Development of AC impedance methods for evaluating corroding metal surfaces and coatings
Knockemus, Ward
1986-01-01
In an effort to investigate metal surface corrosion and the breakdown of metal protective coatings the AC Impedance Method was applied to zinc chromate primer coated 2219-T87 aluminum. The model 368-1 AC Impedance Measurement System recently acquired by the MSFC Corrosion Research Branch was used to monitor changing properties of coated aluminum disks immersed in 3.5% NaCl buffered at ph 5.5 over three to four weeks. The DC polarization resistance runs were performed on the same samples. The corrosion system can be represented by an electronic analog called an equivalent circuit that consists of transistors and capacitors in specific arrangements. This equivalent circuit parallels the impedance behavior of the corrosion system during a frequency scan. Values for resistances and capacities that can be assigned in the equivalent circuit following a least squares analysis of the data describe changes that occur on the corroding metal surface and in the protective coating. A suitable equivalent circuit was determined that predicts the correct Bode phase and magnitude for the experimental sample. The DC corrosion current density data are related to equivalent circuit element parameters.
Mendrek, M. J.; Higgins, R. H.; Danford, M. D.
1988-01-01
To investigate metal surface corrosion and the breakdown of metal protective coatings, the ac impedance method is applied to six systems of primer coated and primer topcoated 4130 steel. Two primers were used: a zinc-rich epoxy primer and a red lead oxide epoxy primer. The epoxy-polyamine topcoat was used in four of the systems. The EG and G-PARC Model 368 ac impedance measurement system, along with dc measurements with the same system using the polarization resistance method, were used to monitor changing properties of coated 4230 steel disks immersed in 3.5 percent NaCl solutions buffered at pH 5.4 over periods of 40 to 60 days. The corrosion system can be represented by an electronic analog called an equivalent circuit consisting of resistors and capacitors in specific arrangements. This equivalent circuit parallels the impedance behavior of the corrosion system during a frequency scan. Values for the resistors and capacitors, that can be assigned in the equivalent circuit following a least-squares analysis of the data, describe changes that occur on the corroding metal surface and in the protective coatings. Two equivalent circuits have been determined that predict the correct Bode phase and magnitude of the experimental sample at different immersion times. The dc corrosion current density data are related to equivalent circuit element parameters. Methods for determining corrosion rate with ac impedance parameters are verified by the dc method.
AC Impedance Behaviour of Black Diamond Films
Institute of Scientific and Technical Information of China (English)
Haitao YE; Olivier GAUDIN; Richard B.JACKMAN
2005-01-01
The first measurement of impedance on free-standing diamond films from 0.1 Hz to 10 MHz up to 300℃ were reported. A wide range of chemical vapour deposition (CVD) materials were investigated, but here we concentrate are well fitted to a RC parallel circuit model and the equivalent resistance and capacitance for the diamond films have been estimated using the Zview curve fitting. The results show only one single semicircle response at each temperature measured. It was found that the resistance decreases from 62 MΩ at room temperature to 4 kΩ at300℃, with an activation energy around 0.51 eV. The equivalent capacitance is maintained at the level of 100 pF up to 300℃ suggesting that the diamond grain boundaries are dominating the conduction. At 400℃, the impedance at low frequencies shows a linear tail, which can be explained that the AC polarization of diamond/Au interface occurs.
Equivalent circuit models for ac impedance data analysis
Danford, M. D.
1990-01-01
A least-squares fitting routine has been developed for the analysis of ac impedance data. It has been determined that the checking of the derived equations for a particular circuit with a commercially available electronics circuit program is essential. As a result of the investigation described, three equivalent circuit models were selected for use in the analysis of ac impedance data.
Directory of Open Access Journals (Sweden)
Jan Gimsa
2014-11-01
Full Text Available Lab-on-chip systems (LOCs can be used as in vitro systems for cell culture or manipulation in order to analyze or monitor physiological cell parameters. LOCs may combine microfluidic structures with integrated elements such as piezo-transducers, optical tweezers or electrodes for AC-electrokinetic cell and media manipulations. The wide frequency band (<1 kHz to >1 GHz usable for AC-electrokinetic manipulation and characterization permits avoiding electrochemical electrode processes, undesired cell damage, and provides a choice between different polarization effects that permit a high electric contrast between the cells and the external medium as well as the differentiation between cellular subpopulations according to a variety of parameters. It has been shown that structural polarization effects do not only determine the impedance of cell suspensions and the force effects in AC-electrokinetics but can also be used for the manipulation of media with inhomogeneous temperature distributions. This manuscript considers the interrelations of the impedance of suspensions of cells and AC-electrokinetic single cell effects, such as electroorientation, electrodeformation, dielectrophoresis, electrorotation, and travelling wave (TW dielectrophoresis. Unified models have allowed us to derive new characteristic equations for the impedance of a suspension of spherical cells, TW dielectrophoresis, and TW pumping. A critical review of the working principles of electro-osmotic, TW and electrothermal micropumps shows the superiority of the electrothermal pumps. Finally, examples are shown for LOC elements that can be produced as metallic structures on glass chips, which may form the bottom plate for self-sealing microfluidic systems. The structures can be used for cell characterization and manipulation but also to realize micropumps or sensors for pH, metabolites, cell-adhesion, etc.
Energy Technology Data Exchange (ETDEWEB)
Breuer, G D; Chow, J H; Lindh, C B; Miller, N W; Numrich, F H; Price, W W; Turner, A E; Whitney, R R
1982-09-01
Improved methods are needed to characterize ac system harmonic behavior for ac filter design for HVDC systems. The purpose of this General Electric Company RP1138 research is to evaluate the present filter design practice and to investigate methods for calculating system harmonic impedances. An overview of ac filter design for HVDC systems and a survey of literature related to filter design have been performed. Two methods for calculating system harmonic impedances have been investigated. In the measurement method, an instrumentation system for measuring system voltage and current has been assembled. Different schemes of using the measurements to calculate system harmonic impedances have been studied. In the analytical method, a procedure to include various operating conditions has been proposed. Computer programs for both methods have been prepared, and the results of the measurement and analytical methods analyzed. A conclusion of the project is that the measurement and analytical methods both provided reasonable results. There are correlations between the measured and analytical results for most harmonics, although there are discrepancies between the assumptions used in the two methods. A sensitivity approach has been proposed to further correlate the results. From the results of the analysis, it is recommended that both methods should be tested further. For the measurement method, more testing should be done to cover different system operating conditions. In the analytical method, more detailed models for representing system components should be studied. In addition, alternative statistical and sensitivity approaches should be attempted.
Equivalent Circuits For AC-Impedance Analysis Of Corrosion
Danford, M. D.
1992-01-01
Report presents investigation of equivalent circuits for ac-impedance analysis of corrosion. Impedance between specimen and electrolyte measured as function of frequency. Data used to characterize corrosion electrochemical system in terms of equivalent circuit. Eleven resistor/capacitor equivalent-circuit models were analyzed.
Impedance Localization Measurements using AC Dipoles in the LHC
Biancacci, Nicolo; Papotti, Giulia; Persson, Tobias; Salvant, Benoit; Tomás, Rogelio
2016-01-01
The knowledge of the LHC impedance is of primary importance to predict the machine performance and allow for the HL-LHC upgrade. The developed impedance model can be benchmarked with beam measurements in order to assess its validity and limit. This is routinely done, for example, moving the LHC collimator jaws and measuring the induced tune shift. In order to localize possible unknown impedance sources, the variation of phase advance with intensity between beam position monitors can be measured. In this work we will present the impedance localization measurements performed at injection in the LHC using AC dipoles as exciter as well as the underlying theory.
MD 349: Impedance Localization with AC-dipole
Biancacci, Nicolo; Metral, Elias; Salvant, Benoit; Papotti, Giulia; Persson, Tobias Hakan Bjorn; Tomas Garcia, Rogelio; CERN. Geneva. ATS Department
2016-01-01
The purpose of this MD is to measure the distribution of the transverse impedance of the LHC by observing the phase advance variation with intensity between the machine BPMs. Four injected bunches with different intensities are excited with an AC dipole and the turn by turn data is acquired from the BPM system. Through post-processing analysis the phase variation along the machine is depicted and, from this information, first conclusions of the impedance distribution can be drawn.
Fiber Materials AC Impedance Characteristics and Principium Analysis
Wang, Jianjun; Li, Xiaofeng
With an invariable amplitude and variable frequency inspiriting, impedance of fiber materials rapidly decrease at first and then increase speedy followed with increasing of signal frequency. For the impedance curve of frequency is section of bathtub, this phenomenon is defined as alternating current electric conductive bathtub effect of fiber material. With analysis tools,of circuit theory and medium polarization theory, the phenomenon can be deeply detected that in AC electric field there are four different kind of currents in fiber material: absorbing current, conductance current, charging current and superficial current. With more analyzing it's discovered this phenomenon can be explained by medium polarize theory. Make using of fiber AC electric conductivity bathtub effect, fast testing equipment on fiber moisture regain can be invent, and disadvantages of conventional impedance technique, such as greatness test error and electrode polarization easily. This paper affords directions to design novel speediness fiber moisture test equipments in theory.
Construction of Tunnel Diode Oscillator for AC Impedance Measurement
Shin, J. H.; Kim, E.
2014-03-01
We construct a tunnel diode oscillator (TDO) to study electromagnetic response of a superconducting thin film. Highly sensitive tunnel diode oscillators allow us to detect extremely small changes in electromagnetic properties such as dielectric constant, ac magnetic susceptibility and magnetoresistance. A tunnel diode oscillator is a self-resonant oscillator of which resonance frequency is primarily determined by capacitance and inductance of a resonator. Amplitude of the signal depends on the quality factor of the resonator. The change in the impedance of the sample electromagnetic coupled to one of inductors in the resonator alters impedance of the inductor, and leads to the shift in the resonance frequency and the change of the amplitude.
AC Complex Impedance Analysis of Doped Strontium Titanate Multifunctional Ceramics
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Doped SrTiO3 capacitor-varistor multifunctional ceramics were fabricated by a single sintering process. AC compleximpedance analysis was performed to investigate electrical features ofgrains and grain boundaries for both as-reducedceramic and reoxidized ceramics. The results showed that the as-reduced ceramic exhibited inductive response athigh frequencies above 2 MHz, which is attributed to the contribution of electron behavior in semiconducting grains.The high frequency inductive response disappeared in impedance plots of reoxidized ceramics.
DEFF Research Database (Denmark)
Nielsen, Jimmi; Jacobsen, Torben
2010-01-01
The Finite-Element-Method (FEM) was used for the simulations of the effect of a changing current distribution during AC impedance spectrum recording on electroceramic point contact and thin film model electrodes. For pure electronic conducting point contact electrodes the transition from the prim...
Impedance, AC conductivity and dielectric behavior Adeninium Trichloromercurate (II)
Fersi, M. Amine; Chaabane, I.; Gargouri, M.
2016-09-01
In this work, we report the measurements impedance spectroscopy technique for the organic-inorganic hybrid compound (C5H6N5) HgCl3, 11/2H2O measured in the 209 Hz-5 MHz frequency range from 378 to 428 K. Besides, the Cole-Cole (Z″ versus Z‧) plots were well fitted to an equivalent circuit built up by a parallel combination of resistance (R), fractal capacitance (CPE) and capacitance (C). Furthermore, the AC conductivity was investigated as a function of temperature and frequency in the same range. The experiment results indicated that AC conductivity (σac) was proportional to σdc + A ωS . The obtained results are discussed in terms of the correlated barrier hopping (CBH) model. An agreement between the experimental and theoretical results suggests that the AC conductivity behavior of Adeninium Trichloromercurate (II) can be successfully explained by CBH model. The contribution of single polaron hopping to AC conductivity in a present alloy was also studied.
Nasri, S.; Megdiche, M.; Gargouri, M.
2016-10-01
In this paper, Ag0.6Na0.4FeP2O7 has been synthesized by solid state reaction method. The ceramic compound was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrational spectroscopy and impedance measurements. In fact, the investigated sample has shown single phase type monoclinic structure with P21/C space group. The frequency-dependent electrical data are analyzed in the frame-work of conductivity and electric modulus formalisms. The real and imaginary parts of complex impedance are well fitted to equivalent circuit model based on the Z-View-software. Besides, the observed frequency dependence of conductivity is found to obey Jonscher's universal law. The temperature dependence of both ac conductivity and the parameter s is reasonably well interpreted by the correlated barrier hopping (CBH). The theoretical fitting between the proposed model and the experimental data showed good agreement. The contribution of single polaron and bipolaron hopping to a.c. conductivity in present compound is also studied. The ionic conductivity is discussed on the basis of the structural characteristics of the sample.
Eldarrat, A H; High, A S; Kale, G M
2010-01-01
One of the age-related changes occurring in dentine structure is the formation of peritubular dentine on the inner walls of dentinal tubules leading to complete closure of tubules. Ac-impedance is safe, fast and non-invasive technique. In the last decade, the popularity of the technique has increased in dental research. Several investigators have used the technique to detect tooth cracks and caries. The results of in vitro studies showed that ac-impedance technique was more advanced for caries detection than visual and radiographic methods. However, other studies demonstrated that the accuracy of impedance measurements can be affected by many factors such as remineralization after tooth eruption. A study has been published on effect of age on impedance measurements by the authors for two age groups by employing ac-impedance spectroscopy. Therefore, the aim of this study was to demonstrate the importance of this technique by conducting further investigations on dentine samples of wider age groups. Dentine samples were prepared from extracted sound third molars of known patient age. The ac-impedance measurements were carried out over a wide range of frequency. After performing all electrical measurements, dentine samples were examined under SEM to correlate the electrical measurements with their structure. Impedance measurements showed that there were differences in impedance between young and old dentine. One-way ANOVA of the means of resistance and capacitance for all age groups (20, 25, 30, 40 and 50 years old dentine) revealed a significant difference (ANOVA, P < 0.0001) as a function of age. Applying Tukey's post hoc test, to the same data showed that this difference was due to the 50 years old dentine for resistance and was due to the 40 and 50 years old dentine for capacitance which were statistically different to all other groups. SEM investigation of dentine samples showed that young dentine is characterized by open dentinal tubules distributed all over the
DEFF Research Database (Denmark)
Li, Chendan; Chaudhary, Sanjay Kumar; Savaghebi, Mehdi;
2016-01-01
adequate power flow studies. In this paper, power flow analyses for both AC and DC microgrids are formulated and implemented. The mathematical models for both types of microgrids considering the concept of virtual impedance are used to be in conformity with the practical control of the distributed......In the Low-Voltage (LV) AC microgrids (MGs), with a relatively high R/X ratio, virtual impedance is usually adopted to improve the performance of droop control applied to Distributed Generators (DGs). At the same time, LV DC microgrid using virtual impedance as droop control is emerging without...... generators. As a result, calculation accuracy is improved for both AC and DC microgrid power flow analyses, comparing with previous methods without considering virtual impedance. Case studies are conducted to verify the proposed power flow analyses in terms of convergence and accuracy. Investigation...
Richardson, John G.
2009-11-17
An impedance estimation method includes measuring three or more impedances of an object having a periphery using three or more probes coupled to the periphery. The three or more impedance measurements are made at a first frequency. Three or more additional impedance measurements of the object are made using the three or more probes. The three or more additional impedance measurements are made at a second frequency different from the first frequency. An impedance of the object at a point within the periphery is estimated based on the impedance measurements and the additional impedance measurements.
Power flow analysis for droop controlled LV hybrid AC-DC microgrids with virtual impedance
DEFF Research Database (Denmark)
Li, Chendan; Chaudhary, Sanjay; Vasquez, Juan Carlos;
2014-01-01
and virtual impedance concepts for AC network, DC network and interlinking converter are reviewed so as to model it in the power flow analysis. The validation of the algorithm is verified by comparing it with steady state results from detailed time domain simulation. The effectiveness of the proposed......The AC-DC hybrid microgrid is an effective form of utilizing different energy resources and the analysis of this system requires a proper power flow algorithm. This paper proposes a suitable power flow algorithm for LV hybrid AC-DC microgrid based on droop control and virtual impedance. Droop...
New Regularization Method in Electrical Impedance Tomography
Institute of Scientific and Technical Information of China (English)
侯卫东; 莫玉龙
2002-01-01
Image reconstruction in elecrical impedance tomography(EIT)is a highly ill-posed inverse problem,Regularization techniques must be used in order to solve the problem,In this paper,a new regularization method based on the spatial filtering theory is proposed.The new regularized reconstruction for EIT is independent of the estimation of impedance distribution,so it can be implemented more easily than the maxiumum a posteriori(MAP) method.The regularization level in our proposed method varies spatially so as to be suited to the correlation character of the object's impedance distribution.We implemented our regularization method with two dimensional computer simulations.The experimental results indicate that the quality of the reconstructed impedance images with the descibed regularization method based on spatial filtering theory is better than that with Tikhonov method.
基于交流阻抗法的离子交换膜电阻研究%Study on conductivity of ion exchange membranes with AC impedance method
Institute of Scientific and Technical Information of China (English)
范永生; 陈晓; 王保国
2011-01-01
Using AC impedance measurement, this study proposed a method to investigate ion exchange membrane area resistances; a two-polar cell holds membrane immersed in electrolyte solution, area resistance was determined by the difference of electricity resistance measured with or without a membrane The error can be minimized by using a parallel electricity resistance.This method was proofed reliable and effective by measuring area resistances of a cation or an anion exchange membranes in electrolyte solution,including aqueous sulfuric acid, sodium chloride, and the real electrolyte used in vanadium redox flow battery(VRB).The measured results revealed the various adsorption behaviors of cation and anion exchange membranes, and showed membrane area resistance dependence upon electrolyte solution concentration.This study will facilitate the development of ion exchange membranes and its application in renewable energy technology.%利用交流阻抗谱测定技术,建立一种离子交换膜导电性能评价方法;使用两极室槽电解池,分别测得电解质溶液,以及膜和电解质溶液之和的电阻值,相减后得到离子交换膜在该电解液中的电阻值.通过并联电阻形成完整的半圆弧形交流阻抗谱,能够有效减小测量误差.利用硫酸水溶液体系、氯化钠水溶液体系,以及全钒液流电池的钒电解液体系验证基于交流阻抗谱的膜电阻测定技术准确性、实用性.在此基础上揭示阳离子交换膜、阴离子交换膜对离子的不同吸附特性,以及膜面电阻对电解质溶液浓度依存特性.研究结果对于发展离子交换膜快速表征技术,以及开发新能源领域的离子交换膜具有重要价值.
AC impedance studies on LiFe{sub 5-x}Mn{sub x}O{sub 8} ferrites
Energy Technology Data Exchange (ETDEWEB)
Ramesh, B., E-mail: bramesh9@rediffmail.com [Department of Physics, Osmania University, Hyderabad, A.P. (India); Ramesh, S.; Kumar, R. Vijaya; Lakshmipathi Rao, M. [Department of Physics, Osmania University, Hyderabad, A.P. (India)
2012-02-05
Highlights: Black-Right-Pointing-Pointer The materials were prepared by sol-gel method and single phase formation was conformed. Black-Right-Pointing-Pointer Z Prime and Z Double-Prime magnitude decrease with increasing temperature. Black-Right-Pointing-Pointer Relaxation time of the prepared samples varies linearly with temperature Black-Right-Pointing-Pointer The cole-cole impedance plots of the present investigation clearly shows an interesting phenomenon involved in the conduction mechanism of the samples. - Abstract: A systematic investigation of AC impedance studies of Mn doped Lithium ferrites with composition formula, LiFe{sub 5-x}Mn{sub x}O{sub 8} (x = 0.0, 0.2, 0.4, and 0.6) has been undertaken. The materials were prepared by sol-gel method. Complex impedance data measured in the frequency range 200 Hz to 1 MHz at different temperatures was analyzed systematically. It has been observed that the magnitudes of real (Z Prime ) and imaginary (Z Double-Prime ) components of the impedance are found to decrease with increasing temperature. It is interesting to note that the relaxation time varies linearly with temperature. The Nyquist impedance plots of the present investigation clearly depicts the inherent phenomenon involved in conduction mechanism of Mn doped Lithium ferrites.
Virtual Impedance Based Fault Current Limiters for Inverter Dominated AC Microgrids
DEFF Research Database (Denmark)
Lu, Xiaonan; Wang, Jianhui; Guerrero, Josep M.;
2016-01-01
virtual impedance control loops. The proposed VI-FCL features flexible and low-cost implementation and can effectively suppress the fault current and the oscillation in the following fault restoration process in AC microgrids. The systematic model of the inverter dominated AC microgrid is derived......In this paper, a virtual impedance based fault current limiter (VI-FCL) is proposed for islanded microgrids comprised of multiple inverter interfaced distributed generators (DGs). Considering the increased fault current capability induced by high penetration of renewable energy sources (RESs), FCLs...... are employed to suppress the fault current and the subsequent oscillation and even instability in the modern distribution network with microgrids. In this study, rather than involving extra hardware equipment, the functionality of FCL is achieved in the control diagram of DG inverters by employing additional...
Institute of Scientific and Technical Information of China (English)
KONG Lijuan; HOU Lirong; WANG Yuhua; SUN Guowen
2016-01-01
Three different types and sizes of coarse aggregate were chosen, and the alternating current (AC) impedance of cement paste samples with and without aggregate was measured at different curing ages. Based on Song’s equivalent circuit model, the electrical properties from the AC impedance results were obtained, and the resistance of connected pores RCCP was used to characterize the microstructure of the interfacial transition zone (ITZ). The results show that the RCCP of concrete sample with aggregate is lower than that of cement paste sample, which indicates that the introduction of aggregate in cement paste makes the ITZ porous. Furthermore, for the same type of aggregate, an increase in particle size leads to a more porous ITZ, which accounts for the “water effect” and a larger aggregate would accumulate a thicker water iflm around it. In addition, for the same size of aggregate, the physical interaction between aggregate and cement paste is dominant in early age, and the microstructure of the ITZ around limestone aggregate is denser, which mainly depends on its rough surface and high water absorption. However, the microstructures of the ITZ around granite and basalt aggregates are denser in later age, which may be due to their higher chemical activity, and the chemical interaction between them and cement paste resulting in the generation of more hydrates. AC impedance spectroscopy thus proves to be powerful for evaluation of the microstructure of the ITZ.
New methods of measuring normal acoustic impedance
Wayman, James L.
1984-01-01
In recent years new methods based on signal processing technical have been developed to measure the normal acoustic impedance of materials. These methods proved to be considerably faster easier to implement than the SRW method rhey replace. Mathematical, hardware and software aspects of these techniques are discussed and results obtained over a frequency range of 200-4000 Hz for several architectural materials are presented. NPS Foundation Research Program http://archive....
Effect of temperature on the AC impedance of protein and carbohydrate biopolymers
Indian Academy of Sciences (India)
S Muthulakshmi; S Iyyapushpam; D Pathinettam Padiyan
2014-12-01
The influence of temperature on the electrical behaviour of protein biopolymer papain and carbohydrate biopolymers like gum acacia, gum tragacanth and guar gum has been investigated using AC impedance technique. The observed semi-circles represent the material’s bulk electrical property that indicate the single relaxation process in the biopolymers. An increase in bulk electrical conductivity in the biopolymers with temperature is due to the hopping of charge carriers between the trapped sites. The depression parameter reveals the electrical equivalent circuit for the biopolymers. The AC electrical conductivity in the biopolymers follows the universal power law. From this, it is observed that the AC conductivity is frequency dependent and the biopolymer papain obeys large polaron tunnelling model, gum acacia and gum guar obey ion or electron tunnelling model, and gum tragacanth obeys the correlated barrier hopping model of conduction mechanisms.
An Impedance-Based Stability Analysis Method for Paralleled Voltage Source Converters
DEFF Research Database (Denmark)
Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang
2014-01-01
This paper analyses the stability of paralleled voltage source converters in AC distributed power systems. An impedance-based stability analysis method is presented based on the Nyquist criterion for multiloop system. Instead of deriving the impedance ratio as usual, the system stability is asses......This paper analyses the stability of paralleled voltage source converters in AC distributed power systems. An impedance-based stability analysis method is presented based on the Nyquist criterion for multiloop system. Instead of deriving the impedance ratio as usual, the system stability...... is assessed based on a series of Nyquist diagrams drawn for the terminal impedance of each converter. Thus, the effect of the right half-plane zeros of terminal impedances in the derivation of impedance ratio for paralleled source-source converters is avoided. The interaction between the terminal impedance...... of converter and the passive network can also be predicted by the Nyquist diagrams. This method is applied to evaluate the current and voltage controller interactions of converters in both grid-connected and islanded operations. Simulations and experimental results verify the effectiveness of theoretical...
Method for conducting nonlinear electrochemical impedance spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Adler, Stuart B.; Wilson, Jamie R.; Huff, Shawn L.; Schwartz, Daniel T.
2015-06-02
A method for conducting nonlinear electrochemical impedance spectroscopy. The method includes quantifying the nonlinear response of an electrochemical system by measuring higher-order current or voltage harmonics generated by moderate-amplitude sinusoidal current or voltage perturbations. The method involves acquisition of the response signal followed by time apodization and fast Fourier transformation of the data into the frequency domain, where the magnitude and phase of each harmonic signal can be readily quantified. The method can be implemented on a computer as a software program.
Using A Particular Sampling Method for Impedance Measurement
Lentka Grzegorz
2014-01-01
The paper presents an impedance measurement method using a particular sampling method which is an alternative to DFT calculation. The method uses a sine excitation signal and sampling response signals proportional to current flowing through and voltage across the measured impedance. The object impedance is calculated without using Fourier transform. The method was first evaluated in MATLAB by means of simulation. The method was then practically verified in a constructed simple impedance measu...
AC Impedance Studies of Polymer Light-emitting Electrochemical Cells and Light-emitting Diodes
Li, Yongfang; Gao, Jun; Heeger, Alan J.; Yu, Gang; Cao, Yong
1998-03-01
The alternating current (ac) impedance of polymer light-emitting electrochemical cells (LECs) is studied and compared with that of polymer light-emitting diodes(LEDs) in the frequency range from 100 Hz to 5 M Hz. The device capacitance, resistance and interface characteristics are analyzed using the frequency dependence of the impedance and plots of the imaginary component of the impedance (Z") vs. the real part (Z'). At low bias voltages, polymer LEDs behave as pure capacitors whereas the polymer blend in the LEC exhibits an ionic conductivity contribution to the impedance. With dc bias higher than the energy gap of the semiconducting polymer (eV > Eg), the Z" vs. Z' plot of the LEC is a flattened semicircle, while that of LED is a semicircle with a small tail at low frequencies. In the LED, the capacitance is independent of voltages, the film resistance decreases as the bias voltage is increased in forward bias due to charge injection at higher voltages. In the LEC, the capacitance increases at voltages sufficient to induce electrochemical redox and doping near the electrodes. From this increase, the thickness of the i-layer of the p-i-n junction is estimated to approximately 0.8 of the film thickness (at the bias voltage of 3 V). Thus, in the LEC under operating conditions, the crossover region from p-type occupies most of the film thickness.
Poly Meta-Aminophenol: Chemical Synthesis, Characterization and Ac Impedance Study
Directory of Open Access Journals (Sweden)
Thenmozhi Gopalasamy
2014-01-01
Full Text Available The present work is an investigation of AC impedance behaviour of poly(meta-aminophenol. The polymer was prepared by oxidative chemical polymerization of meta-aminophenol in aqueous HCl using ammonium persulfate as an oxidant at 0–3°C. The synthesized polymer was characterized by GPC, Elemental analysis, UV-VIS-NIR, FT-IR, 1H NMR, XRD, SEM, and TGA-DTA. The AC conductivity and dielectric response were measured at a temperature range from 303 to 383 K in the frequency range of 20 Hz to 106 Hz. The AC conductivity data could be described by the relation σacω=AωS, where the parameter “S” and Rb values decrease in the entire range of study and hence follow Correlated Barrier Hopping conduction mechanism. Both dielectric constant and dielectric loss increase with the decrease of frequency exhibiting strong interfacial polarization at low frequency and the dissipation factor also decreases with frequency. Complex electric modulus and dissipation factor exhibit two relaxation peaks, indicating two-phase structure as indicated by a bimodal distribution of relaxation process. The activation energies corresponding to these two relaxation processes were found to be 0.07 and 0.1 eV.
Study of metal corrosion using ac impedance techniques in the STS launch environment
Calle, Luz M.
1989-01-01
AC impedance measurements were performed to investigate the corrosion resistance of 19 alloys under conditions similar to the STS launch environment. The alloys were: Zirconium 702, Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, Inconel 600, 7Mo + N, Ferralium 255, Inco Alloy G-3, 20Cb-3, SS 904L, Inconel 825, SS 304LN, SS 316L, SS 317L, ES 2205, SS 304L, Hastelloy B-2, and Monel 400. AC impedance data were gathered for each alloy after one hour immersion time in each of the following three electrolyte solutions: 3.55 percent NaCl, 3.55 percent NaCl-0.1N HCl, and 3.55 percent NaCl-1.0N HCl. The data were analyzed qualitatively using the Nyquist plot and quantitatively using the Bode plot. Polarization resistance, Rp, values were obtained using the Bode plot. Zirconium 702 was the most corrosion resistant alloy in the three electrolytes. The ordering of the other alloys according the their resistance to corrosion varied as the concentration of hydrochloric acid in the electrolyte increased. The corrosion resistance of Zirconium 702 and Ferralium 255 increased as the concentration of hydrochloric acid in the electrolyte increased. The corrosion resistance of the other 17 alloys decreased as the concentration of the hyrdochloric acid in the electrolyte increased.
Operation Method for AC Motor Control during Power Interruption in Direct AC/AC Converter System
Shizu, Keiichiro; Azuma, Satoshi
Direct AC/AC converters have been studied due to their potential use in power converters with no DC-link capacitor, which can contribute to the miniaturization of power converters. However, the absence of a DC-link capacitor makes it difficult to control the AC motor during power interruption. First, this paper proposes a system that realizes AC motor control during power interruption by utilizing a clamp capacitor. In general, direct AC/AC converters have a clamp circuit consisting of a rectifier diode(s) and a clamp capacitor in order to avoid over-voltages. In the proposed system, there is an additional semiconductor switch reverse-parallel to the rectifier diode(s), and the clamp capacitor voltage can be utilized for AC motor control by turning on the additional switch. Second, this paper discusses an operation method for AC motor control and clamp capacitor voltage control during power interruption. In the proposed method “DC-link voltage control”, the kinetic energy in the AC motor is transformed into electrical energy and stored in the clamp capacitor; the clamp capacitor is therefore charged and the capacitor voltage is controlled to remain constant at an instruction value. Third, this paper discusses a switching operation during power interruption. A dead-time is introduced between the operation of turning off all switches on the rectifier side and the operation of turning on the additional switch, which prevents the occurrence of a short circuit between the interrupted power source and the clamp capacitor. Finally, experimental results are presented. During power interruptions, an output current was continuously obtained and the clamp capacitor voltage was maintained to be equal to the instruction value of the capacitor voltage. These results indicate that both AC motor control and capacitor voltage control were successfully achieved by using the proposed system.
DC current and AC impedance measurements on boron-doped single crystalline diamond films
Energy Technology Data Exchange (ETDEWEB)
Ye, Haitao; Gaudin, O.; Jackman, R.B. [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Muret, P.; Gheeraert, E. [Laboratoire d' Etudes des Proprietes Electroniques des Solides, BP166, 38042 Grenoble Cedex 9 (France)
2003-09-01
In this paper, we report the first measurement of impedance on boron-doped single crystalline diamond films from 0.1 Hz to 10 MHz with the temperature ranging from -100 C up to 300 C. The Cole-Cole (Z' via Z{sup ''}) plots are well fitted to a RC parallel circuit model and the equivalent Resistance and Capacitance for the diamond films have been estimated using the Zview curve fitting. The results show only one single semicircle response at each temperature measured. It was found that the resistance decreases from 70 G{omega} at -100 C to 5 k{omega} at 300 C. The linear curve fitting from -100 C to 150 C shows the sample has an activation energy of 0.37 eV, which is consistent with the theoretical value published of this kind of material. The equivalent capacitance is maintained at the level of pF up to 300 C suggesting that no grain boundaries are being involved, as expected from a single crystal diamond. The activation energy from the dc current-temperature curves is 0.36 eV, which is consistent with the value from ac impedance. The potential of this under-used technique for diamond film analysis will be discussed. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Tiggelman, M.P.J.; Reimann, K.; Schmitz, J.
2007-01-01
During the AC impedance characterization of devices, from the kHz-range up to the GHz-range, accuracy can be lost when a DC voltage is applied. Commercial high-voltage broadband bias-tees are often voltage-dependent, which can cause inaccuracies at low frequencies. A calibration technique with appli
Impedance adaptation methods of the piezoelectric energy harvesting
Kim, Hyeoungwoo
In this study, the important issues of energy recovery were addressed and a comprehensive investigation was performed on harvesting electrical power from an ambient mechanical vibration source. Also discussed are the impedance matching methods used to increase the efficiency of energy transfer from the environment to the application. Initially, the mechanical impedance matching method was investigated to increase mechanical energy transferred to the transducer from the environment. This was done by reducing the mechanical impedance such as damping factor and energy reflection ratio. The vibration source and the transducer were modeled by a two-degree-of-freedom dynamic system with mass, spring constant, and damper. The transmissibility employed to show how much mechanical energy that was transferred in this system was affected by the damping ratio and the stiffness of elastic materials. The mechanical impedance of the system was described by electrical system using analogy between the two systems in order to simply the total mechanical impedance. Secondly, the transduction rate of mechanical energy to electrical energy was improved by using a PZT material which has a high figure of merit and a high electromechanical coupling factor for electrical power generation, and a piezoelectric transducer which has a high transduction rate was designed and fabricated. The high g material (g33 = 40 [10-3Vm/N]) was developed to improve the figure of merit of the PZT ceramics. The cymbal composite transducer has been found as a promising structure for piezoelectric energy harvesting under high force at cyclic conditions (10--200 Hz), because it has almost 40 times higher effective strain coefficient than PZT ceramics. The endcap of cymbal also enhances the endurance of the ceramic to sustain ac load along with stress amplification. In addition, a macro fiber composite (MFC) was employed as a strain component because of its flexibility and the high electromechanical coupling
Stability Analysis of Three-Phase AC Power Systems Based on Measured D-Q Frame Impedances
Wen, Bo
2015-01-01
Small-signal stability is of great concern for distributed power systems with a large number of regulated power converters. These converters are constant-power loads (CPLs) exhibit a negative incremental input resistance within the output voltage regulation bandwidth. In the case of dc systems, design requirements for impedances that guarantee stability have been previously developed and are used in the design and specification of these systems. In terms of three-phase ac systems, a mathemati...
The AC Impedance Characteristic of High Power Li4Ti5O12-based Battery Cells
DEFF Research Database (Denmark)
Stroe, Ana-Irina; Stroe, Daniel Loan; Swierczynski, Maciej Jozef;
2015-01-01
This paper studies the impedance characteristics of a fresh 13 Ah high-power lithium titanate oxide (LTO) battery cell and analyses its dependence on the temperature and state-of-charge. The impedance of the battery cell was measured by means of the electrochemical impedance spectroscopy (EIS) te...
Nuclear EMP: stripline test method for measuring transfer impedance
International Nuclear Information System (INIS)
A method for measuring the transfer impedance of flat metal joints for frequencies to 100 MHz has been developed which makes use of striplines. The stripline method, which has similarities to the quadraxial method used for cylindrical components, is described and sets of test results are given. The transfer impedance of a simple joint is modeled as a spurious hyperbolic curve, and a close curve fit to transfer impedance test data from various samples is demonstrated for both the stripline and the quadraxial methods. Validity checks of the test data are discussed using the curve model and other criteria. The method was developed for testing riveted joints which form the avionics bays on B-1s. The joints must provide shielding from EMP currents
Directory of Open Access Journals (Sweden)
Uttam Mohan
2016-05-01
Full Text Available Solid charge transfer complex of n-donor 3, 5-dimethylpyridine (3, 5-Lutidine with σ acceptor iodine was prepared and characterised by using elemental analysis, UV-Vis, FTIR, 1H NMR spectroscopy and powder XRD techniques. The electrical parameters of the prepared complex in the pellet form were studied at various temperatures and at wide frequency range by employing AC complex impedance spectroscopic technique. The Nyquist (cole-cole plots have been successfully explained by employing (RC(RC(RC equivalent circuit corresponding to grain , grain boundary and electrode contributions. The radii of the semicircular arc decrease with increase in temperature which suggests that the material exhibits negative temperature coefficient of resistance (NTCR behaviour like semiconductors. Dielectric constant, ɛ′ and dielectric loss, ɛ″ seems to decrease sharply with increase in frequency. The ac conductivity obeys the power law of frequency.
Method and device for bio-impedance measurement with hard-tissue applications
International Nuclear Information System (INIS)
Bio-impedance measurements can be used to detect and monitor several properties of living hard-tissues, some of which include bone mineral density, bone fracture healing or dental caries detection. In this paper a simple method and hardware architecture for hard tissue bio-impedance measurement is proposed. The key design aspects of such architecture are discussed and a commercial handheld ac impedance device is presented that is fully certified to international medical standards. It includes a 4-channel multiplexer and is capable of measuring impedances from 10 kΩ to 10 MΩ across a frequency range of 100 Hz to 100 kHz with a maximum error of 5%. The device incorporates several user interface methods and a Bluetooth link for bi-directional wireless data transfer. Low-power design techniques have been implemented, ensuring the device exceeds 8 h of continuous use. Finally, bench test results using dummy cells consisting of parallel connected resistors and capacitors, from 10 kΩ to 10 MΩ and from 20 pF to 100 pF, are discussed
A method for suppressing cardiogenic oscillations in impedance pneumography
International Nuclear Information System (INIS)
The transthoracic electrical impedance signal originates from the cardiac and respiratory functions. In impedance pneumography (IP) the lung function is assessed and the cardiac impedance signal, cardiogenic oscillations (CGOs), is considered an additive noise in the measured signal. In order to accurately determine pulmonary flow parameters from the signal, the CGO needs to be attenuated without distorting the respiratory part of the signal. We assessed the suitability of a filtering technique, originally described by Schuessler et al (1998 Ann. Biomed. Eng. 26 260–7) for an esophageal pressure signal, for CGO attenuation in the IP signal. The technique is based on ensemble averaging the CGO events using the electrocardiogram (ECG) R-wave as the trigger signal. Lung volume is known to affect the CGO waveforms. Therefore we modified the filtering method to produce a lung volume-dependent parametric model of the CGO waveform. A simultaneous recording of ECG, IP and pneumotachograph (PNT) was conducted on 41 healthy, sitting adults. The performance of the proposed method was compared to a low-pass filter and a Savitzky–Golay filter in terms of CGO attenuation and respiratory signal distortion. The method was found to be excellent, exhibiting CGO attenuation of 35.0±12.5 dB (mean±SD) and minimal distortion of the respiratory part of the impedance signal
Diffusion and Gas Conversion Analysis of Solid Oxide Fuel Cells at Loads via AC Impedance
Directory of Open Access Journals (Sweden)
Robert U. Payne
2011-01-01
Full Text Available Impedance measurements were conducted under practical load conditions in solid oxide fuel cells of differing sizes. For a 2 cm2 button cell, impedance spectra data were separately measured for the anode, cathode, and total cell. Improved equivalent circuit models are proposed and applied to simulate each of measured impedance data. Circuit elements related to the chemical and physical processes have been added to the total-cell model to account for an extra relaxation process in the spectra not measured at either electrode. The processes to which elements are attributed have been deduced by varying cell temperature, load current, and hydrogen concentration. Spectra data were also obtained for a planar stack of five 61 cm2 cells and the individual cells therein, which were fitted to a simplified equivalent circuit model of the total button cell. Similar to the button cell, the planar cells and stack exhibit a pronounced low-frequency relaxation process, which has been attributed to concentration losses, that is, the combined effects of diffusion and gas conversion. The simplified total-cell model approximates well the dynamic behavior of the SOFC cells and the whole stack.
Simon, Peter; Frankowski, Marcin; Bock, Nicole; Neukammer, Jörg
2016-06-21
We developed a microfluidic sensor for label-free flow cytometric cell differentiation by combined multiple AC electrical impedance and light scattering analysis. The measured signals are correlated to cell volume, membrane capacity and optical properties of single cells. For an improved signal to noise ratio, the microfluidic sensor incorporates two electrode pairs for differential impedance detection. One-dimensional sheath flow focusing was implemented, which allows single particle analysis at kHz count rates. Various monodisperse particles and differentiation of leukocytes in haemolysed samples served to benchmark the microdevice applying combined AC impedance and side scatter analyses. In what follows, we demonstrate that AC impedance measurements at selected frequencies allow label-free discrimination of platelets, erythrocytes, monocytes, granulocytes and lymphocytes in whole blood samples involving dilution only. Immunofluorescence staining was applied to validate the results of the label-free cell analysis. Reliable differentiation and enumeration of cells in whole blood by AC impedance detection have the potential to support medical diagnosis for patients with haemolysis resistant erythrocytes or abnormally sensitive leucocytes, i.e. for patients suffering from anaemia or leukaemia.
NEW BIOTESTING METHOD WITH THE APPLICATION OF MODERN IMPEDANCE TECHNOLOGIES
Directory of Open Access Journals (Sweden)
Sibirtsev V.S.
2015-03-01
Full Text Available The paper deals with new concepts of biotesting method updating. Modern conductometric technologies and the analysis of microbial «growth curves» are used. The registration occurs in a real time mode for the set of parallel samples. Results are shown for comparison of the proposed impedance biotesting technique with standard cultural determination method for total amount of microorganismes in the tested samples. Results are presented for practical application of the proposed impedance biotesting technique to the analysis as inhibitory action of clorhexidine disinfectant on the vital activity of Escherichia coli, as milk ripening process at the presence of various microorganisms species and protein preparations. The impedance biotesting method, proposed in the present work, provides high level of its own data convergence with the data, being received as a result of application of standard cultural biotesting techniques. Thus, the proposed method has such advantages, as: an opportunity of the detailed information reception about dynamics change of magnitude of population and intensity of test microorganisms metabolism, significant reduction of the culture media amount used, as well as researcher's temporary and labor efforts while the analyses realization, and the growth of analysis objectivity.
Energy Technology Data Exchange (ETDEWEB)
Kim, Chang-Soo; Song, Rak-Hyun; Choi, Byung-Woo [Korea Institute of Energy Research, Taejon (Korea, Republic of)] [and others
1996-12-31
In PAFC, the degradation on cathode electrode caused by carbon corrosion, platinum dissolution and growth is especially severe. An acceleration test is a good technique for evaluating the degradation of electrode performance, because it does not need long time. Coleman et al used thermal cycling and on-off cycling as an acceleration test. Song et al showed that hydrogen shortage decreased the electrode performance more rapidly than that of air shortage in gas shortage test. Honji et al reported that the rate of coarsening of Pt particle is rapid in open circuit potential and this is one of major causes on the performance degradation of electrode. The cathode performance has been studied by using acid absorption, acceleration and ac-impedance measurements as functions of the polytetrafluoroethylene (PTFE) contents and sintering temperatures of the electrode.
On second order shape optimization methods for electrical impedance tomography
Afraites, Lekbir; Dambrine, Marc; Kateb, Djalil
2007-01-01
This paper is devoted to the analysis of a second order method for recovering the \\emph{a priori} unknown shape of an inclusion $\\omega$ inside a body $\\Omega$ from boundary measurement. This inverse problem - known as electrical impedance tomography - has many important practical applications and hence has focussed much attention during the last years. However, to our best knowledge, no work has yet considered a second order approach for this problem. This paper aims to fill that void: we in...
International Nuclear Information System (INIS)
Low-to-medium-frequency range impedance spectroscopy was used to investigate two series of dried calcium silicate hydrates with or without aluminum atoms, C-S-H and C-A-S-H. Over four decades in frequency, sample Nyquist plots were fitted by adopting an equivalent circuit using constant phase elements (CPE). Conductivity values of the order of 10-9-10-10 S/cm were obtained at 316 K. The presence of CPE characteristic of the depleted semicircle at high frequency was related to a fractal dimension ranging from 2.4 up to 2.7. Above 316 K, the impedance spectra behaved unpredictably due to the dehydration process, while below 316 K the behavior was followed by adopting the modulus loss factor. The associated peak maximum variation is of the Arrhenius-type. The entire behavior may be interpreted by ionic motion and charge accumulation in addition to dielectric polarization at the grain boundaries associated to low fractal surface. (authors)
Directory of Open Access Journals (Sweden)
Farouk Rashwan
2005-01-01
Full Text Available The Electrochemical Impedance Spectroscopic techniques (EIS were used to investigate the behavior of some dye compounds (quinoid systems characterized with 2e-transfer processes. For this purpose, Alizarin Red S (ARS, Alizarin Cyanine (AC, Alizarin Viridin (AV and carminic acid were chosen for the measurements. The EIS experiments were performed using a small AC amplitude (10 mV p-p in addition to a relatively wide frequency range (0.01 Hz â¤ f â¤ 105 Hz. The investigations were carried out at room temperature in aqueous media (HClO4, NaClO4 and KNO3 on the Hanging Mercury Drop Electrode (HMDE and for comparison one experiment only was measured in aprotic solvent (DMF on the Pt-disc electrode. The EIS diagrams of these systems were characterized in the complex plane by two fundamental observations, the first of which is a straight line crossing the real axis at an angle of 45Â° (or at least nearly so and the second one is two semicircles beside each other corresponding to high-frequency and low-frequency regions, which are implying the presence of well-separated time constants. The EIS characteristic parameters for these dye systems were calculated and discussed.
Energy Technology Data Exchange (ETDEWEB)
Lee, Ju-hyung; Lee, Jong-Hak; Choi, Woojin [Department of Electrical Engineering, Soongsil University, 1-1 Sangdo-dong, Dongjak-gu, Seoul 156-743 (Korea); Park, Kyung-Won [Department of Chemical/Environmental Engineering, Soongsil University, 1-1 Sangdo-dong, Dongjak-gu, Seoul 156-743 (Korea); Sun, Hee-Young [Samsung Advanced Institute of Technology, Mt. 14-1, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-712 (Korea); Oh, Jae-Hyuk [Samsung Electronics, 416 Maetan-dong, Youngtong-gu, Suwon-si, Gyeonggi-do 443-370 (Korea)
2010-09-15
This paper proposes a new method for estimating the state and lifespan of fuel cells in operation by fuel cell equivalent impedance modeling by electrochemical impedance spectroscopy (EIS) and observing degradation. The performance change of fuel cells takes place in the form of changes in each parameter value comprising an equivalent AC impedance circuit; monitoring such changes allows for the prediction of the state and lifespan of a fuel cell. In the experiments, the AC impedance of high-temperature proton exchange membrane (PEM) fuel cells was measured at constant time intervals during their continuous operation for over 2200 h. The expression for the lifespan of a fuel cell was deduced by curve fitting the changes in each parameter to a polynomial. Electric double layer capacitance and charge transfer resistance, which show the reduction reaction of the cathode, were used as major parameters for judging the degradation; a method of using time constants is proposed to more accurately estimate the degree of degradation. In addition, an algorithm that can evaluate the soundness and lifespan of a fuel cell is proposed; it compares the measured time constant of the fuel cell being tested with that of average lifespan fuel cell. (author)
Recent progress on the factorization method for electrical impedance tomography.
Harrach, Bastian
2013-01-01
The Factorization Method is a noniterative method to detect the shape and position of conductivity anomalies inside an object. The method was introduced by Kirsch for inverse scattering problems and extended to electrical impedance tomography (EIT) by Brühl and Hanke. Since these pioneering works, substantial progress has been made on the theoretical foundations of the method. The necessary assumptions have been weakened, and the proofs have been considerably simplified. In this work, we aim to summarize this progress and present a state-of-the-art formulation of the Factorization Method for EIT with continuous data. In particular, we formulate the method for general piecewise analytic conductivities and give short and self-contained proofs. PMID:24069064
Energy Technology Data Exchange (ETDEWEB)
Lebrini, M.; Fontaine, G. [Laboratoire des Procedes d' Elaboration des Revetements Fonctionnels, LSPES UMR CNRS 8008, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Gengembre, L. [Unite de Catalyse et Chimie du solide UMR 8181 Bat C3, USTL, F-59655 Villeneuve d' Ascq Cedex (France); Traisnel, M. [Laboratoire des Procedes d' Elaboration des Revetements Fonctionnels, LSPES UMR CNRS 8008, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France)], E-mail: Michel.Traisnel@ensc-lille.fr; Lerasle, O.; Genet, N. [TOTAL France, Centre de Recherche de Solaize, Chemin du canal, BP 22, F-69360 Solaize (France)
2008-08-30
The efficiency of a new triazole derivative, namely, 2-{l_brace}(2-hydroxyethyl)[(4-methyl-1H-1,2,3-benzotriazol-1-yl)methyl]amino{r_brace} ethanol (TTA) has been studied for corrosion inhibition of galvanized steel and electroplating steel in aqueous solution. Corrosion inhibition was studied using electrochemical impedance spectroscopy (EIS). These studies have shown that TTA was a very good inhibitor. Data obtained from EIS show a frequency distribution and therefore a modelling element with frequency dispersion behaviour, a constant phase element (CPE) has been used. The corrosion behaviour of galvanized steel and electroplating steel in aqueous solution was also investigated in the presence of 4-methyl-1H-benzotriazole (TTA unsubstituted) by EIS. These studies have shown that the ability of the molecule to adsorb on the steel surface was dependent on the group in triazole ring substituent. X-ray photoelectron spectroscopy surface analysis with TTA shows that it chemisorbed on surface of galvanized steel and electroplating steel.
International Nuclear Information System (INIS)
The ac response in the dielectric regime of thin films consisting of Pd nanoparticles embedded in a ZrO2 insulating matrix, fabricated by co-sputtering, was obtained from impedance spectroscopy measurements (11 Hz–2 MHz) in the temperature range 30–290 K. The response was fitted to an equivalent circuit model whose parameters were evaluated assuming that, as a consequence of the bimodal size distribution of the Pd particles, two mechanisms appear. At low frequencies, a first element similar to a parallel RC circuit dominates the response, due to two competing paths. One of them is associated with thermally-activated tunneling conductance among most of the smallest Pd particles (size ∼ 2 nm), which make up the dc tunneling backbone of the sample. The other one is related to the conductance associated with the capacitive paths among larger Pd particles (size > 5 nm). At low temperature and intermediate frequencies (∼1 kHz), a shortcut process between the larger particles connects regions initially isolated from the backbone at low frequencies. These regions, populated by some additional smaller particles located around two bigger particles, were isolated because the bigger particles separation is too large for the tunneling current. Once connected to the backbone, current may also flow through them by means of the so-called thermally-activated assisted tunneling resistive paths, yielding the second element of the equivalent circuit (a parallel RLC element). At high temperature, the thermal energy shifts the onset of the shortcut process high frequencies and, thus, only the first element is observed. Considering these results, controlling the particle size distribution could be helpful to tune up the frequency at which tunneling conductance dominates the ac response of these granular metals. (paper)
Na＋导电陶瓷的交流阻抗谱%AC Impedance Characteristics of Na＋ Conductive Ceramic Electrodes
Institute of Scientific and Technical Information of China (English)
倪蕾蕾; 杨座国; 曾乐才; 刘宇; 祝铭
2012-01-01
以β″-Al2O3导电陶瓷为电解质，研究制备银／碳毡／低熔点钠盐电极（Ag／C／（NaNO3＋NaNO2）），并选择银电极作为对比电极。测试条件为：温度275～400℃、频率12～105Hz。采用交流阻抗谱法（Ac）进行β″-Al2O3导电陶瓷与金属Na＋界面兼容性和界面离子传导机理研究。结果表明：β″-Al2O3导电陶瓷的电导与温度关系服从于阿仑尼乌斯公式。比较两种电极可以发现，电极／电解质的界面接触对电极／电解质界面迁移阻抗和阻抗谱测试结果会有较大程度的影响。%Alumina conductive ceramic was used as solid electrolyte. Using the silver electrode as comparison one, a new electrode, silver / carbon felt / low melting sodium electrode （Ag/C/（NaNO3 ＋ NaNO2）） as the test electrode was designed and prepared. The testing temperature ranged from 275 ℃ to 400℃ and frequency ranged from 12 Hz to 10^5Hz. The AC impedance spectroscopy was employed to study the compatibility and ion conduction mechanism between β″-Al2O3 ceramic and Na＋. The results show that the conductivity of β″-Al2O3 ceramic and temperature obey the Arrhenius equation. In comparison of two electrodes, the contact between electrode and solid electrolyte plays an important role in electrode/ electrolyte interface transfer impedance and electrochemical impedance spectroscopy.
