WorldWideScience

Sample records for ac impedance methods

  1. Development of AC impedance methods for evaluating corroding metal surfaces and coatings

    Science.gov (United States)

    Knockemus, Ward

    1986-01-01

    In an effort to investigate metal surface corrosion and the breakdown of metal protective coatings the AC Impedance Method was applied to zinc chromate primer coated 2219-T87 aluminum. The model 368-1 AC Impedance Measurement System recently acquired by the MSFC Corrosion Research Branch was used to monitor changing properties of coated aluminum disks immersed in 3.5% NaCl buffered at ph 5.5 over three to four weeks. The DC polarization resistance runs were performed on the same samples. The corrosion system can be represented by an electronic analog called an equivalent circuit that consists of transistors and capacitors in specific arrangements. This equivalent circuit parallels the impedance behavior of the corrosion system during a frequency scan. Values for resistances and capacities that can be assigned in the equivalent circuit following a least squares analysis of the data describe changes that occur on the corroding metal surface and in the protective coating. A suitable equivalent circuit was determined that predicts the correct Bode phase and magnitude for the experimental sample. The DC corrosion current density data are related to equivalent circuit element parameters.

  2. MD 349: Impedance Localization with AC-dipole

    CERN Document Server

    Biancacci, Nicolo; Metral, Elias; Salvant, Benoit; Papotti, Giulia; Persson, Tobias Hakan Bjorn; Tomas Garcia, Rogelio; CERN. Geneva. ATS Department

    2016-01-01

    The purpose of this MD is to measure the distribution of the transverse impedance of the LHC by observing the phase advance variation with intensity between the machine BPMs. Four injected bunches with different intensities are excited with an AC dipole and the turn by turn data is acquired from the BPM system. Through post-processing analysis the phase variation along the machine is depicted and, from this information, first conclusions of the impedance distribution can be drawn.

  3. Power Flow Analysis for Low-Voltage AC and DC Microgrids Considering Droop Control and Virtual Impedance

    DEFF Research Database (Denmark)

    Li, Chendan; Chaudhary, Sanjay Kumar; Savaghebi, Mehdi

    2017-01-01

    In the low-voltage (LV) ac microgrids (MGs), with a relatively high R/X ratio, virtual impedance is usually adopted to improve the performance of droop control applied to distributed generators (DGs). At the same time, LV dc MG using virtual impedance as droop control is emerging without adequate...... power flow studies. In this paper, power flow analyses for both ac and dc MGs are formulated and implemented. The mathematical models for both types of MGs considering the concept of virtual impedance are used to be in conformity with the practical control of the DGs. As a result, calculation accuracy...... is improved for both ac and dc MG power flow analyses, comparing with previous methods without considering virtual impedance. Case studies are conducted to verify the proposed power flow analyses in terms of convergence and accuracy. Investigation of the impact to the system of internal control parameters...

  4. Impedance Localization Measurements using AC Dipoles in the LHC

    CERN Document Server

    Biancacci, Nicolo; Papotti, Giulia; Persson, Tobias; Salvant, Benoit; Tomás, Rogelio

    2016-01-01

    The knowledge of the LHC impedance is of primary importance to predict the machine performance and allow for the HL-LHC upgrade. The developed impedance model can be benchmarked with beam measurements in order to assess its validity and limit. This is routinely done, for example, moving the LHC collimator jaws and measuring the induced tune shift. In order to localize possible unknown impedance sources, the variation of phase advance with intensity between beam position monitors can be measured. In this work we will present the impedance localization measurements performed at injection in the LHC using AC dipoles as exciter as well as the underlying theory.

  5. Application of ac impedance in fuel cell research and development

    Energy Technology Data Exchange (ETDEWEB)

    Selman, J R; Lin, Y P [Illinois Inst. of Tech., Chicago, IL (United States). Dept. of Chemical Engineering

    1993-10-01

    In applying ac impedance to fuel cells and their porous (gas diffusion) electrodes the emphasis lies on different fuel cell components, and their properties, according to the fuel cell type. The focus has been directed at the electrode/electrolyte interface in MCFC and PAFC, whereas in SOFC and PEMFC the ionic/electronic conductivity of the electrolyte or the characteristics of its composite with the electrocatalyst is of primary interest. The limitations of ac impedance in fuel cell application are in part due to difficulties of interpretation and in part due to experimental difficulties because of the generally fast electrode reaction kinetics. Further research directions are indicated. (author)

  6. Mitigating voltage lead errors of an AC Josephson voltage standard by impedance matching

    Science.gov (United States)

    Zhao, Dongsheng; van den Brom, Helko E.; Houtzager, Ernest

    2017-09-01

    A pulse-driven AC Josephson voltage standard (ACJVS) generates calculable AC voltage signals at low temperatures, whereas measurements are performed with a device under test (DUT) at room temperature. The voltage leads cause the output voltage to show deviations that scale with the frequency squared. Error correction mechanisms investigated so far allow the ACJVS to be operational for frequencies up to 100 kHz. In this paper, calculations are presented to deal with these errors in terms of reflected waves. Impedance matching at the source side of the system, which is loaded with a high-impedance DUT, is proposed as an accurate method to mitigate these errors for frequencies up to 1 MHz. Simulations show that the influence of non-ideal component characteristics, such as the tolerance of the matching resistor, the capacitance of the load input impedance, losses in the voltage leads, non-homogeneity in the voltage leads, a non-ideal on-chip connection and inductors between the Josephson junction array and the voltage leads, can be corrected for using the proposed procedures. The results show that an expanded uncertainty of 12 parts in 106 (k  =  2) at 1 MHz and 0.5 part in 106 (k  =  2) at 100 kHz is within reach.

  7. A short tutorial contribution to impedance and AC-electrokinetic characterization and manipulation of cells and media: Are electric methods more versatile than acoustic and laser methods?

    Directory of Open Access Journals (Sweden)

    Jan Gimsa

    2014-11-01

    Full Text Available Lab-on-chip systems (LOCs can be used as in vitro systems for cell culture or manipulation in order to analyze or monitor physiological cell parameters. LOCs may combine microfluidic structures with integrated elements such as piezo-transducers, optical tweezers or electrodes for AC-electrokinetic cell and media manipulations. The wide frequency band (<1 kHz to >1 GHz usable for AC-electrokinetic manipulation and characterization permits avoiding electrochemical electrode processes, undesired cell damage, and provides a choice between different polarization effects that permit a high electric contrast between the cells and the external medium as well as the differentiation between cellular subpopulations according to a variety of parameters. It has been shown that structural polarization effects do not only determine the impedance of cell suspensions and the force effects in AC-electrokinetics but can also be used for the manipulation of media with inhomogeneous temperature distributions. This manuscript considers the interrelations of the impedance of suspensions of cells and AC-electrokinetic single cell effects, such as electroorientation, electrodeformation, dielectrophoresis, electrorotation, and travelling wave (TW dielectrophoresis. Unified models have allowed us to derive new characteristic equations for the impedance of a suspension of spherical cells, TW dielectrophoresis, and TW pumping. A critical review of the working principles of electro-osmotic, TW and electrothermal micropumps shows the superiority of the electrothermal pumps. Finally, examples are shown for LOC elements that can be produced as metallic structures on glass chips, which may form the bottom plate for self-sealing microfluidic systems. The structures can be used for cell characterization and manipulation but also to realize micropumps or sensors for pH, metabolites, cell-adhesion, etc.

  8. Impedance Spectroscopy and AC Conductivity Studies of Bulk 3-Amino-7-(dimethylamino)-2-methyl-hydrochloride

    Science.gov (United States)

    El-Shabaan, M. M.

    2018-02-01

    Impedance spectroscopy and alternating-current (AC) conductivity (σ AC) studies of bulk 3-amino-7-(dimethylamino)-2-methyl-hydrochloride (neutral red, NR) have been carried out over the temperature (T) range from 303 K to 383 K and frequency (f) range from 0.5 kHz to 5 MHz. Dielectric data were analyzed using the complex impedance (Z *) and complex electric modulus (M *) for bulk NR at various temperatures. The impedance loss peaks were found to shift towards high frequencies, indicating an increase in the relaxation time (τ 0) and loss in the material, with increasing temperature. For each temperature, a single depressed semicircle was observed at high frequencies, originating from the bulk transport, and a spike in the low-frequency region, resulting from the electrode effect. Fitting of these curves yielded an equivalent circuit containing a parallel combination of a resistance R and constant-phase element (CPE) Q. The carrier transport in bulk NR is governed by the correlated barrier hopping (CBH) mechanism, some parameters of which, such as the maximum barrier height (W M), charge density (N), and hopping distance (r), were determined as functions of both temperature and frequency. The frequency dependence of σ AC at different temperatures indicated that the conduction in bulk NR is a thermally activated process. The σ AC value at different frequencies increased linearly with temperature.

  9. Analytical Modeling Approach to Study Harmonic Mitigation in AC Grids with Active Impedance at Selective Frequencies

    Directory of Open Access Journals (Sweden)

    Gonzalo Abad

    2018-05-01

    Full Text Available This paper presents an analytical model, oriented to study harmonic mitigation aspects in AC grids. As it is well known, the presence of non-desired harmonics in AC grids can be palliated in several manners. However, in this paper, a power electronic-based active impedance at selective frequencies (ACISEF is used, due to its already proven flexibility and adaptability to the changing characteristics of AC grids. Hence, the proposed analytical model approach is specially conceived to globally consider both the model of the AC grid itself with its electric equivalent impedances, together with the power electronic-based ACISEF, including its control loops. In addition, the proposed analytical model presents practical and useful properties, as it is simple to understand and simple to use, it has low computational cost and simple adaptability to different scenarios of AC grids, and it provides an accurate enough representation of the reality. The benefits of using the proposed analytical model are shown in this paper through some examples of its usefulness, including an analysis of stability and the identification of sources of instability for a robust design, an analysis of effectiveness in harmonic mitigation, an analysis to assist in the choice of the most suitable active impedance under a given state of the AC grid, an analysis of the interaction between different compensators, and so on. To conclude, experimental validation of a 2.15 kA ACISEF in a real 33 kV AC grid is provided, in which real users (household and industry loads and crucial elements such as wind parks and HVDC systems are near inter-connected.

  10. Impedance and ac conductivity studies of Ba (Pr1/2Nb1/2) O3 ceramic

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 4. Impedance and a.c. conductivity studies of ... Abstract. Impedance and electrical conduction studies of Ba(Pr1/2Nb1/2)O3 ceramic prepared through conventional ceramic fabrication technique are presented. The crystal symmetry, space group and unit cell ...

  11. AC impedance behavior of a practical-size single-cell SOFC under DC current

    Energy Technology Data Exchange (ETDEWEB)

    Momma, Akihiko; Kaga, Yasuo; Takano, Kiyonami; Nozaki, Ken; Negishi, Akira; Kato, Ken; Kato, Tohru [Fuel Cell Group, Energy Electronics Institute, National Institute of Advanced Industrial Science and Technology, Umezono Tsukuba-shi, Ibaraki 305-8568 (Japan); Inagaki, Toru; Yoshida, Hiroyuki [Energy Use R and D Center, The Kansai Electric Power Company, Inc., 11-20 Nakoji, 3-Chome, Amagasaki, Hyogo 661-0974 (Japan); Hosoi, Kei; Hoshino, Koji; Akbay, Taner; Akikusa, Jun; Yamada, Masaharu; Chitose, Norihisa [Central Research Institute, Naka Research Center, Mitsubishi Materials Corp. 1002-14 Mukohyama, Naka-machi, Naka-gun, Ibaraki 311-0102 (Japan)

    2004-10-29

    AC impedance measurements were carried out using practical-size planar disc-type SOFC which employs lanthanum gallate as a solid electrolyte. The data were obtained under practical conditions of gas flow rate and DC current. Under these conditions, the gas conversion impedance (GCI), which originates from the change of the electromotive force (EMF) caused by the change in anodic gaseous concentrations along the flow direction, was observed in the low-frequency range of the data obtained. The overlapping impedance together with GCI on the low-frequency arc was also estimated. Experimentally obtained GCI was in good agreement with that calculated. It was concluded that GCI was predominant in the impedance data obtained under practical conditions. The shift of the high-frequency intercept in the complex impedance diagrams was shown to appear as a result of the change in the distribution of gaseous composition in the anode. The dependency of the low-frequency arc on temperature was also shown, and it was assumed that the overlapped impedance varies as the temperature changes. The validity of the impedance measurement, as a diagnostic means to evaluate the gas flow in SOFC stack, was suggested.

  12. Impedance-Source Networks for Electric Power Conversion Part II

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Peng, Fang Zheng; Blaabjerg, Frede

    2015-01-01

    Impedance-source networks cover the entire spectrum of electric power conversion applications (dc-dc, dc-ac, ac-dc, ac-ac) controlled and modulated by different modulation strategies to generate the desired dc or ac voltage and current at the output. A comprehensive review of various impedance......-source-network-based power converters has been covered in a previous paper and main topologies were discussed from an application point of view. Now Part II provides a comprehensive review of the most popular control and modulation strategies for impedance-source network-based power converters/inverters. These methods...

  13. Method and device for bio-impedance measurement with hard-tissue applications

    International Nuclear Information System (INIS)

    Guimerà, A; Calderón, E; Los, P; Christie, A M

    2008-01-01

    Bio-impedance measurements can be used to detect and monitor several properties of living hard-tissues, some of which include bone mineral density, bone fracture healing or dental caries detection. In this paper a simple method and hardware architecture for hard tissue bio-impedance measurement is proposed. The key design aspects of such architecture are discussed and a commercial handheld ac impedance device is presented that is fully certified to international medical standards. It includes a 4-channel multiplexer and is capable of measuring impedances from 10 kΩ to 10 MΩ across a frequency range of 100 Hz to 100 kHz with a maximum error of 5%. The device incorporates several user interface methods and a Bluetooth link for bi-directional wireless data transfer. Low-power design techniques have been implemented, ensuring the device exceeds 8 h of continuous use. Finally, bench test results using dummy cells consisting of parallel connected resistors and capacitors, from 10 kΩ to 10 MΩ and from 20 pF to 100 pF, are discussed

  14. Method and device for bio-impedance measurement with hard-tissue applications.

    Science.gov (United States)

    Guimerà, A; Calderón, E; Los, P; Christie, A M

    2008-06-01

    Bio-impedance measurements can be used to detect and monitor several properties of living hard-tissues, some of which include bone mineral density, bone fracture healing or dental caries detection. In this paper a simple method and hardware architecture for hard tissue bio-impedance measurement is proposed. The key design aspects of such architecture are discussed and a commercial handheld ac impedance device is presented that is fully certified to international medical standards. It includes a 4-channel multiplexer and is capable of measuring impedances from 10 kOmega to 10 MOmega across a frequency range of 100 Hz to 100 kHz with a maximum error of 5%. The device incorporates several user interface methods and a Bluetooth link for bi-directional wireless data transfer. Low-power design techniques have been implemented, ensuring the device exceeds 8 h of continuous use. Finally, bench test results using dummy cells consisting of parallel connected resistors and capacitors, from 10 kOmega to 10 MOmega and from 20 pF to 100 pF, are discussed.

  15. An ac impedance study of the corrosion behaviour of mild steel coated with electrochemically synthesized polyoxyphenylenes

    Energy Technology Data Exchange (ETDEWEB)

    Musiani, M.M.; Mengoli, G.; Pagura, C.

    1985-04-01

    Electrochemically synthesized polyoxphenylene coatings on mild steel exposed to NaCl or H2SO4 solutions were investigated by ac impedance measurements. The influence of coating cohesion, adhesion to substrate, and surface pretreatment on the corrosion behaviour of the samples is clarified.

  16. Comparison of Modified Impedance Whole Blood Platelet Aggregation Method Detecting Platelet Function in ACS Patients with Different CYP2C19 Genotypes.

    Science.gov (United States)

    Cui, Chanjuan; Qiao, Rui; Zhang, Jie

    2016-01-01

    A reliable laboratory test to monitor onclopidogrel platelet reactivity (PR) is very necessary. In addition, genetic factors also play an important part in onclopidogrel PR. This study aimed to modify the original impedance whole blood platelet aggregation assay associated with the release assay to monitor onclopidogrel PR and assess their relationship with genotype. We adjusted the concentration of calcium in the in vitro reaction system of platelet aggregation to modify the original impedance whole blood platelet aggregation assay. Meanwhile, chronolume, which quantified the adenosine triphosphate (ATP) released from platelet dense granules, is added to this reaction system to reflect the platelet release function. In the modified assay, platelet magnified activation time (MAT) and the maximal platelet ATP release value (RV) were used to reflect platelet function parameters. In the original assay, the electrical resistance (omega) and RV were used to reflect platelet function parameters. Onclopidogrel PR was detected by the original impedance whole blood platelet aggregation assay, modified assay, and flow cytometric vasodilator stimulated phosphoprotein (VASP) assay in 168 patients with acute coronary syndromes (ACS). CYP2C19*2 and CYP2C19*3 polymorphisms were also detected in all of these patients. This modified method showed that when 12.5 microL CaCl2 (0.2 mmol/L) was added to the reaction system, MAT was appropriate (93 +/- 23 seconds). The CVs for the modified impedance assay and release assay were 9.31% and 6.13%, respectively. The mean VASP-PRI in the patient group treated with clopidogrel was significantly lower than that in the control group without antiplatelet therapy (54.88 +/- 16.81% vs. 79.86 +/- 10.24%, p 50% group were shorter than that in the PRI 50% group were higher than that in the PRI omega) and RV of the original method showed no differences between the two groups [0 (0-2) vs. 0 (0-1.25), 0.05 (0-0.25) vs. 0.08 (0-0.24); p > 0.05, p > 0

  17. Impedance adaptation methods of the piezoelectric energy harvesting

    Science.gov (United States)

    Kim, Hyeoungwoo

    In this study, the important issues of energy recovery were addressed and a comprehensive investigation was performed on harvesting electrical power from an ambient mechanical vibration source. Also discussed are the impedance matching methods used to increase the efficiency of energy transfer from the environment to the application. Initially, the mechanical impedance matching method was investigated to increase mechanical energy transferred to the transducer from the environment. This was done by reducing the mechanical impedance such as damping factor and energy reflection ratio. The vibration source and the transducer were modeled by a two-degree-of-freedom dynamic system with mass, spring constant, and damper. The transmissibility employed to show how much mechanical energy that was transferred in this system was affected by the damping ratio and the stiffness of elastic materials. The mechanical impedance of the system was described by electrical system using analogy between the two systems in order to simply the total mechanical impedance. Secondly, the transduction rate of mechanical energy to electrical energy was improved by using a PZT material which has a high figure of merit and a high electromechanical coupling factor for electrical power generation, and a piezoelectric transducer which has a high transduction rate was designed and fabricated. The high g material (g33 = 40 [10-3Vm/N]) was developed to improve the figure of merit of the PZT ceramics. The cymbal composite transducer has been found as a promising structure for piezoelectric energy harvesting under high force at cyclic conditions (10--200 Hz), because it has almost 40 times higher effective strain coefficient than PZT ceramics. The endcap of cymbal also enhances the endurance of the ceramic to sustain ac load along with stress amplification. In addition, a macro fiber composite (MFC) was employed as a strain component because of its flexibility and the high electromechanical coupling

  18. A Circulating-Current Suppression Method for Parallel-Connected Voltage-Source Inverters With Common DC and AC Buses

    DEFF Research Database (Denmark)

    Wei, Baoze; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    This paper presents a theoretical study with experimental validation of a circulating-current suppression method for parallel operation of three-phase voltage source inverters (VSI), which may be suitable for modular parallel uninterruptible power supply systems or hybrid AC/DC microgrid applicat......This paper presents a theoretical study with experimental validation of a circulating-current suppression method for parallel operation of three-phase voltage source inverters (VSI), which may be suitable for modular parallel uninterruptible power supply systems or hybrid AC/DC microgrid......, and added into the conventional droop plus virtual impedance control. In the control architecture, the reference voltages of the inverters are generated by the primary control loop which consists of a droop control and a virtual impedance. The secondary control is used to compensate the voltage drop...

  19. AC impedance electrochemical modeling of lithium-ion positive electrodes

    International Nuclear Information System (INIS)

    Dees, D.; Gunen, E.; Abraham, D.; Jansen, A.; Prakash, J.

    2004-01-01

    Under Department of Energy's Advanced Technology Development Program,various analytical diagnostic studies are being carried out to examine the lithium-ion battery technology for hybrid electric vehicle applications, and a series of electrochemical studies are being conducted to examine the performance of these batteries. An electrochemical model was developed to associate changes that were observed in the post-test analytical diagnostic studies with the electrochemical performance loss during testing of lithium ion batteries. While both electrodes in the lithium-ion cell have been studied using a similar electrochemical model, the discussion here is limited to modeling of the positive electrode. The positive electrode under study has a composite structure made of a layered nickel oxide (LiNi 0.8 Co 0.15 Al 0.05 O 2 ) active material, a carbon black and graphite additive for distributing current, and a PVDF binder all on an aluminum current collector. The electrolyte is 1.2M LiPF 6 dissolved in a mixture of EC and EMC and a Celgard micro-porous membrane is used as the separator. Planar test cells (positive/separator/negative) were constructed with a special fixture and two separator membranes that allowed the placement of a micro-reference electrode between the separator membranes (1). Electrochemical studies including AC impedance spectroscopy were then conducted on the individual electrodes to examine the performance and ageing effects in the cell. The model was developed by following the work of Professor Newman at Berkeley (2). The solid electrolyte interface (SEI) region, based on post-test analytical results, was assumed to be a film on the oxide and an oxide layer at the surface of the oxide. A double layer capacity was added in parallel with the Butler-Volmer kinetic expression. The pertinent reaction, thermodynamic, and transport equations were linearized for a small sinusoidal perturbation (3). The resulting system of differential equations was solved

  20. A Simultaneous and Continuous Excitation Method for High-Speed Electrical Impedance Tomography with Reduced Transients and Noise Sensitivity

    Directory of Open Access Journals (Sweden)

    Antoine Dupré

    2018-03-01

    Full Text Available This paper presents a concept for soft field tomographic scan of all the projections of electromagnetic waves emanating from an array of electrodes. Instead of the sequential excitation of all pairs of electrodes in the list of all projections, the new method present here consists of a single and continuous excitation. This excitation signal is the linear combination of the excitation signals in the projection set at different AC frequencies. The response to a given projection is discriminated by selecting the corresponding AC frequency component in the signal spectra of the digitally demodulated signals. The main advantage of this method is the suppression of transients after each projection, which is particularly problematic in electrical impedance tomography due to contact impedance phenomena and skin effect. The second benefit over the sequential scan method is the increased number of samples for each measurement for reduced noise sensitivity with digital demodulation. The third benefit is the increased temporal resolution in high-speed applications. The main drawback is the increased number of signal sources required (one per electrode. This paper focuses on electrical impedance tomography, based on earlier work by the authors. An experimental proof-of-concept using a simple 4-electrodes electrical impedance tomographic system is presented using simulations and laboratory data. The method presented here may be extended to other modalities (ultrasonic, microwave, optical, etc..

  1. The nonaqueous inhibition of Fe-Co-B-Si amorphous electrodes: An a.c. impedance study in HCl solutions

    International Nuclear Information System (INIS)

    Habib, K.; Abdullah, A.

    1995-01-01

    An electrochemical study on Fe-Co-B-Si amorphous electrodes has been conducted. The study was focused on determining the electrochemical impedance spectroscopy (EIS) of four different alloys of Fe-Co-B-Si in various HCl acid solutions. The A.C. impedance and the capacitance of Fe-Co-B-Si, Co-Fe-Ni-B-Si, Co-Fe-Mn-B-Si, and Co-Fe-Ni-Mo-B-Si alloys were obtained in 25, 50, 75 and 100% of HCl acid at room temperature. Electrochemical parameters, i.e., impedance, were found to vary depending on additions of the Ni, Mn, Ni-Mo to Fe-Co-B-Si alloy, the acid concentration, and the nanoscopic surface roughness of the electrodes. Consequently, a correlation between the obtained data is established

  2. Study of electrical properties of Sc doped BaFe12O19 ceramic using dielectric, impedance, modulus spectroscopy and AC conductivity

    Science.gov (United States)

    Gupta, Surbhi; Deshpande, S. K.; Sathe, V. G.; Siruguri, V.

    2018-04-01

    We present dielectric, complex impedance, modulus spectroscopy and AC conductivity studies of the compound BaFe10Sc2O19 as a function of temperature and frequency to understand the conduction mechanism. The variation in complex dielectric constant with frequency and temperature were analyzed on the basis of Maxwell-Wagner-Koop's theory and charge hopping between ferrous and ferric ions. The complex impedance spectroscopy study shows only grain contribution whereas complex modulus plot shows two semicircular arcs which indicate both grain and grain boundary contributions in conduction mechanism. AC conductivity has also been evaluated which follows the Jonscher's law. The activation energy calculated from temperature dependence of DC conductivity comes out to be Ea˜ 0.31eV.

  3. Temperature dependent dielectric relaxation and ac-conductivity of alkali niobate ceramics studied by impedance spectroscopy

    Science.gov (United States)

    Yadav, Abhinav; Mantry, Snigdha Paramita; Fahad, Mohd.; Sarun, P. M.

    2018-05-01

    Sodium niobate (NaNbO3) ceramics is prepared by conventional solid state reaction method at sintering temperature 1150 °C for 4 h. The structural information of the material has been investigated by X-ray diffraction (XRD) and Field emission scanning electron microscopy (FE-SEM). The XRD analysis of NaNbO3 ceramics shows an orthorhombic structure. The FE-SEM micrograph of NaNbO3 ceramics exhibit grains with grain sizes ranging between 1 μm to 5 μm. The surface coverage and average grain size of NaNbO3 ceramics are found to be 97.6 % and 2.5 μm, respectively. Frequency dependent electrical properties of NaNbO3 is investigated from room temperature to 500 °C in wide frequency range (100 Hz-5 MHz). Dielectric constant, ac-conductivity, impedance, modulus and Nyquist analysis are performed. The observed dielectric constant (1 kHz) at transition temperature (400 °C) are 975. From conductivity analysis, the estimated activation energy of NaNbO3 ceramics is 0.58 eV at 10 kHz. The result of Nyquist plot shows that the electrical behavior of NaNbO3 ceramics is contributed by grain and grain boundary responses. The impedance and modulus spectrum asserts that the negative temperature coefficient of resistance (NTCR) behavior and non-Debye type relaxation in NaNbO3.

  4. The electrical conductivities of polyimide and polyimide/Li triflate composites: An a.c. impedance study

    Science.gov (United States)

    Aziz, Nor Diyana Abdul; Kamarulzaman, Norlida; Subban, Ri Hanum Yahaya; Hamzah, Ahmad Sazali; Ahmed, Azni Zain; Osman, Zurina; Rusdi, Roshidah; Kamarudin, Norashikin; Mohalid, Norhanim; Romli, Ahmad Zafir; Shaameri, Zurina

    2017-09-01

    Polymer electrolytes have been an essential area of research for many decades. One of the reasons was the need to find new electrolyte materials suitable for device applications like solid-state batteries, supercapacitors, fuel cells, etc. with enhanced characteristics. For more than 40 years, polyimide has been known as a super-engineering plastic due to its excellent thermal stability (Tg > 250 °C) and mechanical properties. Therefore, in an effort to develop new polymer electrolytes, polyimide as a polymer matrix was chosen. Composite films of the polymer doped with lithium salt, LiCF3SO3 was prepared. These PI based polymer electrolyte films were investigated by the alternating current (a.c.) impedance spectroscopy method in the temperature range from 300 K to 373 K. It was observed that conductivity increased with the increase of temperature and amount of doping salt. Alternatively, the activation energy (Ea) of the composite films decreased with the increase of the doping salt, LiCF3SO3.

  5. AC impedance spectroscopy of NASICON type Na3Fe2(PO4)3 ceramic

    Science.gov (United States)

    Mandal, Biswajit; Thakur, A. K.

    2018-05-01

    Super ionic conductors (e.g.; A3M2(XO4)3, A=Li, Na) have received attention in applied research due to their interesting electrochemical property and inherently high ionic conductivity [1]. However, structural and compatibility requirements for fast ion transport is stringent and it plays a crucial role. In A3M2(XO4)3, a suitable cage formation in the crystal framework due to corner sharing arrangement of XO4 tetrahedra and MO6 octahedra creates voids that acts as host/guest site for cation transport. In this work, we report Nasicon structure Na3Fe2(PO4)3 (NFP) prepared via sol-gel route mediated by citric acid. Structural analysis confirmed that NFP sample belongs to monoclinic crystal structure having Cc space group (S. G. No 9) with lattice parameters, a=15.106 Å, b=8.722 Å, c=8.775 Å and β=124.96°. Electrical properties of the prepared sample have been studied by AC impedance spectroscopy technique. The AC conductivity results indicated typical signature of ionically conducting system.

  6. AC Conductivity and Impedance Properties of 0.65Pb(Mg1/3Nb2/3O3-0.35PbTiO3 Ceramics

    Directory of Open Access Journals (Sweden)

    Banarji Behera

    2009-01-01

    impedance spectroscopy technique. The impedance and electric permittivity were strongly temperature and frequency dependent. The activation energy, calculated from the temperature dependence of AC conductivity of the ceramics was found to be ∼0.5 eV. The relaxation process in the ceramics was found to be of non-Debye type. The nature of Cole-Cole diagram reveals the contribution of grain (bulk and grain boundary permittivity in the ceramics.

  7. Determination of kinetic parameters of Fe sup 3+ reduction mediated by a polyaniline film using steady-state and impedance methods

    Energy Technology Data Exchange (ETDEWEB)

    Deslouis, C. (LP15 du CNRS, Physique des Liquides et Electrochimie, Lab. de l' Univ. Pierre et Marie Curie, 75252 Paris Cedex 05 (FR)); Musiani, M.M.; Pagura, C.; Tribollet, C. (Inst. di Polarografia de Elettrochimica Preparativa del CNR, Corso Stati Uniti, 4, 35020 Camin, Padova (IT))

    1991-09-01

    This paper discusses the Fe{sup 3+} reduction reaction studied at Pt and polyaniline rotating disk electrodes by steady-state and impedance methods with the aim of testing the possibility of achieving the charge transfer resistance (R{sub ts}) of a redox reaction mediated by a conducting polymer film by ac impedance R{sub ts} was obtained as a function of electrode potential and rotation rate by nonlinear least squares fitting of a previously developed kinetic equation to the experimental data. These R{sub ts} values were combined with steady-state ones to calculate b{sub c} and k{sup 0}.

  8. Modelling a coal subcrop using the impedance method

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, G.A.; Thiel, D.V.; O' Keefe, S.G. [Griffith University, Nathan, Qld. (Australia). School of Microelectronic Engineering

    2000-07-01

    An impedance model was generated for two coal subcrops in the Biloela and Middlemount areas (Queensland, Australia). The model results were compared with actual surface impedance data. It was concluded that the impedance method satisfactorily modelled the surface response of the coal subcrops in two dimensions. There were some discrepancies between the field data and the model results, due to factors such as the method of discretization of the solution space in the impedance model and the lack of consideration of the three-dimensional nature of the coal outcrops. 10 refs., 8 figs.

  9. Modelling carbon steels corrosion during a long period in soils: Contribution of A.C. impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pons, E.; Lemaitre, C.; Crusset, D.; David, D. [Laboratoire Roberval de Mecanique, UMR 6066 du CNRS, Universite de Technologie de Compiegne, BP 20529, F - 60205 Compiegne cedex (France)

    2004-07-01

    The corrosion of historical objects from World War I fields were studied by using two methods: characterization of the corrosion products by Raman Laser Spectroscopy, and behaviour of the corrosion layers by using electrochemical studies. The first technique, previously used, had shown that two layers are present on these objects, containing both different oxides and oxy-hydroxides of iron. In the present part of the work, the A.C. Impedance Spectroscopy was used to show the differences between the two layers concerning the corrosion of these objects. In order to observe the different behaviours, the specimens were studied in three surface states: with the two layers, with the internal layer only, and without oxide. The results have shown that the internal layer limits the corrosion kinetics. Then this layer was especially studied, particularly its porosity, by a comparison of the impedance results in two media with very different conductivity, and the evolution of these results with different immersion times. The buried objects had the behaviour of a porous electrode, due to the presence of the internal layer. Thus, this behaviour can be modelled with the simplified De Levie's theory, considering that each porosity is a semi-infinite hole. It appeared that the corrosion process at the oxidized interface corresponds to the transport in the electrolyte in the pores completed by a part of transport in the solid phase. These properties can be used to predict the long term corrosion behaviour of carbon steels in soils for long periods. (authors)

  10. Modelling carbon steels corrosion during a long period in soils: Contribution of A.C. impedance spectroscopy

    International Nuclear Information System (INIS)

    Pons, E.; Lemaitre, C.; Crusset, D.; David, D.

    2004-01-01

    The corrosion of historical objects from World War I fields were studied by using two methods: characterization of the corrosion products by Raman Laser Spectroscopy, and behaviour of the corrosion layers by using electrochemical studies. The first technique, previously used, had shown that two layers are present on these objects, containing both different oxides and oxy-hydroxides of iron. In the present part of the work, the A.C. Impedance Spectroscopy was used to show the differences between the two layers concerning the corrosion of these objects. In order to observe the different behaviours, the specimens were studied in three surface states: with the two layers, with the internal layer only, and without oxide. The results have shown that the internal layer limits the corrosion kinetics. Then this layer was especially studied, particularly its porosity, by a comparison of the impedance results in two media with very different conductivity, and the evolution of these results with different immersion times. The buried objects had the behaviour of a porous electrode, due to the presence of the internal layer. Thus, this behaviour can be modelled with the simplified De Levie's theory, considering that each porosity is a semi-infinite hole. It appeared that the corrosion process at the oxidized interface corresponds to the transport in the electrolyte in the pores completed by a part of transport in the solid phase. These properties can be used to predict the long term corrosion behaviour of carbon steels in soils for long periods. (authors)

  11. Measurements of the surface impedance and the ac critical field of superconducting thin tin films at 10 GHz

    International Nuclear Information System (INIS)

    Spencer, G.L.

    1976-01-01

    The surface impedances and ac critical fields of superconducting thin tin films were studied. These experiments were performed using a superconducting frequency stabilized microwave cavity of high Q. Measurements of the power losses in the cavity and the center frequency of the cavity were used to determine the surface impedance and the critical field of a thin film sample placed in the cavity. In this case a theoretical treatment based on a model proposed by I.O. Kulik was used to fit the data. The general agreement between the modified Kulik treatment and the data, obtained in this experiment, was substantial. The second method was to modify the thin film data to correspond to a bulk situation. This modification was accomplished by taking into account the measuring techniques used and the geometric consideration inherent in the experiment. The comparison between the modified experimental data and calculations obtained from the Mattis-Bardeen bulk model was generally very good. One aspect of the results which was not explained was the presence of a slight increase in the surface resistance in the vicinity of the transition temperature. The critical field measurements were compared to the (1 - (T/T/sub c/)/sup 1/2) dependence predicted by Bardeen. If it is assumed that substantial microwave heating took place in the sample near T/sub c/, then remarkable agreement with the Bardeen model can be reached

  12. Single and multi-frequency impedance characterization of symmetric activated carbon single capacitor cells

    Directory of Open Access Journals (Sweden)

    Suzana Sopčić

    2018-05-01

    Full Text Available Electrochemical impedance spectroscopy (EIS technique is used for characterization of single cell symmetric capacitors having different mass loadings of activated carbon (AC. Relevant values of charge storage capacitance (CT and internal resistance (ESR were evaluated by the single frequency and multi-frequency analyses of measured impedance spectra. Curve fittings were based on the non-ideal R-C model that takes into account the parasitic inductance, contributions from electrode materials/contacts and the effects of AC porosity. Higher CT and lower ESR values were obtained not only for the cell with higher mass of AC, but also using the single vs. multi-frequency approach. Lower CT and higher values of ESR that are generally obtained using the multi-frequency method and curve fittings should be related to the not ideal capacitive response of porous AC material and too high frequency chosen in applying the single frequency analysis.

  13. Rf Discharge Impedance Measurements Using a New Method to Determine the Stray Impedances

    NARCIS (Netherlands)

    Bakker, L.P.; Kroesen, G.M.W.; Hoog, de F.J.

    1999-01-01

    The impedance of a capacitively coupled radio frequency discharge in a tubular fluorescent lamp filled with neon and mercury is measured. The stray impedances in the electrical network are determined using a new method that requires no extra instruments. The reflection of power is used to determine

  14. INVESTIGATION OF CEMENT CONCRETE CONGLOMERATE SOLIDIFICATION PROCESS BY IMPEDANCE SPECTROSCOPY METHOD

    Directory of Open Access Journals (Sweden)

    S. N. Bandarenka

    2015-01-01

    Full Text Available One of the most prospective directions in preservation  and increase of service live of  road pavements is a construction of  automobile roads with cement concrete surface. Modern tendencies for provision of road construction quality presuppose a necessity to control processes of solidification and subsequent destruction of the material while forming and using cement concrete conglomerate being considered as a basic element of the road surface.  Multiyear practical experience of  automobile road operation using cement concrete pavements reveals an importance for monitoring  such processes as formation and destruction of cement concrete materials. An impedance spectroscopy method has been tried out and proposed as a tool for solution of the given problem.Experimental samples of cement concrete have been prepared for execution of tests, graded silica sand and granite chippings with particle size from 0.63 to 2.5 mm have been used as a fine aggregate in the samples. Dependencies of resistance (impedance on AC-current frequency  have been studied for samples of various nature and granulometric composition. The Gamry  G300 potentiostat has been used for measurement of complex impedance value. A spectrum analysis and calculation of equivalent circuit parameters calculation have been carried out while using EIS Spectrum Analyzer program.Comparison of impedance spectra for the prepared cement concrete samples have made it possible to reveal tendencies in changing spectrum parameters during solidification and subsequent contact with moisture in respect of every type of the sample. An equivalent electrical circuit has been developed that  characterizes physical and chemical processes which are accompanied by charge transfer in cement concrete conglomerate. The paper demonstrates a possibility to use an impedance spectroscopy for solution of a number of actual problems in the field of cement concrete technology problems. Particularly, the problems

  15. Effect of temperature on the AC impedance of protein

    Indian Academy of Sciences (India)

    The depression parameter reveals the electrical equivalent circuit for the biopolymers. The AC electrical conductivity in the biopolymers follows the universal power law. From this, it is observed that the AC conductivity is frequency dependent and the biopolymer papain obeys large polaron tunnelling model, gum acacia and ...

  16. Local impedance measurement of an electrode/single-pentacene-grain interface by frequency-modulation scanning impedance microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Tomoharu; Yamada, Hirofumi, E-mail: h-yamada@kuee.kyoto-u.ac.jp [Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510 (Japan); Kobayashi, Kei [Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510 (Japan); The Hakubi Center for Advanced Research, Kyoto University, Kyoto 615-8520 (Japan)

    2015-08-07

    The device performances of organic thin film transistors are often limited by the metal–organic interface because of the disordered molecular layers at the interface and the energy barriers against the carrier injection. It is important to study the local impedance at the interface without being affected by the interface morphology. We combined frequency modulation atomic force microscopy with scanning impedance microscopy (SIM) to sensitively measure the ac responses of the interface to an ac voltage applied across the interface and the dc potential drop at the interface. By using the frequency-modulation SIM (FM-SIM) technique, we characterized the interface impedance of a Pt electrode and a single pentacene grain as a parallel circuit of a contact resistance and a capacitance. We found that the reduction of the contact resistance was caused by the reduction of the energy level mismatch at the interface by the FM-SIM measurements, demonstrating the usefulness of the FM-SIM technique for investigation of the local interface impedance without being affected by its morphology.

  17. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, G [Jefferson Lab (United States)

    2014-07-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  18. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [JLAB

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  19. Study of colored anodized aluminum with calcon in sulfuric acidic solution using cyclic voltammetry and impedance measurement methods

    Energy Technology Data Exchange (ETDEWEB)

    Norouzi, P.; Ganjali, M.R.; Golmohamaddi, M.; Mousavi, S. [Department of Chemistry, Faculty of Science, University of Tehran, Tehran (Iran); Vatankhah, G. [Iranian Organization for Science and Technology (IROST), Isfahan Center, A5 Ghezelbash Avenue, Tohid Street, Isfahan 8173954541 (Iran)

    2003-04-01

    The effect of coloring condition of Al with Calcon (sodium 2,2'-dihydroxy-azonaphthalene-4-sulfonate), on the corrosion resistance of Al in 0.1 M sulfuric acid solution was studied, using cyclic voltammetry and measurement of impedance noise methods. The changes in the corrosion resistance of colored aluminum electrodes were evaluated by measuring the magnitude of impedance and cyclic voltammetric responses of anodized and colored electrodes. An irreversible corrosion response was observed at the cyclic voltammogram of the colored aluminum electrode. The current and threshold potential of corrosion responses strongly depends on the applied conditions during anodizing, coloring and sealing stages. In addition, significant changes in impedance at the ac voltammogram and noise level at some ac frequencies were observed, when the electrodes were colored under various conditions. In this regard, the surface of the electrode was studied by Scanning Electron Microscopy (SEM). Comparison of SEM images of the colored and uncolored aluminum specimens showed that the colored surface contained a significant numbers of pits. The results indicated that coloring aluminum with Calcon could reduce corrosion resistance of aluminum and increase roughness of the oxide film. (Abstract Copyright [2003], Wiley Periodicals, Inc.) [German] Mit Hilfe zyklischer Voltammetrie und Messungen mit Impedanzrauschmethoden wurde der Einfluss der Faerbungsbedingungen von Aluminium mit Calcon (Natrium 2,2'-Dihydroxyazonaphthalen-4-Sulfonat) auf den Korrosionswiderstand von Aluminium in 0,1 M Schwefelsaeure untersucht. Die Veraenderungen des Korrosionswiderstandes von gefaerbten Aluminiumelektroden wurden durch Messungen der Hoehe der Impedanzreaktion bzw. der Reaktion bei der zyklischen Voltammetrie von anodisierten und gefaerbten Elektroden beurteilt. Eine irreversible Korrosionsreaktion wurde beim zyklischen Voltammogramm der gefaerbten Aluminiumelektrode beobachtet. Der Strom und das

  20. Evaluation of the electrode performance for PAFC by using acid absorption, acceleration and ac-impedance measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Soo; Song, Rak-Hyun; Choi, Byung-Woo [Korea Institute of Energy Research, Taejon (Korea, Republic of)] [and others

    1996-12-31

    In PAFC, the degradation on cathode electrode caused by carbon corrosion, platinum dissolution and growth is especially severe. An acceleration test is a good technique for evaluating the degradation of electrode performance, because it does not need long time. Coleman et al used thermal cycling and on-off cycling as an acceleration test. Song et al showed that hydrogen shortage decreased the electrode performance more rapidly than that of air shortage in gas shortage test. Honji et al reported that the rate of coarsening of Pt particle is rapid in open circuit potential and this is one of major causes on the performance degradation of electrode. The cathode performance has been studied by using acid absorption, acceleration and ac-impedance measurements as functions of the polytetrafluoroethylene (PTFE) contents and sintering temperatures of the electrode.

  1. High temperature impedance spectroscopy of barium stannate

    Indian Academy of Sciences (India)

    ... differential thermal analysis, thermogravimetric analysis and Fourier transform infrared techniques. Electrical properties were studied using a.c. impedance spectroscopy technique in the temperature range of 50–650 °C and frequency range of 10 Hz–13 MHz. The complex impedance plots at temperature ≥ 300 °C show ...

  2. Nuclear EMP: stripline test method for measuring transfer impedance

    International Nuclear Information System (INIS)

    Miller, J.S.

    1975-11-01

    A method for measuring the transfer impedance of flat metal joints for frequencies to 100 MHz has been developed which makes use of striplines. The stripline method, which has similarities to the quadraxial method used for cylindrical components, is described and sets of test results are given. The transfer impedance of a simple joint is modeled as a spurious hyperbolic curve, and a close curve fit to transfer impedance test data from various samples is demonstrated for both the stripline and the quadraxial methods. Validity checks of the test data are discussed using the curve model and other criteria. The method was developed for testing riveted joints which form the avionics bays on B-1s. The joints must provide shielding from EMP currents

  3. Effect of temperature on the AC impedance of protein and ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... The depression parameter reveals the electrical equivalent circuit for the biopolymers. The AC electrical conductivity in the biopolymers follows the universal power law. From this, it is observed that the AC conductivity is frequency dependent and the biopolymer papain obeys large polaron tunnelling model ...

  4. AC and DC electrical behavior of MWCNT/epoxy nanocomposite near percolation threshold: Equivalent circuits and percolation limits

    Science.gov (United States)

    Alizadeh Sahraei, Abolfazl; Ayati, Moosa; Baniassadi, Majid; Rodrigue, Denis; Baghani, Mostafa; Abdi, Yaser

    2018-03-01

    This study attempts to comprehensively investigate the effects of multi-walled carbon nanotubes (MWCNTs) on the AC and DC electrical conductivity of epoxy nanocomposites. The samples (0.2, 0.3, and 0.5 wt. % MWCNT) were produced using a combination of ultrason and shear mixing methods. DC measurements were performed by continuous measurement of the current-voltage response and the results were analyzed via a numerical percolation approach, while for the AC behavior, the frequency response was studied by analyzing phase difference and impedance in the 10 Hz to 0.2 MHz frequency range. The results showed that the dielectric parameters, including relative permittivity, impedance phase, and magnitude, present completely different behaviors for the frequency range and MWCNT weight fractions studied. To better understand the nanocomposites electrical behavior, equivalent electric circuits were also built for both DC and AC modes. The DC equivalent networks were developed based on the current-voltage curves, while the AC equivalent circuits were proposed by using an optimization problem according to the impedance magnitude and phase at different frequencies. The obtained equivalent electrical circuits were found to be highly useful tools to understand the physical mechanisms involved in MWCNT filled polymer nanocomposites.

  5. Modified coaxial wire method for measurement of transfer impedance of beam position monitors

    Science.gov (United States)

    Kumar, Mukesh; Babbar, L. K.; Deo, R. K.; Puntambekar, T. A.; Senecha, V. K.

    2018-05-01

    The transfer impedance is a very important parameter of a beam position monitor (BPM) which relates its output signal with the beam current. The coaxial wire method is a standard technique to measure transfer impedance of the BPM. The conventional coaxial wire method requires impedance matching between coaxial wire and external circuits (vector network analyzer and associated cables). This paper presents a modified coaxial wire method for bench measurement of the transfer impedance of capacitive pickups like button electrodes and shoe box BPMs. Unlike the conventional coaxial wire method, in the modified coaxial wire method no impedance matching elements have been used between the device under test and the external circuit. The effect of impedance mismatch has been solved mathematically and a new expression of transfer impedance has been derived. The proposed method is verified through simulation of a button electrode BPM using cst studio suite. The new method is also applied to measure transfer impedance of a button electrode BPM developed for insertion devices of Indus-2 and the results are also compared with its simulations. Close agreement between measured and simulation results suggests that the modified coaxial wire setup can be exploited for the measurement of transfer impedance of capacitive BPMs like button electrodes and shoe box BPM.

  6. Modified coaxial wire method for measurement of transfer impedance of beam position monitors

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar

    2018-05-01

    Full Text Available The transfer impedance is a very important parameter of a beam position monitor (BPM which relates its output signal with the beam current. The coaxial wire method is a standard technique to measure transfer impedance of the BPM. The conventional coaxial wire method requires impedance matching between coaxial wire and external circuits (vector network analyzer and associated cables. This paper presents a modified coaxial wire method for bench measurement of the transfer impedance of capacitive pickups like button electrodes and shoe box BPMs. Unlike the conventional coaxial wire method, in the modified coaxial wire method no impedance matching elements have been used between the device under test and the external circuit. The effect of impedance mismatch has been solved mathematically and a new expression of transfer impedance has been derived. The proposed method is verified through simulation of a button electrode BPM using cst studio suite. The new method is also applied to measure transfer impedance of a button electrode BPM developed for insertion devices of Indus-2 and the results are also compared with its simulations. Close agreement between measured and simulation results suggests that the modified coaxial wire setup can be exploited for the measurement of transfer impedance of capacitive BPMs like button electrodes and shoe box BPM.

  7. Multi-Electrode Impedance Method for Detection of Regional Ventilation

    International Nuclear Information System (INIS)

    Furuya, Norio; Sakamoto, Katsuyuki

    2013-01-01

    By means of computer simulation and experiment, we investigated the feasibility of simultaneously measuring the transfer impedance changes in the right apex, left apex, right base and left base of the lungs using the multi-electrode impedance method. To obtain the transfer impedance in each region, while suppressing the effects of other regions, changing the amplitude and polarity of the applied current must localize the high sensitivity areas in the interest region. Twelve current and eight voltage electrodes were equidistantly arranged on the anterior and posterior chest walls. The amplitudes and polarities of the currents that were simultaneously applied to the current electrodes, and which provided the appropriate sensitivity distribution, were theoretically obtained. The effects of the localized sensitivity distribution were verified by comparing the simulation results of the investigated method with the results of the conventional four-electrode method. From the results of the computer simulation, we developed a multi-electrode impedance pneumography and applied it to healthy adult volunteers who were both in sitting position and in left decubitus. We found that the measurement results were physiologically reasonable.

  8. Impedance Method for Leak Detection in Zigzag Pipelines

    Science.gov (United States)

    Lay-Ekuakille, A.; Vergallo, P.; Trotta, A.

    2010-01-01

    Transportation of liquids is a primary aspect of human life. The most important infrastructure used accordingly is the pipeline. It serves as an asset for transporting different liquids and strategic goods. The latter are for example: chemical substances, oil, gas and water. Thus, it is necessary to monitor such infrastructures by means of specific tools. Leakage detection methods are used to reveal liquid leaks in pipelines for many applications, namely, waterworks, oil pipelines, industry heat exchangers, etc. The configuration of pipelines is a key issue because it impacts on the effectiveness of the method to be used and, consequently, on the results to be counterchecked. This research illustrated an improvement of the impedance method for zigzag pipeline by carrying out an experimental frequency analysis that has been compared with other methods based on frequency response. Hence, the impedance method is generally used for simple (straight) pipeline configurations because complicated pipelines with many curves introduce difficulties and major uncertainties in the calculation of characteristic impedance and in the statement of boundary conditions. The paper illustrates the case of a water pipeline where the leakage is acquired thanks to pressure transducers.

  9. Application of the parametric proper generalized decomposition to the frequency-dependent calculation of the impedance of an AC line with rectangular conductors

    Directory of Open Access Journals (Sweden)

    Sancarlos-González Abel

    2017-12-01

    Full Text Available AC lines of industrial busbar systems are usually built using conductors with rectangular cross sections, where each phase can have several parallel conductors to carry high currents. The current density in a rectangular conductor, under sinusoidal conditions, is not uniform. It depends on the frequency, on the conductor shape, and on the distance between conductors, due to the skin effect and to proximity effects. Contrary to circular conductors, there are not closed analytical formulas for obtaining the frequency-dependent impedance of conductors with rectangular cross-section. It is necessary to resort to numerical simulations to obtain the resistance and the inductance of the phases, one for each desired frequency and also for each distance between the phases’ conductors. On the contrary, the use of the parametric proper generalized decomposition (PGD allows to obtain the frequency-dependent impedance of an AC line for a wide range of frequencies and distances between the phases’ conductors by solving a single simulation in a 4D domain (spatial coordinates x and y, the frequency and the separation between conductors. In this way, a general “virtual chart” solution is obtained, which contains the solution for any frequency and for any separation of the conductors, and stores it in a compact separated representations form, which can be easily embedded on a more general software for the design of electrical installations. The approach presented in this work for rectangular conductors can be easily extended to conductors with an arbitrary shape.

  10. Application of the parametric proper generalized decomposition to the frequency-dependent calculation of the impedance of an AC line with rectangular conductors

    Science.gov (United States)

    Sancarlos-González, Abel; Pineda-Sanchez, Manuel; Puche-Panadero, Ruben; Sapena-Bano, Angel; Riera-Guasp, Martin; Martinez-Roman, Javier; Perez-Cruz, Juan; Roger-Folch, Jose

    2017-12-01

    AC lines of industrial busbar systems are usually built using conductors with rectangular cross sections, where each phase can have several parallel conductors to carry high currents. The current density in a rectangular conductor, under sinusoidal conditions, is not uniform. It depends on the frequency, on the conductor shape, and on the distance between conductors, due to the skin effect and to proximity effects. Contrary to circular conductors, there are not closed analytical formulas for obtaining the frequency-dependent impedance of conductors with rectangular cross-section. It is necessary to resort to numerical simulations to obtain the resistance and the inductance of the phases, one for each desired frequency and also for each distance between the phases' conductors. On the contrary, the use of the parametric proper generalized decomposition (PGD) allows to obtain the frequency-dependent impedance of an AC line for a wide range of frequencies and distances between the phases' conductors by solving a single simulation in a 4D domain (spatial coordinates x and y, the frequency and the separation between conductors). In this way, a general "virtual chart" solution is obtained, which contains the solution for any frequency and for any separation of the conductors, and stores it in a compact separated representations form, which can be easily embedded on a more general software for the design of electrical installations. The approach presented in this work for rectangular conductors can be easily extended to conductors with an arbitrary shape.

  11. Estimating surface acoustic impedance with the inverse method.

    Science.gov (United States)

    Piechowicz, Janusz

    2011-01-01

    Sound field parameters are predicted with numerical methods in sound control systems, in acoustic designs of building and in sound field simulations. Those methods define the acoustic properties of surfaces, such as sound absorption coefficients or acoustic impedance, to determine boundary conditions. Several in situ measurement techniques were developed; one of them uses 2 microphones to measure direct and reflected sound over a planar test surface. Another approach is used in the inverse boundary elements method, in which estimating acoustic impedance of a surface is expressed as an inverse boundary problem. The boundary values can be found from multipoint sound pressure measurements in the interior of a room. This method can be applied to arbitrarily-shaped surfaces. This investigation is part of a research programme on using inverse methods in industrial room acoustics.

  12. AC characterization of bulk organic solar cell in the dark and under illumination

    International Nuclear Information System (INIS)

    Váry, Michal; Perný, Milan; Šály, Vladimír; Packa, Juraj

    2014-01-01

    Highlights: • A study of organic bulk photovoltaic (PV) solar cell. • Current–voltage characteristics in the dark and under illumination. • AC measurements, both under illumination and in the dark conditions. • Equivalent AC circuit. • Effective lifetime assigned with electron–hole recombination and diffusion time of the electron was estimated. - Abstract: Impedance spectroscopy has been used widely to evaluate the transport processes in photovoltaic, mainly based on inorganic semiconductors, structures – solar cells. The aim of this research was to characterize improved organic bulk photovoltaic (PV) solar cells exploiting this method. Progress in technology of investigated organic solar cell involves the use of an active layer based on low band gap type of polymer. The organic PV cell with front transparent electrode and rear metal electrode and active layer produced by Konarka Technologies was analyzed by electrical DC and AC measurements. Current–voltage (I–V) characteristics in the dark and under illumination were measured and basic PV parameters were calculated. AC measurements, both under illumination and in the dark conditions, were processed in order to identify electronic behavior using equivalent AC circuit which was suggested by fitting of measured impedance data. Circuit with the best correlation to measured data is analyzed in details. Voltage and frequency dependences of fitted equivalent circuit components and calculated parameters are explained and presented in the paper

  13. Three-Level AC-DC-AC Z-Source Converter Using Reduced Passive Component Count

    DEFF Research Database (Denmark)

    Loh, Poh Chiang; Gao, Feng; Tan, Pee-Chin

    2009-01-01

    This paper presents a three-level ac-dc-ac Z-source converter with output voltage buck-boost capability. The converter is implemented by connecting a low-cost front-end diode rectifier to a neutral-point-clamped inverter through a single X-shaped LC impedance network. The inverter is controlled...... to switch with a three-level output voltage, where the middle neutral potential is uniquely tapped from the star-point of a wye-connected capacitive filter placed before the front-end diode rectifier for input current filtering. Through careful control, the resulting converter can produce the correct volt...

  14. Dielectric and impedance spectral characteristics of bulk ZnIn2Se4

    Science.gov (United States)

    El-Nahass, M. M.; Attia, A. A.; Salem, G. F.; Ali, H. A. M.; Ismail, M. I.

    2014-02-01

    The frequency and temperature dependence of ac conductivity, dielectric constant and dielectric loss of ZnIn2Se4 in a pellet form were investigated in the frequency range of 102-106 Hz and temperature range of 293-356 K. The behavior of ac conductivity was interpreted by the correlated barrier hopping (CBH) model. Temperature dependence of ac conductivity indicates that ac conduction is a thermally activated process. The density of localized states N(EF) and ac activation energy were estimated for various frequencies. Dielectric constant and dielectric loss showed a decrease with increasing frequency and an increase with increasing in temperature. The frequency dependence of real and imaginary parts of the complex impedance was investigated. The relaxation time decreases with the increase in temperature. The impedance spectrum exhibits the appearance of the single semicircular arc. The radius of semicircular arcs decreases with increasing temperature which suggests a mechanism of temperature-dependent on relaxation.

  15. Energy storage cell impedance measuring apparatus, methods and related systems

    Science.gov (United States)

    Morrison, John L.; Morrison, William H.; Christophersen, Jon P.

    2017-12-26

    Energy storage cell impedance testing devices, circuits, and related methods are disclosed. An energy storage cell impedance measuring device includes a sum of sinusoids (SOS) current excitation circuit including differential current sources configured to isolate a ground terminal of the differential current sources from a positive terminal and a negative terminal of an energy storage cell. A method includes applying an SOS signal comprising a sum of sinusoidal current signals to the energy storage cell with the SOS current excitation circuit, each of the sinusoidal current signals oscillating at a different one of a plurality of different frequencies. The method also includes measuring an electrical signal at a positive terminal and a negative terminal of the energy storage cell, and computing an impedance of the energy storage cell at each of the plurality of different frequencies using the measured electrical signal.

  16. Transverse impedance measurement using response matrix fit method at APS

    International Nuclear Information System (INIS)

    Sajaev, V.

    2007-01-01

    The Advanced Photon Source (APS) is a third-generation synchrotron light source based on a 7-GeV electron storage ring. In third-generation light sources the synchrotron radiation is mainly produced in undulators. In order to achieve high photon flux and tunability, the magnet gap in undulators has to be as small as possible. Therefore, the undulators are installed on dedicated small-gap insertion device (ID) vacuum chambers. APS has thirty-five 5-m-long straight sections available for undulators. At the time of the measurements, there were 31 straight sections occupied with various insertion devices, and 4 straight sections were still empty. Most of the ID vacuum chambers have a 8-mm in-vacuum gap, and two chambers have a 5-mm gap. These narrow-gap vacuum chambers are believed to be the main source of the transverse impedance of the machine. One can measure the combined impedance by measuring the transverse tune slope with single-bunch current. Comparing this slope before and after installation of the narrow-gap vacuum chamber, one can deduce the impedance of the chamber. It is difficult to accurately measure the change in the tune slope after one or a few new ID chambers are installed. If several identical ID vacuum chambers are installed over a period of time, then one can estimate the contribution of one ID chamber. Over the last few years there have been a number of attempts to measure the impedance of separate components of accelerators. Phase-advance measurements from beam position monitor (BPM) turn-by-turn histories were used at LEP to measure the impedance distribution around the ring. Researches at LEP were able to fit average impedance in the long sections of the LEP arc and determine the impedance of the rf sections. The method was tried at APS; however, the accuracy of the measurements was not enough to determine the small impedance of a single ID vacuum chamber. There is also a different approach that uses local orbit bumps to probe different parts

  17. Dielectric and impedance spectroscopic studies of neodymium gallate

    Energy Technology Data Exchange (ETDEWEB)

    Sakhya, Anup Pradhan, E-mail: npshakya31@gmail.com [Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009 (India); Dutta, Alo [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India); Sinha, T.P. [Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009 (India)

    2016-05-01

    The AC electrical properties of a polycrystalline neodymium gallate, NdGaO{sub 3} (NGO), synthesized by the sol–gel method have been investigated by employing impedance spectroscopy in the frequency range from 42 Hz to 5 MHz and in the temperature range from 323 K to 593 K. The X-ray diffraction analysis shows that the compound crystallizes in the orthorhombic phase with Pbnm space group at room temperature. Two relaxation processes with different relaxation times are observed from the impedance as well as modulus spectroscopic measurements, which have been attributed to the grain and the grain boundary effects at different temperatures in NGO. The complex impedance data are analyzed by an electrical equivalent circuit consisting of a resistance and a constant phase element in parallel. It has been observed that the value of the capacitance and the resistance associated with the grain boundary is higher than those associated with the grain. The temperature dependent electrical conductivity shows the negative temperature coefficient of resistance. The frequency dependent conductivity spectra are found to follow the power law.

  18. ELECTRONIC SYSTEM FOR EXPERIMENTATION IN AC ELECTROGRAVIMETRY I: TECHNIQUE FUNDAMENTALS

    Directory of Open Access Journals (Sweden)

    Róbinson Torres

    Full Text Available Basic fundamentals of AC electrogravimetry are introduced. Their main requirements and characteristics are detailed to establish the design of an electronic system that allows the appropriate extraction of data needed to determine the electrogravimetric transfer function (EGTF and electrochemical impedance (EI, in an experimental set-up for the AC electrogravimetry technique.

  19. AC-Conductivity measurements on γ-aluminium oxynitride

    NARCIS (Netherlands)

    Willems, H.X.; Hal, van P.F.; Metselaar, R.; With, de G.

    1995-01-01

    AC-conductivity measurements were performed on aluminium oxynitrides (Alons) because of their interesting defect structure. Although it became apparent that these Alons are not stable in the temperature range used, the electrical properties of the materials could be measured with impedance

  20. [Abdomen specific bioelectrical impedance analysis (BIA) methods for evaluation of abdominal fat distribution].

    Science.gov (United States)

    Ida, Midori; Hirata, Masakazu; Hosoda, Kiminori; Nakao, Kazuwa

    2013-02-01

    Two novel bioelectrical impedance analysis (BIA) methods have been developed recently for evaluation of intra-abdominal fat accumulation. Both methods use electrodes that are placed on abdominal wall and allow evaluation of intra-abdominal fat area (IAFA) easily without radiation exposure. Of these, "abdominal BIA" method measures impedance distribution along abdominal anterior-posterior axis, and IAFA by BIA method(BIA-IAFA) is calculated from waist circumference and the voltage occurring at the flank. Dual BIA method measures impedance of trunk and body surface at the abdominal level and calculates BIA-IAFA from transverse and antero-posterior diameters of the abdomen and the impedance of trunk and abdominal surface. BIA-IAFA by these two BIA methods correlated well with IAFA measured by abdominal CT (CT-IAFA) with correlatipn coefficient of 0.88 (n = 91, p abdominal adiposity in clinical study and routine clinical practice of metabolic syndrome and obesity.

  1. Perturbation method for calculation of narrow-band impedance and trapped modes

    International Nuclear Information System (INIS)

    Heifets, S.A.

    1987-01-01

    An iterative method for calculation of the narrow-band impedance is described for a system with a small variation in boundary conditions, so that the variation can be considered as a perturbation. The results are compared with numeric calculations. The method is used to relate the origin of the trapped modes with the degeneracy of the spectrum of an unperturbed system. The method also can be applied to transverse impedance calculations. 6 refs., 6 figs., 1 tab

  2. Method for conducting nonlinear electrochemical impedance spectroscopy

    Science.gov (United States)

    Adler, Stuart B.; Wilson, Jamie R.; Huff, Shawn L.; Schwartz, Daniel T.

