rotation of polymer disks around an axis that is perpendicular to the direction of the applied electric field was studied. It was found that the dynamics of the polymer rotor is very complex. Depending on the strength of the static DC field, three regimes have been observed: no rotation occurs below a critical threshold field intensity, oscillatory motion takes place just above this value and continuous rotation can be observed above the critical threshold field intensity. It was also found that low frequency AC fields could also induce angular deformation. (paper)
A Robust DC-Split-Capacitor Power Decoupling Scheme for Single-Phase Converter
DEFF Research Database (Denmark)
Yao, Wenli; Loh, Poh Chiang; Tang, Yi
2017-01-01
Instead of bulky electrolytic capacitors, active power decoupling circuit can be introduced to a single-phase converter for diverting second harmonic ripple away from its dc source or load. One possible circuit consists of a half-bridge and two capacitors in series for forming a dc-split capacitor......, instead of the usual single dc-link capacitor bank. Methods for regulating this power decoupler have earlier been developed, but almost always with equal capacitances assumed for forming the dc-split capacitor, even though it is not realistic in practice. The assumption should, hence, be evaluated more...... thoroughly, especially when it is shown in the paper that even a slight mismatch can render the power decoupling scheme ineffective and the IEEE 1547 standard to be breached. A more robust compensation scheme is, thus, needed for the dc-split capacitor circuit, as proposed and tested experimentally...
Operation of AC Adapters Visualized Using Light-Emitting Diodes
Regester, Jeffrey
2016-01-01
A bridge rectifier is a diamond-shaped configuration of diodes that serves to convert alternating current(AC) into direct current (DC). In our world of AC outlets and DC electronics, they are ubiquitous. Of course, most bridge rectifiers are built with regular diodes, not the light-emitting variety, because LEDs have a number of disadvantages. For…