Güren, Onan; Çayören, Mehmet; Tükenmez Ergene, Lale; Akduman, Ibrahim
2014-10-01
A new microwave imaging method that uses microwave contrast agents is presented for the detection and localization of breast tumours. The method is based on the reconstruction of breast surface impedance through a measured scattered field. The surface impedance modelling allows for representing the electrical properties of the breasts in terms of impedance boundary conditions, which enable us to map the inner structure of the breasts into surface impedance functions. Later a simple quantitative method is proposed to screen breasts against malignant tumours where the detection procedure is based on weighted cross correlations among impedance functions. Numerical results demonstrate that the method is capable of detecting small malignancies and provides reasonable localization.
Güren, Onan; Çayören, Mehmet; Ergene, Lale Tükenmez; Akduman, Ibrahim
2014-10-01
A new microwave imaging method that uses microwave contrast agents is presented for the detection and localization of breast tumours. The method is based on the reconstruction of breast surface impedance through a measured scattered field. The surface impedance modelling allows for representing the electrical properties of the breasts in terms of impedance boundary conditions, which enable us to map the inner structure of the breasts into surface impedance functions. Later a simple quantitative method is proposed to screen breasts against malignant tumours where the detection procedure is based on weighted cross correlations among impedance functions. Numerical results demonstrate that the method is capable of detecting small malignancies and provides reasonable localization.
Energy Technology Data Exchange (ETDEWEB)
Yamana, Teppei; Arima, Tatsumi, E-mail: arima@nucl.kyushu-u.ac.jp; Yoshihara, Takatoshi; Inagaki, Yaohiro; Idemitsu, Kazuya
2013-11-15
The oxygen conductivities and crystallographic properties of niobia-doped yttria-stabilized tetragonal zirconia with 0.0–2.6 wt% Nb{sub 2}O{sub 5} were evaluated by the AC impedance analysis and the X-ray diffraction measurement, respectively. The tetragonality of zirconia increased with niobia content and approached ∼1.017 while the tetragonal-to-monoclinic phase transition occurred above ca. 1 wt% Nb{sub 2}O{sub 5}. On the other hand, oxygen conductivities of bulk and grain-boundary (GB) decreased with increasing niobia content. The bulk conductivity controlled the total ionic conductivity at high temperatures, and its activation energy had smaller dependence on temperature than that of GB. In addition to the effect of [V{sub O}{sup ··}] depletion by niobia addition, the behaviors of bulk and GB conductivities might be explained by the decrease of mobility of oxygen ion due to Coulomb repulsion between Nb{sup 5+} and V{sub O}{sup ··} and by no segregation of Nb ions in the space-charge layers, respectively.
On second order shape optimization methods for electrical impedance tomography
Afraites, Lekbir; Kateb, Djalil
2007-01-01
This paper is devoted to the analysis of a second order method for recovering the \\emph{a priori} unknown shape of an inclusion $\\omega$ inside a body $\\Omega$ from boundary measurement. This inverse problem - known as electrical impedance tomography - has many important practical applications and hence has focussed much attention during the last years. However, to our best knowledge, no work has yet considered a second order approach for this problem. This paper aims to fill that void: we investigate the existence of second order derivative of the state $u$ with respect to perturbations of the shape of the interface $\\partial\\omega$, then we choose a cost function in order to recover the geometry of $\\partial \\omega$ and derive the expression of the derivatives needed to implement the corresponding Newton method. We then investigate the stability of the process and explain why this inverse problem is severely ill-posed by proving the compactness of the Hessian at the global minimizer.
A method to separate process contributions in impedance spectra by variation of test conditions
DEFF Research Database (Denmark)
Jensen, Søren Højgaard; Hauch, Anne; Hendriksen, Peter Vang;
2007-01-01
Many processes contribute to the overall impedance of an electrochemical cell, and these may be difficult to separate in the impedance spectrum. Here, we present an investigation of a solid oxide fuel cell based on differences in impedance spectra due to a change of operating parameters and present...... the result as the derivative of the impedance with respect to ln(f). The method is used to separate the anode and cathode contributions and to identify various types of processes....
Iterative Reconstruction Methods for Hybrid Inverse Problems in Impedance Tomography
DEFF Research Database (Denmark)
Hoffmann, Kristoffer; Knudsen, Kim
2014-01-01
For a general formulation of hybrid inverse problems in impedance tomography the Picard and Newton iterative schemes are adapted and four iterative reconstruction algorithms are developed. The general problem formulation includes several existing hybrid imaging modalities such as current density...... impedance imaging, magnetic resonance electrical impedance tomography, and ultrasound modulated electrical impedance tomography, and the unified approach to the reconstruction problem encompasses several algorithms suggested in the literature. The four proposed algorithms are implemented numerically in two...... be based on a theoretical analysis of the underlying inverse problem....
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
1 Results Investigations on the sensing mechanism is important for understanding the electrical responses of humidity sensors to humidity change,and could provide guidelines for the design and synthesis of humidity sensitive materials with desirable properties.In this work,the sensing mechanism of humidity sensors based on quaternized poly(4-vinylpyridine) (PVP)/carbon black (CB) composite[1] was studied by measuring their AC impedance spectra at various humidities at room temperature.Under low humidity...
An effective measured data preprocessing method in electrical impedance tomography.
Yu, Chenglong; Yue, Shihong; Wang, Jianpei; Wang, Huaxiang
2014-01-01
As an advanced process detection technology, electrical impedance tomography (EIT) has widely been paid attention to and studied in the industrial fields. But the EIT techniques are greatly limited to the low spatial resolutions. This problem may result from the incorrect preprocessing of measuring data and lack of general criterion to evaluate different preprocessing processes. In this paper, an EIT data preprocessing method is proposed by all rooting measured data and evaluated by two constructed indexes based on all rooted EIT measured data. By finding the optimums of the two indexes, the proposed method can be applied to improve the EIT imaging spatial resolutions. In terms of a theoretical model, the optimal rooting times of the two indexes range in [0.23, 0.33] and in [0.22, 0.35], respectively. Moreover, these factors that affect the correctness of the proposed method are generally analyzed. The measuring data preprocessing is necessary and helpful for any imaging process. Thus, the proposed method can be generally and widely used in any imaging process. Experimental results validate the two proposed indexes.
Improved Design Methods for Robust Single- and Three-Phase ac-dc-ac Power Converters
DEFF Research Database (Denmark)
Qin, Zian
. With the proposed new active power decoupling method, the ripple power in the converter can be compensated in a more efficient and more compact way. Then, Chapter 5 changes the scope of the thesis to three-phase converters, and the nine-switch converter, as a reduced switch version of two three-phase full......-bridges connected back-to-back, is studied. Application criteria of the nine-switch converter are investigated for reducing the relatively high stress introduced by the less number of switches. In Chapter 6 a rotating speed controller design method is proposed for improving the thermal loading of the three...... to users. Their performances including cost, efficiency, reliability, and so on, therefore are more important concerns than they were. The objective of this thesis is to study and propose advanced design methods for robust ac-dc-ac converters, which are widely used interfaces in energy conversion system...
Electromechanical impedance method to assess dental implant stability
International Nuclear Information System (INIS)
The stability of a dental implant is a prerequisite for supporting a load-bearing prosthesis and establishment of a functional bone–implant system. Reliable and noninvasive methods able to assess the bone interface of dental and orthopedic implants (osseointegration) are increasingly demanded for clinical diagnosis and direct prognosis. In this paper, we propose the electromechanical impedance method as a novel approach for the assessment of dental implant stability. Nobel Biocare® implants with a size of 4.3 mm diameter ×13 mm length were placed inside bovine bones that were then immersed in a solution of nitric acid to allow material degradation. The degradation simulated the inverse process of bone healing. The implant–bone systems were monitored by bonding a piezoceramic transducer (PZT) to the implants’ abutment and measuring the admittance of the PZT over time. It was found that the PZT’s admittance and the statistical features associated with its analysis are sensitive to the degradation of the bones and can be correlated to the loss of calcium measured by means of the atomic absorption spectroscopy method. The present study shows promising results and may pave the road towards an innovative approach for the noninvasive monitoring of dental implant stability and integrity. (paper)
Directory of Open Access Journals (Sweden)
Hoi Shun Lui
2010-01-01
Full Text Available A short review of the receiving-mutual-impedance method (RMIM for mutual coupling compensation in direction finding applications using linear array is conducted. The differences between the conventional-mutual-impedance method (CMIM and RMIM, as well as the three different determination methods for receiving mutual impedance (RMI, will be discussed in details. As an example, direction finding with better accuracies is used for demonstrating the superiority of mutual coupling compensation using RMIM.
Increasing of AC compensation method accuracy
Energy Technology Data Exchange (ETDEWEB)
Havlicek, V. E-mail: havlicek@fel.cvut.cz; Pokorny, M
2003-01-01
The original MMF compensation method allows the magnetic properties of single sheets and strips to be measured in the same way as the closed specimen properties. The accuracy of the method is limited due to the finite gain of the feedback loop fulfilling the condition of its stability. Digitalisation of the compensation loop appropriate processing of the error signal can rapidly improve the accuracy. The basic ideas of this new approach and the experimental results are described in this paper.
Application of impedance spectroscopy method for analysis of benzanol fuels
Directory of Open Access Journals (Sweden)
Mamykin A. V.
2015-06-01
Full Text Available The authors have developed a method for express control of three component «gasoline-alcohol-water» fuel mixtures based on the spectral impedance investigation of benzanol mixture in the frequency range of 500 Hz — 10 kHz. A correlation dependence between the dielectric constant and the specific resistance of the fuel mixture on content of ethanol and water in the mixture has been found. On the basis of this dependence a calibration nomogram to quantify the gasoline and water-alcohol components content in the test benzanol fuel in the actual range of concentrations has been formed. The nomogram allows determining the water-alcohol and gasoline parts in the analyzed fuel with an error of no more than 1% vol., while the strength of water-alcohol solution is determined with an error of no more than 0.8% vol. The obtained nomogram can also give information about critical water content in the benzanol fuel to prevent its eventual phase separation. It is shown that the initial component composition of different gasoline brands has no significant effect on the electrical characteristics of the studied benzanol fuels, which makes the evaluation of alcohol and water content in the fuel sufficiently accurate. for practical applications.
Energy Technology Data Exchange (ETDEWEB)
Kinoshita, Katsuyuki
2015-02-01
We have developed a method for detecting fatigue in aluminum alloys that is based on a applying a ferromagnetic electroless Ni–Co–P plating and then using an electromagnetic impedance (EMI) method to determine its permeability properties by measuring the high-frequency AC impedance of a coil sensor in the presence of a static magnetic field. The results obtained confirmed that this method can estimate the fatigue evolution of a specimen until the point at which the cumulative strain becomes saturated by using measurements obtained by the EMI method under tensile deformation and FEM analysis results. - Highlights: • Plating aluminum alloy with Ni–Co–P film increases its fatigue strength by 13−16%. • The tensile direction is the stress induced “hard axis” of the Ni–Co–P plating. • In-plane permeability determines the coil impedance for out-of-plane excitation. • This method can measure fatigue up to saturation of the substrate's residual strain.
Frequency Synchronization Analysis in Digital lock-in Methods for Bio-impedance Determination
Brajkovič Robert; Žagar Tomaž; Križaj Dejan
2014-01-01
The lock-in method is one of the most frequently used methods for reconstruction of measured signals and as such frequently applied in the (bio)impedance method to determine the modulus and phase of the (bio)impedance. In implementation of the method in a (bio)impedance measurement device one has to consider possible non synchronized frequencies of the reference and the analyzed signals as well as potential sources of noise. In this work we analyzed these errors theoretically and experimental...
An impedance-based high-throughput method for evaluating the cytotoxicity of nanoparticles
Cimpan, M. R.; Mordal, T.; Schölermann, J.; Allouni, Z. E.; Pliquett, U.; Cimpan, E.
2013-04-01
Impedance-based assays can constitute a reliable alternative to the conventional methods used in nanotoxicology due to the important advantages of being label-free and monitoring the cells in real-time. In this study, the suitability of impedance-monitoring for the screening of nanoparticle (NP)-induced cytotoxicity was assessed. The effect of titanium dioxide (TiO2)-NPs on cellular proliferation, viability, spreading, and detachment from substrate was evaluated by continuous impedance-based measurements made with an xCELLigence system. Fibroblasts seeded in microelectrode-embedded E-plates were exposed to spherical anatase nano-TiO2 (5, 10, and 40 nm in diameter) for up to 120 h. An alternative excitation signal (20 mV control voltage amplitude) was applied at 10, 25, and 50 kHz to the microelectrodes in the E-plates. Cells attached to the electrode surfaces act as insulators and lead to an increase in impedance. For validating the impedance-method, Trypan Blue exclusion and ultrahigh resolution imaging (URI) were employed. The general trend observed was a decrease in impedance following exposure to TiO2-NPs. Impedance-based results were in most instances in accordance with those from the Trypan Blue exclusion and URI assays indicating that the impedance-based approach has merit. Further studies are needed to validate it as a high-throughput method for evaluating NPs' cytotoxicity.
DEFF Research Database (Denmark)
Sørensen, Stefan; Nielsen, Hans Ove
2002-01-01
In this paper we present comparison of different line and cable series impedance calculation methods, where the correction of a discovered PSCAD/EMIDC v.3.0.8 calculation error of the cable series impedance results n deviation under 0.1% instead of the previous method which gave approximately 10......% deviation to other methods. The correction is done by adjusting he earth return path impedance for the cable model, and will thereby form the basis for a future comparison with measured data from a real full scale earth fault experiment on a mixed line and cable network....
Impedance and a.c. conductivity studies of Ba(Pr1/2Nb1/2)O3 ceramic
International Nuclear Information System (INIS)
Impedance and electrical conduction studies of Ba(Pr1/2Nb1/2)O3 ceramic prepared through conventional ceramic fabrication technique are presented. The crystal symmetry, space group and unit cell dimensions were estimated using Rietveld analysis. X-ray diffraction analysis indicated the formation of a single-phase cubic structure with space group, Pm3¯m. EDAX and SEM studies were carried out to study the quality and purity of compound. To find a correlation between the response of the real system and idealized model circuit composed of discrete electrical components, the model fittings were presented using impedance data. Complex impedance as well as electric modulus analyses suggested dielectric relaxation to be of non-Debye type and negative temperature coefficient of resistance character. The correlated barrier hopping model was employed to successfully explain the mechanism of charge transport in Ba(Pr1/2Nb1/2)O3. The a.c. conductivity data were used to evaluate density of states at Fermi level, minimum hopping length and apparent activation energy. (author)
Impedance and a.c. conductivity studies of Ba(Pr1/2Nb1/2)O3 ceramic
Indian Academy of Sciences (India)
K Amar Nath; K Prasad; K P Chandra; A R Kulkarni
2013-08-01
Impedance and electrical conduction studies of Ba(Pr1/2Nb1/2)O3 ceramic prepared through conventional ceramic fabrication technique are presented. The crystal symmetry, space group and unit cell dimensions were estimated using Rietveld analysis. X-ray diffraction analysis indicated the formation of a single-phase cubic structure with space group, $\\bar{3}$. EDAX and SEM studies were carried out to study the quality and purity of compound. To find a correlation between the response of the real system and idealized model circuit composed of discrete electrical components, the model fittings were presented using impedance data. Complex impedance as well as electric modulus analyses suggested dielectric relaxation to be of non-Debye type and negative temperature coefficient of resistance character. The correlated barrier hopping model was employed to successfully explain the mechanism of charge transport in Ba(Pr1/2Nb1/2)O3. The a.c. conductivity data were used to evaluate density of states at Fermi level, minimum hopping length and apparent activation energy.
Perturbation method for calculation of narrow-band impedance and trapped modes
International Nuclear Information System (INIS)
An iterative method for calculation of the narrow-band impedance is described for a system with a small variation in boundary conditions, so that the variation can be considered as a perturbation. The results are compared with numeric calculations. The method is used to relate the origin of the trapped modes with the degeneracy of the spectrum of an unperturbed system. The method also can be applied to transverse impedance calculations. 6 refs., 6 figs., 1 tab
Ultrahigh impedance method to assess electrostatic accelerator performance
Lobanov, Nikolai R.; Linardakis, Peter; Tsifakis, Dimitrios
2015-06-01
This paper describes an investigation of problem-solving procedures to troubleshoot electrostatic accelerators. A novel technique to diagnose issues with high-voltage components is described. The main application of this technique is noninvasive testing of electrostatic accelerator high-voltage grading systems, measuring insulation resistance, or determining the volume and surface resistivity of insulation materials used in column posts and acceleration tubes. In addition, this technique allows verification of the continuity of the resistive divider assembly as a complete circuit, revealing if an electrical path exists between equipotential rings, resistors, tube electrodes, and column post-to-tube conductors. It is capable of identifying and locating a "microbreak" in a resistor and the experimental validation of the transfer function of the high impedance energy control element. A simple and practical fault-finding procedure has been developed based on fundamental principles. The experimental distributions of relative resistance deviations (Δ R /R ) for both accelerating tubes and posts were collected during five scheduled accelerator maintenance tank openings during 2013 and 2014. Components with measured Δ R /R >±2.5 % were considered faulty and put through a detailed examination, with faults categorized. In total, thirty four unique fault categories were identified and most would not be identifiable without the new technique described. The most common failure mode was permanent and irreversible insulator current leakage that developed after being exposed to the ambient environment. As a result of efficient in situ troubleshooting and fault-elimination techniques, the maximum values of |Δ R /R | are kept below 2.5% at the conclusion of maintenance procedures. The acceptance margin could be narrowed even further by a factor of 2.5 by increasing the test voltage from 40 V up to 100 V. Based on experience over the last two years, resistor and insulator
AC Conductivity and Impedance Properties of 0.65Pb(Mg1/3Nb2/3O3-0.35PbTiO3 Ceramics
Directory of Open Access Journals (Sweden)
Banarji Behera
2009-01-01
impedance spectroscopy technique. The impedance and electric permittivity were strongly temperature and frequency dependent. The activation energy, calculated from the temperature dependence of AC conductivity of the ceramics was found to be ∼0.5 eV. The relaxation process in the ceramics was found to be of non-Debye type. The nature of Cole-Cole diagram reveals the contribution of grain (bulk and grain boundary permittivity in the ceramics.
Indian Academy of Sciences (India)
Anji Reddy Polu; Ranveer Kumar
2011-08-01
Polyvinyl alcohol (PVA)–polyethylene glycol (PEG) based solid polymer blend electrolytes with magnesium nitrate have been prepared by the solution cast technique. Impedance spectroscopic technique has been used, to characterize these polymer electrolytes. Complex impedance analysis was used to calculate bulk resistance of the polymer electrolytes. The a.c.-impedance data reveal that the ionic conductivity of PVA–PEG–Mg(NO3)2 system is changed with the concentration of magnesium nitrate, maximum conductivity of 9.63 × 10-5 S/cm at room temperature was observed for the system of PVA–PEG–Mg(NO3)2 (35–35–30). However, ionic conductivity of the above system increased with the increase of temperature, and the highest conductivity of 1.71 × 10-3 S/cm was observed at 100°C. The effect of ionic conductivity of polymer blend electrolytes was measured by varying the temperature ranging from 303 to 373 K. The variation of imaginary and real parts of dielectric constant with frequency was studied.
Impedance ratio method for urine conductivity-invariant estimation of bladder volume
Thomas Schlebusch; Jakob Orschulik; Jaakko Malmivuo; Steffen Leonhardt; Dorothea Leonhäuser; Joachim Grosse; Michael Kowollik; Ruth Kirschner-Hermanns; Marian Walter
2014-01-01
Non-invasive estimation of bladder volume could help patients with impaired bladder volume sensation to determine the right moment for catheterisation. Continuous, non-invasive impedance measurement is a promising technology in this scenario, although influences of body posture and unknown urine conductivity limit wide clinical use today. We studied impedance changes related to bladder volume by simulation, in-vitro and in-vivo measurements with pigs. In this work, we present a method to redu...
Methods for Addressing Missing Data with Applications from ACS Exams
Brandriet, Alexandra; Holme, Thomas
2015-01-01
As part of the ACS Examinations Institute (ACS-EI) national norming process, student performance data sets are collected from professors at colleges and universities from around the United States. Because the data sets are collected on a volunteer basis, the ACS-EI often receives data sets with only students' total scores and without the students'…
System and method for determining stator winding resistance in an AC motor using motor drives
Lu, Bin; Habetler, Thomas G; Zhang, Pinjia
2013-02-26
A system and method for determining the stator winding resistance of AC motors is provided. The system includes an AC motor drive having an input connectable to an AC source and an output connectable to an input terminal of an AC motor, a pulse width modulation (PWM) converter having switches therein to control current flow and terminal voltages in the AC motor, and a control system connected to the PWM converter. The control system generates a command signal to cause the PWM converter to control an output of the AC motor drive corresponding to an input to the AC motor, selectively generates a modified command signal to cause the PWM converter to inject a DC signal into the output of the AC motor drive, and determines a stator winding resistance of the AC motor based on the DC signal of at least one of the voltage and current.
A straightforward method for wall impedance eduction in a flow duct.
Jing, Xiaodong; Peng, Sen; Sun, Xiaofeng
2008-07-01
The development of the advanced liner technology for aeroengine noise control necessitates the impedance measurement method under realistic flow conditions. Currently, the methods for this need are mainly based on the inverse impedance eduction principle, confronting with the problems of initial guess, high computation cost, and low convergence. In view of this, a new strategy is developed that straightforwardly educes the impedance from the sound pressure information measured on the duct wall opposing to the test acoustic liner embedded in a flow duct. Here, the key insight is that the modal nature of the duct acoustic field renders a summed-exponential representation of the measured sound pressure; thus, the characterizing axial wave number can be readily extracted by means of Prony's method, and further the unknown impedance is calculated from the eigenvalue and dispersion relations based on the classical mode-decomposition analysis. This straightforward method is simple in its basic principle but remarkably has the advantages of ultimately overcoming the drawbacks inherent to the inverse methods, incorporating the realistic multimode nonprogressive wave effects, high computational efficiency, possibly reducing the measurement points, and even avoiding the necessity of the duct exit impedance that bothers perhaps all the existing waveguide methods.
A New Method of On-line Grid Impedance Estimation for PV Inverter
DEFF Research Database (Denmark)
Teodorescu, Remus; Asiminoaei, Lucian; Blaabjerg, Frede;
2004-01-01
The recent increase in photo-voltaic (PV) installations calls for new and better power quality requirements with respect to connection to the grid supply. Therefore, different methods are typically used for continuous grid monitoring, usually by using external devices. In this paper a new method...... for on-line measuring the grid impedance is presented. The presented method requires no extra hardware being accommodated by typical PV inverters, sensors and CPU, to provide a fast and low cost approach of on-line impedance measurement. By injecting a non-characteristic harmonic current and measuring...
Impedance feedback control for scanning electrochemical microscopy.
Alpuche-Aviles, M A; Wipf, D O
2001-10-15
A new constant-distance imaging method based on the relationship between tip impedance and tip-substrate separation has been developed for the scanning electrochemical microscope. The tip impedance is monitored by application of a high-frequency ac voltage bias between the tip and auxiliary electrode. The high-frequency ac current is easily separated from the dc-level faradaic electrochemistry with a simple RC filter, which allows impedance measurements during feedback or generation/collection experiments. By employing a piezo-based feedback controller, we are able to maintain the impedance at a constant value and, thus, maintain a constant tip-substrate separation. Application of the method to feedback and generation/collection experiments with tip electrodes as small as 2 microm is presented. PMID:11681463
An approach to the diagnosis of metabolic syndrome by the multi-electrode impedance method
Furuya, N.; Sakamoto, K.; Kanai, H.
2010-04-01
It is well known that metabolic syndrome can induce myocardial infarction and cerebral infarction. So, it is very important to measure the visceral fat volume. In the electric impedance method, information in the vicinity of the electrodes is strongly reflected. Therefore, we propose a new multi-electrode arrangement method based on the impedance sensitivity theorem to measure the visceral fat volume. This electrode arrangement is designed to enable high impedance sensitivity in the visceral and subcutaneous fat regions. Currents are simultaneously applied to several current electrodes on the body surface, and one voltage electrode pair is arranged on the body surface near the organ of interest to obtain the visceral fat information and another voltage electrode pair is arranged on the body surface near the current electrodes to obtain the subcutaneous fat information. A simulation study indicates that by weighting the impedance sensitivity distribution, as in our method, a high-sensitivity region in the visceral and the subcutaneous fat regions can be formed. In addition, it was confirmed that the visceral fat volume can be estimated by the measured impedance data.
A Convergent Method of Auxiliary Sources for Two-Dimensional Impedance Scatterers With Edges
DEFF Research Database (Denmark)
Karamehmedovic, Mirza; Breinbjerg, Olav
2001-01-01
A modification to the Method of Auxiliary Sources (MAS) is introduced which renders the method operational for two-dimensional impedance scatterers with edges. The modification consists in letting the auxiliary surface converge to the scatterer physical surface for increasing number of auxiliary ...
Dolgin, M; Einziger, P D
2006-01-01
A novel electrical impedance tomography method is introduced for reconstruction of layered biological tissues with continuous plane-stratification. The algorithm implements the recently proposed reconstruction scheme for piecewise constant conductivity profiles, based on an improved Prony method in conjunction with Legendre polynomial expansion (LPE). It is shown that the proposed algorithm is capable of successfully reconstructing continuous conductivity profiles with moderate (WKB) slop. Features of the presented reconstruction scheme include, an inherent linearity, achieved by the linear LPE transform, a locality feature, assigning analytically to each spectral component a local electrical impedance associated with a unique location, and effective performance even in the presence of noisy measurements.
Directory of Open Access Journals (Sweden)
Mohamed-Rachid Boulassel
2015-11-01
Full Text Available Objectives: Obtaining accurate platelet counts in microcytic blood samples is challenging, even with the most reliable automated haematology analysers. The CELL-DYN™ Sapphire (Abbott Laboratories, Chicago, Illinois, USA analyser uses both optical density and electronic impedance methods for platelet counting. This study aimed to evaluate the accuracy of optical density and electrical impedance methods in determining true platelet counts in thrombocytopaenic samples with microcytosis as defined by low mean corpuscular volume (MCV of red blood cells. Additionally, the impact of microcytosis on platelet count accuracy was evaluated. Methods: This study was carried out between February and December 2014 at the Haematology Laboratory of the Sultan Qaboos University Hospital in Muscat, Oman. Blood samples were collected and analysed from 189 patients with thrombocytopaenia and MCV values of <76 femtolitres. Platelet counts were tested using both optical and impedance methods. Stained peripheral blood films for each sample were then reviewed as a reference method to confirm platelet counts. Results: The platelet counts estimated by the impedance method were on average 30% higher than those estimated by the optical method (P <0.001. The estimated intraclass correlation coefficient was 0.52 (95% confidence interval: 0.41–0.62, indicating moderate reliability between the methods. The degree of agreement between methods ranged from -85.5 to 24.3 with an estimated bias of -30, suggesting that these methods generate different platelet results. Conclusion: The impedance method significantly overestimated platelet counts in microcytic and thrombocytopaenic blood samples. Further attention is therefore needed to improve the accuracy of platelet counts, particularly for patients with conditions associated with microcytosis.
Rangom, Yverick; Tang, Xiaowu Shirley; Nazar, Linda F
2015-07-28
We report the fabrication of high-performance, self-standing composite sp(2)-carbon supercapacitor electrodes using single-walled carbon nanotubes (CNTs) as conductive binder. The 3-D mesoporous mesh architecture of CNT-based composite electrodes grants unimpaired ionic transport throughout relatively thick films and allows superior performance compared to graphene-based devices at an ac line frequency of 120 Hz. Metrics of 601 μF/cm(2) with a -81° phase angle and a rate capability (RC) time constant of 199 μs are obtained for thin carbon films. The free-standing carbon films were obtained from a chlorosulfonic acid dispersion and interfaced to stainless steel current collectors with various surface treatments. CNT electrodes were able to cycle at 200 V/s and beyond, still showing a characteristic parallelepipedic cyclic votammetry shape at 1 kV/s. Current densities are measured in excess of 6400 A/g, and the electrodes retain more than 98% capacity after 1 million cycles. These promising results are attributed to a reduction of series resistance in the film through the CNT conductive network and especially to the surface treatment of the stainless steel current collector.
Experimental facility and void fraction calibration methods for impedance probes
Energy Technology Data Exchange (ETDEWEB)
Oliveira, Fernando L. de; Rocha, Marcelo S., E-mail: floliveira@ipen.br, E-mail: msrocha@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2013-07-01
An experimental facility was designed and constructed with aims of to calibrate a capacitance probe for gas-liquid flow void fraction measurements. The facility is composed of a metallic hack with a vertical 2,300 mm high glass tube with 38 mm ID with stagnant water and compressed air bubbling system simulating the gas phase (vapor). At the lower part, a mixing section with a porous media element releases the air bubbles into the water, and the compressed air flow is measured by two calibrated rotameters. At the upper part a stagnant water tank separates the liquid and gas. Two pressure taps are located near the lower and upper sides of the glass tube for pressure difference measurement. The pressure difference is used for low void fraction values (0-15%) calibration methods, as described in the work. Two electrically controlled quick closing valves are installed between the porous media element and the upward separation tank for high void fraction values measurement (15-50%) used to calibrate the capacitance probe. The experimental facility design, construction, capacitance probe calibration methods and results, as well as flow pattern visualization, are presented. Finally, the capacitance probe will be installed on a natural circulation circuit mounted at the Nuclear Engineering Center (CEN/IPEN/CNEN-SP) for measurement of the instantaneous bulk void. Instantaneous signals generated by the capacitance probe will allow the determination of natural circulation loop global energy balance. (author)
Impedance ratio method for urine conductivity-invariant estimation of bladder volume
Directory of Open Access Journals (Sweden)
Thomas Schlebusch
2014-09-01
Full Text Available Non-invasive estimation of bladder volume could help patients with impaired bladder volume sensation to determine the right moment for catheterisation. Continuous, non-invasive impedance measurement is a promising technology in this scenario, although influences of body posture and unknown urine conductivity limit wide clinical use today. We studied impedance changes related to bladder volume by simulation, in-vitro and in-vivo measurements with pigs. In this work, we present a method to reduce the influence of urine conductivity to cystovolumetry and bring bioimpedance cystovolumetry closer to a clinical application.
Absorption and impedance boundary conditions for phased geometrical-acoustics methods
DEFF Research Database (Denmark)
Jeong, Cheol-Ho
2012-01-01
developed on which boundary condition produces accurate results. In this study, various boundary conditions in terms of normal, random, and field incidence absorption coefficients and normal incidence surface impedance are used in a phased beam tracing model, and the simulated results are validated......Defining accurate acoustical boundary conditions is of crucial importance for room acoustic simulations. In predicting sound fields using phased geometrical acoustics methods, both absorption coefficients and surface impedances of the boundary surfaces can be used, but no guideline has been...... with boundary element solutions. Two rectangular rooms with uniform and non-uniform absorption distributions are tested. Effects of the neglect of reflection phase shift are also investigated. It is concluded that the impedance, random incidence, and field incidence absorption boundary conditions produce...
A method of phase control and impedance matching of mutually coupled ICRF antennas in LHD
International Nuclear Information System (INIS)
In the Large Helical Device (LHD), the installation of a pair of ion cyclotron range of frequencies (ICRF) antennas from upper and lower ports is planned. These antennas are geometrically symmetrical and located side by side. By changing the current phase on the straps, the wave number parallel to the magnetic field line can be controlled. However, antenna impedances will also be changed and reflected power will increase due to mutual coupling. For efficient power injection and the protection of tetrode tubes, the parameters of impedance matching devices must be controlled together with the current phase. A method was formulated and trials of phase control and impedance matching were successfully conducted with a simplified two-port dummy antenna. (author)
DEFF Research Database (Denmark)
Karamehmedovic, Mirza; Breinbjerg, Olav
2002-01-01
The Method of Auxiliary Sources (MAS) is applied to 3D scattering problems involving spherical impedance scatterers. The MAS results are compared with the reference spherical wave expansion (SWE) solution. It is demonstrated that good agreement is achieved between the MAS and SWE results....
Miles, Robin R.; Belgrader, Phillip; Fuller, Christopher D.
2007-01-02
Impedance measurements are used to detect the end-point for PCR DNA amplification. A pair of spaced electrodes are located on a surface of a microfluidic channel and an AC or DC voltage is applied across the electrodes to produce an electric field. An ionically labeled probe will attach to a complementary DNA segment, and a polymerase enzyme will release the ionic label. This causes the conductivity of the solution in the area of the electrode to change. This change in conductivity is measured as a change in the impedance been the two electrodes.
Pulse wave detection method based on the bio-impedance of the wrist
He, Jianman; Wang, Mengjun; Li, Xiaoxia; Li, Gang; Lin, Ling
2016-05-01
The real-time monitoring of pulse rate can evaluate the heart health to some extent, and the measurement of bio-impedance has the potential in wearable health monitoring system. In this paper, an effective method, which contains self-balancing bridge, flexible electrode, and high-speed digital lock-in algorithm (DLIA) with over-sampling, was designed to detect the impedance pulse wave at the wrist. By applying the self-balancing bridge, the basic impedance can be compensated as much as possible, and the low amplitude of impedance variation related to heart pulse can be obtained more easily. And the flexible conductive rubber electrode used in our experiment is human-friendly. Besides, the over-sampling method and high-speed DLIA are used to enhance the effective resolution of the existing data sampled by analog to digital converter. With the high-speed data process and simple circuit above, this proposed method has the potential in wrist-band wearable systems and it can satisfy quests of small volume and low power consumption.
Directory of Open Access Journals (Sweden)
Jayant Kolte
2015-09-01
Full Text Available In this paper, major reduction in sintering time,temperautre and significant improvement over final density of sitnered sample is reported for the microwave sintered nanocrystalline BiFeO3 (BFO ceramic. Also, different sintering time and temperatures have been used to tailor the grain size and the final density of the resulting BFO ceramics synthesized from phase pure BFO nanoparticles ( d ̄ ≈ 10 n m . Microwave sintering resulted in reducing the sintering time substantially (by 1h, and has resulted in submicron sized grains and high resistivity ∼1.8 GΩ-cm. The AC conductivity is seen to follow the Jonscher’s power law behavior, suggesting correlated barrier hopping (CBH mechanism in the sample. The role of oxygen vacancies at high temperature, due to volatility of bismuth, in dielectric and conductivity behavior is also discussed. Further, the sample displayed dielectric anomaly near magnetic transition temperature (∼180 °C indicating bearing of magnetic moments on the dielectric properties. Using Impedance Spectroscopy (IS we have established, the electrical heterogeneity of the ceramic BFO reavealing semiconducting nature of grains and insulating nature of grain boundary. This, formation of network of insulating grain boundaries and semiconducting grains could lead to formation of internal barrier layer capacitance (IBLC leading to high dielectric constant in microwave sintered BFO.
Siroma, Zyun; Sato, Tomohiro; Takeuchi, Tomonari; Nagai, Ryo; Ota, Akira; Ioroi, Tsutomu
2016-06-01
The ionic and electronic effective conductivities of an electrode mixture layers for all-solid-state lithium-ion batteries containing Li2Ssbnd P2S5 as a solid electrolyte were investigated by AC impedance measurements and analysis using a transmission-line model (TLM). Samples containing graphite (graphite electrodes) or LiNi0.5Co0.2Mn0.3O2 (NCM electrodes) as the active material were measured under a "substrate | sample | bulk electrolyte | sample | substrate" configuration (ion-electron connection) and a "substrate | sample | substrate" configuration (electron-electron connection). Theoretically, if the electronic resistance is negligibly small, which is the case with our graphite electrodes, measurement with the ion-electron connection should be effective for evaluating ionic conductivity. However, if the electronic resistance is comparable to the ionic resistance, which is the case with our NCM electrodes, the results with the ion-electron connection may contain some inherent inaccuracy. In this report, we theoretically and practically demonstrate the advantage of analyzing the results with the electron-electron connection, which gives both the ionic and electronic conductivities. The similarity of the behavior of ionic conductivity with the graphite and NCM electrodes confirms the reliability of this analysis.
Indian Academy of Sciences (India)
S Rodrigues; N Munichandraiah; A K Shukla
2001-10-01
Metal-hydride electrodes made of an AB2 alloy of the composition Zr0.5Ti0.5V0.6Cr0.2Ni1.2 are studied for AC impedance behaviour at several of their state-of-charge values. Impedance data at any state-of-charge comprise two RC-time constants and accordingly are analysed by using a nonlinear-least-square-fitting procedure. Resistance of the electrode and frequency maximum (*) of the lowfrequency semicircle are found useful for predicting state-of-charge of the metalhydride electrodes.
Impedance measurement of irradiated potatoes: a method to identify radiation processing
International Nuclear Information System (INIS)
The potato is firmly established in many parts of the world as a major staple food. Then, radiation processing of potato is approved in many countries for sprouting inhibition and extension of shelf life in a dose range from about 0.01 to 0.15 kGy of 60 Co. The use of electrical conductance methods for the detection of Salmonella, some virus or the action of herbicides on plant has been reported and differences have been observed between instruments in respect of the magnitude of conductance change or rates of change in conductance response. A reliable technique to identify potatoes or other food products has not been established so far, though several methods have been reported. Electrical impedance might thus serve for characterization of unirradiated and irradiated tissues and cells. In this work, potato tubers from an European variety, named Bintje, grown in Sao Paulo State were employed. Potatoes were punctured with steel electrodes and impedance measured at different frequencies (1 k Hz-100 k Hz) by passing 3-5 m A alternating current through it. The impedance ratio of 50 k Hz/5 k Hz calculated from ten replicate samples decreases with the increment of the dose when doses of O 0.75 and 0.15 kGy from a Gamma Cell 220 were utilized. The impedance measurement were slightly affected by the place of puncture. (author)
Derek Johnson; Matthew Smith; Kevin R. Cooper
2008-01-01
The development of impedance-based array devices is hindered by a lack of robust platforms and methods upon which to evaluate and interrogate sensors. One aspect to be addressed is the development of measurement-time efficient techniques for broadband impedance spectroscopy of large electrode arrays. The objective of this work was to substantially increase the low frequency impedance measurement throughput capability of a large channel count array analyzer by developing true parallel measurem...
AC conductivity, dielectric and impedance studies of Cd0.8−xPbxZn0.2S mixed semiconductor compounds
International Nuclear Information System (INIS)
Graphical abstract: A plot of 1−s versus T (K) for Cd0.8−xPbxZn0.2S (x = 0, 0.1–0.8), inset: plot of s versus T (K) for x = 0. - Highlights: • Activation energy of relaxation process of Cd0.8−xPbxZn0.2S (x = 0, 0.1–0.8) compounds has been determined. • Grain resistances and grain capacitances of the compounds were estimated at different temperatures. • Relaxation time for all the compounds has been determined at different temperatures. - Abstract: The samples of Cd0.8−xPbxZn0.2S (x = 0, 0.1–0.8) are prepared by Controlled Co-Precipitation Method. X-ray diffraction studies have confirmed the polycrystalline nature of the samples with Hexagonal and Cubic phases of Wurtzite structure. AC conductivity (σac) measurements of Cd0.8−xPbxZn0.2S samples at different temperatures (between 40 and 300 °C), in the frequency range 5 kHz–20 MHz were made. The results showed that σac obeys the relation σac(ω) = Aωs. The exponent “s” was found to decrease with increase in temperature. Further analysis revealed that, the AC conductivity of the samples follow correlated barrier hopping (CBH) model. The dielectric constant (∊′) and dielectric loss (Tan δ) were observed to (i) increase with the increase in temperature and the increase is higher at lower frequencies and (ii) decrease rapidly at low frequencies and remains almost constant at higher frequencies. The cole–cole plot showed a single semicircle, indicating an equivalent circuit with a single parallel resistor Rg and capacitance Cg network with a series resistance Rs. The plots also show the grain contribution toward AC conductivity. The relaxation frequencies, determined from these plots are used to calculate the activation energies Ea of relaxation process using Log τ versus 103/T plots. The values of Ea for all the studied compounds range from 0.05 to 0.28 eV and the results are explained based on the defects formed due to the addition of Pb into the Cd0.8Zn0.2S compound
A study on calculation method for mechanical impedance of air spring
Changgeng, SHUAI; Penghui, LI; Rustighi, Emiliano
2016-09-01
This paper proposes an approximate analytic method of obtaining the mechanical impedance of air spring. The sound pressure distribution in cylindrical air spring is calculated based on the linear air wave theory. The influences of different boundary conditions on the acoustic pressure field distribution in cylindrical air spring are analysed. A 1-order ordinary differential matrix equation for the state vector of revolutionary shells under internal pressure is derived based on the non-moment theory of elastic thin shell. Referring to the transfer matrix method, a kind of expanded homogeneous capacity high precision integration method is introduced to solve the non-homogeneous matrix differential equation. Combined the solved stress field of shell with the calculated sound pressure field in air spring under the displacement harmonic excitation, the approximate analytical expression of the input and transfer mechanical impedance for the air spring can be achieved. The numerical simulation with the Comsol Multiphysics software verifies the correctness of theoretical analysis result.
Grid impedance estimation based hybrid islanding detection method for AC microgrids
DEFF Research Database (Denmark)
Ghzaiel, Walid; Jebali-Ben Ghorbal, Manel; Slama-Belkhodja, Ilhem;
2016-01-01
to avoid interactions with other units. The selected inverter will be the one closest to the controllable distributed generation system or to a healthy grid side in case of meshed microgrid with multiple-grid connections. The detection algorithm is applied to quickly detect the resonance phenomena, so...
System and method for determining stator winding resistance in an AC motor
Lu, Bin; Habetler, Thomas G.; Zhang, Pinjia; Theisen, Peter J.
2011-05-31
A system and method for determining stator winding resistance in an AC motor is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of an AC motor. The circuit includes at least one contactor and at least one switch to control current flow and terminal voltages in the AC motor. The system also includes a controller connected to the circuit and configured to modify a switching time of the at least one switch to create a DC component in an output of the system corresponding to an input to the AC motor and determine a stator winding resistance of the AC motor based on the injected DC component of the voltage and current.
New Modified Band Limited Impedance (BLIMP) Inversion Method Using Envelope Attribute
Maulana, Z. L.; Saputro, O. D.; Latief, F. D. E.
2016-01-01
Earth attenuates high frequencies from seismic wavelet. Low frequency seismics cannot be obtained by low quality geophone. The low frequencies (0-10 Hz) that are not present in seismic data are important to obtain a good result in acoustic impedance (AI) inversion. AI is important to determine reservoir quality by converting AI to reservoir properties like porosity, permeability and water saturation. The low frequencies can be supplied from impedance log (AI logs), velocity analysis, and from the combination of both data. In this study, we propose that the low frequencies could be obtained from the envelope seismic attribute. This new proposed method is essentially a modified BLIMP (Band Limited Impedance) inversion method, in which the AI logs for BLIMP substituted with the envelope attribute. In low frequency domain (0-10 Hz), the envelope attribute produces high amplitude. This low frequency from the envelope attribute is utilized to replace low frequency from AI logs in BLIMP. Linear trend in this method is acquired from the AI logs. In this study, the method is applied on synthetic seismograms created from impedance log from well ‘X’. The mean squared error from the modified BLIMP inversion is 2-4% for each trace (variation in error is caused by different normalization constant), lower than the conventional BLIMP inversion which produces error of 8%. The new method is also applied on Marmousi2 dataset and show promising result. The modified BLIMP inversion result from Marmousi2 by using one log AI is better than the one produced from the conventional method.
Ac Impedance Spectroscopic Studies on Li2xPb2xBaP2O7
Vijayakumar, M.; Selvasekarapandian, S.
2002-12-01
The complex diphosphate (P2O7)4- ions have been used as a building blocks in wide variety of crystal phases for a wide spectrum of physical and chemical properties. Lithium barium diphsophate doped with lead {Li2-xPb2xBaP2O7 (x = 0, 0.2 & 0.4)} has been prepared by solid state reaction method The conductivity is found to be decreasing with the doping of lead. The lithium ion dynamics parameters such as hopping frequency and relaxation frequency were calculated from the frequency dependent conductivity and modulus analysis.
A method for modelling and optimizing an electrical impedance tomography system.
Hartinger, Alzbeta Elizabeth; Gagnon, Hervé; Guardo, Robert
2006-05-01
Electrical impedance tomography (EIT) image reconstruction is an ill-posed problem requiring maximum measurement precision. Recent EIT systems claim 60 to 80 dB precision. Achieving higher values is hard in practice since measurements must be performed at relatively high frequency, on a living subject, while using components whose tolerance is usually higher than 0.1%. To circumvent this difficulty, a method for modelling the electronic circuits of an EIT system was developed in order to optimize the circuits and incorporate the model in the reconstruction algorithms. The proposed approach is based on a matrix method for solving electrical circuits and has been applied to the scan-head which contains the front-end electronic circuits of our system. The method is used to simulate the system characteristic curves which are then optimized with the Levenberg-Marquardt method to find optimal component values. A scan-head was built with the new component values and its simulated performance curves were compared with network analyser measurements. As a result of the optimization, the impedance at the operating frequency was increased to minimize the effects of variations in skin/electrode contact impedance. The transconductance and gain frequency responses were also reshaped to reduce noise sensitivity and unintended signal modulation. Integrating the model in the reconstruction algorithms should further improve overall performance of an EIT system.
Brandão, Eric; Flesch, Rodolfo C C; Lenzi, Arcanjo; Flesch, Carlos A
2011-07-01
The pressure-particle velocity (PU) impedance measurement technique is an experimental method used to measure the surface impedance and the absorption coefficient of acoustic samples in situ or under free-field conditions. In this paper, the measurement uncertainty of the the absorption coefficient determined using the PU technique is explored applying the Monte Carlo method. It is shown that because of the uncertainty, it is particularly difficult to measure samples with low absorption and that difficulties associated with the localization of the acoustic centers of the sound source and the PU sensor affect the quality of the measurement roughly to the same extent as the errors in the transfer function between pressure and particle velocity do.
Voltage Based Detection Method for High Impedance Fault in a Distribution System
Thomas, Mini Shaji; Bhaskar, Namrata; Prakash, Anupama
2016-09-01
High-impedance faults (HIFs) on distribution feeders cannot be detected by conventional protection schemes, as HIFs are characterized by their low fault current level and waveform distortion due to the nonlinearity of the ground return path. This paper proposes a method to identify the HIFs in distribution system and isolate the faulty section, to reduce downtime. This method is based on voltage measurements along the distribution feeder and utilizes the sequence components of the voltages. Three models of high impedance faults have been considered and source side and load side breaking of the conductor have been studied in this work to capture a wide range of scenarios. The effect of neutral grounding of the source side transformer is also accounted in this study. The results show that the algorithm detects the HIFs accurately and rapidly. Thus, the faulty section can be isolated and service can be restored to the rest of the consumers.
Energy Technology Data Exchange (ETDEWEB)
Kim, In-Tae; Egashira, Minato; Yoshimoto, Nobuko [Department of Applied Chemistry, Graduate School of Science and Engineering, Yamaguchi University, 2-16-1, Tokiwadai, Ube 755-8611 (Japan); Morita, Masayuki, E-mail: morita@yamaguchi-u.ac.jp [Department of Applied Chemistry, Graduate School of Science and Engineering, Yamaguchi University, 2-16-1, Tokiwadai, Ube 755-8611 (Japan)
2011-08-30
Highlights: {center_dot} We monitored resonance frequency change of smooth surface carbon electrode to determine mass changes during electrochemical polarization.{center_dot} This was done from viewpoints of ensuring the electric double-layer structure in organic electrolytes.{center_dot} Clear difference was observed in the mass changes among the electrolyte composition.{center_dot} It were related with differences in the double-layer capacitance at carbon. - Abstract: ac impedance and electrochemical quartz crystal microbalance (EQCM) techniques have been applied to analyze the structure of electric double-layer formed at carbon/organic electrolyte solution interface using a sputtered carbon electrode. The mass changes caused by electrochemical adsorption (accumulation) of ions have been estimated in the solutions of propylene carbonate (PC) dissolving tetrafluoroborate (BF{sub 4}{sup -}) salts of lithium (Li{sup +}), tetraethylammonium (TEA{sup +}) and tetra-n-butylammonium (TBA{sup +}) cations. The observed mass changes during the cathodic polarization in the solutions containing TEA{sup +} and TBA{sup +} were well consistent with those expected by the calculation based on mono-layer adsorption of the cations with giving the consideration to the surface roughness. On the other hand, the mass change observed in the solution containing Li{sup +} salt showed that the solvation of Li{sup +} with three or four molecules of PC would be the charge compensation species at the interface. Comparison of the quantity of the electricity passed during the EQCM measurements with that from theoretical calculation with simple Helmholtz-layer model revealed that the major part of the double-layer capacitance would be based on the electrostatic polarization of the solvent molecule directly adsorbed at the carbon surface.
RF impedance method for nondestructive moisture content determination for in-shell peanuts
Kandala, C. V. K.; Nelson, S. O.
2007-04-01
A method was developed earlier for estimating the moisture content (mc) in samples of wheat, corn and peanut kernels, nondestructively, by measuring their complex impedance values. In this method, capacitance (C), phase angle (θ) and dissipation factor (D) were measured with an impedance analyser at 1 and 5 MHz on a parallel-plate capacitor holding a few kernels of a particular commodity between the plates. These values were then used in an empirical equation based on the parameters C, θ and D, and the moisture content was calculated. The calculated mc values were within 1% of the air-oven values for about 85% of the kernel samples tested in the moisture range from 6% to 20% for wheat, corn and peanuts. However, it would be useful during drying and processing of peanuts, if the mc could be determined without shelling them. In this work, the feasibility of determining the moisture content of in-shell peanuts (pods) by similar impedance measurements was investigated. Values of capacitance, phase angle and dissipation factor measured at 24 °C and at three frequencies were used in a modified prediction equation and the moisture content was estimated within 1% of the air-oven values for over 90% of the pod samples tested in the moisture range from 6% to 25%. The method is rapid and nondestructive and may be used in the development of a commercial instrument.
Zhu, J. G.; Sun, Z. C.; Wei, X. Z.; Dai, H. F.
2015-01-01
The power battery thermal management problem in EV (electric vehicle) and HEV (hybrid electric vehicle) has been widely discussed, and EIS (electrochemical impedance spectroscopy) is an effective experimental method to test and estimate the status of the battery. Firstly, an electrochemical-based impedance matrix analysis for lithium-ion battery is developed to describe the impedance response of electrochemical impedance spectroscopy. Then a method, based on electrochemical impedance spectroscopy measurement, has been proposed to estimate the internal temperature of power lithium-ion battery by analyzing the phase shift and magnitude of impedance at different ambient temperatures. Respectively, the SoC (state of charge) and temperature have different effects on the impedance characteristics of battery at various frequency ranges in the electrochemical impedance spectroscopy experimental study. Also the impedance spectrum affected by SoH (state of health) is discussed in the paper preliminary. Therefore, the excitation frequency selected to estimate the inner temperature is in the frequency range which is significantly influenced by temperature without the SoC and SoH. The intrinsic relationship between the phase shift and temperature is established under the chosen excitation frequency. And the magnitude of impedance related to temperature is studied in the paper. In practical applications, through obtaining the phase shift and magnitude of impedance, the inner temperature estimation could be achieved. Then the verification experiments are conduced to validate the estimate method. Finally, an estimate strategy and an on-line estimation system implementation scheme utilizing battery management system are presented to describe the engineering value.
International Nuclear Information System (INIS)
Focused Impedance Method (FIM) gives enhanced localized sensitivity at the centre of a zone defined by a simple system of electrodes, of which a 4-electrode version with electrodes at the corners of a square region has been studied in detail in the present work. The present work studies the effect of a large sphere whose diameter almost equals the dimensions of the central focused zone, or, the Focused Impedance. The sphere is placed at different positions with respect to the centre of the system at the electrode plane. The study has been made using a phantom in which the electrodes are fixed on a side wall while an insulating ball is hung at various positions inside the saline and moved with respect to the electrodes in their vicinity. The same was then simulated by providing appropriate parameters in COMSOL multiphysics, a software package utilizing Finite Element Method, by providing appropriately matching parameters. The measured impedance decreases as the ball is moved away from the centre in the electrode plane or along the depth. The sensitivity also decreases with an increase in electrode spacing. Although the behaviours were similar in both the studies, simulated values by COMSOL deviated from the measured values significantly. It suggests that COMSOL may not give accurate simulations for large objects.