    2015-06-02

    A method for conducting nonlinear electrochemical impedance spectroscopy. The method includes quantifying the nonlinear response of an electrochemical system by measuring higher-order current or voltage harmonics generated by moderate-amplitude sinusoidal current or voltage perturbations. The method involves acquisition of the response signal followed by time apodization and fast Fourier transformation of the data into the frequency domain, where the magnitude and phase of each harmonic signal can be readily quantified. The method can be implemented on a computer as a software program.

  3. Assay Methods for ACS Activity and ACS Phosphorylation by MAP Kinases In Vitro and In Vivo.

    Science.gov (United States)

    Han, Xiaomin; Li, Guojing; Zhang, Shuqun

    2017-01-01

    Ethylene, a gaseous phytohormone, has profound effects on plant growth, development, and adaptation to the environment. Ethylene-regulated processes begin with the induction of ethylene biosynthesis. There are two key steps in ethylene biosynthesis. The first is the biosynthesis of 1-aminocyclopropane-1-carboxylic acid (ACC) from S-Adenosyl-Methionine (SAM), a common precursor in many metabolic pathways, which is catalyzed by ACC synthase (ACS). The second is the oxidative cleavage of ACC to form ethylene under the action of ACC oxidase (ACO). ACC biosynthesis is the committing and generally the rate-limiting step in ethylene biosynthesis. As a result, characterizing the cellular ACS activity and understanding its regulation are important. In this chapter, we detail the methods used to measure, (1) the enzymatic activity of both recombinant and native ACS proteins, and (2) the phosphorylation of ACS protein by mitogen-activated protein kinases (MAPKs) in vivo and in vitro.

  4. Hybrid immersed interface-immersed boundary methods for AC dielectrophoresis

    International Nuclear Information System (INIS)

    Hossan, Mohammad Robiul; Dillon, Robert; Dutta, Prashanta

    2014-01-01

    Dielectrophoresis, a nonlinear electrokinetic transport mechanism, has become popular in many engineering applications including manipulation, characterization and actuation of biomaterials, particles and biological cells. In this paper, we present a hybrid immersed interface–immersed boundary method to study AC dielectrophoresis where an algorithm is developed to solve the complex Poisson equation using a real variable formulation. An immersed interface method is employed to obtain the AC electric field in a fluid media with suspended particles and an immersed boundary method is used for the fluid equations and particle transport. The convergence of the proposed algorithm as well as validation of the hybrid scheme with experimental results is presented. In this paper, the Maxwell stress tensor is used to calculate the dielectrophoretic force acting on particles by considering the physical effect of particles in the computational domain. Thus, this study eliminates the approximations used in point dipole methods for calculating dielectrophoretic force. A comparative study between Maxwell stress tensor and point dipole methods for computing dielectrophoretic forces are presented. The hybrid method is used to investigate the physics of dielectrophoresis in microfluidic devices using an AC electric field. The numerical results show that with proper design and appropriate selection of applied potential and frequency, global electric field minima can be obtained to facilitate multiple particle trapping by exploiting the mechanism of negative dielectrophoresis. Our numerical results also show that electrically neutral particles form a chain parallel to the applied electric field irrespective of their initial orientation when an AC electric field is applied. This proposed hybrid numerical scheme will help to better understand dielectrophoresis and to design and optimize microfluidic devices

  5. Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes

    KAUST Repository

    Ruffo, Riccardo; Hong, Seung Sae; Chan, Candace K.; Huggins, Robert A.; Cui, Yi

    2009-01-01

    The impedance behavior of silicon nanowire electrodes has been investigated to understand the electrochemical process kinetics that influences the performance when used as a high-capacity anode in a lithium ion battery. The ac response was measured

  6. Electrical impedance tomography spectroscopy method for characterising particles in solid-liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yanlin [Department of Thermal Energy Engineering, College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing, 102249 (China); Wang, Mi [Institute of Particle Science and Engineering, School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (China); Yao, Jun [School of Energy Research, Xiamen University, Xiamen 361005 (China)

    2014-04-11

    Electrical impedance tomography (EIT) is one of the process tomography techniques to provide an on-line non-invasive imaging for multiphase flow measurement. With EIT measurements, the images of impedance real part, impedance imaginary part, phase angle, and magnitude can be obtained. However, most of the applications of EIT in the process industries rely on the conductivity difference between two phases in fluids to obtain the concentration profiles. It is not common to use the imaginary part or phase angle due to the dominant change in conductivity or complication in the use of other impedance information. In a solid-liquid two phases system involving nano- or submicro-particles, characterisation of particles (e.g. particle size and concentration) have to rely on the measurement of impedance phase angle or imaginary part. Particles in a solution usually have an electrical double layer associated with their surfaces and can form an induced electrical dipole moment due to the polarization of the electrical double layer under the influence of an alternating electric field. Similar to EIT, electrical impedance spectroscopy (EIS) measurement can record the electrical impedance data, including impedance real part, imaginary part and phase angle (θ), which are caused by the polarization of the electrical double layer. These impedance data are related to the particle characteristics e.g. particle size, particle and ionic concentrations in the aqueous medium, therefore EIS method provides a capability for characterising the particles in suspensions. Electrical impedance tomography based on EIS measurement or namely, electrical impedance tomography spectroscopy (EITS) could image the spatial distribution of particle characteristics. In this paper, a new method, including test set-up and data analysis, for characterisation of particles in suspensions are developed through the experimental approach. The experimental results on tomographic imaging of colloidal particles

  7. The AC Impedance Characteristic of High Power Li4Ti5O12-based Battery Cells

    DEFF Research Database (Denmark)

    Stroe, Ana-Irina; Stroe, Daniel Loan; Swierczynski, Maciej Jozef

    2015-01-01

    This paper studies the impedance characteristics of a fresh 13 Ah high-power lithium titanate oxide (LTO) battery cell and analyses its dependence on the temperature and state-of-charge. The impedance of the battery cell was measured by means of the electrochemical impedance spectroscopy (EIS......) technique for the entire state-of-charge (SOC) interval and considering five temperatures between 5oC and 45oC. By analyzing the measured impedance spectra of the LTO-based battery cell, it was found out that the cell’s impedance is extremely dependent on the operating conditions. By further processing...

  8. Soybean oil in water-borne coatings and latex film formation study by AC impedance

    Science.gov (United States)

    Jiratumnukul, Nantana

    Conventional coalescing agents such as butyl cellosolve, butyl carbitol, and TexanolRTM are widely use in the latex coatings industry to facilitate film formation at ambient temperature. Coalescent aids are composed of solvents with low evaporation rates. After water evaporates, coalescent aids would help soften polymer molecules and form continuous films, then gradually evaporates from the film. Coalescent aids, therefore, are considered as volatile organic compounds (VOC), which are of environmental concern. The main purpose of this research project was to prepare a fatty acid glycol ester from soybean oil and glycol (polyols). The soybean oil glycol ester can be used as a coalescent aid in latex paint formulation. The soybean oil glycol ester not only lowered the minimum film formation temperature of latex polymers and continuous film formed at ambient temperature, but also after it has facilitated film formation, does not substantially evaporate, but becomes part of the film. Soybean oil glycol esters, therefore, can reduce the VOC levels and facilitate film formation of latex paints. In the second part of this research AC-Impedance was used to investigate the efficiency of soybean oil coalescent aid in latex film formation relative to the conventional ones. The coating resistance showed that the efficiency of film formation was increased as a function of dry time. The coating resistance also exhibited the effect of soybean oil ester in latex film formation in the same fashion as a conventional coalescent aid, TexanolRTM.

  9. Characterization and evaluation of EB-PVD thermal barrier coatings by impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Chunxia; Liu Fushun; Gong Shengkai; Xu Huibin [School of Materials Science and Engineering, Beihang Univ., Beijing, BJ (China)

    2005-07-01

    Two layer thermal barrier coatings (TBCs) were prepared by EB-PVD (electron beam-physical vapor deposition) at different substrate temperatures in the range of 823 to 1123 K, and their microstructure was investigated with SEM and AC impedance as a function of substrate temperature and thermal cycling time. YSZ layer of all TBCs samples is in column structure, but the grain size and growth orientation are different with substrate. In this research, impedance spectra (IS) was measured as a function of thermal cycling between 1323 K and 298 K for these thermal barrier coatings. Grain boundary and bulk can be distinguished from analysis of AC impedance spectroa to provide information about the relation between microstructure and electric properties. The change in IS until failure was found to be related with the thickness, microcracks and macrocracks of TGO and the change in the interfacial of TGO/YSZ. (orig.)

  10. Investigation of body's impedance under different conditions for electro-acupuncture

    International Nuclear Information System (INIS)

    Ahmed, M.M.; Abrarov, S.; Khan, R.R.; Maqsood, R.S.; Qaiser, M.A.; Karimov, Kh. S.

    2001-01-01

    A computer controlled automated setup has been designed to investigate the body acupuncture points (bio-active points) by using a probes matrix which exerts a uniform pressure on the body. 16 probes matrix was placed in a 15 : 15 mm/sup 2/ dielectric substrate with 5 mm inter probe distance, compatible with the average diameter of the points. These probes have been designed to facilitate a semiconductor injection laser for probing of the points along with optical and/or electric signal. The bioactive points were identified by evaluating the impedance between each probe and a hand held electrode through a micro-controlled scan. This also allowed the selection of an appropriate signal - DC, AC or tidal waveform, for the electric treatment of bioactive points. It has been found that body impedance decreases with the increase of measuring voltage. Moreover, for current-voltage characteristics a nonlinearity coefficient in the range 2-3 was also observed. The study revealed that at low applied voltages 0.l V, the impedance depends on the polarity of the applied signal. Furthermore, body impedance decreases nonlinearly by increasing the probe's pressure on the skin, which may be attributed to piezo resistive effect. By using the AC and Dc measurements an appropriate body equivalent circuit is proposed in this investigation. (author)

  11. Conventional P-ω/Q-V Droop Control in Highly Resistive Line of Low-Voltage Converter-Based AC Microgrid

    Directory of Open Access Journals (Sweden)

    Xiaochao Hou

    2016-11-01

    Full Text Available In low-voltage converter-based alternating current (AC microgrids with resistive distribution lines, the P-V droop with Q-f boost (VPD/FQB is the most common method for load sharing. However, it cannot achieve the active power sharing proportionally. To overcome this drawback, the conventional P-ω/Q-V droop control is adopted in the low-voltage AC microgrid. As a result, the active power sharing among the distributed generators (DGs is easily obtained without communication. More importantly, this study clears up the previous misunderstanding that conventional P-ω/Q-V droop control is only applicable to microgrids with highly inductive lines, and lays a foundation for the application of conventional droop control under different line impedances. Moreover, in order to guarantee the accurate reactive power sharing, a guide for designing Q-V droop gains is given, and virtual resistance is adopted to shape the desired output impedance. Finally, the effects of power sharing and transient response are verified through simulations and experiments in converter-based AC Microgrid.

  12. Ionic conductivity measurements of zirconia under pressure using impedance spectroscopy

    International Nuclear Information System (INIS)

    Takebe, H; Sakamoto, D; Ohtaka, O; Fukui, H; Yoshiasa, A; Yamanaka, T; Ota, K; Kikegawa, T

    2002-01-01

    We have set up an electrical conductivity measurement system under high-pressure and high-temperature conditions with a multi-anvil high-pressure apparatus using an AC complex impedance method. With this system, we have successfully measured the electrical conductivity of stabilized ZrO 2 (Y 2 O 3 -ZrO 2 solid solution) under pressures up to 5 GPa in the temperature range from 300 to 1200 K. The electrical conductivities obtained under pressure are compatible with those of previous results measured at ambient pressure

  13. Kinetic mechanism of steel corrosion in clay soils by impedance measurements

    International Nuclear Information System (INIS)

    Arpaia, M.; Pernice, P.; Costantini, A.

    1990-01-01

    The corrosion of steel in clay soil at m.c. 15% has been studied for a long exposure time by electrochemical methods. A.c. impedance measurements results show that at a short exposure time the corrosion process is controlled by the diffusion of H + coupled with a rate determining homogeneous reaction, whereas at a long exposure time the process is controlled by pure diffusion. We have hypothesized that the rate determining homogeneous reaction might be the clay particles cations exchange. (orig.)

  14. A New Method of On-line Grid Impedance Estimation for PV Inverter

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Asiminoaei, Lucian; Blaabjerg, Frede

    2004-01-01

    for on-line measuring the grid impedance is presented. The presented method requires no extra hardware being accommodated by typical PV inverters, sensors and CPU, to provide a fast and low cost approach of on-line impedance measurement. By injecting a non-characteristic harmonic current and measuring...

  15. Use of an AC/DC/AC Electrochemical Technique to Assess the Durability of Protection Systems for Magnesium Alloys

    Science.gov (United States)

    Song, Sen; McCune, Robert C.; Shen, Weidian; Wang, Yar-Ming

    One task under the U.S. Automotive Materials Partnership (USAMP) "Magnesium Front End Research and Development" (MFERD) Project has been the evaluation of methodologies for the assessment of protective capability for a variety of proposed protection schemes for this hypothesized multi-material, articulated structure. Techniques which consider the entire protection system, including both pretreatments and topcoats are of interest. In recent years, an adaptation of the classical electrochemical impedance spectroscopy (EIS) approach using an intermediate cathodic DC polarization step (viz. AC/DC/AC) has been employed to accelerate breakdown of coating protection, specifically at the polymer-pretreatment interface. This work reports outcomes of studies to employ the AC/DC/AC approach for comparison of protective coatings to various magnesium alloys considered for front end structures. In at least one instance, the protective coating system breakdown could be attributed to the poorer intrinsic corrosion resistance of the sheet material (AZ31) relative to die-cast AM60B.

  16. System and method for determining stator winding resistance in an AC motor

    Science.gov (United States)

    Lu, Bin [Kenosha, WI; Habetler, Thomas G [Snellville, GA; Zhang, Pinjia [Atlanta, GA; Theisen, Peter J [West Bend, WI

    2011-05-31

    A system and method for determining stator winding resistance in an AC motor is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of an AC motor. The circuit includes at least one contactor and at least one switch to control current flow and terminal voltages in the AC motor. The system also includes a controller connected to the circuit and configured to modify a switching time of the at least one switch to create a DC component in an output of the system corresponding to an input to the AC motor and determine a stator winding resistance of the AC motor based on the injected DC component of the voltage and current.

  17. ac impedance, DSC and FT-IR investigations on (x)PVAc-(1 - x)PVdF blends with LiClO4

    International Nuclear Information System (INIS)

    Baskaran, R.; Selvasekarapandian, S.; Kuwata, N.; Kawamura, J.; Hattori, T.

    2006-01-01

    The blended polymer electrolytes comprising poly(vinyl acetate) (PVAc)-poly(vinylidene fluoride) (PVdF) have been prepared for different blend composition with constant lithium perchlorate (LiClO 4 ) ratio by solution casting technique. The formation of the blend polymer electrolyte complex has been confirmed by FT-IR spectroscopy analysis. DSC analysis has been performed in order to observe the change in transition temperature that is caused by the blending of polymers and addition of LiClO 4 . The ac impedance and dielectric spectroscopy studies are carried out on the blended matrix to identify the optimized blend composition, which is having high ionic conductivity. The temperature dependence of conductivity of the polymer electrolytes is found to follow VTF type equation. The high ionic conductivity of 6.4 x 10 -4 S cm -1 at 343 K has been observed for blended polymer electrolyte having blend ratio 75:25 (PVAc:PVdF). The ionic transference number of mobile ions has been estimated by Wagner's polarization method and the value is reported to be t ion is 0.95-0.98 for all the blended samples. The modulus spectra reveal the non-Debye nature and distribution of relaxation times of the samples. The dielectric spectra show the low frequency dispersion, which implies the space charge effects arising from the electrodes

  18. IMPEDANCE SPECTROSCOPY OF POLYCRYSTALLINE TIN DIOXIDE FILMS

    Directory of Open Access Journals (Sweden)

    D. V. Adamchuck

    2016-01-01

    Full Text Available The aim of this work is the analysis of the influence of annealing in an inert atmosphere on the electrical properties and structure of non-stoichiometric tin dioxide films by means of impedance spectroscopy method. Non-stoichiometric tin dioxide films were fabricated by two-step oxidation of metallic tin deposited on the polycrystalline Al2O3 substrates by DC magnetron sputtering. In order to modify the structure and stoichiometric composition, the films were subjected to the high temperature annealing in argon atmosphere in temperature range 300–800 °С. AC-conductivity measurements of the films in the frequency range 20 Hz – 2 MHz were carried out. Variation in the frequency dependencies of the real and imaginary parts of the impedance of tin dioxide films was found to occur as a result of high-temperature annealing. Equivalent circuits for describing the properties of films with various structure and stoichiometric composition were proposed. Possibility of conductivity variation of the polycrystalline tin dioxide films as a result of аnnealing in an inert atmosphere was demonstrated by utilizing impedance spectroscopy. Annealing induces the recrystallization of the films, changing in their stoichiometry as well as increase of the sizes of SnO2 crystallites. Variation of electrical conductivity and structure of tin dioxide films as a result of annealing in inert atmosphere was confirmed by X-ray diffraction analysis. Analysis of the impedance diagrams of tin dioxide films was found to be a powerful tool to study their electrical properties. 

  19. Improved Design Methods for Robust Single- and Three-Phase ac-dc-ac Power Converters

    DEFF Research Database (Denmark)

    Qin, Zian

    . The approaches for improving their performance, in terms of the voltage stress, efficiency, power density, cost, loss distribution, and temperature, will be studied. The structure of the thesis is as follows, Chapter 1 presents the introduction and motivation of the whole project as well as the background...... becomes a emerging challenge. Accordingly, installation of sustainable power generators like wind turbines and solar panels has experienced a large increase during the last decades. Meanwhile, power electronics converters, as interfaces in electrical system, are delivering approximately 80 % electricity...... back-to-back, and meanwhile improve the harmonics, control flexibility, and thermal distribution between the switches. Afterwards, active power decoupling methods for single-phase inverters or rectifiers that are similar to the single-phase ac-dc-ac converter, are studied in Chapter 4...

  20. Validation of Standing Wave Liner Impedance Measurement Method, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Hersh Acoustical Engineering, Inc. proposes to establish the feasibility and practicality of using the Standing Wave Method (SWM) to measure the impedance of...

  1. A decomposition method for network-constrained unit commitment with AC power flow constraints

    International Nuclear Information System (INIS)

    Bai, Yang; Zhong, Haiwang; Xia, Qing; Kang, Chongqing; Xie, Le

    2015-01-01

    To meet the increasingly high requirement of smart grid operations, considering AC power flow constraints in the NCUC (network-constrained unit commitment) is of great significance in terms of both security and economy. This paper proposes a decomposition method to solve NCUC with AC power flow constraints. With conic approximations of the AC power flow equations, the master problem is formulated as a MISOCP (mixed integer second-order cone programming) model. The key advantage of this model is that the active power and reactive power are co-optimised, and the transmission losses are considered. With the AC optimal power flow model, the AC feasibility of the UC result of the master problem is checked in subproblems. If infeasibility is detected, feedback constraints are generated based on the sensitivity of bus voltages to a change in the unit reactive power generation. They are then introduced into the master problem in the next iteration until all AC violations are eliminated. A 6-bus system, a modified IEEE 30-bus system and the IEEE 118-bus system are used to validate the performance of the proposed method, which provides a satisfactory solution with approximately 44-fold greater computational efficiency. - Highlights: • A decomposition method is proposed to solve the NCUC with AC power flow constraints • The master problem considers active power, reactive power and transmission losses. • OPF-based subproblems check the AC feasibility using parallel computing techniques. • An effective feedback constraint interacts between the master problem and subproblem. • Computational efficiency is significantly improved with satisfactory accuracy

  2. How the Inductive Voltage Adder (IVA) output impedance affects impedance dynamics of a Self-Magnetic Pinch (SMP) diode

    Science.gov (United States)

    Renk, Timothy; Simpson, Sean; Webb, Timothy; Mazarakis, Michael; Kiefer, Mark

    2016-10-01

    The SMP diode, fielded on the RITS-6 (3.5-8.5 MV) IVA accelerator at Sandia National Laboratories, produces a focused electron beam (transmission line (MITL) center conductors, of 40 and 80 ohms flow impedance. We have operated in-situ heating and discharge-cleaning hardware in the load region, in order to address the tendency of some shots to undergo premature impedance (Z) collapse, defined as a fall in impedance beyond that due to normal movement of electrode plasmas that reduces the effective A-K gap. The goal of heating/cleaning was to reduce the volume of evolving gases near the A-K gap. Despite clear evidence that the cleaning techniques removed the proton portion of beam current, we observed no consistent increase in diode impedance (ZDIODE). This forced an examination of the role that the IVA flow impedance has on ZDIODE. A preliminary conclusion is that ZDIODE should be at least 1.5 times the flow impedance before ZDIODE is a parameter independent of flow impedance. This has implications for SMP as a load for a IVA, since ZDIODE >100 ohms has not been consistently demonstrated. Data analysis is ongoing, and latest results will be reported. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Development of a new method for estimating visceral fat area with multi-frequency bioelectrical impedance

    International Nuclear Information System (INIS)

    Nagai, Masato; Komiya, Hideaki; Mori, Yutaka; Ohta, Teruo; Kasahara, Yasuhiro; Ikeda, Yoshio

    2008-01-01

    Excessive visceral fat area (VFA) is a major risk factor in such conditions as cardiovascular disease. In assessing VFA, computed tomography (CT) is adopted as the gold standard; however, this method is cost intensive and involves radiation exposure. In contrast, the bioelectrical impedance (BI) method for estimating body composition is simple and noninvasive and thus its potential application in VFA assessment is being studied. To overcome the difference in obtained impedance due to measurement conditions, we developed a more precise estimation method by selecting the optimum body posture, electrode arrangement, and frequency. The subjects were 73 healthy volunteers, 37 men and 36 women, who underwent CT scans to assess VFA and who were measured for anthropometry parameters, subcutaneous fat layer thickness, abdominal tissue area, and impedance. Impedance was measured by the tetrapolar impedance method using multi-frequency BI. Multiple regression analysis was conducted to estimate VFA. The results revealed a strong correlation between VFA observed by CT and VFA estimated by impedance (r=0.920). The regression equation accurately classified VFA≥100 cm 2 in 13 out of 14 men and 1 of 1 woman. Moreover, it classified VFA≥100 cm 2 or 2 in 3 out of 4 men and 1 of 1 woman misclassified by waist circumference (W) which was adopted as a simple index to evaluate VFA. Therefore, using this simple and convenient method for estimating VFA, we obtained an accurate assessment of VFA using the BI method. (author)

  4. A compact wideband precision impedance measurement system based on digital auto-balancing bridge

    International Nuclear Information System (INIS)

    Hu, Binxin; Wang, Jinyu; Song, Guangdong; Zhang, Faxiang

    2016-01-01

    The ac impedance spectroscopy measurements are predominantly taken by using impedance analyzers based on analog auto-balancing bridge. However, those bench-top analyzers are generally complicated, bulky and expensive, thus limiting their usage in industrial field applications. This paper presents the development of a compact wideband precision measurement system based on digital auto-balancing bridge. The methods of digital auto-balancing bridge and digital lock-in amplifier are analyzed theoretically. The overall design and several key sections including null detector, direct digital synthesizer-based sampling clock, and digital control unit are introduced in detail. The results show that the system achieves a basic measurement accuracy of 0.05% with a frequency range of 20 Hz–2 MHz. The advantages of versatile measurement capacity, fast measurement speed, small size and low cost make it quite suitable for industrial field applications. It is demonstrated that this system is practical and effective by applying in determining the impedance-temperature characteristic of a motor starter PTC thermistor. (paper)

  5. Impedance spectroscopy as a method for evaluation of lithium-thionyl chloride cells

    Energy Technology Data Exchange (ETDEWEB)

    Kanevskii, L.S.; Bagotzky, V.S.; Nizhnikovskii, E.A. [Frumkin Institute of Electrochemistry, Moscow (Russian Federation)

    1995-04-01

    Impedance spectroscopy was evaluated as a method for ascertaining the state of constituent components of Li-thionyl chloride cells. No unambiguous correlation between impedance characteristics and residual capacity was detected as a result of investigation of a large population of different size and capacity Li-thionyl chloride cells. Impedance studies of nonpolarized lithium electrodes in operating cells resulted in a conclusion that the diagnostics of Li-thionyl chloride cells is extremely difficult, due to the specific nature of lithium passivation in operating cells and the influence on this process exerted by sulfur dioxide generated during discharge.

  6. Calorimetric method of ac loss measurement in a rotating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ghoshal, P. K. [Oxford Instruments NanoScience, Abingdon, Oxfordshire OX13 5QX (United Kingdom); Coombs, T. A.; Campbell, A. M. [Department of Engineering, Electrical Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom)

    2010-07-15

    A method is described for calorimetric ac-loss measurements of high-T{sub c} superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.

  7. AC impedance behaviour and state-of-charge dependence of Zr0 ...

    Indian Academy of Sciences (India)

    Unknown

    measurement encompasses a wide range of AC signal frequencies, various characteristic parameters of the electrochemical cell and kinetics of the associated reactions can be evaluated. Metal-hydride (MH) electrodes form the anode or the negative plate of a nickel-metal- hydride battery. However, the development of MH ...

  8. AC loss measurement of superconducting dipole magnets by the calorimetric method

    International Nuclear Information System (INIS)

    Morita, Y.; Hara, K.; Higashi, N.; Kabe, A.

    1996-01-01

    AC losses of superconducting dipole magnets were measured by the calorimetric method. The magnets were model dipole magnets designed for the SSC. These were fabricated at KEK with 50-mm aperture and 1.3-m overall length. The magnet was set in a helium cryostat and cooled down to 1.8 K with 130 L of pressurized superfluid helium. Heat dissipated by the magnet during ramp cycles was measured by temperature rise of the superfluid helium. Heat leakage into the helium cryostat was 1.6 W and was subtracted from the measured heat to obtain AC loss of the magnet. An electrical measurement was carried out for calibration. Results of the two methods agreed within the experimental accuracy. The authors present the helium cryostat and measurement system in detail, and discuss the results of AC loss measurement

  9. Impedance measurement of irradiated potatoes: a method to identify radiation processing

    International Nuclear Information System (INIS)

    Mastro, N.L. del; Villavicencio, A.L.C.H.

    1992-01-01

    The potato is firmly established in many parts of the world as a major staple food. Then, radiation processing of potato is approved in many countries for sprouting inhibition and extension of shelf life in a dose range from about 0.01 to 0.15 kGy of 60 Co. The use of electrical conductance methods for the detection of Salmonella, some virus or the action of herbicides on plant has been reported and differences have been observed between instruments in respect of the magnitude of conductance change or rates of change in conductance response. A reliable technique to identify potatoes or other food products has not been established so far, though several methods have been reported. Electrical impedance might thus serve for characterization of unirradiated and irradiated tissues and cells. In this work, potato tubers from an European variety, named Bintje, grown in Sao Paulo State were employed. Potatoes were punctured with steel electrodes and impedance measured at different frequencies (1 k Hz-100 k Hz) by passing 3-5 m A alternating current through it. The impedance ratio of 50 k Hz/5 k Hz calculated from ten replicate samples decreases with the increment of the dose when doses of O 0.75 and 0.15 kGy from a Gamma Cell 220 were utilized. The impedance measurement were slightly affected by the place of puncture. (author)

  10. Acoustic impedances of ear canals measured by impedance tube

    DEFF Research Database (Denmark)

    Ciric, Dejan; Hammershøi, Dorte

    2007-01-01

    During hearing sensitivity tests, the sound field is commonly generated by an earphone placed on a subject ear. One of the factors that can affect the sound transmission in the ear is the acoustic impedance of the ear canal. Its importance is related to the contribution of other elements involved...... in the transmission such as the earphone impedance. In order to determine the acoustic impedances of human ear canals, the standardized method for measurement of complex impedances used for the measurement of the audiometric earphone impedances is applied. It is based on the transfer function between two microphone...... locations in an impedance tube. The end of the tube representing the measurement plane is placed at the ear canal entrance. Thus, the impedance seen from the entrance inward is measured on 25 subjects. Most subjects participated in the previous measurement of the ratio between the pressures at the open...

  11. Electrical impedance along connective tissue planes associated with acupuncture meridians

    Directory of Open Access Journals (Sweden)

    Hammerschlag Richard

    2005-05-01

    Full Text Available Abstract Background Acupuncture points and meridians are commonly believed to possess unique electrical properties. The experimental support for this claim is limited given the technical and methodological shortcomings of prior studies. Recent studies indicate a correspondence between acupuncture meridians and connective tissue planes. We hypothesized that segments of acupuncture meridians that are associated with loose connective tissue planes (between muscles or between muscle and bone visible by ultrasound have greater electrical conductance (less electrical impedance than non-meridian, parallel control segments. Methods We used a four-electrode method to measure the electrical impedance along segments of the Pericardium and Spleen meridians and corresponding parallel control segments in 23 human subjects. Meridian segments were determined by palpation and proportional measurements. Connective tissue planes underlying those segments were imaged with an ultrasound scanner. Along each meridian segment, four gold-plated needles were inserted along a straight line and used as electrodes. A parallel series of four control needles were placed 0.8 cm medial to the meridian needles. For each set of four needles, a 3.3 kHz alternating (AC constant amplitude current was introduced at three different amplitudes (20, 40, and 80 μAmps to the outer two needles, while the voltage was measured between the inner two needles. Tissue impedance between the two inner needles was calculated based on Ohm's law (ratio of voltage to current intensity. Results At the Pericardium location, mean tissue impedance was significantly lower at meridian segments (70.4 ± 5.7 Ω compared with control segments (75.0 ± 5.9 Ω (p = 0.0003. At the Spleen location, mean impedance for meridian (67.8 ± 6.8 Ω and control segments (68.5 ± 7.5 Ω were not significantly different (p = 0.70. Conclusion Tissue impedance was on average lower along the Pericardium meridian, but not

  12. A new lithium-ion battery internal temperature on-line estimate method based on electrochemical impedance spectroscopy measurement

    Science.gov (United States)

    Zhu, J. G.; Sun, Z. C.; Wei, X. Z.; Dai, H. F.

    2015-01-01

    The power battery thermal management problem in EV (electric vehicle) and HEV (hybrid electric vehicle) has been widely discussed, and EIS (electrochemical impedance spectroscopy) is an effective experimental method to test and estimate the status of the battery. Firstly, an electrochemical-based impedance matrix analysis for lithium-ion battery is developed to describe the impedance response of electrochemical impedance spectroscopy. Then a method, based on electrochemical impedance spectroscopy measurement, has been proposed to estimate the internal temperature of power lithium-ion battery by analyzing the phase shift and magnitude of impedance at different ambient temperatures. Respectively, the SoC (state of charge) and temperature have different effects on the impedance characteristics of battery at various frequency ranges in the electrochemical impedance spectroscopy experimental study. Also the impedance spectrum affected by SoH (state of health) is discussed in the paper preliminary. Therefore, the excitation frequency selected to estimate the inner temperature is in the frequency range which is significantly influenced by temperature without the SoC and SoH. The intrinsic relationship between the phase shift and temperature is established under the chosen excitation frequency. And the magnitude of impedance related to temperature is studied in the paper. In practical applications, through obtaining the phase shift and magnitude of impedance, the inner temperature estimation could be achieved. Then the verification experiments are conduced to validate the estimate method. Finally, an estimate strategy and an on-line estimation system implementation scheme utilizing battery management system are presented to describe the engineering value.

  13. Accuracy of Platelet Counting by Optical and Impedance Methods in Patients with Thrombocytopaenia and Microcytosis

    Directory of Open Access Journals (Sweden)

    Mohamed-Rachid Boulassel

    2015-11-01

    Full Text Available Objectives: Obtaining accurate platelet counts in microcytic blood samples is challenging, even with the most reliable automated haematology analysers. The CELL-DYN™ Sapphire (Abbott Laboratories, Chicago, Illinois, USA analyser uses both optical density and electronic impedance methods for platelet counting. This study aimed to evaluate the accuracy of optical density and electrical impedance methods in determining true platelet counts in thrombocytopaenic samples with microcytosis as defined by low mean corpuscular volume (MCV of red blood cells. Additionally, the impact of microcytosis on platelet count accuracy was evaluated. Methods: This study was carried out between February and December 2014 at the Haematology Laboratory of the Sultan Qaboos University Hospital in Muscat, Oman. Blood samples were collected and analysed from 189 patients with thrombocytopaenia and MCV values of <76 femtolitres. Platelet counts were tested using both optical and impedance methods. Stained peripheral blood films for each sample were then reviewed as a reference method to confirm platelet counts. Results: The platelet counts estimated by the impedance method were on average 30% higher than those estimated by the optical method (P <0.001. The estimated intraclass correlation coefficient was 0.52 (95% confidence interval: 0.41–0.62, indicating moderate reliability between the methods. The degree of agreement between methods ranged from -85.5 to 24.3 with an estimated bias of -30, suggesting that these methods generate different platelet results. Conclusion: The impedance method significantly overestimated platelet counts in microcytic and thrombocytopaenic blood samples. Further attention is therefore needed to improve the accuracy of platelet counts, particularly for patients with conditions associated with microcytosis.

  14. Methods to reduce AC losses in HTS coated conductors with magnetic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, O. [Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan)], E-mail: osami-t@ynu.ac.jp; Sekizawa, S.; Alamgir, A.K.M. [Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan); Miyagi, D. [Okayama University, 1-1, Tsushima-Naka, 1-Chome, Okayama 700-8530 (Japan)

    2007-10-01

    HTS coated conductors (CCs) have high potentials as low-cost and long length conductors. However, a question remains as to what influence the magnetic property of the substrates has on the AC losses. In this paper, the influence of magnetic property of substrates on the AC losses in HTS CCs is studied. Based on the study methods to reduce the AC transport current losses and magnetization losses in CCs with magnetic substrates are investigated. It is shown that the losses can be reduced to the same level of those in CCs with non-magnetic substrates.

  15. Methods to reduce AC losses in HTS coated conductors with magnetic substrates

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Sekizawa, S.; Alamgir, A.K.M.; Miyagi, D.

    2007-01-01

    HTS coated conductors (CCs) have high potentials as low-cost and long length conductors. However, a question remains as to what influence the magnetic property of the substrates has on the AC losses. In this paper, the influence of magnetic property of substrates on the AC losses in HTS CCs is studied. Based on the study methods to reduce the AC transport current losses and magnetization losses in CCs with magnetic substrates are investigated. It is shown that the losses can be reduced to the same level of those in CCs with non-magnetic substrates

  16. The electrochemical impedance of metal hydride electrodes

    DEFF Research Database (Denmark)

    Valøen, Lars Ole; Lasia, Andrzej; Jensen, Jens Oluf

    2002-01-01

    The electrochemical impedance responses for different laboratory type metal hydride electrodes were successfully modeled and fitted to experimental data for AB5 type hydrogen storage alloys as well as one MgNi type electrode. The models fitted the experimental data remarkably well. Several AC......, explaining the experimental impedances in a wide frequency range for electrodes of hydride forming materials mixed with copper powder, were obtained. Both charge transfer and spherical diffusion of hydrogen in the particles are important sub processes that govern the total rate of the electrochemical...... hydrogen absorption/desorption reaction. To approximate the experimental data, equations describing the current distribution in porous electrodes were needed. Indications of one or more parallel reduction/oxidation processes competing with the electrochemical hydrogen absorption/desorption reaction were...

  17. Impedance ratio method for urine conductivity-invariant estimation of bladder volume

    Directory of Open Access Journals (Sweden)

    Thomas Schlebusch

    2014-09-01

    Full Text Available Non-invasive estimation of bladder volume could help patients with impaired bladder volume sensation to determine the right moment for catheterisation. Continuous, non-invasive impedance measurement is a promising technology in this scenario, although influences of body posture and unknown urine conductivity limit wide clinical use today. We studied impedance changes related to bladder volume by simulation, in-vitro and in-vivo measurements with pigs. In this work, we present a method to reduce the influence of urine conductivity to cystovolumetry and bring bioimpedance cystovolumetry closer to a clinical application.

  18. Automated AC Electrical Impedance Measurement of Ceramic Oxides by means of a Lock-in Amplifier

    International Nuclear Information System (INIS)

    Al-Khawaja, S.; Al-Sous, M. B.; Nasrallah, F.

    2009-06-01

    In this study, the electrical impedance of some ceramic oxides has been investigated employing the Perkin Elmer DSP 7280 Lock-in amplifier, while recording the electric response versus frequency and temperature at constant amplitude. Via integral automation of this lock-in with other delicate electrical measuring devices, a control program has been developed to accurately and swiftly acquire the frequency response of the sample, in order to lately infer the resulting samples' impedance in volt and ampere. Two maxima peaks characterising the impedance, in the curve of the doped molybdenum oxide have been observed discerning two phases in the sample (doped with 40% of niobium oxide), which shows a remarkable relaxation related to improvement in its ionic conductivity within the solid phase, with respect to increasing frequency. (author)

  19. Compensating for evanescent modes and estimating characteristic impedance in waveguide acoustic impedance measurements

    DEFF Research Database (Denmark)

    Nørgaard, Kren Rahbek; Fernandez Grande, Efren

    2017-01-01

    The ear-canal acoustic impedance and reflectance are useful for assessing conductive hearing disorders and calibrating stimulus levels in situ. However, such probe-based measurements are affected by errors due to the presence of evanescent modes and incorrect estimates or assumptions regarding...... characteristic impedance. This paper proposes a method to compensate for evanescent modes in measurements of acoustic impedance, reflectance, and sound pressure in waveguides, as well as estimating the characteristic impedance immediately in front of the probe. This is achieved by adjusting the characteristic...... impedance and subtracting an acoustic inertance from the measured impedance such that the non-causality in the reflectance is minimized in the frequency domain using the Hilbert transform. The method is thus capable of estimating plane-wave quantities of the sought-for parameters by supplying only...

  20. Applications for Electrical Impedance Tomography (EIT) and Electrical Properties of the Human Body.

    Science.gov (United States)

    Lymperopoulos, Georgios; Lymperopoulos, Panagiotis; Alikari, Victoria; Dafogianni, Chrisoula; Zyga, Sofia; Margari, Nikoletta

    2017-01-01

    Electrical Impedance Tomography (EIT) is a promising application that displays changes in conductivity within a body. The basic principle of the method is the repeated measurement of surface voltages of a body, which are a result of rolling injection of known and small-volume sinusoidal AC current to the body through the electrodes attached to its surface. This method finds application in biomedicine, biology and geology. The objective of this paper is to present the applications of Electrical Impedance Tomography, along with the method's capabilities and limitations due to the electrical properties of the human body. For this purpose, investigation of existing literature has been conducted, using electronic databases, PubMed, Google Scholar and IEEE Xplore. In addition, there was a secondary research phase, using paper citations found during the first research phase. It should be noted that Electrical Impedance Tomography finds use in a plethora of medical applications, as the different tissues of the body have different conductivities and dielectric constants. Main applications of EIT include imaging of lung function, diagnosis of pulmonary embolism, detection of tumors in the chest area and diagnosis and distinction of ischemic and hemorrhagic stroke. EIT advantages include portability, low cost and safety, which the method provide, since it is a noninvasive imaging method that does not cause damage to the body. The main disadvantage of the method, which blocks its wider spread, appears in the image composition from the voltage measurements, which are conducted by electrodes placed on the periphery of the body, because the injected currents are affected nonlinearly by the general distribution of the electrical properties of the body. Furthermore, the complex impedance of the skin-electrode interface can be modelled by using a capacitor and two resistor, as a result of skin properties. In conclusion, Electrical Impedance Tomography is a promising method for the

  1. Note: A phase synchronization photography method for AC discharge

    Science.gov (United States)

    Wu, Zhicheng; Zhang, Qiaogen; Ma, Jingtan; Pang, Lei

    2018-05-01

    To research discharge physics under AC voltage, a phase synchronization photography method is presented. By using a permanent-magnet synchronous motor to drive a photography mask synchronized with a discharge power supply, discharge images in a specific phase window can be recorded. Some examples of discharges photographed by this method, including the corona discharge in SF6 and the corona discharge along the air/epoxy surface, demonstrate the feasibility of this method. Therefore, this method provides an effective tool for discharge physics researchers.

  2. Soil-structure interaction - a general method to calculate soil impedance

    International Nuclear Information System (INIS)

    Farvacque, M.; Gantenbein, F.

    1983-01-01

    A correct analysis of the seismic response of nuclear power plant buildings needs to take into account the soil structure interaction. The most classical and simple method consists in characterizing the soil by a stiffness and a damping function for each component of the translation and rotation of the foundation. In a more exact way an impedance function of the frequency may be introduced. Literature provides data to estimate these coefficients for simple soil and foundation configurations and using linear hypothesis. This paper presents a general method to calculate soil impedances which is based on the computation of the impulsive response of the soil using an axisymmetric 2D finite element Code (INCA). The Fourier transform of this response is made in the time interval before the return of the reflected waves on the boundaries of the F.E. domain. This procedure which limits the perturbing effects of the reflections is improved by introducing absorbing boundary elements. A parametric study for homogeneous and layered soils has been carried out using this method. (orig.)

  3. Improving the Stability and Accuracy of Power Hardware-in-the-Loop Simulation Using Virtual Impedance Method

    Directory of Open Access Journals (Sweden)

    Xiaoming Zha

    2016-11-01

    Full Text Available Power hardware-in-the-loop (PHIL systems are advanced, real-time platforms for combined software and hardware testing. Two paramount issues in PHIL simulations are the closed-loop stability and simulation accuracy. This paper presents a virtual impedance (VI method for PHIL simulations that improves the simulation’s stability and accuracy. Through the establishment of an impedance model for a PHIL simulation circuit, which is composed of a voltage-source converter and a simple network, the stability and accuracy of the PHIL system are analyzed. Then, the proposed VI method is implemented in a digital real-time simulator and used to correct the combined impedance in the impedance model, achieving higher stability and accuracy of the results. The validity of the VI method is verified through the PHIL simulation of two typical PHIL examples.

  4. Passivation of mechanically polished, chemically etched and anodized zirconium in various aqueous solutions: Impedance measurements

    International Nuclear Information System (INIS)

    Abo-Elenien, G.M.; Abdel-Salam, O.E.

    1987-01-01

    Zirconium and its alloys are finding increasing applications especially in water-cooled nuclear reactors. Because of the fact that zirconium is electronegative (E 0 = -1.529V) its corrosion resistance in aqueous solutions is largely determined by the existence of a thin oxide film on its surface. The structure and properties of this film depend in the first place on the method of surface pre-treatment. This paper presents an experimental study of the nature of the oxide film on mechanically polished, chemically etched and anodized zirconium. Ac impedance measurements carried out in various acidic, neutral and alkaline solutions show that the film thickness depends on the method of surface pre-treatment and the type of electrolyte solution. The variation of the potential and impedance during anodization of zirconium at low current density indicates that the initial stages of polarization consist of oxide build-up at a rate dependent on the nature of the electrode surface and the electrolyte. Oxygen evolution commences at a stage where oxide thickening starts to decline. The effect of frequency on the measured impedance indicates that the surface reactivity, and hence the corrosion rate, decreases in the following order: mechanically polished > chemically etched > anodized

  5. A high-speed bioelectrical impedance spectroscopy system based on the digital auto-balancing bridge method

    International Nuclear Information System (INIS)

    Li, Nan; Xu, Hui; Zhou, Zhou; Wang, Wei; Qiao, Guofeng; Li, David D-U

    2013-01-01

    A novel bioelectrical impedance spectroscopy system based on the digital auto-balancing bridge method improved from the conventional analogue auto-balancing method is presented for bioelectrical impedance measurements. The hardware of the proposed system consists of a reference source, a null detector, a variable source, a field programmable gate array, a clock generator, a flash and a USB controller. Software implemented in the field programmable gate array includes three major blocks: clock management, peripheral control and digital signal processing. The principle and realization of the least-mean-squares-based digital auto-balancing algorithm is introduced in detail. The performances of our system were examined by comparing with a commercial impedance analyzer. The results reveal that the proposed system has high speed (less than 3.5 ms per measurement) and high accuracy in the frequency range of 1 kHz–10 MHz. Compared with the commercial instrument based on the traditional analogue auto-balancing method, our system shows advantages in measurement speed, compactness and flexibility, making it suitable for various bioelectrical impedance measurement applications. (paper)

  6. A study on calculation method for mechanical impedance of air spring

    International Nuclear Information System (INIS)

    Changgeng, Shuai; Penghui, Li; Rustighi, Emiliano

    2016-01-01

    This paper proposes an approximate analytic method of obtaining the mechanical impedance of air spring. The sound pressure distribution in cylindrical air spring is calculated based on the linear air wave theory. The influences of different boundary conditions on the acoustic pressure field distribution in cylindrical air spring are analysed. A 1-order ordinary differential matrix equation for the state vector of revolutionary shells under internal pressure is derived based on the non-moment theory of elastic thin shell. Referring to the transfer matrix method, a kind of expanded homogeneous capacity high precision integration method is introduced to solve the non-homogeneous matrix differential equation. Combined the solved stress field of shell with the calculated sound pressure field in air spring under the displacement harmonic excitation, the approximate analytical expression of the input and transfer mechanical impedance for the air spring can be achieved. The numerical simulation with the Comsol Multiphysics software verifies the correctness of theoretical analysis result. (paper)

  7. Study on ac losses of HTS coil carrying ac transport current

    International Nuclear Information System (INIS)

    Dai Taozhen; Tang Yuejin; Li Jingdong; Zhou Yusheng; Cheng Shijie; Pan Yuan

    2005-01-01

    Ac loss has an important influence on the thermal performances of HTS coil. It is necessary to quantify ac loss to ascertain its impact on coil stability and for sizing the coil refrigeration system. In this paper, we analyzed in detail the ac loss components, hysteresis loss, eddy loss and flux flow loss in the pancake HTS coil carrying ac transport current by finite element method. We also investigated the distribution of the ac losses in the coil to study the effects of magnetic field distribution on ac losses

  8. AC and DC electrical properties of graphene nanoplatelets reinforced epoxy syntactic foam

    Science.gov (United States)

    Zegeye, Ephraim; Wicker, Scott; Woldesenbet, Eyassu

    2018-04-01

    Benefits of employing graphene nanopletlates (GNPLs) in composite structures include mechanical as well as multifunctional properties. Understanding the impedance behavior of GNPLs reinforced syntactic foams may open new applications for syntactic foam composites. In this work, GNPLs reinforced syntactic foams were fabricated and tested for DC and AC electrical properties. Four sets of syntactic foam samples containing 0, 0.1, 0.3, and 0.5 vol% of GNPLs were fabricated and tested. Significant increase in conductivity of syntactic foams due to the addition of GNPLs was noted. AC impedance measurements indicated that the GNPLs syntactic foams become frequency dependent as the volume fraction of GNPLs increases. With addition of GNPLs, the characteristic of the syntactic foams are also observed to transition from dominant capacitive to dominant resistive behavior. This work was carried out at Southern University, Mechanical Engineering Department, Baton Rouge, LA 70802, United States of America.

  9. Transcranial extracellular impedance control (tEIC modulates behavioral performances.

    Directory of Open Access Journals (Sweden)

    Ayumu Matani

    Full Text Available Electric brain stimulations such as transcranial direct current stimulation (tDCS, transcranial random noise stimulation (tRNS, and transcranial alternating current stimulation (tACS electrophysiologically modulate brain activity and as a result sometimes modulate behavioral performances. These stimulations can be viewed from an engineering standpoint as involving an artificial electric source (DC, noise, or AC attached to an impedance branch of a distributed parameter circuit. The distributed parameter circuit is an approximation of the brain and includes electric sources (neurons and impedances (volume conductors. Such a brain model is linear, as is often the case with the electroencephalogram (EEG forward model. Thus, the above-mentioned current stimulations change the current distribution in the brain depending on the locations of the electric sources in the brain. Now, if the attached artificial electric source were to be replaced with a resistor, or even a negative resistor, the resistor would also change the current distribution in the brain. In light of the superposition theorem, which holds for any linear electric circuit, attaching an electric source is different from attaching a resistor; the resistor affects each active electric source in the brain so as to increase (or decrease in some cases of a negative resistor the current flowing out from each source. From an electrophysiological standpoint, the attached resistor can only control the extracellular impedance and never causes forced stimulation; we call this technique transcranial extracellular impedance control (tEIC. We conducted a behavioral experiment to evaluate tEIC and found evidence that it had real-time enhancement and depression effects on EEGs and a real-time facilitation effect on reaction times. Thus, tEIC could be another technique to modulate behavioral performance.

  10. Impedance-based Analysis of DC Link Control in Voltage Source Rectifiers

    DEFF Research Database (Denmark)

    Lu, Dapeng; Wang, Xiongfei; Blaabjerg, Frede

    2018-01-01

    This paper analyzes the dynamics influences of the outer dc link control in the voltage source rectifiers based on the impedance model. The ac-dc interactions are firstly presented by means of full order small signal model in dq frame, which shows the input voltage and load condition are the two...

  11. Recent Progress on the Factorization Method for Electrical Impedance Tomography

    Directory of Open Access Journals (Sweden)

    Bastian Harrach

    2013-01-01

    method was introduced by Kirsch for inverse scattering problems and extended to electrical impedance tomography (EIT by Brühl and Hanke. Since these pioneering works, substantial progress has been made on the theoretical foundations of the method. The necessary assumptions have been weakened, and the proofs have been considerably simplified. In this work, we aim to summarize this progress and present a state-of-the-art formulation of the Factorization Method for EIT with continuous data. In particular, we formulate the method for general piecewise analytic conductivities and give short and self-contained proofs.

  12. Microwave Impedance Measurement for Nanoelectronics

    Directory of Open Access Journals (Sweden)

    M. Randus

    2011-04-01

    Full Text Available The rapid progress in nanoelectronics showed an urgent need for microwave measurement of impedances extremely different from the 50Ω reference impedance of measurement instruments. In commonly used methods input impedance or admittance of a device under test (DUT is derived from measured value of its reflection coefficient causing serious accuracy problems for very high and very low impedances due to insufficient sensitivity of the reflection coefficient to impedance of the DUT. This paper brings theoretical description and experimental verification of a method developed especially for measurement of extreme impedances. The method can significantly improve measurement sensitivity and reduce errors caused by the VNA. It is based on subtraction (or addition of a reference reflection coefficient and the reflection coefficient of the DUT by a passive network, amplifying the resulting signal by an amplifier and measuring the amplified signal as a transmission coefficient by a common vector network analyzer (VNA. A suitable calibration technique is also presented.

  13. Equivalence of Primary Control Strategies for AC and DC Microgrids

    Directory of Open Access Journals (Sweden)

    Eneko Unamuno

    2017-01-01

    Full Text Available Microgrid frequency and voltage regulation is a challenging task, as classical generators with rotational inertia are usually replaced by converter-interfaced systems that inherently do not provide any inertial response. The aim of this paper is to analyse and compare autonomous primary control techniques for alternating current (AC and direct current (DC microgrids that improve this transient behaviour. In this context, a virtual synchronous machine (VSM technique is investigated for AC microgrids, and its behaviour for different values of emulated inertia and droop slopes is tested. Regarding DC microgrids, a virtual-impedance-based algorithm inspired by the operation concept of VSMs is proposed. The results demonstrate that the proposed strategy can be configured to have an analogous behaviour to VSM techniques by varying the control parameters of the integrated virtual-impedances. This means that the steady-state and transient behaviour of converters employing these strategies can be configured independently. As shown in the simulations, this is an interesting feature that could be, for instance, employed for the integration of different dynamic generation or storage systems, such as batteries or supercapacitors.

  14. Tracking of electrochemical impedance of batteries

    Science.gov (United States)

    Piret, H.; Granjon, P.; Guillet, N.; Cattin, V.

    2016-04-01

    This paper presents an evolutionary battery impedance estimation method, which can be easily embedded in vehicles or nomad devices. The proposed method not only allows an accurate frequency impedance estimation, but also a tracking of its temporal evolution contrary to classical electrochemical impedance spectroscopy methods. Taking into account constraints of cost and complexity, we propose to use the existing electronics of current control to perform a frequency evolutionary estimation of the electrochemical impedance. The developed method uses a simple wideband input signal, and relies on a recursive local average of Fourier transforms. The averaging is controlled by a single parameter, managing a trade-off between tracking and estimation performance. This normalized parameter allows to correctly adapt the behavior of the proposed estimator to the variations of the impedance. The advantage of the proposed method is twofold: the method is easy to embed into a simple electronic circuit, and the battery impedance estimator is evolutionary. The ability of the method to monitor the impedance over time is demonstrated on a simulator, and on a real Lithium ion battery, on which a repeatability study is carried out. The experiments reveal good tracking results, and estimation performance as accurate as the usual laboratory approaches.

  15. Iterative Reconstruction Methods for Hybrid Inverse Problems in Impedance Tomography

    DEFF Research Database (Denmark)

    Hoffmann, Kristoffer; Knudsen, Kim

    2014-01-01

    For a general formulation of hybrid inverse problems in impedance tomography the Picard and Newton iterative schemes are adapted and four iterative reconstruction algorithms are developed. The general problem formulation includes several existing hybrid imaging modalities such as current density...... impedance imaging, magnetic resonance electrical impedance tomography, and ultrasound modulated electrical impedance tomography, and the unified approach to the reconstruction problem encompasses several algorithms suggested in the literature. The four proposed algorithms are implemented numerically in two...

  16. The Use of AC-DC-AC Methods in Assessing Corrosion Resistance Performance of Coating Systems for Magnesium Alloys

    Science.gov (United States)

    McCune, Robert C.; Upadhyay, Vinod; Wang, Yar-Ming; Battocchi, Dante

    The potential utility of AC-DC-AC electrochemical methods in comparative measures of corrosion-resisting coating system performance for magnesium alloys under consideration for the USAMP "Magnesium Front End Research and Development" project was previously shown in this forum [1]. Additional studies of this approach using statistically-designed experiments have been conducted with focus on alloy types, pretreatment, topcoat material and topcoat thickness as the variables. Additionally, sample coupons made for these designed experiments were also subjected to a typical automotive cyclic corrosion test cycle (SAE J2334) as well as ASTM B117 for comparison of relative performance. Results of these studies are presented along with advantages and limitations of the proposed methodology.

  17. A dielectrophoresis-impedance method for protein detection and analysis

    Directory of Open Access Journals (Sweden)

    Ahmad Sabry Mohamad

    2017-01-01

    Full Text Available Dielectrophoresis (DEP has increasingly been used for the assessment of the electrical properties of molecular scale objects including proteins, DNA, nanotubes and nanowires. However, whilst techniques have been developed for the electrical characterisation of frequency-dependent DEP response, biomolecular study is usually limited to observation using fluorescent markers, limiting its applicability as a characterisation tool. In this paper we present a label-free, impedance-based method of characterisation applied to the determination of the electrical properties of colloidal protein molecules, specifically Bovine Serum Albumin (BSA. By monitoring the impedance between electrodes as proteins collect, it is shown to be possible to observe multi-dispersion behaviour. A DEP dispersion exhibited at 400 kHz is attributable to the orientational dispersion of the molecule, whilst a second, higher-frequency dispersion is attributed to a Maxwell-Wagner type dispersion; changes in behaviour with medium conductivity suggest that this is strongly influenced by the electrical double layer surrounding the molecule.

  18. A dielectrophoresis-impedance method for protein detection and analysis

    Science.gov (United States)

    Mohamad, Ahmad Sabry; Hamzah, Roszymah; Hoettges, Kai F.; Hughes, Michael Pycraft

    2017-01-01

    Dielectrophoresis (DEP) has increasingly been used for the assessment of the electrical properties of molecular scale objects including proteins, DNA, nanotubes and nanowires. However, whilst techniques have been developed for the electrical characterisation of frequency-dependent DEP response, biomolecular study is usually limited to observation using fluorescent markers, limiting its applicability as a characterisation tool. In this paper we present a label-free, impedance-based method of characterisation applied to the determination of the electrical properties of colloidal protein molecules, specifically Bovine Serum Albumin (BSA). By monitoring the impedance between electrodes as proteins collect, it is shown to be possible to observe multi-dispersion behaviour. A DEP dispersion exhibited at 400 kHz is attributable to the orientational dispersion of the molecule, whilst a second, higher-frequency dispersion is attributed to a Maxwell-Wagner type dispersion; changes in behaviour with medium conductivity suggest that this is strongly influenced by the electrical double layer surrounding the molecule.

  19. AC conductivity and dielectric properties of bulk tungsten trioxide (WO3)

    Science.gov (United States)

    El-Nahass, M. M.; Ali, H. A. M.; Saadeldin, M.; Zaghllol, M.

    2012-11-01

    AC conductivity and dielectric properties of tungsten trioxide (WO3) in a pellet form were studied in the frequency range from 42 Hz to 5 MHz with a variation of temperature in the range from 303 K to 463 K. AC conductivity, σac(ω) was found to be a function of ωs where ω is the angular frequency and s is the frequency exponent. The values of s were found to be less than unity and decrease with increasing temperature, which supports the correlated barrier hopping mechanism (CBH) as the dominant mechanism for the conduction in WO3. The dielectric constant (ε‧) and dielectric loss (ε″) were measured. The Cole-Cole diagram determined complex impedance for different temperatures.

  20. Revisiting the electrochemical impedance spectroscopy of magnesium with online inductively coupled plasma atomic emission spectroscopy.

    Science.gov (United States)

    Shkirskiy, Viacheslav; King, Andrew D; Gharbi, Oumaïma; Volovitch, Polina; Scully, John R; Ogle, Kevin; Birbilis, Nick

    2015-02-23

    The electrochemical impedance of reactive metals such as magnesium is often complicated by an obvious inductive loop with decreasing frequency of the AC polarising signal. The characterisation and ensuing explanation of this phenomenon has been lacking in the literature to date, being either ignored or speculated. Herein, we couple electrochemical impedance spectroscopy (EIS) with online atomic emission spectroelectrochemistry (AESEC) to simultaneously measure Mg-ion concentration and electrochemical impedance spectra during Mg corrosion, in real time. It is revealed that Mg dissolution occurs via Mg(2+) , and that corrosion is activated, as measured by AC frequencies less than approximately 1 Hz approaching DC conditions. The result of this is a higher rate of Mg(2+) dissolution, as the voltage excitation becomes slow enough to enable all Mg(2+) -enabling processes to adjust in real time. The manifestation of this in EIS data is an inductive loop. The rationalisation of such EIS behaviour, as it relates to Mg, is revealed for the first time by using concurrent AESEC. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Methods for calculating the electrode position Jacobian for impedance imaging.

    Science.gov (United States)

    Boyle, A; Crabb, M G; Jehl, M; Lionheart, W R B; Adler, A

    2017-03-01

    Electrical impedance tomography (EIT) or electrical resistivity tomography (ERT) current and measure voltages at the boundary of a domain through electrodes. The movement or incorrect placement of electrodes may lead to modelling errors that result in significant reconstructed image artifacts. These errors may be accounted for by allowing for electrode position estimates in the model. Movement may be reconstructed through a first-order approximation, the electrode position Jacobian. A reconstruction that incorporates electrode position estimates and conductivity can significantly reduce image artifacts. Conversely, if electrode position is ignored it can be difficult to distinguish true conductivity changes from reconstruction artifacts which may increase the risk of a flawed interpretation. In this work, we aim to determine the fastest, most accurate approach for estimating the electrode position Jacobian. Four methods of calculating the electrode position Jacobian were evaluated on a homogeneous halfspace. Results show that Fréchet derivative and rank-one update methods are competitive in computational efficiency but achieve different solutions for certain values of contact impedance and mesh density.

  2. Microwave impedance imaging on semiconductor memory devices

    Science.gov (United States)

    Kundhikanjana, Worasom; Lai, Keji; Yang, Yongliang; Kelly, Michael; Shen, Zhi-Xun

    2011-03-01

    Microwave impedance microscopy (MIM) maps out the real and imaginary components of the tip-sample impedance, from which the local conductivity and dielectric constant distribution can be derived. The stray field contribution is minimized in our shielded cantilever design, enabling quantitative analysis of nano-materials and device structures. We demonstrate here that the MIM can spatially resolve the conductivity variation in a dynamic random access memory (DRAM) sample. With DC or low-frequency AC bias applied to the tip, contrast between n-doped and p-doped regions in the dC/dV images is observed, and p-n junctions are highlighted in the dR/dV images. The results can be directly compared with data taken by scanning capacitance microscope (SCM), which uses unshielded cantilevers and resonant electronics, and the MIM reveals more information of the local dopant concentration than SCM.

  3. Dielectric relaxation and ac conduction in γ-irradiated UHMWPE/MWCNTs nano composites: Impedance spectroscopy analysis

    International Nuclear Information System (INIS)

    Maqbool, Syed Asad; Mehmood, Malik Sajjad; Mukhtar, Saqlain Saqib; Baluch, Mansoor A.; Khan, Shamim; Yasin, Tariq; Khan, Yaqoob

    2017-01-01

    The dielectric behavior of γ-irradiated ultra-high molecular weight polyethylene (UHMWPE) and its nano composites (NCs) with γ-ray modified multi wall carbon nano tubes (γ-MWCNTs) and MWCNTs had been studied using impedance spectroscopy. The study had been carried out in the frequency range of 20–2 MHz at room temperature. All samples (pure and NCs) were prepared in the form of sheets and irradiated with γ-dose of 50 kGy and 100 kGy, respectively. The comprehensive analysis of results revealed that resistivity of UHMWPE for conduction decreased on irradiation and incorporation of MWCNTs (whether γ ray modified or un-modified) due to the radiation induced damage and conductive networks induced by MWCNTs. At low frequency range a significant increase in the dielectric constant had been observed because of irradiation and addition of MWNCTs. The trend of loss tangent and ac conductivity for each investigated sample depended on resistivity offered and had a decreasing trend as a function of frequency. Moreover, dissipation factor increased with the incorporation of MWNCTs and irradiation from 0.12 to 0.22. In addition to this, non-frequency dependent static dielectric constant was also found to increase with irradiation and incorporation of MWCNTs. The relaxation time was found to increase from 1.2 to 4.3 ms due to hindrance offered by radiation induced mutual cross linking of PE chains and polymer-MWNCTs bindings. - Highlights: • The resistivity for conduction in pristine UHMWPE is decreased with γ-irradiation. • Conduction in PE/MWCNTs nanocomposites increased due to MWCNTs addition. • Static dielectric constant of UHMWPE increased with γ-irradiation. • Static dielectric constant of UHMWPE increased due to MWCNTs incorporation.