Timmer, B.; Sluyters-Rehbach, M.; Sluyters, J.H.
1967-01-01
A theoretical treatment for the potential dependence of the faradaic impedance, in the case that the electrode reaction behaves irreversibly with respect to the direct current, using the steady-state concept, is presented. An analysis of the expressions obtained in the complex impedance plane is giv
Impedance-Source Networks for Electric Power Conversion Part II
DEFF Research Database (Denmark)
Siwakoti, Yam P.; Peng, Fang Zheng; Blaabjerg, Frede;
2015-01-01
Impedance-source networks cover the entire spectrum of electric power conversion applications (dc-dc, dc-ac, ac-dc, ac-ac) controlled and modulated by different modulation strategies to generate the desired dc or ac voltage and current at the output. A comprehensive review of various impedance...
Ac superconducting articles and a method for their manufacture
International Nuclear Information System (INIS)
A novel ac superconducting article is described comprising a composite structure having a superconducting surface along with a high thermally conductive material wherein the superconducting surface has the desired physical properties, geometrical shape and surface finish produced by the steps of depositing a superconducting layer upon a substrate having a predetermined surface finish and shape which conforms to that of the desired superconducting article, depositing a supporting layer of material on the superconducting layer and removing the substrate, the surface of the superconductor being a replica of the substrate surface. (auth)
D-bar method for electrical impedance tomography with discontinuous conductivities
DEFF Research Database (Denmark)
Knudsen, Kim; Lassas, Matti; Mueller, Jennifer L.;
The effects of truncating the (approximate) scattering transform in the D-bar reconstruction method for 2-D electrical impedance tomography are studied. The method is based on Nachman s uniqueness proof [Ann. of Math. 143 (1996)] that applies to twice differentiable conductivities. However, the...... reconstruction algorithm has been successfully applied to experimental data, which can be characterized as piecewise smooth conductivities. The truncation is shown to stabilize the method against measurement noise and to have a smoothing effect on the reconstructed conductivity. Thus the truncation can be...... interpreted as regularization of the D-bar method. Numerical reconstructions are presented demonstrating that features of discontinuous high contrast conductivities can be recovered using the D-bar method. Further, a new connection between Calder´on s linearization method and the D-bar method is established...
Interaction of the AC/DC Transmission System Based on the Impedance Angle%基于阻抗角的交直流输电系统交互影响分析
Institute of Scientific and Technical Information of China (English)
张英敏; 王鹏飞; 李兴源; 陈虎; 赵睿; 樊帆
2012-01-01
The analysis of the interaction of AC/DC transmission system with short circuit ratio（SCR） has only considered the AC system equivalent impedance modulus size.In order to more accurately assess the stability of the system,the impact of the impedance angle to system stability margin need to be considered.Based on single-infeed and two-infeed DC system,the impact of impedance angle and the coupling impedance angle to the DC system power transmission limit was analyzed.And with the CIGER standard model,keeping SCR of the system unchanged,the impedance angle to the transient overvoltage of the receiving end AC system was researched.The simulation results showed that smaller impedance angle of DC system can not only help to improve the DC system＇s power transmission limit,increase the stability degree and the maximum available power,but also help to improve the transient overvoltage of system after fault.%采用短路比对交直流输电系统的交互影响分析只考虑了交流系统等值阻抗模值的大小,为了更准确地评估系统稳定程度,需要考虑阻抗角对系统稳定裕度的影响。以单馈入和两馈入直流系统为基础,研究阻抗角和耦合阻抗角对直流系统输送功率极限的影响,并且在CIGER标准模型的基础上,保持系统短路比不变,研究阻抗角对受端交流系统暂态过电压的影响。仿真分析结果表明,当受端交流系统等值阻抗角较小时有利于提高直流系统输送功率极限,增大稳定裕度和提高最大直流功率,同时也有利于改善系统故障后的暂态过电压。
Segmented superconducting tape having reduced AC losses and method of making
Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Holesinger, Terry G.; Wang, Haiyan
2009-09-22
A superconducting tape having reduced AC losses. The tape has a high temperature superconductor layer that is segmented. Disruptive strips, formed in one of the tape substrate, a buffer layer, and the superconducting layer create parallel discontinuities in the superconducting layer that separate the current-carrying elements of the superconducting layer into strips or filament-like structures. Segmentation of the current-carrying elements has the effect of reducing AC current losses. Methods of making such a superconducting tape and reducing AC losses in such tapes are also disclosed.
Otsuru, Toru; Tomiku, Reiji; Din, Nazli Bin Che; Okamoto, Noriko; Murakami, Masahiko
2009-06-01
An in-situ measurement technique of a material surface normal impedance is proposed. It includes a concept of "ensemble averaged" surface normal impedance that extends the usage of obtained values to various applications such as architectural acoustics and computational simulations, especially those based on the wave theory. The measurement technique itself is a refinement of a method using a two-microphone technique and environmental anonymous noise, or diffused ambient noise, as proposed by Takahashi et al. [Appl. Acoust. 66, 845-865 (2005)]. Measured impedance can be regarded as time-space averaged normal impedance at the material surface. As a preliminary study using numerical simulations based on the boundary element method, normal incidence and random incidence measurements are compared numerically: results clarify that ensemble averaging is an effective mode of measuring sound absorption characteristics of materials with practical sizes in the lower frequency range of 100-1000 Hz, as confirmed by practical measurements. PMID:19507960
Decomposition method of an electrical bio-impedance signal into cardiac and respiratory components
International Nuclear Information System (INIS)
The paper presents a method for adaptive decomposition of an electrical bio-impedance (BI) signal into two components: cardiac and respiratory. The decomposition of a BI signal is not a trivial process because of the non-stationarity of the signal components and overlapping of their harmonic spectra. An application specific orthonormal basis (ASOB) was designed to solve the decomposition task using the Jacobi weighting function in the standard Gram–Schmidt process. The key element of the bio-impedance signal decomposer (BISD) is a model of the cardiac BI signal, which is constructed from the components of the ASOB and is intended for use in the BISD for on-line tracking of the cardiac BI signal. It makes it possible to separate the cardiac and respiratory components of the total BI signal in non-stationary conditions. In combination with the signal-shape locked loop (SSLL), the BISD allows us to decompose the BI signals with partially overlapping spectra. The proposed BISD based method is accomplished as a PC software digital system, but it is oriented towards applications in portable and stationary cardiac devices and in clinical settings
Evaluation of different methods for measuring the impedance of Lithium-ion batteries during ageing
DEFF Research Database (Denmark)
Stroe, Daniel Loan; Swierczynski, Maciej Jozef; Stroe, Ana-Irina;
2015-01-01
are presented for measuring the impedance of Lithium-ion batteries and electrochemical impedance spectroscopy and dc current pulses are the most used ones; each of these approaches has its own advantages and drawbacks. The goal of this paper is to investigate which of the most encountered impedance measurement......The impedance represents one of the most important performance parameters of the Lithium-ion batteries since it used for power capability calculations, battery pack and system design, cooling system design and also for state-of-health estimation. In the literature, different approaches...... approaches is the most suitable for measuring the impedance of Lithium-ion batteries during ageing....
Amako, Eri; Enjoji, Takaharu; Uchida, Satoshi; Tochikubo, Fumiyoshi
Constant monitoring and immediate control of fermentation processes have been required for advanced quality preservation in food industry. In the present work, simple estimation of metabolic states for heat-injured Escherichia coli (E. coli) in a micro-cell was investigated using dielectrophoretic impedance measurement (DEPIM) method. Temporal change in the conductance between micro-gap (ΔG) was measured for various heat treatment temperatures. In addition, the dependence of enzyme activity, growth capacity and membrane situation for E. coli on heat treatment temperature was also analyzed with conventional biological methods. Consequently, a correlation between ΔG and those biological properties was obtained quantitatively. This result suggests that DEPIM method will be available for an effective monitoring technique for complex change in various biological states of microorganisms.
Directory of Open Access Journals (Sweden)
Sanju Gupta
2016-07-01
Full Text Available Graphene nanosheets and graphene nanoribbons, G combined with vanadium pentoxide (VO nanobelts (VNBs and VNBs forming GVNB composites with varying compositions were synthesized via a one-step low temperature facile hydrothermal decomposition method as high-performance electrochemical pseudocapacitive electrodes. VNBs from vanadium pentoxides (VO are formed in the presence of graphene oxide (GO, a mild oxidant, which transforms into reduced GO (rGOHT, assisting in enhancing the electronic conductivity coupled with the mechanical robustness of VNBs. From electron microscopy, surface sensitive spectroscopy and other complementary structural characterization, hydrothermally-produced rGO nanosheets/nanoribbons are decorated with and inserted within the VNBs’ layered crystal structure, which further confirmed the enhanced electronic conductivity of VNBs. Following the electrochemical properties of GVNBs being investigated, the specific capacitance Csp is determined from cyclic voltammetry (CV with a varying scan rate and galvanostatic charging-discharging (V–t profiles with varying current density. The rGO-rich composite V1G3 (i.e., VO/GO = 1:3 showed superior specific capacitance followed by VO-rich composite V3G1 (VO/GO = 3:1, as compared to V1G1 (VO/GO = 1:1 composite, besides the constituents, i.e., rGO, rGOHT and VNBs. Composites V1G3 and V3G1 also showed excellent cyclic stability and a capacitance retention of >80% after 500 cycles at the highest specific current density. Furthermore, by performing extensive simulations and modeling of electrochemical impedance spectroscopy data, we determined various circuit parameters, including charge transfer and solution resistance, double layer and low frequency capacitance, Warburg impedance and the constant phase element. The detailed analyses provided greater insights into physical-chemical processes occurring at the electrode-electrolyte interface and highlighted the comparative performance of
Use of stochastic methods for robust parameter extraction from impedance spectra
Energy Technology Data Exchange (ETDEWEB)
Bueschel, Paul, E-mail: paul.bueschel@etit.tu-chemnitz.de; Troeltzsch, Uwe; Kanoun, Olfa
2011-09-30
The fitting of impedance models to measured data is an essential step in impedance spectroscopy (IS). Due to often complicated, nonlinear models, big number of parameters, large search spaces and presence of noise, an automated determination of the unknown parameters is a challenging task. The stronger the nonlinear behavior of a model, the weaker is the convergence of the corresponding regression and the probability to trap into local minima increases during parameter extraction. For fast measurements or automatic measurement systems these problems became the limiting factors of use. We compared the usability of stochastic algorithms, evolution, simulated annealing and particle filter with the widely used tool LEVM for parameter extraction for IS. The comparison is based on one reference model by J.R. Macdonald and a battery model used with noisy measurement data. The results show different performances of the algorithms for these two problems depending on the search space and the model used for optimization. The obtained results by particle filter were the best for both models. This method delivers the most reliable result for both cases even for the ill posed battery model.
Focused Impedance Method (FIM) and Pigeon Hole Imaging (PHI) for localized measurements - a review
Siddique-e Rabbani, K.
2010-04-01
This paper summarises up to date development in Focused Impedance Method (FIM) initiated by us. It basically involves taking the sum of two orthogonal tetra-polar impedance measurements around a common central region, giving a localized enhanced sensitivity. Although the basic idea requires 8 electrodes, versions with 6- and 4-electrodes were subsequently conceived and developed. The focusing effect has been verified in 2D and 3D phantoms and through numerical analysis. Dynamic stomach emptying, and ventilation of localized lung regions have been studied successfully suggesting further applications in monitoring of gastric acid secretion, artificial respiration, bladder emptying, etc. Multi-frequency FIM may help identify some diseases and disorders including certain cancers. FIM, being much simpler and having less number of electrodes, appears to have the potential to replace EIT for applications involving large and shallow organs. An enhancement of 6-electrode FIM led to Pigeon Hole Imaging (PHI) in a square matrix through backprojection in two orthogonal directions, good for localising of one or two well separated objects.
Wang, Qi; Wang, Huaxiang; Zhang, Ronghua; Wang, Jinhai; Zheng, Yu; Cui, Ziqiang; Yang, Chengyi
2012-10-01
Electrical impedance tomography (EIT) is a technique for reconstructing the conductivity distribution by injecting currents at the boundary of a subject and measuring the resulting changes in voltage. Image reconstruction in EIT is a nonlinear and ill-posed inverse problem. The Tikhonov method with L(2) regularization is always used to solve the EIT problem. However, the L(2) method always smoothes the sharp changes or discontinue areas of the reconstruction. Image reconstruction using the L(1) regularization allows addressing this difficulty. In this paper, a sum of absolute values is substituted for the sum of squares used in the L(2) regularization to form the L(1) regularization, the solution is obtained by the barrier method. However, the L(1) method often involves repeatedly solving large-dimensional matrix equations, which are computationally expensive. In this paper, the projection method is combined with the L(1) regularization method to reduce the computational cost. The L(1) problem is mainly solved in the coarse subspace. This paper also discusses the strategies of choosing parameters. Both simulation and experimental results of the L(1) regularization method were compared with the L(2) regularization method, indicating that the L(1) regularization method can improve the quality of image reconstruction and tolerate a relatively high level of noise in the measured voltages. Furthermore, the projected L(1) method can also effectively reduce the computational time without affecting the quality of reconstructed images.
Hoche, S; Hussein, M A; Becker, T
2015-03-01
The accuracy of density, reflection coefficient, and acoustic impedance determination via multiple reflection method was validated experimentally. The ternary system water-maltose-ethanol was used to execute a systematic, temperature dependent study over a wide range of densities and viscosities aiming an application as inline sensor in beverage industries. The validation results of the presented method and setup show root mean square errors of: 1.201E-3 g cm(-3) (±0.12%) density, 0.515E-3 (0.15%) reflection coefficient and 1.851E+3 kg s(-1) m(-2) (0.12%) specific acoustic impedance. The results of the diffraction corrected absorption showed an average standard deviation of only 0.12%. It was found that the absorption change shows a good correlation to concentration variations and may be useful for laboratory analysis of sufficiently pure liquids. The main part of the observed errors can be explained by the observed noise, temperature variation and the low signal resolution of 50 MHz. In particular, the poor signal-to-noise ratio of the second reflector echo was found to be a main accuracy limitation. Concerning the investigation of liquids the unstable properties of the reference material PMMA, due to hygroscopicity, were identified to be an additional, unpredictable source of uncertainty. While dimensional changes can be considered by adequate methodology, the impact of the time and temperature dependent water absorption on relevant reference properties like the buffer's sound velocity and density could not be considered and may explain part of the observed deviations. PMID:25465962
Multi-phase flow monitoring with electrical impedance tomography using level set based method
Energy Technology Data Exchange (ETDEWEB)
Liu, Dong [Department of Applied Physics, University of Eastern Finland, Kuopio FIN-70211 (Finland); Khambampati, Anil Kumar [Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756 (Korea, Republic of); Kim, Sin [School of Energy Systems Engineering, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Kim, Kyung Youn, E-mail: kyungyk@jejunu.ac.kr [Department of Electronic Engineering, Jeju National University, Jeju 690-756 (Korea, Republic of)
2015-08-15
Highlights: • LSM has been used for shape reconstruction to monitor multi-phase flow using EIT. • Multi-phase level set model for conductivity is represented by two level set functions. • LSM handles topological merging and breaking naturally during evolution process. • To reduce the computational time, a narrowband technique was applied. • Use of narrowband and optimization approach results in efficient and fast method. - Abstract: In this paper, a level set-based reconstruction scheme is applied to multi-phase flow monitoring using electrical impedance tomography (EIT). The proposed scheme involves applying a narrowband level set method to solve the inverse problem of finding the interface between the regions having different conductivity values. The multi-phase level set model for the conductivity distribution inside the domain is represented by two level set functions. The key principle of the level set-based method is to implicitly represent the shape of interface as the zero level set of higher dimensional function and then solve a set of partial differential equations. The level set-based scheme handles topological merging and breaking naturally during the evolution process. It also offers several advantages compared to traditional pixel-based approach. Level set-based method for multi-phase flow is tested with numerical and experimental data. It is found that level set-based method has better reconstruction performance when compared to pixel-based method.
Gastric motility measurement and evaluation of functional dyspepsia by a bio-impedance method
International Nuclear Information System (INIS)
method of impedance can be a potential tool for the noninvasive assessment of gastric motility under gastrointestinal physiology and pathology conditions
A new method for calculation of low-frequency coupling impedance
Energy Technology Data Exchange (ETDEWEB)
Kurennoy, S.S.; Stupakov, G.V.
1993-05-01
In high-energy proton accelerators and storage rings the bunch length is typically at least a few times larger than the radius of the vacuum chamber. For example, the SSC will have an rms bunch length above 6 cm and a beam-pipe radius below 2 cm. The main concern for beam stability in such a machine is the low-frequency impedance, i.e., the coupling impedance at frequencies wen below the cut-off frequency of the vacuum chamber. In the present paper we develop a new analytical approach for calculation of the low-frequency impedance of axisymmetric structures that allows us to give quick and reliable estimates of contributions to the impedance from various chamber discontinuities. Simple formulae for the longitudinal impedance of some typical discontinuities are obtained.
A new method for calculation of low-frequency coupling impedance
International Nuclear Information System (INIS)
In high-energy proton accelerators and storage rings the bunch length is typically at least a few times larger than the radius of the vacuum chamber. For example, the SSC will have an rms bunch length above 6 cm and a beam-pipe radius below 2 cm. The main concern for beam stability in such a machine is the low-frequency impedance, i.e., the coupling impedance at frequencies wen below the cut-off frequency of the vacuum chamber. In the present paper we develop a new analytical approach for calculation of the low-frequency impedance of axisymmetric structures that allows us to give quick and reliable estimates of contributions to the impedance from various chamber discontinuities. Simple formulae for the longitudinal impedance of some typical discontinuities are obtained
Progress in electrical impedance imaging of binary media: 1: Analytical and numerical methods
International Nuclear Information System (INIS)
This is the first of two papers summarizing the use of electrical impedance excitation/measurement for producing cross sectional images of the distribution of insulating media imbedded in conducting media. This computed tomographic approach finds the distribution of electrical properties of an electric field which minimizes in the least squares sense the difference between measured and computed boundary response to excitation. In this paper we briefly review the basic analytical methods developed for this system. We then extend these methods to three dimensions, add a method for preconditioning voltages for error correction, describe methods for optimizing the resolution of a target by providing optimal excitation patterns and then describe the overall numerical sensitivity. The second paper then demonstrates the ability of this system to image multiple, separate, differently-sized two-dimensional or three-dimensional targets with demonstrated linear sensitivity of over 30:1 with maximum possible linear sensitivity of one part in 1300 based on our ability to distinguish variations from a homogeneous background. (author)
Bureau of Naval Personnel, Washington, DC.
The module covers series circuits which contain both resistive and reactive components and methods of solving these circuits for current, voltage, impedance, and phase angle. The module is divided into six lessons: voltage and impedance in AC (alternating current) series circuits, vector computations, rectangular and polar notation, variational…
Comparison and optimization of the method for Cry1Ac protoxin preparation in HD73 strain
Institute of Scientific and Technical Information of China (English)
ZHOU Zi-shan; YANG Su-juan; SHU Chang-long; SONG Fu-ping; ZHOU Xue-ping; ZHANG Jie
2015-01-01
Bacil us thuringiensis is one of the most widely used bioinsecticides, and cry gene is the major insecticidal gene. Because Cry1Ac protein shows strong toxicity against many lepidopteran species, it has been applied widely in spraying products and transgenic Bt-crops. The preparation of Cry protoxin is the ifrst step in the very important processes of understanding the insecticidal mechanism, resistance screening, and biosafety assessments. The media for crystal production and the method for Cry protoxin preparation were varied, however, it was not clear which was better for preparing a larger amount of Cry protoxin. In this paper, three media for crystal production and the method for Cry1Ac protoxin preparation from HD73 strain were compared to ifnd an efifcacious way to prepare a large number of Cry1Ac protoxin. The results showed that the 1/2 LB (Luria-Bertani) medium was the ideal medium for crystal production, because the total yield of Cry1Ac protoxin in 300 mL 1/2 LB medium was (112.38±5.64) mg, the highest one among three media;the repeated crystal solubilization method was better for the preparation of the Cry protoxin comparing with the continuous crystal solubilization method. It wil be a reference for other Cry protoxin preparation, especial y for larger number.
Directory of Open Access Journals (Sweden)
Ye. S. Sherina
2014-01-01
Full Text Available This research has been aimed to carry out a study of peculiarities that arise in a numerical simulation of the electrical impedance tomography (EIT problem. Static EIT image reconstruction is sensitive to a measurement noise and approximation error. A special consideration has been given to reducing of the approximation error, which originates from numerical implementation drawbacks. This paper presents in detail two numerical approaches for solving EIT forward problem. The finite volume method (FVM on unstructured triangular mesh is introduced. In order to compare this approach, the finite element (FEM based forward solver was implemented, which has gained the most popularity among researchers. The calculated potential distribution with the assumed initial conductivity distribution has been compared to the analytical solution of a test Neumann boundary problem and to the results of problem simulation by means of ANSYS FLUENT commercial software. Two approaches to linearized EIT image reconstruction are discussed. Reconstruction of the conductivity distribution is an ill-posed problem, typically requiring a large amount of computation and resolved by minimization techniques. The objective function to be minimized is constructed of measured voltage and calculated boundary voltage on the electrodes. A classical modified Newton type iterative method and the stochastic differential evolution method are employed. A software package has been developed for the problem under investigation. Numerical tests were conducted on simulated data. The obtained results could be helpful to researches tackling the hardware and software issues for medical applications of EIT.
Kraft, R. E.; Yu, J.; Kwan, H. W.
1999-01-01
The primary purpose of this study is to develop improved models for the acoustic impedance of treatment panels at high frequencies, for application to subscale treatment designs. Effects that cause significant deviation of the impedance from simple geometric scaling are examined in detail, an improved high-frequency impedance model is developed, and the improved model is correlated with high-frequency impedance measurements. Only single-degree-of-freedom honeycomb sandwich resonator panels with either perforated sheet or "linear" wiremesh faceplates are considered. The objective is to understand those effects that cause the simple single-degree-of- freedom resonator panels to deviate at the higher-scaled frequency from the impedance that would be obtained at the corresponding full-scale frequency. This will allow the subscale panel to be designed to achieve a specified impedance spectrum over at least a limited range of frequencies. An advanced impedance prediction model has been developed that accounts for some of the known effects at high frequency that have previously been ignored as a small source of error for full-scale frequency ranges.
Fundamental impedance identification method for grid-connected voltage source inverters
DEFF Research Database (Denmark)
Sun, Xiaofeng; Chen, J.; Guerrero, Josep M.;
2014-01-01
Considering the importance of line fundamental impedance from the inverter to the point of common coupling (PCC) in microgrids, this study analyses the influence of fundamental impedance on system stability. Line fundamental impedance values not only apply to decoupled droop control, which can...... realise accurate control between active and reactive power, but also regulate the droop coefficient to eliminate system circulation, realise power sharing and improve system stability when a multi-distributed generation system operates in parallel. Moreover, the PCC can sense grid fault on the basis...
Micro pumping methods based on AC electrokinetics and Electrorheologically actuated PDMS valves
Soni, Gaurav; Squires, Todd; Meinhart, Carl
2006-11-01
We have developed 2 different micropumping methods for transporting ionic fluids through microchannels. The first method is based on Induced Charge Electroosmosis (ICEO) and AC flow field-effect. We used an AC electric field to produce a symmetric ICEO flow on a planar electrode, called `gate'. In order to break the symmetry of ICEO, we applied an additional AC voltage to the gate electrode. Such modulation of the gate potential is called field effect and produces a unidirectional pumping over the gate surface. We used micro PIV to measure pumping velocities for a range of ionic concentration, AC frequency and gate voltage. We have also conducted numerical simulations to understand the deteriorating effect of lateral conduction of surface charge on the pumping velocities. The second method is based on vibration of a flexible PDMS diaphragm actuated by an electrorheological (ER) fluid. ER fluid is a colloidal suspension exhibiting a reversible liquid-to-solid transition under an electric field. This liquid-to-solid transition can yield very high shear stress and can be used to open and close a PDMS valve. Three such valves were fabricated and actuated in a peristaltic fashion in order to achieve positive displacement pumping of fluids.
Assessment of dental implant stability by means of the electromechanical impedance method
International Nuclear Information System (INIS)
Implant stability is a prerequisite for functional recovery in load-bearing prostheses. Robust, reliable and noninvasive methods to assess the bone interface of dental and orthopedic implants are increasingly demanded for clinical diagnosis and direct prognosis. In this paper, a study of the feasibility of a noninvasive method based on electromechanical impedance (EMI) to assess dental prostheses stability is presented. Two different dental screws were entrenched in polyurethane foams (Sawbones®) and immersed in a solution of nitric acid to allow material degradation, inversely simulating a bone healing process. This process was monitored by bonding a piezoceramic transducer (PZT) to the implant and measuring the admittance of the PZT over time. It was found that the PZT's conductance and the statistical features associated with its analysis were sensitive to the degradation of the foams and can be correlated to the Sawbones mechanical properties. The present study shows promising results and may pave the road towards an innovative approach for the noninvasive monitoring of implanted prostheses
Directory of Open Access Journals (Sweden)
M.S. Ould Brahim
2011-04-01
Full Text Available Our objective in this study is to determine the effective thermal insulating layer of a composite towplaster. The characterization of thermal insulating material is proposed from the study of the thermal impedance in dynamic two-dimensional frequency. Thermo physical properties of the material tow-plaster are determined from the study of the thermal impedance. Nyquist representations have introduced an interpretation of certain phenomena of heat transfer from the series and shunt resistors. The overall coefficient of heat exchange is determined from the Bode plots. A method for determining the thermal conductivity is proposed.
Marsili, P M; Mounié, G; Granié, M; Morucci, J P
1992-01-01
Optimal control techniques have been combined with Alessandrini's singular perturbation method and Wexler's algorithm to reconstruct images in impedance imaging. We have also considered an integral formulation of the potential problem, which has led us to introduce an array of dipoles whose position, orientation and length can be optimised to model the conductivity discontinuities.
DEFF Research Database (Denmark)
Karamehmedovic, Mirza; Breinbjerg, Olav
2002-01-01
The Method of Auxiliary Sources (MAS) is applied to 3D scattering problems involving spherical impedance scatterers. The MAS results are compared with the reference spherical wave expansion (SWE) solution. It is demonstrated that good agreement is achieved between the MAS and SWE results....
Dekker, B.G.; Sluyters-Rehbach, M.; Sluyters, J.H.
1969-01-01
The applicability of the complex plane method for the evaluation of the impedance parameters in the case of two simultaneously proceeding electrode reactions is discussed. It is shown that the possibility of the evaluation depends strongly on the values of the irreversibility quotients of both react
Indian Academy of Sciences (India)
Syed Mahboob; G Prasad; G S Kumar
2006-08-01
Electrical conduction studies on Ba(Nd0.2Ti0.6Nb0.2)O3 ceramic samples prepared through conventional and microwave sintering route are presented in this paper. D.C. and a.c. conductivities of these samples as a function of temperature from 300–900 K have been studied. Two types of conduction processes are evident from the frequency dependant conductivity plots, i.e. low-frequency conduction due to short-range hopping and high-frequency conduction due to the localized relaxation (reorientational) hopping mechanism. Grain and grain boundary contributions to the conductivity in these samples are obtained from impedance/admittance measurements via equivalent circuit modelling.
Li, Nan; Xu, Hui; Wang, Wei; Zhou, Zhou; Qiao, Guofeng; D-U Li, David
2013-06-01
A novel bioelectrical impedance spectroscopy system based on the digital auto-balancing bridge method improved from the conventional analogue auto-balancing method is presented for bioelectrical impedance measurements. The hardware of the proposed system consists of a reference source, a null detector, a variable source, a field programmable gate array, a clock generator, a flash and a USB controller. Software implemented in the field programmable gate array includes three major blocks: clock management, peripheral control and digital signal processing. The principle and realization of the least-mean-squares-based digital auto-balancing algorithm is introduced in detail. The performances of our system were examined by comparing with a commercial impedance analyzer. The results reveal that the proposed system has high speed (less than 3.5 ms per measurement) and high accuracy in the frequency range of 1 kHz-10 MHz. Compared with the commercial instrument based on the traditional analogue auto-balancing method, our system shows advantages in measurement speed, compactness and flexibility, making it suitable for various bioelectrical impedance measurement applications.
International Nuclear Information System (INIS)
A novel bioelectrical impedance spectroscopy system based on the digital auto-balancing bridge method improved from the conventional analogue auto-balancing method is presented for bioelectrical impedance measurements. The hardware of the proposed system consists of a reference source, a null detector, a variable source, a field programmable gate array, a clock generator, a flash and a USB controller. Software implemented in the field programmable gate array includes three major blocks: clock management, peripheral control and digital signal processing. The principle and realization of the least-mean-squares-based digital auto-balancing algorithm is introduced in detail. The performances of our system were examined by comparing with a commercial impedance analyzer. The results reveal that the proposed system has high speed (less than 3.5 ms per measurement) and high accuracy in the frequency range of 1 kHz–10 MHz. Compared with the commercial instrument based on the traditional analogue auto-balancing method, our system shows advantages in measurement speed, compactness and flexibility, making it suitable for various bioelectrical impedance measurement applications. (paper)
Directory of Open Access Journals (Sweden)
Daniel Medale
2012-10-01
Full Text Available The work reported on this paper describes a new methodology implementation for active structural health monitoring of recent aircraft parts made from carbon-fiber-reinforced polymer. This diagnosis is based on a new embedded method that is capable of measuring the local high frequency impedance spectrum of the structure through the calculation of the electro-mechanical impedance of a piezoelectric patch pasted non-permanently onto its surface. This paper involves both the laboratory based E/M impedance method development, its implementation into a CPU with limited resources as well as a comparison with experimental testing data needed to demonstrate the feasibility of flaw detection on composite materials and answer the question of the method reliability. The different development steps are presented and the integration issues are discussed. Furthermore, we present the unique advantages that the reconfigurable electronics through System-on-Chip (SoC technology brings to the system scaling and flexibility. At the end of this article, we demonstrate the capability of a basic network of sensors mounted onto a real composite aircraft part specimen to capture its local impedance spectrum signature and to diagnosis different delamination sizes using a comparison with a baseline.
Boukabache, Hamza; Escriba, Christophe; Zedek, Sabeha; Medale, Daniel; Rolet, Sebastien; Fourniols, Jean Yves
2012-10-11
The work reported on this paper describes a new methodology implementation for active structural health monitoring of recent aircraft parts made from carbon-fiber-reinforced polymer. This diagnosis is based on a new embedded method that is capable of measuring the local high frequency impedance spectrum of the structure through the calculation of the electro-mechanical impedance of a piezoelectric patch pasted non-permanently onto its surface. This paper involves both the laboratory based E/M impedance method development, its implementation into a CPU with limited resources as well as a comparison with experimental testing data needed to demonstrate the feasibility of flaw detection on composite materials and answer the question of the method reliability. The different development steps are presented and the integration issues are discussed. Furthermore, we present the unique advantages that the reconfigurable electronics through System-on-Chip (SoC) technology brings to the system scaling and flexibility. At the end of this article, we demonstrate the capability of a basic network of sensors mounted onto a real composite aircraft part specimen to capture its local impedance spectrum signature and to diagnosis different delamination sizes using a comparison with a baseline.
Boukabache, Hamza; Escriba, Christophe; Zedek, Sabeha; Medale, Daniel; Rolet, Sebastien; Fourniols, Jean Yves
2012-01-01
The work reported on this paper describes a new methodology implementation for active structural health monitoring of recent aircraft parts made from carbon-fiber-reinforced polymer. This diagnosis is based on a new embedded method that is capable of measuring the local high frequency impedance spectrum of the structure through the calculation of the electro-mechanical impedance of a piezoelectric patch pasted non-permanently onto its surface. This paper involves both the laboratory based E/M impedance method development, its implementation into a CPU with limited resources as well as a comparison with experimental testing data needed to demonstrate the feasibility of flaw detection on composite materials and answer the question of the method reliability. The different development steps are presented and the integration issues are discussed. Furthermore, we present the unique advantages that the reconfigurable electronics through System-on-Chip (SoC) technology brings to the system scaling and flexibility. At the end of this article, we demonstrate the capability of a basic network of sensors mounted onto a real composite aircraft part specimen to capture its local impedance spectrum signature and to diagnosis different delamination sizes using a comparison with a baseline. PMID:23202013
A Digital Method for AC/AC Converter Controller by Natural-commutation%自然换流AC/AC变频控制器数字化实现方法
Institute of Scientific and Technical Information of China (English)
李光叶; 苏玉民; 文小青
2011-01-01
For the dead band in AC/AC converter controller,a design method of both software and hardware is presented. All the trigger pulses are created by DSP.The full digitalization of the system is completed.The self-commutation of the controller is achieved by intelligent utilization of two timers of DSP.The dead band of commutation is greatly reduced.The quality of output waveform is improved observably .The experimental result verify the outstanding effectiveness and precision of the controller.%针对AC/AC变频电路存在的换流死区问题,提出了一种AC/AC变频控制器软、硬件设计方法.该方法中6路触发脉冲均由DSP生成,完成对系统的全数字化控制.通过DSP中两个定时器的合理使用,实现了AC/AC变频器的自然换流,减小了换流死区对输出波形的影响.实验结果表明,所设计的AC/AC变频数字控制系统具有较高的控制精度和较好的控制效果.
A New Method for Measuring the Wall Charge Waveforms of AC PDP
Institute of Scientific and Technical Information of China (English)
梁志虎; 刘祖军; 刘纯亮
2004-01-01
A new method is developed to measure the wall charge waveforms in coplanar alternating current plasma display panel (AC PDP). In the method, two groups of display electrodes are selected from a coplanar AC PDP and two capacitors are respectively connected with these two groups of display electrodes in series, and a measuring circuit and a reference circuit are thus constructed. With the help of special processing, discharge takes place in the cells included in the measuring circuit under a normal drive voltage but no discharge takes place in the cells included in the reference circuit under a normal drive voltage. The wall charge waveforms are obtained from the voltage difference between the two capacitors. Using the method, the wall charge waveforms are measured during resetting period, addressing period and sustaining period for the 304.8 mm (12-inch) test PDP panel. The result shows that the wall voltage is about 96 V during the sustaining period.
Novel ac Heating-dc Detection Method for Active Thermoelectric Scanning Thermal Microscopy
Miao, Tingting; Ma, Weigang; Zhang, Xing
2015-11-01
A novel and reliable ac heating-dc detection method is developed for active thermoelectric scanning thermal microscopy, which can map out local thermal property imaging by point-heating and point-sensing with nanoscale spatial resolution. The thermoelectric probe is electrically heated by an ac current, and the corresponding dc thermoelectric voltage is detected. Using the measured dc voltage, the temperature information can be extracted with the known Seebeck coefficient of the thermoelectric probe. The validity and accuracy of this method have been verified by a 25.4 \\upmu m thick K-type thermocouple by both experiment and numerical simulation in high vacuum and in air. The experimental results show that the proposed method is reliable and convenient to monitor the temperature of the junction.
Lu, Bin; Luebke, Charles John; Habetler, Thomas G.; Zhang, Pinjia; Becker, Scott K.
2011-12-27
A system and method for measuring and controlling stator winding temperature in an AC motor while idling is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of a multi-phase AC motor. The circuit further includes a plurality of switching devices to control current flow and terminal voltages in the multi-phase AC motor and a controller connected to the circuit. The controller is configured to activate the plurality of switching devices to create a DC signal in an output of the motor control device corresponding to an input to the multi-phase AC motor, determine or estimate a stator winding resistance of the multi-phase AC motor based on the DC signal, and estimate a stator temperature from the stator winding resistance. Temperature can then be controlled and regulated by DC injection into the stator windings.
Applicability of impedance measuring method to the detection of irradiation treatment of potatoes
Energy Technology Data Exchange (ETDEWEB)
Hayashi, Toru; Todoriki, Setsuko; Otobe, Kazunori; Sugiyama, Junnichi (National Food Research Inst., Tsukuba, Ibaraki (Japan))
1993-05-01
The incubation condition of potato tubers prior to impedance measurement greatly influenced the reliability of detection of irradiated potatoes; the impedance ratio at 5 kHz to 50 kHz (Z[sub 5k]/Z[sub 50k]) determined at 22degC at an apical region of tuber which was pre-incubated at 22degC for 3 days or longer resulted in the best detection of radiation treatment of potatoes. The impedance ratio was dependent upon dose applied to potato tubers. Potatoes irradiated at 100 Gy could be distinguished from unirradiated potatoes for 10 cultivars of potatoes. The impedance ratio of potatoes irradiated at the same dose was little influenced by the planting locality if the cultivar was the same, although the ratio varied with potato cultivars. These results indicate that irradiated potatoes can be detected if the potato cultivar is known. Potatoes 'Danshaku' commercially irradiated at the Shihiro Potato Irradiation Center could be differentiated from unirradiated 'Danshaku' at different planting localities; the impedance ratio was lower than 2.75 for the unirradiated potatoes and higher than 2.75 for the irradiated ones. (author).
Applicability of impedance measuring method to the detection of irradiation treatment of potatoes
International Nuclear Information System (INIS)
The incubation condition of potato tubers prior to impedance measurement greatly influenced the reliability of detection of irradiated potatoes; the impedance ratio at 5 kHz to 50 kHz (Z5k/Z50k) determined at 22degC at an apical region of tuber which was pre-incubated at 22degC for 3 days or longer resulted in the best detection of radiation treatment of potatoes. The impedance ratio was dependent upon dose applied to potato tubers. Potatoes irradiated at 100 Gy could be distinguished from unirradiated potatoes for 10 cultivars of potatoes. The impedance ratio of potatoes irradiated at the same dose was little influenced by the planting locality if the cultivar was the same, although the ratio varied with potato cultivars. These results indicate that irradiated potatoes can be detected if the potato cultivar is known. Potatoes 'Danshaku' commercially irradiated at the Shihiro Potato Irradiation Center could be differentiated from unirradiated 'Danshaku' at different planting localities; the impedance ratio was lower than 2.75 for the unirradiated potatoes and higher than 2.75 for the irradiated ones. (author)
Directory of Open Access Journals (Sweden)
C.M.M. Resende
2011-11-01
Full Text Available The objectives of the present study were to describe and compare the body composition variables determined by bioelectrical impedance (BIA and the deuterium dilution method (DDM, to identify possible correlations and agreement between the two methods, and to construct a linear regression model including anthropometric measures. Obese adolescents were evaluated by anthropometric measures, and body composition was assessed by BIA and DDM. Forty obese adolescents were included in the study. Comparison of the mean values for the following variables: fat body mass (FM; kg, fat-free mass (FFM; kg, and total body water (TBW; % determined by DDM and by BIA revealed significant differences. BIA overestimated FFM and TBW and underestimated FM. When compared with data provided by DDM, the BIA data presented a significant correlation with FFM (r = 0.89; P < 0.001, FM (r = 0.93; P < 0.001 and TBW (r = 0.62; P < 0.001. The Bland-Altman plot showed no agreement for FFM, FM or TBW between data provided by BIA and DDM. The linear regression models proposed in our study with respect to FFM, FM, and TBW were well adjusted. FFM obtained by DDM = 0.842 x FFM obtained by BIA. FM obtained by DDM = 0.855 x FM obtained by BIA + 0.152 x weight (kg. TBW obtained by DDM = 0.813 x TBW obtained by BIA. The body composition results of obese adolescents determined by DDM can be predicted by using the measures provided by BIA through a regression equation.
Kory, Carol L.
1999-01-01
The phenomenal growth of commercial communications has created a great demand for traveling-wave tube (TWT) amplifiers. Although the helix slow-wave circuit remains the mainstay of the TWT industry because of its exceptionally wide bandwidth, until recently it has been impossible to accurately analyze a helical TWT using its exact dimensions because of the complexity of its geometrical structure. For the first time, an accurate three-dimensional helical model was developed that allows accurate prediction of TWT cold-test characteristics including operating frequency, interaction impedance, and attenuation. This computational model, which was developed at the NASA Lewis Research Center, allows TWT designers to obtain a more accurate value of interaction impedance than is possible using experimental methods. Obtaining helical slow-wave circuit interaction impedance is an important part of the design process for a TWT because it is related to the gain and efficiency of the tube. This impedance cannot be measured directly; thus, conventional methods involve perturbing a helical circuit with a cylindrical dielectric rod placed on the central axis of the circuit and obtaining the difference in resonant frequency between the perturbed and unperturbed circuits. A mathematical relationship has been derived between this frequency difference and the interaction impedance (ref. 1). However, because of the complex configuration of the helical circuit, deriving this relationship involves several approximations. In addition, this experimental procedure is time-consuming and expensive, but until recently it was widely accepted as the most accurate means of determining interaction impedance. The advent of an accurate three-dimensional helical circuit model (ref. 2) made it possible for Lewis researchers to fully investigate standard approximations made in deriving the relationship between measured perturbation data and interaction impedance. The most prominent approximations made
Wang, Hua; Liu, Feng; Xia, Ling; Crozier, Stuart
2008-11-01
This paper presents a stabilized Bi-conjugate gradient algorithm (BiCGstab) that can significantly improve the performance of the impedance method, which has been widely applied to model low-frequency field induction phenomena in voxel phantoms. The improved impedance method offers remarkable computational advantages in terms of convergence performance and memory consumption over the conventional, successive over-relaxation (SOR)-based algorithm. The scheme has been validated against other numerical/analytical solutions on a lossy, multilayered sphere phantom excited by an ideal coil loop. To demonstrate the computational performance and application capability of the developed algorithm, the induced fields inside a human phantom due to a low-frequency hyperthermia device is evaluated. The simulation results show the numerical accuracy and superior performance of the method.
Method for Flow Measurement in Microfluidic Channels Based on Electrical Impedance Spectroscopy
Arjmandi, Nima; Van Roy, Willem; Lagae, Liesbet; Borghs, Gustaaf; 10.1007/s10404-011-0843-0
2012-01-01
We have developed and characterized two novel micro flow sensors based on measuring the electrical impedance of the interface between the flowing liquid and metallic electrodes embedded on the channel walls. These flow sensors are very simple to fabricate and use, are extremely compact and can easily be integrated into most microfluidic systems. One of these devices is a micropore with two tantalum/platinum electrodes on its edges; the other is a micro channel with two tantalum /platinum electrodes placed perpendicular to the channel on its walls. In both sensors the flow rate is measured via the electrical impedance between the two metallic electrodes, which is the impedance of two metal-liquid junctions in series. The dependency of the metal-liquid junction impedance on the flow rate of the liquid has been studied. The effects of different parameters on the sensor's outputs and its noise behavior are investigated. Design guidelines are extracted and applied to achieve highly sensitive micro flow sensors wit...
DEFF Research Database (Denmark)
Jensen, Kåre Jean; Munk, Steen M.; Sørensen, John Aasted
1998-01-01
A new approach to the localization of high impedance ground faults in compensated radial power distribution networks is presented. The total size of such networks is often very large and a major part of the monitoring of these is carried out manually. The increasing complexity of industrial...
Meijer, J.H.; Boesveldt, S.; Elbertse, E.; Berendse, H.W.
2008-01-01
The time difference between the electrocardiogram and impedance cardiogram can be considered as a measure for the time delay between the electrical and mechanical activities of the heart. This time interval, characterized by the pre-ejection period (PEP), is related to the sympathetic autonomous ner
DEFF Research Database (Denmark)
Larsen, Niels Vesterdal; Breinbjerg, Olav
2004-01-01
To facilitate the validation of the numerical Method of Auxiliary Sources an analytical Method of Auxiliary Sources solution is derived in this paper. The Analytical solution is valid for transverse magnetic, and electric, plane wave scattering by circular impedance Cylinders, and it is derived...
Wakefields and coupling impedances
Energy Technology Data Exchange (ETDEWEB)
Kurennoy, S. (Superconducting Super Collider Laboratory, 2550 Beckleymeade Ave., Dallas, Texas 75237 (United States))
1995-02-01
After a short introduction of the wake potentials and coupling impedances, a few new results in impedance calculations are discussed. The first example is a new analytical method for calculating impedances of axisymmetric structures in the low frequency range, below the cutoff frequency of the vacuum chamber. The second example demonstrates that even very small discontinuities on a smooth waveguide can result in appearance of trapped modes, with frequencies slightly below the waveguide cutoff frequency. The high-frequency (above the cutoff) behavior of the coupling impedance of many small discontinuities is discussed in the third example. [copyright] 1995 [ital American] [ital Institute] [ital of] [ital Physics
Wakefields and coupling impedances
Kurennoy, Sergey
1995-02-01
After a short introduction of the wake potentials and coupling impedances, a few new results in impedance calculations are discussed. The first example is a new analytical method for calculating impedances of axisymmetric structures in the low frequency range, below the cutoff frequency of the vacuum chamber. The second example demonstrates that even very small discontinuities on a smooth waveguide can result in appearance of trapped modes, with frequencies slightly below the waveguide cutoff frequency. The high-frequency (above the cutoff) behavior of the coupling impedance of many small discontinuities is discussed in the third example.
Lawrence, Felix J; Dossou, Kokou B; McPhedran, R C; de Sterke, C Martijn
2011-01-01
We present a flexible method that can calculate Bloch modes, complex band structures, and impedances of two-dimensional photonic crystals from scattering data produced by widely available numerical tools. The method generalizes previous work which relied on specialized multipole and FEM techniques underpinning transfer matrix methods. We describe the numerical technique for mode extraction, and apply it to calculate a complex band structure and to design two photonic crystal antireflection coatings. We do this for frequencies at which other methods fail, but which nevertheless are of significant practical interest.
Institute of Scientific and Technical Information of China (English)
MA Zhi; CAO Chen-Tao; LIU Qing-Fang; WANG Jian-Bo
2012-01-01
A delta-function method is proposed to quantitatively evaluate the electromagnetic impedance matching degree.Measured electromagnetic parameters of α-Fe/Fe3B/V2O3 nanocomposites are applied to calculate the matching degree by the method.Compared with reflection loss and quarter-wave principle theory,the method accurately reveals the intrinsic mechanism of microwave transmission and reflection properties.A possible honeycomb structure with promising high-performance microwave absorption,devised according to the method,is also proposed.
Erhard, Klaus; Potthast, Roland
2003-10-01
We employ the point source method (PSM) for the reconstruction of some field u on parts of a domain Omega from the Cauchy data for the field on the boundary partialOmega of the domain. Then, the boundary condition for a perfectly conducting inclusion or a sound-soft object in Omega can be used to find the location and shape of the inhomogeneity. The results show that we can detect perfectly conducting inclusions in impedance tomography from the voltages for one injected current. For acoustic scattering a sound-soft object is found from the knowledge of one (total) field and its normal derivative on partialOmega. The work redesigns the PSM, which was first proposed in the framework of inverse scattering, to solve inverse boundary value problems. Numerical examples are provided for impedance tomography and the sound-soft acoustic boundary value problem.
Shitanda, Isao; Inoue, Kazuya; Hoshi, Yoshinao; Itagaki, Masayuki
2014-02-01
The internal resistances of dye-sensitized solar cells (DSCs) with and without current collecting electrodes (CCEs) were analyzed using electrochemical impedance spectroscopy (EIS) with a finite element method (FEM). Three different DSC models with or without current collecting electrodes were designed. Theoretical values of the internal resistance were estimated by FEM on changing the position and size of the current collecting electrodes. Large DSCs with current collecting electrodes were fabricated using a screen-printing technique, and experimental values of the internal resistance were analyzed by EIS and compared with the theoretical values. The internal resistances obtained from the impedance measurements were in good agreement with those obtained by simulation. The internal resistance was found to decrease with increasing width and thickness of the CCEs, below a threshold value. EIS was found to be extremely useful for evaluating CCE design for improved DSCs.
Walters, William J.; Haghighat, Alireza
2014-06-01
A new collision source method has been developed to solve the Linear Boltzmann Equation (LBE) more efficiently by adaptation of the angular quadrature order. The angular adaptation method is unique in that the flux from each scattering source iteration is obtained separately, with potentially a different quadrature order. This allows for an optimal use of processing power, by using a high order quadrature for the first few iterations that need it, before shifting to lower order quadratures for the remaining iterations. This is essentially an extension of the first collision source method, and we call it the adaptive collision source method (ACS). The ACS methodolog y has been implemented in the TITAN discrete ordinates code, and has shown a speedup of 2-3 on a test problem, with very little loss of accuracy (within a provided adaptive tolerance). Further, the code has been extended to work in parallel environments by angular decomposition. Although the method requires increased parallel communication, tests have shown excellent scalability, with parallel fractions of up to 99%.
Kuwabara, Takayuki; Iwata, Chiaki; Yamaguchi, Takahiro; Takahashi, Kohshin
2010-08-01
An inverted organic bulk-heterojunction solar cell containing amorphous titanium oxide (TiOx) as an electron collection electrode with the structure ITO/TiO(x)/[6,6]-phenyl C(61) butyric acid methyl ester (PCBM): regioregular poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxylenethiophene):poly(4-styrene sulfonic acid)/Au (TiO(x) cell) was fabricated. Its complicated photovoltaic properties were investigated by photocurrent-voltage and alternating current impedance spectroscopy measurements. The TiO(x) cell required a significant amount of time (approximately 60 min) to reach its maximum power conversion efficiency (PCE) of 2.6%. To investigate the reason for this slow photoresponse, we investigated the influences of UV light and water molecules adsorbed on the TiO(x) layer. Surface treatment of the TiO(x) cell with water induced a rapid photoresponse and enhanced the performance, giving a PCE of 2.97%. However, the durability of the treated cell was considerably inferior that of the untreated cell because of UV-induced photodegradation. The cause of the rapid photoresponse of the treated cell was attributed to the formation of hydrogen bonds between adsorbed water molecules and carbonyl oxygen atoms in PCBM close to the TiO(x) surface. When the TiO(x) surface was positively charged by UV-induced holes, the carbonyl oxygen in PCBM close to the TiO(x) surface can quickly join to the TiO(x) surface, rapidly transporting photogenerated electrons from PCBM to TiO(x) in competition with the photocatalyzed degradation. The experimental results suggested that the slow photoresponse of the untreated TiO(x) cell was because the morphology of the photoactive organic layer changed gradually upon irradiation to improve the transport of photocarriers at the TiO(x)/PCBM:P3HT interface. PMID:20735096
Compensation methods applied in current control schemes for large AC drive systems
DEFF Research Database (Denmark)
Rus, D. C.; Preda, N. S.; Teodorescu, Remus;
2012-01-01
The paper deals with modified PI current control structures for large AC drive systems which use surface mounted permanent magnet synchronous machines or squirrel-cage induction motors supplied with voltage source inverters. In order to reduce the power losses caused by high frequency switching...... of the semiconductor devices, various compensation methods are used and a modified structure for a PI current controller is proposed, to reduce the switching frequency of the inverter for the same operating frequency of the drive. Simulation, experimental development and test results are presented in order...... to demonstrate the capabilities of the control procedure....
电阻抗图象重建的新正则化方法%New Regularization Method in Electrical Impedance Tomography
Institute of Scientific and Technical Information of China (English)
侯卫东; 莫玉龙
2002-01-01
Image reconstruction in electrical impedance tomography(EIT) is a highly ill-posed inverse problem. Regularization techniques must be used in order to solve the problem. In this paper, a new regularization method based on the spatial filtering theory is proposed. The new regularized reconstruction for EIT is independent of the estimation of impedance distribution, so it can be implemented more easily than the maximum a posteriori(MAP) method. The regularization level in our proposed method varies spatially so as to be suited to the correlation character of the object's impedance distribution. We implemented our regularization method with two dimensional computer simulations. The experimental results indicate that the quality of the reconstructed impedance images with the descibed regularization method based on spatial filtering theory is better than that with Tikhonov method.
Grönlund, J U; Jalonen, J; Korhonen, I; Rolfe, P; Välimäki, I A
1995-05-01
We studied the pulsatile component of cerebral circulation with transcephalic electrical impedance (delta Z) in six preterm newborns, three of whom had severe cerebral bleeding, peri-intraventricular haemorrhage (PIVH). The transcephalic electrical impedance delta Z signal, ECG, arterial blood pressure, (aBP) and respirogram were recorded on analogue magnetic tape for 30 min. Artefact-free stationary segments (lasting for 2 min) of the four signals were digitised. A digital multivariate autoregressive (MAR) model was used to study frequency-specific variability in the signals and to quantify interrelations between the variabilities of delta Z, HR, aBP and respiratory signals. MAR modelling describes a system where all the signals simultaneously explain each other. The inherent variability of delta Z was lower and the influences of respiration and aBP on delta Z significantly greater in infants with severe PIVH than in controls. These changes were observed at high frequencies corresponding to respiration and heart rate. This may be interpreted as a marker of pressure passivism in the cerebral circulation following PIVH. We conclude that in preterm babies the application of MAR modelling, together with transcephalic impedance, may be a new, helpful and quantitative method for the study of simultaneous interrelations between variables of cerebral and systemic circulations and respiration.
Investigating the superhydrophobic behavior for underwater surfaces using impedance-based methods.
Tuberquia, Juan C; Song, Won S; Jennings, G Kane
2011-08-15
We have investigated the impedance behavior of immersed superhydrophobic (SH) polymethylene surfaces by tailoring the surface tension of the contacting liquid phase to gradually transition the surface from the Cassie to the Wenzel state. Control over the surface tension is accomplished by varying the ethanol content of the aqueous phase. To establish the mechanism of the transition, we imaged the interface of the film and identified three distinct events of this process: a nucleation event at low concentrations of ethanol in which small areas beneath the liquid phase transition into the Wenzel state, a propagation event characterized by the enlargement of the Wenzel domains and the lateral displacement of air, and a final event at higher concentrations of ethanol in which the thin air layer at the interface morphs into isolated pockets of air. Using this visualization of the transition, we characterized the Cassie and the Wenzel states by measuring the impedance at a frequency of 1 kHz for an initially SH film that changes its wetting behavior upon addition of ethanol. Establishment of the Cassie and Wenzel state conditions was based on concepts of electrochemical impedance spectroscopy (EIS) and quantitatively validated using both the Helmholtz theory and the analytical description of the electrochemical system in terms of the circuit model of a metal surface covered by a polymer film. Finally, we apply this strategy to determine the possibility for SH polymethylene (PM) films to reversibly transition between the Cassie and the Wenzel states. Results show that after rinsing and drying at ambient conditions for 24 h, the film recovers the SH state, suggesting the applicability of these SH films in outdoor environments with occasional periodic submersion in water. PMID:21696148
Development of an AC power source for CSEM method using full-bridge switching configuration
Indrasari, Widyaningrum; Srigutomo, Wahyu; Djamal, Mitra; S, Rahmondia N.
2015-04-01
The electromagnetic (EM) method has been widely used in geophysical surveys. It is a non-destructive method that utilizes electromagnetic waves in characterizing subsurface profiles. Generally, EM method can be divided into passive EM and active EM. The passive EM uses the natural electromagnetic field sources, while the active EM or Controlled Source EM (CSEM) uses artificial source to generate electromagnetic wave. In this paper, we present the development of AC power source for CSEM transmitter. As the power source we used AC source with sine wave signal. To satisfy a high power and high voltage in the equipment, we used the full-bridge configuration switching. It works on 990 Hz maximum frequency, and can deliver maximum current of 1.9 A at 620 V. The switching is controlled by microcontroller using Pulse Width Modulation (PWM) and the driver of inverter is built using IGBT. The output frequency can be varied from 1 Hz to 990 Hz. For varied frequencies the harmonic distortion is different due to switching speed. As frequency increase the harmonic distortion also increase. We found that the total harmonic distortion can be reduced to 1 % at the output with 330 Hz.
Institute of Scientific and Technical Information of China (English)
贺鸿珠; 陈志源; 史美伦
2000-01-01
Reinforced concrete under the long-term intrusion of seawater has been studied by the K-Ktransform of AC impedance spectroscopy. The stability and durability of the reinforced concrete can bemeasured by the relative deviation of the values measured from that calculated by K-K transform. Withthe increase of the time of the intrusion, the concrete and the rebar is less and less stable and durable.Under the same condition, concrete with fly ash is more stable than ordinary concrete.%应用交流阻抗谱中的Kramers-Kronig变换对受海水长期侵蚀的混凝土和钢筋分别进行了研究．混凝土和钢筋的稳定性可用K-K变换值与实测值之间相对偏差的大小来进行衡量．随着海水侵蚀时间的增加，混凝土和钢筋的稳定性越来越差．在同样条件下，掺粉煤灰混凝土的稳定性优于普通混凝土．
An Improved DC Recovery Method from AC Coefficients of DCT-Transformed Images
Li, Shujun; Saupe, Dietmar; Kuo, C -C Jay
2010-01-01
Motivated by the work of Uehara et al. [1], an improved method to recover DC coefficients from AC coefficients of DCT-transformed images is investigated in this work, which finds applications in cryptanalysis of selective multimedia encryption. The proposed under/over-flow rate minimization (FRM) method employs an optimization process to get a statistically more accurate estimation of unknown DC coefficients, thus achieving a better recovery performance. It was shown by experimental results based on 200 test images that the proposed DC recovery method significantly improves the quality of most recovered images in terms of the PSNR values and several state-of-the-art objective image quality assessment (IQA) metrics such as SSIM and MS-SSIM.
Energy Technology Data Exchange (ETDEWEB)
Shekharam, T., E-mail: tshekharam@gmail.com; Laxminarasimha Rao, V.; Yellaiah, G.; Mohan Kumar, T.; Nagabhushanam, M., E-mail: mamidala_nb@yahoo.com
2014-12-25
Graphical abstract: A plot of 1−s versus T (K) for Cd{sub 0.8−x}Pb{sub x}Zn{sub 0.2}S (x = 0, 0.1–0.8), inset: plot of s versus T (K) for x = 0. - Highlights: • Activation energy of relaxation process of Cd{sub 0.8−x}Pb{sub x}Zn{sub 0.2}S (x = 0, 0.1–0.8) compounds has been determined. • Grain resistances and grain capacitances of the compounds were estimated at different temperatures. • Relaxation time for all the compounds has been determined at different temperatures. - Abstract: The samples of Cd{sub 0.8−x}Pb{sub x}Zn{sub 0.2}S (x = 0, 0.1–0.8) are prepared by Controlled Co-Precipitation Method. X-ray diffraction studies have confirmed the polycrystalline nature of the samples with Hexagonal and Cubic phases of Wurtzite structure. AC conductivity (σ{sub ac}) measurements of Cd{sub 0.8−x}Pb{sub x}Zn{sub 0.2}S samples at different temperatures (between 40 and 300 °C), in the frequency range 5 kHz–20 MHz were made. The results showed that σ{sub ac} obeys the relation σ{sub ac}(ω) = Aω{sup s}. The exponent “s” was found to decrease with increase in temperature. Further analysis revealed that, the AC conductivity of the samples follow correlated barrier hopping (CBH) model. The dielectric constant (∊′) and dielectric loss (Tan δ) were observed to (i) increase with the increase in temperature and the increase is higher at lower frequencies and (ii) decrease rapidly at low frequencies and remains almost constant at higher frequencies. The cole–cole plot showed a single semicircle, indicating an equivalent circuit with a single parallel resistor R{sub g} and capacitance C{sub g} network with a series resistance R{sub s}. The plots also show the grain contribution toward AC conductivity. The relaxation frequencies, determined from these plots are used to calculate the activation energies E{sub a} of relaxation process using Log τ versus 10{sup 3}/T plots. The values of E{sub a} for all the studied compounds range from 0.05 to 0
Directory of Open Access Journals (Sweden)
Gideon Charach
Full Text Available Measurement of internal thoracic impedance (ITI is sensitive and accurate in detecting acute pulmonary edema even at its preclinical stage. We evaluated the suitability of the highly sensitive and noninvasive RS-207 monitor for detecting pleural effusion and for demonstrating increased ITI during its resolution. This prospective controlled study was performed in a single department of internal medicine of a university-affiliated hospital between 2012-2013. One-hundred patients aged 25–96 years were included, of whom 50 had bilateral or right pleural effusion of any etiology (study group and 50 had no pleural effusion (controls. ITI, the main component of which is lung impedance, was continuously measured by the RS-207 monitor. The predictive value of ITI monitoring was determined by 8 measurements taken every 8 hours. Pleural effusion was diagnosed according to well-accepted clinical and roentgenological criteria. During treatment, the ITI of the study group increased from 32.9±4.2 ohm to 42.8±3.8 ohm (p<0.0001 compared to non-significant changes in the control group (59.6±6.6 ohm, p = 0.24. Prominent changes were observed in the respiratory rate of the study group: there was a decrease from 31.2±4.0 to 19.5±2.4 ohm (35.2% compared to no change for the controls, and a mean increase from 83.6± 5.3%-92.5±1.6% (13.2% in O2 saturation compared to 94.2±1.7% for the controls. Determination of ITI for the detection and monitoring of treatment of patients with pleural effusion enables earlier diagnosis and more effective therapy, and can prevent hospitalization and serious complications, such as respiratory distress, and the need for mechanical ventilation.The study is registered at ClinicalTrials.gov NCT01601444.
Energy Technology Data Exchange (ETDEWEB)
Ciovati, Gianluigi [JLAB
2015-02-01
This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.
International Nuclear Information System (INIS)
Electrical impedance tomography (EIT) is a portable, non-invasive medical imaging method, which could be employed to image the seizure onset in subjects undergoing assessment prior to epilepsy surgery. Each image is obtained from impedance measurements conducted with imperceptible current at tens of kHz. For concurrent imaging with video electroencephalogram (EEG), the EIT introduces a substantial artefact into the EEG due to current switching at frequencies in the EEG band. We present here a method for its removal, so that EIT and the EEG could be acquired simultaneously. A low-pass analogue filter for EEG channels (−6 dB at 48 Hz) and a high-pass filter (−3 dB at 72 Hz) for EIT channels reduced the artefact from 2–3 mV to 50–300 µV, but still left a periodic artefact at about 3 Hz. This was reduced to less than 10 µV with a software filter, which subtracted an artefact template from the EEG raw traces. The EEG was made clinically acceptable at four times its acquisition speed. This method could enable EIT to become a technique for imaging on telemetry units alongside EEG, without interfering with routine EEG reporting
AC hot wire measurement of thermophysical properties of nanofluids with 3ω method
Turgut, A.; Sauter, C.; Chirtoc, M.; Henry, J. F.; Tavman, S.; Tavman, I.; Pelzl, J.
2008-01-01
We present a new application of a hot wire sensor for simultaneous and independent measurement of thermal conductivity k and diffusivity α of (nano)fluids, based on a hot wire thermal probe with ac excitation and 3 ω lock-in detection. The theoretical modeling of imaginary part of the signal yields the k value while the phase yields the α value. Due to modulated heat flow in cylindrical geometry with a radius comparable to the thermal diffusion length, the necessary sample quantity is kept very low, typically 25 μl. In the case of relative measurements, the resolution is 0.1% in k and 0.3% in α. Measurements of water-based Aerosil 200V nanofluids indicate that ultrasound treatment is more efficient than high pressure dispersion method in enhancing their thermal parameters.
Giovinazzo, G.; Ribas, N.; Cinca, J.; Rosell-Ferrer, J.
2010-04-01
Previous studies have shown that it is possible to evaluate heart graft rejection level using a bioimpedance technique by means of an intracavitary catheter. However, this technique does not present relevant advantages compared to the gold standard for the detection of a heart rejection, which is the biopsy of the endomyocardial tissue. We propose to use a less invasive technique that consists in the use of a transoesophageal catheter and two standard ECG electrodes on the thorax. The aim of this work is to evaluate different parameters affecting the impedance measurement, including: sensitivity to electrical conductivity and permittivity of different organs in the thorax, lung edema and pleural water. From these results, we deduce the best estimator for cardiac rejection detection, and we obtain the tools to identify possible cases of false positive of heart rejection due to other factors. To achieve these objectives we have created a thoracic model and we have simulated, with a FEM program, different situations at the frequencies of 13, 30, 100, 300 and 1000 kHz. Our simulation demonstrates that the phase, at 100 and 300 kHz, has the higher sensitivity to changes in the electrical parameters of the heart muscle.
Mousa, Ghassan; Golnaraghi, Farid; DeVaal, Jake; Young, Alan
2014-01-01
When a proton exchange membrane (PEM) fuel cell runs short of hydrogen, it suffers from a reverse potential fault that, when driven by neighboring cells, can lead to anode catalyst degradation and holes in the membrane due to local heat generation. As a result, hydrogen leaks through the electrically-shorted membrane-electrode assembly (MEA) without being reacted, and a reduction in fuel cell voltage is noticed. Such voltage reduction can be detected by using electrochemical impedance spectroscopy (EIS). To fully understand the reverse potential fault, the effect of hydrogen crossover leakage in a commercial MEA is measured by EIS at different differential pressures between the anode and cathode. Then the signatures of these leaky cells were compared with the signatures of a no-leaky cells at different oxygen concentrations with the same current densities. The eventual intent of this early stage work is to develop an on-board diagnostics system that can be used to detect and possibly prevent cell reversal failures, and to permit understanding the status of crossover or transfer leaks versus time in operation.
Directory of Open Access Journals (Sweden)
M.A. Radhika
2013-02-01
Full Text Available In general aerospace, civil and mechanical (ACM structures are often subjected to some or the other forms of loading during their service life. It has been reported that about 75% of aerospace structures fail due to fatigue cyclic loading. The civil-structural components are subjected to some form of axial and transverse loading which continuously deteriorates the health of the structure. Mechanical components are also subjected to stresses due to contact pressures between several components. Thus for ACM structures, effective monitoring through-out the entire life is required as these often involve public life and huge investments. Owing to such necessity, researchers around the world are continuously working on the development of smart sensor based effective monitoring techniques. Piezo electric (PZT transducer based electromechanical impedance (EMI is one such technique which was developed for structural health monitoring (SHM. In this technique, PZT transducers are usually attached to the structure to be monitored and are then subjected to unit sinusoidal electric voltage to generate the electromechanical (EM admittance signatures when interrogated to the desired frequency range of excitations. These signatures consist of real (conductance and imaginary (susceptance parts which serve as indicator to predict the structural health. Any deviations in these signatures during the monitoring period indicate disturbance in the structure. However, the EMI technique was not widely explored for structural load monitoring (such as fatigue cyclic load, monotonous load, axial and transverse load compared to damage detection. In this paper, systematic experiments were presented on the specimens for axial load variations, transverse load variations, monotonous and fatigue load variation with discussions on boundary effect and buckling effects. For axial, fatigue, monotonic load, the conductance was found to be effective where as for transverse load
A.c. conductivity and dielectric study of LiNiPO4 synthesized by solid-state method
Indian Academy of Sciences (India)
M Ben Bechir; A Ben Rhaiem; K Guidara
2014-05-01
LiNiPO4 compound was prepared by the conventional solid-state reaction. The sample was characterized by X-ray powder diffraction, infrared, Raman analysis spectroscopy and electrical impedance spectroscopy. The compound crystallizes in the orthorhombic system, space group with = 10.0252(7) Å, = 5.8569(5) Å and = 4.6758(4) Å. Vibrational analysis was used to identify the presence of PO$^{3-}_{4}$ group in this compound. The complex impedance has been measured in the temperature and frequency ranges 654–716 K and 242 Hz–5 MHz, respectively. The ' and '' vs frequency plots are well-fitted to an equivalent circuit consisting of series of combination of grains and grain boundary elements. Dielectric data were analysed using complex electrical modulus * for the sample at various temperatures. The modulus plots are characterized by the presence of two peaks thermally activated. The frequency dependence of the conductivity is interpreted in terms of equation: _a.c.() = [g/(1 + 22) + (∞22/1 + 22) + An]. The near values of activation energies obtained from the analysis of ", conductivity data and equivalent circuit confirms that the transport is through ion hopping mechanism dominated by the motion of Li+ in the structure of the investigated material.
Measuring ac-loss in high temperature superconducting cable-conductors using four probe methods
DEFF Research Database (Denmark)
Kühle (fratrådt), Anders Van Der Aa; Træholt, Chresten; Olsen, Søren Krüger;
1999-01-01
Measuring the ac-loss of superconducting cable conductors have many aspects in common with measuring the ac-loss of single superconducting tapes. In a cable conductor all tapes are connected to each other and to the test circuit through normal metal joints in each end. This makes such measurement...
基于ACS-GA算法的车辆路径问题研究%An ACS-GA Hybrid Optimization Method to Solve Vehicle Routing Problem
Institute of Scientific and Technical Information of China (English)
赵婉忻; 曲仕茹
2011-01-01
Vehicle routing problem is an important research area in intelligent transportation and business logistics. Planning the vehicle routes reasonably, reducing the delivery mileage and minimizing the cost of logistic distribution are great significance to increase economic efficiency. The paper focuses on vehicle routing problem with time windows in logistic distribution and establishes an improved mathematical model in which the delivery time and delivery distance is shortest. A novel hybrid optimization method integrating ant colony system with genetic algorithm ( ACS - GA) is presented. The initial solution is obtained by ant colony system. A genetic algorithm is used to improve the performance of ACS by reproduction, crossover and mutation operations. The ACS - GA hybrid optimization method can overcome the premature phenomenon and enhance the global search ability. Based on the benchmark datasets of vehicle routing problem with time windows, the experimental results demonstrate that the proposed method has a better ability to search the global optimal solution than other optimization methods.%物流配送车辆路径问题是智能交通和商业物流领域中一个重要研究方面.合理规划车辆的行驶路线,减少配送里程,降低物流成本,对提高经济效益具有重要意义.重点分析了带时间窗的物流配送车辆路径问题,建立了兼顾配送时间与配送距离最短的改进数学模型.提出了基于蚁群系统算法和遗传算法相融合的混合算法.该算法利用蚁群系统算法得到初始解,运用遗传算法中复制、交叉、变异操作对解的种群多样性进行扩充,克服了蚁群系统算法的早熟现象,增强了算法的全局搜索能力.基于标准数据集的实验结果表明,该算法与其他优化方法相比较,具有较好的搜索车辆路径最优解的能力.
DEFF Research Database (Denmark)
Swierczynski, Maciej Jozef; Stroe, Daniel Loan; Stanciu, Tiberiu;
2016-01-01
and discharging power capability rates of lithium-ion batteries raises safety concerns and requires thermal management of the entire battery system. Moreover, lithium-ion battery's temperature influences both battery short term (capacity, efficiency, self-discharge) and long-term (lifetime) behaviour. Thus...... spectroscopy method can be still improved in terms of e.g. accuracy and measurement time and it has a potential to be extended to new applications. Performed review indicates that the electrothermal impedance spectroscopy is a very promising, non-destructive, simple and especially cost-efficient method...
Effect of HIPing on conductivity and impedance measurements of DyBi5Fe2Ti3O18 ceramics
Indian Academy of Sciences (India)
N V Prasad; G Prasad; Mahendra Kumar; S V Suryanarayana; T Bhimasankaram; G S Kumar
2000-12-01
X-ray diffraction, a.c. impedance and conductivity (a.c. and d.c.) have been used to characterize DyBi5Fe2Ti3O18. Samples were prepared by solid state double sintering method. A few samples were also subjected to hot isostatic pressing (HIP) at 800°C for 2 h at 100 MPa pressure. The data on XRD, impedance and conductivity of two sets of samples are compared to understand study of effect of HIPing on the properties of DyBi5Fe2Ti3O18.
Directory of Open Access Journals (Sweden)
Rafaela Siqueira Ferraz
2015-03-01
Full Text Available The aim of this study was to develop and validate a UV spectrophotometric method for determination of LPSF/AC04 from inclusion complex and encapsulated into liposomes. The validation parameters were determined according to the International Conference on Harmonisation (ICH and National Health Surveillance Agency (ANVISA guidelines. LPSF/AC04 was determined at 250 nm in methanol by a UV spectrophotometric method, exhibiting linearity in the range from 0.3 to 2 µg.mL−1 (Absorbance=0.18068 x [LPSF/AC04 µg.mL-1] + 0.00348, (r2=0.9995. The limits of detection and quantification were 0.047µg.mL−1 and 0.143µg.mL−1, respectively. The method was accurate, precise, reproducible and robust since all the samples analyzed had coefficient of variation of less than 5% and no statistically significant difference between theoretical and practical concentrations was detected. Thus, a rapid, simple, low cost and sensitive spectrophotometric method was developed and validated for determining the content of inclusion complex and liposomes containing LPSF/AC04.
Microwave Impedance Measurement for Nanoelectronics
Directory of Open Access Journals (Sweden)
M. Randus
2011-04-01
Full Text Available The rapid progress in nanoelectronics showed an urgent need for microwave measurement of impedances extremely different from the 50Ω reference impedance of measurement instruments. In commonly used methods input impedance or admittance of a device under test (DUT is derived from measured value of its reflection coefficient causing serious accuracy problems for very high and very low impedances due to insufficient sensitivity of the reflection coefficient to impedance of the DUT. This paper brings theoretical description and experimental verification of a method developed especially for measurement of extreme impedances. The method can significantly improve measurement sensitivity and reduce errors caused by the VNA. It is based on subtraction (or addition of a reference reflection coefficient and the reflection coefficient of the DUT by a passive network, amplifying the resulting signal by an amplifier and measuring the amplified signal as a transmission coefficient by a common vector network analyzer (VNA. A suitable calibration technique is also presented.
Na, Wongi S.
2016-05-01
Damage accumulation in structures may result in a structural failure which is a serious problem when ensuring public safety. Although various non-destructive techniques are available to seek for the existence of damage at an early stage, most of these techniques rely on the experience of the experts. To date, automated structural health monitoring systems have been extensively researched and one of the methods, known as the electromechanical impedance (EMI) method, has shown promising results. However, the EMI method is a local method requiring a large number of sensors for covering large areas such as in bridges and buildings. In addition, attaching these sensors onto a surface can be time consuming since adhesives are used for attaching the sensors where its curing time increases the setting up time even further. In this study, the performance of the reusable piezoelectric (PZT) device for metal structures is examined against two different types of progressive damage scenarios. Overall, the reusable PZT device shown in this study has successfully identified damage with a possibility of weight loss detection.
Energy Technology Data Exchange (ETDEWEB)
Kim, Moo Whan; Kang, Hie Chan; Kwon, Jung Tae; Huh, Deok; Yang, Hoon Cheul [Pohang University of Science and Technology, Pohang (Korea)
2000-04-01
Impedance method was carried out to design the electrode that can measure the void fraction of the bubbly flow in pool reservoir. To find out the optimum electrode shape, Styrofoam-Simulator tests were performed in a specially designed acrylic reservoir. Three kinds of electrodes were designed to compare the measuring characteristics of water-air flow. The resistance increased with the increase of the void fraction and the capacitance decreased with the increase of the void fraction. The resistance is a main parameter to express the nature of the water-air flow in impedance method. Almost of impedance values come out from the resistance. The degree of deviation from the mean-resistance values showed reasonable results. Electrode type-I expressed excellent results among the three electrode shapes. The sensor developed can simultaneously measure the void fraction and the water level. 7 refs., 51 figs., 4 tabs. (Author)
Complex Impedance of Manganese Ferrite Powders Obtained by Two Different Methods
Directory of Open Access Journals (Sweden)
Mălăescu I.
2015-12-01
Full Text Available Two samples of manganese ferrite powder were obtained by the calcination method (sample A and hydrothermal method (sample B. The crystal structure of the samples has been determined using X-ray diffraction analysis (XRD. The results shown that the sample A has three phases (FeMnO3, Mn2O3 and Fe2O3 and the prevailing phase is FeMnO3 with perovskite structure and the sample B has only a single phase (MnFe2O4.
Frequency Synchronization Analysis in Digital lock-in Methods for Bio-impedance Determination
Directory of Open Access Journals (Sweden)
Brajkovič Robert
2014-12-01
Full Text Available The lock-in method is one of the most frequently used methods for reconstruction of measured signals and as such frequently applied in the (bioimpedance method to determine the modulus and phase of the (bioimpedance. In implementation of the method in a (bioimpedance measurement device one has to consider possible non synchronized frequencies of the reference and the analyzed signals as well as potential sources of noise. In this work we analyzed these errors theoretically and experimentally. We show that both amplitude and phase errors depend on the relative difference of the frequencies of the reference and investigated signal as well as the number of integration periods. Theoretically, these errors vanish during the determination of the (bioimpedance modulus and phase. In practical implementation the inaccuracies appear at points of very low determined signal amplitudes due to the limited accuracy of analog to digital converters and are distributed around these points due to other sources of noise inherent in implementation of the measurement device.
Directory of Open Access Journals (Sweden)
Chalas Renata
2014-06-01
Full Text Available The diagnostic management is a very important and integral part of the entire treatment process and has a direct influence on the decision-taking on the choice of the most appropriate form of therapy consistent with current knowledge. Knowledge of the morphology of hard dental tissues lesions has led to the development of quantitative methods for diagnosis and monitoring of dental caries, which enabled the implementation of appropriate treatments aimed at repairing than replacing damaged tissue. The aim of the study was to compare selected diagnostic methods: visual (ICDAS, impedance spectroscopy (CarieScan PRO and laser fluorescence (Diagnodent Pen in detecting caries in grooves on the chewing surfaces of molars and premolars. The obtained results indicated a high concordance of measurements performed with the Diagnodent Pen with the results of visual examination and a lower compliance of visual examination with the results obtained using the CarieScan PRO. A combination of visual and tactile method with tests using advanced technology provides greater opportunity to confirm the diagnosis of carious lesions requiring medical intervention.
International Nuclear Information System (INIS)
Finite element (FE) methods are widely used in electrical impedance tomography (EIT) to enable rapid image reconstruction of different tissues based on their electrical conductivity. For EIT of brain function, anatomically-accurate (head-shaped) FE meshes have been shown to improve the quality of the reconstructed images. Unfortunately, given the lack of a computational protocol to generate patient-specific meshes suitable for EIT, production of such meshes is currently ad hoc and therefore very time consuming. Here we describe a robust protocol for rapid generation of patient-specific FE meshes from MRI or CT scan data. Most of the mesh generation process is automated and uses freely available user-friendly software. Other necessary custom scripts are provided as supplementary online data and are fully documented. The patient scan data is segmented into four surfaces: brain, cerebrospinal fluid, skull and scalp. The segmented surfaces are then triangulated and used to generate a global mesh of tetrahedral elements. The resulting meshes exhibit high quality when tested with different criteria and were validated in computational simulations. The proposed protocol provides a rapid and practicable method for generation of patient-specific FE meshes of the human head that are suitable for EIT. This method could eventually be extended to other body regions and might confer benefits with other imaging techniques such as optical tomography or EEG inverse source imaging. (paper)
Ma, Chun-hui; Zu, Yuan-gang; Yang, Lei; Li, Jian
2015-01-22
In this study, two solid-phase recycling method for basic ionic liquid (IL) 1-butyl-3-methylimidazolium acetate ([C4mim]Ac) were studied through a digestion extraction system of extracting biphenyl cyclooctene lignans from Schisandra chinensis. The RP-HPLC detection method for [C4mim]Ac was established in order to investigate the recovery efficiency of IL. The recycling method of [C4mim]Ac is divided into two steps, the first step was the separation of lignans from the IL solution containing HPD 5000 macroporous resin, the recovery efficiency and purity of [C4mim]Ac achieved were 97.8% and 67.7%, respectively. This method cannot only separate the lignans from [C4mim]Ac solution, also improve the purity of lignans, the absorption rate of lignans in [C4mim]Ac solution was found to be higher (69.2%) than that in ethanol solution (57.7%). The second step was the purification of [C4mim]Ac by the SK1B strong acid ion exchange resin, an [C4mim]Ac recovery efficiency of 55.9% and the purity higher than 90% were achieved. Additionally, [C4mim]Ac as solvent extraction of lignans from S. chinensis was optimized, the hydrolysis temperature was 90°C and the hydrolysis time was 2h.
International Nuclear Information System (INIS)
Electrical impedance tomography (EIT) is a non-invasive imaging technique that can be used as a bed-side monitoring tool for human thorax imaging. EIT has high temporal resolution characteristics but at the same time it suffers from poor spatial resolution due to ill-posedness of the inverse problem. Often regularization methods are used as a penalty term in the cost function to stabilize the sudden changes in resistivity. In human thorax monitoring, with conventional regularization methods employing Tikhonov type regularization, the reconstructed image is smoothed between the heart and the lungs, that is, it makes it difficult to distinguish the exact boundaries of the lungs and the heart. Sometimes, obtaining structural information of the object prior to this can be incorporated into the regularization method to improve the spatial resolution along with helping create clear and distinct boundaries between the objects. However, the boundary of the heart is changed rapidly due to the cardiac cycle hence there is no information concerning the exact boundary of the heart. Therefore, to improve the spatial resolution for human thorax monitoring during the cardiac cycle, in this paper, a sub-domain based regularization method is proposed assuming the lungs and part of background region is known. In the proposed method, the regularization matrix is modified anisotropically to include sub-domains as prior information, and the regularization parameter is assigned with different weights to each sub-domain. Numerical simulations and phantom experiments for 2D human thorax monitoring are performed to evaluate the performance of the proposed regularization method. The results show a better reconstruction performance with the proposed regularization method. (paper)
Methods, systems and apparatus for controlling operation of two alternating current (AC) machines
Gallegos-Lopez, Gabriel; Nagashima, James M.; Perisic, Milun; Hiti, Silva
2012-02-14
A system is provided for controlling two AC machines. The system comprises a DC input voltage source that provides a DC input voltage, a voltage boost command control module (VBCCM), a five-phase PWM inverter module coupled to the two AC machines, and a boost converter coupled to the inverter module and the DC input voltage source. The boost converter is designed to supply a new DC input voltage to the inverter module having a value that is greater than or equal to a value of the DC input voltage. The VBCCM generates a boost command signal (BCS) based on modulation indexes from the two AC machines. The BCS controls the boost converter such that the boost converter generates the new DC input voltage in response to the BCS. When the two AC machines require additional voltage that exceeds the DC input voltage required to meet a combined target mechanical power required by the two AC machines, the BCS controls the boost converter to drive the new DC input voltage generated by the boost converter to a value greater than the DC input voltage.
International Nuclear Information System (INIS)
The accuracy of BIA measurements is limited by different sources of error such as physical model, cross sectional area, ethnicity, body hydration, age and level of body fat among other variables. Equation for each population is required as they can produce overestimation when manufacturer's equations are used. The classical measurements hand to foot has shown better correlation against hydrodensitometry than foot to foot or hand to hand. However there is a lack for an accepted standard of BIA procedures. This is compounded when there is not a good report of the BIA study's methodology; hence the comparability between the results is poor and reduces the reliability of the method. Perhaps, standardization of methods would be the first step for BIA studies to move forward and subsequently improve its accuracy. Standardized procedures could also minimize the impact of these variables on studies results. The aim of this study was to propose a protocol as a checklist to standardize BIA procedures and produce comparable results from future studies performed with the classic hand-foot configuration in adults.
A non-iterative method for the electrical impedance tomography based on joint sparse recovery
Lee, Ok Kyun; Kang, Hyeonbae; Ye, Jong Chul; Lim, Mikyoung
2015-07-01
The purpose of this paper is to propose a non-iterative method for the inverse conductivity problem of recovering multiple small anomalies from the boundary measurements. When small anomalies are buried in a conducting object, the electric potential values inside the object can be expressed by integrals of densities with a common sparse support on the location of anomalies. Based on this integral expression, we formulate the reconstruction problem of small anomalies as a joint sparse recovery and present an efficient non-iterative recovery algorithm of small anomalies. Furthermore, we also provide a slightly modified algorithm to reconstruct an extended anomaly. We validate the effectiveness of the proposed algorithm over the linearized method and the multiple signal classification algorithm by numerical simulations. This work is supported by the Korean Ministry of Education, Sciences and Technology through NRF grant No. NRF-2010-0017532 (to H K), the Korean Ministry of Science, ICT & Future Planning; through NRF grant No. NRF-2013R1A1A3012931 (to M L), the R&D Convergence Program of NST (National Research Council of Science & Technology) of Republic of Korea (Grant CAP-13-3-KERI) (to O K L and J C Y).
Na, Wongi S.; Lee, Hyeonseok
2016-11-01
In general, the pipelines within a nuclear power plant facility may experience high temperatures up to several hundred degrees. Thus it is absolutely vital to monitor these pipes to prevent leakage of radioactive substances which may lead to a catastrophic outcome of the surrounding environment. Over the years, one of the structural health monitoring technique known as the electromechanical impedance (EMI) technique has been of great interests in various fields including civil infrastructures, mechanical and aerospace structures. Although it has one of the best advantages to be able for a single piezoelectric transducer to act as a sensor and an actuator, simultaneously, its low curie temperature makes it difficult for the EMI technique to be conducted at high temperature environment. To overcome this problem, this study shows a method to avoid attaching the piezoelectric transducer directly onto the target structure using a metal wire for damage detection at high temperature. By shifting the frequency to compensate the signature changes subjected to the variations in temperature, the experimental results indicate that damage identification is more successful above 200 oC, making the metal wire method suitable for the EMI technique at high temperature environment.
International Nuclear Information System (INIS)
The method presented in this thesis combines ultrasound techniques with the magnetic-resonance tomography (MRT). An ultrasonic wave generates in absorbing media a static force in sound-propagation direction. The force leads at sound intensities of some W/cm2 and a sound frequency in the lower MHz range to a tissue shift in the micrometer range. This tissue shift depends on the sound power, the sound frequency, the sound absorption, and the elastic properties of the tissue. A MRT sequence of the Siemens Healthcare AG was modified so that it measures (indirectly) the tissue shift, codes as grey values, and presents as 2D picture. By means of the grey values the sound-beam slope in the tissue can be visualized, and so additionally sound obstacles (changes of the sound impedance) can be detected. By the MRT images token up spatial changes of the tissue parameters sound absorption and elasticity can be detected. In this thesis measurements are presented, which show the feasibility and future chances of this method especially for the mammary-cancer diagnostics.
Directory of Open Access Journals (Sweden)
Michelle O’Rourke
2011-06-01
Full Text Available Electrochemical impedance spectroscopy (EIS has been used to estimate the non-frequency dependent (static dielectric constants of base polymers such as poly(vinyl chloride (PVC, cellulose triacetate (CTA and polystyrene (PS. Polymer inclusion membranes (PIMs containing different amounts of PVC or CTA, along with the room temperature ionic liquid Aliquat 336 and plasticizers such as trisbutoxyethyl phosphate (TBEP, dioctyl sebecate (DOS and 2-nitrophenyloctyl ether (NPOE have been investigated. In this study, the complex and abstract method of EIS has been applied in a simple and easy to use way, so as to make the method accessible to membrane scientists and engineers who may not possess the detailed knowledge of electrochemistry and interfacial science needed for a rigorous interpretation of EIS results. The EIS data reported herein are internally consistent with a percolation threshold in the dielectric constant at high concentrations of Aliquat 336, which illustrates the suitability of the EIS technique since membrane percolation with ion exchangers is a well-known phenomenon.
O'Rourke, Michelle; Duffy, Noel; De Marco, Roland; Potter, Ian
2011-01-01
Electrochemical impedance spectroscopy (EIS) has been used to estimate the non-frequency dependent (static) dielectric constants of base polymers such as poly(vinyl chloride) (PVC), cellulose triacetate (CTA) and polystyrene (PS). Polymer inclusion membranes (PIMs) containing different amounts of PVC or CTA, along with the room temperature ionic liquid Aliquat 336 and plasticizers such as trisbutoxyethyl phosphate (TBEP), dioctyl sebecate (DOS) and 2-nitrophenyloctyl ether (NPOE) have been investigated. In this study, the complex and abstract method of EIS has been applied in a simple and easy to use way, so as to make the method accessible to membrane scientists and engineers who may not possess the detailed knowledge of electrochemistry and interfacial science needed for a rigorous interpretation of EIS results. The EIS data reported herein are internally consistent with a percolation threshold in the dielectric constant at high concentrations of Aliquat 336, which illustrates the suitability of the EIS technique since membrane percolation with ion exchangers is a well-known phenomenon. PMID:24957616
SYNTHESIS METHODOLOGY FOR ACTIVE ELEMENT USING IMPEDANCES –BASED BOND GRAPH METHODS
Directory of Open Access Journals (Sweden)
Nasta TANASESCU
2004-12-01
Full Text Available This paper introduces a synthesis methodology for active elements within systems that uses frequency response function as a basis for describing required behavior. The method is applicable in the design of a new system or in the retrofit of an existing system in which an active element is required or desired. The two basis principles of bond graph modeling are the “reticulation principle” which decomposes a physical into elemental physical laws represented as network elements interacting through ports and the “power postulate” which assembles the complete model through a network of power flows representing the exchange of energy between the elements. Moreover the bond graph model leads to a rigorous definitions of the structure of the associated dynamical equations.
M.S. Ould Brahim; I. Diagne, S. Tamba, F. Niang and G. Sissoko
2011-01-01
Our objective in this study is to determine the effective thermal insulating layer of a composite towplaster. The characterization of thermal insulating material is proposed from the study of the thermal impedance in dynamic two-dimensional frequency. Thermo physical properties of the material tow-plaster are determined from the study of the thermal impedance. Nyquist representations have introduced an interpretation of certain phenomena of heat transfer from the series and shunt resistors. T...
DEFF Research Database (Denmark)
Anastassiu, H.T.; D.I.Kaklamani, H.T.; Economou, D.P.;
2002-01-01
A novel combination of the method of auxiliary sources (MAS) and the standard impedance boundary condition (SIBC) is employed in the analysis of transverse magnetic (TM) plane wave scattering from infinite, coated, perfectly conducting cylinders with square cross sections. The scatterer...
Optically stimulated differential impedance spectroscopy
Maxey, Lonnie C; Parks, II, James E; Lewis, Sr., Samuel A; Partridge, Jr., William P
2014-02-18
Methods and apparatuses for evaluating a material are described. Embodiments typically involve use of an impedance measurement sensor to measure the impedance of a sample of the material under at least two different states of illumination. The states of illumination may include (a) substantially no optical stimulation, (b) substantial optical stimulation, (c) optical stimulation at a first wavelength of light, (d) optical stimulation at a second wavelength of light, (e) a first level of light intensity, and (f) a second level of light intensity. Typically a difference in impedance between the impedance of the sample at the two states of illumination is measured to determine a characteristic of the material.
Eddy Current Rail Inspection Using AC Bridge Techniques
Liu, Ze; Koffman, Andrew D; Waltrip, Bryan C; Wang, Yicheng
2013-01-01
AC bridge techniques commonly used for precision impedance measurements have been adapted to develop an eddy current sensor for rail defect detection. By using two detection coils instead of just one as in a conventional sensor, we can balance out the large baseline signals corresponding to a normal rail. We have significantly enhanced the detection sensitivity of the eddy current method by detecting and demodulating the differential signal of the two coils induced by rail defects, using a di...
DEFF Research Database (Denmark)
Vang, Jakob Rabjerg
potentially play an important role in the energy system of the future. One of the fuel cell technologies, that receives much attention from the Danish scientific community is high temperature proton exchange membrane (HTPEM) fuel cells based on polybenzimidazole (PBI) with phosphoric acid as proton conductor...... cells through experimental studies and mathematical modelling. These studies all revolve around the electrochemical impedance spectroscopy (EIS) characterisation method. EIS is performed by applying a sinusoidal current or voltage signal to the fuel cell and calculating the impedance from the response...
Creasy, M. Austin
2016-03-01
Impedance models of pipes can be used to estimate resonant frequencies of standing waves and model acoustic pressure of closed and open ended pipes. Modelling a pipe with impedance methods allows additional variations to the pipe to be included in the overall model as a system. Therefore an actuator can be attached and used to drive the system and the impedance model is able to include the dynamics of the actuator. Exciting the pipe system with a chirp signal allows resonant frequencies to be measured in both the time and frequency domain. The measurements in the time domain are beneficial for introducing undergraduates to resonances without needing an understanding of fast Fourier transforms. This paper also discusses resonant frequencies in open ended pipes and how numerous texts incorrectly approximate the resonant frequencies for this specific pipe system.
Directory of Open Access Journals (Sweden)
Martin Winter
2013-07-01
Full Text Available A new approach to study the chemical stability of electrodeposited lithium on a copper metal substrate via measurements with a fast impedance scanning electrochemical quartz crystal microbalance is presented. The corrosion of electrochemically deposited lithium was compared in two different electrolytes, based on lithium difluoro(oxalato borate (LiDFOB and lithium hexafluorophosphate, both salts being dissolved in solvent blends of ethylene carbonate and diethyl carbonate. For a better understanding of the corrosion mechanisms, scanning electron microscopy images of electrodeposited lithium were also consulted. The results of the EQCM experiments were supported by AC impedance measurements and clearly showed two different corrosion mechanisms caused by the different salts and the formed SEIs. The observed mass decrease of the quartz sensor of the LiDFOB-based electrolyte is not smooth, but rather composed of a series of abrupt mass fluctuations in contrast to that of the lithium hexafluorophosphate-based electrolyte. After each slow decrease of mass a rather fast increase of mass is observed several times. The slow mass decrease can be attributed to a consolidation process of the SEI or to the partial dissolution of the SEI leaving finally lithium metal unprotected so that a fast film formation sets in entailing the observed fast mass increases.
Implantable Impedance Plethysmography
Directory of Open Access Journals (Sweden)
Michael Theodor
2014-08-01
Full Text Available We demonstrate by theory, as well as by ex vivo and in vivo measurements that impedance plethysmography, applied extravascularly directly on large arteries, is a viable method for monitoring various cardiovascular parameters, such as blood pressure, with high accuracy. The sensor is designed as an implant to monitor cardiac events and arteriosclerotic progression over the long term.
International Nuclear Information System (INIS)
A model-based new procedure for measuring the single electrode–gel–skin impedance (ZEGS) is presented. The method is suitable for monitoring the contact impedance of the electrodes of a large array with limited modifications of the hardware and without removing or disconnecting the array from the amplifier. The procedure is based on multiple measurements between electrode pairs and is particularly suitable for electrode arrays. It has been applied to study the effectiveness of three skin treatments, with respect to no treatment, for reducing the electrode–gel–skin impedance (ZEGS) and noise: (i) rubbing with alcohol; (ii) rubbing with abrasive conductive paste; (iii) stripping with adhesive tape. The complex impedances ZEGS of the individual electrodes were measured by applying this procedure to disposable commercial Ag–AgCl gelled electrode arrays (4 × 1) with a 5 mm2 contact area. The impedance unbalance ΔZ = ZEGS1 − ZEGS2 and the RMS noise (VRMS) were measured between pairs of electrodes. The tissue impedance ZT was also obtained, as a collateral result. Measurements were repeated at t0 = 0 min and at t30 = 30 min from the electrode application. Mixed linear models and linear regression analysis applied to ZEGS, ΔZ and noise VRMS for the skin treatment factor demonstrated (a) that skin rubbing with abrasive conductive paste is more effective in lowering ZEGS, ΔZ and VRMS (p < 0.01) than the other treatments or no treatment, and (b) a statistically significant decrement (p < 0.01), between t0 and t30, of magnitude and phase of ZEGS. Rubbing with abrasive conductive paste significantly decreased the noise VRMS with respect to other treatments or no treatment. (paper)
Directory of Open Access Journals (Sweden)
Milivoj Dopsaj
2012-12-01
Full Text Available Because of the specificity of given sport and weight categories wrestlers are characterized by specific morphologic characteristics. With the development of new measurement technologies there are some new opportunities for the development of new ways of obtaining information relevant to the sports system. One of the new technologies, which are used in area of measurement of body composition structure, is a method of bioimpedace, and the latest generations use a variant of the multichannel bioelectrical bioimpedance. The goal of this study is to define morphological model of top senior wrestlers by using the latest technological methods that will revalidate the existing knowledge about the given area. The sample of respondents is made of 22 male wrestlers, Greco-Roman style, top senior level athletes from four different countries: Serbia (n = 10, Croatia (n = 9, Montenegro (n = 2 and Greece (n = 1. Measurement of body composition is made with method of multichannel bioelectric impedance with professional apparatus of latest generation - InBody 720 Tetrapolar 8-Point Tactile Electrode System (Biospace, Co., Ltd. The most important result of this research is definition of generic (general four-dimensional model (4D model of body composition with quality international level wrestlers with following characteristics: in regards to average body mass of sample wrestlers – 81.95 kg, the amount of water is 55.08 L or 67.24 %, the amount of proteins is 15.00 kg or 18.33%, minerals 4.98 kg or 5.97% and fat mass 6.99 kg or 8.49 %.
[Experimental study on electrical impedance properties of human hepatoma cells].
Fang, Yun; Tang, Zhiyuan; Zhang, Qian; Zhao, Xin; Ma, Qing
2014-10-01
The AC impedance of human hepatoma SMMC-7721 cells were measured in our laboratory by Agilent 4294A impedance analyzer in the frequency range of 0.01-100 MHz. And then the effect of hematocrit on electrical impedance characteristics of hepatoma cells was observed by electrical impedance spectroscopy, Bode diagram, Nyquist diagram and Nichols diagram. The results showed that firstly, there is a frequency dependence, i.e., the increment of real part and the imaginary part of complex electrical impedance (δZ', δZ"), the increment of the amplitude modulus of complex electrical impedance (δ[Z *]) and phase angle (δθ) were all changed with the increasing frequency. Secondly, it showed cell volume fraction (CVF) dependence, i. e. , the increment of low-frequency limit (δZ'0, δ[Z*] 0), peak (δZ"(p), δθ(p)), area and radius (Nyquist diagram, Nichols diagram) were all increased along with the electric field frequency. Thirdly, there was the presence of two characteristic frequencies: the first characteristic frequency (f(c1)) and the second characteristic frequency (f(c2)), which were originated respectively in the polarization effects of two interfaces that the cell membrane and extracellular fluid, cell membrane and cytoplasm. A conclusion can be drawn that the electrical impedance spectroscopy is able to be used to observe the electrical characteristics of human hepatoma cells, and therefore this method can be used to investigate the electrophysiological mechanisms of liver cancer cells, and provide research tools and observation parameters, and it also has important theoretical value and potential applications for screening anticancer drugs. PMID:25764724
Schindler, Stefan; Bauer, Marius; Petzl, Mathias; Danzer, Michael A.
2016-02-01
In this study, voltage relaxation and impedance spectroscopy are introduced as in-operando methods for detecting lithium plating in commercial lithium-ion cells with graphitic anodes. Voltage relaxation is monitored subsequent to defined charge steps of variable amplitudes, charge throughputs, termination criteria and at different ambient temperatures yielding dependencies over a wide experimental parameter range. An adapted differential voltage analysis is presented to resolve the characteristic mixed potential evolving in case of plating. Impedance spectroscopy is applied in parallel to the relaxation phase to trace a possible alteration of the cell's impedance due to the concurrent depletion of reversibly deposited lithium. The introduced voltage differentials are shown to resolve the mixed potential with restrictions only for little charge throughputs. The comparison of voltage relaxation and already established stripping discharge reveals similarities of the underlying physicochemical processes and allows an estimate of the amount of deposited lithium in case of relaxation. In the evolution of the cell's impedance, a reversible shrinkage of the high frequency intersection resistance and the arc representing the anodic charge transfer process are identified as indicators towards plating. The presented methods solely rely on non-destructive measurement quantities and thus are fully suitable for the application in battery management systems.
Li, Shiyang; Zheng, Limei; Jiang, Wenhua; Sahul, Raffi; Gopalan, Venkatraman; Cao, Wenwu
2013-09-14
The most difficult task in the characterization of complete set material properties for piezoelectric materials is self-consistency. Because there are many independent elastic, dielectric, and piezoelectric constants, several samples are needed to obtain the full set constants. Property variation from sample to sample often makes the obtained data set lack of self-consistency. Here, we present a method, based on pulse-echo ultrasound and inverse impedance spectroscopy, to precisely determine the full set physical properties of piezoelectric materials using only one small sample, which eliminated the sample to sample variation problem to guarantee self-consistency. The method has been applied to characterize the [001]C poled Mn modified 0.27Pb(In1/2Nb1/2)O3-0.46Pb(Mg1/3Nb2/3)O3-0.27PbTiO3 single crystal and the validity of the measured data is confirmed by a previously established method. For the inverse calculations using impedance spectrum, the stability of reconstructed results is analyzed by fluctuation analysis of input data. In contrast to conventional regression methods, our method here takes the full advantage of both ultrasonic and inverse impedance spectroscopy methods to extract all constants from only one small sample. The method provides a powerful tool for assisting novel piezoelectric materials of small size and for generating needed input data sets for device designs using finite element simulations.
Isolation of sequences flanking Ac insertion sites by Ac casting.
Wang, Dafang; Peterson, Thomas
2013-01-01
Localizing Ac insertions is a fundamental task in studying Ac-induced mutation and chromosomal rearrangements involving Ac elements. Researchers may sometimes be faced with the situation in which the sequence flanking one side of an Ac/Ds element is known, but the other flank is unknown. Or, a researcher may have a small sequence surrounding the Ac/Ds insertion site and needs to obtain additional flanking genomic sequences. One way to rapidly clone unknown Ac/Ds flanking sequences is via a PCR-based method termed Ac casting. This approach utilizes the somatic transposition activity of Ac during plant development, and provides an efficient means for short-range genome walking. Here we describe the principle of Ac casting, and show how it can be applied to isolate Ac macrotransposon insertion sites.
An improvement to the data processing course of electrochemical impedance technique
Institute of Scientific and Technical Information of China (English)
Yinglv Jiang; Yinshun Wu; Hong Chu
2003-01-01
For some electrochemical systems the traditional data processing methods can not be met, so it is necessary to develop a new method to deal with these problems. When processing the electrochemical AC impedance data of titanium alloy TA12 in 3% NaC1 solution (at free corrosion potential, room temperature) a new method is developed which can detach the information of the interface resistance demonstrably from the interface capacitance. The results show that the interface resistance and capacitance are all functions of frequency. And the AC impedance of the resistance and capacitance obey the following relations: C(f) = 104.01982 f-0.9292,R(f) =104.80011 (f+0.008)-0.90897, which is completely different from the traditional conception that the interface resistance and capacitance are constants. And this phenomenon is ubiquitous in titanium alloys according to the study. So perhaps it is an innate characteristic of interface.
Electrochemical impedance studies of methanol oxidation on GC/Ni and GC/NiCu electrode
Energy Technology Data Exchange (ETDEWEB)
Danaee, I.; Jafarian, M.; Forouzandeh, F.; Mahjani, M.G. [Department of Chemistry, K.N. Toosi University of Technology, PO Box 15875-4416, Tehran (Iran); Gobal, F. [Department of Chemistry, Sharif University of Technology, PO Box 11365-9516, Tehran (Iran)
2009-01-15
The electro-oxidation of methanol on nickel and nickel-copper alloy modified glassy carbon electrodes (GC/Ni and GC/NiCu) in a 1 M NaOH solution at different concentrations of methanol was studied by the method of ac-impedance spectroscopy. Two semicircles in the first quadrant of a Nyquist diagram were observed for electro-oxidation of methanol on GC/Ni corresponding to charge transfer resistance and adsorption of intermediates. Electro-oxidation of methanol on GC/NiCu shows negative resistance in impedance plots as signified by semi-circles terminating in the second quadrant. The impedance behavior shows different patterns at different applied anodic potential. The influence of the electrode potential on impedance pattern is studied and a mathematical model was put forward to quantitatively account for the impedance behavior of methanol oxidation. At potentials higher than 0.49 V vs. Ag/AgCl, a pseudoinductive behavior is observed but at higher than 0.58 V, impedance patterns terminate in the second quadrant. The conditions required for this behavior are delineated with the use of the impedance model. (author)
Energy Technology Data Exchange (ETDEWEB)
Bentiss, F., E-mail: fbentiss@enscl.f [Laboratoire de Chimie de Coordination et d' Analytique (LCCA), Faculte des Sciences, Universite Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco); Mernari, B. [Laboratoire de Chimie de Coordination et d' Analytique (LCCA), Faculte des Sciences, Universite Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco); Traisnel, M. [Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, B.P. 90108, F-59652 Villeneuve d' Ascq Cedex (France); Vezin, H. [Laboratoire de Spectrochimie Infrarouge et Raman (LASIR), UMR-CNRS 8516, Universite des Sciences et Technologies de Lille, Batiment C5, F-59655 Villeneuve d' Ascq Cedex (France); Lagrenee, M., E-mail: michel.lagrenee@ensc-lille.f [Unite de Catalyse et de Chimie du Solide (UCCS), UMR-CNRS 8181, ENSCL, B.P. 90108, F-59652 Villeneuve d' Ascq Cedex (France)
2011-01-15
Research highlights: {yields}2,5-Bis(n-pyridyl)-1,3,4-thiadiazoles (n-PTH) act as good inhibitors for the mild steel in acidic media. {yields}The inhibiting protection depends on the position of the nitrogen on the pyridinium substituent according to order 3-PTH > 2-PTH > 4-PTH. {yields}The adsorption of n-PTH is found to follow the Langmuir's adsorption isotherm. {yields}Data obtained from quantum chemical calculations using DFT method were correlated to the experimentally obtained inhibition efficiencies. - Abstract: The inhibition properties of 2,5-bis(n-pyridyl)-1,3,4-thiadiazoles (n-PTH) on corrosion of mild steel in different acidic media (1 M HCl, 0.5 M H{sub 2}SO{sub 4} and 1 M HClO{sub 4}) were analyzed by electrochemical impedance spectroscopy (EIS). The n-PTH derivatives exhibit good inhibition properties in different acidic solutions and the calculated values of {Delta}G{sub ads}{sup 0} revealed that the adsorption mechanism of n-PTH on steel surface is mainly due to chemisorption. While in 1 M HClO{sub 4}, both 2-PTH and 4-PTH isomers stimulate the corrosion process especially at low concentrations. Quantum chemical calculations using the density functional theory (DFT) were performed on n-PTH derivatives to determine the relationship between molecular structure and their inhibition efficiencies. The results of the quantum chemical calculations and experimental inhibition efficiency were subjected to correlation analysis and indicate that the inhibition effects of n-PTH may be explained in terms of electronic properties.