  4. A novel method for real-time skin impedance measurement during radiofrequency skin tightening treatments.

    Science.gov (United States)

    Harth, Yoram; Lischinsky, Daniel

    2011-03-01

    The thermal effects of monopolar and bipolar radiofrequency (RF) have been proven to be beneficial in skin tightening. Nevertheless, these effects were frequently partial or unpredictable because of the uncontrolled nature of monopolar or unipolar RF and the superficial nature of energy flow for bipolar or tripolar configurations. One of the hypotheses for lack or predictability of efficacy of the first-generation RF therapy skin tightening systems is lack of adaptation of delivered power to differences in individual skin impedance. A novel multisource phase-controlled system was used (1 MHz, power range 0-65 W) for treatment and real-time skin impedance measurements in 24 patients (EndyMed PRO™; EndyMed, Cesarea, Israel). This system allows continuous real-time measurement of skin impedance delivering constant energy to the patient skin independent of changes in its impedance. More than 6000 unique skin impedance measurements on 22 patients showed an average session impedance range was 215-584 Ohm with an average of 369 Ohm (standard deviation of 49 Ohm). Analyzing individual pulses (total of 600 readings) showed a significant decrease in impedance during the pulse. These findings validate the expected differences in skin impedance between individual patients and in the same patients during the treatment pulse. Clinical study on 30 patients with facial skin aging using the device has shown high predictability of efficacy (86.7% of patients had good results or better at 3 months' follow-up [decrease of 2 or more grades in Fitzpatrick's wrinkle scale]). The real-time customization of energy according to skin impedance allows a significantly more accurate and safe method of nonablative skin tightening with more consistent and predictable results. © 2011 Wiley Periodicals, Inc.

  5. A method for decreasing transport ac losses in multifilamentary and multistrip superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B A [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Majoros, M [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom)

    2000-07-01

    A new method is proposed for decreasing transport ac losses in multifilamentary superconductors by the decoupling of the filaments using a magnetic material in the form of thin layers surrounding the individual filaments. For a superconductor with an elliptical cross section, the magnetic material surrounding the filaments affects the local magnetic field distribution that both reduces the critical current of the filaments and induces the transport ac losses in the magnetic material. Even by taking into account any detrimental influences of the presence of the magnetic material around the filaments, the analysis of the experimental data supported by computer modelling confirmed that for a Bi2223 tape with 100 filaments individually covered by magnetic material, such as iron powder, the transport ac losses should be 65 times lower than for the same multifilamentary conductor without the magnetic coating on the filaments. With an increasing number of filaments, the ac loss decrease would be even larger. (author)

  6. Impedance method for measuring shear elasticity of liquids

    Science.gov (United States)

    Badmaev, B. B.; Dembelova, T. S.; Damdinov, B. B.; Gulgenov, Ch. Zh.

    2017-11-01

    Experimental results of studying low-frequency (74 kHz) shear elasticity of polymer liquids by the impedance method (analogous to the Mason method) are presented. A free-volume thick liquid layer is placed on the horizontal surface of a piezoelectric quartz crystal with dimensions 34.7 × 12 × 5.5 cm. The latter performs tangential vibrations at resonance frequency. The liquid layer experiences shear strain, and shear waves should propagate in it. From the theory of the method, it follows that, with an increase in the layer thickness, both real and imaginary resonance frequency shifts should exhibit damped oscillations and tend to limiting values. For the liquids under study, the imaginary frequency shift far exceeds the real one, which testifies to the presence of bulk shear elasticity.

  7. Grid impedance estimation based hybrid islanding detection method for AC microgrids

    DEFF Research Database (Denmark)

    Ghzaiel, Walid; Jebali-Ben Ghorbal, Manel; Slama-Belkhodja, Ilhem

    2017-01-01

    This paper focuses on a hybrid islanding detection algorithm for parallel-inverters-based microgrids. The proposed algorithm is implemented on the unit ensuring the control of the intelligent bypass switch connecting or disconnecting the microgrid from the utility. This method employs a grid...... to avoid interactions with other units. The selected inverter will be the one closest to the controllable distributed generation system or to a healthy grid side in case of meshed microgrid with multiple-grid connections. The detection algorithm is applied to quickly detect the resonance phenomena, so...

  8. New equivalent-electrical circuit model and a practical measurement method for human body impedance.

    Science.gov (United States)

    Chinen, Koyu; Kinjo, Ichiko; Zamami, Aki; Irei, Kotoyo; Nagayama, Kanako

    2015-01-01

    Human body impedance analysis is an effective tool to extract electrical information from tissues in the human body. This paper presents a new measurement method of impedance using armpit electrode and a new equivalent circuit model for the human body. The lowest impedance was measured by using an LCR meter and six electrodes including armpit electrodes. The electrical equivalent circuit model for the cell consists of resistance R and capacitance C. The R represents electrical resistance of the liquid of the inside and outside of the cell, and the C represents high frequency conductance of the cell membrane. We propose an equivalent circuit model which consists of five parallel high frequency-passing CR circuits. The proposed equivalent circuit represents alpha distribution in the impedance measured at a lower frequency range due to ion current of the outside of the cell, and beta distribution at a high frequency range due to the cell membrane and the liquid inside cell. The calculated values by using the proposed equivalent circuit model were consistent with the measured values for the human body impedance.

  9. Temperature dependence of ac response in diluted half-metallic CrO{sub 2} powder compact

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yajie; Zhang Xiaoyu; Cai Tianyi; Li Zhenya

    2004-10-06

    We present a study on temperature dependence of impedance spectra of the cold-pressed chromium dioxide (CrO{sub 2})-titanic dioxide (TiO{sub 2}) composite over the temperature range of 77-300 K, and over the frequency range of 40 Hz-500 kHz. The microstructure of the sample is analyzed using transmission electron microscopy (TEM), SEM and X-ray diffraction (XRD). The impedance spectra exhibit a strong dependence upon temperature. By evaluating the ac electricity behavior of the composite, we find the experimental data are successfully described by a power-law behavior {sigma}{sub ac}=A(T){omega}{sup s}, in which the frequency exponent s shows slightly greater than a universal value (0{<=}s{<=}1), and rises approximately linearly with temperature over a broad range of low temperature.

  10. Resonance reduction for AC drives with small capacitance in the DC link

    DEFF Research Database (Denmark)

    Máthé, Lászlo; Török, Lajos; Wang, Dong

    2016-01-01

    Pulse Width Modulated AC drives equipped with small DC-link capacitor are becoming an attractive solution for electric drive applications with moderate requirements for shaft dynamic performance. However, when these drives are fed from a weak grid a resonance between the line side impedance...... and the DC-link capacitor appears. Due to this resonance, the THD and the partially weighted harmonic distortion of the line currents are increased, which may rise compatibility problems with the AC line harmonic standards. By using vector control the motor drive is transformed into a constant power load...

  11. Bacteriocidal activity of sanitizers against Enterococcus faecium attached to stainless steel as determined by plate count and impedance methods.

    Science.gov (United States)

    Andrade, N J; Bridgeman, T A; Zottola, E A

    1998-07-01

    Enterococcus faecium attached to stainless steel chips (100 mm2) was treated with the following sanitizers: sodium hypochlorite, peracetic acid (PA), peracetic acid plus an organic acid (PAS), quaternary ammonium, organic acid, and anionic acid. The effectiveness of sanitizer solutions on planktonic cells (not attached) was evaluated by the Association of Official Analytical Chemists (AOAC) suspension test. The number of attached cells was determined by impedance measurement and plate count method after vortexing. The decimal reduction (DR) in numbers of the E. faecium population was determined for the three methods and was analyzed by analysis of variance (P plate count method after vortexing, and impedance measurement, respectively. Plate count and impedance methods showed a difference (P measurement was the best method to measure adherent cells. Impedance measurement required the development of a quadratic regression. The equation developed from 82 samples is as follows: log CFU/chip = 0.2385T2-0.96T + 9.35, r2 = 0.92, P plate count method after vortexing. These data suggest that impedance measurement is the method of choice when evaluating the number of bacterial cells adhered to a surface.

  12. A new method for calculation of low-frequency coupling impedance

    International Nuclear Information System (INIS)

    Kurennoy, S.S.; Stupakov, G.V.

    1993-05-01

    In high-energy proton accelerators and storage rings the bunch length is typically at least a few times larger than the radius of the vacuum chamber. For example, the SSC will have an rms bunch length above 6 cm and a beam-pipe radius below 2 cm. The main concern for beam stability in such a machine is the low-frequency impedance, i.e., the coupling impedance at frequencies wen below the cut-off frequency of the vacuum chamber. In the present paper we develop a new analytical approach for calculation of the low-frequency impedance of axisymmetric structures that allows us to give quick and reliable estimates of contributions to the impedance from various chamber discontinuities. Simple formulae for the longitudinal impedance of some typical discontinuities are obtained

  13. Origin of Capacity Fading in Nano-Sized Co3O4Electrodes: Electrochemical Impedance Spectroscopy Study

    Directory of Open Access Journals (Sweden)

    Kang Jin-Gu

    2008-01-01

    Full Text Available Abstract Transition metal oxides have been suggested as innovative, high-energy electrode materials for lithium-ion batteries because their electrochemical conversion reactions can transfer two to six electrons. However, nano-sized transition metal oxides, especially Co3O4, exhibit drastic capacity decay during discharge/charge cycling, which hinders their practical use in lithium-ion batteries. Herein, we prepared nano-sized Co3O4with high crystallinity using a simple citrate-gel method and used electrochemical impedance spectroscopy method to examine the origin for the drastic capacity fading observed in the nano-sized Co3O4anode system. During cycling, AC impedance responses were collected at the first discharged state and at every subsequent tenth discharged state until the 100th cycle. By examining the separable relaxation time of each electrochemical reaction and the goodness-of-fit results, a direct relation between the charge transfer process and cycling performance was clearly observed.

  14. Diffusion and Gas Conversion Analysis of Solid Oxide Fuel Cells at Loads via AC Impedance

    Directory of Open Access Journals (Sweden)

    Robert U. Payne

    2011-01-01

    Full Text Available Impedance measurements were conducted under practical load conditions in solid oxide fuel cells of differing sizes. For a 2 cm2 button cell, impedance spectra data were separately measured for the anode, cathode, and total cell. Improved equivalent circuit models are proposed and applied to simulate each of measured impedance data. Circuit elements related to the chemical and physical processes have been added to the total-cell model to account for an extra relaxation process in the spectra not measured at either electrode. The processes to which elements are attributed have been deduced by varying cell temperature, load current, and hydrogen concentration. Spectra data were also obtained for a planar stack of five 61 cm2 cells and the individual cells therein, which were fitted to a simplified equivalent circuit model of the total button cell. Similar to the button cell, the planar cells and stack exhibit a pronounced low-frequency relaxation process, which has been attributed to concentration losses, that is, the combined effects of diffusion and gas conversion. The simplified total-cell model approximates well the dynamic behavior of the SOFC cells and the whole stack.

  15. VISUALIZATION OF BIOLOGICAL TISSUE IMPEDANCE PARAMETERS

    Directory of Open Access Journals (Sweden)

    V. I. Bankov

    2016-01-01

    Full Text Available Objective. Investigation the opportunity for measurement of biological tissue impedance to visualize its parameters.Materials and methods. Studies were undertook on the experimental facility, consists of registrating measuring cell, constructed from flat inductors system, formed in oscillatory circuit, herewith investigated biological tissue is the part of this oscillatory circuit. An excitation of oscillatory circuit fulfilled by means of exciter inductor which forms impulse complex modulated electromagnetic field (ICM EMF. The measurement process and visualizations provided by set of certificated instruments: a digital oscillograph AKTAKOM ADS-2221MV, a digital generator АКТАКОМ AWG-4150 (both with software and a gauge RLC E7-22. Comparative dynamic studies of fixed volume and weight pig’s blood, adipose tissue, muscular tissue impedance were conducted by contact versus contactless methods. Contactless method in contrast to contact method gives opportunity to obtain the real morphological visualization of biological tissue irrespective of their nature.Results. Comparison of contact and contactless methods of impedance measurement shows that the inductance to capacitance ratio X(L / X(C was equal: 17 – for muscular tissue, 4 – for blood, 1 – for adipose tissue. It demonstrates the technical correspondence of both impedance registration methods. If propose the base relevance of X (L and X (C parameters for biological tissue impedance so contactless measurement method for sure shows insulating properties of adipose tissue and high conductivity for blood and muscular tissue in fixed volume-weight parameters. Registration of biological tissue impedance complex parameters by contactless method with the help of induced ICM EMF in fixed volume of biological tissue uncovers the most important informative volumes to characterize morphofunctional condition of biological tissue namely X (L / X (C.Conclusion. Contactless method of biological

  16. RHIC injection kicker impedance

    International Nuclear Information System (INIS)

    Mane, V.; Peggs, S.; Trbojevic, D.; Zhang, W.

    1995-01-01

    The longitudinal impedance of the RHIC injection kicker is measured using the wire method up to a frequency of 3 GHz. The mismatch between the 50 ohm cable and the wire and pipe system is calibrated using the TRL calibration algorithm. Various methods of reducing the impedance, such as coated ceramic pipe and copper strips are investigated

  17. Impedance-spectroscopy analysis and piezoelectric properties of Pb2KNb5O15 ceramics

    International Nuclear Information System (INIS)

    Rao, K. Sambasiva; Murali Krishna, P.; Swarna Latha, T.; Madhava Prasad, D.

    2006-01-01

    Preparation, dielectric, piezoelectric, hysteresis, impedance spectroscopy and AC conductivity studies in the Pb 0.8 K 0.4 Nb 2 O 6 ferroelectric ceramic have been presented. The Pb 1-x K 2x Nb 2 O 6 (PKN) characterized for ferroelectric and impedance spectroscopy studies from room temperature to 600 deg. C. The sample shows a single phase with orthorhombic structure from X-ray diffraction studies. The Cole-Cole plots and electric modulus plots at different temperatures are drawn. The results obtained from the impedance spectroscopy are analyzed, to understand the conductivity behavior of PKN. The piezoelectric constant, d 33 , has been found to be 75 x 10 -12 C/N

  18. Abdominal fat thickness measurement using Focused Impedance Method (FIM) - phantom study

    Science.gov (United States)

    Haowlader, Salahuddin; Baig, Tanveer Noor; Siddique-e Rabbani, K.

    2010-04-01

    Abdominal fat thickness is a risk indicator of heart diseases, diabetes, etc., and its measurement is therefore important from the point of view of preventive care. Tetrapolar electrical impedance measurements (TPIM) could offer a simple and low cost alternative for such measurement compared to conventional techniques using CT scan and MRI, and has been tried by different groups. Focused Impedance Method (FIM) appears attractive as it can give localised information. An intuitive physical model was developed and experimental work was performed on a phantom designed to simulate abdominal subcutaneous fat layer in a body. TPIM measurements were performed with varying electrode separations. For small separations of current and potential electrodes, the measured impedance changed little, but started to decrease sharply beyond a certain separation, eventually diminishing gradually to negligible values. The finding could be explained using the intuitive physical model and gives an important practical information. TPIM and FIM may be useful for measurement of SFL thickness only if the electrode separations are within a certain specific range, and will fail to give reliable results if beyond this range. Further work, both analytical and experimental, are needed to establish this technique on a sound footing.

  19. System-on-Chip Integration of a New Electromechanical Impedance Calculation Method for Aircraft Structure Health Monitoring

    Directory of Open Access Journals (Sweden)

    Daniel Medale

    2012-10-01

    Full Text Available The work reported on this paper describes a new methodology implementation for active structural health monitoring of recent aircraft parts made from carbon-fiber-reinforced polymer. This diagnosis is based on a new embedded method that is capable of measuring the local high frequency impedance spectrum of the structure through the calculation of the electro-mechanical impedance of a piezoelectric patch pasted non-permanently onto its surface. This paper involves both the laboratory based E/M impedance method development, its implementation into a CPU with limited resources as well as a comparison with experimental testing data needed to demonstrate the feasibility of flaw detection on composite materials and answer the question of the method reliability. The different development steps are presented and the integration issues are discussed. Furthermore, we present the unique advantages that the reconfigurable electronics through System-on-Chip (SoC technology brings to the system scaling and flexibility. At the end of this article, we demonstrate the capability of a basic network of sensors mounted onto a real composite aircraft part specimen to capture its local impedance spectrum signature and to diagnosis different delamination sizes using a comparison with a baseline.

  20. System-on-chip integration of a new electromechanical impedance calculation method for aircraft structure health monitoring.

    Science.gov (United States)

    Boukabache, Hamza; Escriba, Christophe; Zedek, Sabeha; Medale, Daniel; Rolet, Sebastien; Fourniols, Jean Yves

    2012-10-11

    The work reported on this paper describes a new methodology implementation for active structural health monitoring of recent aircraft parts made from carbon-fiber-reinforced polymer. This diagnosis is based on a new embedded method that is capable of measuring the local high frequency impedance spectrum of the structure through the calculation of the electro-mechanical impedance of a piezoelectric patch pasted non-permanently onto its surface. This paper involves both the laboratory based E/M impedance method development, its implementation into a CPU with limited resources as well as a comparison with experimental testing data needed to demonstrate the feasibility of flaw detection on composite materials and answer the question of the method reliability. The different development steps are presented and the integration issues are discussed. Furthermore, we present the unique advantages that the reconfigurable electronics through System-on-Chip (SoC) technology brings to the system scaling and flexibility. At the end of this article, we demonstrate the capability of a basic network of sensors mounted onto a real composite aircraft part specimen to capture its local impedance spectrum signature and to diagnosis different delamination sizes using a comparison with a baseline.

  1. Detection of high-impedance fault in low-voltage DC distribution system via mathematical morphology

    Directory of Open Access Journals (Sweden)

    Yun-Sik Oh

    2016-01-01

    Full Text Available This study presents a method for high-impedance fault (HIF detection in a low-voltage DC (LVDC distribution system via mathematical morphology (MM, which is composed of two elementary transformations, namely, dilation and erosion. Various MM-based filters are used to detect abnormal signals of current waveform. The LVDC distribution system, including power conversion devices, such as AC/DC and DC/DC converters, is modelled with electromagnetic transient program (EMTP software to verify the proposed method. The HIF arc model in the DC system is also implemented with EMTP/MODELS, which is a symbolic language interpreter for EMTP. Simulation results show that the proposed method can be applied to detect HIF effectively in the LVDC distribution system.

  2. Current distribution effects in AC impedance spectroscopy of electroceramic point contact and thin film model electrodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Jacobsen, Torben

    2010-01-01

    the primary current distribution to the DC current distribution restricted to the Three-Phase-Boundary (TPB) zone introduces an error in the determination of the reaction resistance, Rreac = Z(freq. → 0) − Z(freq. → ∞). The error is estimated for different width of the effective TPB zone and a rule of thumb...... regarding its significance is provided. The associated characteristic impedance spectrum shape change is simulated and its origin discussed. Furthermore, the characteristic shape of impedance spectra of thin electroceramic film electrodes with lateral ohmic resistance is studied as a function...

  3. Structural, dielectric and AC conductivity study of Sb2O3 thin film ...

    Indian Academy of Sciences (India)

    52

    However, to date, no reports have appeared on impedance spectroscopy, modulus behavior, electrical conductivity, dielectric relaxation and dielectric properties of crystalline Sb2O3 thin films. This paper deals for the first time with the frequency and temperature dependence of AC conductivity and complex electric modulus ...

  4. A novel broadband impedance method for detection of cell-derived microparticles.

    Science.gov (United States)

    Lvovich, Vadim; Srikanthan, Sowmya; Silverstein, Roy L

    2010-10-15

    A novel label-free method is presented to detect and quantify cell-derived microparticles (MPs) by the electrochemical potential-modulated electrochemical impedance spectroscopy (EIS). MPs are present in elevated concentrations during pathological conditions and play a major role in the establishment and pathogenesis of many diseases. Considering this, accurate detection and quantification of MPs is very important in clinical diagnostics and therapeutics. A combination of bulk solution electrokinetic sorting and interfacial impedance responses allows achieving detection limits as low as several MPs per μL. By fitting resulting EIS spectra with an equivalent electrical circuit, the bulk solution electrokinetic and interfacial impedance responses were characterized. In the bulk solution two major relaxations were prominent-β-relaxation in low MHz region due to the MP capacitive membrane bridging, and α-relaxation at ∼10 kHz due to counter ions diffusion. At low frequencies (10-0.1 Hz) at electrochemical potentials exceeding -100 mV, a facile interfacial Faradaic process of oxidation in MPs coupled with diffusion and non-Faradaic double layer charging dominate, probably due to oxidation of phospholipids and/or proteins on the MP surface and MP lysis. Buffer influence on the MP detection demonstrated that a relatively low conductivity Tyrode's buffer background solution is preferential for the MP electrokinetic separation and characterization. This study also demonstrated that standard laboratory methods such as flow cytometry underestimate MP concentrations, especially those with smaller average sizes, by as much as a factor of 2-40. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. An Analytical Method of Auxiliary Sources Solution for Plane Wave Scattering by Impedance Cylinders

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2004-01-01

    Analytical Method of Auxiliary Sources solutions for plane wave scattering by circular impedance cylinders are derived by transformation of the exact eigenfunction series solutions employing the Hankel function wave transformation. The analytical Method of Auxiliary Sources solution thus obtained...

  6. Structural characterization and impedance studies of PbO nanofibers synthesized by electrospinning technique

    Energy Technology Data Exchange (ETDEWEB)

    Hari Prasad, Kamatam [Department of Physics, Pondicherry University, Puducherry, 605 014 (India); Vinoth, S. [Department of Physics, Pondicherry University, Puducherry, 605 014 (India); Centre for Nanoscience, Pondicherry University, Puducherry, 605014 (India); Jena, Paramananda [Department of Physics, Pondicherry University, Puducherry, 605 014 (India); School of Materials Science and Technology, Indian Institute of Technology(BHU), Varanasi, 221 005 (India); Venkateswarlu, M. [R & D, Amara Raja Batteries Ltd, Karakambadi, 517 520, A.P (India); Satyanarayana, N., E-mail: nallanis2011@gmail.com [Department of Physics, Pondicherry University, Puducherry, 605 014 (India)

    2017-06-15

    One-dimensional electrospun lead oxide nanofibers synthesized by a simple electrospinning technique. The prepared lead oxide nanofibers investigated by using TG/DTA, FTIR, Raman, X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area analyzer, scanning electron microscopy–energy dispersive X-ray spectroscopy (SEM-EDX), atomic force microscopy (AFM), Transmission electron microscopy (TEM), and impedance spectroscopy techniques. TG/DTA results confirmed the thermal behavior of the as-spun nanofibers. XRD, FTIR, and Raman spectra results, respectively, confirm the formation of pure orthorhombic crystalline phase and structural coordination of the lead oxide (β-PbO) nanofibers. The BET specific surface area of β-PbO nanofibers sample is found to be 51.23 m{sup 2} g{sup -1}. SEM and AFM micrographs showed the formation of β-PbO nanofibers with a diameter of 85–300 nm. The impedance measurements of lead oxide nanofibers as a function of temperature, 25–150 °C, was evaluated by analyzing the measured impedance data using the winfit software. The electrical conductivity of the lead oxide (β-PbO) nanofibers evaluated by analyzing the measured impedance data using the winfit software is found to be 5.68 × 10{sup -6} S cm{sup -1} at 150 °C. Also, an activation energy (E{sub a}) for the migration of the charge carrier evaluated from the temperature dependence of conductivity plot is found to be 0.27 eV. The temperature dependence AC conductivity of β-PbO nanofibers was evaluated using the measured impedance data and sample dimension. The observed variation of high-frequency AC conductivity attributed to the hopping electrons between the adjacent sites. - Highlights: • First time, β-PbO nanofibers were successfully prepared by electrospinning technique. • Structural, morphological, roughness and electrical properties are studied. • TG/DTA, XRD, FTIR, Raman, SEM/AFM, TEM-EDX, and impedance measurements were made.

  7. Impedance spectroscopy and morphology of SrBi{sub 4}Ti{sub 4}O{sub 15} ceramics prepared by soft chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Rout, S.K. [Department of Chemical and Biomolecular Engineering, KAIST (Korea, Republic of); Department of Applied Physics, BIT, Mesra, Ranchi (India)], E-mail: drskrout@gmail.com; Hussian, Ali; Lee, J.S. [School of Materials Science and Engineering University of Ulsan (Korea, Republic of); Kim, I.W. [Department of Physics, University of Ulsan (Korea, Republic of); Woo, S.I. [Department of Chemical and Biomolecular Engineering, KAIST (Korea, Republic of)], E-mail: siwoo@kaist.ac.kr

    2009-05-27

    In this work, we have synthesized polycrystalline SrBi{sub 4}Ti{sub 4}O{sub 15} (SBiT) ceramics by soft chemical method. These ceramics were structurally characterized by analysis of X-ray diffraction (XRD) patterns, indicates that SBiT ceramics present an orthorhombic structure. Scanning electron micrograph shows that the grains exhibit a plate like morphology. Dielectric relaxations of the SBiT ceramics were investigated in the temperature range 100-700 deg. C. Using the Cole-Cole model, an analysis of the dielectric loss with frequency was performed, assuming a distribution of relaxation time. The presence of the peaks in temperature dependent dielectric loss indicates that the hoping of charge carriers is responsible for the relaxation. Impedance studies shows a non-Debye type relaxation, and relaxation frequency shift to higher side with increase in temperature. A significant shift in impedance loss peaks towards higher frequency side indicates conduction in material and favoring the long range motion of mobile charge carriers. The Nyquist plot shows overlapping semicircles, for grain and grain boundary of SBiT ceramics. The frequency dependent ac conductivity at different temperatures indicates that the conduction process is thermally activated process and the spectra follow the universal power law. The hopping frequency shifts towards higher frequency side with increase of temperature, below which the conductivity is frequency independent. The variation of dc conductivity confirms that the SBiT ceramics exhibits negative temperature coefficient of resistance behavior in high temperature.

  8. Short-circuit impedance measurement

    DEFF Research Database (Denmark)

    Pedersen, Knud Ole Helgesen; Nielsen, Arne Hejde; Poulsen, Niels Kjølstad

    2003-01-01

    Methods for estimating the short-circuit impedance in the power grid are investigated for various voltage levels and situations. The short-circuit impedance is measured, preferably from naturally occurring load changes in the grid, and it is shown that such a measurement system faces different...

  9. Impedance Scaling and Impedance Control

    International Nuclear Information System (INIS)

    Chou, W.; Griffin, J.

    1997-06-01

    When a machine becomes really large, such as the Very Large Hadron Collider (VLHC), of which the circumference could reach the order of megameters, beam instability could be an essential bottleneck. This paper studies the scaling of the instability threshold vs. machine size when the coupling impedance scales in a ''normal'' way. It is shown that the beam would be intrinsically unstable for the VLHC. As a possible solution to this problem, it is proposed to introduce local impedance inserts for controlling the machine impedance. In the longitudinal plane, this could be done by using a heavily detuned rf cavity (e.g., a biconical structure), which could provide large imaginary impedance with the right sign (i.e., inductive or capacitive) while keeping the real part small. In the transverse direction, a carefully designed variation of the cross section of a beam pipe could generate negative impedance that would partially compensate the transverse impedance in one plane

  10. Voltage Based Detection Method for High Impedance Fault in a Distribution System

    Science.gov (United States)

    Thomas, Mini Shaji; Bhaskar, Namrata; Prakash, Anupama

    2016-09-01

    High-impedance faults (HIFs) on distribution feeders cannot be detected by conventional protection schemes, as HIFs are characterized by their low fault current level and waveform distortion due to the nonlinearity of the ground return path. This paper proposes a method to identify the HIFs in distribution system and isolate the faulty section, to reduce downtime. This method is based on voltage measurements along the distribution feeder and utilizes the sequence components of the voltages. Three models of high impedance faults have been considered and source side and load side breaking of the conductor have been studied in this work to capture a wide range of scenarios. The effect of neutral grounding of the source side transformer is also accounted in this study. The results show that the algorithm detects the HIFs accurately and rapidly. Thus, the faulty section can be isolated and service can be restored to the rest of the consumers.

  11. A two-dimensional finite element method to calculate the AC loss in superconducting cables, wires and coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Z; Jiang, Y; Pei, R; Coombs, T A [Electronic, Power and Energy Conversion Group, Engineering Department, University of Cambridge, CB2 1PZ (United Kingdom); Ye, L [Department of Electrical Power Engineering, CAU, P. O. Box 210, Beijing 100083 (China); Campbell, A M [Interdisciplinary Research Centre in Superconductivity, University of Cambridge, CB3 0HE (United Kingdom)], E-mail: Zh223@cam.ac.uk

    2008-02-15

    In order to utilize HTS conductors in AC electrical devices, it is very important to be able to understand the characteristics of HTS materials in the AC electromagnetic conditions and give an accurate estimate of the AC loss. A numerical method is proposed in this paper to estimate the AC loss in superconducting conductors including MgB{sub 2} wires and YBCO coated conductors. This method is based on solving a set of partial differential equations in which the magnetic field is used as the state variable to get the current and electric field distributions in the cross sections of the conductors and hence the AC loss can be calculated. This method is used to model a single-element and a multi-element MgB{sub 2} wires. The results demonstrate that the multi-element MgB{sub 2} wire has a lower AC loss than a single-element one when carrying the same current. The model is also used to simulate YBCO coated conductors by simplifying the superconducting thin tape into a one-dimensional region where the thickness of the coated conductor can be ignored. The results show a good agreement with the measurement.

  12. On the impedance of galvanic cells XVIII. The potential dependence of the faradaic impedance in the case of an irreversible electrode reaction, and its application to A.C. polarography

    NARCIS (Netherlands)

    Timmer, B.; Sluyters-Rehbach, M.; Sluyters, J.H.

    A theoretical treatment for the potential dependence of the faradaic impedance, in the case that the electrode reaction behaves irreversibly with respect to the direct current, using the steady-state concept, is presented. An analysis of the expressions obtained in the complex impedance plane is

  13. A new method for measuring the wall charge waveforms of AC PDP

    International Nuclear Information System (INIS)

    Liang Zhihu; Liu Zujun; Liu Chunliang

    2004-01-01

    A new method is developed to measure the wall charge waveforms in coplanar alternating current plasma display panel (AC PDP). In the method, two groups of display electrodes are selected from a coplanar AC PDP and two capacitors are respectively connected with these two groups of display electrodes in series, and a measuring circuit and a reference circuit are thus constructed. With the help of special processing, discharge takes place in the cells included in the measuring circuit under a normal drive voltage but no discharge takes place in the cells included in the reference circuit under a normal drive voltage. The wall charge waveforms are obtained from the voltage difference between the two capacitors. Using the method, the wall charge waveforms are measured during resetting period, addressing period and sustaining period for the 304.8 mm (12-inch) test PDP panel. The result shows that the wall voltage is about 96 V during the sustaining period. (authors)

  14. System and method for monitoring and controlling stator winding temperature in a de-energized AC motor

    Science.gov (United States)

    Lu, Bin [Kenosha, WI; Luebke, Charles John [Sussex, WI; Habetler, Thomas G [Snellville, GA; Zhang, Pinjia [Atlanta, GA; Becker, Scott K [Oak Creek, WI

    2011-12-27

    A system and method for measuring and controlling stator winding temperature in an AC motor while idling is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of a multi-phase AC motor. The circuit further includes a plurality of switching devices to control current flow and terminal voltages in the multi-phase AC motor and a controller connected to the circuit. The controller is configured to activate the plurality of switching devices to create a DC signal in an output of the motor control device corresponding to an input to the multi-phase AC motor, determine or estimate a stator winding resistance of the multi-phase AC motor based on the DC signal, and estimate a stator temperature from the stator winding resistance. Temperature can then be controlled and regulated by DC injection into the stator windings.

  15. The New Method of the PV Panels Fault Detection Using Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Symonowicz, Joanna Karolina; Riedel, Nicholas; Thorsteinsson, Sune

    The aim of our project is to develop a new method for photovoltaic (PV) panel fault detection based on analyzing impedance spectroscopy (IS) spectra. Although this technique was successful in assessing the state of degradation of fuel cells and batteries, it has never been applied to PV cells...

  16. Evaluation method for corrosion level of rebar in RC with electrical impedance measurement

    Science.gov (United States)

    Sasamoto, Akira

    2018-04-01

    The author reported that the impedance measurement using the 4-terminal method on the RC surface for diagnosing corrosion of internal rebar. The difference between the maximum value at 0.01 Hz and the minimum value around 10 Hz indicates the corrosion level of rebar in that report. This is successive report on a signal processing method for estimating the corrosion level by the measured impedance data to obtain more high accuracy. In the dielectric, a graph of frequency and dielectric constant (Cole-Cole plot diagram by KS Cole and RH Cole article of 1941) draws a shape of circle if the dielectric is independent of frequency but it draws a shape of ellipse in reality due to frequency dependency. Havriliak and Negami have also presented Havriliak-Negami model which introduced parameter into dielectric constant equation which deforms Cole-Cole plot diagram and showed that acquired dielectric data of polymer materials fit to this model with proper parameters. In this report, we first consider electric model connected with resistance and capacitance as a rough model of RC concrete. If the capacitance in this model circuit has some loss of dielectric, it is stated that graph in impedance plot is expected to take as similar deformation in the dielectric Cole-Cole plot. Then a numerical optimization computer code for obtaining parameters in the Cole-Cole plot diagram and Havriliak-Negami model is constructed, and the correlation between the deformation parameter of each model and corrosion is shown by this code. These results are feasibility study for diagnosis of corrosion level of rebar by associated parameters to a shape of impedance graph.

  17. Modeling and Grid impedance Variation Analysis of Parallel Connected Grid Connected Inverter based on Impedance Based Harmonic Analysis

    DEFF Research Database (Denmark)

    Kwon, JunBum; Wang, Xiongfei; Bak, Claus Leth

    2014-01-01

    This paper addresses the harmonic compensation error problem existing with parallel connected inverter in the same grid interface conditions by means of impedance-based analysis and modeling. Unlike the single grid connected inverter, it is found that multiple parallel connected inverters and grid...... impedance can make influence to each other if they each have a harmonic compensation function. The analysis method proposed in this paper is based on the relationship between the overall output impedance and input impedance of parallel connected inverter, where controller gain design method, which can...

  18. A numerical method to estimate AC loss in superconducting coated conductors by finite element modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Z; Jiang, Q; Pei, R; Campbell, A M; Coombs, T A [Engineering Department, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2007-04-15

    A finite element method code based on the critical state model is proposed to solve the AC loss problem in YBCO coated conductors. This numerical method is based on a set of partial differential equations (PDEs) in which the magnetic field is used as the state variable. The AC loss problems have been investigated both in self-field condition and external field condition. Two numerical approaches have been introduced: the first model is configured on the cross-section plane of the YBCO tape to simulate an infinitely long superconducting tape. The second model represents the plane of the critical current flowing and is able to simulate the YBCO tape with finite length where the end effect is accounted. An AC loss measurement has been done to verify the numerical results and shows a good agreement with the numerical solution.

  19. Dielectric, ferroelectrics properties and impedance spectroscopy analysis of the [(Na0.535K0.4800.966Li0.058](Nb0.90Ta0.10O3-based lead-free ceramics

    Directory of Open Access Journals (Sweden)

    M. Saidi

    2015-03-01

    Full Text Available Polycrystalline of [(Na0.535K0.4800.966Li0.058](Nb0.90Ta0.10O3 samples were prepared using the high-temperature solid-state reaction technique. X-ray diffraction (XRD analysis indicates the formation of a single-phase with orthorhombic structure. AC impedance plots were used as tool to analyze the electrical behavior of the sample as a function of frequency at different temperatures. The AC impedance studies revealed the presence of grain effect, from 425°C onwards. Complex impedance analysis indicated non-Debye type dielectric relaxation. The Nyquist plot showed the negative temperature coefficient of resistance (NTCR characteristic of NKLNT. The AC conductivity results were used to correlate with the barrier hopping (CBH model to evaluate the binding energy (Wm, the minimum hopping distance (Rmin, the density of states at Fermi level (N(Ef, and the activation energy of the compound.

  20. Impedance spectroscopy of heterojunction solar cell a-SiC/c-Si with ITO antireflection film investigated at different temperatures

    Science.gov (United States)

    Šály, V.; Perný, M.; Janíček, F.; Huran, J.; Mikolášek, M.; Packa, J.

    2017-04-01

    Progressive smart photovoltaic technologies including heterostructures a-SiC/c-Si with ITO antireflection film are one of the prospective replacements of conventional photovoltaic silicon technology. Our paper is focused on the investigation of heterostructures a-SiC/c-Si provided with a layer of ITO (indium oxide/tin oxide 90/10 wt.%) which acts as a passivating and antireflection coating. Prepared photovoltaic cell structure was investigated at various temperatures and the influence of temperature on its operation was searched. The investigation of the dynamic properties of heterojunction PV cells was carried out using impedance spectroscopy. The equivalent AC circuit which approximates the measured impedance data was proposed. Assessment of the influence of the temperature on the operation of prepared heterostructure was carried out by analysis of the temperature dependence of AC equivalent circuit elements.

  1. Impedance measurements on YB/sub 2/Cu/sub 3/O/sub 7-delta) interpretation and trapping parameters

    International Nuclear Information System (INIS)

    Yasmeen, S.; Mohammad, M.; Khan, A.Y.; Subhani, M.S.

    1997-01-01

    Two probe impedance spectroscopic studies were carried out on YBa/sub 2/Cu/sub 3/ O/sub 7-delta/ two different sintering conditions i.e. at before final sintering and at after final sintering. In both condition ac impedance studies were done in the frequency range of 1Hz to 100kHz and at different temperatures from room temperature down to 78K. Measurements were done with contacts opposite side (i.e., ceramic behaves as a resister) as well as on opposite sides (i.e., ceramic behaves as a capacitor). Results were obtained in the form of Nyquist plot. Log, Yi/omega Vs log f plot and Yr/omega Vs log f plot. These plots were explained through equivalent circuits. The bulk resistance Rb, the grain boundary resistance R/sub b/ and grain boundary capacitance C/sub gb/ were obtained through these plots. The ac conductivities were also obtained at all temperatures. The log sigma g Vs log omega (frequency) plots were interpreted invoking the theory of ac conductivity in polycrystalline solids. The trapping parameters (binding energy, the hopping distance etc.) were calculated and interpreted. (author)

  2. Efficiency estimation method of three-wired AC to DC line transfer

    Science.gov (United States)

    Solovev, S. V.; Bardanov, A. I.

    2018-05-01

    The development of power semiconductor converters technology expands the scope of their application to medium voltage distribution networks (6-35 kV). Particularly rectifiers and inverters of appropriate power capacity complement the topology of such voltage level networks with the DC links and lines. The article presents a coefficient that allows taking into account the increase of transmission line capacity depending on the parameters of it. The application of the coefficient is presented by the example of transfer three-wired AC line to DC in various methods. Dependences of the change in the capacity from the load power factor of the line and the reactive component of the resistance of the transmission line are obtained. Conclusions are drawn about the most efficient ways of converting a three-wired AC line to direct current.

  3. Large-Signal Lyapunov-Based Stability Analysis of DC/AC Inverters and Inverter-Based Microgrids

    Science.gov (United States)

    Kabalan, Mahmoud

    study. This will enable future studies to save computational effort and produce the most accurate results according to the needs of the study being performed. Moreover, the effect of grid (line) impedance on the accuracy of droop control is explored using the 5th order model. Simulation results show that traditional droop control is valid up to R/X line impedance value of 2. Furthermore, the 3rd order nonlinear model improves the currently available inverter-infinite bus models by accounting for grid impedance, active power-frequency droop and reactive power-voltage droop. Results show the 3rd order model's ability to account for voltage and reactive power changes during a transient event. Finally, the large-signal Lyapunov-based stability analysis is completed for a 3 bus microgrid system (made up of 2 inverters and 1 linear load). The thesis provides a systematic state space large-signal nonlinear mathematical modeling method of inverter-based microgrids. The inverters include the dc-side dynamics associated with dc sources. The mathematical model is then used to estimate the domain of asymptotic stability of the 3 bus microgrid. The three bus microgrid system was used as a case study to highlight the design and optimization capability of a large-signal-based approach. The study explores the effect of system component sizing, load transient and generation variations on the asymptotic stability of the microgrid. Essentially, this advancement gives microgrid designers and engineers the ability to manipulate the domain of asymptotic stability depending on performance requirements. Especially important, this research was able to couple the domain of asymptotic stability of the ac microgrid with that of the dc side voltage source. Time domain simulations were used to demonstrate the mathematical nonlinear analysis results.

  4. Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes

    KAUST Repository

    Ruffo, Riccardo

    2009-07-02

    The impedance behavior of silicon nanowire electrodes has been investigated to understand the electrochemical process kinetics that influences the performance when used as a high-capacity anode in a lithium ion battery. The ac response was measured by using impedance spectroscopy in equilibrium conditions at different lithium compositions and during several cycles of charge and discharge in a half cell vs. metallic lithium. The impedance analysis shows the contribution of both surface resistance and solid state diffusion through the bulk of the nanowires. The surface process is dominated by a solid electrolyte layer (SEI) consisting of an inner, inorganic insoluble part and several organic compounds at the outer interface, as seen by XPS analysis. The surface resistivity, which seems to be correlated with the Coulombic efficiency of the electrode, grows at very high lithium contents due to an increase in the inorganic SEI thickness. We estimate the diffusion coefficient of about 2 × 10 -10 cm 2/s for lithium diffusion in silicon. A large increase in the electrode impedance was observed at very low lithium compositions, probably due to a different mechanism for lithium diffusion inside the wires. Restricting the discharge voltage to 0.7 V prevents this large impedance and improves the electrode lifetime. Cells cycled between 0.07 and 0.70 V vs. metallic lithium at a current density of 0.84 A/g (C/5) showed good Coulombic efficiency (about 99%) and maintained a capacity of about 2000 mAh/g after 80 cycles. © 2009 American Chemical Society.

  5. Fractional Order Element Based Impedance Matching

    KAUST Repository

    Radwan, Ahmed Gomaa

    2014-06-24

    Disclosed are various embodiments of methods and systems related to fractional order element based impedance matching. In one embodiment, a method includes aligning a traditional Smith chart (|.alpha.|=1) with a fractional order Smith chart (|.alpha.|.noteq.1). A load impedance is located on the traditional Smith chart and projected onto the fractional order Smith chart. A fractional order matching element is determined by transitioning along a matching circle of the fractional order Smith chart based at least in part upon characteristic line impedance. In another embodiment, a system includes a fractional order impedance matching application executed in a computing device. The fractional order impedance matching application includes logic that obtains a first set of Smith chart coordinates at a first order, determines a second set of Smith chart coordinates at a second order, and determines a fractional order matching element from the second set of Smith chart coordinates.

  6. Beam measurements of the LHC impedance and validation of the impedance model

    CERN Document Server

    Esteban Müller, J F; Bohl, T; Mounet, N; Shaposhnikova, E; Timko, H

    2014-01-01

    Different measurements of the longitudinal impedance of the LHC done with single bunches with various intensities and longitudinal emittances during measurement sessions in 2011-2012 are compared with particle simulations based on the existing LHC impedance model. The very low reactive impedance of the LHC, with Im Z=n = 0.08, is not easy to measure. The most sensitive observation is the loss of Landau damping, which shows at which energy bunches become unstable depending on their parameters. In addition, the synchrotron frequency shift due to the reactive impedance was estimated following two methods. Firstly, it was obtained from the peak-detected Schottky spectrum. Secondly, a sine modulation in the RF phase was applied to the bunches of different intensities and the modulation frequency was scanned. In both cases, the synchrotron frequency shift was of the order of the measurement precision.

  7. Method, system and computer-readable media for measuring impedance of an energy storage device

    Science.gov (United States)

    Morrison, John L.; Morrison, William H.; Christophersen, Jon P.; Motloch, Chester G.

    2016-01-26

    Real-time battery impedance spectrum is acquired using a one-time record. Fast Summation Transformation (FST) is a parallel method of acquiring a real-time battery impedance spectrum using a one-time record that enables battery diagnostics. An excitation current to a battery is a sum of equal amplitude sine waves of frequencies that are octave harmonics spread over a range of interest. A sample frequency is also octave and harmonically related to all frequencies in the sum. A time profile of this sampled signal has a duration that is a few periods of the lowest frequency. A voltage response of the battery, average deleted, is an impedance of the battery in a time domain. Since the excitation frequencies are known and octave and harmonically related, a simple algorithm, FST, processes the time profile by rectifying relative to sine and cosine of each frequency. Another algorithm yields real and imaginary components for each frequency.

  8. Impedance source power electronic converters

    CERN Document Server

    Liu, Yushan; Ge, Baoming; Blaabjerg, Frede; Ellabban, Omar; Loh, Poh Chiang

    2016-01-01

    Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key features: Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies. Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding control methods. Presents the latest power conversion solutions that aim to advance the role of pow...

  9. Cross-Circulating Current Suppression Method for Parallel Three-Phase Two-Level Inverters

    DEFF Research Database (Denmark)

    Wei, Baoze; Guerrero, Josep M.; Guo, Xiaoqiang

    2015-01-01

    The parallel architecture is very popular for power inverters to increase the power level. This paper presents a method for the parallel operation of inverters in an ac-distributed system, to suppress the cross-circulating current based on virtual impedance without current-sharing bus...

  10. Impedance spectroscopy of heterojunction solar cell a-SiC/c-Si with ITO antireflection film investigated at different temperatures

    International Nuclear Information System (INIS)

    Šály, V; Pern, M; Janíček, F; Mikolášek, M; Packa, J; Huran, J

    2017-01-01

    Progressive smart photovoltaic technologies including heterostructures a-SiC/c-Si with ITO antireflection film are one of the prospective replacements of conventional photovoltaic silicon technology. Our paper is focused on the investigation of heterostructures a-SiC/c-Si provided with a layer of ITO (indium oxide/tin oxide 90/10 wt.%) which acts as a passivating and antireflection coating. Prepared photovoltaic cell structure was investigated at various temperatures and the influence of temperature on its operation was searched. The investigation of the dynamic properties of heterojunction PV cells was carried out using impedance spectroscopy. The equivalent AC circuit which approximates the measured impedance data was proposed. Assessment of the influence of the temperature on the operation of prepared heterostructure was carried out by analysis of the temperature dependence of AC equivalent circuit elements. (paper)

  11. 基于直接寻找法的电阻抗断层成像%Electrical Impedance Tomography Based on Direct Search Method

    Institute of Scientific and Technical Information of China (English)

    蔡畅; 严壮志

    2005-01-01

    Solution to impedance distribution in electrical impedance tomography (EIT) is an ill-posed nonlinear inverse problem. It is especially difficult to reconstruct an EIT image in the center area of a measured object. Tikhonov regularization with some prior information is a sound regularization method for static electrical impedance tomography under the condition that some true impedance distribution information is known a priori. This paper presents a direct search method (DSM) as pretreatment of image reconstruction through which one not only can construct a regularization matrix which maylocate in areas of impedance change, but also can obtain an initial impedance distribution more similar to the true impedance distribution, as well as better current modes which can better distinguish the initial distribution and the true distribution. Simulation results indicate that, by using DSM, resolution in the center area of the measured object can be improved significantly.

  12. An efficient impedance method for induced field evaluation based on a stabilized Bi-conjugate gradient algorithm

    International Nuclear Information System (INIS)

    Wang Hua; Liu Feng; Crozier, Stuart; Xia Ling

    2008-01-01

    This paper presents a stabilized Bi-conjugate gradient algorithm (BiCGstab) that can significantly improve the performance of the impedance method, which has been widely applied to model low-frequency field induction phenomena in voxel phantoms. The improved impedance method offers remarkable computational advantages in terms of convergence performance and memory consumption over the conventional, successive over-relaxation (SOR)-based algorithm. The scheme has been validated against other numerical/analytical solutions on a lossy, multilayered sphere phantom excited by an ideal coil loop. To demonstrate the computational performance and application capability of the developed algorithm, the induced fields inside a human phantom due to a low-frequency hyperthermia device is evaluated. The simulation results show the numerical accuracy and superior performance of the method.

  13. An efficient impedance method for induced field evaluation based on a stabilized Bi-conjugate gradient algorithm.

    Science.gov (United States)

    Wang, Hua; Liu, Feng; Xia, Ling; Crozier, Stuart

    2008-11-21

    This paper presents a stabilized Bi-conjugate gradient algorithm (BiCGstab) that can significantly improve the performance of the impedance method, which has been widely applied to model low-frequency field induction phenomena in voxel phantoms. The improved impedance method offers remarkable computational advantages in terms of convergence performance and memory consumption over the conventional, successive over-relaxation (SOR)-based algorithm. The scheme has been validated against other numerical/analytical solutions on a lossy, multilayered sphere phantom excited by an ideal coil loop. To demonstrate the computational performance and application capability of the developed algorithm, the induced fields inside a human phantom due to a low-frequency hyperthermia device is evaluated. The simulation results show the numerical accuracy and superior performance of the method.

  14. System-on-Chip Integration of a New Electromechanical Impedance Calculation Method for Aircraft Structure Health Monitoring

    OpenAIRE

    Boukabache, Hamza; Escriba, Christophe; Zedek, Sabeha; Medale, Daniel; Rolet, Sebastien; Fourniols, Jean Yves

    2012-01-01

    The work reported on this paper describes a new methodology implementation for active structural health monitoring of recent aircraft parts made from carbon-fiber-reinforced polymer. This diagnosis is based on a new embedded method that is capable of measuring the local high frequency impedance spectrum of the structure through the calculation of the electro-mechanical impedance of a piezoelectric patch pasted non-permanently onto its surface. This paper involves both the laboratory based E/M...

  15. Impedance models in time domain

    NARCIS (Netherlands)

    Rienstra, S.W.

    2005-01-01

    Necessary conditions for an impedance function are derived. Methods available in the literature are discussed. A format with recipe is proposed for an exact impedance condition in time domain on a time grid, based on the Helmholtz resonator model. An explicit solution is given of a pulse reflecting

  16. A Secondary Voltage Control Method for an AC/DC Coupled Transmission System Based on Model Predictive Control

    DEFF Research Database (Denmark)

    Xu, Fengda; Guo, Qinglai; Sun, Hongbin

    2015-01-01

    For an AC/DC coupled transmission system, the change of transmission power on the DC lines will significantly influence the AC systems’ voltage. This paper describes a method to coordinated control the reactive power of power plants and shunt capacitors at DC converter stations nearby, in order t...

  17. Developing a stability assessment method for power electronics-based microgrids

    Science.gov (United States)

    Austin, Peter M.

    Modern microgrids with microsources and energy storage are dependent on power electronics for control and regulation. Under certain circumstances power electronics can be destabilizing to the system due to an effect called negative incremental impedance. A careful review of the theory and literature on the subject is presented. This includes stability criteria for both AC and DC systems, as well as a discussion on the limitations posed by the analysis. A method to integrate stability assessment with higher-level microgrid architectural design is proposed. Crucial to this is impedance characterization of individual components, which was accomplished through simulation. DC and AC impedance measurement blocks were created in Matlab simulink to automate the process. A detailed switching-level model of a DC microgrid was implemented in simulink, including wind turbine microsource, battery storage, and three phase inverter. Maximum power point tracking (MPPT) was included to maximize the efficiency of the turbine and was implemented through three rectifier alternatives and control schemes. The stability characteristics of each was compared in the final analysis. Impedance data was collected individually from the components and used to assess stability in the system as a whole. The results included the assessment of stability, margin, and unstable operating points to demonstrate the feasibility of the proposed approach.

  18. Analysis and Assessment of Operation Risk for Hybrid AC/DC Power System based on the Monte Carlo Method

    Science.gov (United States)

    Hu, Xiaojing; Li, Qiang; Zhang, Hao; Guo, Ziming; Zhao, Kun; Li, Xinpeng

    2018-06-01

    Based on the Monte Carlo method, an improved risk assessment method for hybrid AC/DC power system with VSC station considering the operation status of generators, converter stations, AC lines and DC lines is proposed. According to the sequential AC/DC power flow algorithm, node voltage and line active power are solved, and then the operation risk indices of node voltage over-limit and line active power over-limit are calculated. Finally, an improved two-area IEEE RTS-96 system is taken as a case to analyze and assessment its operation risk. The results show that the proposed model and method can intuitively and directly reflect the weak nodes and weak lines of the system, which can provide some reference for the dispatching department.

  19. Analysis and Assessment of Operation Risk for Hybrid AC/DC Power System based on the Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    Hu Xiaojing

    2018-01-01

    Full Text Available Based on the Monte Carlo method, an improved risk assessment method for hybrid AC/DC power system with VSC station considering the operation status of generators, converter stations, AC lines and DC lines is proposed. According to the sequential AC/DC power flow algorithm, node voltage and line active power are solved, and then the operation risk indices of node voltage over-limit and line active power over-limit are calculated. Finally, an improved two-area IEEE RTS-96 system is taken as a case to analyze and assessment its operation risk. The results show that the proposed model and method can intuitively and directly reflect the weak nodes and weak lines of the system, which can provide some reference for the dispatching department.

  20. Simultaneous distribution of AC and DC power

    Science.gov (United States)

    Polese, Luigi Gentile

    2015-09-15

    A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.

  1. Array of piezoelectric energy harvesting by the equivalent impedance approach

    International Nuclear Information System (INIS)

    Lien, I C; Shu, Y C

    2012-01-01

    This article proposes to use the idea of equivalent impedance to investigate the electrical response of an array of piezoelectric oscillators endowed with distinct energy harvesting circuits. Three interface electronics systems are considered including standard AC/DC and parallel/series-SSHI (synchronized switch harvesting on inductor) circuits. Various forms of equivalent load impedance are analytically obtained for different interfaces. The steady-state response of an array system is then shown to be determined by the matrix formulation of generalized Ohm’s law whose impedance matrix is explicitly expressed in terms of the load impedance. A model problem is proposed for evaluating the ability of power harvesting under various conditions. It is shown first that harvested power is increased dramatically for the case of small deviation in the system parameters. On the other hand, if the deviation in mass is relatively large, the result is changed from the power-boosting mode to wideband mode. In particular, the parallel-SSHI array system exhibits much more significant bandwidth improvement than the other two cases. Surprisingly, the series-SSHI array system shows the worst electrical response. Such an observation is opposed to our previous finding that an SSHI technique avails against the standard technique in the case based on a single piezoelectric energy harvester and the explanation is under investigation. (fast track communication)

  2. Modelling of long High Voltage AC Cables in the Transmission System

    DEFF Research Database (Denmark)

    Gudmundsdottir, Unnur Stella

    : conductor-insulation (with or without SC layers)-conductor-insulation(-conductor-insulation), whereas a transmission line single core XLPE cable will normally have the configuration: conductor-SC layerinsulation-SC layer-conductor-SC layer-conductor-insulation. Furthermore the existing cable models use......, EMTDC/PSCAD is provided. A typical HV AC underground power cable is formed by 4 main layers, namely; Conductor-Insulation-Screen-Insulation. In addition to these main layers, the cable also has semiconductive screens, swelling tapes and metal foil. For high frequency modelling in EMT-based software......-SC layer-solid hollow conductor) is implemented in the model. These improvements result in a more correct series impedance and hence a more correct damping of the simulations. Even though the series impedance is more correct, it does still not include the proximity effect and high frequency oscillations...

  3. Determination of abdominal fat thickness using dual electrode separation in the focused impedance method (FIM)

    International Nuclear Information System (INIS)

    Surovy, Nusrat Jahan; Billah, Md Masum; Haowlader, Salahuddin; Al-Quaderi, Golam Dastegir; Rabbani, K Siddique-e

    2012-01-01

    Subcutaneous fat layer thickness in the abdomen is a risk indicator of several diseases and disorders like diabetes and heart problems and could be used as a measure of fitness. Skinfold measurement using mechanical calipers is simple but prone to error. Ultrasound scanning techniques are yet to be established as accurate methods for this purpose. magnetic resonance imaging (MRI) and computed tomography (CT) scans can provide the answer but are expensive and not available widely. Some initiatives were made earlier to use electrical impedance to this end, but had inadequacies. In the first part of this paper, a 4-electrode focused impedance method (FIM) with different electrode separations has been studied for its possible use in the determination of abdominal fat thickness in a localized region. For this, a saline phantom was designed to provide different electrode separations and different layers of resistive materials adjacent to the electrodes. The background saline simulated the internal organs having low impedance while the resistive layers simulated the subcutaneous fat. The plot of the measured impedance with electrode separation had different ‘slopes’ for different thicknesses of resistive layers, which offered a method to obtain an unknown thickness of subcutaneous fat layer. In the second part, measurements were performed on seven human subjects using two electrode separations. Fat layer thickness was measured using mechanical calipers. A plot of the above ‘slope’ against fat thickness could be fitted using a straight line with an R 2 of 0.93. Then this could be used as a calibration curve for the determination of unknown fat thickness. Further work using more accurate CT and MRI measurements would give a better calibration curve for practical use of this non-invasive and low-cost technique in abdominal fat thickness measurement. (paper)

  4. Structure and electrochemical impedance of LiNi_xMn_2_-_xO_4

    International Nuclear Information System (INIS)

    Ta Anh Tan; Nguyen Si Hieu; Le Ha Chi; Pham Duy Long; Dang Tran Chien; Le Dinh Trong

    2016-01-01

    Ni-substitution spinel LiNi_xMn_2_-_xO_4 (x = 0, 0.1, 0.2) materials were synthesized by the sol--gel method. The structure and morphology of the samples were characterized by the X-ray diffraction (XRD) and the scanning electron microscopy. The ac conduction of the materials was investigated by electrochemical impedance spectroscopy (EIS) measurements. The refinement results showed that the substitution of Ni decreased the lattice constant and Mn--O distance, while increased Li--O bond length and 16c octahedral volume. The EIS results confirmed the decrease of conductivity with increasing Ni substitution content. Based on XRD and EIS results, the relationship between the crystal structure and electrochemical behavior of the materials was discussed and explained. (author)

  5. Conventional P-ω/Q-V Droop Control in Highly Resistive Line of Low-Voltage Converter-Based AC Microgrid

    DEFF Research Database (Denmark)

    Hou, Xiaochao; Sun, Yao; Yuan, Wenbin

    2016-01-01

    -ω/Q-V droop control is adopted in the low-voltage AC microgrid. As a result, the active power sharing among the distributed generators (DGs) is easily obtained without communication. More importantly, this study clears up the previous misunderstanding that conventional P-ω/Q-V droop control is only applicable...... to microgrids with highly inductive lines, and lays a foundation for the application of conventional droop control under different line impedances. Moreover, in order to guarantee the accurate reactive power sharing, a guide for designing Q-V droop gains is given, and virtual resistance is adopted to shape......In low-voltage converter-based alternating current (AC) microgrids with resistive distribution lines, the P-V droop with Q-f boost (VPD/FQB) is the most common method for load sharing. However, it cannot achieve the active power sharing proportionally. To overcome this drawback, the conventional P...

  6. Line impedance estimation using model based identification technique

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Agelidis, Vassilios; Teodorescu, Remus

    2011-01-01

    The estimation of the line impedance can be used by the control of numerous grid-connected systems, such as active filters, islanding detection techniques, non-linear current controllers, detection of the on/off grid operation mode. Therefore, estimating the line impedance can add extra functions...... into the operation of the grid-connected power converters. This paper describes a quasi passive method for estimating the line impedance of the distribution electricity network. The method uses the model based identification technique to obtain the resistive and inductive parts of the line impedance. The quasi...

  7. Dielectric and impedance study of praseodymium substituted Mg-based spinel ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Farid, Hafiz Muhammad Tahir, E-mail: tahirfaridbzu@gmail.com [Department of Physics, Bahauddin Zakariya, University Multan, 60800 (Pakistan); Ahmad, Ishtiaq; Ali, Irshad [Department of Physics, Bahauddin Zakariya, University Multan, 60800 (Pakistan); Ramay, Shahid M. [College of Science, Physics and Astronomy Department, King Saud University, P.O. Box 2455, 11451 Riyadh (Saudi Arabia); Mahmood, Asif [Chemical Engineering Department, College of Engineering, King Saud University, Riyadh (Saudi Arabia); Murtaza, G. [Centre for Advanced Studies in Physics, GC University, Lahore 5400 (Pakistan)

    2017-07-15

    Highlights: • Magnesium based spinel ferrites were successfully synthesized by sol-gel method. • Dielectric constant shows the normal spinel ferrites behavior. • The dc conductivity are found to decrease with increasing temperature. • The samples with low conductivity have high values of activation energy. • The Impedance decreases with increasing frequency of applied field. - Abstract: Spinel ferrites with nominal composition MgPr{sub y}Fe{sub 2−y}O{sub 4} (y = 0.00, 0.025, 0.05, 0.075, 0.10) were prepared by sol-gel method. Temperature dependent DC electrical conductivity and drift mobility were found in good agreement with each other, reflecting semiconducting behavior. The dielectric properties of all the samples as a function of frequency (1 MHz–3 GHz) were measured at room temperature. The dielectric constant and complex dielectric constant of these samples decreased with the increase of praseodymium concentration. In the present spinel ferrite, Cole–Cole plots were used to separate the grain and grain boundary’s effects. The substitution of praseodymium ions in Mg-based spinel ferrites leads to a remarkable rise of grain boundary’s resistance as compared to the grain’s resistance. As both AC conductivity and Cole–Cole plots are the functions of concentration, they reveal the dominant contribution of grain boundaries in the conduction mechanism. AC activation energy was lower than dc activation energy. Temperature dependence normalized AC susceptibility of spinel ferrites reveals that MgFe{sub 2}O{sub 4} exhibits multi domain (MD) structure with high Curie temperature while on substitution of praseodymium, MD to SD transitions occurs. The low values of conductivity and low dielectric loss make these materials best candidate for high frequency application.

  8. Electrical transport properties of CoMn0.2−xGaxFe1.8O4 ferrites using complex impedance spectroscopy

    Directory of Open Access Journals (Sweden)

    Chien-Yie Tsay

    2016-05-01

    Full Text Available In this study, we report the influence of Ga content on the microstructural, magnetic, and AC impedance properties of Co-based ferrites with compositions of CoMn0.2−xGaxFe1.8O4 (x=0, 0.1, and 0.2 prepared by the solid-state reaction method. Experimental results showed that the as-prepared Co-based ferrites had a single-phase spinel structure; the Curie temperature of Co-based ferrites decreased with increasing Ga content. All ferrite samples exhibited a typical hysteresis behavior with good values of saturation magnetization at room temperature. The electrical properties of Co-based ferrites were investigated using complex impedance spectroscopy analysis in the frequency range of 100 kHz-50 MHz at temperatures of 150 to 250 oC. The impedance analysis revealed that the magnitudes of the real part (Z’ and the imaginary part (Z” of complex impedance decreased with increasing temperature. Only one semicircle was observed in each complex impedance plane plot, which revealed that the contribution to conductivity was from the grain boundaries. It was found that the relaxation time for the grain boundary (τgb also decreased with increasing temperature. The values of resistance for the grain boundary (Rgb significantly increased with increasing Ga content, which indicated that the incorporation of Ga into Co-based ferrites enhanced the electrical resistivity.

  9. Detection of irradiated potatoes by impedance measurement

    International Nuclear Information System (INIS)

    Hayashi, T.; Todoriki, S.; Otobe, K.; Sugiyama, J.

    1996-01-01

    Potato is one of the major food items to be treated with ionising radiation and potatoes are irradiated on a large scale in several countries. Every year around 15,000 t of potatoes are irradiated at doses of 60 to 150 Gy (average dose is about 100 Gy) in Japan. Although various methods to detect irradiated potatoes have been investigated, no established method has been reported. Measuring electrical conductivity or impedance of potatoes has been reported as a promising method for the detection of irradiated potatoes. In previous studies it has been found that the ratio of impedance magnitude at 50 kHz to that at 5 kHz, measured immediately after puncturing a potato tuber, is dependent upon the dose applied to the tuber, independent of storage temperature and stable during storage after irradiation. The aim of this study was to establish the optimum conditions for impedance measurement and to examine the applicability of the impedance measuring method to various cultivars (cv.) of potatoes. (author)

  10. Y-source impedance-network-based isolated boost DC/DC converter

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Town, Graham; Loh, Poh Chiang

    2014-01-01

    A dc-dc converter with very high voltage gain is proposed in this paper for any medium-power application requiring a high voltage boost with galvanic isolation. The proposed converter topology can be realized using only two switches. With this topology a very high voltage boost can be achieved even...... with a relatively low duty cycle of the switches, and the gain obtainable is presently not matched by any existing impedance network based converter operated at the same duty ratio. The proposed converter has a Y-source impedance network to boost the voltage at the intermediate dc-link side and a push......-pull transformer for square-wave AC inversion and isolation. The voltage-doubler rectifier provides a constant dc voltage at the output stage. A theoretical analysis of the converter is presented, supported by simulation and experimental results. A 250 W down-scaled prototype was implemented in the laboratory...