DEFF Research Database (Denmark)
Canali, Chiara; Mazzoni, Chiara; Larsen, Layla Bashir;
2015-01-01
) cells were encapsulated in gelatin to form artificial 3D cell constructs and detected when placed in different positions inside large gelatin scaffolds. Taken together, these results open new perspectives for impedance-based sensing technologies for non-invasive monitoring in tissue engineering...
Institute of Scientific and Technical Information of China (English)
史国生; 赵阳; 颜伟; 董颖华; 朱志毅
2012-01-01
针对传导电磁干扰滤波器设计中人工电源网络阻抗、噪声源内阻抗、负载阻抗与EMI滤波器的阻抗匹配问题,建立了插入损耗法的误差理论模型及其等效电路.分别分析了串联和并联插入损耗法的测量精度及其系统误差,据此提出了相应的测试条件和测试方法,即当被测阻抗远大于负载阻抗时,采用串联插入损耗法；当被测阻抗远小于负载阻抗时,采用并联插入损耗法；当被测阻抗与负载阻抗相当时,可改变负载阻抗.理论与试验研究表明,该方法在适用范围内能够快速有效地提取EMI噪声源内阻抗,从而实现噪声源与EMI滤波器之间的最大阻抗适配,为EMI滤波器的设计及传导电磁干扰噪声抑制提供理论依据.%In order to solve the impedance matching problem for conducted EMI filter designing of artificial mains network (AMN) impedance, noise source impedance, load impedance and EMI filter impedance, the error theoretical model and equivalent circuits of insertion loss (IL) method were established. The measurement accuracy and system error of series and parallel IL methods were analyzed to provide improved test condition and methods. Series IL method was used when the measured impedance was much larger than load impedance. Parallel IL method was utilized when the measured impedance was much smaller than load impedance. The load impedance was altered when the measured impedance approximately equaled to load impedance. Theoretical analysis and experimental results show that the proposed method can extract EMI noise impedance effectively in certain range, where it can also realize the maximum impedance adapter between noise impedance and EMI filter. The proposed method has good validity for EMI filter design and conducted EMI noise suppression.
Fractal AC circuits and propagating waves on fractals
Akkermans, Eric; Dunne, Gerald; Rogers, Luke G; Teplyaev, Alexander
2015-01-01
We extend Feynman's analysis of the infinite ladder AC circuit to fractal AC circuits. We show that the characteristic impedances can have positive real part even though all the individual impedances inside the circuit are purely imaginary. This provides a physical setting for analyzing wave propagation of signals on fractals, by analogy with the Telegrapher's Equation, and generalizes the real resistance metric on a fractal, which provides a measure of distance on a fractal, to complex impedances.
Impedance source power electronic converters
Liu, Yushan; Ge, Baoming; Blaabjerg, Frede; Ellabban, Omar; Loh, Poh Chiang
2016-01-01
Impedance Source Power Electronic Converters brings together state of the art knowledge and cutting edge techniques in various stages of research related to the ever more popular impedance source converters/inverters. Significant research efforts are underway to develop commercially viable and technically feasible, efficient and reliable power converters for renewable energy, electric transportation and for various industrial applications. This book provides a detailed understanding of the concepts, designs, controls, and application demonstrations of the impedance source converters/inverters. Key features: Comprehensive analysis of the impedance source converter/inverter topologies, including typical topologies and derived topologies. Fully explains the design and control techniques of impedance source converters/inverters, including hardware design and control parameter design for corresponding control methods. Presents the latest power conversion solutions that aim to advance the role of pow...
Impedance spectroscopy and electrical modeling of electrowetting on dielectric devices
International Nuclear Information System (INIS)
Using impedance spectroscopy, we have determined models for the elements which determine the ac electrical behavior in electrowetting on dielectric (EWOD) systems. Three commonly used EWOD electrode configurations were analyzed. In each case, the impedance can be modeled by a combination of elements, including the solution resistance, the capacitance of the dielectric layer, and the constant phase impedance of the electrode double layers. The sensitivity of the system’s impedance to variations in the electrowetted area is also analyzed for these common configurations. We also demonstrate that the impedance per unit area of typical EWOD systems is invariant to bias voltage. (paper)
Ionic conductivity measurements of zirconia under pressure using impedance spectroscopy
Takebe, H; Ohtaka, O; Fukui, H; Yoshiasa, A; Yamanaka, T; Ota, K; Kikegawa, T
2002-01-01
We have set up an electrical conductivity measurement system under high-pressure and high-temperature conditions with a multi-anvil high-pressure apparatus using an AC complex impedance method. With this system, we have successfully measured the electrical conductivity of stabilized ZrO sub 2 (Y sub 2 O sub 3 -ZrO sub 2 solid solution) under pressures up to 5 GPa in the temperature range from 300 to 1200 K. The electrical conductivities obtained under pressure are compatible with those of previous results measured at ambient pressure.
Electrochemical Impedance of Ethanol Oxidation in Alkaline Media
Institute of Scientific and Technical Information of China (English)
DANAEE Iman; JAFARIAN Majid; GOBAL Fereydoon; SHARAFI Mahboobeh; MAHJANI Mohammad-ghasem
2012-01-01
Nickel modified NiOOH electrodes were used for the electrocatalytic oxidation of ethanol in alkaline solutions.The electro-oxidation of ethanol in a 1 mol/L NaOH solution at different concentrations of ethanol was studied by ac impedance spectroscopy.Electrooxidation of ethanol on Ni shows negative resistance on impedance plots.The impedance shows different patterns at different applied anodic potential.The influence of the electrode potential on impedance was studied and a quantitative explanation for the impedance of ethanol oxidation was given by means of a proposed mathematical model.At potentials higher than 0.52 V(vs.Ag/AgCl),a pseudoinductive behavior was observed,but at those higher than 0.57 V,impedance patterns were reversed to the second and third quadrants.The conditions required for the reversing of impedance pattern were delineated with the impedance model.
The electrochemical impedance of metal hydride electrodes
DEFF Research Database (Denmark)
Valøen, Lars Ole; Lasia, Andrzej; Jensen, Jens Oluf;
2002-01-01
The electrochemical impedance responses for different laboratory type metal hydride electrodes were successfully modeled and fitted to experimental data for AB5 type hydrogen storage alloys as well as one MgNi type electrode. The models fitted the experimental data remarkably well. Several AC equ...
Energy Technology Data Exchange (ETDEWEB)
Durrett, Timothy; Ohlrogge, John; Pollard, Michael
2016-05-03
The present invention relates to novel diacylglycerol acyltransferase genes and proteins, and methods of their use. In particular, the invention describes genes encoding proteins having diacylglycerol acetyltransferase activity, specifically for transferring an acetyl group to a diacylglycerol substrate to form acetyl-Triacylglycerols (ac-TAGS), for example, a 3-acetyl-1,2-diacyl-sn-glycerol. The present invention encompasses both native and recombinant wild-type forms of the transferase, as well as mutants and variant forms. The present invention also relates to methods of using novel diacylglycerol acyltransferase genes and proteins, including their expression in transgenic organisms at commercially viable levels, for increasing production of 3-acetyl-1,2-diacyl-sn-glycerols in plant oils and altering the composition of oils produced by microorganisms, such as yeast, by increasing ac-TAG production. Additionally, oils produced by methods of the present inventions comprising genes and proteins are contemplated for use as biodiesel fuel, in polymer production and as naturally produced food oils with reduced calories.
Structural and impedance studies of LiNi0.5Mn1.5O4 synthesized by sol-gel method
Lobo, Laurel Simon; Rubankumar, A.; Kalainathan, S.
2016-05-01
LiNi0.5Mn1.5O4 is synthesized by sol-gel method by using succinic acid as chelating agent. X-ray diffraction pattern confirms the material is spinel cubic structure with Fd3m space group. Impedance spectroscopy analysis of spinel LiNi0.5Mn1.5O4 was performed under a wide frequency and temperature range of 50 Hz to 5 MHz and 303 K to 783 K respectively. The hopping of the electrons, ionic conductivity and activation energy were analyzed from the relaxation frequency of the imaginary impedance (Z"). The activation energy Ea is calculated from the Arrhenius plots and it is found to be 0.3713 eV, which indicates the existence of oxygen vacancy in the material. Nyquist plot indicates the presence of grain effect in the material and suppression in the grain effect is observed with increasing temperature.
International Nuclear Information System (INIS)
We have measured the complex film impedance 1/σd (σ conductivity, d film thickness) of three YBaCuO thin films with d=44, 115, and 168 nm on MgO substrates at 10.2 GHz in the temperature range between 300 and 4 K. Below Tc, the experimental results are discussed in terms of the two-fluid model and the BCS theory. The residual resistance decreases with the film thickness. The thinnest film has a residual surface resistance of 3.10-4 Ω. For this film, the complex microwave conductivity is calculated and compared with the models. Apart from the residual resistance, the measured conductivity is in agreement with the peak caused by the energy gap of the BCS theory. All measurements were performed with a cavity perturbation method which we have to our knowledge applied for the first time to superconducting thin films. The method allows to determine the complex impedance of films with arbitrary thickness. In particular, films with thicknesses small compared to the skin depth δ or the London penetration depth λ can be measured. Therefore, we are able to measure the impedance both in the normal and superconducting state. (orig.)
Savenije, B; Lambooij, E; Gerritzen, M A; Korf, J
2002-04-01
Poultry are electrically stunned before slaughter to induce unconsciousness and to immobilize the chickens for easier killing. From a welfare point of view, electrical stunning should induce immediate and lasting unconsciousness in the chicken. As an alternative to electroencephalography, which measures brain electrical activity, this study used brain impedance recordings, which measure brain metabolic activity, to determine the onset and development of brain damage. Fifty-six chickens were surgically equipped with brain electrodes and a canula in the wing artery and were subjected to one of seven stunning and killing methods: whole body electrical stunning; head-only electrical stunning at 50, 100 or 150 V; or an i.v. injection with MgCl2. After 30 s, the chickens were exsanguinated. Brain impedance and blood pressure were measured. Extracellular volume was determined from the brain impedance data and heart rate from the blood pressure data. An immediate and progressive reduction in extracellular volume in all chickens was found only with whole body stunning at 150 V. This treatment also caused cardiac fibrillation or arrest in all chickens. With all other electrical stunning treatments, extracellular volume was immediately reduced in some but not all birds, and cardiac fibrillation or arrest was not often found. Ischemic conditions, caused by cessation of the circulation, stimulated this epileptic effect. A stunner setting of 150 V is therefore recommended to ensure immediate and lasting unconsciousness, which is a requirement for humane slaughter. PMID:11989758
Electrical impedance along connective tissue planes associated with acupuncture meridians
Directory of Open Access Journals (Sweden)
Hammerschlag Richard
2005-05-01
Full Text Available Abstract Background Acupuncture points and meridians are commonly believed to possess unique electrical properties. The experimental support for this claim is limited given the technical and methodological shortcomings of prior studies. Recent studies indicate a correspondence between acupuncture meridians and connective tissue planes. We hypothesized that segments of acupuncture meridians that are associated with loose connective tissue planes (between muscles or between muscle and bone visible by ultrasound have greater electrical conductance (less electrical impedance than non-meridian, parallel control segments. Methods We used a four-electrode method to measure the electrical impedance along segments of the Pericardium and Spleen meridians and corresponding parallel control segments in 23 human subjects. Meridian segments were determined by palpation and proportional measurements. Connective tissue planes underlying those segments were imaged with an ultrasound scanner. Along each meridian segment, four gold-plated needles were inserted along a straight line and used as electrodes. A parallel series of four control needles were placed 0.8 cm medial to the meridian needles. For each set of four needles, a 3.3 kHz alternating (AC constant amplitude current was introduced at three different amplitudes (20, 40, and 80 μAmps to the outer two needles, while the voltage was measured between the inner two needles. Tissue impedance between the two inner needles was calculated based on Ohm's law (ratio of voltage to current intensity. Results At the Pericardium location, mean tissue impedance was significantly lower at meridian segments (70.4 ± 5.7 Ω compared with control segments (75.0 ± 5.9 Ω (p = 0.0003. At the Spleen location, mean impedance for meridian (67.8 ± 6.8 Ω and control segments (68.5 ± 7.5 Ω were not significantly different (p = 0.70. Conclusion Tissue impedance was on average lower along the Pericardium meridian, but not
Method and apparatus for reducing the harmonic currents in alternating-current distribution networks
Beverly, Leon H.; Hance, Richard D.; Kristalinski, Alexandr L.; Visser, Age T.
1996-01-01
An improved apparatus and method reduce the harmonic content of AC line and neutral line currents in polyphase AC source distribution networks. The apparatus and method employ a polyphase Zig-Zag transformer connected between the AC source distribution network and a load. The apparatus and method also employs a mechanism for increasing the source neutral impedance of the AC source distribution network. This mechanism can consist of a choke installed in the neutral line between the AC source and the Zig-Zag transformer.
Energy Technology Data Exchange (ETDEWEB)
Yang Cao
2011-07-01
Willow reproduction can be achieved through vertically or horizontally planted cuttings. Conventionally, plantations are established by inserting cuttings vertically into the soil. There is, however, a lack of information about the biomass production and nutrient leaching of plantations established through horizontally planted cuttings. A greenhouse experiment and a field trial were carried out to investigate whether horizontally planted Salix schwerinii cuttings have a positive effect on stem yield, root distribution and nutrient leaching in comparison with vertically planted cuttings with different planting densities. The shoots' height of horizontally planted cuttings was significantly smaller than that of vertically planted cuttings during the first two weeks after planting in the pot experiment. Thereafter, no significant effect of planting orientation on the stem biomass was observed in the two conducted experiments. In both experiments the total stem biomass increased with the planting density. It was also found that the fine root biomass and the specific root length were not affected by the planting orientation or density, while the fine root surface area and the absorbing root surface area (ARSA) were affected only by the planting density. The planting orientation did not affect the nutrient concentrations in the soil leachate, apart from SO{sub 4}-S and PO{sub 4}-P in the pot experiment. The ARSA in the pot experiment was assessed by using the earth impedance method. The applicability of this method was evaluated in a hydroponic study of willow cuttings where root and stem were measured independently. Electrical resistance had a good correlation with the contact area of the roots with the solution. However, the resistance depended strongly on the contact area of the stem with the solution, which caused a bias in the evaluation of root surface area. A similar experimental set-up with electrical impedance spectroscopy was employed to study the
A high-speed electrical impedance measurement circuit based on information-filtering demodulation
International Nuclear Information System (INIS)
In the paper, an information-filtering demodulation method is proposed and a high-speed ac-based electrical impedance measurement circuit with a simple configuration is presented. As a crucial part of the ac-based impedance measurement circuit, the information-filtering demodulator can output a preliminary demodulation result by processing only a small number of sampling data within a signal period and the signal-to-noise ratio (SNR) can be further improved by involving more sampling data. Compared with other digital demodulators requiring integer multiples of the signal's period, the information-filtering demodulator is more advantageous in flexibility. Moreover, compared with the recursive least-squares-based demodulator, the proposed demodulator is of relatively low computation complexity and suitable to be implemented on a field programmable gate array. Using this demodulator, the ac impedance measurement circuit based on the ac self-balancing bridge can achieve a high measurement speed. Experimental results showed that one measurement can be accomplished in 17 µs, corresponding to one-third of the signal period, at an excitation frequency of 20 kHz, and the demodulation SNR can reach up to 65 dB. If the data of a complete signal period are used for demodulation like other widely used digital demodulators, the SNR of amplitude demodulation will be higher than 75 dB and the standard deviation of the demodulated phase is below 0.012°, which validates the good performance of both the new demodulator and the impedance measurement circuit. (paper)
Plasmonic-Based Electrochemical Impedance Spectroscopy: Application to Molecular Binding
Lu, Jin; Wang, Wei; Wang, Shaopeng; Shan, Xiaonan; Li, Jinghong; Tao, Nongjian
2012-01-01
Plasmonic-based electrochemical impedance spectroscopy (P-EIS) is developed to investigate molecular binding on surfaces. Its basic principle relies on the sensitive dependence of surface plasmon resonance (SPR) signal on surface charge density, which is modulated by applying an AC potential to a SPR chip surface. The AC component of the SPR response gives the electrochemical impedance, and the DC component provides the conventional SPR detection. The plasmonic-based impedance measured over a range of frequency is in quantitative agreement with the conventional electrochemical impedance. Compared to the conventional SPR detection, P-EIS is sensitive to molecular binding taking place on the chip surface, and less sensitive to bulk refractive index changes or non-specific binding. Moreover, this new approach allows for simultaneous SPR and surface impedance analysis of molecular binding processes. PMID:22122514
SoC-Based Dynamic Power Sharing Method with AC-Bus Voltage Restoration for Microgrid Applications
DEFF Research Database (Denmark)
Lu, Xiaonan; Sun, Kai; Guerrero, Josep M.;
2012-01-01
shared in the energy storage system. The relationship between the droop coefficient and SoC are studied deeply and the small signal model is developed to verify the stability of the control system. It is found that the active power sharing speed becomes faster with higher exponent of SoC. At the same...... time, in order to restore the AC-bus voltage, secondary control is employed to eliminate the deviations of the voltage frequency and amplitude caused by the droop control, with the droop coefficients adjusting according to the SoCs. The model of the secondary control scheme for SoC-based droop method...... is developed and its stability is discussed. The theoretical analysis is demonstrated by both simulation and experimental results....
Energy Technology Data Exchange (ETDEWEB)
Jlassi, I., E-mail: ifa.jlassi@fst.rnu.tn [Laboratoire Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Département de Physique, Faculté des Sciences de Tunis, Université de Tunis ElManar, Campus Universitaire Farhat Hachad, ElManar 2092 (Tunisia); Sdiri, N. [Laboratoire Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Elhouichet, H. [Laboratoire Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Département de Physique, Faculté des Sciences de Tunis, Université de Tunis ElManar, Campus Universitaire Farhat Hachad, ElManar 2092 (Tunisia); Ferid, M. [Laboratoire Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95, Hammam-Lif 2050 (Tunisia)
2015-10-05
Highlights: • We have prepared a new lithium diphosphate glasses doped MgO. • Investigate structural and electrical properties at room temperature. • Investigate relation between structure and electrical conductivity of the glass. - Abstract: Lithium diphosphate glasses doped MgO was prepared via a melt quenching technique. The samples were characterized by X-ray diffraction (XRD), Raman and impedance spectroscopy. XRD spectra reflected the amorphous nature of the glasses Raman spectra show structural network modifications with the composition variations of the studied glasses. Raman spectra of the studied glasses contain also typical phosphate glasses bands. Thus the band at ∼698 cm{sup −1} assigned to symmetric stretching vibrations of P−O−P groups and that from ∼1168 cm{sup −1} is attributed to symmetric stretching motions of the non-bridging oxygen (NBO) atoms bonded to phosphorous atoms (PO{sub 2}) in phosphate tetrahedron. Electric properties were investigated using complex impedance spectroscopy in a frequency range from 40 Hz to 6 MHz at room temperature. The impedance spectra were analyzed in terms of equivalent circuits involving resistors, capacitors and constant phase elements (CPE). Constant-phase elements (CPE) are used in equivalent electrical circuits for the fitting of experimental impedance data. The AC conductivity exhibited a Jonscher’s universal power law according with the relation σ(ω) = σ(0) + Aω{sup s} and it is observed that as the MgO content increases, frequency exponent (s) decreases.
Energy Technology Data Exchange (ETDEWEB)
Outirite, Moha; Lagrenee, Michel; Lebrini, Mounim [Unite de Catalyse et de Chimie du Solide, UMR-CNRS 8181, ENSCL, B.P. 90108, F-59652 Villeneuve d' Ascq Cedex (France); Traisnel, Michel; Jama, Charafeddine [Laboratoire des Procedes d' Elaboration des Revetements Fonctionnels, PERF UMR-CNRS 8008, ENSCL, B.P. 90108, F-59652 Villeneuve d' Ascq Cedex (France); Vezin, Herve [Laboratoire de Chimie Organique et Macromoleculaire, UMR-CNRS 8009, USTL Bat C4, F-59655 Villeneuve d' Ascq Cedex (France); Bentiss, Fouad, E-mail: fbentiss@enscl.f [Laboratoire de Chimie de Coordination et d' Analytique, Faculte des Sciences, Universite Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco)
2010-02-01
The corrosion inhibition properties of a new class of oxadiazole derivatives, namely 3,5-bis(n-pyridyl)-1,2,4-oxadiazoles (n-DPOX) for C38 carbon steel corrosion in 1 M HCl medium were analysed by electrochemical impedance spectroscopy (EIS). An adequate structural model of the interface was used and the values of the corresponding parameters were calculated and discussed. The experimental results showed that these compounds are excellent inhibitors for the C38 steel corrosion in acid solution and that the protection efficiency increased with increasing the inhibitors concentration. Electrochemical impedance data demonstrate that the addition of the n-DPOX derivatives in the corrosive solution decreases the charge capacitance and simultaneously increases the function of the charge/discharge of the interface, facilitating the formation of an adsorbed layer over the steel surface. Adsorption of these inhibitors on the steel surface obeys to the Langmuir adsorption isotherm. X-ray photoelectron spectroscopy (XPS) and the thermodynamic data of adsorption showed that inhibition of steel corrosion in normal hydrochloric solution by n-DPOX is due to the formation of a chemisorbed film on the steel surface. Quantum chemical calculations using the Density Functional Theory (DFT) and the Quantitative Structure Activity Relationship (QSAR) approach were performed on n-DPOX derivatives to determine the relationship between molecular structure and their inhibition efficiencies. The results of the quantum chemical calculations and experimental inhibition efficiency were subjected to correlation analysis and indicate that their inhibition effect is closely related to E{sub HOMO}, E{sub LUMO}, and dipole moment (mu).
Method Development and Monitoring of Cyanotoxins in Water (ACS Central Presentation)
Increasing occurrence of cyanobacterial harmful algal blooms (HABs) in ambient waters has become a worldwide concern. Numerous cyanotoxins can be produced during HAB events which are toxic to animals and humans. Validated standardized methods that are rugged, selective and sensit...
Ropars, Pierre; Bonnet, Guy; Jean, Philippe
2014-03-01
The paper is devoted to stochastic foundation impedance modeling for buildings submitted to vibrations. The hidden-variables method used in seismic engineering is revisited, due to a larger frequency range used in vibration prediction. Indeed, in this new context, instability of the solution and non-physical nature of mass and stiffness random matrices have been observed. The hidden variable method has been therefore implemented by enforcing explicitly the stability of the solution and the positiveness of mass and stiffness matrices. The effects of numerical parameters used throughout the process are shown and the improved hidden-variables method has been used for predicting the level of vibrations inside a building induced by railway sources. We present here steps of stabilization process, and then discuss on an example of application.
Dielectric and impedance spectroscopic studies of neodymium gallate
Sakhya, Anup Pradhan; Dutta, Alo; Sinha, T. P.
2016-05-01
The AC electrical properties of a polycrystalline neodymium gallate, NdGaO3 (NGO), synthesized by the sol-gel method have been investigated by employing impedance spectroscopy in the frequency range from 42 Hz to 5 MHz and in the temperature range from 323 K to 593 K. The X-ray diffraction analysis shows that the compound crystallizes in the orthorhombic phase with Pbnm space group at room temperature. Two relaxation processes with different relaxation times are observed from the impedance as well as modulus spectroscopic measurements, which have been attributed to the grain and the grain boundary effects at different temperatures in NGO. The complex impedance data are analyzed by an electrical equivalent circuit consisting of a resistance and a constant phase element in parallel. It has been observed that the value of the capacitance and the resistance associated with the grain boundary is higher than those associated with the grain. The temperature dependent electrical conductivity shows the negative temperature coefficient of resistance. The frequency dependent conductivity spectra are found to follow the power law.
XUE BU HU; ZI JI LIN; LI LIU; YONG JIAN HUAI; ZHENG HUA DENG
2010-01-01
Two composite cathode materials containing LiFePO4 and activated carbon (AC) were synthesized by an in-situ method and a direct mixing technique, which are abbreviated as LAC and DMLAC, respectively. Hybrid battery–capacitors LAC/Li4Ti5O12 and DMLAC/Li4Ti5O12 were then assembled. The effects of the content of LiFePO4 and the preparation method on the cyclic voltammograms, the rate of charge–discharge and the cycle performance of the hybrid battery–capacitors were investigated. The results sho...
Institute of Scientific and Technical Information of China (English)
Guang Han LU; Chuan Yin LIU; Hong Yan ZHAO; Wei LIU; Li Ping JIANG; Ling Yan JIANG
2004-01-01
Interfacial proton transfer reactions of pure mercaptoacetic acid (MA) and 2-mercaptobenzothiazole (Mbz) mixed self-assembled monolayers (SAMs) have been studied using a.c. impedance titration method. The charge-transfer resistance (Rct) is measured with the monolayer composition and the ionic strength of pH solution. The surface pKa can be obtained by the plots of Rct and pH, the reasons of shifts of surface pKa are also explained.
Energy Technology Data Exchange (ETDEWEB)
Chang, Ho, E-mail: f10381@ntut.edu.tw [Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 10608, Taiwan (China); Chen, Chih-Hao [Department of Thoracic Surgery, Mackay Memorial Hospital, Taipei 10419, Taiwan (China); Graduate Institute of Mechanical and Electrical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan (China); Kao, Mu-Jung [Department of Vehicle Engineering, National Taipei University of Technology, Taipei 10608, Taiwan (China); Chien, Shu-Hua [Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (China); Chou, Cheng-Yi [Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 10608, Taiwan (China)
2013-06-15
The paper studies the photoelectrode thin film of dye-sensitized solar cell (DSSC) fabricated by anodizing method, explores the structure and properties of the fabricated photoelectrode thin film, measures the photoelectric conversion efficiency of DSSC, and finds the electrochemical impedance properties of DSSCs assembled by photoelectrode thin films in different thicknesses. Besides, in order to increase the specific surface area of nanotubes, this paper deposits TiO{sub 2} nanoparticles (TNP) on the surface of titanium oxide nanotube (TNT). As shown in experimental results, the photoelectric conversion efficiency of the DSSC fabricated by the study rises to 6.5% from the original 5.43% without TnB treatment, with an increase of photoelectric conversion efficiency by 19.7%. In addition, when the photoelectrode thin film is fabricated with mixture of TNTs and TNP in an optimal proportion of 2:8 and the photoelectrode thin film thickness is 15.5 μm, the photoelectric conversion efficiency can reach 7.4%, with an increase of 36.7% from the original photoelectric conversion efficiency at 5.43%. Besides, as found in the results of electrochemical impedance analysis, the DSSC with photoelectrode thin film thickness at 15.5 μm has the lowest charge-conduction resistance (R{sub k}) value 9.276 Ω of recombined electron and conduction resistance (R{sub w}) value 3.25 Ω of electrons in TiO{sub 2}.
High frequency impedances in European XFEL
Energy Technology Data Exchange (ETDEWEB)
Dohlus, Martin; Zagorodnov, Igor; Zagorodnova, Olga
2010-06-15
The method of the optical approximation is used to estimate the high frequency impedances of different vacuum chamber transitions of the European XFEL beam line. The approximations of the longitudinal impedances are obtained in terms of simple one-dimensional integrals. The transverse impedances are written in analytical closed form. The analytical results are compared with the results obtained by numerical solution of Maxwell's equations. (orig.)
Wave impedance retrieving via Bloch modes analysis
DEFF Research Database (Denmark)
Andryieuski, Andrei; Ha, S.; Sukhorukov, A.;
2011-01-01
The main bottleneck in the restoration of electromagnetic effective parameters is connected to the impedance retrieving. The S-parameters method gives the input (Bloch) impedance, which, being then used for permittivity and permeability determination, causes some fundamental physics prin......-ciples violation, like antiresonance behaviour with Im(ε) fundamental) Bloch mode. Then it is possible to determine the Bloch and wave impedances by the surface and volume aver-aging of the electromagnetic field...
Soukup, Ladislav; Vondra, Vlastimil; Viščor, Ivo; Jurák, Pavel; Halámek, Josef
2013-04-01
The methods and device for estimation of cardiac output and measurement of pulse wave velocity simultaneously is presented here. The beat-to-beat cardiac output as well as pulse wave velocity measurement is based on application of electrical impedance method on the thorax and calf. The results are demonstrated in a study of 24 subjects. The dependence of pulse wave velocity and cardiac output on heart rate during rest in patients with an implanted pacemaker was evaluated. The heart rate was changed by pacemaker programming while neither exercise nor drugs were applied. The most important result is that the pulse wave velocity, cardiac output and blood pressure do not depend significantly on heart rate, while the stroke volume is reciprocal proportionally to the heart rate.
Mushtaq, Abid; Frei, Stephan
2016-09-01
In the power drive system of the Electric Vehicles (EVs) and Hybrid Electric Vehicles (HEVs), High Voltage (HV) cables play a major role in evaluating the EMI of the whole system. Transfer impedance (ZT) is the most commonly used performance parameter for the HV cable. To analyse and design HV cables and connectors with better shielding effectiveness (SE), appropriate measurement and simulation methods are required. In this paper, Ground Plate Method (GPM) with improvements has been proposed to measure ZT. Use of low-frequency ferrites to avoid ground-loop effects has also been investigated. Additionally, a combination of analytical model with a circuit model has been implemented to simulate limitations (frequency response) of the test setup. Also parametrical studies using the analytical model have been performed to analyse the shielding behaviour of HV cables.
International Nuclear Information System (INIS)
The methods and device for estimation of cardiac output and measurement of pulse wave velocity simultaneously is presented here. The beat-to-beat cardiac output as well as pulse wave velocity measurement is based on application of electrical impedance method on the thorax and calf. The results are demonstrated in a study of 24 subjects. The dependence of pulse wave velocity and cardiac output on heart rate during rest in patients with an implanted pacemaker was evaluated. The heart rate was changed by pacemaker programming while neither exercise nor drugs were applied. The most important result is that the pulse wave velocity, cardiac output and blood pressure do not depend significantly on heart rate, while the stroke volume is reciprocal proportionally to the heart rate.
de Oliveira, Helinando P; de Melo, Celso P
2011-06-01
Molecular aggregation plays a key role in the physicochemical properties of dyes and surfactants. In this work, we show that electrical impedance spectroscopy (EIS) provides a practical method for the investigation of processes such as micellization in surfactants and dye dimerization. The electrical characterization of the structural phase transitions associated with aggregation events in these systems allows an accurate and direct determination of relevant parameters such as the corresponding critical concentrations for micelle formation and dimerization of these types of molecules, without the need of recurring to the use of auxiliary probe or reporter molecules. Because of its competitive advantages with respect to currently used methods (such as conductimetry and spectroscopic techniques), we argue that when implemented along the procedures described in this work, EIS becomes a simple and convenient technique for the characterization of aggregation processes in soft matter.
Optimization of the AC-gradient method for velocity profile measurement and application to slow flow
Kartäusch, Ralf; Helluy, Xavier; Jakob, Peter Michael; Fidler, Florian
2014-11-01
This work presents a spectroscopic method to measure slow flow. Within a single shot the velocity distribution is acquired. This allows distinguishing rapidly between single velocities within the sampled volume with a high sensitivity. The technique is based on signal acquisition in the presence of a periodic gradient and a train of refocussing RF pulses. The theoretical model for trapezoidal bipolar pulse shaped gradients under consideration of diffusion and the outflow effect is introduced. A phase correction technique is presented that improves the spectral accuracy. Therefore, flow phantom measurements are used to validate the new sequence and the simulation based on the theoretical model. It was demonstrated that accurate parabolic flow profiles can be acquired and flow variations below 200 μm/s can be detected. Three post-processing methods that eliminate static background signal are also presented for applications in which static background signal dominates. Finally, this technique is applied to flow measurement of a small alder tree demonstrating a typical application of in vivo plant measurements.
Chen, Z.; Hering, P.; Brown, S. B.; Curry, C.; Tsui, Y. Y.; Glenzer, S. H.
2016-11-01
To study the rapid evolution of AC conductivity from ultrafast laser excited warm dense matter (WDM), a spatial chirp single-shot method is developed utilizing a crossing angle pump-probe configuration. The pump beam is shaped individually in two spatial dimensions so that it can provide both sufficient laser intensity to excite the material to warm dense matter state and a uniform time window of up to 1 ps with sub-100 fs FWHM temporal resolution. Temporal evolution of AC conductivity in laser excited warm dense gold was also measured.
Gilad, Ori; Ghosh, Anthony; Oh, Dongin; Holder, David S
2009-05-30
Electrical impedance tomography (EIT) is a recently developed medical imaging method which has the potential to produce images of fast neuronal depolarization in the brain. The principle is that current remains in the extracellular space at rest but passes into the intracellular space during depolarization through open ion channels. As current passes into the intracellular space across the capacitance of cell membranes at higher frequencies, applied current needs to be below 100 Hz. A method is presented for its measurement with subtraction of the contemporaneous evoked potentials which occur in the same frequency band. Neuronal activity is evoked by stimulation and resistance is recorded from the potentials resulting from injection of a constant current square wave at 1 Hz with amplitude less than 25% of the threshold for stimulating neuronal activity. Potentials due to the evoked activity and the injected square wave are removed by subtraction. The method was validated with compound action potentials in crab walking leg nerve. Resistance changes of -0.85+/-0.4% (mean+/-SD) occurred which decreased from -0.97+/-0.43% to -0.46+/-0.16% with spacing of impedance current application electrodes from 2 to 8 mm but did not vary significantly with applied currents of 1-10 microA. These tallied with biophysical modelling, and so were consistent with a genuine physiological origin. This method appears to provide a reproducible and artefact free means for recording resistance changes during neuronal activity which could lead to the long-term goal of imaging of fast neural activity in the brain.
AC characterization of bulk organic solar cell in the dark and under illumination
International Nuclear Information System (INIS)
Highlights: • A study of organic bulk photovoltaic (PV) solar cell. • Current–voltage characteristics in the dark and under illumination. • AC measurements, both under illumination and in the dark conditions. • Equivalent AC circuit. • Effective lifetime assigned with electron–hole recombination and diffusion time of the electron was estimated. - Abstract: Impedance spectroscopy has been used widely to evaluate the transport processes in photovoltaic, mainly based on inorganic semiconductors, structures – solar cells. The aim of this research was to characterize improved organic bulk photovoltaic (PV) solar cells exploiting this method. Progress in technology of investigated organic solar cell involves the use of an active layer based on low band gap type of polymer. The organic PV cell with front transparent electrode and rear metal electrode and active layer produced by Konarka Technologies was analyzed by electrical DC and AC measurements. Current–voltage (I–V) characteristics in the dark and under illumination were measured and basic PV parameters were calculated. AC measurements, both under illumination and in the dark conditions, were processed in order to identify electronic behavior using equivalent AC circuit which was suggested by fitting of measured impedance data. Circuit with the best correlation to measured data is analyzed in details. Voltage and frequency dependences of fitted equivalent circuit components and calculated parameters are explained and presented in the paper
Institute of Scientific and Technical Information of China (English)
张爱萍; 唐佳妮; 刘东红
2011-01-01
As a rapid detection method of microorganisms,the impedance method can be used to rapidly detect the total number of colonies, coliform, mold, yeast, and so on.There is great prospect for the rapid detection of pathogens in food as the research of the impedance method developed.The development of the traditional impedance method and the latest research of the impedance method were reviewed ,aimed at the future research of the impedance method for rapid detection of microorganisms in food.%阻抗法作为微生物快速检测方法,可用于食品中菌落总数、大肠菌群、霉菌、酵母等常规微生物的快速检测;随着研究的深入,其在食品病原菌快速检测中也大有前景.综述了传统阻抗微生物检测的发展历程及阻抗法最新研究方向,旨在为今后阻抗法快速检测食品中微生物的研究奠定基础.
Abascal, Juan-Felipe P J; Arridge, Simon R; Atkinson, David; Horesh, Raya; Fabrizi, Lorenzo; De Lucia, Marzia; Horesh, Lior; Bayford, Richard H; Holder, David S
2008-11-01
Electrical Impedance Tomography (EIT) is an imaging method which enables a volume conductivity map of a subject to be produced from multiple impedance measurements. It has the potential to become a portable non-invasive imaging technique of particular use in imaging brain function. Accurate numerical forward models may be used to improve image reconstruction but, until now, have employed an assumption of isotropic tissue conductivity. This may be expected to introduce inaccuracy, as body tissues, especially those such as white matter and the skull in head imaging, are highly anisotropic. The purpose of this study was, for the first time, to develop a method for incorporating anisotropy in a forward numerical model for EIT of the head and assess the resulting improvement in image quality in the case of linear reconstruction of one example of the human head. A realistic Finite Element Model (FEM) of an adult human head with segments for the scalp, skull, CSF, and brain was produced from a structural MRI. Anisotropy of the brain was estimated from a diffusion tensor-MRI of the same subject and anisotropy of the skull was approximated from the structural information. A method for incorporation of anisotropy in the forward model and its use in image reconstruction was produced. The improvement in reconstructed image quality was assessed in computer simulation by producing forward data, and then linear reconstruction using a sensitivity matrix approach. The mean boundary data difference between anisotropic and isotropic forward models for a reference conductivity was 50%. Use of the correct anisotropic FEM in image reconstruction, as opposed to an isotropic one, corrected an error of 24 mm in imaging a 10% conductivity decrease located in the hippocampus, improved localisation for conductivity changes deep in the brain and due to epilepsy by 4-17 mm, and, overall, led to a substantial improvement on image quality. This suggests that incorporation of anisotropy in
[Monitoring cervical dilatation by impedance].
Salvat, J; Lassen, M; Sauze, C; Baud, S; Salvat, F
1992-01-01
Several different physics procedures have been tried to mechanize the recording of partograms. Can a measure of impedance of tissue Z using potential difference V, according to Ohm's law V = Z1, and 1 is a constant, be correlated with a measure of cervical dilatation using vaginal examination? This was our hypothesis. The tissue impedance meter was made to our design and applied according to a bipolar procedure. Our work was carried out on 28 patients. 10 patients were registered before labour started in order to test the apparatus and to record the impedance variations without labour taking place, and 18 patients were registered in labour to see whether there was any correlation. The level of impedance in the cervix without labour was 302.7 Ohms with a deviation of 8.2. Using student's t tests it was found that there was a significant correlation (p less than 0.001) in four measurements between the impedance measure and measures obtained by extrapolating the degrees of dilatation calculated from vaginal examination. This is a preliminary study in which we have defined the conditions that are necessary to confirm these first results and to further develop the method. PMID:1401774
Glowacki, B A; Majoros, M
2009-06-24
Magnetic materials can help to improve the performance of practical superconductors on the macroscale/microscale as magnetic diverters and also on the nanoscale as effective pinning centres. It has been established by numerical modelling that magnetic shielding of the filaments reduces AC losses in self-field conditions due to decoupling of the filaments and, at the same time, it increases the critical current of the composite. This effect is especially beneficial for coated conductors, in which the anisotropic properties of the superconductor are amplified by the conductor architecture. However, ferromagnetic coatings are often chemically incompatible with YBa(2)Cu(3)O(7) and (Pb,Bi)(2)Sr(2)Ca(2)Cu(3)O(9) conductors, and buffer layers have to be used. In contrast, in MgB(2) conductors an iron matrix may remain in direct contact with the superconducting core. The application of superconducting-magnetic heterostructures requires consideration of the thermal and electromagnetic stability of the superconducting materials used. On one hand, magnetic materials reduce the critical current gradient across the individual filaments but, on the other hand, they often reduce the thermal conductivity between the superconducting core and the cryogen, which may cause destruction of the conductor in the event of thermal instability. A possible nanoscale method of improving the critical current density of superconducting conductors is the introduction of sub-micron magnetic pinning centres. However, the volumetric density and chemical compatibility of magnetic inclusions has to be controlled to avoid suppression of the superconducting properties. PMID:21828430
Short-circuit impedance measurement
DEFF Research Database (Denmark)
Pedersen, Knud Ole Helgesen; Nielsen, Arne Hejde; Poulsen, Niels Kjølstad
2003-01-01
Methods for estimating the short-circuit impedance in the power grid are investigated for various voltage levels and situations. The short-circuit impedance is measured, preferably from naturally occurring load changes in the grid, and it is shown that such a measurement system faces different...... kinds of problems at different locations in the grid. This means that the best measurement methodology changes depending on the location in the grid. Three typical examples with different measurement problems at 400 kV, 132 kV and 400 V voltage level are discussed....
Definition of the characteristic impedance
Institute of Scientific and Technical Information of China (English)
徐云生; Abbas Sayed OMAR
1996-01-01
Currently available definitions of the characteristic impedance are ambiguous andior inaccurate.A general definition,based on the description of discontinuities between adjacent waveguides,is given.This definition is accurate and independent of the structure concerned.So it can be applied to the design of passive components in any type of transmission lines.Using this definition,a given structure can be uniquely characterized,but the absolute value of the characteristic impedance has no sense any more.As an example,the design of a microstrip impedance transformer using this new definition is presented.Numerical results using the mode-matching method prove the accuracy of the theory.
Experimental Verification of Acoustic Impedance Inversion
Institute of Scientific and Technical Information of China (English)
郭永刚; 王宁; 林俊轩
2003-01-01
Well controlled model experiments were carried out to verify acoustic impedance inversion scheme, and different methods of extracting impulse responses were investigated by practical data. The acoustic impedance profiles reconstructed from impulse responses are in good agreement with the measured value and theoretical value.
Estimating the short-circuit impedance
DEFF Research Database (Denmark)
Nielsen, Arne Hejde; Pedersen, Knud Ole Helgesen; Poulsen, Niels Kjølstad
1997-01-01
A method for establishing a complex value of the short-circuit impedance from naturally occurring variations in voltage and current is discussed. It is the symmetrical three phase impedance at the fundamental grid frequency there is looked for. The positive sequence components in voltage and curr...
Enkin, R. J.
2014-12-01
Induced polarization (IP) is a successful electric method to identify drill targets for mineral exploration at the property scale. The Paleomagnetism and Petrophysics Laboratory at the Geological Survey of Canada makes petrophysical measurements on cylindrical rock samples, 2.5 cm diameter and 2.2 cm long. This small size has advantages, including allowing measurement of magnetic remanence with standard paleomagnetism equipment, but it is too small to allow a 4-contact electrical impedance measurement. The samples are impregnated with distilled water under vacuum and allowed 24 hours for solutes to dissolve off pore walls, in order to approximate original groundwater ionic conductivity. We use graphite electrodes on the flat surfaces and measure the complex impedance at 5 frequencies per decade from 1 MHz down to 25 mHz. Typical responses on a Cole-Cole plot (i.e., real vs. imaginary components displayed parametrically as a function of frequency) look like a two overlapping circular arcs followed by a constant-phase diffusive response at lowest frequencies. The impedance frequency response is fit with a circuit in which the rock is modelled as a set of parallel resistor and constant-phase-element pathways, connected in series through a modified constant-phase-element representing the low frequency sample-holder response. The program "ZarcFit", written in LabView, allows the operator to tune parameters of an equivalent but far more intuitive series circuit with a set of 13 sliders, and then perform a least-squares optimization. Time domain chargeability is defined by removing the effect of the sample holder, taking the Fourier transform to convert the frequency response to its time-domain equivalent and then integrating under the resulting voltage-decay curve. Time domain measurements using two-electrode sample holders are necessarily contaminated by the low-frequency response of ionic diffusion at the electrodes. Results are compiled in the Canadian Rock Physical
Impedance model for nanostructures
Directory of Open Access Journals (Sweden)
R. S. Akhmedov
2007-06-01
Full Text Available The application of the impedance model for nanoelectronic quantum-mechanical structures modelling is described. Characteristics illustrating the efficiency of the model are presented.
Tracking of electrochemical impedance of batteries
Piret, H.; Granjon, P.; Guillet, N.; Cattin, V.
2016-04-01
This paper presents an evolutionary battery impedance estimation method, which can be easily embedded in vehicles or nomad devices. The proposed method not only allows an accurate frequency impedance estimation, but also a tracking of its temporal evolution contrary to classical electrochemical impedance spectroscopy methods. Taking into account constraints of cost and complexity, we propose to use the existing electronics of current control to perform a frequency evolutionary estimation of the electrochemical impedance. The developed method uses a simple wideband input signal, and relies on a recursive local average of Fourier transforms. The averaging is controlled by a single parameter, managing a trade-off between tracking and estimation performance. This normalized parameter allows to correctly adapt the behavior of the proposed estimator to the variations of the impedance. The advantage of the proposed method is twofold: the method is easy to embed into a simple electronic circuit, and the battery impedance estimator is evolutionary. The ability of the method to monitor the impedance over time is demonstrated on a simulator, and on a real Lithium ion battery, on which a repeatability study is carried out. The experiments reveal good tracking results, and estimation performance as accurate as the usual laboratory approaches.
Todd, Craig
1995-12-01
AC-3 is a system for coding up to 5.1 channels of audio into a low bit-rate data stream. High quality may be obtained with compression ratios approaching 12-1 for multichannel audio programs. The high compression ratio is achieved by methods which do not increase decoder memory, and thus cost. The methods employed include: the transmission of a high frequency resolution spectral envelope; and a novel forward/backward adaptive bit allocation algorithm. In order to satisfy practical requirements of an emissions coder, the AC-3 syntax includes a number of features useful to broadcasters and consumers. These features include: loudness uniformity between programs; dynamic range control; and broadcaster control of downmix coefficients. The AC-3 coder has been formally selected for inclusion of the U.S. HDTV broadcast standard, and has been informally selected for several additional applications.
Fractional Order Element Based Impedance Matching
Radwan, Ahmed Gomaa
2014-06-24
Disclosed are various embodiments of methods and systems related to fractional order element based impedance matching. In one embodiment, a method includes aligning a traditional Smith chart (|.alpha.|=1) with a fractional order Smith chart (|.alpha.|.noteq.1). A load impedance is located on the traditional Smith chart and projected onto the fractional order Smith chart. A fractional order matching element is determined by transitioning along a matching circle of the fractional order Smith chart based at least in part upon characteristic line impedance. In another embodiment, a system includes a fractional order impedance matching application executed in a computing device. The fractional order impedance matching application includes logic that obtains a first set of Smith chart coordinates at a first order, determines a second set of Smith chart coordinates at a second order, and determines a fractional order matching element from the second set of Smith chart coordinates.
Institute of Scientific and Technical Information of China (English)
ZHANG Wenliang; JIANG Jun; GUO Jian; LU Jiayu
2012-01-01
There will be more and more AC transmission lines near oil/gas pipelines in the future.So in order to determine the safe distance between them,simple and effective methods are required for engineers to efficiently evaluate the electromagnetic effect on oil/gas pipelines due to faults of AC transmission lines.In this paper,an easily handled fitting formula is obtained based on multiple calculation results,which is the maximum voltage on the pipeline anticorrosive coating produced by 1 000 kV AC transmission line under single phase ground fault.Although the calculation results obtained from the fitting formula differ from those gained by precise calculation with softwares,the verification of the formula shows that it is applicable for engineering calculation.This research could be applied to evaluate the electromagnetic effect of 1 000 kV AC transmission line under single-phase ground fault on nearby pipelines,as well as to determine the safe distance or the maximum parallel length.
Directory of Open Access Journals (Sweden)
Gučević Jelena
2012-01-01
Full Text Available The existing topographic and cadastral maps of the former Yugoslav republics are in Gauss-Krüger projection on Bessel ellipsoid. For the collected GPS data to comply with the existing cartographic material, it is necessary to provide the transformation parameters from WGS84 to Bessel ellipsoid and according to the principles of cartographic mapping, to make mappings in the plane of the State Coordinate System (SCS. The aim of this research is to present the surveying activities necessary for the establishment and maintenance of digital cartographic basis, which is shown in the test area of “VRŠAC MOUNTAINS”, a Serbian region with outstanding characteristics. In order to establish a connection between the collected data, it is necessary to primarily calculate the parameters of transformation from WGS84 into the SCS. After the vectorisation of projected boundaries from bases made in the SCS, the transformation of vectorised boundary lines from SCS into the WGS84 is carried out, followed by staking the boundaries. To understand the fundamental differences in the methodology of using GPS receivers, it is important to emphasise that the concept of GPS determination of the coordinates is generally divided into absolute and relative positioning. If the correct procedure of GPS positioning, applied to certain environmental conditions, is not followed, the error up to 200 m could be expected. Conclusions are drawn about the selection of staking methods, related to the applied instruments and specific field conditions. The stakeout procedures are given in accordance with the principles of geodetic positioning. [Projekat Ministarstva nauke Republike Srbije, br. 043007: Istraživanje klimatskih promena i njihovog uticaja na životnu sredinu: praćenje uticaja, adaptacija i ublažavanje
Rotor damage detection by using piezoelectric impedance
Qin, Y.; Tao, Y.; Mao, Y. F.
2016-04-01
Rotor is a core component of rotary machinery. Once the rotor has the damage, it may lead to a major accident. Thus the quantitative rotor damage detection method based on piezoelectric impedance is studied in this paper. With the governing equation of piezoelectric transducer (PZT) in a cylindrical coordinate, the displacement along the radius direction is derived. The charge of PZT is calculated by the electric displacement. Then, by the use of the obtained displacement and charge, an analytic piezoelectric impedance model of the rotor is built. Given the circular boundary condition of a rotor, annular elements are used as the analyzed objects and spectral element method is used to set up the damage detection model. The Electro-Mechanical (E/M) coupled impedance expression of an undamaged rotor is deduced with the application of a low-cost impedance test circuit. A Taylor expansion method is used to obtain the approximate E/M coupled impedance expression for the damaged rotor. After obtaining the difference between the undamaged and damaged rotor impedance, a rotor damage detection method is proposed. This method can directly calculate the change of bending stiffness of the structural elements, it follows that the rotor damage can be effectively detected. Finally, a preset damage configuration is used for the numerical simulation. The result shows that the quantitative damage detection algorithm based on spectral element method and piezoelectric impedance proposed in this paper can identify the location and the severity of the damaged rotor accurately.
Inter-Changeability of Impedance Devices for Lymphedema Assessment.
van Zanten, Malou; Piller, Neil; Ward, Leigh C
2016-06-01
Impedance technology is a popular technique for the early detection of lymphedema. The preferred approach is to use bioimpedance spectroscopy (BIS), with measurements being made with the subject lying supine, although attempts have been made to use single or multiple frequency impedance measurements obtained while the subject is standing. The aim of the present study was to determine the equivalence of these different approaches. Impedance measurements of the individual limbs of 37 healthy individuals were determined using both a stand-on, multi-frequency impedance device and a supine impedance spectroscopy instrument. Significant differences were found between the instruments in both absolute impedance values and, importantly, inter-limb impedance ratios. Since impedance ratios in healthy individuals provide the reference standard for detection of lymphedema, these data indicate that the methods are not interchangeable. Consideration of the errors associated with each method indicates that the BIS remains the preferred method for lymphedema detection. PMID:26574711
Directory of Open Access Journals (Sweden)
Jendrysek Marek
2015-11-01
Full Text Available Purpose: Body composition evaluation of youth aged 17-18 of a different physical activity with the help of bioelectric impedance method. Material and Methods: 18 boys practicing swimming and 19 boys not practicing it took part in the study, making up a control group. Height, weight, BMI, lean body mass, the content of fat and water, Rohr factor were evaluated. Non-parametric Mann-Whitney test has been used to evaluate the differences in the range of the tissue components between the two groups. Results: Statistically significant differences were found on the p<0,05 level in % fat content. Mean body weight in experimental group was 71.5 kg, while in control group it was 69.4 kg. Minimum and maximum weight in group of swimming-practicing persons was: 56.6-92.2 kg. Increased body weight in the group of swimmers can result from greater amount of active tissue in this group compared with persons of low physical activity. Proportionally, it amounted to 64.3 kg and 61.3 kg. In the tested groups, minimal and maximal values of amount of active tissue proportionately amounted to: 54.1-78 and 49.5-72,3 kg. Conclusions: Physical activity modifies body composition. Active lifestyle is one of the methods for prevention of overweight and obesity.