  11. A Transient Fault Recognition Method for an AC-DC Hybrid Transmission System Based on MMC Information Fusion

    Directory of Open Access Journals (Sweden)

    Jikai Chen

    2016-12-01

    Full Text Available At present, the research is still in the primary stage in the process of fault disturbance energy transfer in the multilevel modular converter based high voltage direct current (HVDC-MMC. An urgent problem is how to extract and analyze the fault features hidden in MMC electrical information in further studies on the HVDC system. Aiming at the above, this article analyzes the influence of AC transient disturbance on electrical signals of MMC. At the same time, it is found that the energy distribution of electrical signals in MMC is different for different arms in the same frequency bands after the discrete wavelet packet transformation (DWPT. Renyi wavelet packet energy entropy (RWPEE and Renyi wavelet packet time entropy (RWPTE are proposed and applied to AC transient fault feature extraction from electrical signals in MMC. Using the feature extraction results of Renyi wavelet packet entropy (RWPE, a novel recognition method is put forward to recognize AC transient faults using the information fusion technology. Theoretical analysis and experimental results show that the proposed method is available to recognize transient AC faults.

  12. An integrated microfluidic analysis microsystems with bacterial capture enrichment and in-situ impedance detection

    Science.gov (United States)

    Liu, Hai-Tao; Wen, Zhi-Yu; Xu, Yi; Shang, Zheng-Guo; Peng, Jin-Lan; Tian, Peng

    2017-09-01

    In this paper, an integrated microfluidic analysis microsystems with bacterial capture enrichment and in-situ impedance detection was purposed based on microfluidic chips dielectrophoresis technique and electrochemical impedance detection principle. The microsystems include microfluidic chip, main control module, and drive and control module, and signal detection and processing modulet and result display unit. The main control module produce the work sequence of impedance detection system parts and achieve data communication functions, the drive and control circuit generate AC signal which amplitude and frequency adjustable, and it was applied on the foodborne pathogens impedance analysis microsystems to realize the capture enrichment and impedance detection. The signal detection and processing circuit translate the current signal into impendence of bacteria, and transfer to computer, the last detection result is displayed on the computer. The experiment sample was prepared by adding Escherichia coli standard sample into chicken sample solution, and the samples were tested on the dielectrophoresis chip capture enrichment and in-situ impedance detection microsystems with micro-array electrode microfluidic chips. The experiments show that the Escherichia coli detection limit of microsystems is 5 × 104 CFU/mL and the detection time is within 6 min in the optimization of voltage detection 10 V and detection frequency 500 KHz operating conditions. The integrated microfluidic analysis microsystems laid the solid foundation for rapid real-time in-situ detection of bacteria.

  13. Oxygen surface exchange kinetics measurement by simultaneous optical transmission relaxation and impedance spectroscopy: Sr(Ti,Fe)O3-x thin film case study.

    Science.gov (United States)

    Perry, Nicola H; Kim, Jae Jin; Tuller, Harry L

    2018-01-01

    We compare approaches to measure oxygen surface exchange kinetics, by simultaneous optical transmission relaxation (OTR) and AC-impedance spectroscopy (AC-IS), on the same mixed conducting SrTi 0.65 Fe 0.35 O 3-x film. Surface exchange coefficients were evaluated as a function of oxygen activity in the film, controlled by gas partial pressure and/or DC bias applied across the ionically conducting yttria-stabilized zirconia substrate. Changes in measured light transmission through the film over time (relaxations) resulted from optical absorption changes in the film corresponding to changes in its oxygen and oxidized Fe (~Fe 4+ ) concentrations; such relaxation profiles were successfully described by the equation for surface exchange-limited kinetics appropriate for the film geometry. The k chem values obtained by OTR were significantly lower than the AC-IS derived k chem values and k q values multiplied by the thermodynamic factor (bulk or thin film), suggesting a possible enhancement in k by the metal current collectors (Pt, Au). Long-term degradation in k chem and k q values obtained by AC-IS was also attributed to deterioration of the porous Pt current collector, while no significant degradation was observed in the optically derived k chem values. The results suggest that, while the current collector might influence measurements by AC-IS, the OTR method offers a continuous, in situ , and contact-free method to measure oxygen exchange kinetics at the native surfaces of thin films.

  14. Oxygen surface exchange kinetics measurement by simultaneous optical transmission relaxation and impedance spectroscopy: Sr(Ti,Fe)O3-x thin film case study

    Science.gov (United States)

    Perry, Nicola H.; Kim, Jae Jin; Tuller, Harry L.

    2018-01-01

    Abstract We compare approaches to measure oxygen surface exchange kinetics, by simultaneous optical transmission relaxation (OTR) and AC-impedance spectroscopy (AC-IS), on the same mixed conducting SrTi0.65Fe0.35O3-x film. Surface exchange coefficients were evaluated as a function of oxygen activity in the film, controlled by gas partial pressure and/or DC bias applied across the ionically conducting yttria-stabilized zirconia substrate. Changes in measured light transmission through the film over time (relaxations) resulted from optical absorption changes in the film corresponding to changes in its oxygen and oxidized Fe (~Fe4+) concentrations; such relaxation profiles were successfully described by the equation for surface exchange-limited kinetics appropriate for the film geometry. The kchem values obtained by OTR were significantly lower than the AC-IS derived kchem values and kq values multiplied by the thermodynamic factor (bulk or thin film), suggesting a possible enhancement in k by the metal current collectors (Pt, Au). Long-term degradation in kchem and kq values obtained by AC-IS was also attributed to deterioration of the porous Pt current collector, while no significant degradation was observed in the optically derived kchem values. The results suggest that, while the current collector might influence measurements by AC-IS, the OTR method offers a continuous, in situ, and contact-free method to measure oxygen exchange kinetics at the native surfaces of thin films. PMID:29511391

  15. Moderately nonlinear diffuse-charge dynamics under an ac voltage.

    Science.gov (United States)

    Stout, Robert F; Khair, Aditya S

    2015-09-01

    The response of a symmetric binary electrolyte between two parallel, blocking electrodes to a moderate amplitude ac voltage is quantified. The diffuse charge dynamics are modeled via the Poisson-Nernst-Planck equations for a dilute solution of point-like ions. The solution to these equations is expressed as a Fourier series with a voltage perturbation expansion for arbitrary Debye layer thickness and ac frequency. Here, the perturbation expansion in voltage proceeds in powers of V_{o}/(k_{B}T/e), where V_{o} is the amplitude of the driving voltage and k_{B}T/e is the thermal voltage with k_{B} as Boltzmann's constant, T as the temperature, and e as the fundamental charge. We show that the response of the electrolyte remains essentially linear in voltage amplitude at frequencies greater than the RC frequency of Debye layer charging, D/λ_{D}L, where D is the ion diffusivity, λ_{D} is the Debye layer thickness, and L is half the cell width. In contrast, nonlinear response is predicted at frequencies below the RC frequency. We find that the ion densities exhibit symmetric deviations from the (uniform) equilibrium density at even orders of the voltage amplitude. This leads to the voltage dependence of the current in the external circuit arising from the odd orders of voltage. For instance, the first nonlinear contribution to the current is O(V_{o}^{3}) which contains the expected third harmonic but also a component oscillating at the applied frequency. We use this to compute a generalized impedance for moderate voltages, the first nonlinear contribution to which is quadratic in V_{o}. This contribution predicts a decrease in the imaginary part of the impedance at low frequency, which is due to the increase in Debye layer capacitance with increasing V_{o}. In contrast, the real part of the impedance increases at low frequency, due to adsorption of neutral salt from the bulk to the Debye layer.

  16. Moderately nonlinear diffuse-charge dynamics under an ac voltage

    Science.gov (United States)

    Stout, Robert F.; Khair, Aditya S.

    2015-09-01

    The response of a symmetric binary electrolyte between two parallel, blocking electrodes to a moderate amplitude ac voltage is quantified. The diffuse charge dynamics are modeled via the Poisson-Nernst-Planck equations for a dilute solution of point-like ions. The solution to these equations is expressed as a Fourier series with a voltage perturbation expansion for arbitrary Debye layer thickness and ac frequency. Here, the perturbation expansion in voltage proceeds in powers of Vo/(kBT /e ) , where Vo is the amplitude of the driving voltage and kBT /e is the thermal voltage with kB as Boltzmann's constant, T as the temperature, and e as the fundamental charge. We show that the response of the electrolyte remains essentially linear in voltage amplitude at frequencies greater than the RC frequency of Debye layer charging, D /λDL , where D is the ion diffusivity, λD is the Debye layer thickness, and L is half the cell width. In contrast, nonlinear response is predicted at frequencies below the RC frequency. We find that the ion densities exhibit symmetric deviations from the (uniform) equilibrium density at even orders of the voltage amplitude. This leads to the voltage dependence of the current in the external circuit arising from the odd orders of voltage. For instance, the first nonlinear contribution to the current is O (Vo3) which contains the expected third harmonic but also a component oscillating at the applied frequency. We use this to compute a generalized impedance for moderate voltages, the first nonlinear contribution to which is quadratic in Vo. This contribution predicts a decrease in the imaginary part of the impedance at low frequency, which is due to the increase in Debye layer capacitance with increasing Vo. In contrast, the real part of the impedance increases at low frequency, due to adsorption of neutral salt from the bulk to the Debye layer.

  17. Application of Multi-Objective Human Learning Optimization Method to Solve AC/DC Multi-Objective Optimal Power Flow Problem

    Science.gov (United States)

    Cao, Jia; Yan, Zheng; He, Guangyu

    2016-06-01

    This paper introduces an efficient algorithm, multi-objective human learning optimization method (MOHLO), to solve AC/DC multi-objective optimal power flow problem (MOPF). Firstly, the model of AC/DC MOPF including wind farms is constructed, where includes three objective functions, operating cost, power loss, and pollutant emission. Combining the non-dominated sorting technique and the crowding distance index, the MOHLO method can be derived, which involves individual learning operator, social learning operator, random exploration learning operator and adaptive strategies. Both the proposed MOHLO method and non-dominated sorting genetic algorithm II (NSGAII) are tested on an improved IEEE 30-bus AC/DC hybrid system. Simulation results show that MOHLO method has excellent search efficiency and the powerful ability of searching optimal. Above all, MOHLO method can obtain more complete pareto front than that by NSGAII method. However, how to choose the optimal solution from pareto front depends mainly on the decision makers who stand from the economic point of view or from the energy saving and emission reduction point of view.

  18. Electromechanical impedance method to assess dental implant stability

    International Nuclear Information System (INIS)

    Tabrizi, Aydin; Rizzo, Piervincenzo; Ochs, Mark W

    2012-01-01

    The stability of a dental implant is a prerequisite for supporting a load-bearing prosthesis and establishment of a functional bone–implant system. Reliable and noninvasive methods able to assess the bone interface of dental and orthopedic implants (osseointegration) are increasingly demanded for clinical diagnosis and direct prognosis. In this paper, we propose the electromechanical impedance method as a novel approach for the assessment of dental implant stability. Nobel Biocare ® implants with a size of 4.3 mm diameter ×13 mm length were placed inside bovine bones that were then immersed in a solution of nitric acid to allow material degradation. The degradation simulated the inverse process of bone healing. The implant–bone systems were monitored by bonding a piezoceramic transducer (PZT) to the implants’ abutment and measuring the admittance of the PZT over time. It was found that the PZT’s admittance and the statistical features associated with its analysis are sensitive to the degradation of the bones and can be correlated to the loss of calcium measured by means of the atomic absorption spectroscopy method. The present study shows promising results and may pave the road towards an innovative approach for the noninvasive monitoring of dental implant stability and integrity. (paper)

  19. Laboratory scale tests of electrical impedence tomography

    International Nuclear Information System (INIS)

    Binley, A; Daily, W; LaBredcque, D; Ramirez, A.

    1998-01-01

    Electrical impedance tomographs (magnitude and phase) of known, laboratory-scale targets are reported. Three methods are used to invert electrical impedance data and their tomographs compared. The first method uses an electrical resistance tomography (ERT) algonthm (designed for DC resistivity inversion) to perform impedance magnitude inversion and a linearized perturbation approach (PA) to invert the imaginary part. The second approximate method compares ERT magnitude inversions at two frequencies and uses the frequency effect (FE) to compute phase tomographs. The third approach, electrrcal impedance tomography (EIT), employs fully complex algebra to account for the real and imaginary components of electrical impedance data. The EIT approach provided useful magnitude and phase images for the frequency range of 0.0625 to 64 Hz; images for higher frequencies were not reliable. Comparisons of the ERT and EIT magnitude images show that both methods provided equivalent results for the water blank, copper rod and PVC rod targets. The EIT magnitude images showed better spatial resolutron for a sand-lead mixture target. Phase images located anomalies of both high and low contrast IP and provided better spatial resolution than the magnitude images. When IP was absent from the data, the EIT algorithm reconstructed phase values consistent with the data noise levels

  20. Influence of the ac magnetic field frequency on the magnetoimpedance of amorphous wire

    International Nuclear Information System (INIS)

    Chen, A P; Garcia, C; Zhukov, A; Dominguez, L; Blanco, J M; Gonzalez, J

    2006-01-01

    Experimental and theoretical studies on the influence of ac magnetic field frequency on the axial diagonal (ζ zz ) and off-diagonal (ζ Φz ) components of the magnetoimpedance (MI) tensor in (Co 0.94 Fe 0.06 ) 72.5 Si 12.5 B 15 amorphous wires have been performed. The frequency (f) of an ac current flowing along the wire was varied from 1 to 20 MHz with the current amplitude less than 15 mA. In order to enhance the ζ Φz component, the amorphous wire was submitted to torsion annealing for developing and preserving a helical magnetic anisotropy in the surface of the wire. The experimental measurements show that the value of the impedance is proportional to the square-root of the ac current frequency, √f, in the vicinity of H ex K and this increase is due to the contribution of the resistance (real part of the impedance). The measurements also indicate that the peaks of the MI curve shift slightly towards higher field values with increasing f. In a theoretical study the magnetoimpedance expressions ζ zz and ζ Φz have been deduced using the Faraday law in combination with the solutions of the Maxwell and Landau-Lifshitz-Gilbert (LLG) equations. By analysing quantitatively the spectra of ζ zz and ζ Φz , the phenomenon of the shift in the peaks of the MI curve with f has been considered as a characteristic of the helical anisotropy in the domain structure of the wire surface

  1. Electrochemical impedance spectroscopy analysis of a thin polymer film-based micro-direct methanol fuel cell

    Science.gov (United States)

    Schulz, Tobias; Weinmüller, Christian; Nabavi, Majid; Poulikakos, Dimos

    A single cell micro-direct methanol fuel cell (micro-DMFC) was investigated using electrochemical impedance spectroscopy. The electrodes consisted of thin, flexible polymer (SU8) film microchannel structures fabricated in-house using microfabrication techniques. AC impedance spectroscopy was used to separate contributions to the overall cell polarization from the anode, cathode and membrane. A clear distinction between the different electrochemical phenomena occurring in the micro-DMFC, especially the distinction between double layer charging and Faradaic reactions was shown. The effect of fuel flow rate, temperature, and anode flow channel structure on the impedance of the electrode reactions and membrane/electrode double layer charging were investigated. Analysis of impedance data revealed that the performance of the test cell was largely limited by the presence of intermediate carbon monoxide in the anode reaction. Higher temperatures increase cell performance by enabling intermediate CO to be oxidized at much higher rates. The results also revealed that serpentine anode flow microchannels show a lower tendency to intermediate CO coverage and a more stable cell behavior than parallel microchannels.

  2. Development on electromagnetic impedance function modeling and its estimation

    Energy Technology Data Exchange (ETDEWEB)

    Sutarno, D., E-mail: Sutarno@fi.itb.ac.id [Earth Physics and Complex System Division Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung (Indonesia)

    2015-09-30

    Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim at reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near-, transition

  3. Mediated oxidation of hydroquinone on poly(N-ethylcarbazole): Analysis of transport and kinetic phenomena by impedance techniques

    Energy Technology Data Exchange (ETDEWEB)

    Deslouis, C.; Tribollet, B. (Physique des Liquides et Electrochimie Lab., Univ. Pierre et Marie Curie, 75 - Paris (France)); Musiani, M.M. (Ist. di Polarografia ed Elettrochimica Preparativa del CNR, Padua (Italy))

    1990-09-01

    The oxidation of hydroquinone on Pt electrodes modified by electrosynthesized p-ethylcarbazole is studied in 5 M HClO{sub 4}. Electrohydrodynamical and a.c. impedance measurements yield the redox capacitance of the film and electron diffusivity D{sub E} with reasonable dependence on the thickness. D{sub E} values near to 10{sup -7} cm{sup 2} s{sup -1} confirm the average conductivity of this polymer. Change-transfer resistances in agreement with {alpha}=0.5 are measured. These results {alpha} posteriori justify the hypotheses put forward when developing the theoretical impedance model used for the analysis of the data. (orig.).

  4. The influence of a delaminated layer on the impedance spectrum of an operating solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Gazzarri, J.I. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Mechanical Engineering; Kesler, O. [National Research Council of Canada, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation

    2005-07-01

    The development of a 2-dimensional finite element model of Solid Oxide Fuel Oxide (SOFC) AC impedance behavior was discussed. The model was developed to simulate the frequency response of a single cell with and without mechanical damage. Impedance spectroscopy was used in the development of a diagnostic technique to identify a delamination failure within a working SOFC. Changes in the impedance spectrum of a working cell were observed on the appearance of a delamination between 2 adjacent layers. The intent was to identify distinctive patterns in the cracked cell spectra that provide enough information about the degradation process so that it can be recognized and distinguished from other electrochemical processes and degradation modes. It was anticipated that the method will provide a useful tool for both maintenance and research purposes, providing insight into the causes of inadequate functioning. Results indicate that the presence of mechanically induced damage within the components of an SOFC can be detected by comparing the frequency response of the undamaged cell with that of a cell in which in-plane cracking or delamination has occurred. The presence of such defects manifests itself as a new semicircle in the Nyquist impedance diagram of the full cell, with a relaxation frequency of approximately 35 kHz. It was concluded that the ability to distinguish the crack-induced semicircle from the semicircles induced by electrochemical reactions depended on the difference between the characteristic relaxation times and their relative sizes. 17 refs., 1 tab.,10 figs.

  5. DC and AC linear magnetic field sensor based on glass coated amorphous microwires with Giant Magnetoimpedance

    International Nuclear Information System (INIS)

    García-Chocano, Víctor Manuel; García-Miquel, Héctor

    2015-01-01

    Giant Magnetoimpedance (GMI) effect has been studied in amorphous glass-coated microwires of composition (Fe 6 Co 94 ) 72.5 Si 12.5 B 15 . The impedance of a 1.5 cm length sample has been characterized by using constant AC currents in the range of 400 µA–4 mA at frequencies from 7 to 15 MHz and DC magnetic fields from −900 to 900 A/m. Double peak responses have been obtained, showing GMI ratios up to 107%. A linear magnetic field sensor for DC and AC field has been designed, using two microwires connected in series with a magnetic bias of 400 A/m with opposite direction in each microwire in order to obtain a linear response from ±70 (A/m) rms for AC magnetic field, and ±100 A/m for DC magnetic field. A closed loop feedback circuit has been implemented to extend the linear range to ±1 kA/m for DC magnetic field. - Highlights: • Giant Magneto Impedance phenomenon has been studied in amorphous microwires. • A combination of two microwires with a bias field has been developed to get a linear response. • An electronic circuit has been developed to obtain a sensor with a linear response. • A feedback coil have been added to increase the measurable range of the sensor

  6. VLF surface-impedance modelling techniques for coal exploration

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, G.; Thiel, D.; O' Keefe, S. [Central Queensland University, Rockhampton, Qld. (Australia). Faculty of Engineering and Physical Systems

    2000-10-01

    New and efficient computational techniques are required for geophysical investigations of coal. This will allow automated inverse analysis procedures to be used for interpretation of field data. In this paper, a number of methods of modelling electromagnetic surface impedance measurements are reviewed, particularly as applied to typical coal seam geology found in the Bowen Basin. At present, the Impedance method and the finite-difference time-domain (FDTD) method appear to offer viable solutions although both have problems. The Impedance method is currently slightly inaccurate, and the FDTD method has large computational demands. In this paper both methods are described and results are presented for a number of geological targets. 17 refs., 14 figs.

  7. Electrochemical AC impedance model of a solid oxide fuel cell and its application to diagnosis of multiple degradation modes

    Energy Technology Data Exchange (ETDEWEB)

    Gazzarri, J.I.; Kesler, O. [Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4 (Canada)

    2007-05-01

    A finite element model of the impact of diverse degradation mechanisms on the impedance spectrum of a solid oxide fuel cell is presented as a tool for degradation mode identification. Among the degradation mechanisms that cause electrode active area loss, the attention is focused on electrode delamination and uniformly distributed surface area loss, which were found to cause distinct and specific changes in the impedance spectrum. Degradation mechanisms resulting in uniformly distributed reactive surface area loss include sintering, sulphur poisoning, and possibly incipient coke formation at the anode, and chromium deposition at the cathode. Parametric studies reveal the extent and limits of applicability of the model and detectability of the different degradation modes, as well as the influence of different cell geometries on the change in impedance behaviour resulting from the loss of active area. It is expected that this technique could form the basis of a useful diagnostic tool for both solid oxide fuel cell developers and users. (author)

  8. A Circulating Current Suppression Method for Parallel Connected Voltage-Source-Inverters (VSI) with Common DC and AC Buses

    DEFF Research Database (Denmark)

    Wei, Baoze; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2016-01-01

    This paper describes a theoretical with experiment study on a control strategy for the parallel operation of threephase voltage source inverters (VSI), to be applied to uninterruptible power systems (UPS). A circulating current suppression strategy for parallel VSIs is proposed in this paper based...... on circulating current control loops used to modify the reference currents by compensating the error currents among parallel inverters. Both of the cross and zero-sequence circulating currents are considered. The proposed method is coordinated together with droop and virtual impedance control. In this paper......, droop control is used to generate the reference voltage of each inverter, and the virtual impedance is used to fix the output impedance of the inverters. In addition, a secondary control is used in order to recover the voltage deviation caused by the virtual impedance. And the auxiliary current control...

  9. FDTD modeling of thin impedance sheets

    Science.gov (United States)

    Luebbers, Raymond J.; Kunz, Karl S.

    1991-01-01

    Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. In this paper it is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods.

  10. Use of stochastic methods for robust parameter extraction from impedance spectra

    International Nuclear Information System (INIS)

    Bueschel, Paul; Troeltzsch, Uwe; Kanoun, Olfa

    2011-01-01

    The fitting of impedance models to measured data is an essential step in impedance spectroscopy (IS). Due to often complicated, nonlinear models, big number of parameters, large search spaces and presence of noise, an automated determination of the unknown parameters is a challenging task. The stronger the nonlinear behavior of a model, the weaker is the convergence of the corresponding regression and the probability to trap into local minima increases during parameter extraction. For fast measurements or automatic measurement systems these problems became the limiting factors of use. We compared the usability of stochastic algorithms, evolution, simulated annealing and particle filter with the widely used tool LEVM for parameter extraction for IS. The comparison is based on one reference model by J.R. Macdonald and a battery model used with noisy measurement data. The results show different performances of the algorithms for these two problems depending on the search space and the model used for optimization. The obtained results by particle filter were the best for both models. This method delivers the most reliable result for both cases even for the ill posed battery model.

  11. Time-domain representation of frequency-dependent foundation impedance functions

    Science.gov (United States)

    Safak, E.

    2006-01-01

    Foundation impedance functions provide a simple means to account for soil-structure interaction (SSI) when studying seismic response of structures. Impedance functions represent the dynamic stiffness of the soil media surrounding the foundation. The fact that impedance functions are frequency dependent makes it difficult to incorporate SSI in standard time-history analysis software. This paper introduces a simple method to convert frequency-dependent impedance functions into time-domain filters. The method is based on the least-squares approximation of impedance functions by ratios of two complex polynomials. Such ratios are equivalent, in the time-domain, to discrete-time recursive filters, which are simple finite-difference equations giving the relationship between foundation forces and displacements. These filters can easily be incorporated into standard time-history analysis programs. Three examples are presented to show the applications of the method.

  12. Evaluation of different methods for measuring the impedance of Lithium-ion batteries during ageing

    DEFF Research Database (Denmark)

    Stroe, Daniel Loan; Swierczynski, Maciej Jozef; Stroe, Ana-Irina

    2015-01-01

    The impedance represents one of the most important performance parameters of the Lithium-ion batteries since it used for power capability calculations, battery pack and system design, cooling system design and also for state-of-health estimation. In the literature, different approaches...... are presented for measuring the impedance of Lithium-ion batteries and electrochemical impedance spectroscopy and dc current pulses are the most used ones; each of these approaches has its own advantages and drawbacks. The goal of this paper is to investigate which of the most encountered impedance measurement...... approaches is the most suitable for measuring the impedance of Lithium-ion batteries during ageing....

  13. An Effective Measured Data Preprocessing Method in Electrical Impedance Tomography

    Directory of Open Access Journals (Sweden)

    Chenglong Yu

    2014-01-01

    Full Text Available As an advanced process detection technology, electrical impedance tomography (EIT has widely been paid attention to and studied in the industrial fields. But the EIT techniques are greatly limited to the low spatial resolutions. This problem may result from the incorrect preprocessing of measuring data and lack of general criterion to evaluate different preprocessing processes. In this paper, an EIT data preprocessing method is proposed by all rooting measured data and evaluated by two constructed indexes based on all rooted EIT measured data. By finding the optimums of the two indexes, the proposed method can be applied to improve the EIT imaging spatial resolutions. In terms of a theoretical model, the optimal rooting times of the two indexes range in [0.23, 0.33] and in [0.22, 0.35], respectively. Moreover, these factors that affect the correctness of the proposed method are generally analyzed. The measuring data preprocessing is necessary and helpful for any imaging process. Thus, the proposed method can be generally and widely used in any imaging process. Experimental results validate the two proposed indexes.

  14. Electrochemical Impedance Spectroscopy Studies of Magnesium-Based Polymethylmethacrylate Gel Polymer Electroytes

    International Nuclear Information System (INIS)

    Osman, Z.; Zainol, N.H.; Samin, S.M.; Chong, W.G.; Md Isa, K.B.; Othman, L.; Supa’at, I.; Sonsudin, F.

    2014-01-01

    Magnesium-based rechargeable batteries might be an interesting future alternative to lithium-based batteries since magnesium compounds are highly abundant in the earth and are environmental friendly. In this work, we have prepared polymethylmethacrylate (PMMA) based gel polymer electrolyte (GPE) films containing two different magnesium salts, which is magnesium triflate, Mg(CF 3 SO 3 ) 2 and magnesium perchlorate, Mg(ClO 4 ) 2 using solution casting technique . The ionic conductivity of both gel polymer electrolyte systems was evaluated using a.c impedance spectroscopy. Results show that at room temperature, GPE-Mg(CF 3 SO 3 ) 2 system exhibits the highest conductivity value at 1.27 × 10 −3 S cm −1 for the film containing 20 wt.% of Mg(CF 3 SO 3 ) 2 salt, while the highest conductivity value for the GPE-Mg(ClO 4 ) 2 system is 3.13 × 10 −3 S cm −1 for the film containing 15 wt.% of Mg(ClO 4 ) 2 salt. The conductivity-temperature studies of both GPE systems follow the Arrhenius behavior. The activation energies for ionic conduction were determined to be in the range of 0.18–0.26 eV. The transport numbers of magnesium ions in both GPE systems were evaluated using the combination of a.c impedance spectroscopy and d.c polarization techniques. The results obtained indicate that the charge carriers in the GPE films for both systems are predominantly due to ions

  15. Development of a hardware-based AC microgrid for AC stability assessment

    Science.gov (United States)

    Swanson, Robert R.

    As more power electronic-based devices enable the development of high-bandwidth AC microgrids, the topic of microgrid power distribution stability has become of increased interest. Recently, researchers have proposed a relatively straightforward method to assess the stability of AC systems based upon the time-constants of sources, the net bus capacitance, and the rate limits of sources. In this research, a focus has been to develop a hardware test system to evaluate AC system stability. As a first step, a time domain model of a two converter microgrid was established in which a three phase inverter acts as a power source and an active rectifier serves as an adjustable constant power AC load. The constant power load can be utilized to create rapid power flow transients to the generating system. As a second step, the inverter and active rectifier were designed using a Smart Power Module IGBT for switching and an embedded microcontroller as a processor for algorithm implementation. The inverter and active rectifier were designed to operate simultaneously using a synchronization signal to ensure each respective local controller operates in a common reference frame. Finally, the physical system was created and initial testing performed to validate the hardware functionality as a variable amplitude and variable frequency AC system.

  16. Final design of the Korean AC/DC converters for the ITER coil power supply system

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jong-Seok, E-mail: jsoh@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Choi, Jungwan; Suh, Jae-Hak; Choi, Jihyun [ITER Korea, National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Lee, Lacksang; Kim, Changwoo; Park, Hyungjin; Jo, Seongman; Lee, Seungyun; Hwang, Kwangcheol; Liu, Hyoyol [Dawonsys Corp., Siheung 429-450 (Korea, Republic of); Hong, Ki-Don; Sim, Dong-Joon; Lee, Jang-Soo [Hyosung Corp., Gongdeok-Dong, Seoul 121-720 (Korea, Republic of); Lee, Eui-Jae; Kwon, Yang-Hae; Lee, Dae-Yeol; Ko, Ki-Won; Kim, Jong-Min [Mobiis Corp., Yangjae-dong, Seoul 137-888 (Korea, Republic of); Song, Inho [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); and others

    2015-10-15

    The final design of the ITER TF, CS, CC and VS AC/DC converters has been completed to implement ITER requirements following the detailed design and refinements of the preliminary design. The number of parallel thyristors and the rating of fuses are coordinated to keep those devices within the explosion limit even under most severe fault conditions. The impedance of the converter transformer has been optimized taking into account the energization inrush current, short circuit current, reactive power consumption and the available DC voltage. To ensure system integrity, AC/DC converters are mechanically divided into transformers, AC busbars, 6-pulse bridges, DC interconnecting busbars and DC reactors, and then all subsystems are decoupled by flexible links. To provide stable real time network communication down to the converters, a one GbE link is deployed between master controllers and local controllers. IEEE 1588 is implemented to the embedded controllers for precision time synchronization. This paper describes the detailed solutions implemented in the final design for the ITER AC/DC converters with R&D results of converter prototypes.

  17. Photovoltaic system with improved AC connections and method of making same

    Energy Technology Data Exchange (ETDEWEB)

    Cioffi, Philip Michael; Todorovic, Maja Harfman; Herzog, Michael Scott; Korman, Charles Steven; Doherty, Donald M.; Johnson, Neil Anthony

    2018-02-13

    An alternating current (AC) harness for a photovoltaic (PV) system includes a wire assembly having a first end and a second end, the wire assembly having a plurality of lead wires, and at least one AC connection module positioned at a location along a length of the wire assembly between the first end and the second end. Further, the at least one AC connection module includes a first connection terminal electrically coupled to the plurality of lead wires of the wire assembly and constructed to electrically couple the wire assembly with an output of a first PV module of the PV system. The at least one AC connection module also includes a second connection terminal electrically coupled to the plurality of lead wires of the wire assembly and constructed to electrically couple the wire assembly with an output of a second PV module of the PV system.

  18. Estimating the short-circuit impedance

    DEFF Research Database (Denmark)

    Nielsen, Arne Hejde; Pedersen, Knud Ole Helgesen; Poulsen, Niels Kjølstad

    1997-01-01

    A method for establishing a complex value of the short-circuit impedance from naturally occurring variations in voltage and current is discussed. It is the symmetrical three phase impedance at the fundamental grid frequency there is looked for. The positive sequence components in voltage...... and current are derived each period, and the short-circuit impedance is estimated from variations in these components created by load changes in the grid. Due to the noisy and dynamic grid with high harmonic distortion it is necessary to threat the calculated values statistical. This is done recursively...... through a RLS-algorithm. The algorithms have been tested and implemented on a PC at a 132 kV substation supplying a rolling mill. Knowing the short-circuit impedance gives the rolling mill an opportunity to adjust the arc furnace operation to keep flicker below a certain level. Therefore, the PC performs...

  19. Developpement d'une methode calorimetrique de mesure des pertes ac pour des rubans supraconducteurs a haute temperature critique

    Science.gov (United States)

    Dolez, Patricia

    Le travail de recherche effectue dans le cadre de ce projet de doctorat a permis la mise au point d'une methode de mesure des pertes ac destinee a l'etude des supraconducteurs a haute temperature critique. Pour le choix des principes de cette methode, nous nous sommes inspires de travaux anterieurs realises sur les supraconducteurs conventionnels, afin de proposer une alternative a la technique electrique, presentant lors du debut de cette these des problemes lies a la variation du resultat des mesures selon la position des contacts de tension sur la surface de l'echantillon, et de pouvoir mesurer les pertes ac dans des conditions simulant la realite des futures applications industrielles des rubans supraconducteurs: en particulier, cette methode utilise la technique calorimetrique, associee a une calibration simultanee et in situ. La validite de la methode a ete verifiee de maniere theorique et experimentale: d'une part, des mesures ont ete realisees sur des echantillons de Bi-2223 recouverts d'argent ou d'alliage d'argent-or et comparees avec les predictions theoriques donnees par Norris, nous indiquant la nature majoritairement hysteretique des pertes ac dans nos echantillons; d'autre part, une mesure electrique a ete realisee in situ dont les resultats correspondent parfaitement a ceux donnes par notre methode calorimetrique. Par ailleurs, nous avons compare la dependance en courant et en frequence des pertes ac d'un echantillon avant et apres qu'il ait ete endommage. Ces mesures semblent indiquer une relation entre la valeur du coefficient de la loi de puissance modelisant la dependance des pertes avec le courant, et les inhomogeneites longitudinales du courant critique induites par l'endommagement. De plus, la variation en frequence montre qu'au niveau des grosses fractures transverses creees par l'endommagement dans le coeur supraconducteur, le courant se partage localement de maniere a peu pres equivalente entre les quelques grains de matiere

  20. Characterizing aging effects of lithium ion batteries by impedance spectroscopy

    International Nuclear Information System (INIS)

    Troeltzsch, Uwe; Kanoun, Olfa; Traenkler, Hans-Rolf

    2006-01-01

    Impedance spectroscopy is one of the most promising methods for characterizing aging effects of portable secondary batteries online because it provides information about different aging mechanisms. However, application of impedance spectroscopy 'in the field' has some higher requirements than for laboratory experiments. It requires a fast impedance measurement process, an accurate model applicable with several batteries and a robust method for model parameter estimation. In this paper, we present a method measuring impedance at different frequencies simultaneously. We propose to use a composite electrode model, capable to describe porous composite electrode materials. A hybrid method for parameter estimation based on a combination of evolution strategy and Levenberg-Marquardt method allowed a robust and fast parameter calculation. Based on this approach, an experimental investigation of aging effects of a lithium ion battery was carried out. After 230 discharge/charge cycles, the battery showed a 14% decreased capacity. Modeling results show that series resistance, charge transfer resistance and Warburg coefficient changed thereby their values by approximately 60%. A single frequency impedance measurement, usually carried out at 1 kHz, delivers only information about series resistance. Impedance spectroscopy allows additionally the estimation of charge transfer resistance and Warburg coefficient. This fact and the high sensitivity of model parameters to capacity change prove that impedance spectroscopy together with an accurate modeling deliver information that significantly improve characterization of aging effects

  1. Characterizing aging effects of lithium ion batteries by impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Troeltzsch, Uwe [University of the Bundeswehr Munich Institute for Measurement and Automation, 85579 Neubiberg (Germany)]. E-mail: uwe.troeltzsch@unibw-muenchen.de; Kanoun, Olfa [University of the Bundeswehr Munich Institute for Measurement and Automation, 85579 Neubiberg (Germany); Traenkler, Hans-Rolf [University of the Bundeswehr Munich Institute for Measurement and Automation, 85579 Neubiberg (Germany)

    2006-01-20

    Impedance spectroscopy is one of the most promising methods for characterizing aging effects of portable secondary batteries online because it provides information about different aging mechanisms. However, application of impedance spectroscopy 'in the field' has some higher requirements than for laboratory experiments. It requires a fast impedance measurement process, an accurate model applicable with several batteries and a robust method for model parameter estimation. In this paper, we present a method measuring impedance at different frequencies simultaneously. We propose to use a composite electrode model, capable to describe porous composite electrode materials. A hybrid method for parameter estimation based on a combination of evolution strategy and Levenberg-Marquardt method allowed a robust and fast parameter calculation. Based on this approach, an experimental investigation of aging effects of a lithium ion battery was carried out. After 230 discharge/charge cycles, the battery showed a 14% decreased capacity. Modeling results show that series resistance, charge transfer resistance and Warburg coefficient changed thereby their values by approximately 60%. A single frequency impedance measurement, usually carried out at 1 kHz, delivers only information about series resistance. Impedance spectroscopy allows additionally the estimation of charge transfer resistance and Warburg coefficient. This fact and the high sensitivity of model parameters to capacity change prove that impedance spectroscopy together with an accurate modeling deliver information that significantly improve characterization of aging effects.

  2. Ion transfer kinetics at the micro-interface between two immiscible electrolyte solutions investigated by electrochemical impedance spectroscopy and steady-state voltammetry

    Czech Academy of Sciences Publication Activity Database

    Silver, Barry Richard; Holub, Karel; Mareček, Vladimír

    2014-01-01

    Roč. 731, OCT 2014 (2014), s. 107-111 ISSN 1572-6657 R&D Projects: GA ČR GA13-04630S Institutional support: RVO:61388955 Keywords : Liquid/liquid interfaces * Ion transport * AC impedance Subject RIV: CG - Electrochemistry Impact factor: 2.729, year: 2014

  3. Two solid-phase recycling method for basic ionic liquid [C4mim]Ac by macroporous resin and ion exchange resin from Schisandra chinensis fruits extract.

    Science.gov (United States)

    Ma, Chun-hui; Zu, Yuan-gang; Yang, Lei; Li, Jian

    2015-01-22

    In this study, two solid-phase recycling method for basic ionic liquid (IL) 1-butyl-3-methylimidazolium acetate ([C4mim]Ac) were studied through a digestion extraction system of extracting biphenyl cyclooctene lignans from Schisandra chinensis. The RP-HPLC detection method for [C4mim]Ac was established in order to investigate the recovery efficiency of IL. The recycling method of [C4mim]Ac is divided into two steps, the first step was the separation of lignans from the IL solution containing HPD 5000 macroporous resin, the recovery efficiency and purity of [C4mim]Ac achieved were 97.8% and 67.7%, respectively. This method cannot only separate the lignans from [C4mim]Ac solution, also improve the purity of lignans, the absorption rate of lignans in [C4mim]Ac solution was found to be higher (69.2%) than that in ethanol solution (57.7%). The second step was the purification of [C4mim]Ac by the SK1B strong acid ion exchange resin, an [C4mim]Ac recovery efficiency of 55.9% and the purity higher than 90% were achieved. Additionally, [C4mim]Ac as solvent extraction of lignans from S. chinensis was optimized, the hydrolysis temperature was 90°C and the hydrolysis time was 2h. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Image Reconstruction Based on Homotopy Perturbation Inversion Method for Electrical Impedance Tomography

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2013-01-01

    Full Text Available The image reconstruction for electrical impedance tomography (EIT mathematically is a typed nonlinear ill-posed inverse problem. In this paper, a novel iteration regularization scheme based on the homotopy perturbation technique, namely, homotopy perturbation inversion method, is applied to investigate the EIT image reconstruction problem. To verify the feasibility and effectiveness, simulations of image reconstruction have been performed in terms of considering different locations, sizes, and numbers of the inclusions, as well as robustness to data noise. Numerical results indicate that this method can overcome the numerical instability and is robust to data noise in the EIT image reconstruction. Moreover, compared with the classical Landweber iteration method, our approach improves the convergence rate. The results are promising.

  5. Impedance of accelerator components

    International Nuclear Information System (INIS)

    Corlett, J.N.

    1996-05-01

    As demands for high luminosity and low emittance particle beams increase, an understanding of the electromagnetic interaction of these beams with their vacuum chamber environment becomes more important in order to maintain the quality of the beam. This interaction is described in terms of the wake field in time domain, and the beam impedance in frequency domain. These concepts are introduced, and related quantities such as the loss factor are presented. The broadband Q = 1 resonator impedance model is discussed. Perturbation and coaxial wire methods of measurement of real components are reviewed

  6. Broadband electrical impedance matching for piezoelectric ultrasound transducers.

    Science.gov (United States)

    Huang, Haiying; Paramo, Daniel

    2011-12-01

    This paper presents a systematic method for designing broadband electrical impedance matching networks for piezoelectric ultrasound transducers. The design process involves three steps: 1) determine the equivalent circuit of the unmatched piezoelectric transducer based on its measured admittance; 2) design a set of impedance matching networks using a computerized Smith chart; and 3) establish the simulation model of the matched transducer to evaluate the gain and bandwidth of the impedance matching networks. The effectiveness of the presented approach is demonstrated through the design, implementation, and characterization of impedance matching networks for a broadband acoustic emission sensor. The impedance matching network improved the power of the acquired signal by 9 times.

  7. New Perspectives on Droop Control in AC MicroGrid

    DEFF Research Database (Denmark)

    Sun, Yao; Hou, Xiaochao; Yang, Jian

    2017-01-01

    Virtual impedance, angle droop and frequency droop control play important roles in maintaining system stability, and load sharing among distributed generators (DGs) in microgrid. These approaches have been developed into three totally independent concepts, but present strong relevance....... In this letter, their similarities and differences are significantly revealed. Some new findings are established as follows: 1) angle droop control is intrinsically a virtual impedance method; 2) virtual impedance method can also be regarded as a special frequency droop control with a power derivative feedback......; 3) the combination of virtual impedance method and frequency droop control is equivalent to the proportional–derivative (PD) type frequency droop, which is introduced to enhance the power oscillation damping. As a whole, these analogous relationships provide the new insight into the design...

  8. Comparative methods to assess harmonic response of nonlinear piezoelectric energy harvesters interfaced with AC and DC circuits

    Science.gov (United States)

    Lan, Chunbo; Tang, Lihua; Harne, Ryan L.

    2018-05-01

    Nonlinear piezoelectric energy harvester (PEH) has been widely investigated during the past few years. Among the majority of these researches, a pure resistive load is used to evaluate power output. To power conventional electronics in practical application, the alternating current (AC) generated by nonlinear PEH needs to be transformed into a direct current (DC) and rectifying circuits are required to interface the device and electronic load. This paper aims at exploring the critical influences of AC and DC interface circuits on nonlinear PEH. As a representative nonlinear PEH, we fabricate and evaluate a monostable PEH in terms of generated power and useful operating bandwidth when it is connected to AC and DC interface circuits. Firstly, the harmonic balance analysis and equivalent circuit representation method are utilized to tackle the modeling of nonlinear energy harvesters connected to AC and DC interface circuits. The performances of the monostable PEH connected to these interface circuits are then analyzed and compared, focusing on the influences of the varying load, excitation and electromechanical coupling strength on the nonlinear dynamics, bandwidth and harvested power. Subsequently, the behaviors of the monostable PEH with AC and DC interface circuits are verified by experiment. Results indicate that both AC and DC interface circuits have a peculiar influence on the power peak shifting and operational bandwidth of the monostable PEH, which is quite different from that on the linear PEH.

  9. Corrosion monitoring of iron, protected by an organic coating, with the aid of impedance measurements

    International Nuclear Information System (INIS)

    Hubrecht, J.; Piens, M.; Vereecken, J.

    1984-01-01

    The ac impedance measurement has proved to be a useful electrochemical technique for mainly qualitative studies of electrochemical and corrosion systems. Even for complicated systems such as coated metals in corrosive environments this technique has been used with success. The system chosen for the present study is an ARMCO iron plate, coated with a SrCrO 4 -pigmented styrene acrylic polymer, and immersed for several weeks in an aqueous NaCl solution. Impedance measurements analyze a system under test into its constituting phenomena. The dependence of system parameters on coating layer thickness, NaCl concentration, and pigmentation of the coating during the immersion time provides insight into the corrosion and protection mechanisms at the coating/metal interface, besides the behavior of the coating itself

  10. Surge Protection in Low-Voltage AC Power Circuits: An Anthology

    Science.gov (United States)

    Martzloff, F. D.

    2002-10-01

    The papers included in this part of the Anthology provide basic information on the propagation of surges in low-voltage AC power circuits. The subject was approached by a combination of experiments and theoretical considerations. One important distinction is made between voltage surges and current surges. Historically, voltage surges were the initial concern. After the introduction and widespread use of current-diverting surge-protective devices at the point-of-use, the propagation of current surges became a significant factor. The papers included in this part reflect this dual dichotomy of voltage versus current and impedance mismatch effects versus simple circuit theory.

  11. New method of silicon photovoltaic panel fault detection using impedance spectroscopy

    DEFF Research Database (Denmark)

    Symonowicz, Joanna Karolina; Riedel, Nicholas; Thorsteinsson, Sune

    2017-01-01

    The aim of our project is to develop a new method for photovoltaic (PV) panel fault detection based on analysing its impedance spectra (IS). Although this technique was successful in assessing the state of degradation of fuel cells and batteries [1, 2], it has never been applied to PV cells...... on a wide scale. In this paper, we show that, unlike current-voltage (I-V) tests, the IS method is capable of early detection of changes in PV panel parameters due to microcracks and potential-induced degradation (PID). Although our measurements are only successful under dark conditions, the results...... are similar for both laboratory environment and for outdoor tests in various weather conditions. A fully developed IS technique, accounting for all kinds of most common PV panel degradation types, would surpass the existing PV fault detection methods then it comes to cost and accuracy [3,4]....

  12. Mechanical Impedance Modeling of Human Arm: A survey

    Science.gov (United States)

    Puzi, A. Ahmad; Sidek, S. N.; Sado, F.

    2017-03-01

    Human arm mechanical impedance plays a vital role in describing motion ability of the upper limb. One of the impedance parameters is stiffness which is defined as the ratio of an applied force to the measured deformation of the muscle. The arm mechanical impedance modeling is useful in order to develop a better controller for system that interacts with human as such an automated robot-assisted platform for automated rehabilitation training. The aim of the survey is to summarize the existing mechanical impedance models of human upper limb so to justify the need to have an improved version of the arm model in order to facilitate the development of better controller of such systems with ever increase in complexity. In particular, the paper will address the following issue: Human motor control and motor learning, constant and variable impedance models, methods for measuring mechanical impedance and mechanical impedance modeling techniques.

  13. Results of polarization resistance and impedance of steel bars embedded in carbonated concrete contaminated with chlorides

    International Nuclear Information System (INIS)

    Andrade, C.; Alonso, C.; Gonzalez, J.A.

    1989-01-01

    Laboratory results of the corrosion rate of steel embedded in carbonated concrete contaminated with chlorides determined through the Polarization Resistance method are presented here as examples of the possibilities offered by this technique in order to monitor the reinforcement corrosion process. The Rp technique has the advantages of fast response, simple and relatively accurate. Contrasts with gravimetric losses are presented. The A.C. Impedance measurements determined on the same specimens are also presented. The difficulties found in the interpretation of the results are stressed. R T values cannot easily be obtained. Several electrical circuits which may model the behaviour of the steel/concrete system are discussed. Finally, comments on the basic criteria to interpret results of both techniques are given. (author) 4 refs., 6 figs

  14. Thickness-, Composition-, and Magnetic-Field-Dependent Complex Impedance Spectroscopy of Granular-Type-Barrier Co/Co-Al2O3/Co MTJs

    Science.gov (United States)

    Tuan, Nguyen Anh; Anh, Nguyen Tuan; Nga, Nguyen Tuyet; Tue, Nguyen Anh; Van Cuong, Giap

    2016-06-01

    The alternating-current (ac) electrical properties of granular-type-barrier magnetic tunnel junctions (GBMTJs) based on Co/Co x (Al2O3)1- x ( t)/Co trilayer structures have been studied using complex impedance spectroscopy (CIS). Their CIS characteristics were investigated in external magnetic fields varying from 0 kOe to 3 kOe as a function of Co composition x at 10 at.%, 25 at.%, and 35 at.%, with barrier layer thickness t of 20 nm to 90 nm. The influence of these factors on the behaviors of the ac impedance response of the GBMTJs was deeply investigated and attributed to the dielectric or conducting nature of the Co-Al2O3 barrier layer. The most remarkable typical phenomena observed in these behaviors, even appearing paradoxical, include lower impedance for thicker t for each given x, a declining trend of Z with increasing x, a clear decrease of Z with H, and especially a partition of Z into zones according to the H value. All these effects are analyzed and discussed to demonstrate that diffusion-type and mass-transfer-type phenomena can be inferred from processes such as spin tunneling and Coulomb or spin blockade in the Co-Al2O3 barrier layer.

  15. Applicability of impedance measuring method to the detection of irradiation treatment of potatoes

    International Nuclear Information System (INIS)

    Hayashi, Toru; Todoriki, Setsuko; Otobe, Kazunori; Sugiyama, Junnichi

    1993-01-01

    The incubation condition of potato tubers prior to impedance measurement greatly influenced the reliability of detection of irradiated potatoes; the impedance ratio at 5 kHz to 50 kHz (Z 5k /Z 50k ) determined at 22degC at an apical region of tuber which was pre-incubated at 22degC for 3 days or longer resulted in the best detection of radiation treatment of potatoes. The impedance ratio was dependent upon dose applied to potato tubers. Potatoes irradiated at 100 Gy could be distinguished from unirradiated potatoes for 10 cultivars of potatoes. The impedance ratio of potatoes irradiated at the same dose was little influenced by the planting locality if the cultivar was the same, although the ratio varied with potato cultivars. These results indicate that irradiated potatoes can be detected if the potato cultivar is known. Potatoes 'Danshaku' commercially irradiated at the Shihiro Potato Irradiation Center could be differentiated from unirradiated 'Danshaku' at different planting localities; the impedance ratio was lower than 2.75 for the unirradiated potatoes and higher than 2.75 for the irradiated ones. (author)

  16. An AC Resistance Optimization Method Applicable for Inductor and Transformer Windings with Full Layers and Partial Layers

    DEFF Research Database (Denmark)

    Shen, Zhan; Li, Zhiguang; Jin, Long

    2017-01-01

    This paper proposes an ac resistance optimization method applicable for both inductor and transformer windings with full layers and partial layers. The proposed method treats the number of layers of the windings as a design variable instead of as a predefined parameter, compared to existing methods...

  17. Quantitative evaluation of impedance perception characteristics of humans in the man-machine interface

    International Nuclear Information System (INIS)

    Onish, Keiichi; Kim, Young Woo; Obinata, Goro; Hase, Kazunori

    2013-01-01

    We investigated impedance perception characteristics of humans in the man-machine interface. Sensibility or operational feel about physical properties of machine dynamics is obtained through perception process. We evaluated the impedance perception characteristics of humans who are operating a mechanical system, based on extended Scheffe's subjective evaluation method in full consideration of the influence of impedance level, impedance difference, experiment order, individual difference and so on. Constant method based quantitative evaluation was adopted to investigate the influence of motion frequency and change of the impedance on human impedance perception characteristics. Experimental results indicate that humans perceive impedance of mechanical systems based on comparison process of the dynamical characteristics of the systems. The proposed method can be applied to quantify the design requirement of man-machine interface. The effectiveness of the proposed method is verified through experimental results.

  18. Quantitative evaluation of impedance perception characteristics of humans in the man-machine interface

    Energy Technology Data Exchange (ETDEWEB)

    Onish, Keiichi [Yamaha Motor Co., Shizuoka (Japan); Kim, Young Woo [Daegu Techno Park R and D Center, Seoul (Korea, Republic of); Obinata, Goro [Nagoya University, Nagoya (Japan); Hase, Kazunori [Tokyo Metropolitan University, Tokyo (Japan)

    2013-05-15

    We investigated impedance perception characteristics of humans in the man-machine interface. Sensibility or operational feel about physical properties of machine dynamics is obtained through perception process. We evaluated the impedance perception characteristics of humans who are operating a mechanical system, based on extended Scheffe's subjective evaluation method in full consideration of the influence of impedance level, impedance difference, experiment order, individual difference and so on. Constant method based quantitative evaluation was adopted to investigate the influence of motion frequency and change of the impedance on human impedance perception characteristics. Experimental results indicate that humans perceive impedance of mechanical systems based on comparison process of the dynamical characteristics of the systems. The proposed method can be applied to quantify the design requirement of man-machine interface. The effectiveness of the proposed method is verified through experimental results.

  19. A Numerical Theory for Impedance Education in Three-Dimensional Normal Incidence Tubes

    Science.gov (United States)

    Watson, Willie R.; Jones, Michael G.

    2016-01-01

    A method for educing the locally-reacting acoustic impedance of a test sample mounted in a 3-D normal incidence impedance tube is presented and validated. The unique feature of the method is that the excitation frequency (or duct geometry) may be such that high-order duct modes may exist. The method educes the impedance, iteratively, by minimizing an objective function consisting of the difference between the measured and numerically computed acoustic pressure at preselected measurement points in the duct. The method is validated on planar and high-order mode sources with data synthesized from exact mode theory. These data are then subjected to random jitter to simulate the effects of measurement uncertainties on the educed impedance spectrum. The primary conclusions of the study are 1) Without random jitter the method is in excellent agreement with that for known impedance samples, and 2) Random jitter that is compatible to that found in a typical experiment has minimal impact on the accuracy of the educed impedance.

  20. Application of the Method of Auxiliary Sources for the Analysis of Electromagnetic Scattering by Impedance Spheres

    DEFF Research Database (Denmark)

    Karamehmedovic, Mirza; Breinbjerg, Olav

    2002-01-01

    The Method of Auxiliary Sources (MAS) is applied to 3D scattering problems involving spherical impedance scatterers. The MAS results are compared with the reference spherical wave expansion (SWE) solution. It is demonstrated that good agreement is achieved between the MAS and SWE results....

  1. Raman and impedance spectroscopy methods of P{sub 2}O{sub 5}–Li{sub 2}O–Al{sub 2}O{sub 3} glass system doped with MgO

    Energy Technology Data Exchange (ETDEWEB)

    Jlassi, I., E-mail: ifa.jlassi@fst.rnu.tn [Laboratoire Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Département de Physique, Faculté des Sciences de Tunis, Université de Tunis ElManar, Campus Universitaire Farhat Hachad, ElManar 2092 (Tunisia); Sdiri, N. [Laboratoire Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Elhouichet, H. [Laboratoire Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Département de Physique, Faculté des Sciences de Tunis, Université de Tunis ElManar, Campus Universitaire Farhat Hachad, ElManar 2092 (Tunisia); Ferid, M. [Laboratoire Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95, Hammam-Lif 2050 (Tunisia)

    2015-10-05

    Highlights: • We have prepared a new lithium diphosphate glasses doped MgO. • Investigate structural and electrical properties at room temperature. • Investigate relation between structure and electrical conductivity of the glass. - Abstract: Lithium diphosphate glasses doped MgO was prepared via a melt quenching technique. The samples were characterized by X-ray diffraction (XRD), Raman and impedance spectroscopy. XRD spectra reflected the amorphous nature of the glasses Raman spectra show structural network modifications with the composition variations of the studied glasses. Raman spectra of the studied glasses contain also typical phosphate glasses bands. Thus the band at ∼698 cm{sup −1} assigned to symmetric stretching vibrations of P−O−P groups and that from ∼1168 cm{sup −1} is attributed to symmetric stretching motions of the non-bridging oxygen (NBO) atoms bonded to phosphorous atoms (PO{sub 2}) in phosphate tetrahedron. Electric properties were investigated using complex impedance spectroscopy in a frequency range from 40 Hz to 6 MHz at room temperature. The impedance spectra were analyzed in terms of equivalent circuits involving resistors, capacitors and constant phase elements (CPE). Constant-phase elements (CPE) are used in equivalent electrical circuits for the fitting of experimental impedance data. The AC conductivity exhibited a Jonscher’s universal power law according with the relation σ(ω) = σ(0) + Aω{sup s} and it is observed that as the MgO content increases, frequency exponent (s) decreases.

  2. Nature of Dielectric Properties, Electric Modulus and AC Electrical Conductivity of Nanocrystalline ZnIn2Se4 Thin Films

    Science.gov (United States)

    El-Nahass, M. M.; Attia, A. A.; Ali, H. A. M.; Salem, G. F.; Ismail, M. I.

    2018-02-01

    The structural characteristics of thermally deposited ZnIn2Se4 thin films were indexed utilizing x-ray diffraction as well as scanning electron microscopy techniques. Dielectric properties, electric modulus and AC electrical conductivity of ZnIn2Se4 thin films were examined in the frequency range from 42 Hz to 106 Hz. The capacitance, conductance and impedance were measured at different temperatures. The dielectric constant and dielectric loss decrease with an increase in frequency. The maximum barrier height was determined from the analysis of the dielectric loss depending on the Giuntini model. The real part of the electric modulus revealed a constant maximum value at higher frequencies and the imaginary part of the electric modulus was characterized by the appearance of dielectric relaxation peaks. The AC electrical conductivity obeyed the Jonscher universal power law. Correlated barrier hopping model was the appropriate mechanism for AC conduction in ZnIn2Se4 thin films. Estimation of the density of states at the Fermi level and activation energy, for AC conduction, was carried out based on the temperature dependence of AC electrical conductivity.

  3. Determination of beam coupling impedance in the frequency domain

    Energy Technology Data Exchange (ETDEWEB)

    Niedermayer, Uwe

    2016-07-01

    The concept of beam coupling impedance describes the electromagnetic interaction of uniformly moving charged particles with their surrounding structures in the Frequency Domain (FD). In synchrotron accelerators, beam coupling impedances can lead to beam induced component heating and coherent beam instabilities. Thus, in order to ensure the stable operation of a synchrotron, its impedances have to be quantified and their effects have to be controlled. Nowadays, beam coupling impedances are mostly obtained by Fourier transform of wake potentials, which are the results of Time Domain (TD) simulations. However, at low frequencies, low beam velocity, or for dispersive materials, TD simulations become unhandy. In this area, analytical calculations of beam coupling impedance in the FD, combined with geometry approximations, are still widely used. This thesis describes the development of two electromagnetic field solvers to obtain the beam coupling impedance directly in the FD, where the beam velocity is only a parameter and dispersive materials can be included easily. One solver is based on the Finite Integration Technique (FIT) on a staircase mesh. It is implemented both in 2D and 3D. However, the staircase mesh is inefficient on curved structures, which is particularly problematic for the modeling of a dipole source, that is required for the computation of the transverse beam coupling impedance. This issue is overcome by the second solver developed in this thesis, which is based on the Finite Element Method (FEM) on an unstructured triangular mesh. It is implemented in 2D and includes an optional Surface Impedance Boundary Condition (SIBC). Thus, it is well suited for the computation of longitudinal and transverse impedances of long beam pipe structures of arbitrary cross-section. Besides arbitrary frequency and beam velocity, also dispersive materials can be chosen, which is crucial for the computation of the impedance of ferrite kicker magnets. Numerical impedance

  4. Impedance pattern of vaginal and vestibular mucosa in cyclic goats

    Directory of Open Access Journals (Sweden)

    Ivo Křivánek

    2008-01-01

    Full Text Available The changes of vaginal and vestibular impedance during the oestrous cycle in goats were examined. The onset of oestrus was teased with a buck once a day during the experiment. Impedance was mea­sured by a four-terminal method. The vaginal impedance was recorded under slight pressure of electrodes to the vaginal dorsal wall at the cervix. The vestibular impedance was recorded under slight pressure of electrodes to the vestibular dorsal wall 5 cm from the vulva and at the vulva. The im­pe­dan­ce was measured once a day from 4 days before the expected oestrus to 6 days after onset of oestrus. The vaginal impedance at the cervix decreased during pro-oestrus (P < 0.01 and increased du­ring oestrus (P < 0.01. The vestibular impedance 5 cm from the vulva decreased during pro-oestrus (P < 0.01 and increased after oestrus (P < 0.01. The decrease of vaginal impedance during peri-oestrus was nearly twofold in comparison with the vestibular impedance 5 cm from the vulva. No sig­ni­fi­cant decrease of the vestibular impedance at the vulva was found during the oestrous cycle. The results indicate that the vaginal impedance at the cervix and vestibular impedance 5 cm from the vulva measured by means of a four-terminal method during the oestrous cycle display cyclic changes that are closely related to the oestrous behaviour of goats.

  5. A Study on evaluation of pitting characteristics of radioactive container materials and development of the program used for analyzing impedance spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Pyun, Su Il; Moon, S. M.; Orr, S. J.; Kim, D. J.; Lee, W. J.; Jeong, I. J.; Shin, H. C.; Han, J. N.; Lee, M. H.; Lee, S. B. [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-01-01

    Pitting corrosion of sensitized 316L stainless steel has been investigated as a function of the degree of sensitization in aqueous NaCl solution with various Cl{sup -} ion concentrations ([Cl{sup -}] = 0.005 (177.25 ppm); 0.01 (354.50 ppm); 0.05 (1772.5 ppm); 0.1 (3545 ppm); 0.5 M (17725 ppm)) at room temperature. The squared rod specimens of 316L stainless steel were thermally annealed at 700 C for various durations (0 h : non-sensitized specimen A; 8 h : moderately sensitized specimen B; 96 h : severely sensitized specimen C). The pitting corrosion resistance of the three kinds of specimens was evaluated by the potentio dynamic anodic polarization method, abrading electrode technique and ac{sup -}impedance spectroscopy. The measured potentiostatic decay current transient obtained just after interrupting the abrading action showed that the repassivation rate of the oxide film on the fresh bare surface of the specimen decreased in the order of specimens A, B and C in the early stage of the film formation. From the results of ac{sup -}impedance spectroscopy, the oxide film resistance R{sub ox} and oxide film capacitance C{sub ox} of specimens B and C in value were evaluated to be lower and higher, respectively, than those of specimen A and the repassivation rate and resistance value of the oxide film on the three kinds could be quantitatively calculated. 10 refs., 8 tabs., 31 figs.(author)

  6. Impedance spectroscopic analysis of composite electrode from activated carbon/conductive materials/ruthenium oxide for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Taer, E.; Awitdrus,; Farma, R. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Department of Physics, Faculty of Mathematics and Natural Sciences, University of Riau, 28293 Pekanbaru, Riau (Indonesia); Deraman, M., E-mail: madra@ukm.my; Talib, I. A.; Ishak, M. M.; Omar, R.; Dolah, B. N. M.; Basri, N. H.; Othman, M. A. R. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Kanwal, S. [ICCBS, H.E.J. Research Institute of Chemistry, University of Karachi, 75270 Karachi (Pakistan)

    2015-04-16

    Activated carbon powders (ACP) were produced from the KOH treated pre-carbonized rubber wood sawdust. Different conductive materials (graphite, carbon black and carbon nanotubes (CNTs)) were added with a binder (polivinylidene fluoride (PVDF)) into ACP to improve the supercapacitive performance of the activated carbon (AC) electrodes. Symmetric supercapacitor cells, fabricated using these AC electrodes and 1 molar H{sub 2}SO{sub 4} electrolyte, were analyzed using a standard electrochemical impedance spectroscopy technique. The addition of graphite, carbon black and CNTs was found effective in reducing the cell resistance from 165 to 68, 23 and 49 Ohm respectively, and increasing the specific capacitance of the AC electrodes from 3 to 7, 17, 32 F g{sup −1} respectively. Since the addition of CNTs can produce the highest specific capacitance, CNTs were chosen as a conductive material to produce AC composite electrodes that were added with 2.5 %, 5 % and 10 % (by weight) electro-active material namely ruthenium oxide; PVDF binder and CNTs contents were kept at 5 % by weight in each AC composite produced. The highest specific capacitance of the cells obtained in this study was 86 F g{sup −1}, i.e. for the cell with the resistance of 15 Ohm and composite electrode consists of 5 % ruthenium oxide.