Thermal conductivity of Gd{sub 2}Zr{sub 2}O{sub 7} thin films using thermal-impedance method
Energy Technology Data Exchange (ETDEWEB)
Kim, J.W. [Department of Mechanical Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Jeong, G.E. [Department of Physics, Pusan National University, Busan 609-735 (Korea, Republic of); Yang, Ho-Soon [Department of Mechanical Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Department of Physics, Pusan National University, Busan 609-735 (Korea, Republic of)
2011-05-15
Pyrochlore-structured rare-earth materials have been of interest recently as thermal-barrier coating materials because they show low thermal conductivity due to the oxygen vacancy. This study reports the preparation and thermal characterization of Gd{sub 2}Zr{sub 2}O{sub 7} films deposited on YSZ and Al{sub 2}O{sub 3} substrates. Since the thermal properties of Gd{sub 2}Zr{sub 2}O{sub 7} and YSZ are not obviously different, the thermal-impedance method (the extended 3{omega} method) is used to study the films in this work. Gd{sub 2}Zr{sub 2}O{sub 7} thin films of various thicknesses are deposited using a pulsed laser deposition method. The thermal conductivity of Gd{sub 2}Zr{sub 2}O{sub 7} thin films exhibits a dependence on film thickness. The thickness-dependent thermal conductivity is ascribed to the interfacial thermal resistance between the Gd{sub 2}Zr{sub 2}O{sub 7} film and substrates. The interfacial resistance is obtained by fitting the thickness-dependent thermal conductivity with the effective thermal-conductivity equation. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Verney, Julien; Metz, Lore; Chaplais, Elodie; Cardenoux, Charlotte; Pereira, Bruno; Thivel, David
2016-07-01
The aim of this study was to compare total and segmental body composition results between bioimpedance analysis (BIA) and dual x-ray absorptiometry (DXA) scan and to test the reproducibility of BIA in obese adolescents. We hypothesized that BIA offers an accurate and reproducible method to assess body composition in adolescents with obesity. Whole-body and segmental body compositions were assessed by BIA (Tanita MC-780) and DXA (Hologic) among 138 (110 girls and 28 boys) obese adolescents (Tanner stage 3-5) aged 14±1.5years. The BIA analysis was replicated on 3 identical occasions in 32 participants to test the reproducibility of the methods. Whole-body fat mass percentage was significantly higher using the BIA method compared with DXA (40.6±7.8 vs 38.8±4.9%, PBioimpedance analysis offers an acceptable and reproducible alternative to assess body composition in obese adolescents, with however a loss of correlation between BIA and DXA with increasing body fat; its validity remains uncertain for segmental analysis among obese youth. PMID:27333957
Institute of Scientific and Technical Information of China (English)
邵长静
2015-01-01
主要阐述了实验目的、实验方法和实验结果等具体内容，提出了提高贝氏体耐候钢耐蚀性作用的方法和具体实验判定过程。%This paper mainly described the experiment purpose, experiment method and experiment results of the specific content, put forward methods to improve bainite weathering steel corrosion resistance effect and the specific experimental process of judgment.
Park, Chang-In; Jeon, Su-Jin; Hong, Nam-Pyo; Choi, Young-Wan
2016-03-01
Lock-in amplifier (LIA) has been proposed as a detection technique for optical sensors because it can measure low signal in high noise level. LIA uses synchronous method, so the input signal frequency is locked to a reference frequency that is used to carry out the measurements. Generally, input signal frequency of LIA used in optical sensors is determined by modulation frequency of optical signal. It is important to understand the noise characteristics of the trans-impedance amplifier (TIA) to determine the modulation frequency. The TIA has a frequency range in which noise is minimized by the capacitance of photo diode (PD) and the passive component of TIA feedback network. When the modulation frequency is determined in this range, it is possible to design a robust system to noise. In this paper, we propose a method for the determination of optical signal modulation frequency selection by using the noise characteristics of TIA. Frequency response of noise in TIA is measured by spectrum analyzer and minimum noise region is confirmed. The LIA and TIA circuit have been designed as a hybrid circuit. The optical sensor is modeled by the laser diode (LD) and photo diode (PD) and the modulation frequency was used as the input to the signal generator. The experiments were performed to compare the signal to noise ratio (SNR) of the minimum noise region and the others. The results clearly show that the SNR is enhanced in the minimum noise region of TIA.
Indian Academy of Sciences (India)
Priyanka; A K Jha
2013-02-01
This paper reports complex impedance analysis of polycrystalline complex perovskite structured BaZr0.025Ti0.975O3 prepared by solid state reaction method. XRD analysis reveals the formation of single phase perovskite structure. SEM has been used to investigate grain morphology of the material. Impedance plots have been used as a tool to analyse electrical properties of the sample as a function of frequency and temperature. Bulk resistance is observed to decrease with an increase in temperature showing a typical negative temperature coefficient of resistance (NTCR) type behaviour. Nyquist (Cole–Cole) plots show both inter and intra grain boundary effects. Relaxation time is found to decrease with increasing temperature and it obeys the Arrhenius relationship. The variation of d.c. and a.c. conductivity as a function of temperature is also reported.
SASSMANNOVÁ, Anna
2007-01-01
Echocardiography is an investigation of heart via scan. This enables to intend the moving and the locality of heart structures via scan pulse waves which are repulsed with acoustic interfaces. Impedance measuring of the thorax hemodynamics is based on changes of electrical impedance. These changes happen mainly because of the heart function. By its rhytmical function the heart periodically changes the conditions of blood flow through all vessels. By this we can explain periodical changes of i...
Impedance and Collective Effects
Metral, E; Rumolo, R; Herr, W
2013-01-01
This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Chapter '4 Impedance and Collective Effects' with the content: 4 Impedance and Collective Effects Introduction 4.1 Space Charge 4.2 Wake Fields and Impedances 4.3 Coherent Instabilities 4.4 Landau Damping 4.5 Two-Stream Effects (Electron Cloud and Ions) 4.6 Beam-Beam Effects 4.7 Numerical Modelling
Analysis of formulas used in coupling impedance coaxial-wire measurements for distributed impedances
International Nuclear Information System (INIS)
In this paper the authors study the validity of coupling impedance bench measurements for distributed impedances, comparing the commonly used log formula to the result obtained applying a modified version of Bethe's theory of diffraction to a long slot in a coaxial beam pipe. The equations found provide a quantitative expression for the influence of the wire thickness used in the measurement of the real and imaginary part of the longitudinal impedance. The precision achievable in an actual measurement is therefore discussed. The method presented has also been applied in the presence of lumped impedances
Segmental and whole body electrical impedance measurements in dialysis patients
Nescolarde Selva, Lexa
2006-01-01
The main objective of this thesis is to contribute to the prevention and control of the cardiovascular risk, hydration state and nutritional state in dialysis patients using non-invasive electrical impedance measurements. The thesis is structured in three parts with the following objectives: 1) to establish electrical impedance reference data for healthy Cuban population, 2)to improve the diagnostic based on impedance methods in Cuban hemodialysis (HD)patients and 3) to develop the impedance ...
Measurements of electrical impedance of biomedical objects.
Frączek, Marcin; Kręcicki, Tomasz; Moron, Zbigniew; Krzywaźnia, Adam; Ociepka, Janusz; Rucki, Zbigniew; Szczepanik, Zdzisław
2016-01-01
Some basic problems related to measurements of electrical impedance of biological objects (bioimpedance) have been presented in this paper. Particularly problems arising from impedance occurring at the sensor-tissue interface (interfacial impedances) in contact measuring methods have been discussed. The influence of finite values of impedances of the current source and voltage measuring device has also been taken into consideration. A model of the impedance sensor for the four-electrode measurement method containing the interfacial, source and measuring device impedances has been given and its frequency characteristics obtained by the computer simulation have been presented. The influence of these impedances on the shape of frequency characteristic of the sensor model has been discussed. Measurements of bioimpedance of healthy and anomalous soft tissues have been described. Some experimental results, particularly the frequency characteristics of bioimpedance, have been shown. The presented results of measurement show that bioimpedance can be a valuable source of information about the tissues, so measurement of bioimpedance can be a useful supplement to other medical diagnostic methods. PMID:27151250
交流接触器的常见故障及处理方法%Common failures and processing method of AC contactor
Institute of Scientific and Technical Information of China (English)
吕俊霞
2012-01-01
AC contactor is the most common application of a kind of electrical appliances in power system. The AC contactor common faults, the fault cause and the specific methods removing the faults are analyzed, including contactor inadequate suction, coil overheat or burn out, interphase short circuit and abnormal arcing etc..% 交流接触器是电力系统应用最普遍的一种电器。分析了交流接触器的常见故障、产生故障的原因及排除故障的具体方法，主要涉及接触器吸力不足、线圈过热或烧坏、相间短路、灭弧装置不正常灭弧等。
Impedance and component heating
Métral, E; Mounet, N; Pieloni, T; Salvant, B
2015-01-01
The impedance is a complex function of frequency, which represents, for the plane under consideration (longitudinal, horizontal or vertical), the force integrated over the length of an element, from a “source” to a “test” wave, normalized by their charges. In general, the impedance in a given plane is a nonlinear function of the test and source transverse coordinates, but it is most of the time sufficient to consider only the first few linear terms. Impedances can influence the motion of trailing particles, in the longitudinal and in one or both transverse directions, leading to energy loss, beam instabilities, or producing undesirable secondary effects such as excessive heating of sensitive components at or near the chamber wall, called beam-induced RF heating. The LHC performance limitations linked to impedances encountered during the 2010-2012 run are reviewed and the currently expected situation during the HL-LHC era is discussed.
Dielectric, Impedance and Conduction Behavior of Double Perovskite Pr2CuTiO6 Ceramics
Mahato, Dev K.; Sinha, T. P.
2016-08-01
Polycrystalline Pr2CuTiO6 (PCT) ceramics exhibits dielectric, impedance and modulus characteristics as a possible material for microelectronic devices. PCT was synthesized through the standard solid-state reaction method. The dielectric permittivity, impedance and electric modulus of PCT have been studied in a wide frequency (100 Hz-1 MHz) and temperature (303-593 K) range. Structural analysis of the compound revealed a monoclinic phase at room temperature. Complex impedance Cole-Cole plots are used to interpret the relaxation mechanism, and grain boundary contributions towards conductivity have been estimated. From electrical modulus formalism polarization and conductivity relaxation behavior in PCT have been discussed. Normalization of the imaginary part of impedance (Z″) and the normalized imaginary part of modulus (M″) indicates contributions from both long-range and localized relaxation effects. The grain boundary resistance along with their relaxation frequencies are plotted in the form of an Arrhenius plot with activation energy 0.45 eV and 0.46 eV, respectively. The ac conductivity mechanism has been discussed.
Energy Technology Data Exchange (ETDEWEB)
Zotter, B. [European Organization for Nuclear Research, Geneva (Switzerland)
1996-08-01
This report describes a number of measurements and computations of the impedance of the Large Electron Positron collider LEP at CERN. The work has been performed over several years, together with D. Brandt, K. Cornelis, A. Hofmann, G. Sabbi and many others. The agreement between measurements of single bunch instabilities on the machine and computer simulations is in general excellent and gives confidence in the impedance model used. (author)
Impedance Biosensing to detect food allergens, endocrine disrupting chemicals, and food pathogens
Radhakrishnan, Rajeswaran
Electrochemical impedance biosensors can be viewed as an AC electroanalytical method for the analyte detection in the fields of biomedicine, environmental monitoring, and food and agriculture, amongst others. The most common format for AC impedance biosensing involves surface immobilization of an antibody, receptor protein, DNA strand, or other species capable of bio-recognition, and AC impedance detection of the binding event. Technological application of AC impedance biosensors has been hindered by several obstacles, including the more complex circuitry required for AC relative to DC electrochemistry, chemical and physical interference arising from non-specific adsorption, and the stability and reproducibility of protein immobilization. One focus of these PhD studies is on methods to reduce or compensate for non-specific adsorption, including sample dilution, site blocking with BSA, and the use of control electrodes onto which reference antibodies are immobilized. Examples that will be presented include impedance detection of food pathogens, such as Listeria monocytogenes, using a mouse monoclonal antibody immobilized onto an Au electrode. This yields detection limits of 5 CFU/ml and 4 CFU/ml for ideal solutions and filtered tomato extract, respectively. Control experiments with an Au electrode onto which a mouse monoclonal antibody to GAPDH is immobilized demonstrate that non-specific adsorption is insignificant for the system and methodology studied here. Control experiments with Salmonella enterica demonstrate no cross-reactivity to this food pathogen. In addition, Detection of two endocrine-disrupting chemicals (EDC), norfluoxetine and BDE-47, is reported here by impedance biosensing, with a detection limit of 8.5 and 1.3 ng/ml for norfluoxetine and BDE-47, respectively. Additional research has focused on alternative substrates and linker chemistries for protein immobilization, including the use of degenerate (highly doped) Si and bidendate thiol monolayer
A review of impedance measurements of whole cells.
Xu, Youchun; Xie, Xinwu; Duan, Yong; Wang, Lei; Cheng, Zhen; Cheng, Jing
2016-03-15
Impedance measurement of live biological cells is widely accepted as a label free, non-invasive and quantitative analytical method to assess cell status. This method is easy-to-use and flexible for device design and fabrication. In this review, three typical techniques for impedance measurement, i.e., electric cell-substrate impedance sensing, Impedance flow cytometry and electric impedance spectroscopy, are reviewed from the aspects of theory, to electrode design and fabrication, and applications. Benefiting from the integration of microelectronic and microfluidic techniques, impedance sensing methods have expanded their applications to nearly all aspects of biology, including living cell counting and analysis, cell biology research, cancer research, drug screening, and food and environmental safety monitoring. The integration with other techniques, the fabrication of devices for certain biological assays, and the development of point-of-need diagnosis devices is predicted to be future trend for impedance sensing techniques. PMID:26513290
Directory of Open Access Journals (Sweden)
XUE BU HU
2010-09-01
Full Text Available Two composite cathode materials containing LiFePO4 and activated carbon (AC were synthesized by an in-situ method and a direct mixing technique, which are abbreviated as LAC and DMLAC, respectively. Hybrid battery–capacitors LAC/Li4Ti5O12 and DMLAC/Li4Ti5O12 were then assembled. The effects of the content of LiFePO4 and the preparation method on the cyclic voltammograms, the rate of charge–discharge and the cycle performance of the hybrid battery–capacitors were investigated. The results showed the overall electrochemical performance of the hybrid battery–capacitors was the best when the content of LiFePO4 in the composite cathode materials was in the range from 11.8 to 28.5 wt. %, while the preparation method had almost no impact on the electrochemical performance of the composite cathodes and hybrid battery–capacitors. Moreover, the hybrid battery–capacitor devices had a good cycle life performance at high rates. After 1000 cycles, the capacity loss of the DMLAC/Li4Ti5O12 hybrid battery–capacitor device at 4C was no more than 4.8 %. Moreover, the capacity loss would be no more than 9.6 % after 2000 cycles at 8C.
Energy Technology Data Exchange (ETDEWEB)
Jung, Woo Sik; Yang, Joon Eun
2003-07-01
In order to evaluate accurately a Station BlackOut (SBO) event frequency of a multi-unit nuclear power plant that has a shared Alternate AC (AAC) power source, an approach has been developed which accommodates the complex inter-unit behavior of the shared AAC power source under multi-unit Loss Of Offsite Power (LOOP) conditions. The approach is illustrated for two cases, 2 units and 4 units at a single site, and generalized for a multi-unit site. Furthermore, the SBO frequency of the first unit of the 2-unit site is quantified. The SBO frequency at a target unit of Probabilistic Safety Assessment (PSA) could be underestimated if the inter-unit dependency of the shared AAC power source is not properly modeled. The effect of the inter-unit behavior of the shared AAC power source on the SBO frequency is not negligible depending on the Common Cause Failure (CCF) characteristics among AC power sources. The methodology suggested in the present report is believed to be very useful in evaluating the SBO frequency and the core damage frequency resulting from the SBO event. This approach is also applicable to the probabilistic evaluation of the other shared systems in a multi-unit nuclear power plant.
Simultaneous distribution of AC and DC power
Polese, Luigi Gentile
2015-09-15
A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.
Impedance adaptation for optimal robot-environment interaction
Ge, Shuzhi Sam; Li, Yanan; Wang, Chen
2014-02-01
In this paper, impedance adaptation is investigated for robots interacting with unknown environments. Impedance control is employed for the physical interaction between robots and environments, subject to unknown and uncertain environments dynamics. The unknown environments are described as linear systems with unknown dynamics, based on which the desired impedance model is obtained. A cost function that measures the tracking error and interaction force is defined, and the critical impedance parameters are found to minimise it. Without requiring the information of the environments dynamics, the proposed impedance adaptation is feasible in a large number of applications where robots physically interact with unknown environments. The validity of the proposed method is verified through simulation studies.
Machine Tool Used AC Contactor Reliability Evaluation Method%机床用交流接触器可靠性评估方法
Institute of Scientific and Technical Information of China (English)
陆宾; 陆俭国
2014-01-01
Introduction was made to AC contactor reliability study development situations both at home and abroad. This paper described the reliability test method of machine tool used AC contactor mechanical operation and the evaluation method, pointing out that the product failure distribution type is Weibull distribution when AC contactor turning on/off the rating electrical load, failure rate is not constant, it is not suitable to adopt failure rate value as reliability index, but to adopt reliability measurement test, and the corresponding methods were given.%介绍了国内外开展交流接触器可靠性研究概况，阐述了机床用交流接触器机械操作可靠性试验方法与评估方法。指出交流接触器通断实际电气负载时产品失效分布类型为威布尔分布，失效率不是常数，不宜采用失效率大小作为交流接触器通断实际电气负载时的可靠性指标，而应采用可靠性测定试验，并给出了交流接触器通断实际电气负载时可靠性试验方法与提供可靠性数据的评估方法。
Kopp, Joachim; Slatyer, Tracy R; Wang, Xiao-Ping; Xue, Wei
2016-01-01
We consider a new class of thermal dark matter models, dubbed "Impeded Dark Matter", in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. We demonstrate that either case can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppress...
Degtiarenko, Pavel V.; Popov, Vladimir E.
2011-03-22
A first stage electronic system for receiving charge or current from voltage-controlled sensors or detectors that includes a low input impedance current receiver/converter device (for example, a transimpedance amplifier), which is directly coupled to the sensor output, a source of bias voltage, and the device's power supply (or supplies), which use the biased voltage point as a baseline.
Energy Technology Data Exchange (ETDEWEB)
Meanley, E.; Guderjahn, C.; Litvak, M. [BP Exploration, Houston, TX (United States)] [and others
1995-08-01
Rapid and accurate subsurface descriptions and flow predictions contribute to profitable field development, particularly for deep water fields of modest size. This paper shows how 3-D seismic acoustic impedance played an essential roll in that process. This Tertiary field example exhibits a classic Gulf of Mexico {open_quotes}bright{close_quotes} seismic response. The slope channel deposits yielded reflections from stacked pay zones that were often interfering vertically and laterally variable. Seismic acoustic impedance inversion for volume estimation, well placement and flow model construction. Flow model construction was facilitated using Stratamodel, where reservoir boundaries, porosity and permeability were estimated from seismic acoustic impedance. This provided a {open_quotes}deterministic{close_quotes} flow model with which well choices and development economics were explored. Alternate flow models were developed in which the effect of fine scale (sub-seismic) heterogeneities were investigated. A 3-D {open_quotes}stochastic{close_quotes} model was developed that honored geostatistical parameters as well as seismic acoustic impedance. This gave insight to permeability distributions and confirmed that connectivity between scattered sand bodies would not significantly degrade the field performance predicted by deterministic models.
Impedance spectroscopy of food mycotoxins
Bilyy, Oleksandr I.; Yaremyk, Roman Ya.; Kotsyumbas, Ihor Ya.; Kotsyumbas, Halyna I.
2012-01-01
A new analytical method of high-selective detection of mycotoxins in food and feed are considered. A method is based on optical registration the changes of conduct of the electric polarized bacterial agents in solution at the action of the external gradient electric fields. Measuring are conducted in integrated electrode-optical cuvette of the special construction, which provides the photometric analysis of forward motion of the objects registration in liquid solution under act of the enclosed electric field and simultaneous registration of kinetics of change of electrical impedance parameters solution and electrode system.
Cross-Circulating Current Suppression Method for Parallel Three-Phase Two-Level Inverters
DEFF Research Database (Denmark)
Wei, Baoze; Guerrero, Josep M.; Guo, Xiaoqiang
2015-01-01
The parallel architecture is very popular for power inverters to increase the power level. This paper presents a method for the parallel operation of inverters in an ac-distributed system, to suppress the cross-circulating current based on virtual impedance without current-sharing bus and communi......The parallel architecture is very popular for power inverters to increase the power level. This paper presents a method for the parallel operation of inverters in an ac-distributed system, to suppress the cross-circulating current based on virtual impedance without current-sharing bus...
VISUALIZATION OF BIOLOGICAL TISSUE IMPEDANCE PARAMETERS
Directory of Open Access Journals (Sweden)
V. I. Bankov
2016-01-01
Full Text Available Objective. Investigation the opportunity for measurement of biological tissue impedance to visualize its parameters.Materials and methods. Studies were undertook on the experimental facility, consists of registrating measuring cell, constructed from flat inductors system, formed in oscillatory circuit, herewith investigated biological tissue is the part of this oscillatory circuit. An excitation of oscillatory circuit fulfilled by means of exciter inductor which forms impulse complex modulated electromagnetic field (ICM EMF. The measurement process and visualizations provided by set of certificated instruments: a digital oscillograph AKTAKOM ADS-2221MV, a digital generator АКТАКОМ AWG-4150 (both with software and a gauge RLC E7-22. Comparative dynamic studies of fixed volume and weight pig’s blood, adipose tissue, muscular tissue impedance were conducted by contact versus contactless methods. Contactless method in contrast to contact method gives opportunity to obtain the real morphological visualization of biological tissue irrespective of their nature.Results. Comparison of contact and contactless methods of impedance measurement shows that the inductance to capacitance ratio X(L / X(C was equal: 17 – for muscular tissue, 4 – for blood, 1 – for adipose tissue. It demonstrates the technical correspondence of both impedance registration methods. If propose the base relevance of X (L and X (C parameters for biological tissue impedance so contactless measurement method for sure shows insulating properties of adipose tissue and high conductivity for blood and muscular tissue in fixed volume-weight parameters. Registration of biological tissue impedance complex parameters by contactless method with the help of induced ICM EMF in fixed volume of biological tissue uncovers the most important informative volumes to characterize morphofunctional condition of biological tissue namely X (L / X (C.Conclusion. Contactless method of biological
Interpretation of faradaic impedance for Corrosion monitoring
Energy Technology Data Exchange (ETDEWEB)
Itagaki, M.; Taya, A.; Imamura, M.; Saruwatari, R.; Watanabe, K. [Science University of Tokyo, Chiba (Japan)
2004-02-15
A polarization resistance is generally used to estimate the corrosion rate in the corrosion monitoring by an electrochemical impedance method. When the Faradaic impedance has a time constant due to the reaction intermediate, the electrochemical impedance describes more than one loop on the complex plane. For example, the electrochemical impedance of iron in acidic solution shows capacitive and inductive loops on the complex plane. In this case, the charge transfer resistance and the polarization resistance are determined at middle and low frequency ranges, respectively. Which should be selected for corrosion resistance in corrosion monitoring, the charge transfer resistance or the polarization resistance? In the present paper, the above-mentioned question is examined theoretically and experimentally
交流电源过零点检测新方法%New Method of Zero-crossing Detection for AC Power Supply
Institute of Scientific and Technical Information of China (English)
盛占石; 王青青; 黄赛帅
2012-01-01
针对目前交流电源过零点检测电路过于复杂或过零点检测不准确的问题,提出了一种新颖的过零点检测方法.该方法以微处理器为核心,利用光耦和微处理器的输入捕获中断功能实现对交流电源过零点的精确检测.该方法在工业现场进行了多次测试,测试结果证明该方法具有较高的可靠性、准确性,为解决交流电源的过零点检测问题提供了新的思路和设计参考.%In order to solve the problem of the complex and the inaccurate in the zero-crossing point detection of the AC power supply, a novel method of zero-crossing point detection was proposed. The micro-controller is the key part of the solution, the optical coupler and the capture interrupt function of the micro-controller was adopted as to have a accurate detection of the zero-crossin g point of the AC power supply. By testing in the industrial filed,it proved that this method has high reliability,accuracy,and it re-solves the problem of the zero-crossing point detection of the AC power supply in a new way of thinking and design.
Yao, Limei; Cui, Yan; Cong, Haining; Zheng, Jinju; Shang, Minghui; Yang, Zuobao; Yang, Weiyou; Wei, Guodong; Gao, Fengmei
2016-04-01
In this study, the dielectrophoretic processes of SiC nanowires suspended in three typical solvents, (highly purified water, ethanol and isopropanol) were systematically investigated. Optical microscope and SEM characterizations were used to observe the order of SiC nanowires on the surface of gold microchannels. The gold microchannels were induced by Ac dielectrophoresis of the corresponding dispersion solutions of SiC nanowires, with a concentration of 0.1 mg/mL. The study shows that the dielectrophoresis process is an effective way of synthesizing highly oriented SiC nanoarrays using isopropanol solution. The results also show that the arrangement of SiC nanowires on the interdigital electrode configuration not only depend on the kind of solvent used, but also on the applied frequency (1000 Hz~1 MHz) and voltage (1 V~20 V). PMID:27451739
2008-01-01
Transition metal oxides have been suggested as innovative, high-energy electrode materials for lithium-ion batteries because their electrochemical conversion reactions can transfer two to six electrons. However, nano-sized transition metal oxides, especially Co3O4, exhibit drastic capacity decay during discharge/charge cycling, which hinders their practical use in lithium-ion batteries. Herein, we prepared nano-sized Co3O4with high crystallinity using a simple citrate-gel method and used electrochemical impedance spectroscopy method to examine the origin for the drastic capacity fading observed in the nano-sized Co3O4anode system. During cycling, AC impedance responses were collected at the first discharged state and at every subsequent tenth discharged state until the 100th cycle. By examining the separable relaxation time of each electrochemical reaction and the goodness-of-fit results, a direct relation between the charge transfer process and cycling performance was clearly observed.
Locating Impedance Change in Electrical Impedance Tomography Based on Multilevel BP Neural Network
Institute of Scientific and Technical Information of China (English)
彭源; 莫玉龙
2003-01-01
Electrical impedance tomography (EIT) is a new computer tomography technology, which reconstructs an impedance (resistivity, conductivity) distribution, or change of impedance, by making voltage and current measurements on the object's periphery.Image reconstruction in EIT is an ill-posed, non-linear inverse problem. A method for finding the place of impedance change in EIT is proposed in this paper, in which a multilevel BP neural network (MBPNN) is used to express the non-linear relation between theimpedance change inside the object and the voltage change measured on the surface of the object. Thus, the location of the impedance change can be decided by the measured voltage variation on the surface. The impedance change is then reconstructed using a linear approximate method. MBPNN can decide the impedance change location exactly without long training time. It alleviates some noise effects and can be expanded, ensuring high precision and space resolution of the reconstructed image that are not possible by using the back projection method.
Jahnke, Heinz-Georg; Heimann, Axel; Azendorf, Ronny; Mpoukouvalas, Konstantinos; Kempski, Oliver; Robitzki, Andrea A; Charalampaki, Patra
2013-08-15
Until today, brain tumors especially glioblastoma are difficult to treat and therefore, results in a poor survival rate of 0-14% over five years. To overcome this problem, the development of novel therapeutics as well as optimization of neurosurgical procedures to remove the tumor tissue are subject of intensive research. The main problem of the tumor excision, as the primary clinical intervention is the diffuse infiltration of the tumor cells in unaltered brain tissue that complicates the complete removal of residual tumor cells. In this context, we are developing novel approaches for the label-free discrimination between tumor tissue and unaltered brain tissue in real-time during the surgical process. Using our impedance spectroscopy-based measurement system in combination with flexible microelectrode arrays we could successfully demonstrate the discrimination between a C6-glioma and unaltered brain tissue in an in vivo rat model. The analysis of the impedance spectra revealed specific impedance spectrum shape characteristics of physiologic neuronal tissue in the frequency range of 10-500 kHz that were significantly different from the tumor tissue. Moreover, we used an adapted equivalent circuit model to get a deeper understanding for the nature of the observed effects. The impedimetric label-free and real-time discrimination of tumor from unaltered brain tissue offers the possibility for the implementation in surgical instruments to support surgeons to decide, which tissue areas should be removed and which should be remained.
Theory of the ac spin-valve effect
Kochan, Denis; Gmitra, Martin; Fabian, Jaroslav
2011-01-01
The spin-valve complex magnetoimpedance of symmetric ferromagnet/normal metal/ferromagnet junctions is investigated within the drift-diffusion (standard) model of spin injection. The ac magnetoresistance---the real part difference of the impedances of the parallel and antiparallel magnetization configurations---exhibits an overall damped oscillatory behavior, as an interplay of the diffusion and spin relaxation times. In wide junctions the ac magnetoresistance oscillates between positive and ...
Real-time measurement of glucose using chrono-impedance technique on a second generation biosensor.
Mayorga Martinez, Carmen C; Treo, Ernesto F; Madrid, Rossana E; Felice, Carmelo C
2011-11-15
Chrono-impedance technique (CIT) was implemented as a new transduction method for real time measurement of glucose in a biosensor system based in carbon paste (CP)/Ferrocene (FC)/glucose oxidase (GOx). The system presents high selectivity because the optimal stimulation signal composed by a 165mV DC potential and 50mV(RMS) AC signal at 0.4Hz was used. The low DC potential used decreased the interfering species effect and the biosensor showed a linear impedance response toward glucose detection at concentrations from 0mM to 20mM,with 0.9853 and 0.9945 correlation coefficient for impedance module (|Z|) and phase (Φ), respectively. The results of quadruplicate sets reveal the high repeatability and reproducibility of the measurements with a relative standard deviation (RSD) less than 10%. CIT presented good accuracy (within 10% of the actual value) and precision did not exceed 15% of RSD for high concentration values and 20% for the low concentration ones. In addition, a high correlation coefficient (R(2)=0.9954) between chrono-impedance and colorimetric methods was obtained. On the other hand, when two samples prepared at the same conditions were measured in parallel with both methods (the measurement was repeated four times), it should be noticed that student's t-test produced no difference between the two mentioned methods (p=1). The biosensor system hereby presented is highly specific to glucose detection and shows a better linear range than the one reported on the previous article. PMID:21907557
Electrical impedance measurement of irradiated potatoes
International Nuclear Information System (INIS)
Several chemical, biochemical and histological methods have been suggested for the identification of irradiated potatoes but these methods are either time consuming or lack the reliability and precision to be of much practical use. Measurement of electrical conductivity or impedance appears to be a simple and reliable technique. We have examined the suitability of electrical impedance method for potatoes grown in our country after exposing to a sprout inhibiting dose of 0.1 kGy. The results of this study are described. 10 refs., 3 figs., 2 tabs
Impedance calculation for ferrite inserts
Energy Technology Data Exchange (ETDEWEB)
Breitzmann, S.C.; Lee, S.Y.; /Indiana U.; Ng, K.Y.; /Fermilab
2005-01-01
Passive ferrite inserts were used to compensate the space charge impedance in high intensity space charge dominated accelerators. They study the narrowband longitudinal impedance of these ferrite inserts. they find that the shunt impedance and the quality factor for ferrite inserts are inversely proportional to the imaginary part of the permeability of ferrite materials. They also provide a recipe for attaining a truly passive space charge impedance compensation and avoiding narrowband microwave instabilities.
基于阻抗方法的船舶电力推进系统仿真研究%Simulation Research on Ship Electric Propulsion System Based on Impedance Method
Institute of Scientific and Technical Information of China (English)
罗耀华; 康少波; 吕世家; 游江
2013-01-01
研究船舶电力推进系统稳定性控制优化问题.船舶电力推进系统是船舶综合电力系统的重要组成部分,由于控制系统的作用,推进电机对直流母线侧呈现负阻抗的恒功率特性,系统可能存在不稳定现象.为解决上述问题,采用阻抗方法分析系统稳定性,推导发电整流模块的输出阻抗和推进电机的输出阻抗,确定推进电机在不同工作点时的稳定情况,并通过直流母线电压前馈控制器的设计提高系统的稳定性.在Simulink中搭建时域仿真模型,仿真结果表明所设计的前馈控制器能够有效改善推进电机的输入阻抗特性,提高系统稳定性,为控制系统优化设计提供一定的基础.%The ship power propulsion system is a key part of ship integrated power system. There may be unstable in the system as the input impedance of the power propulsion is negative impedance under the well control. To resolve the issue, the impedance method was taken in the paper. The output impedance of generation module and input impedance of power propulsion module were derived to determine the stability of the system under different operation points. Then a DC bus voltage feed—forward controller was designed to keep the system stability. Finally, the simulation demonstrates that the voltage feed-forward controller can change the input impedance and improve the system stability.
Regmi, Amit; Shintaku, Hiroki; Sasaki, Tsutomu; Koshizuka, Seiichi
2015-09-01
Semi-solid forging (SSF) is a powerful manufacturing technology to fabricate near-net shaped products in automotive industries. During SSF process, the filling behavior and solidification process of AC4CH aluminum alloy is presented in this paper. The explicit MPS method program solving Navier-Stokes equation is coupled with heat transfer and solidification has been used to predict the filling pattern and temperature distribution of semi-solid material (SSM). The non-Newtonian rheological model was used as the constitutive equation of SSM. In this study, numerical analysis of SSF was carried out in box cavity with various flange thickness (4, 8, 12 and 16 mm) and corresponding experiments were undertaken for AC4CH aluminum alloy with solid fraction less than 0.5. The numerical results of SSM filling pattern and solidification phenomena in flange were validated with the experimental results. During solidification process, flow calculation was stopped and only thermal calculation was carried out. The shrinkage defect was well predicted near the lower mid area of the box cavity with flange thickness 16 mm.
DIFFERENTIAL SOIL IMPEDANCE OBSTACLE DETECTION
Energy Technology Data Exchange (ETDEWEB)
Maximillian J. Kieba
2002-08-30
This project develops a new and unique obstacle detection sensor for horizontal directional drilling (HDD) equipment. The development of this new technology will greatly improve the reliability and safety of natural gas HDD construction practices. This sensor utilizes a differential soil impedance measurement technique that will be sensitive to the presence of plastic and ceramic, as well as metallic obstacles. The use of HDD equipment has risen significantly in the gas industry because HDD provides a much more cost-effective and less disruptive method for gas pipe installation than older, trenching methods. However, there have been isolated strikes of underground utilities by HDD equipment, which may have been avoided if methods were available to detect other underground obstacles when using HDD systems. GTI advisors from the gas industry have ranked the value of solving the obstacle detection problem as the most important research and development project for GTI to pursue using Federal Energy Regulatory Commission (FERC) funds available through its industry partner, GRI. GTI proposes to develop a prototype down-hole sensor system that is simple and compact. The sensor utilizes an impedance measurement technique that is sensitive to the presence of metallic or nonmetallic objects in the proximity of the HDD head. The system will use a thin film sensor conformal with the drill head. The impedance of the soil will be measured with a low frequency signal injected through the drill head itself. A pair of bridge type impedance sensors, mounted orthogonal to one another, is capacitively coupled to the soil. Inclusions in the soil will cause changes to the sensor balance distinguishable from homogeneous soil. The sensor will provide range and direction data for obstacles near the HDD head. The goal is to provide a simple, robust system that provides the information required to avoid obstacles. This must be done within the size and ruggedness constraints of the HDD
Institute of Scientific and Technical Information of China (English)
黄建明; 吴春华; 徐坤; 付立
2012-01-01
The operation principle of photovoltaic optimizer system and the essence of maximum power point tracking (MPPT) are introduced. Each PV module adopts MPPT control algorithm in photovoltaic optimizer system, which leads to wrong judgment of the traditional MPPT method due to the load impedance perturbation. Based on the equivalent load impedance perturbation, the distributed maximum power point tracking (DMPPT) is proposed to solve the problem. Considering the disturbance of control variables and load impedance to track MPP, the interaction between individual modules in the photovoltaic optimizer system is avoided. Finally, comparative experiments prove that the DMPPT method based on the equivalent load impedance perturbation proposed in this paper has the advantage of quick response and perturbation resistance to load impedance. Furthermore, the stability of this method is better than conventional MPPT method.%介绍了光伏优化器系统的工作原理及最大功率点跟踪的本质.针对光伏优化器系统中每块光伏组件进行MPPT控制,造成传统MPPT方法由于负载阻抗扰动而引起误判断的问题,提出了一种基于等效负载阻抗扰动的分布式最大功率点跟踪方法.该方法综合考虑控制量扰动和负载阻抗扰动进行MPPT判断,避免光伏优化器系统中各个独立模块之间的相互影响.通过对比实验证明提出的基于等效负载阻抗扰动的最大功率点跟踪方法具有快速的响应能力及抗负载阻抗扰动能力,其稳定性优于传统的MPPT方法.
Kopp, Joachim; Liu, Jia; Slatyer, Tracy R.; Wang, Xiao-Ping; Xue, Wei
2016-01-01
We consider a new class of thermal dark matter models, dubbed "Impeded Dark Matter", in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. We demonstrate that either case can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonst...
Gynecologic electrical impedance tomograph
Korjenevsky, A.; Cherepenin, V.; Trokhanova, O.; Tuykin, T.
2010-04-01
Electrical impedance tomography extends to the new and new areas of the medical diagnostics: lungs, breast, prostate, etc. The feedback from the doctors who use our breast EIT diagnostic system has induced us to develop the 3D electrical impedance imaging device for diagnostics of the cervix of the uterus - gynecologic impedance tomograph (GIT). The device uses the same measuring approach as the breast imaging system: 2D flat array of the electrodes arranged on the probe with handle is placed against the body. Each of the 32 electrodes of the array is connected in turn to the current source while the rest electrodes acquire the potentials on the surface. The current flows through the electrode of the array and returns through the remote electrode placed on the patient's limb. The voltages are measured relative to another remote electrode. The 3D backprojection along equipotential surfaces is used to reconstruct conductivity distribution up to approximately 1 cm in depth. Small number of electrodes enables us to implement real time imaging with a few frames per sec. rate. The device is under initial testing and evaluation of the imaging capabilities and suitability of usage.
Line impedance estimation using model based identification technique
DEFF Research Database (Denmark)
Ciobotaru, Mihai; Agelidis, Vassilios; Teodorescu, Remus
2011-01-01
into the operation of the grid-connected power converters. This paper describes a quasi passive method for estimating the line impedance of the distribution electricity network. The method uses the model based identification technique to obtain the resistive and inductive parts of the line impedance. The quasi......The estimation of the line impedance can be used by the control of numerous grid-connected systems, such as active filters, islanding detection techniques, non-linear current controllers, detection of the on/off grid operation mode. Therefore, estimating the line impedance can add extra functions...
Institute of Scientific and Technical Information of China (English)
ZHANG Yan; WANG Yuan-sheng; SONG Yusu
2009-01-01
Ag/AgCl electrode has been prepared using pressed powder techniques. In order to verify the feasibility of this type of electrode used as detecting electric field generated by vessels in seawater, its characteristics of DC resistance, low frequency AC impedance, and receiving impedance in artificial seawater have been studied by polarization measurements, low frequency electrochemical impedance spectra, the open and short circuit cell conditions. The results show that the electrode can keep a low resistance when it responses the weak electrostatic field in seawater. The AC impedance of the electrode decreases as the frequency of the signal increasing. The receiving impedance decreases when the frequency of external field increases too. The valid detection bandwidth is determined by the properties of the impedance and the reactions occurring on the surface of the electrode.
A compact wideband precision impedance measurement system based on digital auto-balancing bridge
International Nuclear Information System (INIS)
The ac impedance spectroscopy measurements are predominantly taken by using impedance analyzers based on analog auto-balancing bridge. However, those bench-top analyzers are generally complicated, bulky and expensive, thus limiting their usage in industrial field applications. This paper presents the development of a compact wideband precision measurement system based on digital auto-balancing bridge. The methods of digital auto-balancing bridge and digital lock-in amplifier are analyzed theoretically. The overall design and several key sections including null detector, direct digital synthesizer-based sampling clock, and digital control unit are introduced in detail. The results show that the system achieves a basic measurement accuracy of 0.05% with a frequency range of 20 Hz–2 MHz. The advantages of versatile measurement capacity, fast measurement speed, small size and low cost make it quite suitable for industrial field applications. It is demonstrated that this system is practical and effective by applying in determining the impedance-temperature characteristic of a motor starter PTC thermistor. (paper)
A compact wideband precision impedance measurement system based on digital auto-balancing bridge
Hu, Binxin; Wang, Jinyu; Song, Guangdong; Zhang, Faxiang
2016-05-01
The ac impedance spectroscopy measurements are predominantly taken by using impedance analyzers based on analog auto-balancing bridge. However, those bench-top analyzers are generally complicated, bulky and expensive, thus limiting their usage in industrial field applications. This paper presents the development of a compact wideband precision measurement system based on digital auto-balancing bridge. The methods of digital auto-balancing bridge and digital lock-in amplifier are analyzed theoretically. The overall design and several key sections including null detector, direct digital synthesizer-based sampling clock, and digital control unit are introduced in detail. The results show that the system achieves a basic measurement accuracy of 0.05% with a frequency range of 20 Hz-2 MHz. The advantages of versatile measurement capacity, fast measurement speed, small size and low cost make it quite suitable for industrial field applications. It is demonstrated that this system is practical and effective by applying in determining the impedance-temperature characteristic of a motor starter PTC thermistor.
Current sharing method for parallel inverters based on impedance matching mode%基于阻抗匹配模式的并联逆变器均流方法
Institute of Scientific and Technical Information of China (English)
陈宏志; 王旭; 刘建昌; 宋崇辉; 闫士杰
2012-01-01
针对逆变器并联系统的动态均流问题,提出了阻抗匹配模式的逆变器并联控制方案.依据电路等效理论,将开环控制的逆变器等效为给定电压源与虚拟阻抗串联的电路形式,并给出了阻抗参数的辨识方法.以逆变器的等效电路作为被控对象模型,推导出可改变逆变器输出虚拟阻抗的控制方法.给出了并联逆变器间的虚拟阻抗匹配关系.所设计的逆变器除需共享电压给定基准正弦信号外,完全自主均流,控制方法简单.采用两台容量为1 kVA、空载输出电压为220V的逆变器并联进行了仿真和实验研究.仿真与实验结果显示:两台逆变器输出电流之差峰值小于0.1A;在负载阶跃变化中,无过渡过程.%To solve the dynamic current sharing problem of inverter parallel system, a parallel inverter control scheme with impedance matching mode was proposed. According to the equivalent theory of circuit , the inverter of open-loop control was equivalent to the constant voltage source and the virtual impedance in series form, the impedance parameters identification method was given. The equivalent circuit of the inverter was treated as the controlled plant and the control method was derived to change the output virtual impedance of the inverter. Virtual impedance matching condition between the parallel inverters was given. Besides the given sinusoidal voltage signal shared by the invert in the proposal, the current sharing independently, was realized. The control methods are simple and easy to be applied. Simulation and experimental studies have been carried out on two parallel connected inverters which capacities are 1 kVA and no-load output voltages are 220 V. Simulation and experimental results show that the difference of the two inverter output current peak is less than 0. 1 A and there is no transition process under load step change.
Three-Level AC-DC-AC Z-Source Converter Using Reduced Passive Component Count
DEFF Research Database (Denmark)
Loh, Poh Chiang; Gao, Feng; Tan, Pee-Chin;
2009-01-01
This paper presents a three-level ac-dc-ac Z-source converter with output voltage buck-boost capability. The converter is implemented by connecting a low-cost front-end diode rectifier to a neutral-point-clamped inverter through a single X-shaped LC impedance network. The inverter is controlled......-second average at its output, while simultaneously achieving inductive voltage boosting by shooting through either an appropriately selected inverter phase-leg or two phase-legs being commanded simultaneously. More interestingly, these performance features are achieved with no increase in the number...
Three-Level AC-DC-AC Z-Source Converter Using Reduced Passive Component Count
DEFF Research Database (Denmark)
Loh, Poh Chiang; Gao, Feng; Tan, Pee-Chin;
2007-01-01
This paper presents a three-level ac-dc-ac Z-source converter with output voltage buck-boost capability. The converter is implemented by connecting a low cost front-end diode rectifier to a neutral-point-clamped inverter through a single X-shaped LC impedance network. The inverter is controlled...... a low cost alternative to sensitive applications that need to ride-through frequent input voltage sags. For confirming the converter performance, experimental testing using a constructed laboratory prototype is performed with its captured results presented in a later section of the paper....
International Nuclear Information System (INIS)
Back projection reconstruction has been implemented to get the dynamical image in electrical impedance tomography. However the implementation is still limited in method of adjacent data collection and circular object element model. The study aims to develop the methods of back projection as reconstruction method that has the high speed, accuracy, and flexibility, which can be used for various methods of data collection and model of the object element. The proposed method uses the forward problem solution as the operator of filtered and back projection matrix. This is done through a simulation study on several methods of data collection and various models of the object element. The results indicate that the developed method is capable of producing images, fastly and accurately for reconstruction of the various methods of data collection and models of the object element
Energy Technology Data Exchange (ETDEWEB)
Ain, Khusnul [Engineering Physics Program, ITB, Bandung - Indonesia (Indonesia); Physics Department - Airlangga University, Surabaya – Indonesia, khusnulainunair@yahoo.com (Indonesia); Kurniadi, Deddy; Suprijanto [Engineering Physics Program, ITB, Bandung - Indonesia (Indonesia); Santoso, Oerip [Informatics Program, ITB, Bandung - Indonesia (Indonesia); Wibowo, Arif [Physics Department - Airlangga University, Surabaya – Indonesia, khusnulainunair@yahoo.com (Indonesia)
2015-04-16
Back projection reconstruction has been implemented to get the dynamical image in electrical impedance tomography. However the implementation is still limited in method of adjacent data collection and circular object element model. The study aims to develop the methods of back projection as reconstruction method that has the high speed, accuracy, and flexibility, which can be used for various methods of data collection and model of the object element. The proposed method uses the forward problem solution as the operator of filtered and back projection matrix. This is done through a simulation study on several methods of data collection and various models of the object element. The results indicate that the developed method is capable of producing images, fastly and accurately for reconstruction of the various methods of data collection and models of the object element.
Characterization of electro-acoustics impedance and its application to active noise control
Institute of Scientific and Technical Information of China (English)
HOU Hong; YANG Jianhua
2004-01-01
Characteristics of radiation impedance and its inducing variation of electrical impedance for a controllable source have been investigated. An impedance-based error criterion has been proposed and its application to Active Noise Control is demonstrated through a coil driven loudspeaker. A general formula of radiation impedance is derived for two control strategies, according to the criterion of total acoustic power output. The radiation impedances of some commonly used sound sources are calculated. We discuss in detail the relation between variation of the input electrical impedance and radiation impedance for the two control strategies. The measured data of the input electrical impedance from a loudspeaker agree fairly well with theoretical analysis. An AC- bridge circuit is designed in order to measure the weak variation of electrical impedance resulted from radiation impedance. The bridge relative output is unique for a certain control strategy, from which an impedance-based error criterion is then proposed and the implementation of its application to an active control system is analyzed.Numerical results of such criterion are presented. An analogue control system is set up and experiments are carried out in a semi-anechoic chamber to verify the new control approach.
Observations involving broadband impedance modelling
Energy Technology Data Exchange (ETDEWEB)
Berg, J.S. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)
1996-08-01
Results for single- and multi-bunch instabilities can be significantly affected by the precise model that is used for the broadband impedance. This paper discusses three aspects of broadband impedance modelling. The first is an observation of the effect that a seemingly minor change in an impedance model has on the single-bunch mode coupling threshold. The second is a successful attempt to construct a model for the high-frequency tails of an r.f. cavity. The last is a discussion of requirements for the mathematical form of an impedance which follow from the general properties of impedances. (author)
Reciprocity and mutual impedance formulas within lossy cavities
Directory of Open Access Journals (Sweden)
F. Gronwald
2005-01-01
Full Text Available We discuss the validity of reciprocity and mutual impedance formulas within lossy cavities. Mutual impedance formulas are well-known from antenna theory and useful to describe the electromagnetic coupling between electromagnetic interference sources and victims. As an example the mutual impedance between two dipole antennas within a lossy rectangular cavity is calculated from a system of coupled Hallén's equations that efficiently is solved by the method of moments.
Line Impedance Estimation Using Active and Reactive Power Variations
DEFF Research Database (Denmark)
Timbus, Adrian Vasile; Rodriguez, Pedro; Teodorescu, Remus;
2007-01-01
This paper proposes an estimation method of power system impedance based on power variations caused by a distributed power generation system (DPGS) at the point of common coupling (PCC). The proposed algorithm is computationally simple and uses the voltage variations at the point of common coupling...... (PCC) caused by the variations of the power delivered to utility network to derive the value of grid impedance. Accurate estimation of both resistive and inductive part of the impedance is obtained, as the results presented show....
DEFF Research Database (Denmark)
Kwon, JunBum; Wang, Xiongfei; Bak, Claus Leth;
2014-01-01
This paper addresses the harmonic compensation error problem existing with parallel connected inverter in the same grid interface conditions by means of impedance-based analysis and modeling. Unlike the single grid connected inverter, it is found that multiple parallel connected inverters and grid...... impedance can make influence to each other if they each have a harmonic compensation function. The analysis method proposed in this paper is based on the relationship between the overall output impedance and input impedance of parallel connected inverter, where controller gain design method, which can...
Wavelet analysis of the impedance cardiogram waveforms
Podtaev, S.; Stepanov, R.; Dumler, A.; Chugainov, S.; Tziberkin, K.
2012-12-01
Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt)max) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.
Institute of Scientific and Technical Information of China (English)
肖贵遐; 刘国庆; 彭玉平; 朱代谟
2001-01-01
The changes of intracranial components and corr esponding brain impedan ce were analyzed while intracranial pressure was increasing, and the relation of intr acranial pressure pulse wave and brain impedance pulse wave were discussed. A theory of noninvasive intracranial pressure monitoring by bioelectric impedance was put forward. The result of primary experiment suggested that the theory be feasible.%分析了在颅内压增高的过程中，颅内容 物的变化及相应的脑阻抗的变化情况 ，同时讨论了在颅内压升高以后颅内压脉冲波和脑阻抗脉冲波的关系，提出了一个用生物电 阻抗法无创监护颅内压的理论。初步的动物实验表明该理论是可行的。
Electrical transport properties of CoMn0.2−xGaxFe1.8O4 ferrites using complex impedance spectroscopy
Directory of Open Access Journals (Sweden)
Chien-Yie Tsay
2016-05-01
Full Text Available In this study, we report the influence of Ga content on the microstructural, magnetic, and AC impedance properties of Co-based ferrites with compositions of CoMn0.2−xGaxFe1.8O4 (x=0, 0.1, and 0.2 prepared by the solid-state reaction method. Experimental results showed that the as-prepared Co-based ferrites had a single-phase spinel structure; the Curie temperature of Co-based ferrites decreased with increasing Ga content. All ferrite samples exhibited a typical hysteresis behavior with good values of saturation magnetization at room temperature. The electrical properties of Co-based ferrites were investigated using complex impedance spectroscopy analysis in the frequency range of 100 kHz-50 MHz at temperatures of 150 to 250 oC. The impedance analysis revealed that the magnitudes of the real part (Z’ and the imaginary part (Z” of complex impedance decreased with increasing temperature. Only one semicircle was observed in each complex impedance plane plot, which revealed that the contribution to conductivity was from the grain boundaries. It was found that the relaxation time for the grain boundary (τgb also decreased with increasing temperature. The values of resistance for the grain boundary (Rgb significantly increased with increasing Ga content, which indicated that the incorporation of Ga into Co-based ferrites enhanced the electrical resistivity.