  7. Marketingová komunikace AC Sparta Praha

    OpenAIRE

    Fanta, Jan

    2016-01-01

    Title: Marketing communications of AC Sparta Praha Objectives: The main objective of this thesis is to analyze contemporary state of marketing communications with the audience of AC Sparta Praha, identify deficiencies and develop a proposal to improve the marketing communications with fans of this club. Methods: In this thesis have been used methods of case study, analysis of available documents and texts, structured interview with director od marketing, and director of communications and pub...

  8. Increased Ac excision (iae): Arabidopsis thaliana mutations affecting Ac transposition

    International Nuclear Information System (INIS)

    Jarvis, P.; Belzile, F.; Page, T.; Dean, C.

    1997-01-01

    The maize transposable element Ac is highly active in the heterologous hosts tobacco and tomato, but shows very much reduced levels of activity in Arabidopsis. A mutagenesis experiment was undertaken with the aim of identifying Arabidopsis host factors responsible for the observed low levels of Ac activity. Seed from a line carrying a single copy of the Ac element inserted into the streptomycin phosphotransferase (SPT) reporter fusion, and which displayed typically low levels of Ac activity, were mutagenized using gamma rays. Nineteen mutants displaying high levels of somatic Ac activity, as judged by their highly variegated phenotypes, were isolated after screening the M2 generation on streptomycin-containing medium. The mutations fall into two complementation groups, iae1 and iae2, are unlinked to the SPT::Ac locus and segregate in a Mendelian fashion. The iae1 mutation is recessive and the iae2 mutation is semi-dominant. The iae1 and iae2 mutants show 550- and 70-fold increases, respectively, in the average number of Ac excision sectors per cotyledon. The IAE1 locus maps to chromosome 2, whereas the SPT::Ac reporter maps to chromosome 3. A molecular study of Ac activity in the iae1 mutant confirmed the very high levels of Ac excision predicted using the phenotypic assay, but revealed only low levels of Ac re-insertion. Analyses of germinal transposition in the iae1 mutant demonstrated an average germinal excision frequency of 3% and a frequency of independent Ac re-insertions following germinal excision of 22%. The iae mutants represents a possible means of improving the efficiency of Ac/Ds transposon tagging systems in Arabidopsis, and will enable the dissection of host involvement in Ac transposition and the mechanisms employed for controlling transposable element activity

  9. Predicting AC loss in practical superconductors

    International Nuclear Information System (INIS)

    Goemoery, F; Souc, J; Vojenciak, M; Seiler, E; Klincok, B; Ceballos, J M; Pardo, E; Sanchez, A; Navau, C; Farinon, S; Fabbricatore, P

    2006-01-01

    Recent progress in the development of methods used to predict AC loss in superconducting conductors is summarized. It is underlined that the loss is just one of the electromagnetic characteristics controlled by the time evolution of magnetic field and current distribution inside the conductor. Powerful methods for the simulation of magnetic flux penetration, like Brandt's method and the method of minimal magnetic energy variation, allow us to model the interaction of the conductor with an external magnetic field or a transport current, or with both of them. The case of a coincident action of AC field and AC transport current is of prime importance for practical applications. Numerical simulation methods allow us to expand the prediction range from simplified shapes like a (infinitely high) slab or (infinitely thin) strip to more realistic forms like strips with finite rectangular or elliptic cross-section. Another substantial feature of these methods is that the real composite structure containing an array of superconducting filaments can be taken into account. Also, the case of a ferromagnetic matrix can be considered, with the simulations showing a dramatic impact on the local field. In all these circumstances, it is possible to indicate how the AC loss can be reduced by a proper architecture of the composite. On the other hand, the multifilamentary arrangement brings about a presence of coupling currents and coupling loss. Simulation of this phenomenon requires 3D formulation with corresponding growth of the problem complexity and computation time

  10. Results from a Novel Method for Corrosion Studies of Electroplated Lithium Metal Based on Measurements with an Impedance Scanning Electrochemical Quartz Crystal Microbalance

    Directory of Open Access Journals (Sweden)

    Martin Winter

    2013-07-01

    Full Text Available A new approach to study the chemical stability of electrodeposited lithium on a copper metal substrate via measurements with a fast impedance scanning electrochemical quartz crystal microbalance is presented. The corrosion of electrochemically deposited lithium was compared in two different electrolytes, based on lithium difluoro(oxalato borate (LiDFOB and lithium hexafluorophosphate, both salts being dissolved in solvent blends of ethylene carbonate and diethyl carbonate. For a better understanding of the corrosion mechanisms, scanning electron microscopy images of electrodeposited lithium were also consulted. The results of the EQCM experiments were supported by AC impedance measurements and clearly showed two different corrosion mechanisms caused by the different salts and the formed SEIs. The observed mass decrease of the quartz sensor of the LiDFOB-based electrolyte is not smooth, but rather composed of a series of abrupt mass fluctuations in contrast to that of the lithium hexafluorophosphate-based electrolyte. After each slow decrease of mass a rather fast increase of mass is observed several times. The slow mass decrease can be attributed to a consolidation process of the SEI or to the partial dissolution of the SEI leaving finally lithium metal unprotected so that a fast film formation sets in entailing the observed fast mass increases.

  11. A Method of Function Space for Vertical Impedance Function of a Circular Rigid Foundation on a Transversely Isotropic Ground

    Directory of Open Access Journals (Sweden)

    Morteza Eskandari-Ghadi

    2014-06-01

    Full Text Available This paper is concerned with investigation of vertical impedance function of a surface rigid circular foundation resting on a semi-infinite transversely isotropic alluvium. To this end, the equations of motion in cylindrical coordinate system, which because of axissymmetry are two coupled equations, are converted into one partial differential equation using a method of potential function. The governing partial differential equation for the potential function is solved via implementing Hankel integral transforms in radial direction. The vertical and radial components of displacement vector are determined with the use of transformed displacement-potential function relationships. The mixed boundary conditions at the surface are satisfied by specifying the traction between the rigid foundation and the underneath alluvium in a special function space introduced in this paper, where the vertical displacements are forced to satisfy the rigid boundary condition. Through exercising these restraints, the normal traction and then the vertical impedance function are obtained. The results are then compared with the existing results in the literature for the simpler case of isotropic half-space, which shows an excellent agreement. Eventually, the impedance functions are presented in terms of dimensionless frequency for different materials. The method presented here may be used to obtain the impedance function in any other direction as well as in buried footing in layered media.

  12. Performance of an X-ray single pixel TES microcalorimeter under DC and AC biasing

    International Nuclear Information System (INIS)

    Gottardi, L.; Kuur, J. van der; Korte, P. A. J. de; Den Hartog, R.; Dirks, B.; Popescu, M.; Hoevers, H. F. C.; Bruijn, M.; Borderias, M. Parra; Takei, Y.

    2009-01-01

    We are developing Frequency Domain Multiplexing (FDM) for the read-out of TES imaging microcalorimeter arrays for future X-ray missions like IXO. In the FDM configuration the TES is AC voltage biased at a well defined frequencies (between 0.3 to 10 MHz) and acts as an AM modulating element. In this paper we will present a full comparison of the performance of a TES microcalorimeter under DC bias and AC bias at a frequency of 370 kHz. In both cases we measured the current-to-voltage characteristics, the complex impedance, the noise, the X-ray responsivity, and energy resolution. The behaviour is very similar in both cases, but deviations in performances are observed for detector working points low in the superconducting transition (R/R N <0.5). The measured energy resolution at 5.89 keV is 2.7 eV for DC bias and 3.7 eV for AC bias, while the baseline resolution is 2.8 eV and 3.3 eV, respectively.

  13. Control of hybrid AC/DC microgrid under islanding operational conditions

    DEFF Research Database (Denmark)

    Ding, G.; Gao, F.; Zhang, S.

    2014-01-01

    This paper presents control methods for hybrid AC/DC microgrid under islanding operation condition. The control schemes for AC sub-microgrid and DC sub-microgrid are investigated according to the power sharing requirement and operational reliability. In addition, the key control schemes...... of interlinking converter with DC-link capacitor or energy storage, which will devote to the proper power sharing between AC and DC sub-microgrids to maintain AC and DC side voltage stable, is reviewed. Combining the specific control methods developed for AC and DC sub-microgrids with interlinking converter......, the whole hybrid AC/DC microgrid can manage the power flow transferred between sub-microgrids for improving on the operational quality and efficiency....

  14. IMPEDANCE METHOD OF MEASURING OF THE TITRATABLE ACIDITY OF YOGURT

    Directory of Open Access Journals (Sweden)

    Miroslav Vasilev

    2016-10-01

    Full Text Available In the present work are analyzed studies related to changes in the active impedance component of the dairy environment caused by the flow of lactic fermentation and coagulation of casein in milk. The aim of this work was to determine the relationship between the relative change of titratable acidity and the relative change of active impedance component of the dairy environment with lactic fermentation, causing coagulation of the casein in milk. . The data were interpolated with cubic spline, visualizing how when the fat content increases, the electrical resistance increases too. All data, collected during the tests would complement and be used for solving the optimization problem to determine the time of completion of the coagulation in future work.

  15. Evaluation of the usefulness of visceral fat area measurement by the bioelectrical impedance method during workplace health screening

    International Nuclear Information System (INIS)

    Igarashi, Chiyo

    2008-01-01

    In the field of occupational health, health guidance concerning obesity is often conducted in order to prevent lifestyle-related diseases. With recent awareness of the concept of metabolic syndrome, measurement of the visceral fat area (VFA) by CT has been useful for health guidance, but it is difficult in workplace health screening. Presently, the BMI (Body Mass Index), body fat percentage measured by the bioelectrical impedance method, and waist girth at the umbilical level (abdominal girth) are practical indices of obesity used in such health screening. In this study, VAF was measured in 590 clerical or sales workers in the manufacturing industry using a body fat meter capable of a visceral fat measurement by the bioelectrical impedance method. The relationship of this value to the results of biochemical tests and lifestyle was then evaluated using analysis of covariance structures. Analysis indicated that the risk of lifestyle-related disease was closely related to the degree of obesity. Among indices of the degree of obesity, VFA was more closely related than BMI or body fat percentage, and only slightly less closely related than abdominal girth to the risk of lifestyle-related diseases. Since VFA is effective in screening for latent obesity, health guidance based on digital data, and the subjects' body imaging, its measurement by the bioelectrical impedance method is considered useful for workplace health management. (author)

  16. Study on AC loss measurements of HTS power cable for standardizing

    Science.gov (United States)

    Mukoyama, Shinichi; Amemiya, Naoyuki; Watanabe, Kazuo; Iijima, Yasuhiro; Mido, Nobuhiro; Masuda, Takao; Morimura, Toshiya; Oya, Masayoshi; Nakano, Tetsutaro; Yamamoto, Kiyoshi

    2017-09-01

    High-temperature superconducting power cables (HTS cables) have been developed for more than 20 years. In addition of the cable developments, the test methods of the HTS cables have been discussed and proposed in many laboratories and companies. Recently the test methods of the HTS cables is required to standardize and to common in the world. CIGRE made the working group (B1-31) for the discussion of the test methods of the HTS cables as a power cable, and published the recommendation of the test method. Additionally, IEC TC20 submitted the New Work Item Proposal (NP) based on the recommendation of CIGRE this year, IEC TC20 and IEC TC90 started the standardization work on Testing of HTS AC cables. However, the individual test method that used to measure a performance of HTS cables hasn’t been established as world’s common methods. The AC loss is one of the most important properties to disseminate low loss and economical efficient HTS cables in the world. We regard to establish the method of the AC loss measurements in rational and in high accuracy. Japan is at a leading position in the AC loss study, because Japanese researchers have studied on the AC loss technically and scientifically, and also developed the effective technologies for the AC loss reduction. The JP domestic commission of TC90 made a working team to discussion the methods of the AC loss measurements for aiming an international standard finally. This paper reports about the AC loss measurement of two type of the HTS conductors, such as a HTS conductor without a HTS shield and a HTS conductor with a HTS shield. The AC loss measurement method is suggested by the electrical method..

  17. Importance of Attenuation Correction (AC) for Small Animal PET Imaging

    DEFF Research Database (Denmark)

    El Ali, Henrik H.; Bodholdt, Rasmus Poul; Jørgensen, Jesper Tranekjær

    2012-01-01

    was performed. Methods: Ten NMRI nude mice with subcutaneous implantation of human breast cancer cells (MCF-7) were scanned consecutively in small animal PET and CT scanners (MicroPETTM Focus 120 and ImTek’s MicroCATTM II). CT-based AC, PET-based AC and uniform AC methods were compared. Results: The activity...

  18. Measurement scheme of kicker impedances via beam-induced voltages of coaxial cables

    Energy Technology Data Exchange (ETDEWEB)

    Shobuda, Yoshihiro, E-mail: yoshihiro.shobuda@j-parc.jp [J-PARC Center, JAEA and KEK, 2-4 Shirakata Shirane, Tokaimura, Nakagun, Ibaraki 319-1195 (Japan); Irie, Yoshiro [KEK, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Toyama, Takeshi; Kamiya, Junichiro [J-PARC Center, JAEA and KEK, 2-4 Shirakata Shirane, Tokaimura, Nakagun, Ibaraki 319-1195 (Japan); Watanabe, Masao [Ministry of Education, Culture, Sports, Science and Technology, 3-2-2 Kasumigaseki, Chiyoda, Tokyo 100-8959 (Japan)

    2013-06-11

    A new theory, which satisfies the causality condition, is developed to describe impedances of kicker magnets with coaxial cables. The theoretical results well describe measurement results, which are obtained by standard wire methods. On the other hand, when beams pass through the kicker, voltages are induced at the terminals of coaxial cables. In other words, by analyzing the voltages, the kicker impedance for the beams can be obtained. The observed impedances are consistent with the theoretical results. The theory describes the impedance for non-relativistic beams, as well. The theoretical, simulation and measurement results indicate that the horizontal kicker impedance is drastically reduced by the non-relativistic effect. -- Highlights: ► We develop an innovative method to measure kicker impedance including power cable. ► By analyzing voltages at the ends of coaxial cables, the impedance is derived. ► The horizontal impedance is reduced as the beam becomes non-relativistic.

  19. Dielectric relaxation behavior and impedance studies of Cu2+ ion doped Mg - Zn spinel nanoferrites

    Science.gov (United States)

    Choudhary, Pankaj; Varshney, Dinesh

    2018-03-01

    Cu2+ substituted Mg - Zn nanoferrites is synthesized by low temperature fired sol gel auto combustion method. The spinel nature of nanoferrites was confirmed by lab x-ray technique. Williamson - Hall (W-H) analysis estimate the average crystallite size (22.25-29.19 ± 3 nm) and micro strain induced Mg0.5Zn0.5-xCuxFe2O4 (0.0 ≤ x ≤ 0.5). Raman scattering measurements confirm presence of four active phonon modes. Red shift is observed with enhanced Cu concentration. Dielectric parameters exhibit a non - monotonous dispersion with Cu concentration and interpreted with the support of hopping mechanism and Maxwell-Wagner type of interfacial polarization. The ac conductivity of nanoferrites increases with raising the frequency. Complex electrical modulus reveals a non - Debye type of dielectric relaxation present in nanoferrites. Reactive impedance (Z″) detected an anomalous behavior and is related with resonance effect. Complex impedance demonstrates one semicircle corresponding to the intergrain (grain boundary) resistance and also explains conducting nature of nanoferrites. For x = 0.2, a large semicircle is observed revealing the ohmic nature (minimum potential drop at electrode surface). Dielectric properties were improved for nanoferrites with x = 0.2 and is due to high dielectric constant, conductivity and minimum loss value (∼0.009) at 1 MHz.

  20. AC Initiation System.

    Science.gov (United States)

    An ac initiation system is described which uses three ac transmission signals interlocked for safety by frequency, phase, and power discrimination...The ac initiation system is pre-armed by the application of two ac signals have the proper phases, and activates a load when an ac power signal of the proper frequency and power level is applied. (Author)

  1. Advances In Impedance Theory

    International Nuclear Information System (INIS)

    Stupakov, G.

    2009-01-01

    We review recent progress in the following areas of the impedance theory: calculation of impedance of tapers and small angle collimators; optical approximation and parabolic equation for the high-frequency impedance; impedance due to resistive inserts in a perfectly conducting pipe.

  2. Optical approximation in the theory of geometric impedance

    International Nuclear Information System (INIS)

    Stupakov, G.; Bane, K.L.F.; Zagorodnov, I.

    2007-02-01

    In this paper we introduce an optical approximation into the theory of impedance calculation, one valid in the limit of high frequencies. This approximation neglects diffraction effects in the radiation process, and is conceptually equivalent to the approximation of geometric optics in electromagnetic theory. Using this approximation, we derive equations for the longitudinal impedance for arbitrary offsets, with respect to a reference orbit, of source and test particles. With the help of the Panofsky-Wenzel theorem we also obtain expressions for the transverse impedance (also for arbitrary offsets). We further simplify these expressions for the case of the small offsets that are typical for practical applications. Our final expressions for the impedance, in the general case, involve two dimensional integrals over various cross-sections of the transition. We further demonstrate, for several known axisymmetric examples, how our method is applied to the calculation of impedances. Finally, we discuss the accuracy of the optical approximation and its relation to the diffraction regime in the theory of impedance. (orig.)

  3. Electrical Impedance Measurements of PZT Nanofiber Sensors

    Directory of Open Access Journals (Sweden)

    Richard Galos

    2017-01-01

    Full Text Available Electrical impedance measurements of PZT nanofiber sensors were performed using a variety of methods over a frequency spectrum ranging from DC to 1.8 GHz. The nanofibers formed by electrospinning with diameters ranging from 10 to 150 nm were collected and integrated into sensors using microfabrication techniques. Special matching circuits with ultrahigh input impedance were fabricated to produce low noise, measurable sensor outputs. Material properties including resistivity and dielectric constant are derived from the impedance measurements. The resulting material properties are also compared with those of individual nanofibers being tested using conductive AFM and Scanning Conductive Microscopy.

  4. Frequency and temperature dependence behaviour of impedance, modulus and conductivity of BaBi4Ti4O15 Aurivillius ceramic

    Directory of Open Access Journals (Sweden)

    Tanmaya Badapanda

    2014-09-01

    Full Text Available In this work, we report the dielectric, impedance, modulus and conductivity study of BaBi4Ti4O15 ceramic synthesized by solid state reaction. X-ray diffraction (XRD pattern showed orthorhombic structure with space group A21am confirming it to be an m = 4 member of the Aurivillius oxide. The frequency dependence dielectric study shows that the value of dielectric constant is high at lower frequencies and decreases with increase in frequency. Impedance spectroscopy analyses reveal a non-Debye relaxation phenomenon since relaxation frequency moves towards the positive side with increase in temperature. The shift in impedance peaks towards higher frequency side indicates conduction in material and favouring of the long rangemotion of mobile charge carriers. The Nyquist plot from complex impedance spectrum shows only one semicircular arc representing the grain effect in the electrical conduction. The modulus mechanism indicates the non-Debye type of conductivity relaxation in the material, which is supported by impedance data. Relaxation times extracted using imaginary part of complex impedance (Z′′ and modulus (M′′ were also found to follow Arrhenius law. The frequency dependent AC conductivity at different temperatures indicates that the conduction process is thermally activated. The variation of DC conductivity exhibits a negative temperature coefficient of resistance behaviour.

  5. Risk Assessment Method of UHV AC/DC Power System under Serious Disasters

    Directory of Open Access Journals (Sweden)

    Rishang Long

    2016-12-01

    Full Text Available Based on the theory of risk assessment, the risk assessment method for an ultra-high voltage (UHV AC/DC hybrid power system under severe disaster is studied. Firstly, considering the whole process of cascading failure, a fast failure probability calculation method is proposed, and the whole process risk assessment model is established considering the loss of both fault stage and recovery stage based on Monte Carlo method and BPA software. Secondly, the comprehensive evaluation index system is proposed from the aspects of power system structure, fault state and economic loss, and the quantitative assessment of system risk is carried out by an entropy weight model. Finally, the risk assessment of two UHV planning schemes are carried out and compared, which proves the effectiveness of the research work.

  6. Amperometric and impedance monitoring systems for biomedical applications

    CERN Document Server

    Punter-Villagrasa, Jaime; del Campo, Francisco J; Miribel, Pere

    2017-01-01

    The book presents the conception and realization of a pervasive electronic architecture for electrochemical applications, focusing on electronic instrumentation design and device development, particularly in electrochemical Point-of-Care and Lab-on-a-Chip devices, covering examples based on amperometric (DC) and impedance detection (AC) techniques. The presented electronics combine tailored front-end instrumentation and back-end data post-processing, enabling applications in different areas, and across a variety of techniques, analytes, transducers and environments. It addresses how the electronics are designed and implemented with special interest in the flow process: starting from electronic circuits and electrochemical biosensor design to a final validation and implementation for specific applications. Similarly, other important aspects are discussed throughout the book, such as electrochemical techniques, different analytes, targets, electronics reliability and robustness. The book also describes the use ...

  7. Structural, morphological, impedance and magnetic studies of nanostructured LiNi0.45M0.1Mn0.45O2 (MCu and Al cathode materials for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    N. Murali

    2017-12-01

    Full Text Available Layered structure LiNi0.45M0.1Mn0.45O2 (MCu and Al cathode materials for lithium-ion batteries are synthesized by sol–gel auto combustion method. The structural, morphological, electrical and magnetic properties are examined by X-ray diffraction (XRD, field effect scanning electron microscope FESEM, FT-IR, EIS and ESR. XRD data revealed the rhombohedral and α-NaFeO2 structure with a space group R-3m. The electrical conductivity, dielectric constant, and dielectric loss are measured in the room temperature at a frequency ranging from 20 Hz to 1 MHz. The electrical conductivity of the compound is measured by AC impedance. An effective improvement in the electrical conductivity of order 5.42 × 10−6 S/cm is observed for the copper doped LNMO compounds. ESR spectra is recorded at room temperature on a Bruker EMX model X-band spectrometer operating at a frequency of 9.50 GHz. The critical dopants of Cu, with minimum g-factor and maximum line-width (W are observed. Keywords: Sol–gel, FESEM, AC impedance, ESR

  8. Characterization of full set material constants of piezoelectric materials based on ultrasonic method and inverse impedance spectroscopy using only one sample.

    Science.gov (United States)

    Li, Shiyang; Zheng, Limei; Jiang, Wenhua; Sahul, Raffi; Gopalan, Venkatraman; Cao, Wenwu

    2013-09-14

    The most difficult task in the characterization of complete set material properties for piezoelectric materials is self-consistency. Because there are many independent elastic, dielectric, and piezoelectric constants, several samples are needed to obtain the full set constants. Property variation from sample to sample often makes the obtained data set lack of self-consistency. Here, we present a method, based on pulse-echo ultrasound and inverse impedance spectroscopy, to precisely determine the full set physical properties of piezoelectric materials using only one small sample, which eliminated the sample to sample variation problem to guarantee self-consistency. The method has been applied to characterize the [001] C poled Mn modified 0.27Pb(In 1/2 Nb 1/2 )O 3 -0.46Pb(Mg 1/3 Nb 2/3 )O 3 -0.27PbTiO 3 single crystal and the validity of the measured data is confirmed by a previously established method. For the inverse calculations using impedance spectrum, the stability of reconstructed results is analyzed by fluctuation analysis of input data. In contrast to conventional regression methods, our method here takes the full advantage of both ultrasonic and inverse impedance spectroscopy methods to extract all constants from only one small sample. The method provides a powerful tool for assisting novel piezoelectric materials of small size and for generating needed input data sets for device designs using finite element simulations.

  9. Application of the Method of Auxiliary Sources for the Analysis of Plane-Wave Scattering by Impedance Spheres

    DEFF Research Database (Denmark)

    Karamehmedovic, Mirza; Breinbjerg, Olav

    2002-01-01

    The Method of Auxiliary Sources (MAS) is applied to 3D scattering problems involving spherical impedance scatterers. The MAS results are compared with the reference spherical wave expansion (SWE) solution. It is demonstrated that good agreement is achieved between the MAS and SWE results....

  10. Fractional Order Element Based Impedance Matching

    KAUST Repository

    Radwan, Ahmed Gomaa; Salama, Khaled N.; Shamim, Atif

    2014-01-01

    Disclosed are various embodiments of methods and systems related to fractional order element based impedance matching. In one embodiment, a method includes aligning a traditional Smith chart (|.alpha.|=1) with a fractional order Smith chart (|.alpha

  11. Evaluation of segmental body composition by gender in obese children using bioelectric impedance analysis method

    Directory of Open Access Journals (Sweden)

    İhsan Çetin

    2015-12-01

    Full Text Available Objective: In this study, it was aimed to evaluate segmental body composition of children diagnosed with obesity using bioelectrical impedance analysis method in terms of different gender. Methods: 48 children, aged between 6-15 years, 21 of whom were boys while 27 were girls, diagnosed with obesity in Erciyes University Medical Faculty Department of Pediatric Endocrinology Outpatient Clinic were included in our study from April to June in 2011. Those over 95 percentile were defined as obese group. Tanita BC-418 device was used to analyze the body composition. Results: As a result of bioelectrical impedance analysis, lean body mass and body muscle mass were found to be statistically significantly higher in obese girls compared with obese boys. However, lean mass of the left arm, left leg muscle mass and basal metabolic rate were found to be statistically significantly lower in obese girls compared with obese boys. Conclusion: Consequently, it may be suggest that segmental analysis, where gender differences are taken into account, can provide proper exercise pattern and healthy way of weight loss in children for prevention of obesity and associated diseases including obesity and type 2 diabetics and cardiovascular diseases.

  12. A pre-heating method based on sinusoidal alternating current for lithium-ion battery

    Science.gov (United States)

    Fan, Wentao; Sun, Fengchun; Guo, Shanshan

    2018-04-01

    In this paper, a method of low temperature pre-heating of sinusoidal alternating current (SAC) is proposed. Generally, the lower the frequency of the AC current, the higher the heat generation rate. Yet at low frequency, there is a risk of lithium-ion deposition during the half cycle of charging. This study develops a temperature-adaptive, deposition-free AC pre-heating method. a equivalent electric circuit(EEC) model is established to predict the heat generation rate and temperature status, whose parameters are calibrated from the EIS impedance measurements. The effects of current frequency and amplitude on the heating effect are investigated respectively. A multistep temperature-adaptive amplitude strategy is proposed and the cell can be heated from -20°C to 5°C within 509s at 100Hz frequency with this method.

  13. PREFACE: XV International Conference on Electrical Bio-Impedance (ICEBI) & XIV Conference on Electrical Impedance Tomography (EIT)

    Science.gov (United States)

    Pliquett, Uwe

    2013-04-01

    Over recent years advanced measurement methods have facilitated outstanding achievements not only in medical instrumentation but also in biotechnology. Impedance measurement is a simple and innocuous way to characterize materials. For more than 40 years biological materials, most of them based on cells, have been characterized by means of electrical impedance for quality control of agricultural products, monitoring of biotechnological or food processes or in health care. Although the list of possible applications is long, very few applications successfully entered the market before the turn of the century. This was, on the one hand, due to the low specificity of electrical impedance with respect to other material properties because it is influenced by multiple factors. On the other hand, equipment and methods for many potential applications were not available. With the appearance of microcontrollers that could be easily integrated in applications at the beginning of the 1980s, impedance measurement advanced as a valuable tool in process optimization and lab automation. However, established methods and data processing were mostly used in a new environment. This has changed significantly during the last 10 years with a dramatic growth of the market for medical instrumentation and also for biotechnological applications. Today, advanced process monitoring and control require fast and highly parallel electrical characterization which in turn yields incredible data volumes that must be handled in real time. Many newer developments require miniaturized but precise sensing methods which is one of the main parts of Lab-on-Chip technology. Moreover, biosensors increasingly use impedometric transducers, which are not compatible with the large expensive measurement devices that are common in the laboratory environment. Following the achievements in the field of bioimpedance measurement, we will now witness a dramatic development of new electrode structures and electronics

  14. Method of Menu Selection by Gaze Movement Using AC EOG Signals

    Science.gov (United States)

    Kanoh, Shin'ichiro; Futami, Ryoko; Yoshinobu, Tatsuo; Hoshimiya, Nozomu

    A method to detect the direction and the distance of voluntary eye gaze movement from EOG (electrooculogram) signals was proposed and tested. In this method, AC-amplified vertical and horizontal transient EOG signals were classified into 8-class directions and 2-class distances of voluntary eye gaze movements. A horizontal and a vertical EOGs during eye gaze movement at each sampling time were treated as a two-dimensional vector, and the center of gravity of the sample vectors whose norms were more than 80% of the maximum norm was used as a feature vector to be classified. By the classification using the k-nearest neighbor algorithm, it was shown that the averaged correct detection rates on each subject were 98.9%, 98.7%, 94.4%, respectively. This method can avoid strict EOG-based eye tracking which requires DC amplification of very small signal. It would be useful to develop robust human interfacing systems based on menu selection for severely paralyzed patients.

  15. Multi-phase AC/AC step-down converter for distribution systems

    Science.gov (United States)

    Aeloiza, Eddy C.; Burgos, Rolando P.

    2017-10-25

    A step-down AC/AC converter for use in an electric distribution system includes at least one chopper circuit for each one of a plurality of phases of the AC power, each chopper circuit including a four-quadrant switch coupled in series between primary and secondary sides of the chopper circuit and a current-bidirectional two-quadrant switch coupled between the secondary side of the chopper circuit and a common node. Each current-bidirectional two-quadrant switch is oriented in the same direction, with respect to the secondary side of the corresponding chopper circuit and the common node. The converter further includes a control circuit configured to pulse-width-modulate control inputs of the switches, to convert a first multiphase AC voltage at the primary sides of the chopper circuits to a second multiphase AC voltage at the secondary sides of the chopper circuits, the second multiphase AC voltage being lower in voltage than the first multiphase AC voltage.

  16. Electrochemical Impedance Spectroscopy in Solid State Ionics: Recent Advances

    NARCIS (Netherlands)

    Boukamp, Bernard A.

    2004-01-01

    Electrochemical Impedance Spectroscopy (EIS) has become an important research tool in Solid State Ionics. Some new developments are highlighted: new methods of automatic parameter extraction from impedance measurements are briefly discussed. The Kramers–Kronig data validation test presents another

  17. Impedances of electrochemically impregnated nickel electrodes as functions of potential, KOH concentration, and impregnation method

    Science.gov (United States)

    Reid, Margaret A.

    1989-01-01

    Impedances of fifteen electrodes form each of the four U.S. manufactures were measured at 0.200 V vs. the Hg/HgO reference electrode. This corresponds to a voltage of 1.145 for a Ni/H2 cell. Measurements were also made of a representative sample of these at 0.44 V. At the higher voltage, the impedances were small and very similar, but at the lower voltage there were major differences between manufacturers. Electrodes from the same manufacturers showed only small differences. The impedances of electrodes from two manufacturers were considerably different in 26 percent KOH from those in 31 percent KOH. These preliminary results seen to correlate with the limited data from earlier life testing of cells from these manufacturers. The impedances of cells being tested for Space Station Freedom are being followed, and more impendance measurements of electrodes are being performed as functions of manufacturer, voltage, electrolyte concentration, and cycle history in hopes of finding better correlations of impedance with life.

  18. Comparison of Several Methods for Determining the Internal Resistance of Lithium Ion Cells

    Directory of Open Access Journals (Sweden)

    Hans-Georg Schweiger

    2010-06-01

    Full Text Available The internal resistance is the key parameter for determining power, energy efficiency and lost heat of a lithium ion cell. Precise knowledge of this value is vital for designing battery systems for automotive applications. Internal resistance of a cell was determined by current step methods, AC (alternating current methods, electrochemical impedance spectroscopy and thermal loss methods. The outcomes of these measurements have been compared with each other. If charge or discharge of the cell is limited, current step methods provide the same results as energy loss methods.

  19. Nonsynchronous Noncommensurate Impedance Transformers

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Kim, K

    2012-01-01

    Nonsynchronous noncommensurate impedance transformers consist of a combination of two types of transmission lines: transmission lines with a characteristic impedance equal to the impedance of the source, and transmission lines with a characteristic impedance equal to the load. The practical...... advantage of such transformers is that they can be constructed using sections of transmission lines with a limited variety of characteristic impedances. These transformers also provide comparatively compact size in applications where a wide transformation ratio is required. This paper presents the data...... matrix approach and experimentally verified by synthesizing a 12-section nonsynchronous noncommensurate impedance transformer. The measured characteristics of the transformer are compared to the characteristics of a conventional tapered line transformer....

  20. Broadband impedance of the NESTOR storage ring

    International Nuclear Information System (INIS)

    Androsov, V.P.; Gladkikh, P.I.; Gvozd, A.M.; Karnaukhov, I.M.; Telegin, Yu.N.

    2011-01-01

    The contributions from lossy and inductive vacuum chamber components to the broadband impedance of the NESTOR storage ring are obtained by using both low-frequency analytical approaches and computer simulations. As was expected considering the small ring circumference (15.44m), the main contributions both to the longitudinal impedance Z || /n and the loss factor k loss come from the RF-cavity. Cavity impedance was also estimated with CST Microwave Studio (CST Studio Suite TM 2006) by simulating coaxial wire method commonly used for impedance measurements. Both estimates agree well. Finally, we performed the simulations of a number of inductive elements with CST Particle Studio 2010 by using wake field solver. We have also evaluated the bunch length in NESTOR taking the conservative estimate of 3 Ohm for the ring broadband impedance and have found that the bunch length s z = 0.5 cm could be obtained in steady state operation mode for the designed bunch current of 10 mA and RF-voltage of 250 kV.

  1. Methods, systems and apparatus for controlling operation of two alternating current (AC) machines

    Science.gov (United States)

    Gallegos-Lopez, Gabriel [Torrance, CA; Nagashima, James M [Cerritos, CA; Perisic, Milun [Torrance, CA; Hiti, Silva [Redondo Beach, CA

    2012-02-14

    A system is provided for controlling two AC machines. The system comprises a DC input voltage source that provides a DC input voltage, a voltage boost command control module (VBCCM), a five-phase PWM inverter module coupled to the two AC machines, and a boost converter coupled to the inverter module and the DC input voltage source. The boost converter is designed to supply a new DC input voltage to the inverter module having a value that is greater than or equal to a value of the DC input voltage. The VBCCM generates a boost command signal (BCS) based on modulation indexes from the two AC machines. The BCS controls the boost converter such that the boost converter generates the new DC input voltage in response to the BCS. When the two AC machines require additional voltage that exceeds the DC input voltage required to meet a combined target mechanical power required by the two AC machines, the BCS controls the boost converter to drive the new DC input voltage generated by the boost converter to a value greater than the DC input voltage.

  2. Wavelet analysis of the impedance cardiogram waveforms

    Science.gov (United States)

    Podtaev, S.; Stepanov, R.; Dumler, A.; Chugainov, S.; Tziberkin, K.

    2012-12-01

    Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt)max) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.

  3. Wavelet analysis of the impedance cardiogram waveforms

    International Nuclear Information System (INIS)

    Podtaev, S; Stepanov, R; Dumler, A; Chugainov, S; Tziberkin, K

    2012-01-01

    Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt) max ) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.

  4. Calculation of Impedance from Multibunch Synchronous Phases: Theory and Experimental Results

    International Nuclear Information System (INIS)

    Prabhakar, Shyam

    1998-01-01

    A novel beam-based method for measuring the longitudinal impedance spectrum is demonstrated using experimental data from the PEP-II High Energy Ring (HER). The method uses a digital longitudinal feedback system from which the charge and synchronous phase are measured for every bucket. Calculation of the transfer function from fill shape to synchronous phase yields the impedance seen by the beam at revolution harmonics. The experimentally-derived longitudinal impedance function and lab measurements of the impedance of parked RF cavities are compared to suggest a mechanism for the occasional instability of low-order coupled bunch modes observed in the HER during commissioning in October 1997

  5. Systémový pohled na klub AC Sparta

    OpenAIRE

    Čečák, František

    2015-01-01

    Title: The system approach of the club AC Sparta Praha Objectives: Elaboration of financial analysis of the club AC Sparta Praha in season 2010/2011.Comparing the results of the financial analysis with the results of clubs FC Viktoria Plzeň and SK Slavia Praha. Prognosis of the club AC Sparta Praha until year 2020. Methods: In the elaboration of the analysis have been used these methods: vertical analysis, horizontal analysis and analysis of the financial ratios. For forecasting have been use...

  6. Different radiation impedance models for finite porous materials

    DEFF Research Database (Denmark)

    Nolan, Melanie; Jeong, Cheol-Ho; Brunskog, Jonas

    2015-01-01

    The Sabine absorption coefficients of finite absorbers are measured in a reverberation chamber according to the international standard ISO 354. They vary with the specimen size essentially due to diffraction at the specimen edges, which can be seen as the radiation impedance differing from...... the infinite case. Thus, in order to predict the Sabine absorption coefficients of finite porous samples, one can incorporate models of the radiation impedance. In this study, different radiation impedance models are compared with two experimental examples. Thomasson’s model is compared to Rhazi’s method when...

  7. Impedance Eduction in Large Ducts Containing Higher-Order Modes and Grazing Flow

    Science.gov (United States)

    Watson, Willie R.; Jones, Michael G.

    2017-01-01

    Impedance eduction test data are acquired in ducts with small and large cross-sectional areas at the NASA Langley Research Center. An improved data acquisition system in the large duct has resulted in increased control of the acoustic energy in source modes and more accurate resolution of higher-order duct modes compared to previous tests. Two impedance eduction methods that take advantage of the improved data acquisition to educe the liner impedance in grazing flow are presented. One method measures the axial propagation constant of a dominant mode in the liner test section (by implementing the Kumarsean and Tufts algorithm) and educes the impedance from an exact analytical expression. The second method solves numerically the convected Helmholtz equation and minimizes an objective function to obtain the liner impedance. The two methods are tested first on data synthesized from an exact mode solution and then on measured data. Results show that when the methods are applied to data acquired in the larger duct with a dominant higher-order mode, the same impedance spectra are educed as that obtained in the small duct where only the plane wave mode propagates. This result holds for each higher-order mode in the large duct provided that the higher-order mode is sufficiently attenuated by the liner.

  8. Study on electrical impedance matching for broadband ultrasonic transducer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon Woo [University of Science and Technology, Daejeon (Korea, Republic of); Kim, Ki Bok [Korea Research Institute of Standards and Science, Center for Safety Measurement, Daejeon (Korea, Republic of); Baek, Kwang Sae [Elache Co., Busan (Korea, Republic of)

    2017-02-15

    Ultrasonic transducers with high resolution and resonant frequency are required to detect small defects (less than hundreds of μm) by ultrasonic testing. The resonance frequency and resolution of an ultrasonic transducer are closely related to the thickness of piezo-electric materials, backing materials, and the electric impedance matching technique. Among these factors, electrical impedance matching plays an important role because it can reduce the loss and reflection of ultrasonic energy differences in electrical impedance between an ultrasonic transducer and an ultrasonic defects detecting system. An LC matching circuit is the most frequently used electric matching method. It is necessary for the electrical impedance of an ultrasonic transducer to correspond to approximately 50 Ω to compensate the difference in electrical impedance between both connections. In this study, a 15 MHz immersion ultrasonic transducer was fabricated and an LC electrical impedance circuit was applied to that for having broad-band frequency characteristic.

  9. Optimization design of power efficiency of exponential impedance transformer

    International Nuclear Information System (INIS)

    Wang Meng; Zou Wenkang; Chen Lin; Guan Yongchao; Fu Jiabin; Xie Weiping

    2011-01-01

    The paper investigates the optimization design of power efficiency of exponential impedance transformer with analytic method and numerical method. In numerical calculation, a sine wave Jantage with hypothesis of rising edge equivalence is regarded as the forward-going Jantage at input of transformer, and its dominant angular frequency is determined by typical rise-time of actual Jantage waveforms. At the same time, dissipative loss in water dielectric is neglected. The numerical results of three typical modes of impedance transformation, viz. linear mode, saturation mode and steep mode,are compared. Pivotal factors which affect the power efficiency of exponential impedance transformer are discussed, and a certain extent quantitative range of intermediate variables and accordance coefficients are obtained. Finally, the paper discusses some important issues in actual design, such as insulation safety factor in structure design, effects of coupling capacitance on impedance calculation, and dissipative loss in water dielectric. (authors)

  10. Detection of Genetic Modification 'ac2' in Potato Foodstuffs

    Directory of Open Access Journals (Sweden)

    Petr Kralik

    2009-01-01

    Full Text Available The genetic modification 'ac2' is based on the insertion and expression of ac2 gene, originally found in seeds of amaranth (Amaranthus caudatus, into the genome of potatoes (Solanum tuberosum. The purpose of the present study is to develop a PCR method for the detection of the mentioned genetically modified potatoes in various foodstuffs. The method was used to test twenty different potato-based products; none of them was positive for the genetic modification 'ac2'. The European Union legislation requires labelling of products made of or containing more than 0.9 % of genetically modified organisms. The genetic modification 'ac2' is not allowed on the European Union market. For that reason it is suitable to have detection methods, not only for the approved genetic modifications, but also for the 'unknown' ones, which could still occur in foodstuffs.

  11. Low ac loss geometries in YBCO coated conductors

    International Nuclear Information System (INIS)

    Duckworth, R.C.; List, F.A.; Paranthaman, M.P.; Rupich, M.W.; Zhang, W.; Xie, Y.Y.; Selvamanickam, V.

    2007-01-01

    Reduction of ac losses in applied ac fields can be accomplished through either the creation of filaments and bridging in YBCO coated conductors or by an assembly of narrow width YBCO tapes. The ac losses for each of these geometries were measured at 77 K in perpendicular ac fields up to 100 mT. Despite physical isolation of the filaments, coupling losses were still present in the samples when compared to the expected hysteretic loss. In addition to filamentary conductors the assembly of stacked YBCO conductor provides an alternative method of ac loss reduction. When compared to a 4-mm wide YBCO coated conductor with a critical current of 60 A, the ac loss in a stack of 2-mm wide YBCO coated conductors with a similar total critical current was reduced. While the reduction in ac loss in a 2-mm wide stack coincided with the reduction in the engineering current density of the conductor, further reduction of ac loss was obtained through the splicing of the 2-mm wide tapes with low resistance solders

  12. Low ac loss geometries in YBCO coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, R.C. [Oak Ridge National Laboratory, One Bethel Valley Road, P.O. Box 2008, MS-6305, Oak Ridge, TN 37831-6305 (United States)], E-mail: duckworthrc@ornl.gov; List, F.A.; Paranthaman, M.P. [Oak Ridge National Laboratory, One Bethel Valley Road, P.O. Box 2008, MS-6305, Oak Ridge, TN 37831-6305 (United States); Rupich, M.W.; Zhang, W. [American Superconductor, Two Technology Drive, Westborough, MA 01581 (United States); Xie, Y.Y.; Selvamanickam, V. [SuperPower, 450 Duane Ave, Schenectady, NY 12304 (United States)

    2007-10-01

    Reduction of ac losses in applied ac fields can be accomplished through either the creation of filaments and bridging in YBCO coated conductors or by an assembly of narrow width YBCO tapes. The ac losses for each of these geometries were measured at 77 K in perpendicular ac fields up to 100 mT. Despite physical isolation of the filaments, coupling losses were still present in the samples when compared to the expected hysteretic loss. In addition to filamentary conductors the assembly of stacked YBCO conductor provides an alternative method of ac loss reduction. When compared to a 4-mm wide YBCO coated conductor with a critical current of 60 A, the ac loss in a stack of 2-mm wide YBCO coated conductors with a similar total critical current was reduced. While the reduction in ac loss in a 2-mm wide stack coincided with the reduction in the engineering current density of the conductor, further reduction of ac loss was obtained through the splicing of the 2-mm wide tapes with low resistance solders.

  13. Acousto-electrical speckle pattern in Lorentz force electrical impedance tomography

    International Nuclear Information System (INIS)

    Grasland-Mongrain, Pol; Destrempes, François; Cloutier, Guy; Mari, Jean-Martial; Souchon, Rémi; Catheline, Stefan; Chapelon, Jean-Yves; Lafon, Cyril

    2015-01-01

    Ultrasound speckle is a granular texture pattern appearing in ultrasound imaging. It can be used to distinguish tissues and identify pathologies. Lorentz force electrical impedance tomography is an ultrasound-based medical imaging technique of the tissue electrical conductivity. It is based on the application of an ultrasound wave in a medium placed in a magnetic field and on the measurement of the induced electric current due to Lorentz force. Similarly to ultrasound imaging, we hypothesized that a speckle could be observed with Lorentz force electrical impedance tomography imaging. In this study, we first assessed the theoretical similarity between the measured signals in Lorentz force electrical impedance tomography and in ultrasound imaging modalities. We then compared experimentally the signal measured in both methods using an acoustic and electrical impedance interface. Finally, a bovine muscle sample was imaged using the two methods. Similar speckle patterns were observed. This indicates the existence of an ‘acousto-electrical speckle’ in the Lorentz force electrical impedance tomography with spatial characteristics driven by the acoustic parameters but due to electrical impedance inhomogeneities instead of acoustic ones as is the case of ultrasound imaging. (paper)

  14. Acousto-electrical speckle pattern in Lorentz force electrical impedance tomography

    Science.gov (United States)

    Grasland-Mongrain, Pol; Destrempes, François; Mari, Jean-Martial; Souchon, Rémi; Catheline, Stefan; Chapelon, Jean-Yves; Lafon, Cyril; Cloutier, Guy

    2015-05-01

    Ultrasound speckle is a granular texture pattern appearing in ultrasound imaging. It can be used to distinguish tissues and identify pathologies. Lorentz force electrical impedance tomography is an ultrasound-based medical imaging technique of the tissue electrical conductivity. It is based on the application of an ultrasound wave in a medium placed in a magnetic field and on the measurement of the induced electric current due to Lorentz force. Similarly to ultrasound imaging, we hypothesized that a speckle could be observed with Lorentz force electrical impedance tomography imaging. In this study, we first assessed the theoretical similarity between the measured signals in Lorentz force electrical impedance tomography and in ultrasound imaging modalities. We then compared experimentally the signal measured in both methods using an acoustic and electrical impedance interface. Finally, a bovine muscle sample was imaged using the two methods. Similar speckle patterns were observed. This indicates the existence of an ‘acousto-electrical speckle’ in the Lorentz force electrical impedance tomography with spatial characteristics driven by the acoustic parameters but due to electrical impedance inhomogeneities instead of acoustic ones as is the case of ultrasound imaging.

  15. Systémový pohled na klub AC Sparta

    OpenAIRE

    Čečák, František

    2014-01-01

    Title: The system approach of the club AC Sparta Praha Aim of the paper: Elaboration of financial analysis of the club AC Sparta Praha in season 2010/2011.Comparing the results of the financial analysis with the results of clubs FC Viktoria Plzeň and SK Slavia Praha. Prognosis of the club AC Sparta Praha until year 2020. Methods: In the elaboration of the analysis have been used these methods: vertical analysis, horizontal analysis and analysis of the financial ratios. For forecasting have be...

  16. ACAC Converters for UPS

    Directory of Open Access Journals (Sweden)

    Rusalin Lucian R. Păun

    2008-05-01

    Full Text Available This paper propose a new control technique forsingle – phase ACAC converters used for a on-line UPSwith a good dynamic response, a reduced-partscomponents, a good output characteristic, a good powerfactorcorrection(PFC. This converter no needs anisolation transformer. A power factor correction rectifierand an inverter with the proposed control scheme has beendesigned and simulated using Caspoc2007, validating theconcept.

  17. Hybrid islanding detection method by using grid impedance estimation in parallel-inverters-based microgrid

    DEFF Research Database (Denmark)

    Ghzaiel, Walid; Jebali-Ben Ghorbal, Manel; Slama-Belkhodja, Ilhem

    2014-01-01

    This paper presents a hybrid islanding detection algorithm integrated on the distributed generation unit more close to the point of common coupling of a Microgrid based on parallel inverters where one of them is responsible to control the system. The method is based on resonance excitation under...... parameters, both resistive and inductive parts, from the injected resonance frequency determination. Finally, the inverter will disconnect the microgrid from the faulty grid and reconnect the parallel inverter system to the controllable distributed system in order to ensure high power quality. This paper...... shows that grid impedance variation detection estimation can be an efficient method for islanding detection in microgrid systems. Theoretical analysis and simulation results are presented to validate the proposed method....

  18. Improved Decoupling for 13C coil Arrays Using Non-Conventional Matching and Preamplifier Impedance

    DEFF Research Database (Denmark)

    Sanchez, Juan Diego; Johansen, Daniel Højrup; Hansen, Rie Beck

    In this study, we describe a method to obtain improved preamplifier decoupling for receive-only coils. The method relies on the better decoupling obtained when coils are matched to an impedance higher than 50 . Preamplifiers with inductive imaginary impedance and low real impedance, increase...

  19. Electrical impedance tomography: topology optimization

    International Nuclear Information System (INIS)

    Miranda, Lenine Campos

    2013-01-01

    The Electrical Impedance Tomography (EIT) is a study of body parts who use electric current. Is studied through computers resistance or conductivity of these parts, producing an image used for medical diagnosis. A body is wrapped in a blanket placed with small electrodes and receivers of electric current, potential difference. Based on data obtained from a series of measurements at the electrodes, one by one, sending and receiving, you can perform a numerical phantom, where each 'voxel' of the image formed computationally represents the impedance of biological tissue. In Brazil, studies on electrical impedance tomography (EIT) has not yet started. Such equipment are measured tensions - potential difference - between each electrode / sensor one by one, as a way to Simple Combinatorial Analysis. The sequence and the way it is measured strains are in the final image quality. Finite Element Method Interactive, whose algorithm is based on Dialectical Method. We use an initial function with the objective of maximizing the data quantitatively, for better qualitative analysis. Topology Optimization methods are used to improve the image reconstruction. Currently the study is quite primitive related to the theory that shows how to power the new science studied. The high quality images requires a difficulty in obtaining. This work is not intended for detailed for analysis in any tissue or organ specific, but in general terms. And the formation of the 2D image. 3D need a reconstructor to part. (author)

  20. Evaluation of ring impedance of the Photon Factory storage ring

    International Nuclear Information System (INIS)

    Kiuchi, T.; Izawa, M.; Tokumoto, S.; Hori, Y.; Sakanaka, S.; Kobayashi, M.; Kobayakawa, H.

    1992-05-01

    The loss parameters of the ducts in the Photon Factory (PF) storage ring were evaluated using the wire method and the code TBCI. Both the measurement and the calculation were done for a different bunch length (σ) ranging from 23 to 80 ps. The PF ring impedance was estimated to be |Z/n|=3.2 Ω using the broadband impedance model. The major contribution to the impedance comes from the bellows and the gate valve sections. Improvements of these components will lower the ring impedance by half. (author)

  1. Performance of AC/graphite capacitors at high weight ratios of AC/graphite

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongyu [IM and T Ltd., Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan); Yoshio, Masaki [Advanced Research Center, Department of Applied Chemistry, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan)

    2008-03-01

    The effect of negative to positive electrode materials' weight ratio on the electrochemical performance of both activated carbon (AC)/AC and AC/graphite capacitors has been investigated, especially in the terms of capacity and cycle-ability. The limited capacity charge mode has been proposed to improve the cycle performance of AC/graphite capacitors at high weight ratios of AC/graphite. (author)

  2. An Islanding Microgrid Power Sharing Approach Using Enhanced Virtual Impedance Control Scheme

    DEFF Research Database (Denmark)

    He, Jinwei; Li, Yun Wei; Guerrero, Josep M.

    2013-01-01

    In order to address the load sharing problem in islanding microgrids, this paper proposes an enhanced distributed generation (DG) unit virtual impedance control approach. The proposed method can realize accurate regulation of DG unit equivalent impedance at both fundamental and selected harmonic...... and PCC harmonic voltage compensation are achieved without using any fundamental and harmonic components extractions. Experimental results from a scaled single-phase microgrid prototype are provided to validate the feasibility of the proposed virtual impedance control approach....... frequencies. In contrast to conventional virtual impedance control methods, where only a line current feed-forward term is added to the DG voltage reference, the proposed virtual impedance at fundamental and harmonic frequencies is regulated using DG line current and point of common coupling (PCC) voltage...

  3. Applications of the conjugate gradient FFT method in scattering and radiation including simulations with impedance boundary conditions

    Science.gov (United States)

    Barkeshli, Kasra; Volakis, John L.

    1991-01-01

    The theoretical and computational aspects related to the application of the Conjugate Gradient FFT (CGFFT) method in computational electromagnetics are examined. The advantages of applying the CGFFT method to a class of large scale scattering and radiation problems are outlined. The main advantages of the method stem from its iterative nature which eliminates a need to form the system matrix (thus reducing the computer memory allocation requirements) and guarantees convergence to the true solution in a finite number of steps. Results are presented for various radiators and scatterers including thin cylindrical dipole antennas, thin conductive and resistive strips and plates, as well as dielectric cylinders. Solutions of integral equations derived on the basis of generalized impedance boundary conditions (GIBC) are also examined. The boundary conditions can be used to replace the profile of a material coating by an impedance sheet or insert, thus, eliminating the need to introduce unknown polarization currents within the volume of the layer. A general full wave analysis of 2-D and 3-D rectangular grooves and cavities is presented which will also serve as a reference for future work.

  4. RHIC ABORT KICKER WITH REDUCED COUPLING IMPEDANCE

    International Nuclear Information System (INIS)

    HAHN, H.; DAVINO, D.

    2002-01-01

    Kicker magnets typically represent the most important contributors to the transverse impedance budget of accelerators and storage rings. Methods of reducing the impedance value of the SNS extraction kicker presently under construction and, in view of a future performance upgrade, that of the RHIC abort kicker have been thoroughly studied at this laboratory. In this paper, the investigation of a potential improvement from using ferrite different from the BNL standard CMD5005 is reported. Permeability measurements of several ferrite types have been performed. Measurements on two kicker magnets using CMD5005 and C2050 suggest that the impedance of a magnet without external resistive damping, such as the RHIC abort kicker, would benefit

  5. Impedance deduction for vegetated roof surfaces : multiple geometry strategy

    NARCIS (Netherlands)

    Liu, C.; Hornikx, M.

    2016-01-01

    The transfer function method is an efficient procedure to deduce the ground surface impedance from short-range propagation measurements using one point source. It is able to provide a reasonable prediction of the surface impedance of a vegetated roof as well, and the characteristics of the vegetated

  6. A finite element propagation model for extracting normal incidence impedance in nonprogressive acoustic wave fields

    Science.gov (United States)

    Watson, Willie R.; Jones, Michael G.; Tanner, Sharon E.; Parrott, Tony L.

    1995-01-01

    A propagation model method for extracting the normal incidence impedance of an acoustic material installed as a finite length segment in a wall of a duct carrying a nonprogressive wave field is presented. The method recasts the determination of the unknown impedance as the minimization of the normalized wall pressure error function. A finite element propagation model is combined with a coarse/fine grid impedance plane search technique to extract the impedance of the material. Results are presented for three different materials for which the impedance is known. For each material, the input data required for the prediction scheme was computed from modal theory and then contaminated by random error. The finite element method reproduces the known impedance of each material almost exactly for random errors typical of those found in many measurement environments. Thus, the method developed here provides a means for determining the impedance of materials in a nonprogressirve wave environment such as that usually encountered in a commercial aircraft engine and most laboratory settings.

  7. Impedance learning for robotic contact tasks using natural actor-critic algorithm.

    Science.gov (United States)

    Kim, Byungchan; Park, Jooyoung; Park, Shinsuk; Kang, Sungchul

    2010-04-01

    Compared with their robotic counterparts, humans excel at various tasks by using their ability to adaptively modulate arm impedance parameters. This ability allows us to successfully perform contact tasks even in uncertain environments. This paper considers a learning strategy of motor skill for robotic contact tasks based on a human motor control theory and machine learning schemes. Our robot learning method employs impedance control based on the equilibrium point control theory and reinforcement learning to determine the impedance parameters for contact tasks. A recursive least-square filter-based episodic natural actor-critic algorithm is used to find the optimal impedance parameters. The effectiveness of the proposed method was tested through dynamic simulations of various contact tasks. The simulation results demonstrated that the proposed method optimizes the performance of the contact tasks in uncertain conditions of the environment.

  8. Gastric emptying patterns of a liquid meal in newborn infants, measured by epigastric impedance

    DEFF Research Database (Denmark)

    Lange, Aksel; Funch-Jensen, Peter; Thommesen, Peter

    1997-01-01

    time (T50) was calculated. For mature infants it was found to be 6.9 mins. For a second meal given within an hour after the first meal the half emptying time was 5.5 mins (p times were not significant different from mature infants, but the number examined was small......  Epigastric impedance was used to measure patterns of the gastric emptying of a liquid non-caloric meal (5 ml water/kg) in newborn infants. The emptying patterns consisted of two components, theemptying signal - the DC component - and a phasic 3 cycle per minutes (CPM) signal - the AC component.......A periodic change of the impedance signal, the phasic 3 CPM signal, was observed after a meal in 24 of the infants. The median frequency was 3.03 CPM in 20 mature and 2.93 CPM in 4 preterminfants. In 9 infants a phasic 3 CPM signal was observed during fasting state. The median frequency was 2.9 CPM...

  9. Progress in electrical impedance imaging of binary media: 1: Analytical and numerical methods

    International Nuclear Information System (INIS)

    Ovacik, Levent; Lin Jentai; Jones, Owen C.

    1998-01-01

    This is the first of two papers summarizing the use of electrical impedance excitation/measurement for producing cross sectional images of the distribution of insulating media imbedded in conducting media. This computed tomographic approach finds the distribution of electrical properties of an electric field which minimizes in the least squares sense the difference between measured and computed boundary response to excitation. In this paper we briefly review the basic analytical methods developed for this system. We then extend these methods to three dimensions, add a method for preconditioning voltages for error correction, describe methods for optimizing the resolution of a target by providing optimal excitation patterns and then describe the overall numerical sensitivity. The second paper then demonstrates the ability of this system to image multiple, separate, differently-sized two-dimensional or three-dimensional targets with demonstrated linear sensitivity of over 30:1 with maximum possible linear sensitivity of one part in 1300 based on our ability to distinguish variations from a homogeneous background. (author)

  10. Modern Trends in Imaging XI: Impedance Measurements in the Biomedical Sciences

    Directory of Open Access Journals (Sweden)

    Frederick D. Coffman

    2012-01-01

    Full Text Available Biological organisms and their component organs, tissues and cells have unique electrical impedance properties. Impedance properties often change with changes in structure, composition, and metabolism, and can be indicative of the onset and progression of disease states. Over the past 100 years, instruments and analytical methods have been developed to measure the impedance properties of biological specimens and to utilize these measurements in both clinical and basic science settings. This chapter will review the applications of impedance measurements in the biomedical sciences, from whole body analysis to impedance measurements of single cells and cell monolayers, and how cellular impedance measuring instruments can now be used in high throughput screening applications.

  11. High Operating Voltage Supercapacitor Using PPy/AC Composite Electrode Based on Simple Dipping Method

    Directory of Open Access Journals (Sweden)

    Kyoungho Kim

    2015-01-01

    Full Text Available As various wearable devices are emerging, self-generated power sources, such as piezoelectric generators, triboelectric generators, and thermoelectric generators, are of interest. To adapt self-generated power sources for application devices, a supercapacitor is necessary because of the short generation times (1–10 ms and low generated power (1–100 μW of self-generated power sources. However, to date, supercapacitors are too large to be adapted for wearable devices. There have been many efforts to reduce the size of supercapacitors by using polypyrrole (PPy for high energy supercapacitor electrodes. However, these supercapacitors have several disadvantages, such as a low operating voltage due to the use of an aqueous electrolyte, and complex manufacturing methods, such as the hydrogel and aerosol methods. In particular, the low operating voltage (~1.0 V is a significant issue because most electronic components operate above 3.0 V. In this study, we successfully demonstrated the high operating voltage (3.0 V of a supercapacitor using a PPy/activated carbon (AC composite electrode based on the chemical polymerization of the PPy by simple dipping. In addition, a twofold enhancement of its energy density was achieved compared with conventional supercapacitors using AC electrodes.

  12. Measuring ac-loss in high temperature superconducting cable-conductors using four probe methods

    DEFF Research Database (Denmark)

    Kühle (fratrådt), Anders Van Der Aa; Træholt, Chresten; Olsen, Søren Krüger

    1999-01-01

    Measuring the ac-loss of superconducting cable conductors have many aspects in common with measuring the ac-loss of single superconducting tapes. In a cable conductor all tapes are connected to each other and to the test circuit through normal metal joints in each end. This makes such measurement...

  13. Evaluation of electrical impedance ratio measurements in accuracy of electronic apex locators

    Directory of Open Access Journals (Sweden)

    Pil-Jong Kim

    2015-05-01

    Full Text Available Objectives The aim of this paper was evaluating the ratios of electrical impedance measurements reported in previous studies through a correlation analysis in order to explicit it as the contributing factor to the accuracy of electronic apex locator (EAL. Materials and Methods The literature regarding electrical property measurements of EALs was screened using Medline and Embase. All data acquired were plotted to identify correlations between impedance and log-scaled frequency. The accuracy of the impedance ratio method used to detect the apical constriction (APC in most EALs was evaluated using linear ramp function fitting. Changes of impedance ratios for various frequencies were evaluated for a variety of file positions. Results Among the ten papers selected in the search process, the first-order equations between log-scaled frequency and impedance were in the negative direction. When the model for the ratios was assumed to be a linear ramp function, the ratio values decreased if the file went deeper and the average ratio values of the left and right horizontal zones were significantly different in 8 out of 9 studies. The APC was located within the interval of linear relation between the left and right horizontal zones of the linear ramp model. Conclusions Using the ratio method, the APC was located within a linear interval. Therefore, using the impedance ratio between electrical impedance measurements at different frequencies was a robust method for detection of the APC.