Electrical transport properties of CoMn0.2-xGaxFe1.8O4 ferrites using complex impedance spectroscopy
Tsay, Chien-Yie; Lin, Yi-Hsiang; Wang, Yao-Ming; Chang, Horng-Yi; Lei, Chien-Ming; Jen, Shien-Uang
2016-05-01
In this study, we report the influence of Ga content on the microstructural, magnetic, and AC impedance properties of Co-based ferrites with compositions of CoMn0.2-xGaxFe1.8O4 (x=0, 0.1, and 0.2) prepared by the solid-state reaction method. Experimental results showed that the as-prepared Co-based ferrites had a single-phase spinel structure; the Curie temperature of Co-based ferrites decreased with increasing Ga content. All ferrite samples exhibited a typical hysteresis behavior with good values of saturation magnetization at room temperature. The electrical properties of Co-based ferrites were investigated using complex impedance spectroscopy analysis in the frequency range of 100 kHz-50 MHz at temperatures of 150 to 250 oC. The impedance analysis revealed that the magnitudes of the real part (Z') and the imaginary part (Z") of complex impedance decreased with increasing temperature. Only one semicircle was observed in each complex impedance plane plot, which revealed that the contribution to conductivity was from the grain boundaries. It was found that the relaxation time for the grain boundary (τgb) also decreased with increasing temperature. The values of resistance for the grain boundary (Rgb) significantly increased with increasing Ga content, which indicated that the incorporation of Ga into Co-based ferrites enhanced the electrical resistivity.
Harmonic analysis for identification of nonlinearities in impedance spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Kiel, M.; Bohlen, O.; Sauer, D.U. [Electrochemical Energy Conversion and Storage Systems Group, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University (Germany)
2008-10-30
Though impedance is only defined for linear systems, impedance spectroscopy is also successfully applied to nonlinear systems such as fuel cells and batteries. The influence of nonlinearities on measurement results in impedance spectroscopy is therefore discussed on a theoretical and simulative basis. The basis is a simplified Randles model of an electrochemical cell, on which a simulated impedance spectroscopy in galvanostatic mode is performed. For the investigation the focus is on the Butler-Vollmer equation in order to describe the nonlinearity. Furthermore, a linear model for comparison is used, in which the Butler-Volmer nonlinearity is replaced by a linear resistor to show the differences in impedance measurement. In order to find a correlation, also the occurring harmonics are observed. The results are discussed and several methods are suggested for maintaining a quasi-linear impedance measurement by controlling the amplitude of the excitation signal. (author)
Blaskiewicz, M.; Dooling, J.; Dyachkov, M.; Fedotov, A.; Gluckstern, R.; Hahn, H.; Huang, H.; Kurennoy, S.; Linnecar, T.; Shaposhnikova, E.; Stupakov, G.; Toyama, T.; Wang, J. G.; Weng, W. T.; Zhang, S. Y.; Zotter, B.
1999-12-01
The impedance working group was charged to reply to the following 8 questions relevant to the design of high-intensity proton machines such as the SNS or the FNAL driver. These questions were first discussed one by one in the whole group, then each ne of them assigned to one member to summarize. On the lst morning these contributions were publicly read, re-discussed and re-written where required—hence they are not the opinion of a particular person, but rather the averaged opinion of all members of the working group. (AIP)
Beam measurements of the LHC impedance and validation of the impedance model
Esteban Müller, J F; Bohl, T; Mounet, N; Shaposhnikova, E; Timko, H
2014-01-01
Different measurements of the longitudinal impedance of the LHC done with single bunches with various intensities and longitudinal emittances during measurement sessions in 2011-2012 are compared with particle simulations based on the existing LHC impedance model. The very low reactive impedance of the LHC, with Im Z=n = 0.08, is not easy to measure. The most sensitive observation is the loss of Landau damping, which shows at which energy bunches become unstable depending on their parameters. In addition, the synchrotron frequency shift due to the reactive impedance was estimated following two methods. Firstly, it was obtained from the peak-detected Schottky spectrum. Secondly, a sine modulation in the RF phase was applied to the bunches of different intensities and the modulation frequency was scanned. In both cases, the synchrotron frequency shift was of the order of the measurement precision.
Huang, Jun; Li, Zhe; Zhang, Jianbo
2015-01-01
In this study, a novel implementation of dynamic electrochemical impedance spectroscopy (DEIS) is proposed. The method first measures the impedance continuously at a single frequency during one charging/discharging cycle, then repeats the measurement at a number of other selected frequencies. The impedance spectrum at a specific SOC is obtained by interpolating and collecting the impedance at all of the selected frequencies. The charge transfer resistance, Rct, from the DEIS is smaller than that from the steady EIS in a wide state-of-charge (SOC) range from 0.4 to 1.0, the Rct during charging is generally smaller than that during discharging for the battery chemistry used in this study.
Control of grid interactive AC microgrids
DEFF Research Database (Denmark)
Wang, Xiongfei; Guerrero, Josep M.; Chen, Zhe
2010-01-01
and reliability, becomes an attractive candidate for the configuration of future electrical power system. This paper gives a brief review of grid interactive ac microgrid configurations. Control methods for power electronics interfaced DER units in grid interactive ac microgrids are discussed. In addition......, microgrid controls and power management strategies are presented. Future trends of microgrid are discussed pointing out how this concept can be a key to achieve a more intelligent and flexible AC grid....
A simple technique for a.c. conductivity measurements
Indian Academy of Sciences (India)
R Padma Suvarna; K Raghavendra Rao; K Subbarangaiah
2002-12-01
An inexpensive, indigenous and a simple electronic instrument based on voltage follower, current–to–voltage converter, zero crossing detector and a phase detector has been developed for measurement of a.c. conductivity. Real and imaginary parts of complex impedance are determined for a given sample as a function of frequency and the given sample is represented by a pure electronic model.
Electrode contact impedance sensitivity to variations in geometry
International Nuclear Information System (INIS)
Electrode contact impedance is a crucial factor in physiological measurements and can be an accuracy-limiting factor when performing electroencephalography and electrical impedance tomography. In this work, standard flat electrodes and micromachined multipoint spiked electrodes are characterized with a finite-element method electromagnetic solver and the dependence of the contact impedance on geometrical factors is explored. It is found that flat electrodes are sensitive to changes in the outer skin layer properties related to hydration and thickness, while spike electrodes are not. The impedance as a function of the effective contact area, number of spikes and penetration depth has also been studied and characterized. (paper)
Lorentz Force Electrical Impedance Tomography
Grasland-Mongrain, Pol; Chapelon, Jean-Yves; Lafon, Cyril
2014-01-01
This article describes a method called Lorentz Force Electrical Impedance Tomography. The electrical conductivity of biological tissues can be measured through their sonication in a magnetic field: the vibration of the tissues inside the field induces an electrical current by Lorentz force. This current, detected by electrodes placed around the sample, is proportional to the ultrasonic pressure, to the strength of the magnetic field and to the electrical conductivity gradient along the acoustic axis. By focusing at different places inside the sample, a map of the electrical conductivity gradient can be established. In this study experiments were conducted on a gelatin phantom and on a beef sample, successively placed in a 300 mT magnetic field and sonicated with an ultrasonic transducer focused at 21 cm emitting 500 kHz bursts. Although all interfaces are not visible, in this exploratory study a good correlation is observed between the electrical conductivity image and the ultrasonic image. This method offers...
Impedance spectroscopy study of polycrystalline Bi6Fe2Ti3O18
Indian Academy of Sciences (India)
K Srinivas; P Sarah; S V Suryanarayana
2003-02-01
The electrical properties of polycrystalline Bi6Fe2Ti3O18 are investigated by impedance spectroscopy in the temperature range 30–550°C. The imaginary part of impedance as a function of frequency shows Debye like relaxation. Impedance data are presented in the Nyquist plot which is used to identify an equivalent circuit and the fundamental circuit parameters are determined at different temperatures. The grain and grain-boundary contributions are estimated. The results of bulk a.c. conductivity as a function of temperature and frequency are presented. The activation energies for the a.c. conductivity are calculated. The polaron hopping frequencies are estimated from the a.c. conductivity data.
Energy Technology Data Exchange (ETDEWEB)
Radicke, Marcus
2009-12-18
The method presented in this thesis combines ultrasound techniques with the magnetic-resonance tomography (MRT). An ultrasonic wave generates in absorbing media a static force in sound-propagation direction. The force leads at sound intensities of some W/cm{sup 2} and a sound frequency in the lower MHz range to a tissue shift in the micrometer range. This tissue shift depends on the sound power, the sound frequency, the sound absorption, and the elastic properties of the tissue. A MRT sequence of the Siemens Healthcare AG was modified so that it measures (indirectly) the tissue shift, codes as grey values, and presents as 2D picture. By means of the grey values the sound-beam slope in the tissue can be visualized, and so additionally sound obstacles (changes of the sound impedance) can be detected. By the MRT images token up spatial changes of the tissue parameters sound absorption and elasticity can be detected. In this thesis measurements are presented, which show the feasibility and future chances of this method especially for the mammary-cancer diagnostics. [German] Die in dieser Arbeit praesentierte Methode kombiniert Ultraschalltechniken mit der Magnetresonanztomographie (MRT). Eine Ultraschallwelle ruft in absorbierenden Medien eine statische Kraft in Schallausbreitungsrichtung hervor. Die Kraft fuehrt bei Schallintensitaeten von einigen W/cm{sup 2} und einer Schallfrequenz im niederen MHz-Bereich zu einer Gewebeverschiebung im Mikrometerbereich. Diese Gewebeverschiebung haengt ab von der Schallleistung, der Schallfrequenz, der Schallabsorption und den elastischen Eigenschaften des Gewebes. Es wurde eine MRT-Sequenz der Siemens Healthcare AG modifiziert, so dass sie (indirekt) die Gewebeverschiebung misst, als Grauwerte kodiert und als 2D-Bild darstellt. Anhand der Grauwerte kann der Schallstrahlverlauf in dem Gewebe visualisiert werden, und so koennen zusaetzlich Schallhindernisse (Aenderungen der Schallkennimpedanz) aufgespuert werden. Mit den
Resonant impedance of bellows above cutoff
Energy Technology Data Exchange (ETDEWEB)
Krinsky, S
1980-01-01
The perturbation method of Chatard-Moulin and Papiernik is used to calculate the longitudinal and transverse impedances, Z(..omega..) and Z/sub perpendicular/(..omega..), of a bellows. The bellows shape is defined by its radius a(z) = a (1 + epsilons(z)), where a is the mean radius, epsilon a small parameter, and s(z) describes the convolution of the bellows. A finite wall conductivity is considered and the resonant contribution to the impedance above the cutoff frequency of the unperturbed chamber is determined, obtaining analytic approximations to the resonant frequencies, quality factors, and shunt impedances. The relation Z/sub perpendicular/(..omega..) = (2c/a/sup 2/)Z(..omega..)/..omega.., of course, does not hold as an identity, but it is found to be a useful relation for the shunt impedances, holding exactly for one family of transverse modes and providing an upper bound on the shunt impedances of the second set of transverse modes.
Harasztosi, Csaba; Gummer, Anthony W.
2011-11-01
The voltage-dependent chloride-channel blocker anthracene-9-carboxylic acid (9AC) has been found to reduce the imaginary but not the real part of the mechanical impedance of the organ of Corti, suggesting that the effective stiffness of outer hair cells (OHCs) is reduced by 9AC. To examine whether 9AC interacts directly with the motor protein prestin to reduce the membrane component of the impedance, the patch-clamp technique in whole-cell configuration was used to measure the nonlinear capacitance (NLC) of isolated OHCs and, as control, prestin-transfected human embryonic kidney 293 (HEK293) cells. Extracellular application of 9AC significantly reduced the NLC of both OHCs and HEK293 cells. Intracellular 9AC did not influence the blocking effect of the extracellular applied drug. These results suggest that 9AC interacts directly with prestin, reducing the effective stiffness of the motor, and that the interaction is extracellular.
Jung, D. H.; Moon, I. K.; Jeong, Y. H.
2001-01-01
A new ac calorimeter, utilizing the Peltier effect of a thermocouple junction as an ac power source, is described. This Peltier ac calorimeter allows to measure the absolute value of heat capacity of small solid samples with sub-milligrams of mass. The calorimeter can also be used as a dynamic one with a dynamic range of several decades at low frequencies.
Bio-impedance detector for Staphylococcus aureus exposed to magnetic fields
International Nuclear Information System (INIS)
Rapid detection of viability and growth of pathogenic microorganisms is very important in many applications such as food and drug production, health care, and national defense. Measurements on the electrical characteristics of cells have been used successfully in the past to detect many different physiological events. The effect of electromagnetic fields on the growth of bacteria (Staphylococcus aureus) was studied with the bio-impedance technique. The growth situations of bacteria in the absence and presence of different intensities of static and alternative magnetic fields were examined and analyzed. The results show that the impedance of bacteria fell in the presence of DC magnetic fields. In contrast the impedance increased when the bacteria were exposed to AC magnetic fields. Based on these results the bacterial growth indicated by the change in the impedance is inhibited under DC magnetic fields and enhanced under AC fields.
Bio-impedance detector for Staphylococcus aureus exposed to magnetic fields
Younis Yacoob Aldosky, Haval; Barwari, Waleed Jameel Omar; Salih Al-mlaly, Janan M.
2012-12-01
Rapid detection of viability and growth of pathogenic microorganisms is very important in many applications such as food and drug production, health care, and national defense. Measurements on the electrical characteristics of cells have been used successfully in the past to detect many different physiological events. The effect of electromagnetic fields on the growth of bacteria (Staphylococcus aureus) was studied with the bio-impedance technique. The growth situations of bacteria in the absence and presence of different intensities of static and alternative magnetic fields were examined and analyzed. The results show that the impedance of bacteria fell in the presence of DC magnetic fields. In contrast the impedance increased when the bacteria were exposed to AC magnetic fields. Based on these results the bacterial growth indicated by the change in the impedance is inhibited under DC magnetic fields and enhanced under AC fields.
Zhang, C.; Tang, Y.; Liang, S.; Ren, L.; Wang, Z.; Xu, Y.
This paper presents the electromagnetic analysis of a high voltage saturated-core superconducting fault current limiter (SCSFCL). The numerical analyses of a three-dimensional (3D) model is shown, and the specific parameters are given. The model focus on the steady-state impedance of the limiter when connected to the power grid. It analyzed the dependence of steady-state impedance on the AC coil current, and the relationship between oil gap and coil inductance. The results suggest that, adding oil gap between slice of silicon steel can reduce the core cross-section, restrain the ultraharmonic and decrease the steady-state impedance. As the core cross-section of AC limb decreased from 4344 cm2 to 3983 cm2, the total harmonic distortion for voltage decreased from 2.4% to 1.8%, and the impedance decreased from 1.082 Ω to 1.069 Ω(Idc=400A,Iac=1296A).
On coupling impedances of pumping holes
Energy Technology Data Exchange (ETDEWEB)
Kurennoy, S.
1993-04-01
Coupling impedances of a single small hole in vacuum-chamber walls have been calculated at low frequencies. To generalize these results for higher frequencies and/or larger holes one needs to solve coupled integral equations for the effective currents. These equations are solved for two specific hole shapes. The effects of many holes at high frequencies where the impedances are not additive are studied using a perturbation-theory method. The periodic versus random distributions of the pumping holes in the Superconducting Super Collider liner are compared.
Kimura, Tomoharu; Kobayashi, Kei; Yamada, Hirofumi
2015-08-01
The device performances of organic thin film transistors are often limited by the metal-organic interface because of the disordered molecular layers at the interface and the energy barriers against the carrier injection. It is important to study the local impedance at the interface without being affected by the interface morphology. We combined frequency modulation atomic force microscopy with scanning impedance microscopy (SIM) to sensitively measure the ac responses of the interface to an ac voltage applied across the interface and the dc potential drop at the interface. By using the frequency-modulation SIM (FM-SIM) technique, we characterized the interface impedance of a Pt electrode and a single pentacene grain as a parallel circuit of a contact resistance and a capacitance. We found that the reduction of the contact resistance was caused by the reduction of the energy level mismatch at the interface by the FM-SIM measurements, demonstrating the usefulness of the FM-SIM technique for investigation of the local interface impedance without being affected by its morphology.
DEFF Research Database (Denmark)
Siwakoti, Yam Prasad; Blaabjerg, Frede; Galigekere, Veda Prakash;
2016-01-01
A novel A-source impedance network is proposed in this letter. The A-source impedance network uses an autotransformer for realizing converters for any application that demand a very high dc voltage gain. The network utilizes a minimal turns ratio compared to other Magnetically Coupled Impedance S...... with an example single-switch 400 W dc-dc converter. For the closed-loop control design and stability assessment, a small signal model and its analysis of the proposed network are also presented in brief.......A novel A-source impedance network is proposed in this letter. The A-source impedance network uses an autotransformer for realizing converters for any application that demand a very high dc voltage gain. The network utilizes a minimal turns ratio compared to other Magnetically Coupled Impedance...
Detection of irradiated potatoes by impedance measurement
International Nuclear Information System (INIS)
Potato is one of the major food items to be treated with ionising radiation and potatoes are irradiated on a large scale in several countries. Every year around 15,000 t of potatoes are irradiated at doses of 60 to 150 Gy (average dose is about 100 Gy) in Japan. Although various methods to detect irradiated potatoes have been investigated, no established method has been reported. Measuring electrical conductivity or impedance of potatoes has been reported as a promising method for the detection of irradiated potatoes. In previous studies it has been found that the ratio of impedance magnitude at 50 kHz to that at 5 kHz, measured immediately after puncturing a potato tuber, is dependent upon the dose applied to the tuber, independent of storage temperature and stable during storage after irradiation. The aim of this study was to establish the optimum conditions for impedance measurement and to examine the applicability of the impedance measuring method to various cultivars (cv.) of potatoes. (author)
Wibowo, Denni Ari
While recent research in electron-transport mechanism on a double strands DNA seems to converge into a consensus, experiments in direct electrical measurements on a long DNA molecules still lead to a conflicting result. This research investigates experimentally the attachment of DNA molecular wire to high aspect ratio three-dimensional (3D) metal electrode and the effect of temperature to its AC electrical conductivity. The 3-D microelectrode was built on a silicone oxide substrate using patterned thick layers of negative tone photoresist covered by sputtered gold on the top surface. Attachment of lambda-DNA to the microelectrode was demonstrated using oligonucleotide-DNA phosphate backbone ligation and thiol-gold covalent bonding. Electrical characterizations based on I-V and AC impedance analysis of several repeatable data points of attachment with varying lambda-DNA concentration (500 ng/microL to 0.0625 ng/microL) showed measurable and significant conductivity of lambda-DNA molecular wires. Further study was carried out by measuring I-V and impedance while ramping up the temperature to reach complete denaturation (~1100C) resulting in no current transduction. Subsequent re-annealing of the DNA through incubation in TM buffer at annealing temperature (~900C) resulted in recovery of electrical conduction, providing a strong proof that DNA molecular wire is the one generate the electrical conductivity. lambda-DNA molecular wires reported to have differing impedance response at two temperature regions: impedance increases (conductivity decrease) between 40C -- 400C, and then decreases from 400C until DNA completely denatured (~1100C). The increase conductivity after 400C is an experimental support the long distance electron transport mechanism referred as "thermal hopping" mechanism. We believe that this research represents a significant departure from previous studies and makes unique contributions through (i) modification of DNA attachment methods has increase
Bernstein, Donald P.
2010-01-01
Impedance cardiography (ICG) is a branch of bioimpedance pimarily concerned with the determination of left ventricular stroke volume (SV). As implemented, using the transthoracic approach, the technique involves applying a current field longitudinally across a segment of thorax by means of a constant magnitude, high frequency, low amplitude alternating current (AC). By Ohm's Law, the voltage difference measured within the current field is proportional to the electrical impedance Z (&Omega...
Oh, T; Gilad, O; Ghosh, A; Schuettler, M; Holder, D S
2011-05-01
Electrical impedance tomography (EIT) is a recently developed medical imaging method which has the potential to produce images of fast neuronal depolarization in the brain. Previous modelling suggested that applied current needed to be below 100 Hz but the signal-to-noise ratio (SNR) recorded with scalp electrodes during evoked responses was too low to permit imaging. A novel method in which contemporaneous evoked potentials are subtracted is presented with current applied at 225 Hz to cerebral cortex during evoked activity; although the signal is smaller than at DC by about 10×, the principal noise from the EEG is reduced by about 1000×, resulting in an improved SNR. It was validated with recording of compound action potentials in crab walking leg nerve where peak changes of -0.2% at 125 and 175 Hz tallied with biophysical modelling. In recording from rat cerebral cortex during somatosensory evoked responses, peak impedance decreases of -0.07 ± 0.006% (mean ± SE) with a SNR of >50 could be recorded at 225 Hz. This method provides a reproducible and artefact free means for recording resistance changes during neuronal activity which could form the basis for imaging fast neural activity in the brain.
Application of dynamic impedance spectroscopy to atomic force microscopy
Directory of Open Access Journals (Sweden)
Kazimierz Darowicki, Artur Zieliński and Krzysztof J Kurzydłowski
2008-01-01
Full Text Available Atomic force microscopy (AFM is a universal imaging technique, while impedance spectroscopy is a fundamental method of determining the electrical properties of materials. It is useful to combine those techniques to obtain the spatial distribution of an impedance vector. This paper proposes a new combining approach utilizing multifrequency scanning and simultaneous AFM scanning of an investigated surface.
Reconstruction of a potential from the impedance boundary map
Isaev, Mikhail
2012-01-01
We give formulas and equations for finding generalized scattering data for the Schr\\"odinger equation in open bounded domain at fixed energy from the impedance boundary map (or Robin-to-Robin map). Combining these results with results of the inverse scattering theory we obtain efficient methods for reconstructing potential from the impedance boundary map.
Electrochemical impedance spectroscopy in solid state ionics: recent advances
Boukamp, Bernard A.
2004-01-01
Electrochemical Impedance Spectroscopy (EIS) has become an important research tool in Solid State Ionics. Some new developments are highlighted: new methods of automatic parameter extraction from impedance measurements are briefly discussed. The Kramers–Kronig data validation test presents another p
DEFF Research Database (Denmark)
Goh, Ailian; Gao, Feng; Loh, Pon Chiang;
2007-01-01
control, and push up the overall system costs. Therefore, alternative topological solutions are of interest, and should preferably be implemented using only passive LC elements and diodes, connected as unique impedance networks. A number of possible network configurations are now investigated...... in this paper, and are respectively named as Z-source, H-source, EZ-source and their respective "inverted" variants. The presented impedance networks can either be used with a traditional voltage-source or current-source inverter, and can either be powered by a voltage or current source. All impedance networks...... the practicalities and performances of the described impedance networks....
[Cardiac output monitoring by impedance cardiography in cardiac surgery].
Shimizu, H; Seki, S; Mizuguchi, A; Tsuchida, H; Watanabe, H; Namiki, A
1990-04-01
The cardiac output monitoring by impedance cardiography, NCCOM3, was evaluated in adult patients (n = 12) who were subjected to coronary artery bypass grafting. Values of cardiac output measured by impedance cardiography were compared to those by the thermodilution method. Changes of base impedance level used as an index of thoracic fluid volume were also investigated before and after cardiopulmonary bypass (CPB). Correlation coefficient (r) of the values obtained by thermodilution with impedance cardiography was 0.79 and the mean difference was 1.29 +/- 16.9 (SD)% during induction of anesthesia. During the operation, r was 0.83 and the mean difference was -14.6 +/- 18.7%. The measurement by impedance cardiography could be carried out through the operation except when electro-cautery was used. Base impedance level before CPB was significantly lower as compared with that after CPB. There was a negative correlation between the base impedance level and central venous pressure (CVP). No patients showed any signs suggesting lung edema and all the values of CVP, pulmonary artery pressure and blood gas analysis were within normal ranges. From the result of this study, it was concluded that cardiac output monitoring by impedance cardiography was useful in cardiac surgery, but further detailed examinations will be necessary on the relationship between the numerical values of base impedance and the clinical state of the patients. PMID:2362347
Directory of Open Access Journals (Sweden)
Rusalin Lucian R. Păun
2008-05-01
Full Text Available This paper propose a new control technique forsingle – phase AC – AC converters used for a on-line UPSwith a good dynamic response, a reduced-partscomponents, a good output characteristic, a good powerfactorcorrection(PFC. This converter no needs anisolation transformer. A power factor correction rectifierand an inverter with the proposed control scheme has beendesigned and simulated using Caspoc2007, validating theconcept.
Analyzing Impedance Spectroscopy Results
Institute of Scientific and Technical Information of China (English)
Yoed Tsur; Sioma Baltianski
2006-01-01
In this contribution we briefly discuss several analysis techniques for impedance spectroscopy experiments. A number of different approaches, which differ even by the definition of the problem, are used in the literature. Some aimed towards finding an equivalent circuit. Others aimed towards finding directly dielectric properties of the material under an assumed model. Others towards finding distribution of relaxation times, either parametric or point-by point. No matter what the approach is, this will always be an ill-posed problem in the sense that there exist a large number of possible solutions that solve the problem (mathematically) equally well. Therefore some a-priori knowledge about the system must be used. In addition, we should remember that the ultimate goal is to get physical insight about the system.
Energy Technology Data Exchange (ETDEWEB)
RoyChaudhuri, C. [Department of Electronics and Telecommunication Engineering, Bengal Engineering and Science University, Shibpur, Botanic Garden, Howrah 711103 (India); Jana, M.; Bandopadhyay, N.R. [School of Materials Science and Engineering, Bengal Engineering and Science University, Shibpur, Botanic Garden, Howrah 711103 (India)
2010-09-15
In this paper, a simple and convenient method based on impedance measurement has been proposed for the first time to evaluate the average porosity, pore radius, and internal surface area of macroporous silicon structure fabricated by electrochemical method. The porosity and the average pore radius have been obtained by developing a geometrical model and applying the generalized effective medium approximation theory to the dc and ac impedance measurement of both unoxidized and thermally oxidized macroporous silicon. The internal surface area per unit volume is then computed from the porosity and the pore radius using the same model. The method has been applied to a wide range of porosity from 30 to 58% fabricated on p-type <100> silicon with a resistivity of 10-20 {omega} cm. Experimental verification of porosity, mean pore radius, and internal surface area have been performed by standard gravimetric technique and by top-view and cross-section SEM imaging, respectively. A typical mean pore radius, porosity, and internal surface area of a macroporous silicon sample has been obtained to be 1.52 {mu}m, 54.2%, and 3565.7 cm{sup 2}/cm{sup 3}, respectively, from the impedance measurement and 1.5 {mu}m, 55%, and 3666.7 cm{sup 2}/cm{sup 3} from SEM and gravimetric analysis which shows that the results are within 2% of the values obtained by conventional methods. The advantages of this method over the other recently reported techniques for similar characterization have been discussed. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Institute of Scientific and Technical Information of China (English)
廖瑞金; 谭坚文; 王华; 曾德平; 李龙; 强生泽
2012-01-01
High intensity focused ultrasound transducer （HIFU） is a key part of HIFU therapeutic system, and its electrical impedance characteristics determine the important system parameters and transducer performance. It is difficult to realize online measurement by adopting current impedance analyzer and frequency domain measurement method. Consequently, we studied the time-domain measurement method for electrical impedance of high intensity focused ultrasound transducer based on impulse response. Firstly, the principle of measurement was theoretically analyzed and verified through simulation. Then, the measurement platform was experimentally established, and the measurement results of impedance analyzer and impulse response method were compared. Finally, the factors affecting the measurement result were analyzed. The results show that, the impulse response measurement method can obtain good measurement accuracy after current sample resistance correcting and wavelet denoising; the measurement method is cost-effective and convenient for integrating in equipment to realize online measurement. This measurement method also provides an effective means of researching electrical impedance characteristic of high intensity focused ultrasound transducer.%高强度聚焦超声（HIFU）换能器是HIFU治疗系统的关键部件,其电阻抗特性是决定各系统参数和换能器工作特性的重要参数。目前采用的阻抗分析仪和频域测量方法成本较高,且难以实现在线测量。为此,对基于脉冲响应的超声换能器电阻抗时域测量方法进行了研究,对测量原理进行了理论分析和仿真验证,并组建了脉冲响应测量实验平台,通过实际测量,比较了脉冲响应法和阻抗分析仪的测量结果,分析了影响测量结果的因素。研究结果表明：在通过电流取样电阻校正和小波去噪后,基于脉冲响应的电阻抗测量方法能取得较高的测量准确度,且测量成本低,可
Development on electromagnetic impedance function modeling and its estimation
Energy Technology Data Exchange (ETDEWEB)
Sutarno, D., E-mail: Sutarno@fi.itb.ac.id [Earth Physics and Complex System Division Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung (Indonesia)
2015-09-30
Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim at reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near-, transition
Institute of Scientific and Technical Information of China (English)
张胜凯; 黄文娟; 韩高峰
2012-01-01
To improve the utilization of branch roads and reduce the traffic pressure on arterial roads, the optimization approach of one-way traffic organization is proposed from the view of reducing network impedance and improving traffic efficiency. The bievel programming model is developed with the objective of minimizing network impedance and travel time. The minimum objectixie value of the upper model is obtained by optimizing one-way traffic, and the lower one adopts the capacity limitation-incremental loading method to distribute traffic flow. Through establishing virtual road network, the effectiveness of one-way traffic organization is proved by comparing the network impedance and travel time before and after optimization.%为提高支路的利用率，以降低主干道的交通压力，从降低路网阻抗及提高交通效率的角度出发，提出单向交通组织的优化方法。建立以路网阻抗及出行时间最小化为目标的双层优化模型，其中上层模型通过优化支路的单向交通组织方案使得目标值达到最小，下层模型按照容量限制——增量加栽方法进行交通量的重分配。通过建立虚拟路网，类比分析单向交通组织优化前后的路网阻抗及出行时间，验证单向交通组织的优化效果。
Institute of Scientific and Technical Information of China (English)
李刚
2015-01-01
We presented a dual mode circular waveguide filter design method based on impedance inverter. The coupling between the cavity and the same cavity degenerate mode were equivalent to the impedance inverter. By using full wave simulation to determine the coupling structure size step by step ,the time consuming optimization was avoided. Finally,the effectiveness and accuracy of the proposed method were verified by a design example of a dual mode circular waveguide filter.%提出一种基于阻抗变换器的双模圆波导滤波器设计方法,将腔体之间的耦合机构和同一腔体简并模式之间的耦合机构用阻抗变换器模型等效,采用全波仿真软件逐级确定耦合结构和调谐结构尺寸的仿真策略,避免耗时的全波仿真优化,并通过一个双模圆波导滤波器的设计实例验证该方法的有效性和准确性.
Impedance Spectroscopy applied to the study of high dilutions of Lycopodium clavatum
Directory of Open Access Journals (Sweden)
Claudia Takano
2011-09-01
Full Text Available Introduction: The Impedance spectroscopy [1] is a technique mainly used to characterize the electrical behavior of solids or liquids samples. This particular technique involves placing the sample of material under investigation between two electrodes (capacitor plates, applying an AC voltage and observing the resulting response across the spectrum of impedance by plotting the real part (ZÃ¢â‚¬â„¢ as a function of the imaginary part (ZÃ¢â‚¬Â of the impedance. Alternatively, graphs of either the real or the imaginary parts of the impedance can be constructed as a function of the applied voltage frequency. Comparative measurements previously carried out by Miranda et al [2]. have demonstrated clear differences between the impedance values of high dilutions of lithium chloride (LiCl and the corresponding reference water samples (water which has undergone the same dinamization procedures but without the salt. In this paper the results obtained by applying the spectroscopy of impedance technique in high dilutions of Lycopodium clavatum - Lyc (from 15cH to 30 cH, in comparison to the reference waters, will be presented and discussed. Aims: The objective of this work is to measure the impedance components of both high dilutions of Lycopodium clavatum and reference water samples in the frequency range of 100Hz to 13Mhz, using a successful protocol of sample preparation which has already been used before2. Details of the experimental set-up can be found elsewhere[3]. Methodology: Thirty samples of Lyc solutions and thirty reference water samples were produced using the same preparation and measuring protocol. Both groups of liquid samples were measured for dynamizations ranging from 1cH to 30cH, in accordance to the Hahnemanian dynamization method and following the practice suggested by the Brazilian Homeopathic Pharmacopeia. The Lyc solutions were specifically compared to the reference water samples in the potencies of 15cH, 18c
A Multisection Broadband Impedance Transforming Branch-Line Hybrid
Kumar, S; Danshin, T
1995-01-01
Measurements and design equations for a two section impedance transforming hybrid suitable for MMIC applications and a new method of synthesis for multisection branch-line hybrids are reported. The synthesis method allows the response to be specified either of Butterworth or Chebyshev type. Both symmetric (with equal input and output impedances) and non-symmetric (impedance transforming) designs are feasible. Starting from a given number of sections, type of response, and impedance transformation ratio and for a specified midband coupling, power division ratio, isolation or directivity ripple bandwidth, the set of constants needed for the evaluation of the reflection coefficient response is first calculated. The latter is used to define a driving point impedance of the circuit, synthesize it and obtain the branch line immittances with the use of the concept of double length unit elements (DLUE). The experimental results obtained with microstrip hybrids constructed to test the validity of the brute force optim...
2016-01-01
This book aims to cover different aspects of Bias Temperature Instability (BTI). BTI remains as an important reliability concern for CMOS transistors and circuits. Development of BTI resilient technology relies on utilizing artefact-free stress and measurement methods and suitable physics-based models for accurate determination of degradation at end-of-life, and understanding the gate insulator process impact on BTI. This book discusses different ultra-fast characterization techniques for recovery artefact free BTI measurements. It also covers different direct measurements techniques to access pre-existing and newly generated gate insulator traps responsible for BTI. The book provides a consistent physical framework for NBTI and PBTI respectively for p- and n- channel MOSFETs, consisting of trap generation and trapping. A physics-based compact model is presented to estimate measured BTI degradation in planar Si MOSFETs having differently processed SiON and HKMG gate insulators, in planar SiGe MOSFETs and also...
Modern Trends in Imaging XI: Impedance Measurements in the Biomedical Sciences
Directory of Open Access Journals (Sweden)
Frederick D. Coffman
2012-01-01
Full Text Available Biological organisms and their component organs, tissues and cells have unique electrical impedance properties. Impedance properties often change with changes in structure, composition, and metabolism, and can be indicative of the onset and progression of disease states. Over the past 100 years, instruments and analytical methods have been developed to measure the impedance properties of biological specimens and to utilize these measurements in both clinical and basic science settings. This chapter will review the applications of impedance measurements in the biomedical sciences, from whole body analysis to impedance measurements of single cells and cell monolayers, and how cellular impedance measuring instruments can now be used in high throughput screening applications.
Simplest Analysis Method of AC Circuit%交流电路的一种简便分析方法
Institute of Scientific and Technical Information of China (English)
施尚英; 黄世瑜
2012-01-01
The current and voltage in exchange circuit satisfies Ohm’s law in effective value.,current phase appears ahead of time or lag behind according to different load of current.The simplest method adopted by the author is vector analysis law,which not only applies to series-parallel circuit,also to all circuits of exchange electric.%交流电路中电流与电压的关系在有效值上满足欧姆定律,根据负载的性质不同,相位上存在一个超前与滞后的问题,最简单最精确的分析方法就是矢量分析法,这种方法不仅适用于简单的串并联电路,也适用于交流电的所有电路,所以笔者在这些电路中提取相同的矢量分析法.
Chiozzi, Gianluca; Šekoranja, Matej
2013-02-01
ALMA Common Software (ACS) provides a software infrastructure common to all ALMA partners and consists of a documented collection of common patterns and components which implement those patterns. The heart of ACS is based on a distributed Component-Container model, with ACS Components implemented as CORBA objects in any of the supported programming languages. ACS provides common CORBA-based services such as logging, error and alarm management, configuration database and lifecycle management. Although designed for ALMA, ACS can and is being used in other control systems and distributed software projects, since it implements proven design patterns using state of the art, reliable technology. It also allows, through the use of well-known standard constructs and components, that other team members whom are not authors of ACS easily understand the architecture of software modules, making maintenance affordable even on a very large project.
Yin, Cheng; Cai, Jinjun; Gao, Lingfei; Yin, Jingya; Zhou, Jicheng
2016-03-15
A new microwave catalytic oxidation process based on two kinds of catalysts, the commercially available activated carbon (AC) and Mn2O3 nanoparticle modified AC (Mn2O3/AC), was reported for the degradation of 4-nitrophenol (4-NP) without adding any oxidant. Effects of microwave power, catalyst dosage, irradiation time, and initial concentration for the degradation efficiency were studied. Results indicated that catalyst of Mn2O3/AC showed much higher catalytic activity than pure AC and Mn2O3 particles. Significantly, 4-NP degradation efficiency reached 99.6%, corresponding to 93.5% TOC removal under optimal conditions with microwave power of 400W, Mn2O3/AC dosage of 2g, reaction time of 5min, and initial concentration of 100mg/L. Hydroxyl radicals (OH) generated during catalytic reaction is the main oxidant, and O2 can not effectively improve removal rate. We proposed the microwave 'photoelectric effect' to interpret the generation of OH in view that microwave irradiation can directly excite the catalyst to produce electron-hole pairs and then transform H2O into OH on the surface of catalyst in solution. The obtained kinetic equation for microwave catalytic oxidation degradation of 4-NP was in line with pseudo-first-order kinetic model, that is, apparent rate constant increased as microwave power density increase.
Yoo, Hyun Deog; Jang, Jong Hyun; Ryu, Ji Heon; Park, Yuwon; Oh, Seung M.
2014-12-01
Electrochemical impedance analysis is performed to predict the rate capability of two commercial activated carbon electrodes (RP20 and MSP20) for electric double-layer capacitor. To this end, ac impedance data are fitted with an equivalent circuit that comprises ohmic resistance and impedance of intra-particle pores. To characterize the latter, ionic accessibility into intra-particle pores is profiled by using the fitted impedance parameters, and the profiles are transformed into utilizable capacitance plots as a function of charge-discharge rate. The rate capability that is predicted from the impedance analysis is well-matched with that observed from a charge-discharge rate test. It is found that rate capability is determined by ionic accessibility as well as ohmic voltage drop. A lower value in ionic accessibility for MSP20 is attributed to smaller pore diameter, longer length, and higher degree of complexity in pore structure.
Institute of Scientific and Technical Information of China (English)
王多君; 李和平; 刘丛强; 易丽; 丁东业; 苏根利; 张卫刚
2002-01-01
An electrical conductivity measurement system under high-pressure conditions with a multi-anvil high-pressure apparatus by an ac complex impedance method was set up. With this system, we have successfully measured the electrical conductivity of synthetic quartz under pressure up to approximately 1.0 GPa in the temperature range 661-987K. The values of electrical conductivity decrease with the increasing pressure and increase with the increasing temperature. The activation enthalpies for the α-quartz crystals are 1.10-1.28eV. The electrical conductivity of α-quartz is ionic, with Na ions moving in channels parallel to the c-axis being the predominant current carrier.
AcsA-AcsB: The core of the cellulose synthase complex from Gluconacetobacter hansenii ATCC23769.
McManus, John B; Deng, Ying; Nagachar, Nivedita; Kao, Teh-hui; Tien, Ming
2016-01-01
The gram-negative bacterium, Gluconacetobacter hansenii, produces cellulose of exceptionally high crystallinity in comparison to the cellulose of higher plants. This bacterial cellulose is synthesized and extruded into the extracellular medium by the cellulose synthase complex (CSC). The catalytic component of this complex is encoded by the gene AcsAB. However, several other genes are known to encode proteins critical to cellulose synthesis and are likely components of the bacterial CSC. We have purified an active heterodimer AcsA-AcsB from G. hansenii ATCC23769 to homogeneity by two different methods. With the purified protein, we have determined how it is post-translationally processed, forming the active heterodimer AcsA-AcsB. Additionally, we have performed steady-state kinetic studies on the AcsA-AcsB complex. Finally through mutagenesis studies, we have explored the roles of the postulated CSC proteins AcsC, AcsD, and CcpAx.
AcsA-AcsB: The core of the cellulose synthase complex from Gluconacetobacter hansenii ATCC23769.
McManus, John B; Deng, Ying; Nagachar, Nivedita; Kao, Teh-hui; Tien, Ming
2016-01-01
The gram-negative bacterium, Gluconacetobacter hansenii, produces cellulose of exceptionally high crystallinity in comparison to the cellulose of higher plants. This bacterial cellulose is synthesized and extruded into the extracellular medium by the cellulose synthase complex (CSC). The catalytic component of this complex is encoded by the gene AcsAB. However, several other genes are known to encode proteins critical to cellulose synthesis and are likely components of the bacterial CSC. We have purified an active heterodimer AcsA-AcsB from G. hansenii ATCC23769 to homogeneity by two different methods. With the purified protein, we have determined how it is post-translationally processed, forming the active heterodimer AcsA-AcsB. Additionally, we have performed steady-state kinetic studies on the AcsA-AcsB complex. Finally through mutagenesis studies, we have explored the roles of the postulated CSC proteins AcsC, AcsD, and CcpAx. PMID:26672449
Bioelectrical Impedance Assessment of Wound Healing
Lukaski, Henry C.; Moore, Micheal
2012-01-01
Objective assessment of wound healing is fundamental to evaluate therapeutic and nutritional interventions and to identify complications. Despite availability of many techniques to monitor wounds, there is a need for a safe, practical, accurate, and effective method. A new method is localized bioelectrical impedance analysis (BIA) that noninvasively provides information describing cellular changes that occur during healing and signal complications to wound healing. This article describes the ...
Acoustic impedances of ear canals measured by impedance tube
DEFF Research Database (Denmark)
Ciric, Dejan; Hammershøi, Dorte
2007-01-01
During hearing sensitivity tests, the sound field is commonly generated by an earphone placed on a subject ear. One of the factors that can affect the sound transmission in the ear is the acoustic impedance of the ear canal. Its importance is related to the contribution of other elements involved...... locations in an impedance tube. The end of the tube representing the measurement plane is placed at the ear canal entrance. Thus, the impedance seen from the entrance inward is measured on 25 subjects. Most subjects participated in the previous measurement of the ratio between the pressures at the open...
Energy Technology Data Exchange (ETDEWEB)
Guillo, J. F.; Lucas, M.; Lucas, R.; Vicente, P. G.
2008-07-01
It has analyzed the impact of distribution losses in the size of solar installations by comparing two methods commonly used in calculating the contribution of solar residential building: f-chart and dynamic simulation. 3 schemes have been analysed in a building 22 houses and 70 occupants located in the IV and climate in the province of Alicante. For comparison between the two methodologies have been used for calculating the same values input from climate data as consumption of ACS. (Author)
Optical approximation in the theory of geometric impedance
Stupakov, G; Zagorodnov, I
2007-01-01
In this paper we introduce an optical approximation into the theory of impedance calculation, one valid in the limit of high frequencies. This approximation neglects diffraction effects in the radiation process, and is conceptually equivalent to the approximation of geometric optics in electromagnetic theory. Using this approximation, we derive equations for the longitudinal impedance for arbitrary offsets, with respect to a reference orbit, of source and test particles. With the help of the Panofsky-Wenzel theorem we also obtain expressions for the transverse impedance (also for arbitrary offsets). We further simplify these expressions for the case of the small offsets that are typical for practical applications. Our final expressions for the impedance, in the general case, involve two dimensional integrals over various cross-sections of the transition. We further demonstrate, for several known axisymmetric examples, how our method is applied to the calculation of impedances. Finally, we discuss the accuracy...
Müller, T. M.; Meinhardt, J.; Raether, F.
2013-01-01
Impedance spectroscopy of many ceramics is a challenge due to their high electrical resistance. Small disturbances can significantly alter the measuring results. In the present paper, it is shown how impedance measurements can be performed in an electromagnetically noisy ac furnace, using consequent Faraday shielding of the sample and the electrical connections. As example, the conductivity data of alumina was measured between room temperature and 1000 °C and compared to literature data. In addition, a correction method for the calculation of permittivity was developed to consider the stray fields in the sample-electrode setup. The distribution of the electrical field was simulated by finite element (FE) methods for different sample geometries and electrode arrangements. The deviations from the behavior of an ideal plate capacitor follow a linear trend and are in the order of 5% to 20% for an experimentally reasonable range of sample thicknesses. To check the theoretical results experimentally, alumina samples of varying thickness were measured. The customary calculation of permittivity leads to a clear trend with sample thickness, whereas the correction from the FE-simulation produces almost constant values of the relative permittivity.
Combined impedance and dielectrophoresis portable device for point-of-care analysis
del Moral Zamora, B.; Colomer-Farrarons, J.; Mir-Llorente, M.; Homs-Corbera, A.; Miribel-Català, P.; Samitier-Martí, J.
2011-05-01
In the 90s, efforts arise in the scientific world to automate and integrate one or several laboratory applications in tinny devices by using microfluidic principles and fabrication technologies used mainly in the microelectronics field. It showed to be a valid method to obtain better reactions efficiency, shorter analysis times, and lower reagents consumption over existing analytical techniques. Traditionally, these fluidic microsystems able to realize laboratory essays are known as Lab-On-a-Chip (LOC) devices. The capability to transport cells, bacteria or biomolecules in an aqueous medium has significant potential for these microdevices, also known as micro-Total-Analysis Systems (uTAS) when their application is of analytical nature. In particular, the technique of dielectrophoresis (DEP) opened the possibility to manipulate, actuate or transport such biological particles being of great potential in medical diagnostics, environmental control or food processing. This technique consists on applying amplitude and frequency controlled AC signal to a given microsystem in order to manipulate or sort cells. Furthermore, the combination of this technique with electrical impedance measurements, at a single or multiple frequencies, is of great importance to achieve novel reliable diagnostic devices. This is because the sorting and manipulating mechanism can be easily combined with a fully characterizing method able to discriminate cells. The paper is focused in the electronics design of the quadrature DEP generator and the four-electrode impedance measurement modules. These together with the lab-on-a-chip device define a full conception of an envisaged Point-of-Care (POC) device.
Modifying the acoustic impedance of polyurea-based composites
Nantasetphong, Wiroj; Amirkhizi, Alireza V.; Jia, Zhanzhan; Nemat-Nasser, Sia
2013-04-01
Acoustic impedance is a material property that depends on mass density and acoustic wave speed. An impedance mismatch between two media leads to the partial reflection of an acoustic wave sent from one medium to another. Active sonar is one example of a useful application of this phenomenon, where reflected and scattered acoustic waves enable the detection of objects. If the impedance of an object is matched to that of the surrounding medium, however, the object may be hidden from observation (at least directly) by sonar. In this study, polyurea composites are developed to facilitate such impedance matching. Polyurea is used due to its excellent blast-mitigating properties, easy casting, corrosion protection, abrasion resistance, and various uses in current military technology. Since pure polyurea has impedance higher than that of water (the current medium of interest), low mass density phenolic microballoon particles are added to create composite materials with reduced effective impedances. The volume fraction of particles is varied to study the effect of filler quantity on the acoustic impedance of the resulting composite. The composites are experimentally characterized via ultrasonic measurements. Computational models based on the method of dilute-randomly-distributed inclusions are developed and compared with the experimental results. These experiments and models will facilitate the design of new elastomeric composites with desirable acoustic impedances.
Morris, Graham P.
2013-12-17
Fully automated and computer assisted heuristic data analysis approaches have been applied to a series of AC voltammetric experiments undertaken on the [Fe(CN)6]3-/4- process at a glassy carbon electrode in 3 M KCl aqueous electrolyte. The recovered parameters in all forms of data analysis encompass E0 (reversible potential), k0 (heterogeneous charge transfer rate constant at E0), α (charge transfer coefficient), Ru (uncompensated resistance), and Cdl (double layer capacitance). The automated method of analysis employed time domain optimization and Bayesian statistics. This and all other methods assumed the Butler-Volmer model applies for electron transfer kinetics, planar diffusion for mass transport, Ohm\\'s Law for Ru, and a potential-independent Cdl model. Heuristic approaches utilize combinations of Fourier Transform filtering, sensitivity analysis, and simplex-based forms of optimization applied to resolved AC harmonics and rely on experimenter experience to assist in experiment-theory comparisons. Remarkable consistency of parameter evaluation was achieved, although the fully automated time domain method provided consistently higher α values than those based on frequency domain data analysis. The origin of this difference is that the implemented fully automated method requires a perfect model for the double layer capacitance. In contrast, the importance of imperfections in the double layer model is minimized when analysis is performed in the frequency domain. Substantial variation in k0 values was found by analysis of the 10 data sets for this highly surface-sensitive pathologically variable [Fe(CN) 6]3-/4- process, but remarkably, all fit the quasi-reversible model satisfactorily. © 2013 American Chemical Society.
Deurenberg, P.R.M.; Deurenberg-Yap, M.; Schouten, F.J.M.
2002-01-01
Methods: Anthropometric parameters were measured in addition to impedance (100 kHz) of the total body, arms and legs. Impedance indexes were calculated as height2/impedance. Arm length (span) and leg length (sitting height), wrist and knee width were measured from which body build indices were calcu
Boukamp, Bernard A.
1993-01-01
A method is presented for executing the Kramers-Kronig transforms of electrochemical impedance data on a computer. Attention is paid to the extrapolation techniques for impedance data with a limited frequency range. It is shown that impedance spectra of systems with blocking electrodes, exhibiting a
Electrical Impedance of Acupuncture Meridians: The Relevance of Subcutaneous Collagenous Bands
Ahn, Andrew C.; Min Park; Shaw, Jessica R; McManus, Claire A.; Kaptchuk, Ted J.; Langevin, Helene M.
2010-01-01
Background: The scientific basis for acupuncture meridians is unknown. Past studies have suggested that acupuncture meridians are physiologically characterized by low electrical impedance and anatomically associated with connective tissue planes. We are interested in seeing whether acupuncture meridians are associated with lower electrical impedance and whether ultrasound-derived measures – specifically echogenic collagenous bands - can account for these impedance differences. Methods/Results...
DC-Modulated PFC Buck-Type AC/AC Converter for Light Dimming
Institute of Scientific and Technical Information of China (English)
罗方林; 叶虹
2007-01-01
Dimmers are very widely applied in theatres, cinemas, dancing-parties, auditoriums and signal systems. They are usually supplied by single-stage AC/AC converters in the past with voltage regulation technique with the disadvantages of high total harmonic distortion, low power factor and poor power transfer efficiency. This paper introduces a novel method-DC-modulation that implements DC/DC conversion technology into AC/AC converters. The DC-modulated single-stage PFC AC/AC converters effectively improved the power factor up to 0.999 and the power transfer efficiency up to 97.8 %. The experimental results verified our design and calculation. This technique will be widely used in light dimming and other industrial applications.
International Nuclear Information System (INIS)
An ac power supply system includes a rectifier fed by a normal ac supply, and an inverter connected to the rectifier by a dc link, the inverter being effective to invert the dc output of the receiver at a required frequency to provide an ac output. A dc backup power supply of lower voltage than the normal dc output of the rectifier is connected across the dc link such that the ac output of the rectifier is derived from the backup supply if the voltage of the output of the inverter falls below that of the backup supply. The dc backup power may be derived from a backup ac supply. Use in pumping coolant in nuclear reactor is envisaged. (author)
Directory of Open Access Journals (Sweden)
Alka Dohare
2014-02-01
Full Text Available Along with the increase market of the transgenic crops, the demand for testing GMOs and for certifying non-GMO foodstuffs has increased dramatically. Within the arena of expanding techniques for identification and quantification of transgenic crops, two major approaches for detecting GMOs are still applicable on large scale, namely ELISA based protein detection and PCR based gene identification. In present study, ELISA techniques was adopted to identify the specific Cry1Ac and Cry2Ab proteins in some transgenic cotton plants seed samples viz., Gujarat cotton hybrid – 6 (BG II, Gujarat cotton hybrid – 8 (BG II and Gujarat cotton hybrid – 10 (BG II from the Gujarat state of India. The study reveals the presence of both Cry1Ac and Cry2Ab proteins in the transgenic seed samples and also demonstrated that the technique of ELISA for identification of Cry1Ac and Cry2Ab proteins is quite handy and easily adoptable.