  14. Fuzzy modeling of electrical impedance tomography images of the lungs

    International Nuclear Information System (INIS)

    Tanaka, Harki; Ortega, Neli Regina Siqueira; Galizia, Mauricio Stanzione; Borges, Joao Batista; Amato, Marcelo Britto Passos

    2008-01-01

    Objectives: Aiming to improve the anatomical resolution of electrical impedance tomography images, we developed a fuzzy model based on electrical impedance tomography's high temporal resolution and on the functional pulmonary signals of perfusion and ventilation. Introduction: Electrical impedance tomography images carry information about both ventilation and perfusion. However, these images are difficult to interpret because of insufficient anatomical resolution, such that it becomes almost impossible to distinguish the heart from the lungs. Methods: Electrical impedance tomography data from an experimental animal model were collected during normal ventilation and apnoea while an injection of hypertonic saline was administered. The fuzzy model was elaborated in three parts: a modeling of the heart, the pulmonary ventilation map and the pulmonary perfusion map. Image segmentation was performed using a threshold method, and a ventilation/perfusion map was generated. Results: Electrical impedance tomography images treated by the fuzzy model were compared with the hypertonic saline injection method and computed tomography scan images, presenting good results. The average accuracy index was 0.80 when comparing the fuzzy modeled lung maps and the computed tomography scan lung mask. The average ROC curve area comparing a saline injection image and a fuzzy modeled pulmonary perfusion image was 0.77. Discussion: The innovative aspects of our work are the use of temporal information for the delineation of the heart structure and the use of two pulmonary functions for lung structure delineation. However, robustness of the method should be tested for the imaging of abnormal lung conditions. Conclusions: These results showed the adequacy of the fuzzy approach in treating the anatomical resolution uncertainties in electrical impedance tomography images. (author)

  15. A new method to assess skin treatments for lowering the impedance and noise of individual gelled Ag-AgCl electrodes.

    Science.gov (United States)

    Piervirgili, G; Petracca, F; Merletti, R

    2014-10-01

    A model-based new procedure for measuring the single electrode-gel-skin impedance (ZEGS) is presented. The method is suitable for monitoring the contact impedance of the electrodes of a large array with limited modifications of the hardware and without removing or disconnecting the array from the amplifier. The procedure is based on multiple measurements between electrode pairs and is particularly suitable for electrode arrays. It has been applied to study the effectiveness of three skin treatments, with respect to no treatment, for reducing the electrode-gel-skin impedance (ZEGS) and noise: (i) rubbing with alcohol; (ii) rubbing with abrasive conductive paste; (iii) stripping with adhesive tape. The complex impedances ZEGS of the individual electrodes were measured by applying this procedure to disposable commercial Ag-AgCl gelled electrode arrays (4  ×  1) with a 5 mm(2) contact area. The impedance unbalance ΔZ = ZEGS1 - ZEGS2 and the RMS noise (VRMS) were measured between pairs of electrodes. The tissue impedance ZT was also obtained, as a collateral result. Measurements were repeated at t0 = 0 min and at t30 = 30 min from the electrode application. Mixed linear models and linear regression analysis applied to ZEGS, ΔZ and noise VRMS for the skin treatment factor demonstrated (a) that skin rubbing with abrasive conductive paste is more effective in lowering ZEGS, ΔZ and VRMS (p decrement (p < 0.01), between t0 and t30, of magnitude and phase of ZEGS.Rubbing with abrasive conductive paste significantly decreased the noise VRMS with respect to other treatments or no treatment.

  16. Reconstruction of electrical impedance tomography (EIT) images based on the expectation maximum (EM) method.

    Science.gov (United States)

    Wang, Qi; Wang, Huaxiang; Cui, Ziqiang; Yang, Chengyi

    2012-11-01

    Electrical impedance tomography (EIT) calculates the internal conductivity distribution within a body using electrical contact measurements. The image reconstruction for EIT is an inverse problem, which is both non-linear and ill-posed. The traditional regularization method cannot avoid introducing negative values in the solution. The negativity of the solution produces artifacts in reconstructed images in presence of noise. A statistical method, namely, the expectation maximization (EM) method, is used to solve the inverse problem for EIT in this paper. The mathematical model of EIT is transformed to the non-negatively constrained likelihood minimization problem. The solution is obtained by the gradient projection-reduced Newton (GPRN) iteration method. This paper also discusses the strategies of choosing parameters. Simulation and experimental results indicate that the reconstructed images with higher quality can be obtained by the EM method, compared with the traditional Tikhonov and conjugate gradient (CG) methods, even with non-negative processing. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  17. A-Source Impedance Network

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede; Galigekere, Veda Prakash

    2016-01-01

    A novel A-source impedance network is proposed in this letter. The A-source impedance network uses an autotransformer for realizing converters for any application that demand a very high dc voltage gain. The network utilizes a minimal turns ratio compared to other Magnetically Coupled Impedance S...

  18. Impedance technique for measuring dielectrophoretic collection of microbiological particles

    CERN Document Server

    Allsopp, D W E; Brown, A P; Betts, W B

    1999-01-01

    Measurement of the impedance change resulting from the collection of microbiological particles at coplanar electrodes is shown to be an effective and potentially quantitative method of detecting dielectrophoresis. Strong correlations between the frequency-dependent dielectrophoretic collection characteristics measured by impedance change and those observed using an established counting method based on image analysis have been obtained for Escherichia coli. In addition it is shown that the new electrical method can be used to sense dielectrophoretic collection of 19 nm diameter latex beads, particles too small to be resolved by conventional optical detection systems. (author)

  19. Method to produce acetyldiacylglycerols (ac-TAGs) by expression of an acetyltransferase gene isolated from Euonymus alatus (burning bush)

    Energy Technology Data Exchange (ETDEWEB)

    Durrett, Timothy; Ohlrogge, John; Pollard, Michael

    2016-05-03

    The present invention relates to novel diacylglycerol acyltransferase genes and proteins, and methods of their use. In particular, the invention describes genes encoding proteins having diacylglycerol acetyltransferase activity, specifically for transferring an acetyl group to a diacylglycerol substrate to form acetyl-Triacylglycerols (ac-TAGS), for example, a 3-acetyl-1,2-diacyl-sn-glycerol. The present invention encompasses both native and recombinant wild-type forms of the transferase, as well as mutants and variant forms. The present invention also relates to methods of using novel diacylglycerol acyltransferase genes and proteins, including their expression in transgenic organisms at commercially viable levels, for increasing production of 3-acetyl-1,2-diacyl-sn-glycerols in plant oils and altering the composition of oils produced by microorganisms, such as yeast, by increasing ac-TAG production. Additionally, oils produced by methods of the present inventions comprising genes and proteins are contemplated for use as biodiesel fuel, in polymer production and as naturally produced food oils with reduced calories.

  20. Evaluation of electrical impedance ratio measurements in accuracy of electronic apex locators.

    Science.gov (United States)

    Kim, Pil-Jong; Kim, Hong-Gee; Cho, Byeong-Hoon

    2015-05-01

    The aim of this paper was evaluating the ratios of electrical impedance measurements reported in previous studies through a correlation analysis in order to explicit it as the contributing factor to the accuracy of electronic apex locator (EAL). The literature regarding electrical property measurements of EALs was screened using Medline and Embase. All data acquired were plotted to identify correlations between impedance and log-scaled frequency. The accuracy of the impedance ratio method used to detect the apical constriction (APC) in most EALs was evaluated using linear ramp function fitting. Changes of impedance ratios for various frequencies were evaluated for a variety of file positions. Among the ten papers selected in the search process, the first-order equations between log-scaled frequency and impedance were in the negative direction. When the model for the ratios was assumed to be a linear ramp function, the ratio values decreased if the file went deeper and the average ratio values of the left and right horizontal zones were significantly different in 8 out of 9 studies. The APC was located within the interval of linear relation between the left and right horizontal zones of the linear ramp model. Using the ratio method, the APC was located within a linear interval. Therefore, using the impedance ratio between electrical impedance measurements at different frequencies was a robust method for detection of the APC.

  1. Drilling electrode for real-time measurement of electrical impedance in bone tissues.

    Science.gov (United States)

    Dai, Yu; Xue, Yuan; Zhang, Jianxun

    2014-03-01

    In order to prevent possible damages to soft tissues, reliable monitoring methods are required to provide valuable information on the condition of the bone being cut. This paper describes the design of an electrical impedance sensing drill developed to estimate the relative position between the drill and the bone being drilled. The two-electrode method is applied to continuously measure the electrical impedance during a drill feeding movement: two copper wire brushes are used to conduct electricity in the rotating drill and then the drill is one electrode; a needle is inserted into the soft tissues adjacent to the bone being drilled and acts as another electrode. Considering that the recorded electrical impedance is correlated with the insertion depth of the drill, we theoretically calculate the electrode-tissue contact impedance and prove that the rate of impedance change varies considerably when the drill bit crosses the boundary between two different bone tissues. Therefore, the rate of impedance change is used to determine whether the tip of the drill is located in one of cortical bone, cancellous bone, and cortical bone near a boundary with soft tissue. In vitro experiments in porcine thoracic spines were performed to demonstrate the feasibility of the impedance sensing drill. The experimental results indicate that the drill, used with the proposed data-processing method, can provide accurate and reliable breakthrough detection in the bone-drilling process.

  2. Resistive wall impedance of the LHC beam screen without slots calculated by boundary element method

    CERN Document Server

    Tsutsui, H

    2002-01-01

    In order to calculate the resistive wall impedance of the LHC beam screen without slots, the Boundary Element Method (BEM) is used. The result at 1 GHz is Re(ZL/L) = 6.689×10−3 Ω/m, Re(Zx/L) = 1.251 Ω/m2, Re(Zy/L) = 1.776 Ω/m2, andRe(2Z0,2 cos/kL) = −0.525 Ω/m2, assuming σ = 5.8 × 109 /Ωm.

  3. Calculation of single phase AC and monopolar DC hybrid corona effects

    International Nuclear Information System (INIS)

    Zhao, T.; Sebo, S.A.; Kasten, D.G.

    1996-01-01

    Operating a hybrid HVac and HVdc line is an option for increasing the efficiency of power transmission and overcoming the difficulties in obtaining a new right-of-way. This paper proposes a new calculation method for the study of hybrid line corona. The proposed method can be used to calculate dc corona losses and corona currents in dc or ac conductors for single phase ac and monopolar dc hybrid lines. Profiles of electric field strength and ion current density at ground level can be estimated. The effects of the presence of an energized ac conductor on dc conductor corona and dc voltage on ac conductor corona are included in the method. Full-scale and reduced-scale experiments were utilized to investigate the hybrid line corona effects. Verification of the proposed calculation method is given

  4. AC electric motors control advanced design techniques and applications

    CERN Document Server

    Giri, Fouad

    2013-01-01

    The complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control designmethods to a variety of AC motors. Contributions from over thirty top researchers explain how modern control design methods can be used to achieve tight speed regulation, optimal energetic efficiency, and operation reliability and safety, by considering online state var

  5. Something different - caching applied to calculation of impedance matrix elements

    CSIR Research Space (South Africa)

    Lysko, AA

    2012-09-01

    Full Text Available of the multipliers, the approximating functions are used any required parameters, such as input impedance or gain pattern etc. The method is relatively straightforward but, especially for small to medium matrices, requires spending time on filling... of the computing the impedance matrix for the method of moments, or a similar method, such as boundary element method (BEM) [22], with the help of the flowchart shown in Figure 1. Input Parameters (a) Search the cached data for a match (b) A match found...

  6. Identification of Critical Transmission Limits in Injection Impedance Plane

    DEFF Research Database (Denmark)

    Jóhannsson, Hjörtur; Østergaard, Jacob; Nielsen, Arne Hejde

    2012-01-01

    In this paper, equations are derived that describe the mapping of critical boundaries and characteristic lines from the three dimensionalPQV-surface into the two-dimensional injection impedance plane (load impedance plane for both positive and negativeresistance). The expressions derived....... The situational awareness method will bedescribed in a later paper, where this paper focuses on the derivations of some system characteristics in the injection (or load)impedance plane. The critical lines from the PQV-surface that are mapped into the impedance plane are the ones representing theconditions where...... the partial derivatives of the variables P,Q and V in respect to each other become zero. In addition to the mappingof the critical lines, some characteristic lines are mapped as well. These include the mapping of the lines of constant P,Q,Vand d from the PQV-surface into the impedance plane. All of the mapped...

  7. Transport AC losses in YBCO coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Majoros, M [Ohio State University, Columbus, OH 43210 (United States); Ye, L [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Velichko, A V [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Coombs, T A [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Sumption, M D [Ohio State University, Columbus, OH 43210 (United States); Collings, E W [Ohio State University, Columbus, OH 43210 (United States)

    2007-09-15

    Transport AC loss measurements have been made on YBCO-coated conductors prepared on two different substrate templates-RABiTS (rolling-assisted biaxially textured substrate) and IBAD (ion-beam-assisted deposition). RABiTS samples show higher losses compared with the theoretical values obtained from the critical state model, with constant critical current density, at currents lower than the critical current. An origin of this extra AC loss was demonstrated experimentally by comparison of the AC loss of two samples with different I-V curves. Despite a difference in I-V curves and in the critical currents, their measured losses, as well as the normalized losses, were practically the same. However, the functional dependence of the losses was affected by the ferromagnetic substrate. An influence of the presence of a ferromagnetic substrate on transport AC losses in YBCO film was calculated numerically by the finite element method. The presence of a ferromagnetic substrate increases transport AC losses in YBCO films depending on its relative magnetic permeability. The two loss contributions-transport AC loss in YBCO films and ferromagnetic loss in the substrate-cannot be considered as mutually independent.

  8. Electromagnetic Scattering Analysis of Coated Conductors With Edges Using the Method of Auxiliary Sources (MAS) in Conjunction With the Standard Impedance Boundary Condition (SIBC)

    DEFF Research Database (Denmark)

    Anastassiu, H.T.; D.I.Kaklamani, H.T.; Economou, D.P.

    2002-01-01

    A novel combination of the method of auxiliary sources (MAS) and the standard impedance boundary condition (SIBC) is employed in the analysis of transverse magnetic (TM) plane wave scattering from infinite, coated, perfectly conducting cylinders with square cross sections. The scatterer is initia......A novel combination of the method of auxiliary sources (MAS) and the standard impedance boundary condition (SIBC) is employed in the analysis of transverse magnetic (TM) plane wave scattering from infinite, coated, perfectly conducting cylinders with square cross sections. The scatterer...

  9. Assessment of dental implant stability by means of the electromechanical impedance method

    International Nuclear Information System (INIS)

    Boemio, Giovanni; Rizzo, Piervincenzo; Nardo, Luigi De

    2011-01-01

    Implant stability is a prerequisite for functional recovery in load-bearing prostheses. Robust, reliable and noninvasive methods to assess the bone interface of dental and orthopedic implants are increasingly demanded for clinical diagnosis and direct prognosis. In this paper, a study of the feasibility of a noninvasive method based on electromechanical impedance (EMI) to assess dental prostheses stability is presented. Two different dental screws were entrenched in polyurethane foams (Sawbones ® ) and immersed in a solution of nitric acid to allow material degradation, inversely simulating a bone healing process. This process was monitored by bonding a piezoceramic transducer (PZT) to the implant and measuring the admittance of the PZT over time. It was found that the PZT's conductance and the statistical features associated with its analysis were sensitive to the degradation of the foams and can be correlated to the Sawbones mechanical properties. The present study shows promising results and may pave the road towards an innovative approach for the noninvasive monitoring of implanted prostheses

  10. Complex Impedance of Fast Optical Transition Edge Sensors up to 30 MHz

    Science.gov (United States)

    Hattori, K.; Kobayashi, R.; Numata, T.; Inoue, S.; Fukuda, D.

    2018-03-01

    Optical transition edge sensors (TESs) are characterized by a very fast response, of the order of μs, which is 10^3 times faster than TESs for X-ray and gamma-ray. To extract important parameters associated with the optical TES, complex impedances at high frequencies (> 1 MHz) need to be measured, where the parasitic impedance in the circuit and reflections of electrical signals due to discontinuities in the characteristic impedance of the readout circuits become significant. This prevents the measurements of the current sensitivity β , which can be extracted from the complex impedance. In usual setups, it is hard to build a circuit model taking into account the parasitic impedances and reflections. In this study, we present an alternative method to estimate a transfer function without investigating the details of the entire circuit. Based on this method, the complex impedance up to 30 MHz was measured. The parameters were extracted from the impedance and were compared with other measurements. Using these parameters, we calculated the theoretical limit on an energy resolution and compared it with the measured energy resolution. In this paper, the reasons for the deviation of the measured value from theoretically predicted values will be discussed.

  11. AcEST(EST sequences of Adiantum capillus-veneris and their annotation) - AcEST | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us AcEST AcEST(EST sequences of Adiantum capillus-veneris and their annotation) Data detail Dat...a name AcEST(EST sequences of Adiantum capillus-veneris and their annotation) DOI 10.18908/lsdba.nbdc00839-0...01 Description of data contents EST sequence of Adiantum capillus-veneris and its annotation (clone ID, libr...le search URL http://togodb.biosciencedbc.jp/togodb/view/archive_acest#en Data acquisition method Capillary ...ainst UniProtKB/Swiss-Prot and UniProtKB/TrEMBL databases) Number of data entries Adiantum capillus-veneris

  12. Microelectrical Impedance Spectroscopy for the Differentiation between Normal and Cancerous Human Urothelial Cell Lines: Real-Time Electrical Impedance Measurement at an Optimal Frequency

    Directory of Open Access Journals (Sweden)

    Yangkyu Park

    2016-01-01

    Full Text Available Purpose. To distinguish between normal (SV-HUC-1 and cancerous (TCCSUP human urothelial cell lines using microelectrical impedance spectroscopy (μEIS. Materials and Methods. Two types of μEIS devices were designed and used in combination to measure the impedance of SV-HUC-1 and TCCSUP cells flowing through the channels of the devices. The first device (μEIS-OF was designed to determine the optimal frequency at which the impedance of two cell lines is most distinguishable. The μEIS-OF trapped the flowing cells and measured their impedance at a frequency ranging from 5 kHz to 1 MHz. The second device (μEIS-RT was designed for real-time impedance measurement of the cells at the optimal frequency. The impedance was measured instantaneously as the cells passed the sensing electrodes of μEIS-RT. Results. The optimal frequency, which maximized the average difference of the amplitude and phase angle between the two cell lines (p<0.001, was determined to be 119 kHz. The real-time impedance of the cell lines was measured at 119 kHz; the two cell lines differed significantly in terms of amplitude and phase angle (p<0.001. Conclusion. The μEIS-RT can discriminate SV-HUC-1 and TCCSUP cells by measuring the impedance at the optimal frequency determined by the μEIS-OF.

  13. Impedance planimetric description of normal rectoanal motility in humans

    DEFF Research Database (Denmark)

    Andersen, Inge S; Michelsen, Hanne B; Krogh, Klaus

    2007-01-01

    PURPOSE: Manometry and pressure-volume measurements are commonly used to study anorectal physiology. However, the methods are limited by several sources of error. Recently, a new impedance planimetric system has been introduced in a porcine model. It allows simultaneous determination of anorectal...... pressures and multiple rectal luminal cross-sectional areas. This study was designed to study normal human rectoanal motility by means of impedance planimetry with multiple rectal cross-sectional areas and rectal and anal pressure. METHODS: Twelve healthy volunteers (10 females), aged 24 to 53 years, were...... the experiment, the cross-sectional area at all channels showed strong cyclic contractile activity and the anal pressure increased by approximately 100 percent. CONCLUSIONS: The new rectal impedance planimetry system allows highly detailed description of rectoanal motility patterns. It has promise as a new...

  14. A shape-based quality evaluation and reconstruction method for electrical impedance tomography.

    Science.gov (United States)

    Antink, Christoph Hoog; Pikkemaat, Robert; Malmivuo, Jaakko; Leonhardt, Steffen

    2015-06-01

    Linear methods of reconstruction play an important role in medical electrical impedance tomography (EIT) and there is a wide variety of algorithms based on several assumptions. With the Graz consensus reconstruction algorithm for EIT (GREIT), a novel linear reconstruction algorithm as well as a standardized framework for evaluating and comparing methods of reconstruction were introduced that found widespread acceptance in the community. In this paper, we propose a two-sided extension of this concept by first introducing a novel method of evaluation. Instead of being based on point-shaped resistivity distributions, we use 2759 pairs of real lung shapes for evaluation that were automatically segmented from human CT data. Necessarily, the figures of merit defined in GREIT were adjusted. Second, a linear method of reconstruction that uses orthonormal eigenimages as training data and a tunable desired point spread function are proposed. Using our novel method of evaluation, this approach is compared to the classical point-shaped approach. Results show that most figures of merit improve with the use of eigenimages as training data. Moreover, the possibility of tuning the reconstruction by modifying the desired point spread function is shown. Finally, the reconstruction of real EIT data shows that higher contrasts and fewer artifacts can be achieved in ventilation- and perfusion-related images.

  15. A shape-based quality evaluation and reconstruction method for electrical impedance tomography

    International Nuclear Information System (INIS)

    Antink, Christoph Hoog; Pikkemaat, Robert; Leonhardt, Steffen; Malmivuo, Jaakko

    2015-01-01

    Linear methods of reconstruction play an important role in medical electrical impedance tomography (EIT) and there is a wide variety of algorithms based on several assumptions. With the Graz consensus reconstruction algorithm for EIT (GREIT), a novel linear reconstruction algorithm as well as a standardized framework for evaluating and comparing methods of reconstruction were introduced that found widespread acceptance in the community.In this paper, we propose a two-sided extension of this concept by first introducing a novel method of evaluation. Instead of being based on point-shaped resistivity distributions, we use 2759 pairs of real lung shapes for evaluation that were automatically segmented from human CT data. Necessarily, the figures of merit defined in GREIT were adjusted. Second, a linear method of reconstruction that uses orthonormal eigenimages as training data and a tunable desired point spread function are proposed.Using our novel method of evaluation, this approach is compared to the classical point-shaped approach. Results show that most figures of merit improve with the use of eigenimages as training data. Moreover, the possibility of tuning the reconstruction by modifying the desired point spread function is shown. Finally, the reconstruction of real EIT data shows that higher contrasts and fewer artifacts can be achieved in ventilation- and perfusion-related images. (paper)

  16. Bioelectrical impedance analysis--part I

    DEFF Research Database (Denmark)

    Kyle, Ursula G; Bosaeus, Ingvar; De Lorenzo, Antonio D

    2004-01-01

    The use of bioelectrical impedance analysis (BIA) is widespread both in healthy subjects and patients, but suffers from a lack of standardized method and quality control procedures. BIA allows the determination of the fat-free mass (FFM) and total body water (TBW) in subjects without significant...

  17. Longitudinal coupling impedance of a hole in the accelerator beam pipe

    International Nuclear Information System (INIS)

    Chae, Yong-Chul.

    1993-12-01

    In the design of modern accelerators, an accurate estimate of coupling impedance is very important. The sources which give rise to coupling impedance are the geometric discontinuities in the accelerator beam pipe. In various discontinuities such as RF cavities, bellows, and collimators, the coupling impedance of the holes has not been well understood. Although coupling impedance can be obtained in general from the Fourier transform of the corresponding wake potential which may be obtained numerically, this is time consuming and requires a large amount of computer storage when applied to a small dimension of a discontinuity in a typical beam pipe, often imposing a fundamental limitation of the numerical approach. More fundamentally, however, numerical calculation does not have the predictive power because of limited understanding of how the coupling impedance of a hole should behave over a wide frequency range. This question was studied by developing a theoretical analysis based on a variational method. An analytical formula for the coupling impedance of a hole is developed in this work using a variational method. The result gives good qualitative agreements with the coupling impedances evaluated numerically from the Fourier transform of the wake potential which is obtained from the computer code MAFIA-T3. The author shows that the coupling impedance of a hole behaves quite similar to the impedance of an RLC-resonator circuit. Important parameters used to describe such a resonator circuit are the resonant frequency and bandwidth. The author provides a theoretical insight on how to parameterize properly the numerical impedance of a hole when data exhibit complicated dependence on frequency. This is possible because one can show that the parameters are a function of the dimensionless quantity kd alone, with k the free-space wave number and d the radius of hole

  18. Performance Analysis of Phase Controlled Unidirectional and Bidirectional AC Voltage Controllers

    Directory of Open Access Journals (Sweden)

    Abdul Sattar Larik

    2011-01-01

    Full Text Available AC voltage controllers are used to vary the output ac voltage from a fixed ac input source. They are also commonly called ac voltage regulators or ac choppers. The output voltage is either controlled by PAC (Phase Angle Control method or on-off control method. Due to various advantages of ac voltage controllers, such as high efficiency, simplicity, low cost and ability to control large amount of power they efficiently control the speed of ac motors, light dimming and industrial heating, etc. These converters are variable structure systems and generate harmonics during the operation which will affect the power quality when connected to system network. During the last couple of years, a number of new semiconductor devices and various power electronic converters has been introduced. Accordingly the subject of harmonics and its problems are of great concern to power industry and customers. In this research work, initially the simulation models of single phase unidirectional and bidirectional ac voltage controllers were developed by using MATLAB software. The harmonics of these models are investigated by simulation. In the end, the harmonics were also analyzed experimentally. The simulated as well as experimental results are presented.

  19. A new method to assess skin treatments for lowering the impedance and noise of individual gelled Ag–AgCl electrodes

    International Nuclear Information System (INIS)

    Piervirgili, G; Petracca, F; Merletti, R

    2014-01-01

    A model-based new procedure for measuring the single electrode–gel–skin impedance (Z EGS ) is presented. The method is suitable for monitoring the contact impedance of the electrodes of a large array with limited modifications of the hardware and without removing or disconnecting the array from the amplifier. The procedure is based on multiple measurements between electrode pairs and is particularly suitable for electrode arrays. It has been applied to study the effectiveness of three skin treatments, with respect to no treatment, for reducing the electrode–gel–skin impedance (Z EGS ) and noise: (i) rubbing with alcohol; (ii) rubbing with abrasive conductive paste; (iii) stripping with adhesive tape. The complex impedances Z EGS of the individual electrodes were measured by applying this procedure to disposable commercial Ag–AgCl gelled electrode arrays (4  ×  1) with a 5 mm 2 contact area. The impedance unbalance ΔZ = Z EGS1  − Z EGS2 and the RMS noise (V RMS ) were measured between pairs of electrodes. The tissue impedance Z T was also obtained, as a collateral result. Measurements were repeated at t 0 = 0 min and at t 30 = 30 min from the electrode application. Mixed linear models and linear regression analysis applied to Z EGS , ΔZ and noise V RMS for the skin treatment factor demonstrated (a) that skin rubbing with abrasive conductive paste is more effective in lowering Z EGS , ΔZ and V RMS (p < 0.01) than the other treatments or no treatment, and (b) a statistically significant decrement (p < 0.01), between t 0 and t 30 , of magnitude and phase of Z EGS . Rubbing with abrasive conductive paste significantly decreased the noise V RMS with respect to other treatments or no treatment. (paper)

  20. Expression Study of LeGAPDH, LeACO1, LeACS1A, and LeACS2 in Tomato Fruit (Solanum lycopersicum

    Directory of Open Access Journals (Sweden)

    Pijar Riza Anugerah

    2015-10-01

    Full Text Available Tomato is a climacteric fruit, which is characterized by ripening-related increase of respiration and elevated ethylene synthesis. Ethylene is the key hormone in ripening process of climacteric fruits. The objective of this research is to study the expression of three ethylene synthesis genes: LeACO1, LeACS1A, LeACS2, and a housekeeping gene LeGAPDH in ripening tomato fruit. Specific primers have been designed to amplify complementary DNA fragment of LeGAPDH (143 bp, LeACO1 (240 bp, LeACS1A (169 bp, and LeACS2 (148 bp using polymerase chain reaction. Nucleotide BLAST results of the complementary DNA fragments show high similarity with LeGAPDH (NM_001247874.1, LeACO1 (NM_001247095.1, LeACS1A (NM_001246993.1, LeACS2 (NM_001247249.1, respectively. Expression study showed that LeACO1, LeACS1A, LeACS2, and LeGAPDH genes were expressed in ripening tomato fruit. Isolation methods, reference sequences, and primers used in this study can be used in future experiments to study expression of genes responsible for ethylene synthesis using quantitative polymerase chain reaction and to design better strategy for controlling fruit ripening in agroindustry.

  1. Nuclear structure of 231Ac

    International Nuclear Information System (INIS)

    Boutami, R.; Borge, M.J.G.; Mach, H.; Kurcewicz, W.; Fraile, L.M.; Gulda, K.; Aas, A.J.; Garcia-Raffi, L.M.; Lovhoiden, G.; Martinez, T.; Rubio, B.; Tain, J.L.; Tengblad, O.

    2008-01-01

    The low-energy structure of 231 Ac has been investigated by means of γ ray spectroscopy following the β - decay of 231 Ra. Multipolarities of 28 transitions have been established by measuring conversion electrons with a MINI-ORANGE electron spectrometer. The decay scheme of 231 Ra → 231 Ac has been constructed for the first time. The Advanced Time Delayed βγγ(t) method has been used to measure the half-lives of five levels. The moderately fast B(E1) transition rates derived suggest that the octupole effects, albeit weak, are still present in this exotic nucleus

  2. An electrode polarization impedance based flow sensor for low water flow measurement

    International Nuclear Information System (INIS)

    Yan, Tinghu; Sabic, Darko

    2013-01-01

    This note describes an electrode polarization impedance based flow sensor for low water flow measurement. It consists of two pairs of stainless steel electrodes set apart and inserted into a non-conductive flow tube with each pair of electrodes placed diametrically at the opposite sides. The flow sensor is modeled as a typical four-electrode system of which two electrodes are current-carrying and the other two serve as output pick ups. The polarization impedances of the two current carrying electrodes are affected by water flows resulting in changes of differential potential between the two pick-up electrodes which are separated by the same fluid. The interrogation of the two excitation electrodes with dc biased ac signals offers significantly higher sensor sensitivities to flow. The prototype flow sensor constructed for a 20 mm diameter pipeline was able to measure water flow rate as low as tested at 1.06 l h −1 and remained sensitive at a flow rate of 25.18 l h −1 when it was driven with a sinusoidal voltage at 1000 Hz with a peak ac amplitude of 2 V and a dc offset of +8 V. The nonlinear characteristics of the sensor response indicate that the sensor is more sensitive at low flows and will not be able to measure at very high flows. Additional experiments are needed to evaluate the influences of impurities, chemical species, ions constituents, conductivity and temperature over a practical range of residential water conditions, the effects of fluctuating ground signals, measurement uncertainty, power consumption, compensation of effects and practical operations. The flow sensor (principle) presented may be used as (in) a secondary sensor in combination with an existing electronic water meter to extend the low end of measurement range in residential water metering. (technical design note)

  3. Method of Grasping Control by Computing Internal and External Impedances for Two Robot Fingers, and Its Application to Admittance Control of a Robot Hand-Arm System

    Directory of Open Access Journals (Sweden)

    Jian Huang

    2015-08-01

    Full Text Available Impedance control is an important technology used in the grasping control of a robot hand. Numerous studies related to grasping algorithms have been reported in recent years, with the contact force between robot fingers and the object to be grasped being primarily discussed in most cases. Generally, a coupling effect occurs between the internal loop of the grasping operation and the external loop of the interaction with the environment when a multi-fingered robot hand is used to complete a contact task. Therefore, a robot hand cannot hold an object using a large external force to complete a wide range of tasks by applying the conventional method. In this paper, the coupling of the internal/external forces occurring in grasping operations using multiple fingers is analysed. Then, improved impedance control based on the previous method is proposed as an effective tool to solve the problem of grasping failure caused by single-finger contact. Furthermore, a method for applying the improved grasping algorithm to the admittance control of a robot hand-arm system is also proposed. The proposed method divides the impedance effect into the grasping control of the hand and the cooperative control of the arm, so that expanding the task space and increasing the flexibility of impedance adjustment can be achieved. Experiments were conducted to demonstrate the effectiveness of the proposed method.

  4. On the impedance of galvanic cells XXVI. Application of the complex plane method in the case of mixed currents

    NARCIS (Netherlands)

    Dekker, B.G.; Sluyters-Rehbach, M.; Sluyters, J.H.

    1969-01-01

    The applicability of the complex plane method for the evaluation of the impedance parameters in the case of two simultaneously proceeding electrode reactions is discussed. It is shown that the possibility of the evaluation depends strongly on the values of the irreversibility quotients of both

  5. Bayesian-based estimation of acoustic surface impedance: Finite difference frequency domain approach.

    Science.gov (United States)

    Bockman, Alexander; Fackler, Cameron; Xiang, Ning

    2015-04-01

    Acoustic performance for an interior requires an accurate description of the boundary materials' surface acoustic impedance. Analytical methods may be applied to a small class of test geometries, but inverse numerical methods provide greater flexibility. The parameter estimation problem requires minimizing prediction vice observed acoustic field pressure. The Bayesian-network sampling approach presented here mitigates other methods' susceptibility to noise inherent to the experiment, model, and numerics. A geometry agnostic method is developed here and its parameter estimation performance is demonstrated for an air-backed micro-perforated panel in an impedance tube. Good agreement is found with predictions from the ISO standard two-microphone, impedance-tube method, and a theoretical model for the material. Data by-products exclusive to a Bayesian approach are analyzed to assess sensitivity of the method to nuisance parameters.

  6. Estimation of surface impedance using different types of microphone arrays

    DEFF Research Database (Denmark)

    Richard, Antoine Philippe André; Fernandez Grande, Efren; Brunskog, Jonas

    2017-01-01

    This study investigates microphone array methods to measure the angle dependent surface impedance of acoustic materials. The methods are based on the reconstruction of the sound field on the surface of the material, using a wave expansion formulation. The reconstruction of both the pressure...... and the particle velocity leads to an estimation of the surface impedance for a given angle of incidence. A porous type absorber sample is tested experimentally in anechoic conditions for different array geometries, sample sizes, incidence angles, and distances between the array and sample. In particular......, the performances of a rigid spherical array and a double layer planar array are examined. The use of sparse array processing methods and conventional regulariation approaches are studied. In addition, the influence of the size of the sample on the surface impedance estimation is investigated using both...

  7. Wireless Impedance-Based SHM for Bolted Connections via Multiple PZT-Interfaces

    International Nuclear Information System (INIS)

    Nguyen, Khac Duy; Kim, Jeong Tae

    2011-01-01

    This study presents a structural health monitoring(SHM) method for bolted connections by using multi-channel wireless impedance sensor nodes and multiple PZT-interfaces. To achieve the objective, the following approaches are implemented. Firstly, a PZT-interface is designed to monitor bolt loosening in bolted connection based on variation of electro-mechanical(EM) impedance signatures. Secondly, a wireless impedance sensor node is designed for autonomous, cost-efficient and multi-channel monitoring. For the sensor platform, Imote2 is selected on the basis of its high operating speed, low power requirement and large storage memory. Finally, the performance of the wireless sensor node and the PZT-interfaces is experimentally evaluated for a bolt-connection model. Damage monitoring method using root mean square deviation(RMSD) index of EM impedance signatures is utilized to estimate the strength of the bolted joint

  8. Development of impedance matching technologies for ICRF antenna arrays

    International Nuclear Information System (INIS)

    Pinsker, R.I.

    1998-01-01

    All high-power ion cyclotron range of frequency (ICRF) heating systems include devices for matching the input impedance of the antenna array to the generator output impedance. For most types of antennas used, the input impedance is strongly time dependent on timescales as rapid as 10 -1 s, while the radio frequency (RF) generators used are capable of producing full power only into a stationary load impedance. Hence, the dynamic response of the matching method is of great practical importance. In this paper, world-wide developments in this field over the past decade are reviewed. These techniques may be divided into several classes. The edge plasma parameters that determine the antenna array's input impedance may be controlled to maintain a fixed load impedance. The frequency of the RF source can be feedback controlled to compensate for changes in the edge plasma conditions, or fast variable tuning elements in the transmission line between the generator output and the antenna input connections can provide the necessary time-varying impedance transformation. In 'lossy passive schemes', reflected power due to the time-varying impedance of the antenna array is diverted to a dummy load. Each of these techniques can be applied to a pre-existing antenna system. If a new antenna is to be designed, recent advances allow the antenna array to have the intrinsic property of presenting a constant load to the feeding transmission lines despite the varying load seen by each antenna in the array. (author)

  9. Development of impedance matching technologies for ICRF antenna arrays

    International Nuclear Information System (INIS)

    Pinsker, R.I.

    1998-03-01

    All high power ICRF heating systems include devices for matching the input impedance of the antenna array to the generator output impedance. For most types of antennas used, the input impedance is strongly time-dependent on timescales as rapid as 10-4 s, while the rf generators used are capable of producing full power only into a stationary load impedance. Hence, the dynamic response of the matching method is of great practical importance. In this paper, world-wide developments in this field over the past decade are reviewed. These techniques may be divided into several classes. The edge plasma parameters that determine the antenna array's input impedance may be controlled to maintain a fixed load impedance. The frequency of the rf source can be feedback controlled to compensate for changes in the edge plasma conditions, or fast variable tuning elements in the transmission line between the generator output and the antenna input connections can provide the necessary time-varying impedance transformation. In lossy passive schemes, reflected power due to the time-varying impedance of the antenna array is diverted to a dummy load. Each of these techniques can be applied to a pre-existing antenna system. If a new antenna is to be designed, recent advances allow the antenna array to have the intrinsic property of presenting a constant load to the feeding transmission lines despite the varying load seen by each antenna in the array

  10. Review of Stratum Corneum Impedance Measurement in Non-Invasive Penetration Application

    Directory of Open Access Journals (Sweden)

    Fei Lu

    2018-03-01

    Full Text Available Due to advances in telemedicine, mobile medical care, wearable health monitoring, and electronic skin, great efforts have been directed to non-invasive monitoring and treatment of disease. These processes generally involve disease detection from interstitial fluid (ISF instead of blood, and transdermal drug delivery. However, the quantitative extraction of ISF and the level of drug absorption are greatly affected by the individual’s skin permeability, which is closely related to the properties of the stratum corneum (SC. Therefore, measurement of SC impedance has been proposed as an appropriate way for assessing individual skin differences. In order to figure out the current status and research direction of human SC impedance detection, investigations regarding skin impedance measurement have been reviewed in this paper. Future directions are concluded after a review of impedance models, electrodes, measurement methods and systems, and their applications in treatment. It is believed that a well-matched skin impedance model and measurement method will be established for clinical and point-of care applications in the near future.

  11. Impeded Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Joachim; Liu, Jia [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,Staudingerweg 7, 55099 Mainz (Germany); Slatyer, Tracy R. [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Wang, Xiao-Ping [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,Staudingerweg 7, 55099 Mainz (Germany); Xue, Wei [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2016-12-12

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario “Impeded Dark Matter”. We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  12. Impeded Dark Matter

    International Nuclear Information System (INIS)

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy R.; Wang, Xiao-Ping; Xue, Wei

    2016-01-01

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario “Impeded Dark Matter”. We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  13. Description of analytical method and clinical utility of measuring serum 7-alpha-hydroxy-4-cholesten-3-one (7aC4) by mass spectrometry.

    Science.gov (United States)

    Donato, Leslie J; Lueke, Alan; Kenyon, Stacy M; Meeusen, Jeffrey W; Camilleri, Michael

    2018-02-01

    Imbalance of bile acids (BA) homeostasis in the gastrointestinal tract can lead to chronic diarrhea or constipation when BA in the colon are in excess or low, respectively. Since both disturbances of bowel function can result from other etiologies, identifying BA imbalance is important to tailor treatment strategies. Serum concentrations of 7-alpha-hydroxy-4-cholesten-3-one (7aC4), a precursor in bile acid synthesis, reflect BA homeostasis. Here we describe a method to accurately measure serum 7aC4 and evaluate the clinical utility in patients with diarrhea or constipation phenotypes. Serum 7aC4 is measured after acetonitrile protein precipitation using C18 liquid chromatography, tandem mass spectrometry, and deuterium-labeled 7aC4 internal standard. Assay performance including linearity, precision, and accuracy was assessed using waste serum samples. The reference interval was established in healthy individuals without BA-altering conditions or medications. Clinical performance was assessed in patients with irritable bowel syndrome. The method precisely and accurately measured 7aC4 in human serum from 1.4-338ng/mL with no ion suppression or interference from related 7-keto-cholesterol. Central 95th percentile reference interval was 2.5-63.2ng/mL. Lower serum 7aC4 was found in patients with constipation with sensitivity/specificity of 79%/55% compared to healthy controls. Higher 7aC4 was found in patients with bile acid diarrhea (BAD) compared to those without BAD with sensitivity/specificity of 82%/53%. We have developed a sensitive and precise assay for measuring the concentration of 7aC4 in serum. The assay can be used to screen for diarrhea caused by bile acid malabsorption. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  14. Ac-conductivity and dielectric response of new zinc-phosphate glass/metal composites

    Energy Technology Data Exchange (ETDEWEB)

    Maaroufi, A., E-mail: maaroufi@fsr.ac.ma [University of Mohammed V, Laboratory of Composite Materials, Polymers and Environment, Department of Chemistry, Faculty of Sciences, P.B. 1014, Rabat-Agdal (Morocco); Oabi, O. [University of Mohammed V, Laboratory of Composite Materials, Polymers and Environment, Department of Chemistry, Faculty of Sciences, P.B. 1014, Rabat-Agdal (Morocco); Lucas, B. [XLIM UMR 7252 – Université de Limoges/CNRS, 123 avenue Albert Thomas, 87060 Limoges Cedex (France)

    2016-07-01

    The ac-conductivity and dielectric response of new composites based on zinc-phosphate glass with composition 45 mol%ZnO–55 mol%P{sub 2}O{sub 5}, filled with metallic powder of nickel (ZP/Ni) were investigated by impedance spectroscopy in the frequency range from 100 Hz to 1 MHz at room temperature. A high percolating jump of seven times has been observed in the conductivity behavior from low volume fraction of filler to the higher fractions, indicating an insulator – semiconductor phase transition. The measured conductivity at higher filler volume fraction is about 10{sup −1} S/cm and is frequency independent, while, the obtained conductivity for low filler volume fraction is around 10{sup −8} S/cm and is frequency dependent. Moreover, the elaborated composites are characterized by high dielectric constants in the range of 10{sup 5} for conductive composites at low frequencies (100 Hz). In addition, the distribution of the relaxation processes was also evaluated. The Debye, Cole-Cole, Davidson–Cole and Havriliak–Negami models in electric modulus formalism were used to model the observed relaxation phenomena in ZP/Ni composites. The observed relaxation phenomena are fairly simulated by Davidson–Cole model, and an account of the interpretation of results is given. - Highlights: • Composites of ZnO-P{sub 2}O{sub 5}/metal were investigated by impedance spectroscopy. • Original ac-conductivity behavior was discovered in ZnO-P{sub 2}O{sub 5}/metal composites. • High dielectric constant is measured in ZnO-P{sub 2}O{sub 5}/metal composites. • Dielectric constant as filler function is well interpreted with percolation theory. • Observed relaxation processes are well described using electric modulus formalism.

  15. Observations involving broadband impedance modelling

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J S [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    Results for single- and multi-bunch instabilities can be significantly affected by the precise model that is used for the broadband impedance. This paper discusses three aspects of broadband impedance modelling. The first is an observation of the effect that a seemingly minor change in an impedance model has on the single-bunch mode coupling threshold. The second is a successful attempt to construct a model for the high-frequency tails of an r.f. cavity. The last is a discussion of requirements for the mathematical form of an impedance which follow from the general properties of impedances. (author)

  16. Peltier ac calorimeter

    OpenAIRE

    Jung, D. H.; Moon, I. K.; Jeong, Y. H.

    2001-01-01

    A new ac calorimeter, utilizing the Peltier effect of a thermocouple junction as an ac power source, is described. This Peltier ac calorimeter allows to measure the absolute value of heat capacity of small solid samples with sub-milligrams of mass. The calorimeter can also be used as a dynamic one with a dynamic range of several decades at low frequencies.

  17. Analytical model of impedance in elliptical beam pipes

    CERN Document Server

    Pesah, Arthur Chalom

    2017-01-01

    Beam instabilities are among the main limitations in building higher intensity accelerators. Having a good impedance model for every accelerators is necessary in order to build components that minimize the probability of instabilities caused by the interaction beam-environment and to understand what piece to change in case of intensity increasing. Most of accelerator components have their impedance simulated with finite elements method (using softwares like CST Studio), but simple components such as circular or flat pipes are modeled analytically, with a decreasing computation time and an increasing precision compared to their simulated model. Elliptical beam pipes, while being a simple component present in some accelerators, still misses a good analytical model working for the hole range of velocities and frequencies. In this report, we present a general framework to study the impedance of elliptical pipes analytically. We developed a model for both longitudinal and transverse impedance, first in the case of...

  18. Cooperative Frequency Control for Autonomous AC Microgrids

    DEFF Research Database (Denmark)

    Shafiee, Qobad; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.

    2015-01-01

    Distributed secondary control strategies have been recently studied for frequency regulation in droop-based AC Microgrids. Unlike centralized secondary control, the distributed one might fail to provide frequency synchronization and proportional active power sharing simultaneously, due to having...... not require measuring the system frequency as compared to the other presented methods. An ac Microgrid with four sources is used to verify the performance of the proposed control methodology....

  19. Digital model for harmonic interactions in AC/DC/AC systems

    Energy Technology Data Exchange (ETDEWEB)

    Guarini, A P; Rangel, R D; Pilotto, L A.S.; Pinto, R J; Passos, Junior, R [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)

    1994-12-31

    The main purpose of this paper is to present a model for calculation of HVdc converter harmonics taking into account the influence of the harmonic interactions between the ac systems in dc link transmissions. The ideas and methodologies used in the model development take into account the dc current ripple and ac voltage distortion in the ac systems. The theory of switching functions is applied to contemplate for the frequency conversions between the ac and dc sides, in an iterative process. It is possible then to obtain, even in balanced situations, non-characteristic harmonics that are produced by frequencies originated in the other terminal, which can be significant in a strongly coupled system, such as back-to-back configuration. (author) 9 refs., 3 figs.

  20. Frequency and voltage dependent profile of dielectric properties, electric modulus and ac electrical conductivity in the PrBaCoO nanofiber capacitors

    Directory of Open Access Journals (Sweden)

    S. Demirezen

    Full Text Available In this study, praseodymium barium cobalt oxide nanofiber interfacial layer was sandwiched between Au and n-Si. Frequency and voltage dependence of ε′, ε′, tanδ, electric modulus (M′ and M″ and σac of PrBaCoO nanofiber capacitor have been investigated by using impedance spectroscopy method. The obtained experimental results show that the values of ε′, ε′, tanδ, M′, M″ and σac of the PrBaCoO nanofiber capacitor are strongly dependent on frequency of applied bias voltage. The values of ε′, ε″ and tanδ show a steep decrease with increasing frequency for each forward bias voltage, whereas the values of σac and the electric modulus increase with increasing frequency. The high dispersion in ε′ and ε″ values at low frequencies may be attributed to the Maxwell–Wagner and space charge polarization. The high values of ε′ may be due to the interfacial effects within the material, PrBaCoO nanofibers interfacial layer and electron effect. The values of M′ and M″ reach a maximum constant value corresponding to M∞ ≈ 1/ε∞ due to the relaxation process at high frequencies, but both the values of M′ and M″ approach almost to zero at low frequencies. The changes in the dielectric and electrical properties with frequency can be also attributed to the existence of Nss and Rs of the capacitors. As a result, the change in the ε′, ε″, tanδ, M′, M″ and ac electric conductivity (σac is a result of restructuring and reordering of charges at the PrBaCoO/n-Si interface under an external electric field or voltage and interface polarization. Keywords: Thin films, Electrical properties, Interface/interphase

  1. Measurement errors in multifrequency bioelectrical impedance analyzers with and without impedance electrode mismatch

    International Nuclear Information System (INIS)

    Bogónez-Franco, P; Nescolarde, L; Bragós, R; Rosell-Ferrer, J; Yandiola, I

    2009-01-01

    The purpose of this study is to compare measurement errors in two commercially available multi-frequency bioimpedance analyzers, a Xitron 4000B and an ImpediMed SFB7, including electrode impedance mismatch. The comparison was made using resistive electrical models and in ten human volunteers. We used three different electrical models simulating three different body segments: the right-side, leg and thorax. In the electrical models, we tested the effect of the capacitive coupling of the patient to ground and the skin–electrode impedance mismatch. Results showed that both sets of equipment are optimized for right-side measurements and for moderate skin–electrode impedance mismatch. In right-side measurements with mismatch electrode, 4000B is more accurate than SFB7. When an electrode impedance mismatch was simulated, errors increased in both bioimpedance analyzers and the effect of the mismatch in the voltage detection leads was greater than that in current injection leads. For segments with lower impedance as the leg and thorax, SFB7 is more accurate than 4000B and also shows less dependence on electrode mismatch. In both devices, impedance measurements were not significantly affected (p > 0.05) by the capacitive coupling to ground

  2. Single stage buck-boost DC-AC neutral point clamped inverter

    DEFF Research Database (Denmark)

    Mo, Wei; Loh, Poh Chiang; Andrew, A.

    2012-01-01

    This paper proposes a new single stage buck-boost DC-AC neutral point clamped inverter topology which integrates the cascaded configurations of recently introduced inductor-capacitor-capacitor-transformer impedance source network (by Adamowicz) and classic NPC configuration. As a consequence......, it has enhanced buck-boost functionality and low output voltage distortions compared to the traditional Z-source inverter; it has continuous input current which reduces the source stress and inverter noise; it also contains two built-in capacitors which can block the DC current in the transformer...... windings thus preventing the core from saturation; lowers the voltage stresses and power losses of inverter switches and reduces the sizes of filtering devices and as well as obtains better output performance compared to the original two-level Z-source inverters. A phase disposition pulse width modulation...

  3. Impedance cardiography: Pulsatile blood flow and the biophysical and electrodynamic basis for the stroke volume equations

    Directory of Open Access Journals (Sweden)

    Donald P Bernstein

    2010-01-01

    Full Text Available Impedance cardiography (ICG is a branch of bioimpedance pimarily concerned with the determination of left ventricular stroke volume (SV. As implemented, using the transthoracic approach, the technique involves applying a current field longitudinally across a segment of thorax by means of a constant magnitude, high frequency, low amplitude alternating current (AC. By Ohm's Law, the voltage difference measured within the current field is proportional to the electrical impedance Z (Ω. Without ventilatory or cardiac activity, Z is known as the transthoracic, static base impedance Z0. Upon ventricular ejection, a characteristic time dependent cardiac-synchronous pulsatile impedance change is obtained, ΔZ(t, which, when placed electrically in parallel with Z0, constitutes the time-variable total transthoracic impedance Z(t. ΔZ(t represents a dual-element composite waveform, which comprises both the radially-oriented volumetric expansion of and axially-directed forward blood flow within both great thoracic arteries. In its majority, however, ΔZ(t is known to primarily emanate from the ascending aorta. Conceptually, commonly implemented methods assume a volumetric origin for the peak systolic upslope of ΔZ(t, (i.e. dZ/dtmax, with the presumed units of Ω·s-1. A recently introduced method assumes the rapid ejection of forward flowing blood in earliest systole causes significant changes in the velocity-induced blood resistivity variation (Δρb(t, Ωcm·s-1, and it is the peak rate of change of the blood resistivity variation dρb(t/dtmax (Ωcm·s-2 that is the origin of dZ/dtmax. As a consequence of dZ/dtmax peaking in the time domain of peak aortic blood acceleration, dv/dtmax (cm·s-2, it is suggested that dZ/dtmax is an ohmic mean acceleration analog (Ω·s-2 and not a mean flow or velocity surrogate as generally assumed. As conceptualized, the normalized value, dZ/dtmax/Z0, is a dimensionless ohmic mean acceleration equivalent (s-2

  4. Successful enrichment of the ubiquitous freshwater acI Actinobacteria.

    Science.gov (United States)

    Garcia, Sarahi L; McMahon, Katherine D; Grossart, Hans-Peter; Warnecke, Falk

    2014-02-01

    Actinobacteria of the acI lineage are often the numerically dominant bacterial phylum in surface freshwaters, where they can account for > 50% of total bacteria. Despite their abundance, there are no described isolates. In an effort to obtain enrichment of these ubiquitous freshwater Actinobacteria, diluted freshwater samples from Lake Grosse Fuchskuhle, Germany, were incubated in 96-well culture plates. With this method, a successful enrichment containing high abundances of a member of the lineage acI was established. Phylogenetic classification showed that the acI Actinobacteria of the enrichment belonged to the acI-B2 tribe, which seems to prefer acidic lakes. This enrichment grows to low cell densities and thus the oligotrophic nature of acI-B2 was confirmed. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Traceable calibration of impedance heads and artificial mastoids

    International Nuclear Information System (INIS)

    Scott, D A; Dickinson, L P; Bell, T J

    2015-01-01

    Artificial mastoids are devices which simulate the mechanical characteristics of the human head, and in particular of the bony structure behind the ear. They are an essential tool in the calibration of bone-conduction hearing aids and audiometers. With the emergence of different types of artificial mastoids in the market, and the realisation that the visco-elastic part of these instruments changes over time, the development of a method of traceable calibration of these devices without relying on commercial software has become important for national metrology institutes. This paper describes commercially available calibration methods, and the development of a traceable calibration method including the traceable calibration of the impedance head used to measure the mechanical impedance of the artificial mastoid. (paper)

  6. Impedance and modulus spectroscopic study of nano hydroxyapatite

    Science.gov (United States)

    Jogiya, B. V.; Jethava, H. O.; Tank, K. P.; Raviya, V. R.; Joshi, M. J.

    2016-05-01

    Hydroxyapatite (Ca10 (PO4)6 (OH)2, HAP) is the main inorganic component of the hard tissues in bones and also important material for orthopedic and dental implant applications. Nano HAP is of great interest due to its various bio-medical applications. In the present work the nano HAP was synthesized by using surfactant mediated approach. Structure and morphology of the synthesized nano HAP was examined by the Powder XRD and TEM. Impedance study was carried out on pelletized sample in a frequency range of 100Hz to 20MHz at room temperature. The variation of dielectric constant, dielectric loss, and a.c. conductivity with frequency of applied field was studied. The Nyquist plot as well as modulus plot was drawn. The Nyquist plot showed two semicircle arcs, which indicated the presence of grain and grain boundary effect in the sample. The typical behavior of the Nyquist plot was represented by equivalent circuit having two parallel RC combinations in series.

  7. Multi-channel electrical impedance tomography for regional tissue hydration monitoring

    International Nuclear Information System (INIS)

    Chen, Xiaohui; Kao, Tzu-Jen; Ashe, Jeffrey M; Boverman, Gregory; Sabatini, James E; Davenport, David M

    2014-01-01

    Poor assessment of hydration status during hemodialysis can lead to under- or over-hydration in patients with consequences of increased morbidity and mortality. In current practice, fluid management is largely based on clinical assessments to estimate dry weight (normal hydration body weight). However, hemodialysis patients usually have co-morbidities that can make the signs of fluid status ambiguous. Therefore, achieving normal hydration status remains a major challenge for hemodialysis therapy. Electrical impedance technology has emerged as a promising method for hydration monitoring due to its non-invasive nature, low cost and ease-of-use. Conventional electrical impedance-based hydration monitoring systems employ single-channel current excitation (either 2-electrode or 4-electrode methods) to perturb and extract averaged impedance from bulk tissue and use generalized models from large populations to derive hydration estimates. In the present study, a prototype, single-frequency electrical impedance tomography (EIT) system with simultaneous multi-channel current excitation was used to enable regional hydration change detection. We demonstrated the capability to detect a difference in daily impedance change between left leg and right leg in healthy human subjects, who wore a compression sock only on one leg to reduce daily gravitational fluid accumulation. The impedance difference corresponded well with the difference of lower leg volume change between left leg and right leg measured by volumetry, which on average is ∼35 ml, accounting for 0.7% of the lower leg volume. We have demonstrated the feasibility of using multi-channel EIT to extract hydration information in different tissue layers with minimal skin interference. Our simultaneous, multi-channel current excitation approach provides an effective method to separate electrode contact impedance and skin condition artifacts from hydration signals. The prototype system has the potential to be used in

  8. Multi-channel electrical impedance tomography for regional tissue hydration monitoring.

    Science.gov (United States)

    Chen, Xiaohui; Kao, Tzu-Jen; Ashe, Jeffrey M; Boverman, Gregory; Sabatini, James E; Davenport, David M

    2014-06-01

    Poor assessment of hydration status during hemodialysis can lead to under- or over-hydration in patients with consequences of increased morbidity and mortality. In current practice, fluid management is largely based on clinical assessments to estimate dry weight (normal hydration body weight). However, hemodialysis patients usually have co-morbidities that can make the signs of fluid status ambiguous. Therefore, achieving normal hydration status remains a major challenge for hemodialysis therapy. Electrical impedance technology has emerged as a promising method for hydration monitoring due to its non-invasive nature, low cost and ease-of-use. Conventional electrical impedance-based hydration monitoring systems employ single-channel current excitation (either 2-electrode or 4-electrode methods) to perturb and extract averaged impedance from bulk tissue and use generalized models from large populations to derive hydration estimates. In the present study, a prototype, single-frequency electrical impedance tomography (EIT) system with simultaneous multi-channel current excitation was used to enable regional hydration change detection. We demonstrated the capability to detect a difference in daily impedance change between left leg and right leg in healthy human subjects, who wore a compression sock only on one leg to reduce daily gravitational fluid accumulation. The impedance difference corresponded well with the difference of lower leg volume change between left leg and right leg measured by volumetry, which on average is ~35 ml, accounting for 0.7% of the lower leg volume. We have demonstrated the feasibility of using multi-channel EIT to extract hydration information in different tissue layers with minimal skin interference. Our simultaneous, multi-channel current excitation approach provides an effective method to separate electrode contact impedance and skin condition artifacts from hydration signals. The prototype system has the potential to be used in clinical

  9. On the longitudinal coupling impedance of a toroidal beam tube

    International Nuclear Information System (INIS)

    Hahn, H.; Tepikian, S.

    1990-01-01

    In this paper, the longitudinal coupling impedance of a smooth toroidal beam tube is derived. By treating the torus as a slow-wave structure, the well-known method of describing the impedance in terms of cavity resonances can be used. A simple analytical expression for the coupling impedance of a toroidal beam tube with square cross section valid in the low-frequency limit is obtained. The results from the present study are compared with previously published solutions and qualitative differences are pointed out. 16 refs., 3 figs., 1 tab

  10. Electrical impedance spectroscopy and diagnosis of tendinitis

    International Nuclear Information System (INIS)

    Yoon, Kisung; Lee, Kyeong Woo; Kim, Sang Beom; Lee, Jong Hwa; Han, Tai Ryoon; Jung, Dong Keun; Roh, Mee Sook

    2010-01-01

    There have been a number of studies that investigate the usefulness of bioelectric signals in diagnoses and treatment in the medical field. Tendinitis is a musculoskeletal disorder with a very high rate of occurrence. This study attempts to examine whether electrical impedance spectroscopy (EIS) can detect pathological changes in a tendon and find the exact location of the lesion. Experimental tendinitis was induced by injecting collagenase into one side of the patellar tendons in rabbits, while the other side was used as the control. After measuring the impedance in the tendinitis and intact tendon tissue, the dissipation factor was computed. The real component of impedance and the dissipation factor turned out to be lower in tendinitis than in intact tissues. Moreover, the tendinitis dissipation factor spectrum showed a clear difference from that of the intact tendon, indicating its usefulness as a tool for detecting the location of the lesion. Pathologic findings from the tissues that were obtained after measuring the impedance confirmed the presence of characteristics of tendinitis. In conclusion, EIS is a useful method for diagnosing tendinitis and detecting the lesion location in invasive treatment

  11. Impedance analysis of subwoofer systems

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    The electrical impedance of four low-frequency loudspeaker systems is analyzed. The expression for this impedance is obtained directly from the acoustical analogous circuit. Formulas are derived for calculating the small-signal parameters from the frequencies of impedance minima and maxima of two

  12. Virtual Impedance Based Stability Improvement for DC Microgrids with Constant Power Loads

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Sun, Kai; Huang, Lipei

    2014-01-01

    DC microgrid provides an efficient way to integrate different kinds of renewable energy sources with DC couplings. In this paper, in order to improve the stability of DC microgrids with constant power loads (CPLs), a virtual impedance based method is proposed. The CPLs have inherent instability....... To validate the stability with the above stabilizers in a DC microgrid with parallel interfacing converters and CPL, the impedance matching approach is employed. The output impedance of the source converter and input impedance of the load are calculated respectively, and the influence of droop control...

  13. Estimation of non-cardiogenic pulmonary oedema using dual-frequency electrical impedance

    NARCIS (Netherlands)

    Raaijmakers, E.; Faes, T. J.; Meijer, J. M.; Kunst, P. W.; Bakker, J.; Goovaerts, H. G.; Heethaar, R. M.

    1998-01-01

    The study investigates the effects of non-cardiogenic oedema, especially the accumulation of protein in extracellular fluid, on thoracic impedance and proposes a new method of oedema measurement based on an impedance ratio from a dual-frequency measurement. In vitro measurements in a cell containing

  14. Impedance Source Power Electronic Converters

    DEFF Research Database (Denmark)

    Liu, Yushan; Abu-Rub, Haitham; Ge, Baoming

    Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable...... and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key...... features: Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies. Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding...

  15. Introduction of hvdc transmission into a predominantly ac network

    Energy Technology Data Exchange (ETDEWEB)

    Casson, W; Last, F H; Huddart, K W

    1966-02-01

    Methods for reinforcing the supply network, including systems employing dc links, without introducing a new primary network are briefly described. The arrangement for dc links is outlined and the application to an existing ac system is considered. The economics of ac and dc for reinforcement schemes are briefly mentioned.

  16. ACS Zero Point Verification

    Science.gov (United States)

    Dolphin, Andrew

    2005-07-01

    The uncertainties in the photometric zero points create a fundamental limit to the accuracy of photometry. The current state of the ACS calibration is surprisingly poor, with zero point uncertainties of 0.03 magnitudes. The reason for this is that the ACS calibrations are based primarily on semi-emprical synthetic zero points and observations of fields too crowded for accurate ground-based photometry. I propose to remedy this problem by obtaining ACS images of the omega Cen standard field with all nine broadband ACS/WFC filters. This will permit the direct determination of the ACS zero points by comparison with excellent ground-based photometry, and should reduce their uncertainties to less than 0.01 magnitudes. A second benefit is that it will facilitate the comparison of the WFPC2 and ACS photometric systems, which will be important as WFPC2 is phased out and ACS becomes HST's primary imager. Finally, three of the filters will be repeated from my Cycle 12 observations, allowing for a measurement of any change in sensitivity.

  17. Aperture measurements with AC dipole

    CERN Document Server

    Fuster Martinez, Nuria; Dilly, Joschua Werner; Nevay, Laurence James; Bruce, Roderik; Tomas Garcia, Rogelio; Redaelli, Stefano; Persson, Tobias Hakan Bjorn; CERN. Geneva. ATS Department

    2018-01-01

    During the MDs performed on the 15th of September and 29th of November 2017, we measured the LHC global aperture at injection with a new AC dipole method as well as using the Transverse Damper (ADT) blow-up method used during the 2017 LHC commissioning for benchmarking. In this note, the MD procedure is presented as well as the analysis of the comparison between the two methods. The possible benefits of the new method are discussed.

  18. Nonlinear Impedance of Whole Cells Near an Electrode as a Probe of Mitochondrial Activity

    Directory of Open Access Journals (Sweden)

    John H. Miller Jr.

    2011-04-01

    Full Text Available By simultaneously measuring the bulk media and electrode interface voltages of a yeast (Saccharomyces cerevisiae suspension subjected to an AC voltage, a yeast-dependent nonlinear response was found only near the current injection electrodes. Computer simulation of yeast near a current injection electrode found an enhanced voltage drop across the yeast near the electrode due to slowed charging of the electrode interfacial capacitance. This voltage drop is sufficient to induce conformation change in membrane proteins. Disruption of the mitochondrial electron transport chain is found to significantly change the measured nonlinear current response, suggesting nonlinear impedance can be used as a non-invasive probe of cellular metabolic activity.

  19. Online grid impedance estimation for single-phase grid-connected systems using PQ variations

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Teodorescu, Remus; Rodriguez, Pedro

    2007-01-01

    algorithms are used in order to estimate the value of the grid impedance. The online grid impedance estimation method can be used for compliance with the anti-islanding standard requirements (IEEE1574, IEEE929 and VDE0126) and for adaptive control of the grid-connected converters. The proposed method...

  20. Gastric motility measurement and evaluation of functional dyspepsia by a bio-impedance method

    International Nuclear Information System (INIS)

    Li, Zhangyong; Ren, Chaoshi

    2008-01-01

    method of impedance can be a potential tool for the noninvasive assessment of gastric motility under gastrointestinal physiology and pathology conditions

  1. DNA Based Electrolyte/Separator for Lithium Battery Application (Postprint)

    Science.gov (United States)

    2015-10-07

    composite electrolyte as shown by the thermos- gravimetric analysis (TGA). The AC conductivity measurements suggest that the addition of DC to the gel...stability of the composite electrolyte as shown by the thermos- gravimetric analysis (TGA). The AC conductivity measurements suggest that the...2.3. Testing methods and equipment Impedance testing using the Solartron 1260A Impedance/ Gain- phase Analyzer was performed on each cell at

  2. Adaptive Filtering to Enhance Noise Immunity of Impedance and Admittance Spectroscopy: Comparison with Fourier Transformation

    Science.gov (United States)

    Stupin, Daniil D.; Koniakhin, Sergei V.; Verlov, Nikolay A.; Dubina, Michael V.

    2017-05-01

    The time-domain technique for impedance spectroscopy consists of computing the excitation voltage and current response Fourier images by fast or discrete Fourier transformation and calculating their relation. Here we propose an alternative method for excitation voltage and current response processing for deriving a system impedance spectrum based on a fast and flexible adaptive filtering method. We show the equivalence between the problem of adaptive filter learning and deriving the system impedance spectrum. To be specific, we express the impedance via the adaptive filter weight coefficients. The noise-canceling property of adaptive filtering is also justified. Using the RLC circuit as a model system, we experimentally show that adaptive filtering yields correct admittance spectra and elements ratings in the high-noise conditions when the Fourier-transform technique fails. Providing the additional sensitivity of impedance spectroscopy, adaptive filtering can be applied to otherwise impossible-to-interpret time-domain impedance data. The advantages of adaptive filtering are justified with practical living-cell impedance measurements.

  3. RNA interference suppression of mucin 5AC (MUC5AC reduces the adhesive and invasive capacity of human pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Yamada Nobuya

    2010-05-01

    Full Text Available Abstract Background MUC5AC is a secretory mucin normally expressed in the surface muconous cells of stomach and bronchial tract. It has been known that MUC5AC de novo expression occurred in the invasive ductal carcinoma and pancreatic intraepithelial neoplasm with no detectable expression in normal pancreas, however, its function remains uncertain. Here, we report the impact of MUC5AC on the adhesive and invasive ability of pancreatic cancer cells. Methods We used two MUC5AC expressing cell lines derived from human pancreatic cancer, SW1990 and BxPC3. Small-interfering (si RNA directed against MUC5AC were used to assess the effects of MUC5AC on invasion and adhesion of pancreas cancer cells in vitro and in vivo. We compared parental cells (SW1990 and BxPC3 with MUC5AC suppressed cells by si RNA (si-SW1990 and si-BxPC3. Results MUC5AC was found to express in more than 80% of pancreatic ductal carcinoma specimens. Next we observed that both of si-SW1990 and si-BxPC3 showed significantly lower adhesion and invasion to extracellular matrix components compared with parental cell lines. Expression of genes associated with adhesion and invasion including several integerins, matrix metalloproteinase (MMP -3 and vascular endothelial growth factor (VEGF were down-regulated in both MUC5AC suppressed cells. Furthermore, production of VEGF and phosphorylation of VEGFR-1 were significantly reduced by MUC5AC down regulation. Both of si-SW1990 and si-BxPC3 attenuated activation of Erk1/2. In vivo, si-SW1990 did not establish subcutaneous tumor in nude mice. Conclusions Knockdown of MUC5AC reduced the ability of pancreatic cancer cells to adhesion and invasion, suggesting that MUC5AC might contribute to the invasive motility of pancreatic cancer cells by enhancing the expression of integrins, MMP-3, VEGF and activating Erk pathway.

  4. AC Losses and Their Thermal Effect in High Temperature Superconducting Machines

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Zou, Shengnan

    2015-01-01

    In transient operations or fault conditions, high temperature superconducting (HTS) machines suffer AC losses which have an influence on the thermal stability of superconducting windings. In this paper, a method to calculate AC losses and their thermal effect in HTS machines is presented....... The method consists of three sub-models that are coupled only in one direction. The magnetic field distribution is first solved in a machine model, assuming a uniform current distribution in HTS windings. The magnetic fields on the boundaries are then used as inputs for an AC loss model which has...

  5. AC Losses and Their Thermal Effect in High-Temperature Superconducting Machines

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Zou, Shengnan

    2016-01-01

    In transient operations or fault conditions, hightemperature superconducting (HTS) machines suffer ac losses, which have an influence on the thermal stability of superconducting windings. In this paper, a method to calculate ac losses and their thermal effect in HTS machines is presented....... The method consists of three submodels that are coupled only in one direction. The magnetic field distribution is first solved in a machine model, assuming a uniform current distribution in HTS windings. The magnetic fields on the boundaries are then used as inputs for an ac loss model that has a homogeneous...

  6. Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models

    Science.gov (United States)

    He, W.; Anderson, R.N.

    1998-08-25

    A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management. 20 figs.

  7. Characterization of Bi4Ge3O12 single crystal by impedance spectroscopy

    Directory of Open Access Journals (Sweden)

    Zélia Soares Macedo

    2003-12-01

    Full Text Available Bi4Ge3O12 (bismuth germanate - BGO single crystals were produced by the Czochralski technique and their electrical and dielectric properties were investigated by impedance spectroscopy. The isothermal ac measurements were performed for temperatures from room temperature up to 750 °C, but only the data taken above 500 °C presented a complete semicircle in the complex impedance diagrams. Experimental data were fitted to a parallel RC equivalent circuit, and the electrical conductivity was obtained from the resistivity values. Conductivity values from 5.4 × 10(9 to 4.3 × 10-7 S/cm were found in the temperature range of 500 to 750 °C. This electrical conductivity is thermally activated, following the Arrhenius law with an apparent activation energy of (1.41 ± 0.04 eV. The dielectric properties of BGO single crystal were also studied for the same temperature interval. Permittivity values of 20 ± 2 for frequencies higher than 10³ Hz and a low-frequency dispersion were observed. Both electric and dielectric behavior of BGO are typical of systems in which the conduction mechanism dominates the dielectric response.

  8. Superconductive AC current limiter

    International Nuclear Information System (INIS)

    Bekhaled, M.

    1987-01-01

    This patent describes an AC current limiter for a power transport line including a power supply circuit and feeding a load circuit via an overload circuit-breaker member. The limiter comprises a transformer having a primary winding connected in series between the power supply circuit and the load circuit and at least one secondary winding of superconductor material contained in a cryogenic enclosure and short-circuited on itself. The leakage reactance of the transformer as seen from the primary winding is low, and the resistance of the at least one secondary winding when in the non-superconducting state and as seen from the primary is much greater than the nominal impedance of the transformer. The improvement whereby the at least one secondary winding of the transformer comprises an active winding in association with a set of auxiliary windings. The set of auxiliary windings is constituted by an even number of series-connected auxiliary windings wound in opposite directions, with the total number of turns in one direction being equal to the total number of turns in the opposite direction, and with the thermal capacity of the secondary winding as a whole being sufficiently high to limit the expansion thereof to a value which remains small during the time it takes the circuit-breaking member to operate

  9. Impedance and Collective Effects

    CERN Document Server

    Metral, E; Rumolo, R; Herr, W

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Chapter '4 Impedance and Collective Effects' with the content: 4 Impedance and Collective Effects Introduction 4.1 Space Charge 4.2 Wake Fields and Impedances 4.3 Coherent Instabilities 4.4 Landau Damping 4.5 Two-Stream Effects (Electron Cloud and Ions) 4.6 Beam-Beam Effects 4.7 Numerical Modelling

  10. A current-excited triple-time-voltage oversampling method for bio-impedance model for cost-efficient circuit system.

    Science.gov (United States)

    Yan Hong; Yong Wang; Wang Ling Goh; Yuan Gao; Lei Yao

    2015-08-01

    This paper presents a mathematic method and a cost-efficient circuit to measure the value of each component of the bio-impedance model at electrode-electrolyte interface. The proposed current excited triple-time-voltage oversampling (TTVO) method deduces the component values by solving triple simultaneous electric equation (TSEE) at different time nodes during a current excitation, which are the voltage functions of time. The proposed triple simultaneous electric equations (TSEEs) allows random selections of the time nodes, hence numerous solutions can be obtained during a single current excitation. Following that, the oversampling approach is engaged by averaging all solutions of multiple TSEEs acquired after a single current excitation, which increases the practical measurement accuracy through the improvement of the signal-to-noise ratio (SNR). In addition, a print circuit board (PCB) that consists a switched current exciter and an analog-to-digital converter (ADC) is designed for signal acquisition. This presents a great cost reduction when compared against other instrument-based measurement data reported [1]. Through testing, the measured values of this work is proven to be in superb agreements on the true component values of the electrode-electrolyte interface model. This work is most suited and also useful for biological and biomedical applications, to perform tasks such as stimulations, recordings, impedance characterizations, etc.

  11. Creating low-impedance tetrodes by electroplating with additives

    Science.gov (United States)

    Ferguson, John E.; Boldt, Chris; Redish, A. David

    2011-01-01

    A tetrode is a bundle of four microwires that can record from multiple neurons simultaneously in the brain of a freely moving animal. Tetrodes are usually electroplated to reduce impedances from 2-3 MΩ to 200-500 kΩ (measured at 1 kHz), which increases the signal-to-noise ratio and allows for the recording of small amplitude signals. Tetrodes with even lower impedances could improve neural recordings but cannot be made using standard electroplating methods without shorting. We were able to electroplate tetrodes to 30-70 kΩ by adding polyethylene glycol (PEG) or multi-walled carbon nanotube (MWCNT) solutions to a commercial gold-plating solution. The MWCNTs and PEG acted as inhibitors in the electroplating process and created large-surface-area, low-impedance coatings on the tetrode tips. PMID:21379404

  12. Electric and dielectric behavior of copper-chromium layered double hydroxide intercalated with dodecyl sulfate anions using impedance spectroscopy

    Science.gov (United States)

    Elhatimi, Wafaa; Bouragba, Fatima Zahra; Lahkale, Redouane; Sadik, Rachid; Lebbar, Nacira; Siniti, Mostapha; Sabbar, Elmouloudi

    2018-05-01

    The Cu2Cr-DS-LDH hybrid was successfully prepared by the anion exchange method at room temperature. The structure, the chemical composition and the physico-chemical properties of the sample were determined using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and inductively coupled plasma (ICP). In this work, the electrical and dielectric properties investigated are determined using impedance spectroscopy (IS) in a frequency range of 1 Hz to 1 MHz. Indeed, the Nyquist diagram modelized by an electrical equivalent circuit showed three contributions attributed respectively to the polarization of grains, grains boundaries and interface electrode-sample. This modelization allowed us to determine the intrinsic electrical parameters of the hybrid (resistance, pseudo-capacitance and relaxation time). The presence of the non-Debye relaxation phenomena was confirmed by the frequency analysis of impedance. Moreover, the evolution of the alternating current conductivity (σac) studied obeys the double power law of Jonscher. The ionic conduction of this material was generated through a jump movement by translation of the charge carriers. As for the dielectric behavior of the material, the evolution of dielectric constant as a function of frequency shows relatively high values in a frequency range between 10 Hz and 1 KHz. The low values of the loss tangent obtained in this frequency zone can valorize this LDH hybrid.

  13. Blocky inversion of multichannel elastic impedance for elastic parameters

    Science.gov (United States)

    Mozayan, Davoud Karami; Gholami, Ali; Siahkoohi, Hamid Reza

    2018-04-01

    Petrophysical description of reservoirs requires proper knowledge of elastic parameters like P- and S-wave velocities (Vp and Vs) and density (ρ), which can be retrieved from pre-stack seismic data using the concept of elastic impedance (EI). We propose an inversion algorithm which recovers elastic parameters from pre-stack seismic data in two sequential steps. In the first step, using the multichannel blind seismic inversion method (exploited recently for recovering acoustic impedance from post-stack seismic data), high-resolution blocky EI models are obtained directly from partial angle-stacks. Using an efficient total-variation (TV) regularization, each angle-stack is inverted independently in a multichannel form without prior knowledge of the corresponding wavelet. The second step involves inversion of the resulting EI models for elastic parameters. Mathematically, under some assumptions, the EI's are linearly described by the elastic parameters in the logarithm domain. Thus a linear weighted least squares inversion is employed to perform this step. Accuracy of the concept of elastic impedance in predicting reflection coefficients at low and high angles of incidence is compared with that of exact Zoeppritz elastic impedance and the role of low frequency content in the problem is discussed. The performance of the proposed inversion method is tested using synthetic 2D data sets obtained from the Marmousi model and also 2D field data sets. The results confirm the efficiency and accuracy of the proposed method for inversion of pre-stack seismic data.

  14. Impact of ac/dc spark anodizing on the corrosion resistance of Al-Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Alsrayheen, Enam, E-mail: ealsrayh@ucalgary.ca [Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary AB, T2N 1N4 (Canada); McLeod, Eric, E-mail: hmolero@ucalgary.ca [Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary AB, T2N 1N4 (Canada); Rateick, Richard, E-mail: richard.rateick@honeywell.com [Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary AB, T2N 1N4 (Canada); Molero, Hebert, E-mail: Eric.McLeod@stmu.ab.ca [Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary AB, T2N 1N4 (Canada); Birss, Viola, E-mail: birss@ucalgary.ca [Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary AB, T2N 1N4 (Canada)

    2011-07-01

    An ac/dc spark anodization method was used to deposit an oxide film (6 {+-} 3 {mu}m in thickness) on the Al-Cu alloy AA2219. The oxide films were formed at 10 mA/cm{sup 2} for 30 min in an alkaline silicate solution, showing three main stages of growth. Scanning electron microscopy and electron microprobe analysis revealed that the oxide films are not uniform and consist of three main layers, an inner Al-rich barrier layer ({approx}1 {mu}m), an intermediate Al-Si mixed oxide layer ({approx}2 {+-} 1 {mu}m), and an outer porous Si-rich layer ({approx}3 {+-} 3 {mu}m). In addition, microscopic analysis showed that the Al{sub 2}Cu intermetallics present in the alloy have not been excessively oxidized during the anodization process and thus are retained beneath the oxide film, as desired. The coating passivity and corrosion resistance, evaluated using linear sweep voltammetry (LSV) in pH 7 borate buffer solution and electrochemical impedance spectroscopy (EIS) in 0.86 M NaCl solution, respectively, were both significantly improved after spark-anodization.

  15. Hybrid-Source Impedance Networks

    DEFF Research Database (Denmark)

    Li, Ding; Gao, Feng; Loh, Poh Chiang

    2010-01-01

    Hybrid-source impedance networks have attracted attention among researchers because of their flexibility in performing buck-boost energy conversion. To date, three distinct types of impedance networks can be summarized for implementing voltage-type inverters with another three types summarized...... for current-type inverters. These impedance networks can in principle be combined into two generic network entities, before multiple of them can further be connected together by applying any of the two proposed generalized cascading concepts. The resulting two-level and three-level inverters implemented using...

  16. Low Offset AC Correlator.

    Science.gov (United States)

    This patent describes a low offset AC correlator avoids DC offset and low frequency noise by frequency operating the correlation signal so that low...noise, low level AC amplification can be substituted for DC amplification. Subsequently, the high level AC signal is demodulated to a DC level. (Author)

  17. AC power supply systems

    International Nuclear Information System (INIS)

    Law, H.

    1987-01-01

    An ac power supply system includes a rectifier fed by a normal ac supply, and an inverter connected to the rectifier by a dc link, the inverter being effective to invert the dc output of the receiver at a required frequency to provide an ac output. A dc backup power supply of lower voltage than the normal dc output of the rectifier is connected across the dc link such that the ac output of the rectifier is derived from the backup supply if the voltage of the output of the inverter falls below that of the backup supply. The dc backup power may be derived from a backup ac supply. Use in pumping coolant in nuclear reactor is envisaged. (author)

  18. Implementation and Test of On-line Embedded Grid Impedance Estimation for PV-inverters

    DEFF Research Database (Denmark)

    Asiminoaei, Lucian; Teodorescu, Remus; Blaabjerg, Frede

    2004-01-01

    to evaluate the grid impedance directly by the PV-inverter, providing a fast and low cost implementation. This principle theoretically provides a correct result of the grid impedance but when using it into the context of PV integration, different implementation issues strongly affect the quality...... of the results. This paper presents a new impedance estimation method including typical implementation problems encountered and it also presents adopted solutions for on-line grid impedance measurement. Practical tests on an existing PV-inverter validate the chosen solutions....

  19. Impedance-based damage assessment using piezoelectric sensors

    Science.gov (United States)

    Rim, Mi-Sun; Yoo, Seung-Jae; Lee, In; Song, Jae-Hoon; Yang, Jae-Won

    2011-04-01

    Recently structural health monitoring (SHM) systems are being focused because they make it possible to assess the health of structures at real-time in many application fields such as aircraft, aerospace, civil and so on. Piezoelectric materials are widely used for sensors of SHM system to monitor damage of critical parts such as bolted joints. Bolted joints could be loosened by vibration, thermal cycling, shock, corrosion, and they cause serious mechanical failures. In this paper, impedance-based method using piezoelectric sensors was applied for real-time SHM. A steel beam specimen fastened by bolts was tested, and polymer type piezoelectric materials, PVDFs were used for sensors to monitor the condition of bolted joint connections. When structure has some damage, for example loose bolts, the impedance of PVDF sensors showed different tendency with normal structure which has no loose bolts. In the case of loose bolts, impedance values are decreased and admittance values are increased.

  20. Bridge Network for Measuring Very Small Impedances from 4.2 to 300 degrees K with a Null-Detector Sensitivity of 10-11 Volt

    DEFF Research Database (Denmark)

    Bak, Christen Kjeldahl; Dalsgaard, Erik

    1967-01-01

    An ac measuring technique devised primarily for measuring galvanomagnetic effects in metals is presented. The instrument may, however, be useful whenever it is desired to measure and record continuously impedances in the range 10−3 to 10−8 Omega. The sample assembly is disscussed in some detail....... Measurements with the bridge show that in the temperature range 300°K to 4.2°K the noise level changes from 30×10−11 V to 10−11 V without any zero shift, and as a result the lower limit for the impedance range changes from 10−6 Omega to less than 5×10−8 Omega. ©1967 The American Institute of Physics...

  1. Estimating the absorptive root area in Norway spruce by using the common direct and indirect earth impedance methods

    Czech Academy of Sciences Publication Activity Database

    Čermák, J.; Cudlín, Pavel; Gebauer, R.; Borja, I.; Martinková, M.; Staněk, Z.; Koller, J.; Neruda, J.; Nadezhdina, N.

    2013-01-01

    Roč. 372, 1-2 (2013), s. 401-415 ISSN 0032-079X R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk OC10023 Institutional support: RVO:67179843 Keywords : Active absorptive fine root area index * Fine root surface * Modified earth impedance * Picea abies * Root research methods Subject RIV: EH - Ecology, Behaviour Impact factor: 3.235, year: 2013

  2. Pumping slots: impedances and power losses

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S [Maryland Univ., College Park, MD (United States). Dept. of Physics

    1996-08-01

    Contributions of pumping slots to the beam coupling impedances and power losses in a B-factory ring are considered. While their leading contribution is to the inductive impedance, for high-intensity machines with short bunches like e{sup +}e{sup -} B-factories the real part of the impedance and related loss factors are also important. Using an analytical approach we calculate the coupling impedances and loss factors due to slots in a ring with an arbitrary cross section of the vacuum chamber. Effects of the slot tilt on the beam impedance are also considered, and restrictions on the tilt angle are derived from limitations on the impedance increase. The power leakage through the slots is discussed briefly. The results are applied to the KEK B-factory. (author)

  3. Bias Voltage-Dependent Impedance Spectroscopy Analysis of Hydrothermally Synthesized ZnS Nanoparticles

    Science.gov (United States)

    Dey, Arka; Dhar, Joydeep; Sil, Sayantan; Jana, Rajkumar; Ray, Partha Pratim

    2018-04-01

    In this report, bias voltage-dependent dielectric and electron transport properties of ZnS nanoparticles were discussed. ZnS nanoparticles were synthesized by introducing a modified hydrothermal process. The powder XRD pattern indicates the phase purity, and field emission scanning electron microscope image demonstrates the morphology of the synthesized sample. The optical band gap energy (E g = 4.2 eV) from UV measurement explores semiconductor behavior of the synthesized material. The electrical properties were performed at room temperature using complex impedance spectroscopy (CIS) technique as a function of frequency (40 Hz-10 MHz) under different forward dc bias voltages (0-1 V). The CIS analysis demonstrates the contribution of bulk resistance in conduction mechanism and its dependency on forward dc bias voltages. The imaginary part of the impedance versus frequency curve exhibits the existence of relaxation peak which shifts with increasing dc forward bias voltages. The dc bias voltage-dependent ac and dc conductivity of the synthesized ZnS was studied on thin film structure. A possible hopping mechanism for electrical transport processes in the system was investigated. Finally, it is worth to mention that this analysis of bias voltage-dependent dielectric and transport properties of as-synthesized ZnS showed excellent properties for emerging energy applications.

  4. Multi-phase flow monitoring with electrical impedance tomography using level set based method

    International Nuclear Information System (INIS)

    Liu, Dong; Khambampati, Anil Kumar; Kim, Sin; Kim, Kyung Youn

    2015-01-01

    Highlights: • LSM has been used for shape reconstruction to monitor multi-phase flow using EIT. • Multi-phase level set model for conductivity is represented by two level set functions. • LSM handles topological merging and breaking naturally during evolution process. • To reduce the computational time, a narrowband technique was applied. • Use of narrowband and optimization approach results in efficient and fast method. - Abstract: In this paper, a level set-based reconstruction scheme is applied to multi-phase flow monitoring using electrical impedance tomography (EIT). The proposed scheme involves applying a narrowband level set method to solve the inverse problem of finding the interface between the regions having different conductivity values. The multi-phase level set model for the conductivity distribution inside the domain is represented by two level set functions. The key principle of the level set-based method is to implicitly represent the shape of interface as the zero level set of higher dimensional function and then solve a set of partial differential equations. The level set-based scheme handles topological merging and breaking naturally during the evolution process. It also offers several advantages compared to traditional pixel-based approach. Level set-based method for multi-phase flow is tested with numerical and experimental data. It is found that level set-based method has better reconstruction performance when compared to pixel-based method

  5. Reconstruction of surface impedance of an object located over a planar PEC surface

    International Nuclear Information System (INIS)

    Uenal, Guel Seda; Cayoeren, Mehmet; Tetik, Evrim

    2008-01-01

    A method for the determination of inhomogeneous surface impedance of an arbitrary shaped cylindrical object located over a perfectly conducting (PEC) plane is presented. The problem is reduced to the solution of an ill-posed integral equation by the use of single layer representation which is handled by Truncated Singular Value Decomposition (TSVD). The total field and its normal derivative on the boundary of the object which are required for the evaluation of the surface impedance are obtained through Nystroem method. The method can also be used in shape reconstruction by using the relation between the shape of a PEC object and its equivalent one in terms of the surface impedance. The numerical implementations yield quite satisfactory results.

  6. Impedance spectroscopy of p-ZnGa{sub 2}Te{sub 4}/n-Si nano-HJD

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, S.S. [Thin film Laboratory, Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Sakr, G.B. [Nano-Science Laboratory, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Yahia, I.S., E-mail: dr_isyahia@yahoo.com [Nano-Science Laboratory, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Semiconductor Laboratory, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Abdel-Basset, D.M. [Nano-Science Laboratory, Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Yakuphanoglu, F. [Department of Physics, Faculty of Science, Firat University, Elazig (Turkey)

    2013-04-15

    The dielectric relaxation and alternating current mechanisms of nano-crystalline p-ZnGa{sub 2}Te{sub 4}/n-Si heterojunction diode (HJD) were investigated by complex impedance spectroscopy over a wide range of temperature (297–473 K) and a frequency range (42 Hz–5 MHz). The bulk resistance R{sub b} as well as the bulk capacitance C{sub b} were found to increase with increasing temperature. The dc conductivity exhibits a typical Arrhenius behavior. The electrical activation energy ΔE{sub σ} was determined to be (0.28 eV). The ac conductivity spectrum was found to obey Jonscher's universal power law. The frequency exponent s decreases slightly with increasing temperature. The temperature dependence of ac conductivity can be reasonably interpreted in terms of the correlated barrier hopping (CBH) model. The dielectric constant ε{sub 1}(ω) and dielectric loss ε{sub 2}(ω) were found to decrease with increasing frequency and to increase with increasing temperature. The mean value of the exponent m decreases with increasing temperature. The dielectric analysis is described by non-Debye type behavior.

  7. Genome-Wide Identification and Expression Profiling of ATP-Binding Cassette (ABC) Transporter Gene Family in Pineapple (Ananas comosus (L.) Merr.) Reveal the Role of AcABCG38 in Pollen Development.

    Science.gov (United States)

    Chen, Piaojuan; Li, Yi; Zhao, Lihua; Hou, Zhimin; Yan, Maokai; Hu, Bingyan; Liu, Yanhui; Azam, Syed Muhammad; Zhang, Ziyan; Rahman, Zia Ur; Liu, Liping; Qin, Yuan

    2017-01-01

    Pineapple ( Ananas comosus L .) cultivation commonly relies on asexual reproduction which is easily impeded by many factors in agriculture production. Sexual reproduction might be a novel approach to improve the pineapple planting. However, genes controlling pineapple sexual reproduction are still remain elusive. In different organisms a conserved superfamily proteins known as ATP binding cassette (ABC) participate in various biological processes. Whereas, till today the ABC gene family has not been identified in pineapple. Here 100 ABC genes were identified in the pineapple genome and grouped into eight subfamilies (5 ABCAs , 20 ABCB s, 16 ABCCs , 2 ABCDs , one ABCEs , 5 ABCFs , 42 ABCGs and 9 ABCIs ). Gene expression profiling revealed the dynamic expression pattern of ABC gene family in various tissues and different developmental stages. AcABCA5, AcABCB6, AcABCC4 , AcABCC7 , AcABCC9 , AcABCG26 , AcABCG38 and AcABCG42 exhibited preferential expression in ovule and stamen. Over-expression of AcABCG38 in the Arabidopsis double mutant abcg1-2abcg16-2 partially restored its pollen abortion defects, indicating that AcABCG38 plays important roles in pollen development. Our study on ABC gene family in pineapple provides useful information for developing sexual pineapple plantation which could be utilized to improve pineapple agricultural production.

  8. Measurement of AC losses in superconducting tapes by reproduction of thermometric dynamic response

    Energy Technology Data Exchange (ETDEWEB)

    Ligneris, Benoit des; Aubin, Marcel; Cave, Julian

    2003-04-15

    We have developed a dynamic response thermometric method for the measurement of AC losses in high T{sub c} superconductors. This method is based on the comparison of a temperature response caused by a known dissipation in the sample with that produced by the AC losses. By passing a DC current and measuring the DC voltage and corresponding temperature response the sample can be used as its own power dissipation reference. The advantages of this method are the short measurement duration time and the possibility to vary many experimental conditions: for example, AC and DC transport currents and AC, DC and rotating applied magnetic fields. In this article we present the basic method using variable short pulses of constant DC current for calibration and similarly of constant amplitude AC current to create the losses. The losses are obtained by numerical modelling and comparison of the thermometric dynamic response in the two above conditions. Finally, we present some experimental results for a Bi2223 superconducting tape at 50 Hz and 77 K.

  9. Smart Multi-Frequency Bioelectrical Impedance Spectrometer for BIA and BIVA Applications.

    Science.gov (United States)

    Harder, Rene; Diedrich, Andre; Whitfield, Jonathan S; Buchowski, Macie S; Pietsch, John B; Baudenbacher, Franz J

    2016-08-01

    Bioelectrical impedance analysis (BIA) is a noninvasive and commonly used method for the assessment of body composition including body water. We designed a small, portable and wireless multi-frequency impedance spectrometer based on the 12 bit impedance network analyzer AD5933 and a precision wide-band constant current source for tetrapolar whole body impedance measurements. The impedance spectrometer communicates via Bluetooth with mobile devices (smart phone or tablet computer) that provide user interface for patient management and data visualization. The export of patient measurement results into a clinical research database facilitates the aggregation of bioelectrical impedance analysis and biolectrical impedance vector analysis (BIVA) data across multiple subjects and/or studies. The performance of the spectrometer was evaluated using a passive tissue equivalent circuit model as well as a comparison of body composition changes assessed with bioelectrical impedance and dual-energy X-ray absorptiometry (DXA) in healthy volunteers. Our results show an absolute error of 1% for resistance and 5% for reactance measurements in the frequency range of 3 kHz to 150 kHz. A linear regression of BIA and DXA fat mass estimations showed a strong correlation (r(2)=0.985) between measures with a maximum absolute error of 6.5%. The simplicity of BIA measurements, a cost effective design and the simple visual representation of impedance data enables patients to compare and determine body composition during the time course of a specific treatment plan in a clinical or home environment.

  10. Determination of Peukert's Constant Using Impedance Spectroscopy: Application to Supercapacitors.

    Science.gov (United States)

    Mills, Edmund Martin; Kim, Sangtae

    2016-12-15

    Peukert's equation is widely used to model the rate dependence of battery capacity, and has recently attracted attention for application to supercapacitors. Here we present a newly developed method to readily determine Peukert's constant using impedance spectroscopy. Impedance spectroscopy is ideal for this purpose as it has the capability of probing electrical performance of a device over a wide range of time-scales within a single measurement. We demonstrate that the new method yields consistent results with conventional galvanostatic measurements through applying it to commercially available supercapacitors. Additionally, the novel method is much simpler and more precise, making it an attractive alternative for the determination of Peukert's constant.

  11. Ultrahigh impedance method to assess electrostatic accelerator performance

    Directory of Open Access Journals (Sweden)

    Nikolai R. Lobanov

    2015-06-01

    Full Text Available This paper describes an investigation of problem-solving procedures to troubleshoot electrostatic accelerators. A novel technique to diagnose issues with high-voltage components is described. The main application of this technique is noninvasive testing of electrostatic accelerator high-voltage grading systems, measuring insulation resistance, or determining the volume and surface resistivity of insulation materials used in column posts and acceleration tubes. In addition, this technique allows verification of the continuity of the resistive divider assembly as a complete circuit, revealing if an electrical path exists between equipotential rings, resistors, tube electrodes, and column post-to-tube conductors. It is capable of identifying and locating a “microbreak” in a resistor and the experimental validation of the transfer function of the high impedance energy control element. A simple and practical fault-finding procedure has been developed based on fundamental principles. The experimental distributions of relative resistance deviations (ΔR/R for both accelerating tubes and posts were collected during five scheduled accelerator maintenance tank openings during 2013 and 2014. Components with measured ΔR/R>±2.5% were considered faulty and put through a detailed examination, with faults categorized. In total, thirty four unique fault categories were identified and most would not be identifiable without the new technique described. The most common failure mode was permanent and irreversible insulator current leakage that developed after being exposed to the ambient environment. As a result of efficient in situ troubleshooting and fault-elimination techniques, the maximum values of |ΔR/R| are kept below 2.5% at the conclusion of maintenance procedures. The acceptance margin could be narrowed even further by a factor of 2.5 by increasing the test voltage from 40 V up to 100 V. Based on experience over the last two years, resistor and

  12. Low ac loss geometries in YBCO coated conductors and impact on conductor stability

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, Robert C [ORNL; List III, Frederick Alyious [ORNL; Paranthaman, Mariappan Parans [ORNL; Rupich, M. W. [American Superconductor Corporation, Westborough, MA; Zhang, W. [American Superconductor Corporation, Westborough, MA; Xie, Y. Y. [SuperPower Incorporated, Schenectady, New York; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York

    2007-01-01

    Reduction of ac losses in applied ac fields can be accomplished through either the creation of filaments and bridging in YBCO coated conductors or an assembly of narrow width YBCO tapes. The ac losses for each of these geometries were measured at 77 K in perpendicular ac fields up to 100 mT. While ac loss reduction was achieved with YBCO filaments created through laser scribing and inkjet deposition, the assembly of stacked YBCO conductor provides an alternative method of ac loss reduction. When compared to a 4-mm wide YBCO coated conductor with a critical current of 60 A, the ac loss in a stack of 2-mm wide YBCO coated conductors with a similar total critical current was reduced. While the reduction in ac loss in a 2-mm wide stack coincided with the reduction in the engineering current density of the conductor, further reduction of ac loss was obtained through the splicing of the 2-mm wide tapes with low resistance solders. To better determine the practicality of these methods from a stability point of view, a numerical analysis was carried out to determine the influence of bridging and splicing on stability of a YBCO coated conductor for both liquid nitrogen-cooled and conduction cooled geometries.

  13. An islanding microgrid reactive power sharing scheme enhanced by programmed virtual impedances

    DEFF Research Database (Denmark)

    He, Jinwei; Li, Yun Wei; Guerrero, Josep M.

    2012-01-01

    harmonic currents. With the knowledge of feeder impedances, reactive power sharing performance can be enhanced by the regulation of DG unit output virtual impedance. The proposed method realizes accurate real and reactive power sharing in proportion to DG unit rated power. Simulated and experimental...

  14. ACS Photometric Zero Point Verification

    Science.gov (United States)

    Dolphin, Andrew

    2003-07-01

    The uncertainties in the photometric zero points create a fundamental limit to the accuracy of photometry. The current state of the ACS calibration is surprisingly poor, with zero point uncertainties of 0.03 magnitudes in the Johnson filters. The reason for this is that ACS observations of excellent ground-based standard fields, such as the omega Cen field used for WFPC2 calibrations, have not been obtained. Instead, the ACS photometric calibrations are based primarily on semi-emprical synthetic zero points and observations of fields too crowded for accurate ground-based photometry. I propose to remedy this problem by obtaining ACS broadband images of the omega Cen standard field with both the WFC and HRC. This will permit the direct determination of the ACS transformations, and is expected to double the accuracy to which the ACS zero points are known. A second benefit is that it will facilitate the comparison of the WFPC2 and ACS photometric systems, which will be important as WFPC2 is phased out and ACS becomes HST's primary imager.

  15. arXiv Bench Measurements and Simulations of Beam Coupling Impedance

    CERN Document Server

    Niedermayer, Uwe

    After a general introduction, the basic principles of wake-field and beamcoupling- impedance computations are explained. This includes time domain, frequency domain, and methods that do not include excitations by means of a particle beam. The second part of this paper deals with radio frequency bench measurements of beam coupling impedances. The general procedure of the wire measurement is explained, and its features and limitations are discussed.

  16. Testing an Impedance Non-destructive Method to Evaluate Steel-Fiber Concrete Samples

    Science.gov (United States)

    Komarkova, Tereza; Fiala, Pavel; Steinbauer, Miloslav; Roubal, Zdenek

    2018-02-01

    Steel-fiber reinforced concrete is a composite material characterized by outstanding tensile properties and resistance to the development of cracks. The concrete, however, exhibits such characteristics only on the condition that the steel fibers in the final, hardened composite have been distributed evenly. The current methods to evaluate the distribution and concentration of a fiber composite are either destructive or exhibit a limited capability of evaluating the concentration and orientation of the fibers. In this context, the paper discusses tests related to the evaluation of the density and orientation of fibers in a composite material. Compared to the approaches used to date, the proposed technique is based on the evaluation of the electrical impedance Z in the band close to the resonance of the sensor-sample configuration. Using analytically expressed equations, we can evaluate the monitored part of the composite and its density at various depths of the tested sample. The method employs test blocks of composites, utilizing the resonance of the measuring device and the measured sample set; the desired state occurs within the interval of between f=3 kHz and 400 kHz.

  17. A High Performance Impedance-based Platform for Evaporation Rate Detection.

    Science.gov (United States)

    Chou, Wei-Lung; Lee, Pee-Yew; Chen, Cheng-You; Lin, Yu-Hsin; Lin, Yung-Sheng

    2016-10-17

    This paper describes the method of a novel impedance-based platform for the detection of the evaporation rate. The model compound hyaluronic acid was employed here for demonstration purposes. Multiple evaporation tests on the model compound as a humectant with various concentrations in solutions were conducted for comparison purposes. A conventional weight loss approach is known as the most straightforward, but time-consuming, measurement technique for evaporation rate detection. Yet, a clear disadvantage is that a large volume of sample is required and multiple sample tests cannot be conducted at the same time. For the first time in literature, an electrical impedance sensing chip is successfully applied to a real-time evaporation investigation in a time sharing, continuous and automatic manner. Moreover, as little as 0.5 ml of test samples is required in this impedance-based apparatus, and a large impedance variation is demonstrated among various dilute solutions. The proposed high-sensitivity and fast-response impedance sensing system is found to outperform a conventional weight loss approach in terms of evaporation rate detection.

  18. Impedance and component heating

    CERN Document Server

    Métral, E; Mounet, N; Pieloni, T; Salvant, B

    2015-01-01

    The impedance is a complex function of frequency, which represents, for the plane under consideration (longitudinal, horizontal or vertical), the force integrated over the length of an element, from a “source” to a “test” wave, normalized by their charges. In general, the impedance in a given plane is a nonlinear function of the test and source transverse coordinates, but it is most of the time sufficient to consider only the first few linear terms. Impedances can influence the motion of trailing particles, in the longitudinal and in one or both transverse directions, leading to energy loss, beam instabilities, or producing undesirable secondary effects such as excessive heating of sensitive components at or near the chamber wall, called beam-induced RF heating. The LHC performance limitations linked to impedances encountered during the 2010-2012 run are reviewed and the currently expected situation during the HL-LHC era is discussed.

  19. Feature Extraction Method for High Impedance Ground Fault Localization in Radial Power Distribution Networks

    DEFF Research Database (Denmark)

    Jensen, Kåre Jean; Munk, Steen M.; Sørensen, John Aasted

    1998-01-01

    A new approach to the localization of high impedance ground faults in compensated radial power distribution networks is presented. The total size of such networks is often very large and a major part of the monitoring of these is carried out manually. The increasing complexity of industrial...... of three phase voltages and currents. The method consists of a feature extractor, based on a grid description of the feeder by impulse responses, and a neural network for ground fault localization. The emphasis of this paper is the feature extractor, and the detection of the time instance of a ground fault...... processes and communication systems lead to demands for improved monitoring of power distribution networks so that the quality of power delivery can be kept at a controlled level. The ground fault localization method for each feeder in a network is based on the centralized frequency broadband measurement...

  20. MEASURED TRANSVERSE COUPLING IMPEDANCE OF RHIC INJECTION AND ABORT KICKERS

    International Nuclear Information System (INIS)

    HAHN, H.; DAVINO, D.

    2001-01-01

    Concerns regarding possible transverse instabilities in RHIC and the SNS pointed to the need for measurements of the transverse coupling impedance of ring components. The impedance of the RHIC injection and abort kicker was measured using the conventional method based on the S 21 forward transmission coefficient. A commercial 450 Ω twin-wire Lecher line were used and the data was interpreted via the log-formula. All measurements, were performed in test stands fully representing operational conditions including pulsed power supplies and connecting cables. The measured values for the transverse coupling impedance in kick direction and perpendicular to it are comparable in magnitude, but differ from Handbook predictions

  1. Improvements in the image quality of ventilatory tomograms by electrical impedance tomography

    International Nuclear Information System (INIS)

    Hahn, G; Dittmar, J; Just, A; Hellige, G

    2008-01-01

    We present an improved approach to image ventilation in functional electrical impedance tomography (f-EIT). It combines the advantages of the two established procedures of calculating standard deviation as a functional parameter of ventilation (SD method) and the so-called filling capacity (FC method). The SD method quantifies the local impedance variation over a series of tomograms for each pixel; the FC method is based on the slope of a linear fit of regional versus the global impedance change. Tidal volume V T is displayed linearly by the SD method in f-EIT; it is, however, sensitive to noisy data. The FC method is much more robust with respect to noise but does not display the tidal volume V T . We combined the advantages of both techniques in a new VT method which is based on raw data. It saves computing time and is suitable for both f-EIT and absolute EIT (a-EIT). We separated the raw data into two representative sets: end expiratory and end inspiratory. This was accomplished by calculating the global time course of the relative impedance changes from the raw data. In this time course, we determined all frame numbers (indices) of end expiration and end inspiration. These frame numbers were used to calculate one mean expiratory and one mean inspiratory raw data frame. Reconstruction by difference imaging directly reflects the mean tidal volume V T during the acquired frame series. The effect of the improvement by the VT method was investigated at different noise levels by adding artificial noise from 0 to 100 µV rms to a real raw dataset. The robustness with regard to noise of the VT method was similar to that of the FC method. The practical value of suppression of non-ventilatory impedance changes, artefacts and noise was tested by studying ten healthy subjects (four females, six males) during normal breathing. We found a highly significant improvement in the image quality (p < 0.001) of ventilation for this group of volunteers

  2. Gender differences and age-related changes in body fat mass in Tibetan children and teenagers: an analysis by the bioelectrical impedance method.

    Science.gov (United States)

    Zhang, Hai-Long; Fu, Qiang; Li, Wen-Hui; Liu, Su-Wei; Zhong, Hua; Duoji, Bai-Ma; Zhang, Mei-Zhi; Lv, Po; Xi, Huan-Jiu

    2015-01-01

    We aimed to obtain the fat base value and the fat distribution characteristics of Tibetan children and teenagers by estimating their body fat content with the bioelectrical impedance method. We recruited 1427 healthy children and teenagers by a stratified cluster sampling method. By using bioelectrical impedance analysis, we obtained various values relevant to fat. We found that total body fat mass and the fat mass of various body parts increased with age in boys and girls. Yet there were no differences between age groups until 11 years. However, fat mass increased quickly between 11 and 18 years, and significant differences were seen between adolescent boys and girls; all fat indices were higher in girls than in boys (pfat in Tibetan children and teenagers in Tibet is related to age and gender related hormone secretion, which reflects the physiological characteristics in different developmental stages.

  3. Frequency effects on charge ordering in Y0.5Ca0.5MnO3 by impedance spectroscopy

    Science.gov (United States)

    Sarwar, Tuba; Qamar, Afzaal; Nadeem, Muhammad

    2015-02-01

    In this work, structural and electrical properties of Y0.5Ca0.5MnO3 are investigated by employing X-ray diffraction and impedance spectroscopy, respectively. Applied ac electric field showed the charge ordering transition temperature around 265 K and below this temperature the heteromorphic behavior of the sample is discussed in the proximity of TCO. With frequency effects the volume of robust charge orbital ordering (COO) domains diminishes due to different competing phases along with Jahn Teller distortions. Comprehensive melting and collapse of charge orbital ordering occurs below TN(125 K), where a colossal drop in the value of impedance is observed. The change in profile of modulus plane plots determines the spreading of relaxation time of intermingled phases. Hopping mechanism is elaborated in terms of strong electron phonon coupling. Variable range hopping model and Arrhenius model are used to discuss the short and long range hopping between Mn3+ and Mn4+ channels assessing the activation energy Ea.

  4. Impedance cardiography – optimization and efficacy evaluation of antihypertensive treatment

    Directory of Open Access Journals (Sweden)

    Katarzyna Panasiuk-Kamińska

    2016-09-01

    Full Text Available Background . Hypertension is a civilization disease which currently affects about 10.5 m people in Poland. The number of patients with diagnosed, untreated hypertension amounts to 18%, and as many as 45% of patients are treated ineffectively whereas only 26% are treated effectively. Impedance cardiography (IC is an important tool both in diagnostics and the treatment of hypertensive patients, particularly in the case of antihypertensive treatment resistance. This method allows for the individualized treatment of each patient on the basis of hemodynamic parameters, monitoring of hypertensive patients in the outpatient care setting, and the assessment of cardiovascular risk factors. Objectives . The aim of the study was to evaluate the efficacy of hypotensive medications in patients with hypertension using impedance cardiography. Material and methods. The study involved 60 hypertensive patients, treated with antihypertensives, who failed to achieve the required blood pressure values. The modification of hypertension therapy was based on EBM (evidence-based medicine and on hemodynamic parameters obtained using impedance cardiography. Results . It was found that high blood pressure therapy based on impedance cardiography parameters has a significant influence on blood pressure reduction compared to EM B-based therapy: below 140/90: 66.8 vs. 55.1% and below 130/80: 23.5 vs. 18.9%. Conclusions . On the basis of this study it was confirmed that impedance cardiography allows for a significant reduction of hypertension and the selection of the most effective therapeutic strategy, providing for the optimization and efficacy of hypertension treatment.

  5. AC Calorimetric Design for Dynamic of Biological Materials

    OpenAIRE

    Shigeo Imaizumi

    2006-01-01

    We developed a new AC calorimeter for the measurement of dynamic specific heat capacity in liquids, including aqueous suspensions of biological materials. This method has several advantages. The first is that a high-resolution measurement of heat capacity, inmillidegrees, can be performed as a function of temperature, even with a very small sample. Therefore, AC calorimeter is a powerful tool to study critical behavior a tphase transition in biological materials. The second advantage is that ...

  6. Validation of an Acoustic Impedance Prediction Model for Skewed Resonators

    Science.gov (United States)

    Howerton, Brian M.; Parrott, Tony L.

    2009-01-01

    An impedance prediction model was validated experimentally to determine the composite impedance of a series of high-aspect ratio slot resonators incorporating channel skew and sharp bends. Such structures are useful for packaging acoustic liners into constrained spaces for turbofan noise control applications. A formulation of the Zwikker-Kosten Transmission Line (ZKTL) model, incorporating the Richards correction for rectangular channels, is used to calculate the composite normalized impedance of a series of six multi-slot resonator arrays with constant channel length. Experimentally, acoustic data was acquired in the NASA Langley Normal Incidence Tube over the frequency range of 500 to 3500 Hz at 120 and 140 dB OASPL. Normalized impedance was reduced using the Two-Microphone Method for the various combinations of channel skew and sharp 90o and 180o bends. Results show that the presence of skew and/or sharp bends does not significantly alter the impedance of a slot resonator as compared to a straight resonator of the same total channel length. ZKTL predicts the impedance of such resonators very well over the frequency range of interest. The model can be used to design arrays of slot resonators that can be packaged into complex geometries heretofore unsuitable for effective acoustic treatment.

  7. Electrical Impedance Spectroscopy for Electro-Mechanical Characterization of Conductive Fabrics

    Directory of Open Access Journals (Sweden)

    Tushar Kanti Bera

    2014-06-01

    Full Text Available When we use a conductive fabric as a pressure sensor, it is necessary to quantitatively understand its electromechanical property related with the applied pressure. We investigated electromechanical properties of three different conductive fabrics using the electrical impedance spectroscopy (EIS. We found that their electrical impedance spectra depend not only on the electrical properties of the conductive yarns, but also on their weaving structures. When we apply a mechanical tension or compression, there occur structural deformations in the conductive fabrics altering their apparent electrical impedance spectra. For a stretchable conductive fabric, the impedance magnitude increased or decreased under tension or compression, respectively. For an almost non-stretchable conductive fabric, both tension and compression resulted in decreased impedance values since the applied tension failed to elongate the fabric. To measure both tension and compression separately, it is desirable to use a stretchable conductive fabric. For any conductive fabric chosen as a pressure-sensing material, its resistivity under no loading conditions must be carefully chosen since it determines a measurable range of the impedance values subject to different amounts of loadings. We suggest the EIS method to characterize the electromechanical property of a conductive fabric in designing a thin and flexible fabric pressure sensor.

  8. Experimental study on the impedance of linear discharge R.F. ion sources - modifications on the 'MOAK' type source; Etude experimentale de l'impedance des sources d'ions H. F. a decharge lineaire - modifications au modele de source du types 'MOAK'

    Energy Technology Data Exchange (ETDEWEB)

    Fremiot, Ch [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1962-07-15

    A method of measuring the ion R.F. source impedance is described, and the influence of the working parameters on that impedance is studied. The origin of some working anomalies is deduced with a new coupling method. The gas flow is decreased by modifying the geometry of the discharge vessel. (author) [French] On decrit une methode de mesure de l'impedance d'une source d'ions H.F. et on etudie l'influence des parametres de fonctionnement sur cette Impedance. On en deduit l'origine de quelques anomalies de fonctionnement ainsi qu'une nouvelle methode de couplage. On reduit le debit gazeux en modifiant la geometrie de l'ampoule. (auteur)

  9. Application of evolutionary algorithm methods to polypeptide folding: comparison with experimental results for unsolvated Ac-(Ala-Gly-Gly)5-LysH+

    DEFF Research Database (Denmark)

    Damsbo, Martin; Kinnear, Brian S; Hartings, Matthew R

    2004-01-01

    We present an evolutionary method for finding the low-energy conformations of polypeptides. The application, called FOLDAWAY,is based on a generic framework and uses several evolutionary operators as well as local optimization to navigate the complex energy landscape of polypeptides. It maintains...... mobility measurements. It has a flat energy landscape where helical and globular conformations have similar energies. FOLDAWAY locates several large groups of structures not found in previous molecular dynamics simulations for this peptide, including compact globular conformations, which are probably...... two complementary representations of the structures and uses the CHARMM force field for evaluating the energies. The method is applied to unsolvated Met-enkephalin and Ac-(Ala-Gly-Gly)(5)-Lys(+)H(+). Unsolvated Ac-(Ala-Gly-Gly)(5)-Lys(+)H(+) has been the object of recent experimental studies using ion...

  10. A new method for electric impedance imaging using an eddy current with a tetrapolar circuit.

    Science.gov (United States)

    Ahsan-Ul-Ambia; Toda, Shogo; Takemae, Tadashi; Kosugi, Yukio; Hongo, Minoru

    2009-02-01

    A new contactless technique for electrical impedance imaging, using an eddy current managed along with the tetrapolar circuit method, is proposed. The eddy current produced by a magnetic field is superimposed on a constant current that is normally used in the tetrapolar circuit method, and thus is used to control the current distribution in the body. By changing the current distribution, a set of voltage differences is measured with a pair of electrodes. This set of voltage differences is used in the image reconstruction of the resistivity distribution. The least square error minimization method is used in the reconstruction algorithm. The principle of this method is explained theoretically. A backprojection algorithm was used to get 2-D images. Based on this principle, a measurement system was developed and model experiments were conducted with a saline-filled phantom. The estimated shape of each model in the reconstructed image was similar to that of the corresponding model. From the results of these experiments, it is confirmed that the proposed method is applicable to the realization of electrical conductivity imaging.

  11. Dielectric and impedance studies of Ba0.50(Na0.25Bi0.25)(Fe0.25Nb0.25)Ti0.50O3 ceramic

    Science.gov (United States)

    Yadav, Anjana; Chandra, K. P.; Kulkarni, A. R.; Prasad, K.

    2018-05-01

    Lead-free perovskite Ba0.50(Na0.25Bi0.25)(Fe0.25Nb0.25)Ti0.50O3 was prepared using conventional ceramic technique at 1130°C/4h in air atmosphere and characterized by X-ray diffraction, scanning electron microscopy, dielectric and impedance studies. XRD analysis of the compound indicated the formation of a single-phase cubic structure. SEM study was carried out to study the quality and purity of the compound. Compound showed very high dielectric constant (33700). Impedance analysis indicated the negative temperature coefficient of resistance character of the compound. Ac conductivity data followed Jonscher's law and correlated barrier hopping successfully explained the charge carrier transport mechanism in the system.

  12. Organic electrochemical transistors for cell-based impedance sensing

    International Nuclear Information System (INIS)

    Rivnay, Jonathan; Ramuz, Marc; Hama, Adel; Huerta, Miriam; Owens, Roisin M.; Leleux, Pierre

    2015-01-01

    Electrical impedance sensing of biological systems, especially cultured epithelial cell layers, is now a common technique to monitor cell motion, morphology, and cell layer/tissue integrity for high throughput toxicology screening. Existing methods to measure electrical impedance most often rely on a two electrode configuration, where low frequency signals are challenging to obtain for small devices and for tissues with high resistance, due to low current. Organic electrochemical transistors (OECTs) are conducting polymer-based devices, which have been shown to efficiently transduce and amplify low-level ionic fluxes in biological systems into electronic output signals. In this work, we combine OECT-based drain current measurements with simultaneous measurement of more traditional impedance sensing using the gate current to produce complex impedance traces, which show low error at both low and high frequencies. We apply this technique in vitro to a model epithelial tissue layer and show that the data can be fit to an equivalent circuit model yielding trans-epithelial resistance and cell layer capacitance values in agreement with literature. Importantly, the combined measurement allows for low biases across the cell layer, while still maintaining good broadband signal

  13. Impedance Based Analysis and Design of Harmonic Resonant Controller for a Wide Range of Grid Impedance

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede

    2014-01-01

    This paper investigates the effect of grid impedance variation on harmonic resonant current controllers for gridconnected voltage source converters by means of impedance-based analysis. It reveals that the negative harmonic resistances tend to be derived from harmonic resonant controllers...... in the closed-loop output admittance of converter. Such negative resistances may interact with the grid impedance resulting in steady state error or unstable harmonic compensation. To deal with this problem, a design guideline for harmonic resonant controllers under a wide range of grid impedance is proposed...

  14. Mathematical modeling of the electrochemical impedance spectroscopy in lithium ion battery cycling

    International Nuclear Information System (INIS)

    Xie, Yuanyuan; Li, Jianyang; Yuan, Chris

    2014-01-01

    Electrochemical impedance spectroscopy (EIS) has been widely utilized as an experimental method for understanding the internal mechanisms and aging effect of lithium ion battery. However, the impedance interpretation still has a lot of difficulties. In this study, a multi-physics based EIS simulation approach is developed to study the cycling effect on the battery impedance responses. The SEI film growth during cycling is coherently coupled with the complicated charge, mass and energy transport processes. The EIS simulation is carried out by applying a perturbation voltage on the electrode surface, and the numerical results on cycled cells are compared with the corresponding experimental data. The effect of electrical double layer, electrode open circuit potential as well as the diffusivity of binary electrolyte are simulated on battery impedance responses. The influence of different SEI growth rate, thermal conditions and charging-discharging rate during cycling are also studied. This developed method can be potentially utilized for interpretation and analysis of experimental EIS results

  15. Nuclear structure of {sup 231}Ac

    Energy Technology Data Exchange (ETDEWEB)

    Boutami, R. [Instituto de Estructura de la Materia, CSIC, Serrano 113 bis, E-28006 Madrid (Spain); Borge, M.J.G. [Instituto de Estructura de la Materia, CSIC, Serrano 113 bis, E-28006 Madrid (Spain)], E-mail: borge@iem.cfmac.csic.es; Mach, H. [Department of Radiation Sciences, ISV, Uppsala University, SE-751 21 Uppsala (Sweden); Kurcewicz, W. [Department of Physics, University of Warsaw, Pl-00 681 Warsaw (Poland); Fraile, L.M. [Departamento Fisica Atomica, Molecular y Nuclear, Facultad CC. Fisicas, Universidad Complutense, E-28040 Madrid (Spain); ISOLDE, PH Department, CERN, CH-1211 Geneva 23 (Switzerland); Gulda, K. [Department of Physics, University of Warsaw, Pl-00 681 Warsaw (Poland); Aas, A.J. [Department of Chemistry, University of Oslo, PO Box 1033, Blindern, N-0315 Oslo (Norway); Garcia-Raffi, L.M. [Instituto de Fisica Corpuscular, CSIC - Universidad de Valencia, Apdo. 22805, E-46071 Valencia (Spain); Lovhoiden, G. [Department of Physics, University of Oslo, PO Box 1048, Blindern, N-0316 Oslo (Norway); Martinez, T.; Rubio, B.; Tain, J.L. [Instituto de Fisica Corpuscular, CSIC - Universidad de Valencia, Apdo. 22805, E-46071 Valencia (Spain); Tengblad, O. [Instituto de Estructura de la Materia, CSIC, Serrano 113 bis, E-28006 Madrid (Spain); ISOLDE, PH Department, CERN, CH-1211 Geneva 23 (Switzerland)

    2008-10-15

    The low-energy structure of {sup 231}Ac has been investigated by means of {gamma} ray spectroscopy following the {beta}{sup -} decay of {sup 231}Ra. Multipolarities of 28 transitions have been established by measuring conversion electrons with a MINI-ORANGE electron spectrometer. The decay scheme of {sup 231}Ra {yields}{sup 231}Ac has been constructed for the first time. The Advanced Time Delayed {beta}{gamma}{gamma}(t) method has been used to measure the half-lives of five levels. The moderately fast B(E1) transition rates derived suggest that the octupole effects, albeit weak, are still present in this exotic nucleus.

  16. Fuzzy variable impedance control based on stiffness identification for human-robot cooperation

    Science.gov (United States)

    Mao, Dachao; Yang, Wenlong; Du, Zhijiang

    2017-06-01

    This paper presents a dynamic fuzzy variable impedance control algorithm for human-robot cooperation. In order to estimate the intention of human for co-manipulation, a fuzzy inference system is set up to adjust the impedance parameter. Aiming at regulating the output fuzzy universe based on the human arm’s stiffness, an online stiffness identification method is developed. A drag interaction task is conducted on a 5-DOF robot with variable impedance control. Experimental results demonstrate that the proposed algorithm is superior.

  17. Design and synthesis of 225Ac radioimmunopharmaceuticals

    International Nuclear Information System (INIS)

    McDevitt, Michael R.; Ma, Dangshe; Simon, Jim; Frank, R. Keith; Scheinberg, David A.

    2002-01-01

    The alpha-particle-emitting radionuclides 213 Bi, 211 At, 224 Ra are under investigation for the treatment of leukemias, gliomas, and ankylosing spondylitis, respectively. 213 Bi and 211 At were attached to monoclonal antibodies and used as targeted immunotherapeutic agents while unconjugated 224 Ra chloride selectively seeks bone. 225 Ac possesses favorable physical properties for radioimmunotherapy (10 d half-life and 4 net alpha particles), but has a history of unfavorable radiolabeling chemistry and poor metal-chelate stability. We selected functionalized derivatives of DOTA as the most promising to pursue from out of a group of potential 225 Ac chelate compounds. A two-step synthetic process employing either MeO-DOTA-NCS or 2B-DOTA-NCS as the chelating moiety was developed to attach 225 Ac to monoclonal antibodies. This method was tested using several different IgG systems. The chelation reaction yield in the first step was 93±8% radiochemically pure (n=26). The second step yielded 225 Ac-DOTA-IgG constructs that were 95±5% radiochemically pure (n=27) and the mean percent immunoreactivity ranged from 25% to 81%, depending on the antibody used. This process has yielded several potential novel targeted 225 Ac-labeled immunotherapeutic agents that may now be evaluated in appropriate model systems and ultimately in humans

  18. FLUIDIC AC AMPLIFIERS.

    Science.gov (United States)

    Several fluidic tuned AC Amplifiers were designed and tested. Interstage tuning and feedback designs are considered. Good results were obtained...corresponding Q’s as high as 12. Element designs and test results of one, two, and three stage amplifiers are presented. AC Modulated Carrier Systems

  19. RF impedance measurement calibration

    International Nuclear Information System (INIS)

    Matthews, P.J.; Song, J.J.

    1993-01-01

    The intent of this note is not to explain all of the available calibration methods in detail. Instead, we will focus on the calibration methods of interest for RF impedance coupling measurements and attempt to explain: (1). The standards and measurements necessary for the various calibration techniques. (2). The advantages and disadvantages of each technique. (3). The mathematical manipulations that need to be applied to the measured standards and devices. (4). An outline of the steps needed for writing a calibration routine that operated from a remote computer. For further details of the various techniques presented in this note, the reader should consult the references

  20. Superconducting fault current-limiter with variable shunt impedance

    Science.gov (United States)

    Llambes, Juan Carlos H; Xiong, Xuming

    2013-11-19

    A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.

  1. 78 FR 49318 - Availability of Draft Advisory Circular (AC) 90-106A and AC 20-167A

    Science.gov (United States)

    2013-08-13

    ...] Availability of Draft Advisory Circular (AC) 90-106A and AC 20- 167A AGENCY: Federal Aviation Administration... of draft Advisory Circular (AC) 90-106A, Enhanced Flight Vision Systems and draft AC 20- 167A... Federal holidays. FOR FURTHER INFORMATION CONTACT: For technical questions concerning draft AC 90-106A...

  2. Ac superconducting articles and a method for their manufacture

    International Nuclear Information System (INIS)

    Meyerhoff, R.W.

    1975-01-01

    A novel ac superconducting article is described comprising a composite structure having a superconducting surface along with a high thermally conductive material wherein the superconducting surface has the desired physical properties, geometrical shape and surface finish produced by the steps of depositing a superconducting layer upon a substrate having a predetermined surface finish and shape which conforms to that of the desired superconducting article, depositing a supporting layer of material on the superconducting layer and removing the substrate, the surface of the superconductor being a replica of the substrate surface. (auth)

  3. Deletion of the AcMNPV core gene ac109 results in budded virions that are non-infectious

    International Nuclear Information System (INIS)

    Fang Minggang; Nie, Yingchao; Theilmann, David A.

    2009-01-01

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac109 is a core gene and its function in the virus life cycle is unknown. To determine its role in the baculovirus life cycle, we used the AcMNPV bacmid system to generate an ac109 deletion virus (vAc 109KO ). Fluorescence and light microscopy showed that transfection of vAc 109KO results in a single-cell infection phenotype. Viral DNA replication is unaffected and the development of occlusion bodies in vAc 109KO -transfected cells evidenced progression to the very late phases of viral infection. Western blot and confocal immunofluorescence analysis showed that AC109 is expressed in the cytoplasm and nucleus throughout infection. In addition, AC109 is a structural protein as it was detected in both budded virus (BV) and occlusion derived virus in both the envelope and nucleocapsid fractions. Titration assays by qPCR and TCID 50 showed that vAc 109KO produced BV but the virions are non-infectious. The vAc 109KO BV were indistinguishable from the BV of repaired and wild type control viruses as determined by negative staining and electron microscopy.

  4. A contribution to the computation of the impedance in acceleration resonators

    International Nuclear Information System (INIS)

    Liu, Cong

    2016-05-01

    This thesis is focusing on the numerical computation of the impedance in acceleration resonators and corresponding components. For this purpose, a dedicated solver based on the Finite Element Method (FEM) has been developed to compute the broadband impedance in accelerating components. In addition, various numerical approaches have been used to calculate the narrow-band impedance in superconducting radio frequency (RF) cavities. From that an overview of the calculated results as well as the comparisons between the applied numerical approaches is provided. During the design phase of superconducting RF accelerating cavities and components, a challenging and difficult task is the determination of the impedance inside the accelerators with the help of proper computer simulations. Impedance describes the electromagnetic interaction between the particle beam and the accelerators. It can affect the stability of the particle beam. For a superconducting RF accelerating cavity with waveguides (beam pipes and couplers), the narrow-band impedance, which is also called shunt impedance, corresponds to the eigenmodes of the cavity. It depends on the eigenfrequencies and its electromagnetic field distribution of the eigenmodes inside the cavity. On the other hand, the broadband impedance describes the interaction of the particle beam in the waveguides with its environment at arbitrary frequency and beam velocity. With the narrow-band and broadband impedance the detailed knowledges of the impedance for the accelerators can be given completely. In order to calculate the broadband longitudinal space charge impedance for acceleration components, a three-dimensional (3D) solver based on the FEM in frequency domain has been developed. To calculate the narrow-band impedance for superconducting RF cavities, we used various numerical approaches. Firstly, the eigenmode solver based on Finite Integration Technique (FIT) and a parallel real-valued FEM (CEM3Dr) eigenmode solver based on

  5. A contribution to the computation of the impedance in acceleration resonators

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cong

    2016-05-15

    This thesis is focusing on the numerical computation of the impedance in acceleration resonators and corresponding components. For this purpose, a dedicated solver based on the Finite Element Method (FEM) has been developed to compute the broadband impedance in accelerating components. In addition, various numerical approaches have been used to calculate the narrow-band impedance in superconducting radio frequency (RF) cavities. From that an overview of the calculated results as well as the comparisons between the applied numerical approaches is provided. During the design phase of superconducting RF accelerating cavities and components, a challenging and difficult task is the determination of the impedance inside the accelerators with the help of proper computer simulations. Impedance describes the electromagnetic interaction between the particle beam and the accelerators. It can affect the stability of the particle beam. For a superconducting RF accelerating cavity with waveguides (beam pipes and couplers), the narrow-band impedance, which is also called shunt impedance, corresponds to the eigenmodes of the cavity. It depends on the eigenfrequencies and its electromagnetic field distribution of the eigenmodes inside the cavity. On the other hand, the broadband impedance describes the interaction of the particle beam in the waveguides with its environment at arbitrary frequency and beam velocity. With the narrow-band and broadband impedance the detailed knowledges of the impedance for the accelerators can be given completely. In order to calculate the broadband longitudinal space charge impedance for acceleration components, a three-dimensional (3D) solver based on the FEM in frequency domain has been developed. To calculate the narrow-band impedance for superconducting RF cavities, we used various numerical approaches. Firstly, the eigenmode solver based on Finite Integration Technique (FIT) and a parallel real-valued FEM (CEM3Dr) eigenmode solver based on

  6. Application of impedance spectroscopy method for analysis of benzanol fuels

    Directory of Open Access Journals (Sweden)

    Mamykin A. V.

    2015-06-01

    Full Text Available The authors have developed a method for express control of three component «gasoline-alcohol-water» fuel mixtures based on the spectral impedance investigation of benzanol mixture in the frequency range of 500 Hz — 10 kHz. A correlation dependence between the dielectric constant and the specific resistance of the fuel mixture on content of ethanol and water in the mixture has been found. On the basis of this dependence a calibration nomogram to quantify the gasoline and water-alcohol components content in the test benzanol fuel in the actual range of concentrations has been formed. The nomogram allows determining the water-alcohol and gasoline parts in the analyzed fuel with an error of no more than 1% vol., while the strength of water-alcohol solution is determined with an error of no more than 0.8% vol. The obtained nomogram can also give information about critical water content in the benzanol fuel to prevent its eventual phase separation. It is shown that the initial component composition of different gasoline brands has no significant effect on the electrical characteristics of the studied benzanol fuels, which makes the evaluation of alcohol and water content in the fuel sufficiently accurate. for practical applications.

  7. Noninvasive electrical impedance sensor for in vivo tissue discrimination at radio frequencies.

    Science.gov (United States)

    Dai, Yu; Du, Jun; Yang, Qing; Zhang, Jianxun

    2014-09-01

    Compared to traditional open surgery, minimally invasive surgery (MIS) allows for a more rapid and less painful recovery. However, the lack of significant haptic feedback in MIS can make tissue discrimination difficult. This paper tests a noninvasive electrical impedance sensor for in vivo discrimination of tissue types in MIS. The sensor consists of two stainless steel spherical electrodes used to measure the impedance spectra over the frequency range of 200 kHz to 5 MHz. The sensor helps ensure free movement on an organ surface and prevents soft tissues from being injured during impedance measurement. Since the recorded electrical impedance is correlated with the force pressed on the electrode and the mechanical property of the tissue, the electrode-tissue contact impedance is calculated theoretically. We show that the standard deviation of the impedance ratio at each frequency point is sufficient to distinguish different tissue types. Both in vitro experiment in a pig kidney and in vivo experiment in rabbit organs were performed to demonstrate the feasibility of the electrical impedance sensor. The experimental results indicated that the sensor, used with the proposed data-processing method, provides accurate and reliable biological tissue discrimination. © 2014 Wiley Periodicals, Inc.

  8. Impedance of a nanoantenna

    International Nuclear Information System (INIS)

    Greffet, Jean-Jacques; Laroche, Marine; Marquier, Francois

    2009-01-01

    We introduce a generalized definition of the impedance of a nanoantenna that can be applied to any system. We also introduce a definition of the impedance of a two level system. Using this framework, we establish a link between the electrical engineering and the quantum optics picture of light emission.

  9. Instantaneous Respiratory Estimation from Thoracic Impedance by Empirical Mode Decomposition.

    Science.gov (United States)

    Wang, Fu-Tai; Chan, Hsiao-Lung; Wang, Chun-Li; Jian, Hung-Ming; Lin, Sheng-Hsiung

    2015-07-07

    Impedance plethysmography provides a way to measure respiratory activity by sensing the change of thoracic impedance caused by inspiration and expiration. This measurement imposes little pressure on the body and uses the human body as the sensor, thereby reducing the need for adjustments as body position changes and making it suitable for long-term or ambulatory monitoring. The empirical mode decomposition (EMD) can decompose a signal into several intrinsic mode functions (IMFs) that disclose nonstationary components as well as stationary components and, similarly, capture respiratory episodes from thoracic impedance. However, upper-body movements usually produce motion artifacts that are not easily removed by digital filtering. Moreover, large motion artifacts disable the EMD to decompose respiratory components. In this paper, motion artifacts are detected and replaced by the data mirrored from the prior and the posterior before EMD processing. A novel intrinsic respiratory reconstruction index that considers both global and local properties of IMFs is proposed to define respiration-related IMFs for respiration reconstruction and instantaneous respiratory estimation. Based on the experiments performing a series of static and dynamic physical activates, our results showed the proposed method had higher cross correlations between respiratory frequencies estimated from thoracic impedance and those from oronasal airflow based on small window size compared to the Fourier transform-based method.

  10. Structural, dielectric and impedance properties of Ca(Fe2/3W1/3)O3 nanoceramics

    International Nuclear Information System (INIS)

    Choudhary, R.N.P.; Pradhan, Dillip K.; Tirado, C.M.; Bonilla, G.E.; Katiyar, R.S.

    2007-01-01

    The polycrystalline nanoceramics (∼60 nm) of Ca(Fe 2/3 W 1/3 )O 3 (CFW) were synthesized by mechanochemical and solid-state reaction techniques. Preliminary X-ray structural analysis of CFW suggested the formation of single-phase compound in tetragonal crystal system (distorted structure of ideal perovskite). The large distortion (∼16%) is supported by a large deviation of tolerance factor t=0.86 from unity (for ideal perovskite). The SEM micrograph shows the polycrystalline nature of the sample with different grain sizes, which are inhomogeneously distributed through the sample surface. Detailed studies of dielectric and impedance properties of the material in a wide range of frequency (1 kHz-1 MHz) and temperatures (300-630 K) show that these properties are strongly temperature and frequency dependent. The nature of variation of AC conductivity exhibits a progressive increase in AC conductivity on increasing temperature. The oxygen vacancies, space charge and mobile charge carriers play an important role in relaxation and conduction process. The relaxation process in the material was found to be of non-Debye type

  11. Determination of salt content in various depth of pork chop by electrical impedance spectroscopy

    International Nuclear Information System (INIS)

    Kaltenecker, P; Szöllösi, D; Vozáry, E; Friedrich, L

    2013-01-01

    The salt concentration was determined inside of pork chop both by electrical impedance spectroscopy and by a conventional chemical method (according to Mohr). The pork chop in various depths (4 mm, 10 mm, 20 mm and 25 mm) was punctured with two stainless steel electrodes. The length of electrodes was 60 mm, and they were insulated along the length except 1 cm section on the end, so the measurement of impedance was realized in various depths. The magnitude and phase angle of impedance were measured with a HP 4284A and a HP 4285A LCR meters from 30 Hz up to 1 MHz and from 75 kHz up to 30 MHz frequency range, respectively at 1 V voltage. The distance between the electrodes was 1 cm. The impedance magnitude decreased as the salt concentration increased. The magnitude of open-short corrected impedance values at various frequencies (10 kHz, 100 kHz, 125 kHz, 1.1 MHz and 8 MHz) showed a good correlation with salt content determined by chemical procedure. The electrical impedance spectroscopy seems a prospective method for determination the salt concentration inside the meat in various depths during the curing procedure.

  12. Combined multichannel intraluminal impedance and pH monitoring is helpful in managing children with suspected gastro-oesophageal reflux disease.

    Science.gov (United States)

    Rossi, Paolo; Isoldi, Sara; Mallardo, Saverio; Papoff, Paola; Rossetti, Danilo; Dilillo, Anna; Oliva, Salvatore

    2018-04-05

    Gastro-oesophageal reflux is very common in the paediatric age group. There is no single and reliable test to distinguish between physiologic and pathological gastro-oesophageal reflux, and this lack of clear distinction between disease and normal can have a negative impact on the management of children. To evaluate the usefulness of 24-h oesophageal pH-impedance study in infants and children with suspected gastro-oesophageal reflux disease. Patients were classified by age groups (A-C) and reflux-related symptoms (typical and atypical). All underwent pH-impedance study. If the latter suggested an abnormal reflux, patients received therapy in accordance with NASPGHAN/ESPGHAN recommendations, while those with normal study had an additional diagnostic work-up. The efficacy of therapy was evaluated with a specific standardized questionnaire for different ages. The study was abnormal in 203/428 patients (47%) while normal in 225/428 (53%). Of those with abnormal study, 109 exhibited typical symptoms (54%), and 94 atypical (46%). The great majority of the patients with abnormal study were responsive to medical anti-reflux therapy. We confirm the utility of prolonged oesophageal pH-impedance study in detecting gastro-oesophageal reflux disease in children and in guiding therapy. Performing oesophageal pH-impedance monitoring in children with suspected gastro-oesophageal reflux disease is helpful to establish the diagnosis and avoid unnecessary therapy. Copyright © 2018 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  13. Registration of T-2 mycotoxin with total internal reflection ellipsometry and QCM impedance methods.

    Science.gov (United States)

    Nabok, A V; Tsargorodskaya, A; Holloway, A; Starodub, N F; Gojster, O

    2007-01-15

    A sensitive optical method of total internal reflection ellipsometry (TIRE) in conjunction with immune assay approach was exploited for the registration of T-2 mycotoxin in a wide range of concentrations from 100 microg/ml down to 0.15 ng/ml. Association constants of 1.4x10(6) and 1.9x10(7)mol(-1)s for poly- and monoclonal T-2 antibodies, respectively, were evaluated from TIRE kinetic measurements. According to TIRE data fitting, binding of T-2 molecules to antibodies (at saturation) has resulted in the increase in adsorbed layer thickness of 4-5 nm. The QCM impedance measurements data showed anomalously large mass increase and film softening, most likely, due to the binding of large T-2 aggregates to antibodies.

  14. Surface impedance tensor in amorphous wires with helical anisotropy: Magnetic hysteresis and asymmetry

    International Nuclear Information System (INIS)

    Makhnovskiy, D. P.; Panina, L. V.; Mapps, D. J.

    2001-01-01

    This article concerns the investigation of the magnetic behavior of the surface impedance tensor cflx var-sigma in CoSiB amorphous wires having a residual torsion stress and a helical anisotropy. The full tensor cflx var-sigma involving three different components is found by measuring the S 21 parameter at a required excitation with a Hewlett-Packard network/spectrum analyzer at MHz frequencies. In general, the impedance plots versus axial magnetic field H ex exhibit a hysteresis related to that for the case of static magnetization. The diagonal components of cflx var-sigma (longitudinal var-sigma zz and circular var-sigma v ar-phi v ar-phi) show a sharp peak in a narrow field interval where the domain walls form and contribute to the ac magnetization dynamics. This peak is not seen for the off-diagonal component var-sigma zv ar-phi (var-sigma v ar-phi z ) since the existence of the domain structure suppresses it. Applying a dc bias current results in a gradual transition to a nonhysteretic asymmetrical behavior with an enhanced sensitivity. The portions of the experimental plots associated with the rotational dynamic process are in qualitative agreement with the theory based on a single-domain model. [copyright] 2001 American Institute of Physics

  15. Cascaded impedance networks for NPC inverter

    DEFF Research Database (Denmark)

    Li, Ding; Gao, Feng; Loh, Poh Chiang

    2010-01-01

    they are subject to the renewable sources. To date, three distinct types of impedance networks can be summarized for implementing a hybrid source impedance network, which can in principle be combined and cascaded before connected to a NPC inverter by proposed two ways. The resulting cascaded impedance network NPC...

  16. A Local Region of Interest Imaging Method for Electrical Impedance Tomography with Internal Electrodes

    Directory of Open Access Journals (Sweden)

    Hyeuknam Kwon

    2013-01-01

    Full Text Available Electrical Impedance Tomography (EIT is a very attractive functional imaging method despite the low sensitivity and resolution. The use of internal electrodes with the conventional reconstruction algorithms was not enough to enhance image resolution and accuracy in the region of interest (ROI. We propose a local ROI imaging method with internal electrodes developed from careful analysis of the sensitivity matrix that is designed to reduce the sensitivity of the voxels outside the local region and optimize the sensitivity of the voxel inside the local region. We perform numerical simulations and physical measurements to demonstrate the localized EIT imaging method. In preliminary results with multiple objects we show the benefits of using an internal electrode and the improved resolution due to the local ROI image reconstruction method. The sensitivity is further increased by allowing the surface electrodes to be unevenly spaced with a higher density of surface electrodes near the ROI. Also, we analyse how much the image quality is improved using several performance parameters for comparison. While these have not yet been studied in depth, it convincingly shows an improvement in local sensitivity in images obtained with an internal electrode in comparison to a standard reconstruction method.

  17. Impedance of finite length resistive cylinder

    Directory of Open Access Journals (Sweden)

    S. Krinsky

    2004-11-01

    Full Text Available We determine the impedance of a cylindrical metal tube (resistor of radius a, length g, and conductivity σ attached at each end to perfect conductors of semi-infinite length. Our main interest is in the asymptotic behavior of the impedance at high frequency (k≫1/a. In the equilibrium regime, ka^{2}≪g, the impedance per unit length is accurately described by the well-known result for an infinite length tube with conductivity σ. In the transient regime, ka^{2}≫g, where the contribution of transition radiation arising from the discontinuity in conductivity is important, we derive an analytic expression for the impedance and compute the short-range wakefield. The analytic results are shown to agree with numerical evaluation of the impedance.

  18. Density, ultrasound velocity, acoustic impedance, reflection and absorption coefficient determination of liquids via multiple reflection method.

    Science.gov (United States)

    Hoche, S; Hussein, M A; Becker, T

    2015-03-01

    The accuracy of density, reflection coefficient, and acoustic impedance determination via multiple reflection method was validated experimentally. The ternary system water-maltose-ethanol was used to execute a systematic, temperature dependent study over a wide range of densities and viscosities aiming an application as inline sensor in beverage industries. The validation results of the presented method and setup show root mean square errors of: 1.201E-3 g cm(-3) (±0.12%) density, 0.515E-3 (0.15%) reflection coefficient and 1.851E+3 kg s(-1) m(-2) (0.12%) specific acoustic impedance. The results of the diffraction corrected absorption showed an average standard deviation of only 0.12%. It was found that the absorption change shows a good correlation to concentration variations and may be useful for laboratory analysis of sufficiently pure liquids. The main part of the observed errors can be explained by the observed noise, temperature variation and the low signal resolution of 50 MHz. In particular, the poor signal-to-noise ratio of the second reflector echo was found to be a main accuracy limitation. Concerning the investigation of liquids the unstable properties of the reference material PMMA, due to hygroscopicity, were identified to be an additional, unpredictable source of uncertainty. While dimensional changes can be considered by adequate methodology, the impact of the time and temperature dependent water absorption on relevant reference properties like the buffer's sound velocity and density could not be considered and may explain part of the observed deviations. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Single Mode Theory for Impedance Eduction in Large-Scale Ducts with Grazing Flow

    Science.gov (United States)

    Watson, Willie R.; Gerhold, Carl H.; Jones, Michael G.; June, Jason C.

    2014-01-01

    An impedance eduction theory for a rigid wall duct containing an acoustic liner with an unknown impedance and uniform grazing flow is presented. The unique features of the theory are: 1) non-planar waves propagate in the hard wall sections of the duct, 2) input data consist solely of complex acoustic pressures acquired on a wall adjacent to the liner, and 3) multiple higher-order modes may exist in the direction perpendicular to the liner and the opposite rigid wall. The approach is to first measure the axial propagation constant of a dominant higher-order mode in the liner sample section. This axial propagation constant is then used in conjunction with a closed-form solution to a reduced form of the convected Helmholtz equation and the wall impedance boundary condition to educe the liner impedance. The theory is validated on a conventional liner whose impedance spectrum is educed in two flow ducts with different cross sections. For the frequencies and Mach numbers of interest, no higher-order modes propagate in the hard wall sections of the smaller duct. A benchmark method is used to educe the impedance spectrum in this duct. A dominant higher-order vertical mode propagates in the larger duct for similar test conditions, and the current theory is applied to educe the impedance spectrum. Results show that when the theory is applied to data acquired in the larger duct with a dominant higher-order vertical mode, the same impedance spectra is educed as that obtained in the small duct where only the plane wave mode is present and the benchmark method is used. This result holds for each higher-order vertical mode that is considered.

  20. Optimum conductive fabric sensor sites for evaluating the status of knee joint movements using bio-impedance

    Directory of Open Access Journals (Sweden)

    Kim Jinkwon

    2011-06-01

    Full Text Available Abstract Background There have been many studies that utilize the bio-impedance measurement method to analyze the movements of the upper and lower limbs. A fixed electrical current flows into the limbs through four standard disposable electrodes in this method. The current flows in the muscles and blood vessels, which have relatively low resistivity levels in the human body. This method is used to measure bio-impedance changes following volume changes of muscles and blood vessels around a knee joint. The result of the bio-impedance changes is used to evaluate the movements. However, the method using the standard disposable electrodes has a restriction related to its low bio-impedance changes: the standard disposable electrodes are only able to measure bio-impedance from a limited part of a muscle. Moreover, it is impossible to use continuously, as the electrodes are designed to be disposable. This paper describes a conductive fabric sensor (CFS using a bio-impedance measurement method and determines the optimum configuration of the sensor for estimating knee joint movements. Methods The upper side of subjects' lower limbs was divided into two areas and the lower side of subjects' lower limbs was divided into three areas. The spots were matched and 6 pairs were selected. Subjects were composed of 15 males (age: 30.7 ± 5.3, weight: 69.8 ± 4.2 kg, and height: 173.5 ± 2.8 cm with no known problems with their knee joints. Bio-impedance changes according to knee joint flexion/extension assessments were calculated and compared with bio-impedance changes by an ankle joint flexion/extension test (SNR I and a hip joint flexion/extension test (SNR II. Results The bio-impedance changes of the knee joint flexion/extension assessment were 35.4 ± 20.0 Ω on the (1, 5 pair. SNR I was 3.8 ± 8.4 and SNR II was 6.6 ± 7.9 on the (1, 5 pair. Conclusions The optimum conductive fabric sensor configuration for evaluating knee joint movements were represented by

  1. Cyclic voltammetry, square wave voltammetry, electrochemical impedance spectroscopy and colorimetric method for hydrogen peroxide detection based on chitosan/silver nanocomposite

    Directory of Open Access Journals (Sweden)

    Hoang V. Tran

    2018-05-01

    Full Text Available In this paper, we demonstrate a promising method to fabricate a non-enzymatic stable, highly sensitive and selective hydrogen peroxide sensor based on a chitosan/silver nanoparticles (CS/AgNPs hybrid. Using this composite, we elaborated both electrochemical and colorimetric sensors for hydrogen peroxide detection. The colorimetric sensor is based on a homogenous reaction which fades the color of CS/AgNPs solutions from red-orange to colorless depending on hydrogen peroxide concentration. For the electrochemical sensor, CS/AgNPs were immobilized on glassy carbon electrodes and hydrogen peroxide was measured using cyclic voltammetry, square wave voltammetry and electrochemical impedance spectroscopy. The response time is less than 10 s and the detection limit is 5 μM. Keywords: Spectrophotometric detection, Electrochemical impedance spectroscopy, Square wave voltammetry, Cyclic voltammetry, Chitosan/silver nanoparticles (CS/AgNPs hybrid, Hydrogen peroxide

  2. Impedance function study for cylindrical tanks surrounded by an earthen embankment

    International Nuclear Information System (INIS)

    Houston, T.W.; Mertz, G.E.

    1995-01-01

    The Department of Energy (DOE) operates many which are used to store radioactive waste material. The original design of the tanks was often based on criteria which did not meet current seismic codes. As a result DOE is undertaking a comprehensive review of the adequacy of these structures to meet current seismic standards. This comprehensive review includes an evaluation of soil-structure interaction. One method available for performing soil structure interaction analyses of structures couples a discrete model of the structure to a lumped parameter model of the soil. This method requires the knowledge of the expected dynamic stiffness and damping functions of the rigid, massless structure resting on the soil. These are commonly referred to as the impedance functions. Lumped parameter analysis is cost effective for the surface and embedded structure cases where impedance functions are available in the literature. For a complex case with the structure located on the surface surrounded by an embankment, the impedance functions must be established prior to using a lumped parameter model approach. The present paper describes the development of horizontal impedance functions for the structure surrounded by an embankment which are developed using a finite element approach as implemented by SASSI. Impedance functions for vertical, torsional, and rocking degrees of freedom can be developed in a similar manner. These functions are easily incorporated into simple models which provide conceptual and physical insight to the response of structures. These models provide both a check of more sophisticated methods, and, due to their simplicity, permit assessment of a wide range of site and structural parameters that my affect the dynamic response of structural systems

  3. Feasibility Verification of Mountable PZT-Interface for Impedance Monitoring in Tendon-Anchorage

    Directory of Open Access Journals (Sweden)

    Thanh-Canh Huynh

    2015-01-01

    Full Text Available This study has been motivated to numerically evaluate the performance of the mountable PZT-interface for impedance monitoring in tendon-anchorage. Firstly, electromechanical impedance monitoring and feature classification methods are outlined. Secondly, a structural model of tendon-anchorage subsystem with mountable PZT-interface is designed for impedance monitoring. Finally, the feasibility of the mountable PZT-interface is numerically examined. A finite element (FE model is designed for the lab-scaled tendon-anchorage. The FE model of the PZT-interface is tuned as its impedance signatures meet the experimental test results at the same frequency ranges and also with identical patterns. Equivalent model properties of the FE model corresponding to prestress forces inflicted on the lab-tested structure are identified from the fine-tuning practice.

  4. Estimation of the Thurstonian model for the 2-AC protocol

    DEFF Research Database (Denmark)

    Christensen, Rune Haubo Bojesen; Lee, Hye-Seong; Brockhoff, Per B.

    2012-01-01

    . This relationship makes it possible to extract estimates and standard errors of δ and τ from general statistical software, and furthermore, it makes it possible to combine standard regression modelling with the Thurstonian model for the 2-AC protocol. A model for replicated 2-AC data is proposed using cumulative......The 2-AC protocol is a 2-AFC protocol with a “no-difference” option and is technically identical to the paired preference test with a “no-preference” option. The Thurstonian model for the 2-AC protocol is parameterized by δ and a decision parameter τ, the estimates of which can be obtained...... by fairly simple well-known methods. In this paper we describe how standard errors of the parameters can be obtained and how exact power computations can be performed. We also show how the Thurstonian model for the 2-AC protocol is closely related to a statistical model known as a cumulative probit model...

  5. The comparative evaluation of patients′ body dry weight under hemodialysis using two methods: Bioelectrical impedance analysis and conventional method

    Directory of Open Access Journals (Sweden)

    Neda Alijanian

    2012-01-01

    Full Text Available Background: Dry weight (DW is an important concept related to patients undergoing hemodialysis. Conventional method seems to be time consuming and operator dependent. Bio impedance analysis (BIA is a new and simple method reported to be an accurate way for estimating DW. In this study, we aimed to compare the conventional estimation of DW with measuring DW by BIA. Materials and Methods: This study involved 130 uremic patients, performed in Isfahan, Iran. DW was calculated by both conventional (CDW and BIA (BIADW method and results were compared based on different grouping factors including sex, underlying cause of renal failure (RF (diabetic RF and non-diabetic RF, body mass index (BMI status, and sessions of hemodialysis. We also calculated the difference between DWs of 2 methods (DW diff = CDW-BIADW. Results: The mean of BIADW was significantly lower than CDW (57.20 ± 1.82 vs 59.36 ± 1.77, P value < 0.001. After grouping cases according to the underlying cause, BMI, sex, and dialysis sessions BIADW was significantly lower than CDW. Conclusion: Based on the combination of problems with CDW measurement which are corrected by BIA, and more clinical reliability of CDW, we concluded that although conventional method is a time-consuming and operator-dependent way to assess DW, DW could be estimated by combining both of these methods by finding the mathematic correlation between these methods.

  6. Estimating BrAC from transdermal alcohol concentration data using the BrAC estimator software program.

    Science.gov (United States)

    Luczak, Susan E; Rosen, I Gary

    2014-08-01

    Transdermal alcohol sensor (TAS) devices have the potential to allow researchers and clinicians to unobtrusively collect naturalistic drinking data for weeks at a time, but the transdermal alcohol concentration (TAC) data these devices produce do not consistently correspond with breath alcohol concentration (BrAC) data. We present and test the BrAC Estimator software, a program designed to produce individualized estimates of BrAC from TAC data by fitting mathematical models to a specific person wearing a specific TAS device. Two TAS devices were worn simultaneously by 1 participant for 18 days. The trial began with a laboratory alcohol session to calibrate the model and was followed by a field trial with 10 drinking episodes. Model parameter estimates and fit indices were compared across drinking episodes to examine the calibration phase of the software. Software-generated estimates of peak BrAC, time of peak BrAC, and area under the BrAC curve were compared with breath analyzer data to examine the estimation phase of the software. In this single-subject design with breath analyzer peak BrAC scores ranging from 0.013 to 0.057, the software created consistent models for the 2 TAS devices, despite differences in raw TAC data, and was able to compensate for the attenuation of peak BrAC and latency of the time of peak BrAC that are typically observed in TAC data. This software program represents an important initial step for making it possible for non mathematician researchers and clinicians to obtain estimates of BrAC from TAC data in naturalistic drinking environments. Future research with more participants and greater variation in alcohol consumption levels and patterns, as well as examination of gain scheduling calibration procedures and nonlinear models of diffusion, will help to determine how precise these software models can become. Copyright © 2014 by the Research Society on Alcoholism.

  7. A moving pole-placement compensation design method to increase the bandwidth of RC-damper-based dual “Buck-Boost” AC/DC converter

    DEFF Research Database (Denmark)

    Wu, Weimin; Qin, Weibo; Wang, Houqin

    2017-01-01

    the “Buck” mode, the control-to-grid current transfer function of this dual “Buck-Boost” AC/DC converter has a movable zero, which is related to the input power and the output DC voltage. When the input power increases, the movable zero will slide to the lower frequency range. And then, the gain between...... the cut-off frequency point and the resonant frequency of LCL filter will swell up, resulting in reduced amplitude margin and suppressed bandwidth of system. Based on the theoretical analysis, a new dynamic pole placement compensation control design method is proposed for this dual AC/DC converter...

  8. Impedance studies of a green blend polymer electrolyte based on PVA and Aloe-vera

    Science.gov (United States)

    Selvalakshmi, S.; Mathavan, T.; Vijaya, N.; Selvasekarapandian, Premalatha, M.; Monisha, S.

    2016-05-01

    The development of polymer electrolyte materials for energy generating and energy storage devices is a challenge today. A new type of blended green electrolyte based on Poly-vinyl alcohol (PVA) and Aloe-vera has been prepared by solution casting technique. The blending of polymers may lead to the increase in stability due to one polymer portraying itself as a mechanical stiffener and the other as a gelled matrix supported by the other. The prepared blend electrolytes were subjected to Ac impedance studies. It has been found out that the polymer film in which 1 gm of PVA was dissolved in 40 ml of Aloe-vera extract exhibits highest conductivity and its value is 3.08 × 10-4 S cm-1.

  9. Concentric artificial impedance surface for directional sound beamforming

    Directory of Open Access Journals (Sweden)

    Kyungjun Song

    2017-03-01

    Full Text Available Utilizing acoustic metasurfaces consisting of subwavelength resonant textures, we design an artificial impedance surface by creating a new boundary condition. We demonstrate a circular artificial impedance surface with surface impedance modulation for directional sound beamforming in three-dimensional space. This artificial impedance surface is implemented by revolving two-dimensional Helmholtz resonators with varying internal coiled path. Physically, the textured surface has inductive surface impedance on its inner circular patterns and capacitive surface impedance on its outer circular patterns. Directional receive beamforming can be achieved using an omnidirectional microphone located at the focal point formed by the gradient-impeding surface. In addition, the uniaxial surface impedance patterning inside the circular aperture can be used for steering the direction of the main lobe of the radiation pattern.

  10. Optimization design for the stepped impedance transformer based on the genetic algorithm

    International Nuclear Information System (INIS)

    Zou Dehui; Lai Wanchang; Qiu Dong

    2007-01-01

    This paper introduces the basic principium and mathematic model of the stepped impedance transformer, then puts the emphasis on comparing two kinds of design methods of the stepped impedance transformer. The design results are simulated by EDA, which indicates that genetic algorithm design is better than Chebyshev integrated design in the term of the most reflect coefficient's module. (authors)

  11. Tapping mode microwave impedance microscopy

    KAUST Repository

    Lai, K.; Kundhikanjana, W.; Peng, H.; Cui, Y.; Kelly, M. A.; Shen, Z. X.

    2009-01-01

    We report tapping mode microwave impedance imaging based on atomic force microscope platforms. The shielded cantilever probe is critical to localize the tip-sample interaction near the tip apex. The modulated tip-sample impedance can be accurately

  12. Analysis of Input and Output Ripples of PWM AC Choppers

    Directory of Open Access Journals (Sweden)

    Pekik Argo Dahono

    2008-11-01

    Full Text Available This paper presents an analysis of input and output ripples of PWM AC choppers. Expressions of input and output current and voltage ripples of single-phase PWM AC choppers are first derived. The derived expressions are then extended to three-phase PWM AC choppers. As input current and output voltage ripples specification alone cannot be used to determine the unique values of inductance and capacitance of the LC filters, an additional criterion based on the minimum reactive power is proposed. Experimental results are included in this paper to show the validity of the proposed analysis method.

  13. Frequency-Division Multiplexing for Electrical Impedance Tomography in Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Yair Granot

    2007-01-01

    Full Text Available Electrical impedance tomography (EIT produces an image of the electrical impedance distribution of tissues in the body, using electrodes that are placed on the periphery of the imaged area. These electrodes inject currents and measure voltages and from these data, the impedance can be computed. Traditional EIT systems usually inject current patterns in a serial manner which means that the impedance is computed from data collected at slightly different times. It is usually also a time-consuming process. In this paper, we propose a method for collecting data concurrently from all of the current patterns in biomedical applications of EIT. This is achieved by injecting current through all of the current injecting electrodes simultaneously, and measuring all of the resulting voltages at once. The signals from various current injecting electrodes are separated by injecting different frequencies through each electrode. This is called frequency-division multiplexing (FDM. At the voltage measurement electrodes, the voltage related to each current injecting electrode is isolated by using Fourier decomposition. In biomedical applications, using different frequencies has important implications due to dispersions as the tissue's electrical properties change with frequency. Another significant issue arises when we are recording data in a dynamic environment where the properties change very fast. This method allows simultaneous measurements of all the current patterns, which may be important in applications where the tissue changes occur in the same time scale as the measurement. We discuss the FDM EIT method from the biomedical point of view and show results obtained with a simple experimental system.

  14. Quantitative electromechanical impedance method for nondestructive testing based on a piezoelectric bimorph cantilever

    International Nuclear Information System (INIS)

    Fu, Ji; Tan, Chi; Li, Faxin

    2015-01-01

    The electromechanical impedance (EMI) method, which holds great promise in structural health monitoring (SHM), is usually treated as a qualitative method. In this work, we proposed a quantitative EMI method based on a piezoelectric bimorph cantilever using the sample’s local contact stiffness (LCS) as the identification parameter for nondestructive testing (NDT). Firstly, the equivalent circuit of the contact vibration system was established and the analytical relationship between the cantilever’s contact resonance frequency and the LCS was obtained. As the LCS is sensitive to typical defects such as voids and delamination, the proposed EMI method can then be used for NDT. To verify the equivalent circuit model, two piezoelectric bimorph cantilevers were fabricated and their free resonance frequencies were measured and compared with theoretical predictions. It was found that the stiff cantilever’s EMI can be well predicted by the equivalent circuit model while the soft cantilever’s cannot. Then, both cantilevers were assembled into a homemade NDT system using a three-axis motorized stage for LCS scanning. Testing results on a specimen with a prefabricated defect showed that the defect could be clearly reproduced in the LCS image, indicating the validity of the quantitative EMI method for NDT. It was found that the single-frequency mode of the EMI method can also be used for NDT, which is faster but not quantitative. Finally, several issues relating to the practical application of the NDT method were discussed. The proposed EMI-based NDT method offers a simple and rapid solution for damage evaluation in engineering structures and may also shed some light on EMI-based SHM. (paper)

  15. Measurement of void fraction distribution in two-phase flow by impedance CT with neural network

    International Nuclear Information System (INIS)

    Hayashi, Hideaki; Sumida, Isao; Sakai, Sinji; Wakai, Kazunori

    1996-01-01

    This paper describes a new method for measurement of void distribution using impedance CT with a hierarchical neural network. The present method consists of four processes. First, output electric currents are calculated by simulation of various distributions of void fraction. The relationship between distribution of void fraction and electric current is called 'teaching data'. Second, the neural network learns the teaching data by the back propagation method. Third, output electric currents are measured about actual two-phase flow. Finally, distribution of void fraction is calculated by the taught neural network using the measured electric currents. In this paper, measurement and learning parameters are adjusted, experimental results obtained using the impedance CT method are compared with data obtained by the impedance probe method. The results show that our method is effective for measurement of void fraction distribution. (author)

  16. Improving Impedance of Implantable Microwire Multi-Electrode Arrays by Ultrasonic Electroplating of Durable Platinum Black

    Science.gov (United States)

    Desai, Sharanya Arcot; Rolston, John D.; Guo, Liang; Potter, Steve M.

    2010-01-01

    Implantable microelectrode arrays (MEAs) have been a boon for neural stimulation and recording experiments. Commercially available MEAs have high impedances, due to their low surface area and small tip diameters, which are suitable for recording single unit activity. Lowering the electrode impedance, but preserving the small diameter, would provide a number of advantages, including reduced stimulation voltages, reduced stimulation artifacts and improved signal-to-noise ratio. Impedance reductions can be achieved by electroplating the MEAs with platinum (Pt) black, which increases the surface area but has little effect on the physical extent of the electrodes. However, because of the low durability of Pt black plating, this method has not been popular for chronic use. Sonicoplating (i.e. electroplating under ultrasonic agitation) has been shown to improve the durability of Pt black on the base metals of macro-electrodes used for cyclic voltammetry. This method has not previously been characterized for MEAs used in chronic neural implants. We show here that sonicoplating can lower the impedances of microwire multi-electrode arrays (MMEA) by an order of magnitude or more (depending on the time and voltage of electroplating), with better durability compared to pulsed plating or traditional DC methods. We also show the improved stimulation and recording performance that can be achieved in an in vivo implantation study with the sonicoplated low-impedance MMEAs, compared to high-impedance unplated electrodes. PMID:20485478

  17. Voltammetric and impedance behaviours of surface-treated nano-crystalline diamond film electrodes

    International Nuclear Information System (INIS)

    Liu, F. B.; Jing, B.; Cui, Y.; Di, J. J.; Qu, M.

    2015-01-01

    The electrochemical performances of hydrogen- and oxygen-terminated nano-crystalline diamond film electrodes were investigated by cyclic voltammetry and AC impedance spectroscopy. In addition, the surface morphologies, phase structures, and chemical states of the two diamond films were analysed by scanning probe microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, respectively. The results indicated that the potential window is narrower for the hydrogen-terminated nano-crystalline diamond film than for the oxygen-terminated one. The diamond film resistance and capacitance of oxygen-terminated diamond film are much larger than those of the hydrogen-terminated diamond film, and the polarization resistances and double-layer capacitance corresponding to oxygen-terminated diamond film are both one order of magnitude larger than those corresponding to the hydrogen-terminated diamond film. The electrochemical behaviours of the two diamond film electrodes are discussed

  18. Novel effect of spin dynamics with suppression of charge and orbital ordering in Nd{sub 0.5}Ca{sub 0.5}MnO{sub 3} under the influence of ac electric field

    Energy Technology Data Exchange (ETDEWEB)

    Sarwar, T., E-mail: sarwartuba@gmail.com [EMMG, Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); Qamar, A., E-mail: afzaal.qamar@griffithuni.edu.au [Queensland Micro-Nanotechnology Centre, Griffith University, Nathan, QLD 4111 (Australia); Nadeem, M. [EMMG, Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)

    2017-07-15

    Highlights: • Electronic & magnetic behavior of Nd{sub 0.5}Ca{sub 0.5}MnO{sub 3} is explored using impedance spectroscopy. • Under ac field, possible signature of suppression of robust CO/OO antiferromagnetism is studied. • We propose the existence of spin glass state at low temperature. • A novel tactic is used to estimate the existence of weak ferromagnetism at high temperature. - Abstract: Dynamics of spin ordering in the manganite Nd{sub 0.5}Ca{sub 0.5}MnO{sub 3} have been investigated in this paper. It was observed that the complex mixed magnetic ordering in pellets is comprised of antiferromagnetic ordering at 160 K (T{sub N}) and complete charge ordering at 250 K (T{sub CO}). Under ac field, appearance of unstable ferromagnetic correlations is observed above T{sub CO}, which is badly frustrated due to strong spin disorder induced by Jahn Teller distortions. Impedance measurements reveal the spin glass like scenario, suppressing the strong antiferromagnetic and charge ordering states below T{sub N}.

  19. Transition metal oxide as anode interface buffer for impedance spectroscopy

    Science.gov (United States)

    Xu, Hui; Tang, Chao; Wang, Xu-Liang; Zhai, Wen-Juan; Liu, Rui-Lan; Rong, Zhou; Pang, Zong-Qiang; Jiang, Bing; Fan, Qu-Li; Huang, Wei

    2015-12-01

    Impedance spectroscopy is a strong method in electric measurement, which also shows powerful function in research of carrier dynamics in organic semiconductors when suitable mathematical physical models are used. Apart from this, another requirement is that the contact interface between the electrode and materials should at least be quasi-ohmic contact. So in this report, three different transitional metal oxides, V2O5, MoO3 and WO3 were used as hole injection buffer for interface of ITO/NPB. Through the impedance spectroscopy and PSO algorithm, the carrier mobilities and I-V characteristics of the NPB in different devices were measured. Then the data curves were compared with the single layer device without the interface layer in order to investigate the influence of transitional metal oxides on the carrier mobility. The careful research showed that when the work function (WF) of the buffer material was just between the work function of anode and the HOMO of the organic material, such interface material could work as a good bridge for carrier injection. Under such condition, the carrier mobility measured through impedance spectroscopy should be close to the intrinsic value. Considering that the HOMO (or LUMO) of most organic semiconductors did not match with the work function of the electrode, this report also provides a method for wide application of impedance spectroscopy to the research of carrier dynamics.

  20. Instantaneous Respiratory Estimation from Thoracic Impedance by Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Fu-Tai Wang

    2015-07-01

    Full Text Available Impedance plethysmography provides a way to measure respiratory activity by sensing the change of thoracic impedance caused by inspiration and expiration. This measurement imposes little pressure on the body and uses the human body as the sensor, thereby reducing the need for adjustments as body position changes and making it suitable for long-term or ambulatory monitoring. The empirical mode decomposition (EMD can decompose a signal into several intrinsic mode functions (IMFs that disclose nonstationary components as well as stationary components and, similarly, capture respiratory episodes from thoracic impedance. However, upper-body movements usually produce motion artifacts that are not easily removed by digital filtering. Moreover, large motion artifacts disable the EMD to decompose respiratory components. In this paper, motion artifacts are detected and replaced by the data mirrored from the prior and the posterior before EMD processing. A novel intrinsic respiratory reconstruction index that considers both global and local properties of IMFs is proposed to define respiration-related IMFs for respiration reconstruction and instantaneous respiratory estimation. Based on the experiments performing a series of static and dynamic physical activates, our results showed the proposed method had higher cross correlations between respiratory frequencies estimated from thoracic impedance and those from oronasal airflow based on small window size compared to the Fourier transform-based method.

  1. Tomato leaf curl Kerala virus (ToLCKeV AC3 protein forms a higher order oligomer and enhances ATPase activity of replication initiator protein (Rep/AC1

    Directory of Open Access Journals (Sweden)

    Mukherjee Sunil K

    2010-06-01

    Full Text Available Abstract Background Geminiviruses are emerging plant viruses that infect a wide variety of vegetable crops, ornamental plants and cereal crops. They undergo recombination during co-infections by different species of geminiviruses and give rise to more virulent species. Antiviral strategies targeting a broad range of viruses necessitate a detailed understanding of the basic biology of the viruses. ToLCKeV, a virus prevalent in the tomato crop of Kerala state of India and a member of genus Begomovirus has been used as a model system in this study. Results AC3 is a geminiviral protein conserved across all the begomoviral species and is postulated to enhance viral DNA replication. In this work we have successfully expressed and purified the AC3 fusion proteins from E. coli. We demonstrated the higher order oligomerization of AC3 using sucrose gradient ultra-centrifugation and gel-filtration experiments. In addition we also established that ToLCKeV AC3 protein interacted with cognate AC1 protein and enhanced the AC1-mediated ATPase activity in vitro. Conclusions Highly hydrophobic viral protein AC3 can be purified as a fusion protein with either MBP or GST. The purification method of AC3 protein improves scope for the biochemical characterization of the viral protein. The enhancement of AC1-mediated ATPase activity might lead to increased viral DNA replication.

  2. Magneto-Impedance behavior of Co-Fe-Nb-Si-B-based ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Partha; Mohanta, O.; Pal, S.K.; Panda, A.K. [National Metallurgical Laboratory, Council of Scientific and Industrial Research, Jamshedpur 831007 (India); Mitra, A., E-mail: amitra@nmlindia.or [National Metallurgical Laboratory, Council of Scientific and Industrial Research, Jamshedpur 831007 (India)

    2010-04-15

    The giant magneto-impedance of melt spun Co{sub x}Fe{sub 72-x}Nb{sub 4}Si{sub 4}B{sub 20}(x=10, 20, 36, 50) amorphous and nanostructured ribbons have been investigated. Alloys have been optimized at the driving current amplitude, frequency and found that amorphous ribbon of nominal composition of Co{sub 36}Fe{sub 36}Nb{sub 4}Si{sub 4}B{sub 20} shown maximum GMI ratio of 13%. The behaviour of the driving current amplitude on the GMI behaviour was studied and the sample was optimized for driving current amplitude, I{sub ac}=10 mA. The frequency dependence of the GMI behaviour was studied for the ribbon sample Co{sub 36}Fe{sub 36}Nb{sub 4}Si{sub 4}B{sub 20} at frequency in the range of 100 kHz-1.2 MHz of the optimized driving current amplitude and it was found that the sample showed the maximum GMI behaviour at f=700 kHz. The optimized samples were Joule heated at the current density J=0-35 A/m{sup 2} for a period of 1 min. The GMI ratio initially increased then progressively deteriorated with J, but after a certain range it shows up to 16% of improvement in the magneto-impedance value due the increase of nanocrystalline volume fraction. The asymmetry in the GMI profile was observed for the sample Joule heated at J=1-5 A/m{sup 2} for 1 min.

  3. Electrical impedance spectroscopy (EIS)-based evaluation of biological tissue phantoms to study multifrequency electrical impedance tomography (Mf-EIT) systems

    KAUST Repository

    Bera, Tushar Kanti

    2016-03-18

    Abstract: Electrical impedance tomography (EIT) phantoms are essential for the calibration, comparison and evaluation of the EIT systems. In EIT, the practical phantoms are typically developed based on inhomogeneities surrounded by a homogeneous background to simulate a suitable conductivity contrast. In multifrequency EIT (Mf-EIT) evaluation, the phantoms must be developed with the materials which have recognizable or distinguishable impedance variations over a wide range of frequencies. In this direction the impedance responses of the saline solution (background) and a number vegetable and fruit tissues (inhomogeneities) are studied with electrical impedance spectroscopy (EIS) and the frequency responses of bioelectrical impedance and conductivity are analyzed. A number of practical phantoms with different tissue inhomogeneities and different inhomogeneity configurations are developed and the multifrequency impedance imaging is studied with the Mf-EIT system to evaluate the phantoms. The conductivity of the vegetable inhomogeneities reconstructed from the EIT imaging is compared with the conductivity values obtained from the EIS studies. Experimental results obtained from multifrequency EIT reconstruction demonstrate that the electrical impedance of all the biological tissues inhomogenity decreases with frequency. The potato tissue phantom produces better impedance image in high frequency ranges compared to the cucumber phantom, because the cucumber impedance at high frequency becomes lesser than that of the potato at the same frequency range. Graphical Abstract: [Figure not available: see fulltext.] © 2016 The Visualization Society of Japan

  4. Evaluation of electrical broad bandwidth impedance spectroscopy as a tool for body composition measurement in cows in comparison with body measurements and the deuterium oxide dilution method.

    Science.gov (United States)

    Schäff, C T; Pliquett, U; Tuchscherer, A; Pfuhl, R; Görs, S; Metges, C C; Hammon, H M; Kröger-Koch, C

    2017-05-01

    Body fatness and degree of body fat mobilization in cows vary enormously during their reproduction cycle and influence energy partitioning and metabolic adaptation. The objective of the study was to test bioelectrical impedance spectroscopy (BIS) as a method for predicting fat depot mass (FDM), in living cows. The FDM is defined as the sum of subcutaneous, omental, mesenteric, retroperitoneal, and carcass fat mass. Bioelectrical impedance spectroscopy is compared with the prediction of FDM from the deuterium oxide (DO) dilution method and from body conformation measurements. Charolais × Holstein Friesian (HF; = 18; 30 d in milk) crossbred cows and 2 HF (lactating and nonlactating) cows were assessed by body conformation measurements, BIS, and the DO dilution method. The BCS of cows was a mean of 3.68 (SE 0.64). For the DO dilution method, a bolus of 0.23 g/kg BW DO (60 atom%) was intravenously injected and deuterium (D) enrichment was analyzed in plasma and whey by stabile isotope mass spectrometry, and total body water content was calculated. Impedance measurement was performed using a 4-electrode interface and time domain-based measurement system consisting of a voltage/current converter for applying current stimulus and an amplifier for monitoring voltage across the sensor electrodes. For the BIS, we used complex impedances over three frequency decades that delivers information on intra- and extracellular water and capacity of cell membranes. Impedance data (resistance of extra- and intracellular space, cell membrane capacity, and phase angle) were extracted 1) by simple curve fit to extract the resistance at direct current and high frequency and 2) by using an electrical equivalent circuit. Cows were slaughtered 7 d after BIS and D enrichment measurements and dissected for the measurement of FDM. Multiple linear regression analyses were performed to predict FDM based on data obtained from body conformation measurements, BIS, and D enrichment, and applied

  5. Numerical and theoretical evaluations of AC losses for single and infinite numbers of superconductor strips with direct and alternating transport currents in external AC magnetic field

    Science.gov (United States)

    Kajikawa, K.; Funaki, K.; Shikimachi, K.; Hirano, N.; Nagaya, S.

    2010-11-01

    AC losses in a superconductor strip are numerically evaluated by means of a finite element method formulated with a current vector potential. The expressions of AC losses in an infinite slab that corresponds to a simple model of infinitely stacked strips are also derived theoretically. It is assumed that the voltage-current characteristics of the superconductors are represented by Bean's critical state model. The typical operation pattern of a Superconducting Magnetic Energy Storage (SMES) coil with direct and alternating transport currents in an external AC magnetic field is taken into account as the electromagnetic environment for both the single strip and the infinite slab. By using the obtained results of AC losses, the influences of the transport currents on the total losses are discussed quantitatively.

  6. The Cryogenic Anti-Coincidence detector for ATHENA X-IFU: pulse analysis of the AC-S7 single pixel prototype

    Science.gov (United States)

    D'Andrea, M.; Argan, A.; Lotti, S.; Macculi, C.; Piro, L.; Biasotti, M.; Corsini, D.; Gatti, F.; Torrioli, G.

    2016-07-01

    The ATHENA observatory is the second large-class mission in ESA Cosmic Vision 2015-2025, with a launch foreseen in 2028 towards the L2 orbit. The mission addresses the science theme "The Hot and Energetic Universe", by coupling a high-performance X-ray Telescope with two complementary focal-plane instruments. One of these is the X-ray Integral Field Unit (X-IFU): it is a TES based kilo-pixel order array able to provide spatially resolved high-resolution spectroscopy (2.5 eV at 6 keV) over a 5 arcmin FoV. The X-IFU sensitivity is degraded by the particles background expected at L2 orbit, which is induced by primary protons of both galactic and solar origin, and mostly by secondary electrons. To reduce the background level and enable the mission science goals, a Cryogenic Anticoincidence (CryoAC) detector is placed address the final design of the CryoAC. It will verify some representative requirements at single-pixel level, especially the detector operation at 50 mK thermal bath and the threshold energy at 20 keV. To reach the final DM design we have developed and tested the AC-S7 prototype, with 1 cm2 absorber area sensed by 65 Ir TESes. Here we will discuss the pulse analysis of this detector, which has been illuminated by the 60 keV line from a 241Am source. First, we will present the analysis performed to investigate pulses timings and spectrum, and to disentangle the athermal component of the pulses from the thermal one. Furthermore, we will show the application to our dataset of an alternative method of pulse processing, based upon Principal Component Analysis (PCA). This kind of analysis allow us to recover better energy spectra than achievable with traditional methods, improving the evaluation of the detector threshold energy, a fundamental parameter characterizing the CryoAC particle rejection efficiency.

  7. Coupling impedance of an in-vacuum undulator: Measurement, simulation, and analytical estimation

    Science.gov (United States)

    Smaluk, Victor; Fielder, Richard; Blednykh, Alexei; Rehm, Guenther; Bartolini, Riccardo

    2014-07-01

    One of the important issues of the in-vacuum undulator design is the coupling impedance of the vacuum chamber, which includes tapered transitions with variable gap size. To get complete and reliable information on the impedance, analytical estimate, numerical simulations and beam-based measurements have been performed at Diamond Light Source, a forthcoming upgrade of which includes introducing additional insertion device (ID) straights. The impedance of an already existing ID vessel geometrically similar to the new one has been measured using the orbit bump method. The measurement results in comparison with analytical estimations and numerical simulations are discussed in this paper.

  8. RHIC spin flipper AC dipole controller

    Energy Technology Data Exchange (ETDEWEB)

    Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.

    2011-03-28

    The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.

  9. Compensation methods applied in current control schemes for large AC drive systems

    DEFF Research Database (Denmark)

    Rus, D. C.; Preda, N. S.; Teodorescu, Remus

    2012-01-01

    The paper deals with modified PI current control structures for large AC drive systems which use surface mounted permanent magnet synchronous machines or squirrel-cage induction motors supplied with voltage source inverters. In order to reduce the power losses caused by high frequency switching...

  10. Electrical impedance spectroscopy (EIS)-based evaluation of biological tissue phantoms to study multifrequency electrical impedance tomography (Mf-EIT) systems

    KAUST Repository

    Bera, Tushar Kanti; Nagaraju, J.; Lubineau, Gilles

    2016-01-01

    . In this direction the impedance responses of the saline solution (background) and a number vegetable and fruit tissues (inhomogeneities) are studied with electrical impedance spectroscopy (EIS) and the frequency responses of bioelectrical impedance and conductivity

  11. Intraesophageal impedance monitoring: clinical studies

    NARCIS (Netherlands)

    Conchillo Armendáriz, J.M.

    2007-01-01

    Electrical impedance (Z) between two electrodes is the ratio between applied voltage (U) and resulting current (I). In electrical impedance monitoring the resistance to electrical flow in an alternating current circuit is measured. Multichannel esophageal monitoring can be measured by using an

  12. Plasma antennas driven by 5–20 kHz AC power supply

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jiansen, E-mail: 67093058@qq.com; Chen, Yuli; Sun, Yang; Wu, Huafeng; Liu, Yue; Yuan, Qiumeng [Merchant Marine College, Shanghai Maritime University, Shanghai, 201306 (China)

    2015-12-15

    The experiments described in this work were performed with the aim of introducing a new plasma antenna that was excited by a 5–20 kHz alternating current (AC) power supply, where the antenna was transformed into a U-shape. The results show that the impedance, voltage standing-wave ratio (VSWR), radiation pattern and gain characteristics of the antenna can be controlled rapidly by varying not only the discharge power, but also by varying the discharge frequency in the range from 5 to 20 kHz. When the discharge frequency is adjusted from 10 to 12 kHz, the gain is higher within a relatively broad frequency band and the switch-on time is less than 1 ms when the discharge power is less than 5 W, meaning that the plasma antenna can be turned on and off rapidly.

  13. Dual-frequency electrical impedance mammography for the diagnosis of non-malignant breast disease

    International Nuclear Information System (INIS)

    Trokhanova, O V; Okhapkin, M B; Korjenevsky, A V

    2008-01-01

    Electrical impedance tomography (EIT) enables one to determine and visualize non-invasively the spatial distribution of the electrical properties of the tissues inside the body, thus providing valuable diagnostic information. The electrical impedance mammography (EIM) system is a specialized EIT system for diagnostics and imaging of the breast. While breast cancer is the main target for any investigation conducted in this area, the diagnosis of non-cancerous diseases is also very important because it opens the way to improve the quality of life for many women and it may also reduce the incidence of breast cancer through effective treatment of mastopathy. This paper presents the main results of a comprehensive examination of 166 women using four methods: multifrequency electrical impedance mammography, ultrasonic investigation, x-ray mammography and puncture biopsy. The objective of the investigation is to estimate the usefulness of multifrequency electrical impedance mammography for diagnosing dyshormonal mammary gland diseases. The results demonstrate the advantages of the multifrequency EIM method. In particular, dual-frequency electrical impedance mammography in contrast with the single-frequency variant enables one not only to diagnose mastopathy, but also allows accurate detection of its cystless form based on observation of the absence of any difference between average conductivity in both phases of the menstrual cycle. Because the cystless form of mastopathy is associated with a higher risk of cancer development, this method allows identification of a higher risk group of patients for more frequent investigations

  14. Design and synthesis of {sup 225}Ac radioimmunopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    McDevitt, Michael R.; Ma, Dangshe; Simon, Jim; Frank, R. Keith; Scheinberg, David A. E-mail: d-scheinberg@ski.mskcc.org

    2002-12-01

    The alpha-particle-emitting radionuclides {sup 213}Bi, {sup 211}At, {sup 224}Ra are under investigation for the treatment of leukemias, gliomas, and ankylosing spondylitis, respectively. {sup 213}Bi and {sup 211}At were attached to monoclonal antibodies and used as targeted immunotherapeutic agents while unconjugated {sup 224}Ra chloride selectively seeks bone. {sup 225}Ac possesses favorable physical properties for radioimmunotherapy (10 d half-life and 4 net alpha particles), but has a history of unfavorable radiolabeling chemistry and poor metal-chelate stability. We selected functionalized derivatives of DOTA as the most promising to pursue from out of a group of potential {sup 225}Ac chelate compounds. A two-step synthetic process employing either MeO-DOTA-NCS or 2B-DOTA-NCS as the chelating moiety was developed to attach {sup 225}Ac to monoclonal antibodies. This method was tested using several different IgG systems. The chelation reaction yield in the first step was 93{+-}8% radiochemically pure (n=26). The second step yielded {sup 225}Ac-DOTA-IgG constructs that were 95{+-}5% radiochemically pure (n=27) and the mean percent immunoreactivity ranged from 25% to 81%, depending on the antibody used. This process has yielded several potential novel targeted {sup 225}Ac-labeled immunotherapeutic agents that may now be evaluated in appropriate model systems and ultimately in humans.

  15. Rapid Detection Technology for Pesticides Residues Based on Microelectrodes Impedance Immunosensor

    Directory of Open Access Journals (Sweden)

    Wen Ping Zhao

    2014-09-01

    Full Text Available Compared with conventional methods, electrochemical immunosensors have many advantages, such as low cost, high sensitivity, and rapid detection, and has certain prospects for realizing real-time-monitoring. In this paper, a design of portable pesticide residues detection instrument was presented based on an electrochemical impedance immunosensor. Firstly, we studied on an impedance immunosensor based on interdigitated array microelectrode (IDAM coupled with magnetic nanobeads-antibody conjugates (MNAC for the pesticide detection. Magnetic nanobeads (diameter 150 nm coated with anti-carbofuran antibodies were used for further amplification of the binding reaction between antibody and hapten (carbofuran. Secondly, in order to develop a portable pesticide residue apparatus, we designed the impedance detection electric circuit. Main work included designing and constructing of the system circuit, designing and debugging of the system software and so on. Thirdly, the apparatus was used for the standard pesticides solutions testing combined with immunosensor to test the reliability and stability. The pesticide added standard recovery was more than 70 % and the impedance test error was less than 5 %. The results showed that the proposed instrument had a good consistence compared with the traditional analytical methods. Thus, it would be a promising rapid detection instrument for pesticide residues in agricultural products.

  16. Longitudinal coupling impedance of a hole in an infinite plane screen

    International Nuclear Information System (INIS)

    Chae, Yong-Chul.

    1995-01-01

    An analytical formula for the longitudinal coupling impedance of a hole is developed using a variational method. We show that the coupling impedance can be expressed as a sum of functional series, whose argument is the dimensionless quantity kd alone, where k is the free-space wave number and d is the radius of the hole. When expanded in powers of kd, we recover the long wavelength result as a limiting case. The numerical evaluation reveals that the impedance can be well modeled by an RLC-resonator circuit. We also show the qualitatively good agreement between the theory and the MAFIA-T3 simulation for the geometry of a hole in a coupled waveguide with rectangular cross section

  17. Journal bearing impedance descriptions for rotordynamic applications

    NARCIS (Netherlands)

    Childs, D.W.; Moes, H.; Leeuwen, van H.J.

    1977-01-01

    Bearing impedance vectors are introduced for plain journal bearings which define the bearing reaction force components as a function of the bearing motion. Impedance descriptions are developed directly for the approximate Ocvirk (short) and Sommerfeld (long) bearing solutions. The impedance vector

  18. Impedance of porous IT-SOFC LSCF:CGO composite cathodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Jacobsen, Torben; Wandel, Marie

    2011-01-01

    The impedance of technological relevant LSCF:CGO composite IT-SOFC cathodes was studied over a very wide performance range. This was experimentally achieved by impedance measurements on symmetrical cells with three different microstructures in the temperature range 550–850 °C. In order to account...... for the impedance spectra of the poor performing cathodes the Finite-Length-Gerischer (FLG) impedance was derived and applied to the impedance data. The FLG impedance describes for a given microstructure the situation where the cathode is made too thin from a cathode development point of view. The moderate...... performing cathodes showed a slightly suppressed Gerischer impedance, while the impedance spectra of the well performing cathodes showed the presence of an arc due to oxygen gas diffusion. The overall impedance of the well performing cathodes could be described with a slightly suppressed Gerischer impedance...

  19. Design Impedance Mismatch Physical Unclonable Functions for IoT Security

    Directory of Open Access Journals (Sweden)

    Xiaomin Zheng

    2017-01-01

    Full Text Available We propose a new design, Physical Unclonable Function (PUF scheme, for the Internet of Things (IoT, which has been suffering from multiple-level security threats. As more and more objects interconnect on IoT networks, the identity of each thing is very important. To authenticate each object, we design an impedance mismatch PUF, which exploits random physical factors of the transmission line to generate a security unique private key. The characteristic impedance of the transmission line and signal transmission theory of the printed circuit board (PCB are also analyzed in detail. To improve the reliability, current feedback amplifier (CFA method is applied on the PUF. Finally, the proposed scheme is implemented and tested. The measure results show that impedance mismatch PUF provides better unpredictability and randomness.

  20. A wide-frequency range AC magnetometer to measure the specific absorption rate in nanoparticles for magnetic hyperthermia

    International Nuclear Information System (INIS)

    Garaio, E.; Collantes, J.M.; Garcia, J.A.; Plazaola, F.; Mornet, S.; Couillaud, F.; Sandre, O.

    2014-01-01

    Measurement of specific absorption rate (SAR) of magnetic nanoparticles is crucial to assert their potential for magnetic hyperthermia. To perform this task, calorimetric methods are widely used. However, those methods are not very accurate and are difficult to standardize. In this paper, we present AC magnetometry results performed with a lab-made magnetometer that is able to obtain dynamic hysteresis-loops in the AC magnetic field frequency range from 50 kHz to 1 MHz and intensities up to 24 kA m −1 . In this work, SAR values of maghemite nanoparticles dispersed in water are measured by AC magnetometry. The so-obtained values are compared with the SAR measured by calorimetric methods. Both measurements, by calorimetry and magnetometry, are in good agreement. Therefore, the presented AC magnetometer is a suitable way to obtain SAR values of magnetic nanoparticles. - Highlights: • We propose AC magnetometry as a method to measure the specific absorption rate (SAR) of magnetic nanoparticles suitable for magnetic hyperthermia therapy. • We have built a lab-made AC magnetometer, which is able to measure magnetic dynamic hysteresis-loops of nanoparticle dispersions. • The device works with AC magnetic field intensities up to 24 kA m −1 in a frequency range from 75 kHz to 1 MHz. • The SAR values of maghemite nanoparticles around 12 nm in magnetic diameter dispersed in water are measured by the lab-made magnetometer and different calorimetric methods. • Although all methods are in good agreement, several factors (probe location, thermal inertia, losses, etc.) make calorimetric method less accurate than AC magnetometry