A Simplified Algorithm for Impedance Calculation of Arbitrarily Shaped Radiators
Institute of Scientific and Technical Information of China (English)
YANG Jun; SHA Kan; GAN Woon-Seng; YAN Yong-Hong; TIAN Jing
2005-01-01
@@ It is well known that a computationally efficient model for calculation of radiation impedance of an arbitrarily shaped piston has been developed. We simplify the proposed algorithm by using geometric characteristics and intrinsic relationship between the analytic expressions. As an example, the method accuracy is illustrated and the radiation impedance of a right-angled triangular piston is calculated. The numerical results are in good agreement with that obtained directly by the quadruple integral method.
Institute of Scientific and Technical Information of China (English)
李鑫; 方陈; 张沛超; 包海龙
2013-01-01
For common maximum power point tracking (MPPT) control methods, the complexities of the structures and the controlling effects cannot be balanced very well. Aiming at this problem, an argumentation about the application of maximum power transmission theorytransfer?theorem in the PV system is discussed and a solution onfrom the view of impedance adaption is presented. According to the conclusion, a new MPPT control algorithm, which has the ability of rapid self-optimization, was proposed. The simulation model of three-phase grid-connected PV power system is established through MATLAB/Simulink. And the experiment is implemented under the circumstances such as? fast changes of external environments and load fluctuation. Comparing the improved control method with some classic ones, the results indicate that the tracking effect of proposed improved impedance adaption algorithm is better.%针对光伏发电系统最大功率点跟踪控制中结构复杂度与控制效果难以兼得的问题,文章从阻抗适配角度论证了最大功率传输理论应用于光伏系统控制的正确性,并提出一种具备快速自寻优能力的光伏系统最大功率点跟踪控制方法.通过Matlab仿真并与常见最大功率点跟踪控制方法相比较,文章所提出的算法具有更好的跟踪效果.
IMPEDANCE CHARACTERISTICS OF POLYFURAN FILMS
Institute of Scientific and Technical Information of China (English)
Liang Li; Xiao-bo Wan; Gi Xue
2002-01-01
Electrochemical impedance spectroscopy (EIS) was first used for the characterization of polyfuran (PFu) films that had been formed electrochemically on an Au electrode. The polyfuran was measured in high oxidation state, intermediate oxidation state and reduction state, respectively. As the oxidation level is increased, the ionic conductivity of PFu/BF4-increases. And impedance studies on PFu show that the anion BF4- appears to be mobile with a high diffusion coefficient of approximately 10-8 cm2 @ s-1.
Detection of irradiated potatoes by impedance measurements
International Nuclear Information System (INIS)
The impedance ratio at 5kHz to 50kHz (Z6K/Z50K) determined at 22degC at an apical region of potato tuber which was pre-incubated at 22degC for 3 days or longer resulted in the best detection of radian treatment. Irradiated potatoes of 10 cultivars could be detected with this method, and potatoes 'Danshaku' commercially irradiated at Shihoro could be distinguished from unirradiated 'Danshaku'. (author)
Applications of Nonlinear Electrochemical Impedance Spectroscopy (NLEIS)
Adler, S. B.
2013-08-31
This paper reviews the use of nonlinear electrochemical impedance spectroscopy (NLEIS) in the analysis of SOFC electrode reactions. By combining EIS and NLEIS, as well as other independent information about an electrode material, it becomes possible to establish quantitative links between electrochemical kinetics and materials properties, even when systems are unstable with time. After a brief review of the method, this paper summarizes recent results analyzing the effects of Sr segregation in thin-film LSC electrodes. © The Electrochemical Society.
Impedance spectroscopy and investigation of conduction mechanism in BaMnO{sub 3} nanorods
Energy Technology Data Exchange (ETDEWEB)
Hayat, Khizar [Nanostructured Materials and Devices Group, Department of Chemicals and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad 45650 (Pakistan); Rafiq, M.A., E-mail: fac221@pieas.edu.p [Nanostructured Materials and Devices Group, Department of Chemicals and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad 45650 (Pakistan); Durrani, S.K. [Material Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad 45650 (Pakistan); Hasan, M.M. [Nanostructured Materials and Devices Group, Department of Chemicals and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad 45650 (Pakistan)
2011-02-01
BaMnO{sub 3} nanorods were synthesized at 200 {sup o}C and atmospheric pressure using the composite-hydroxide mediated method. X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy were used to investigate the structure, size, morphology, phase purity and elemental composition of BaMnO{sub 3} nanorods. Electrical characterization of BaMnO{sub 3} pellet was performed at 300-400 K and in the frequency range 200 Hz-2 MHz. Temperature dependence of AC conductivity suggests that the BaMnO{sub 3} pellet behaves as a semiconducting material and conduction across the pellet can be explained by the correlated barrier hopping model. Impedance analysis was performed using the equivalent circuit model (R{sub 1}Q{sub 1}C{sub 1})(R{sub 2}C{sub 2}) and it suggests a single relaxation process in the BaMnO{sub 3} pellet at a particular temperature. The analysis reveals that the BaMnO{sub 3} pellet behaves like an n-type semiconductor material due to the presence of oxygen vacancies and some disorder. Modulus spectroscopy also supports the impedance results.
Tian, Lian; Hunter, Kendall S; Kirby, K Scott; Ivy, D Dunbar; Shandas, Robin
2010-06-01
Pulmonary vascular input impedance better characterizes right ventricular (RV) afterload and disease outcomes in pulmonary hypertension compared to the standard clinical diagnostic, pulmonary vascular resistance (PVR). Early efforts to measure impedance were not routine, involving open-chest measurement. Recently, the use of pulsed-wave (PW) Doppler-measured velocity to non-invasively estimate instantaneous flow has made impedance measurement more practical. One critical concern remains with clinical use: the measurement uncertainty, especially since previous studies only incorporated random error. This study utilized data from a large pediatric patient population to comprehensively examine the systematic and random error contributions to the total impedance uncertainty and determined the least error prone methodology to compute impedance from among four different methods. We found that the systematic error contributes greatly to the total uncertainty and that one of the four methods had significantly smaller propagated uncertainty; however, even when this best method is used, the uncertainty can be large for input impedance at high harmonics and for the characteristic impedance modulus. Finally, we found that uncertainty in impedance between normotensive and hypertensive patient groups displays no significant difference. It is concluded that clinical impedance measurement would be most improved by advancements in instrumentation, and the best computation method is proposed for future clinical use of the input impedance.
International Nuclear Information System (INIS)
Pulmonary vascular input impedance better characterizes right ventricular (RV) afterload and disease outcomes in pulmonary hypertension compared to the standard clinical diagnostic, pulmonary vascular resistance (PVR). Early efforts to measure impedance were not routine, involving open-chest measurement. Recently, the use of pulsed-wave (PW) Doppler-measured velocity to non-invasively estimate instantaneous flow has made impedance measurement more practical. One critical concern remains with clinical use: the measurement uncertainty, especially since previous studies only incorporated random error. This study utilized data from a large pediatric patient population to comprehensively examine the systematic and random error contributions to the total impedance uncertainty and determined the least error prone methodology to compute impedance from among four different methods. We found that the systematic error contributes greatly to the total uncertainty and that one of the four methods had significantly smaller propagated uncertainty; however, even when this best method is used, the uncertainty can be large for input impedance at high harmonics and for the characteristic impedance modulus. Finally, we found that uncertainty in impedance between normotensive and hypertensive patient groups displays no significant difference. It is concluded that clinical impedance measurement would be most improved by advancements in instrumentation, and the best computation method is proposed for future clinical use of the input impedance
AC and Phase Sensing of Nanowires for Biosensing.
Crescentini, Marco; Rossi, Michele; Ashburn, Peter; Lombardini, Marta; Sangiorgi, Enrico; Morgan, Hywel; Tartagni, Marco
2016-04-19
Silicon nanowires are label-free sensors that allow real-time measurements. They are economical and pave the road for point-of-care applications but require complex readout and skilled personnel. We propose a new model and technique for sensing nanowire sensors using alternating currents (AC) to capture both magnitude and phase information from the sensor. This approach combines the advantages of complex impedance spectroscopy with the noise reduction performances of lock-in techniques. Experimental results show how modifications of the sensors with different surface chemistries lead to the same direct-current (DC) response but can be discerned using the AC approach.
Study of AC/RF properties of SRF ingot niobium
Energy Technology Data Exchange (ETDEWEB)
Dhakal, Pashupati; Tsindlekht, Menachem I; Genkin, Valery M; Ciovati, Gianluigi; Myneni, Ganapati Rao
2013-09-01
In an attempt to correlate the performance of superconducting radiofrequency cavities made of niobium with the superconducting properties, we present the results of the magnetization and ac susceptibility of the niobium used in the superconducting radiofrequency cavity fabrication. The samples were subjected to buffer chemical polishing (BCP) surface and high temperature heat treatments, typically applied to the cavities fabrications. The analysis of the results show the different surface and bulk ac conductivity for the samples subjected to BCP and heat treatment. Furthermore, the RF surface impedance is measured on the sample using a TE011 microwave cavity for a comparison to the low frequency measurements.
Impedances and power losses for an off-axis beam
Kurennoy, S S
1996-01-01
A method for calculating coupling impedances and power losses for off-axis beams is developed. It is applied to calculate impedances of small localized discontinuities like holes and slots, as well as the impedance due to a finite resistivity of chamber walls, in homogeneous chambers with an arbitrary shape of the chamber cross section. The approach requires to solve a two-dimensional electrostatic problem, which can be easily done numerically in the general case, while for some particular cases analytical solutions are obtained.
Institute of Scientific and Technical Information of China (English)
柴林燕; 赵舒; 沙洪
2011-01-01
Objective The Hilbert- Huang transformation (HHT) method was introduced to process the bio-impedance gastric motility signals from subjects.Methods Nonlinear and non-stationary original gastric motility series were decomposed into a number of intrinsic mode function (1MF) components by the empirical mode decomposition method (EMD).Hilbert transformation was carried out then and instantaneous frequency was extracted effectively.Gastric motility signal among 0.03-0.06 Hz was reconstructed from the IMF.Results The results suggested that HHT was a new and applicable time series analysis method based on mode decomposition and could extract impedance signal and remove the disturbances such as blood flow and breathing.Conclusion The new adaptive mode decomposition-based signal processing method provides a new method to investigate clinical gastric motility information.%目的 采用HHT时间序列分析方法处理从人体采集到的胃动力信号.方法 通过经验模态分解(EMD)技术将一非线性、非稳态过程的原始胃动力序列分解为一组内在模态函数(IMFs),对每一个IMF进行Hilbert 变换,得到信号的瞬时频率,然后选择与胃动力相关的频率成分,即0.03-0.06 Hz之间的IMF进行重构提取胃动力信号.结果 使用该方法可以有效去除叠加在阻抗胃动力信号中的呼吸和血流等干扰信号,保留胃动力信号的有效频率成分.结论 此方法是一种更具有自适应的、新型的、基于模态分解的时间序列数据处理方法,可以有效地为临床胃动力信息研究提供一种新途径.
Are patents impeding medical care and innovation?
Directory of Open Access Journals (Sweden)
E Richard Gold
2010-01-01
Full Text Available BACKGROUND TO THE DEBATE: Pharmaceutical and medical device manufacturers argue that the current patent system is crucial for stimulating research and development (R&D, leading to new products that improve medical care. The financial return on their investments that is afforded by patent protection, they claim, is an incentive toward innovation and reinvestment into further R&D. But this view has been challenged in recent years. Many commentators argue that patents are stifling biomedical research, for example by preventing researchers from accessing patented materials or methods they need for their studies. Patents have also been blamed for impeding medical care by raising prices of essential medicines, such as antiretroviral drugs, in poor countries. This debate examines whether and how patents are impeding health care and innovation.
Frequency dependent elastic impedance inversion for interstratified dispersive elastic parameters
Zong, Zhaoyun; Yin, Xingyao; Wu, Guochen
2016-08-01
The elastic impedance equation is extended to frequency dependent elastic impedance equation by taking partial derivative to frequency. With this equation as the forward solver, a practical frequency dependent elastic impedance inversion approach is presented to implement the estimation of the interstratified dispersive elastic parameters which makes full use of the frequency information of elastic impedances. Three main steps are included in this approach. Firstly, the elastic Bayesian inversion is implemented for the estimation of elastic impedances from different incident angle. Secondly, with those estimated elastic impedances, their variations are used to estimate P-wave velocity and S-wave velocity. Finally, with the prior elastic impedance and P-wave and S-wave velocity information, the frequency dependent elastic variation with incident angle inversion is presented for the estimation of the interstratified elastic parameters. With this approach, the interstratified elastic parameters rather than the interface information can be estimated, making easier the interpretation of frequency dependent seismic attributes. The model examples illustrate the feasibility and stability of the proposed method in P-wave velocity dispersion and S-wave velocity dispersion estimation. The field data example validates the possibility and efficiency in hydrocarbon indication of the estimated P-wave velocity dispersion and S-wave velocity dispersion.
Motion discrimination of throwing a baseball using forearm electrical impedance
International Nuclear Information System (INIS)
The extroversion or hyperextension of elbow joint cause disorders of elbow joint in throwing a baseball. A method, which is easy handling and to measure motion objectively, can be useful for evaluation of throwing motion. We investigated a possibility of motion discrimination of throwing a baseball using electrical impedance method. The parameters of frequency characteristics (Cole-Cole arc) of forearm electrical impedance were measured during four types of throwing a baseball. Multiple discriminant analysis was used and the independent variables were change ratios of 11 parameters of forearm electrical impedance. As results of 120 data with four types of throwing motion in three subjects, hitting ratio was very high and 95.8%. We can expect to discriminate throwing a baseball using multiple discriminant analysis of impedance parameters.
Motion discrimination of throwing a baseball using forearm electrical impedance
Nakamura, Takao; Kusuhara, Toshimasa; Yamamoto, Yoshitake
2013-04-01
The extroversion or hyperextension of elbow joint cause disorders of elbow joint in throwing a baseball. A method, which is easy handling and to measure motion objectively, can be useful for evaluation of throwing motion. We investigated a possibility of motion discrimination of throwing a baseball using electrical impedance method. The parameters of frequency characteristics (Cole-Cole arc) of forearm electrical impedance were measured during four types of throwing a baseball. Multiple discriminant analysis was used and the independent variables were change ratios of 11 parameters of forearm electrical impedance. As results of 120 data with four types of throwing motion in three subjects, hitting ratio was very high and 95.8%. We can expect to discriminate throwing a baseball using multiple discriminant analysis of impedance parameters.
Directory of Open Access Journals (Sweden)
Adrian DOBRE
2010-03-01
Full Text Available The AC1 wing replaces the old wing of the wind tunnel model AEROTAXI, which has been made at scale 1:9. The new wing is part of CESAR program and improves the aerodynamic characteristics of the old one. The geometry of the whole wing was given by FOI Sweden and position of AC1 wing must coincide with the structure of the AEROTAXI model.
Adrian DOBRE
2010-01-01
The AC1 wing replaces the old wing of the wind tunnel model AEROTAXI, which has been made at scale 1:9. The new wing is part of CESAR program and improves the aerodynamic characteristics of the old one. The geometry of the whole wing was given by FOI Sweden and position of AC1 wing must coincide with the structure of the AEROTAXI model.
Report of the SSC impedance workshop
Energy Technology Data Exchange (ETDEWEB)
NONE
1985-10-28
This workshop focused attention on the transverse, single-bunch instability and the detailed analysis of the broadband impedance which would drive it. Issues discussed included: (1) single bunch stability -- impact of impedance frequency shape, coupled-mode vs. fast blowup regimes, possible stopband structure; (2) numerical estimates of transverse impedance of inner bellows and sliding contact shielded bellows; (3) analytic estimates of pickup and kicker impedance contributions; and (4) feasibility studies of wire and beam measurements of component impedance.
A valveless micro impedance pump driven by electromagnetic actuation
Rinderknecht, Derek; Hickerson, Anna Iwaniec; Gharib, Morteza
2005-01-01
Over the past two decades, a variety of micropumps have been explored for various applications in microfluidics such as control of pico- and nanoliter flows for drug delivery as well as chemical mixing and analysis. We present the fabrication and preliminary experimental studies of flow performance on the micro impedance pump, a previously unexplored method of pumping fluid on the microscale. The micro impedance pump was constructed of a simple thin-walled tube coupled at either end to glass ...
Kraft, R. E.
1999-01-01
Single-degree-of-freedom resonators consisting of honeycomb cells covered by perforated facesheets are widely used as acoustic noise suppression liners in aircraft engine ducts. The acoustic resistance and mass reactance of such liners are known to vary with the intensity of the sound incident upon the panel. Since the pressure drop across a perforated liner facesheet increases quadratically with the flow velocity through the facesheet, this is known as the nonlinear resistance effect. In the past, two different empirical frequency domain models have been used to predict the Sound Pressure Level effect of the incident wave on the perforated liner impedance, one that uses the incident particle velocity in isolated narrowbands, and one that models the particle velocity as the overall velocity. In the absence of grazing flow, neither frequency domain model is entirely accurate in predicting the nonlinear effect that is measured for typical perforated sheets. The time domain model is developed in an attempt to understand and improve the model for the effect of spectral shape and amplitude of multi-frequency incident sound pressure on the liner impedance. A computer code for the time-domain finite difference model is developed and predictions using the models are compared to current frequency-domain models.
Cooperative Frequency Control for Autonomous AC Microgrids
DEFF Research Database (Denmark)
Shafiee, Qobad; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.;
2015-01-01
Distributed secondary control strategies have been recently studied for frequency regulation in droop-based AC Microgrids. Unlike centralized secondary control, the distributed one might fail to provide frequency synchronization and proportional active power sharing simultaneously, due to having...... not require measuring the system frequency as compared to the other presented methods. An ac Microgrid with four sources is used to verify the performance of the proposed control methodology....
Transverse Impedance of LHC Collimators
Métral, E; Assmann, Ralph Wolfgang; Boccardi, A; Bracco, C; Bohl, T; Caspers, Friedhelm; Gasior, M; Jones, O R; Kasinski, K; Kroyer, T; Redaelli, S; Robert-Demolaize, R; Roncarolo, F; Rumolo, G; Salvant, B; Steinhagen, R; Weiler, T; Zimmermann, F
2007-01-01
The transverse impedance in the LHC is expected to be dominated by the numerous collimators, most of which are made of Fibre-Reinforced-Carbon to withstand the impacts of high intensity proton beams in case of failures, and which will be moved very close to the beam, with full gaps of few millimetres, in order to protect surrounding super-conducting equipments. We present an estimate of the transverse resistive-wall impedance of the LHC collimators, the total impedance in the LHC at injection and top energy, the induced coupled-bunch growth rates and tune shifts, and finally the result of the comparison of the theoretical predictions with measurements performed in 2004 and 2006 on a prototype collimator installed in the SPS.
Hybrid-Source Impedance Networks
DEFF Research Database (Denmark)
Li, Ding; Gao, Feng; Loh, Poh Chiang;
2010-01-01
Hybrid-source impedance networks have attracted attention among researchers because of their flexibility in performing buck-boost energy conversion. To date, three distinct types of impedance networks can be summarized for implementing voltage-type inverters with another three types summarized...... for current-type inverters. These impedance networks can in principle be combined into two generic network entities, before multiple of them can further be connected together by applying any of the two proposed generalized cascading concepts. The resulting two-level and three-level inverters implemented using...... the cascaded networks would have a higher output voltage gain and other unique advantages that currently have not been investigated yet. It is anticipated that these advantages would help the formed inverters find applications in photovoltaic and other renewable systems, where a high voltage gain is usually...
Impedances of Laminated Vacuum Chambers
Energy Technology Data Exchange (ETDEWEB)
Burov, A.; Lebedev, V.; /Fermilab
2011-06-22
First publications on impedance of laminated vacuum chambers are related to early 70s: those are of S. C. Snowdon [1] and of A. G. Ruggiero [2]; fifteen years later, a revision paper of R. Gluckstern appeared [3]. All the publications were presented as Fermilab preprints, and there is no surprise in that: the Fermilab Booster has its laminated magnets open to the beam. Being in a reasonable mutual agreement, these publications were all devoted to the longitudinal impedance of round vacuum chambers. The transverse impedance and the flat geometry case were addressed in more recent paper of K. Y. Ng [4]. The latest calculations of A. Macridin et al. [5] revealed some disagreement with Ref. [4]; this fact stimulated us to get our own results on that matter. Longitudinal and transverse impendances are derived for round and flat laminated vacuum chambers. Results of this paper agree with Ref. [5].
Grant, Caroline A; Pham, Trang; Hough, Judith; Riedel, Thomas; Stocker, Christian; Schibler, Andreas
2011-01-01
Introduction Electrical impedance tomography (EIT) has been shown to be able to distinguish both ventilation and perfusion. With adequate filtering the regional distributions of both ventilation and perfusion and their relationships could be analysed. Several methods of separation have been suggested previously, including breath holding, electrocardiograph (ECG) gating and frequency filtering. Many of these methods require interventions inappropriate in a clinical setting. This study ther...
DEFF Research Database (Denmark)
Siwakoti, Yam Prasad; Loh, Poh Chiang; Blaabjerg, Frede;
2014-01-01
This letter introduces a new versatile Y-shaped impedance network for realizing converters that demand a very high-voltage gain, while using a small duty ratio. To achieve that, the proposed network uses a tightly coupled transformer with three windings, whose obtained gain is presently not matched...... by existing networks operated at the same duty ratio. The proposed impedance network also has more degrees of freedom for varying its gain, and hence, more design freedom for meeting requirements demanded from it. This capability has been demonstrated by mathematical derivation, and proven in experiment...
Input impedance characteristics of microstrip structures
Directory of Open Access Journals (Sweden)
A. I. Nazarko
2015-06-01
Full Text Available Introduction. Electromagnetic crystals (EC and EC-inhomogeneities are one of the main directions of microstrip devices development. In the article the input impedance characteristics of EC- and traditional microstrip inhomogeneities and filter based on EC-inhomogeneities are investigated. Transmission coefficient characteristics. Transmission coefficient characteristics of low impedance EC- and traditional inhomogeneities are considered. Characteristics are calculated in the software package Microwave Studio. It is shown that the efficiency of EC-inhomogeneity is much higher. Input impedance characteristics of low impedance inhomogeneities. Dependences of input impedance active and reactive parts of EC- and traditional inhomogeneities are given. Dependences of the active part illustrate significant low impedance transformation of nominal impedance. The conditions of impedance matching of structure and input medium are set. Input impedance characteristics of high impedance inhomogeneities. Input impedance characteristics of high impedance EC- and traditional inhomogeneities are considered. It was shown that the band of transformation by high impedance inhomogeneities is much narrower than one by low impedance inhomogeneities. Characteristics of the reflection coefficient of inhomogeneities are presented. Input impedance characteristics of narrowband filter. The structure of narrowband filter based on the scheme of Fabry-Perot resonator is presented. The structure of the filter is fulfilled by high impedance EC-inhomogeneities as a reflectors. Experimental and theoretical amplitude-frequency characteristics of the filter are presented. Input impedance characteristics of the filter are shown. Conclusions. Input impedance characteristics of the structure allow to analyse its wave properties, especially resonant. EC-inhomogeneity compared with traditional microstrip provide substantially more significant transformation of the the input impedance.
Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes
Ruffo, Riccardo
2009-07-02
The impedance behavior of silicon nanowire electrodes has been investigated to understand the electrochemical process kinetics that influences the performance when used as a high-capacity anode in a lithium ion battery. The ac response was measured by using impedance spectroscopy in equilibrium conditions at different lithium compositions and during several cycles of charge and discharge in a half cell vs. metallic lithium. The impedance analysis shows the contribution of both surface resistance and solid state diffusion through the bulk of the nanowires. The surface process is dominated by a solid electrolyte layer (SEI) consisting of an inner, inorganic insoluble part and several organic compounds at the outer interface, as seen by XPS analysis. The surface resistivity, which seems to be correlated with the Coulombic efficiency of the electrode, grows at very high lithium contents due to an increase in the inorganic SEI thickness. We estimate the diffusion coefficient of about 2 × 10 -10 cm 2/s for lithium diffusion in silicon. A large increase in the electrode impedance was observed at very low lithium compositions, probably due to a different mechanism for lithium diffusion inside the wires. Restricting the discharge voltage to 0.7 V prevents this large impedance and improves the electrode lifetime. Cells cycled between 0.07 and 0.70 V vs. metallic lithium at a current density of 0.84 A/g (C/5) showed good Coulombic efficiency (about 99%) and maintained a capacity of about 2000 mAh/g after 80 cycles. © 2009 American Chemical Society.
Beam coupling impedances of fast transmission-line kickers.
Energy Technology Data Exchange (ETDEWEB)
Kurennoy, S. (Sergey)
2002-01-01
Fast transmission-line kickers contain no ferrite and consist of two long metallic parallel plates supported by insulators inside a beam pipe. A beam is deflected by both the electric and magnetic fields of a TEM wave created by a pulse propagating along the strips in the direction opposite to the beam. Computations of the beam coupling impedances for such structures are difficult because of their length. In the paper, the beam coupling impedances of transmission-line kickers are calculated by combining analytical and numerical methods: the wake potentials computed in short models are extended analytically to obtain the wakes for the long kickers, and then the corresponding beam impedances are derived. At very low frequencies the results are compared with simple analytical expressions for the coupling impedances of striplines in beam position monitors.
Smart mug to measure hand's geometrical mechanical impedance.
Hondori, Hossein Mousavi; Tech, Ang Wei
2011-01-01
A novel device, which looks like a mug, has been proposed for measuring the impedance of human hand. The device is designed to have convenient size and light weight similar to an ordinary coffee mug. It contains a 2-axis inertia sensor to monitor vibration and a small motor to carry an eccentric mass (m=100 gr, r=2 cm, rpm=600). The centrifugal force due to the rotating mass applies a dynamic force to the hand that holds the mug. Correlation of the acceleration signals with the perturbing force gives the geometrical mechanical impedance. Experimental results on a healthy subject shows that impedance is posture dependant while it changes with the direction of the applied perturbing force. For nine postures the geometrical impedance is obtained all of which have elliptical shapes. The method can be used for assessment of spasticity and monitoring stability in patients with stroke or similar problems.
EXPERIMENTAL RESEARCH ON EVALUATING STRUCTURE DAMAGE WITH PIEZOELECTRIC DYNAMIC IMPEDANCE
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
A dynamic impedance-based structural health monitoring technique is introduced. According to the direct and the converse piezoelectric property of piezoelectric materials, the piezoceramic ( PZT ) can be used as an actuator and a sensor synchronously. If damages like cracks, holes, debonding or loose connections are presented in the structure, the physical variations of the structure will cause the mechanical impedance modified. On the basis of introducing the principle and the theory, the experiment and the analysis on some damages of the structure are studied by means of the dynamic impedance technique. On the view of experiment, kinds of structural damages are evaluated by the information of dynamic impedance in order to validate the feasibility of the method.
Energy Technology Data Exchange (ETDEWEB)
Zhou, Xiao Dong; Pederson, Larry R.; Templeton, Jared W.; Stevenson, Jeffry W.
2009-12-09
The aim of this paper is to address three issues in solid oxide fuel cells: (1) cross-validation of the polarization of a single cell measured using both dc and ac approaches, (2) the precise determination of the total areal specific resistance (ASR), and (3) understanding cathode polarization with LSCF cathodes. The ASR of a solid oxide fuel cell is a dynamic property, meaning that it changes with current density. The ASR measured using ac impedance spectroscopy (low frequency interception with real Z´ axis of ac impedance spectrum) matches with that measured from a dc IV sweep (the tangent of dc i-V curve). Due to the dynamic nature of ASR, we found that an ac impedance spectrum measured under open circuit voltage or on a half cell may not represent cathode performance under real operating conditions, particularly at high current density. In this work, the electrode polarization was governed by the cathode activation polarization; the anode contribution was negligible.
一种对机器人阻抗控制中不确定性进行补偿的方法%Method to Compensate Uncertainties in Robot Impedance Control
Institute of Scientific and Technical Information of China (English)
王宇驰; 陈友东; 游玮
2016-01-01
The uncertainties existing in robot models present difficulties to controlling robots precisely. This is especially obvious in robot force control, and limits the usage of robot force control in industry field. Intelligent control, such as fuzzy control and neural network, is an effective method to solve this problem faced by classical control methods. Unsupervised learning network was adopted to compensate the uncertainties existing in robot impedance control online and to improve the performance of force tracking. The effective-ness of the proposed neural algorithm is verified by a simulation.%机器人建模中存在的不确定性,给机器人精确控制带来了困难,在机器人力控制中尤为明显,制约了力控制在实际生产中的应用.采用模糊控制、 神经网络等智能控制方法是解决这些经典控制理论所面临问题的有效手段.文中使用无监督学习的神经网络对不确定性进行在线补偿,提高阻抗控制的力跟踪性能,通过仿真验证了算法的有效性.
Eddy Current Rail Inspection Using AC Bridge Techniques.
Liu, Ze; Koffman, Andrew D; Waltrip, Bryan C; Wang, Yicheng
2013-01-01
AC bridge techniques commonly used for precision impedance measurements have been adapted to develop an eddy current sensor for rail defect detection. By using two detection coils instead of just one as in a conventional sensor, we can balance out the large baseline signals corresponding to a normal rail. We have significantly enhanced the detection sensitivity of the eddy current method by detecting and demodulating the differential signal of the two coils induced by rail defects, using a digital lock-in amplifier algorithm. We have also explored compensating for the lift-off effect of the eddy current sensor due to vibrations by using the summing signal of the detection coils to measure the lift-off distance. The dominant component of the summing signal is a constant resulting from direct coupling from the excitation coil, which can be experimentally determined. The remainder of the summing signal, which decreases as the lift-off distance increases, is induced by the secondary eddy current. This dependence on the lift-off distance is used to calibrate the differential signal, allowing for a more accurate characterization of the defects. Simulated experiments on a sample rail have been performed using a computer controlled X-Y moving table with the X-axis mimicking the train's motion and the Y-axis mimicking the train's vibrational bumping. Experimental results demonstrate the effectiveness of the new detection method. PMID:26401427
The Aberdeen Impedance Imaging System.
Kulkarni, V; Hutchison, J M; Mallard, J R
1989-01-01
The Aberdeen Impedance Imaging System is designed to reconstruct 2 dimensional images of the average distribution of the amplitude and phase of the complex impedance within a 3 dimensional region. The system uses the four electrode technique in a 16 electrode split-array. The system hardware consists of task-orientated electronic modules for: driving a constant current, multiplexing the current drive, demultiplexing peripheral voltages, differential amplification, phase sensitive detection and low-pass filtration, digitisation with a 14 bit analog to digital converter (ADC), and -control logic for the ADC and multiplexors. A BBC microprocessor (Master series), initiates a controlled sequence for the collection of a number of data sets which are averaged and stored on disk. Image reconstruction is by a process of convolution-backprojection similar to the fan-beam reconstruction of computerised tomography and is also known as Equipotential Backprojection. In imaging impedance changes associated with fracture healing the changes may be large enough to allow retrieval of both the amplitude and phase of the complex impedance. Sequential imaging of these changes would necessitate monitoring electronic and electrode drift by imaging an equivalent region of the contralateral limb. Differential images could be retrieved when the image of the normal limb is the image template. Better characterisation of tissues would necessitate a cleaner retrieval of the quadrature signal. PMID:2742979
Small Signal Loudspeaker Impedance Emulator
DEFF Research Database (Denmark)
Iversen, Niels Elkjær; Knott, Arnold
2014-01-01
from driver to driver. Therefore, a loudspeaker emulator capable of adjusting its impedance to that of a given driver is desired for measurement purposes. This paper proposes a loudspeaker emulator circuit for small signals. Simulations and experimental results are compared and show that it is possible...
Investigation of nanocrystalline CdS/Si diode using complex impedance spectroscopy
International Nuclear Information System (INIS)
Highlights: ► CdS/n-Si device was fabricated as a heterostructure. ► AFM was used to examine the structure of CdS/n-Si. ► Complex impedance Z′and Z″were calculated. ► AC conductivity was explained by the power law relation. ► CBH model was used to describe the AC conduction mechanism. -- Abstract: CdS/n-Si device was fabricated via depositing CdS thin film onto pre-cleaned n-silicon substrates. The atomic force microscope was used to examine the crystal size of the deposited films and its roughness. The AC conductivity and the real part of complex impedance Z′as a function of frequency at different temperatures were studied. The AC conductivity dependence of the applied frequency was explained on the basis of the power law relation. The bulk resistance has been calculated at different temperatures from the complex impedance Z″. The temperature dependence of capacitance for CdS/n-Si device at different frequencies was also investigated.
Directory of Open Access Journals (Sweden)
Donald P Bernstein
2010-01-01
Full Text Available Impedance cardiography (ICG is a branch of bioimpedance pimarily concerned with the determination of left ventricular stroke volume (SV. As implemented, using the transthoracic approach, the technique involves applying a current field longitudinally across a segment of thorax by means of a constant magnitude, high frequency, low amplitude alternating current (AC. By Ohm's Law, the voltage difference measured within the current field is proportional to the electrical impedance Z (Ω. Without ventilatory or cardiac activity, Z is known as the transthoracic, static base impedance Z0. Upon ventricular ejection, a characteristic time dependent cardiac-synchronous pulsatile impedance change is obtained, ΔZ(t, which, when placed electrically in parallel with Z0, constitutes the time-variable total transthoracic impedance Z(t. ΔZ(t represents a dual-element composite waveform, which comprises both the radially-oriented volumetric expansion of and axially-directed forward blood flow within both great thoracic arteries. In its majority, however, ΔZ(t is known to primarily emanate from the ascending aorta. Conceptually, commonly implemented methods assume a volumetric origin for the peak systolic upslope of ΔZ(t, (i.e. dZ/dtmax, with the presumed units of Ω·s-1. A recently introduced method assumes the rapid ejection of forward flowing blood in earliest systole causes significant changes in the velocity-induced blood resistivity variation (Δρb(t, Ωcm·s-1, and it is the peak rate of change of the blood resistivity variation dρb(t/dtmax (Ωcm·s-2 that is the origin of dZ/dtmax. As a consequence of dZ/dtmax peaking in the time domain of peak aortic blood acceleration, dv/dtmax (cm·s-2, it is suggested that dZ/dtmax is an ohmic mean acceleration analog (Ω·s-2 and not a mean flow or velocity surrogate as generally assumed. As conceptualized, the normalized value, dZ/dtmax/Z0, is a dimensionless ohmic mean acceleration equivalent (s-2
Theory of the ac spin-valve effect.
Kochan, Denis; Gmitra, Martin; Fabian, Jaroslav
2011-10-21
The spin-valve complex magnetoimpedance of symmetric ferromagnet-normal-metal-ferromagnet junctions is investigated within the drift-diffusion (standard) model of spin injection. The ac magnetoresistance-the real part difference of the impedances of the parallel and antiparallel magnetization configurations-exhibits an overall damped oscillatory behavior, as an interplay of the diffusion and spin relaxation times. In wide junctions the ac magnetoresistance oscillates between positive and negative values, reflecting resonant amplification and depletion of the spin accumulation, while the line shape for thin tunnel junctions is predicted to be purely Lorentzian. The ac spin-valve effect could be a technique to extract spin transport and spin relaxation parameters in the absence of a magnetic field and for a fixed sample size. PMID:22107552
International Nuclear Information System (INIS)
We demonstrate the first practical alternative to the use of phosphoric and sulphuric acid mixtures for the electropolishing of stainless steel. In this paper, efficient electropolishing of type 316 stainless steel is demonstrated in an ionic liquid composed of ethylene glycol (HOCH2CH2OH) and choline chloride (HOC2H4N(CH3)3+Cl-). Linear sweep voltammetry, chronoamperometry, scanning electron microscopy, atomic force microscopy and AC impedance methods were used to investigate the steel dissolution mechanism and the results are compared to polishing done in aqueous acidic solutions. It is shown that the quality of the polish is related to the breakdown of the oxide film and preliminary data suggest that the polishing process may be controlled by the diffusion of chloride ions. The dissolution is different from that found in aqueous acid solutions, and oxide breakdown is shown to be slower, which can lead to pitting at low current densities
Validity of estimating limb muscle volume by bioelectrical impedance.
Miyatani, M; Kanehisa, H; Masuo, Y; Ito, M; Fukunaga, T
2001-07-01
The present study aimed to investigate the validity of estimating muscle volume by bioelectrical impedance analysis. Bioelectrical impedance and series cross-sectional images of the forearm, upper arm, lower leg, and thigh on the right side were determined in 22 healthy young adult men using a specially designed bioelectrical impedance acquisition system and magnetic resonance imaging (MRI) method, respectively. The impedance index (L(2)/Z) for every segment, calculated as the ratio of segment length squared to the impedance, was significantly correlated to the muscle volume measured by MRI, with r = 0.902-0.976 (P estimation was 38.4 cm(3) for the forearm, 40.9 cm(3) for the upper arm, 107.2 cm(3) for the lower leg, and 362.3 cm(3) for the thigh. Moreover, isometric torque developed in elbow flexion or extension and knee flexion or extension was significantly correlated to the L(2)/Z values of the upper arm and thigh, respectively, with correlation coefficients of 0.770-0.937 (P knee flexors or extensors. Thus the present study indicates that bioelectrical impedance analysis may be useful to predict the muscle volume and to investigate possible relations between muscle size and strength capability in a limited segment of the upper and lower limbs.
Damage detection technique by measuring laser-based mechanical impedance
Energy Technology Data Exchange (ETDEWEB)
Lee, Hyeonseok; Sohn, Hoon [Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (Daehak-ro 291, Yuseong-gu, Daejeon 305-701) (Korea, Republic of)
2014-02-18
This study proposes a method for measurement of mechanical impedance using noncontact laser ultrasound. The measurement of mechanical impedance has been of great interest in nondestructive testing (NDT) or structural health monitoring (SHM) since mechanical impedance is sensitive even to small-sized structural defects. Conventional impedance measurements, however, have been based on electromechanical impedance (EMI) using contact-type piezoelectric transducers, which show deteriorated performances induced by the effects of a) Curie temperature limitations, b) electromagnetic interference (EMI), c) bonding layers and etc. This study aims to tackle the limitations of conventional EMI measurement by utilizing laser-based mechanical impedance (LMI) measurement. The LMI response, which is equivalent to a steady-state ultrasound response, is generated by shooting the pulse laser beam to the target structure, and is acquired by measuring the out-of-plane velocity using a laser vibrometer. The formation of the LMI response is observed through the thermo-mechanical finite element analysis. The feasibility of applying the LMI technique for damage detection is experimentally verified using a pipe specimen under high temperature environment.
Optical approximation in the theory of geometric impedance
Stupakov, G.; Bane, K. L. F.; Zagorodnov, I.
2007-05-01
In this paper we introduce an optical approximation into the theory of impedance calculation, one valid in the limit of high frequencies. This approximation neglects diffraction effects in the radiation process, and is conceptually equivalent to the approximation of geometric optics in electromagnetic theory. Using this approximation, we derive equations for the longitudinal impedance for arbitrary offsets, with respect to a reference orbit, of source and test particles. With the help of the Panofsky-Wenzel theorem, we also obtain expressions for the transverse impedance (also for arbitrary offsets). We further simplify these expressions for the case of the small offsets that are typical for practical applications. Our final expressions for the impedance, in the general case, involve two-dimensional integrals over various cross sections of the transition. We further demonstrate, for several known axisymmetric examples, how our method is applied to the calculation of impedances. Finally, we discuss the accuracy of the optical approximation and its relation to the diffraction regime in the theory of impedance.
Acoustic impedance inversion of zero-offset VSP data
Institute of Scientific and Technical Information of China (English)
Wang Jing; Liu Yang; Sun Zhe; Tian Hong; Su Hua; Zhao Qianhua; Liu Yingyu
2009-01-01
Highly precise acoustic impedance inversion is a key technology for pre-drilling prediction by VSP data. In this paper, based on the facts that VSP data has high resolution, high signal to noise ratio, and the downgoing and upgoing waves can be accurately separated, we propose a method of predicting the impedance below the borehole in front of the bit using VSP data. First, the method of nonlinear iterative inversion is adopted to invert for impedance using the VSP corridor stack. Then, by modifying the damping factor in the iteration and using the preconditioned conjugate gradient method to solve the equations, the stability and convergence of the inversion results can be enhanced. The results of theoretical models and actual data demonstrate that the method is effective for pre-drilling prediction using VSP data.
肉果秤锤树花粉活力测定方法%Study on Detection Methods for Pollen Viability of Sinoj ac k ia s ac oc arp a L.Q.Luo
Institute of Scientific and Technical Information of China (English)
伏秦超; 王娟; 张西玉; 刘超; 刘芳
2015-01-01
本研究以离体培养萌发法为参照，从TTC法、I2-KI法、过氧化物酶沉淀法和醋酸洋红法4种方法中筛选出适宜快速测定肉果秤锤树(Sinojackia sarcocarpa L.Q.Luo)花粉活力的方法。结果表明：肉果秤锤树花粉离体培养萌发的最适条件为23℃培养下15%蔗糖、0.01 mg/mL硼酸，萌发率达84.85%；过氧化物酶沉淀法、TTC法、I2-KI法和醋酸洋红法测定的萌发率分别为78.45%、0、100%和37.01%。过氧化物酶沉淀法测定结果与离体培养萌发法的测定结果最接近(p<0.01)，是简单快速测定肉果秤锤树花粉活力的最适方法。本研究筛选出的花粉离体培养萌发条件和花粉活力快速测定方法，可为进一步开展肉果秤锤树育种工作提供理论依据与技术支持。%We firstly investigated the optimum condition of Sinojackia sacocarpa L.Q.Luo's pollen germination under in v itro culture condition, and then recruited four different methods to detect the pollen viability, such as triphenyltetrazolium chloride (TTC), iodine-iodide kalium (I2-KI), peroxide enzyme and acidcarmine method, in comparison with in vitro pollen germination method. Our results showed that a culture medium containing 15%sucrose and 0.01 mg/mL boric acid had the best effect on in vitro pollen germination at 23℃, and the pollen germination rate was up to 84.85%. Furthermore, we found the detection of pollen viability using peroxide enzyme, TTC, I2-KI and acidcarmine method was 78.45%, 0, 100% and 37.01%, respectively; These data suggested that peroxide enzyme method provided a quicker and more convenient means compared to other three methods, because its result was close to true viability ratio and dyeing was fast and clear. This study selected the optional condition for the pollen germination in vitro culture and identified a fast method for detecting the pollen vitality, which should provide the theoretic foundation for breeding work.
Transferring human impedance regulation skills to robots
Ajoudani, Arash
2016-01-01
This book introduces novel thinking and techniques to the control of robotic manipulation. In particular, the concept of teleimpedance control as an alternative method to bilateral force-reflecting teleoperation control for robotic manipulation is introduced. In teleimpedance control, a compound reference command is sent to the slave robot including both the desired motion trajectory and impedance profile, which are then realized by the remote controller. This concept forms a basis for the development of the controllers for a robotic arm, a dual-arm setup, a synergy-driven robotic hand, and a compliant exoskeleton for improved interaction performance.
Development of the impedance void meter
Energy Technology Data Exchange (ETDEWEB)
Chung, Moon Ki; Song, Chul Hwa; Won, Soon Yeon; Kim, Bok Deuk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1994-06-01
An impedance void meter is developed to measure the area-averaged void fraction. Its basic principle is based on the difference in the electrical conductivity between phases. Several methods of measuring void fraction are briefly reviewed and the reason why this type of void meter is chosen to develop is discussed. Basic principle of the measurement is thoroughly described and several design parameters to affect the overall function are discussed in detail. As example of applications is given for vertical air-water flow. It is shown that the current design has good dynamic response as well as very fine spatial resolution. (Author) 47 refs., 37 figs.
Bioelectrical impedance analysis--part I
DEFF Research Database (Denmark)
Kyle, Ursula G; Bosaeus, Ingvar; De Lorenzo, Antonio D;
2004-01-01
The use of bioelectrical impedance analysis (BIA) is widespread both in healthy subjects and patients, but suffers from a lack of standardized method and quality control procedures. BIA allows the determination of the fat-free mass (FFM) and total body water (TBW) in subjects without significant...... of the estimate. The determination of changes in body cell mass (BCM), extra cellular (ECW) and intra cellular water (ICW) requires further research using a valid model that guarantees that ECW changes do not corrupt the ICW. The use of segmental-BIA, multifrequency BIA, or bioelectrical spectroscopy in altered...
Energy Technology Data Exchange (ETDEWEB)
Pyun, Su Il; Moon, S. M.; Orr, S. J.; Kim, D. J.; Lee, W. J.; Jeong, I. J.; Shin, H. C.; Han, J. N.; Lee, M. H.; Lee, S. B. [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1998-01-01
Pitting corrosion of sensitized 316L stainless steel has been investigated as a function of the degree of sensitization in aqueous NaCl solution with various Cl{sup -} ion concentrations ([Cl{sup -}] = 0.005 (177.25 ppm); 0.01 (354.50 ppm); 0.05 (1772.5 ppm); 0.1 (3545 ppm); 0.5 M (17725 ppm)) at room temperature. The squared rod specimens of 316L stainless steel were thermally annealed at 700 C for various durations (0 h : non-sensitized specimen A; 8 h : moderately sensitized specimen B; 96 h : severely sensitized specimen C). The pitting corrosion resistance of the three kinds of specimens was evaluated by the potentio dynamic anodic polarization method, abrading electrode technique and ac{sup -}impedance spectroscopy. The measured potentiostatic decay current transient obtained just after interrupting the abrading action showed that the repassivation rate of the oxide film on the fresh bare surface of the specimen decreased in the order of specimens A, B and C in the early stage of the film formation. From the results of ac{sup -}impedance spectroscopy, the oxide film resistance R{sub ox} and oxide film capacitance C{sub ox} of specimens B and C in value were evaluated to be lower and higher, respectively, than those of specimen A and the repassivation rate and resistance value of the oxide film on the three kinds could be quantitatively calculated. 10 refs., 8 tabs., 31 figs.(author)
Beam Coupling Impedances of Small Discontinuities
Kurennoy, S S
2000-01-01
A general derivation of the beam coupling impedances produced by small discontinuities on the wall of the vacuum chamber of an accelerator is reviewed. A collection of analytical formulas for the impedances of small obstacles is presented.
大容量发电机出口断路器选择%Circuit Breakers Selection Method for Large-capacity AC High-voltage Generator
Institute of Scientific and Technical Information of China (English)
张爽
2011-01-01
针对大容量发电机出口断路器的选择问题,依据GB/T 14824-2008、IEEE Std C37.013-1997和IEC 60909-0-2001中的计算方法,并结合发电机出口断路器型式试验报告的有关数据,以某百万千瓦级发电机组为例进行了比较计算,分析计算结果,提出了对发电机出口短路器短路电流开断能力不能采用百分比而应采用绝对值进行校验.%For selecting large-capacity AC high-voltage generator circuit breakers in a large generator system, comparative calculations are conducted for a million kilowatts rated generator following the standards of GB/T 14824-2008, IEEE Std C37.013-1997 and IEC 60909-0-2001. The calculation results and the test reports of generator circuit breakers are analyzed, and a suggestion is hence offered that absolute value of short-circuit current should be used for examining the short-circuit current breaking capacity of an AC high-voltage generator circuit breaker instead of percentage value.
Impedance technique for measuring dielectrophoretic collection of microbiological particles
Allsopp, D W E; Brown, A P; Betts, W B
1999-01-01
Measurement of the impedance change resulting from the collection of microbiological particles at coplanar electrodes is shown to be an effective and potentially quantitative method of detecting dielectrophoresis. Strong correlations between the frequency-dependent dielectrophoretic collection characteristics measured by impedance change and those observed using an established counting method based on image analysis have been obtained for Escherichia coli. In addition it is shown that the new electrical method can be used to sense dielectrophoretic collection of 19 nm diameter latex beads, particles too small to be resolved by conventional optical detection systems. (author)
Directory of Open Access Journals (Sweden)
Kang Jin-Gu
2008-01-01
Full Text Available Abstract Transition metal oxides have been suggested as innovative, high-energy electrode materials for lithium-ion batteries because their electrochemical conversion reactions can transfer two to six electrons. However, nano-sized transition metal oxides, especially Co3O4, exhibit drastic capacity decay during discharge/charge cycling, which hinders their practical use in lithium-ion batteries. Herein, we prepared nano-sized Co3O4with high crystallinity using a simple citrate-gel method and used electrochemical impedance spectroscopy method to examine the origin for the drastic capacity fading observed in the nano-sized Co3O4anode system. During cycling, AC impedance responses were collected at the first discharged state and at every subsequent tenth discharged state until the 100th cycle. By examining the separable relaxation time of each electrochemical reaction and the goodness-of-fit results, a direct relation between the charge transfer process and cycling performance was clearly observed.
Analysis of AC loss in superconducting power devices calculated from short sample data
Rabbers, J.J.; Haken, ten, Bennie; Kate, ten, F.J.W.
2003-01-01
A method to calculate the AC loss of superconducting power devices from the measured AC loss of a short sample is developed. In coils and cables the magnetic field varies spatially. The position dependent field vector is calculated assuming a homogeneous current distribution. From this field profile and the transport current, the local AC loss is calculated. Integration over the conductor length yields the AC loss of the device. The total AC loss of the device is split up in different compone...
Reducing the SPS Machine Impedance
Collier, Paul; Guinand, R; Jiménez, J M; Rizzo, A; Spinks, Alan; Weiss, K
2002-01-01
The SPS as LHC Injector project has been working for some time to prepare the SPS for its role as final injector for the LHC. This included major work related to injection, acceleration, extraction and beam instrumentation for the LHC beams [1]. Measurements carried out with the high brightness LHC beam showed that a major improvement of the machine impedance would also be necessary [2]. In addition to removing all lepton related components (once LEP operation ended in 2000), the decision was made to shield the vacuum system pumping port cavities. These accidental cavities had been identified as having characteristic frequencies in the 1-1.5GHz range. Since the SPS vacuum system contains roughly 1000 of these cavities, they constitute a major fraction of the machine impedance. As removal of the ports and associated bellows is not possible, transition shields (PPS) had to be designed to insert within the pumping port cavities.
Tapping mode microwave impedance microscopy
Lai, K.
2009-01-01
We report tapping mode microwave impedance imaging based on atomic force microscope platforms. The shielded cantilever probe is critical to localize the tip-sample interaction near the tip apex. The modulated tip-sample impedance can be accurately simulated by the finite-element analysis and the result agrees quantitatively to the experimental data on a series of thin-film dielectric samples. The tapping mode microwave imaging is also superior to the contact mode in that the thermal drift in a long time scale is totally eliminated and an absolute measurement on the dielectric properties is possible. We demonstrated tapping images on working nanodevices, and the data are consistent with the transport results. © 2009 American Institute of Physics.
A spatial impedance controller for robotic manipulation
Fasse, Ernest D.; Broenink, Jan F.
1997-01-01
Mechanical impedance is the dynamic generalization of stiffness, and determines interactive behavior by definition. Although the argument for explicitly controlling impedance is strong, impedance control has had only a modest impact on robotic manipulator control practice. This is due in part to the
Thermal Simulation of AC Electromagnetic Contactor
Institute of Scientific and Technical Information of China (English)
NIUChun-ping; CHENDe-gui; ZHANGJing-shu; LIXing-wen
2005-01-01
Transient magnetic circuit method is adopted to calculate the power loss in winding and shading coil. Based on the analysis of heat transfer process in AC contactor, a thermal model is proposed and the temperature field distribution is simulated with 3-D FEM of ANSYS.Comparison of simulation results with measurements shows that the proposed method is effective.
A new three-dimensional electromechanical impedance model for an embedded dual-PZT transducer
Wang, Dansheng; Li, Zhi; Zhu, Hongping
2016-07-01
In the past twenty years, the electromechanical (EM) impedance technique has been investigated extensively in the mechanical, aviation and civil engineering fields. Many different EM impedance models have been proposed to characterize the interaction between the surface-bonded PZT transducer and the host structure. This paper formulates a new three-dimensional EM impedance model characterizing the interaction between an embedded circle dual-PZT transducer and the host structure based on the effective impedance concept. The proposed model is validated by experimental results from a group of smart cement cubes, in which three circle dual-PZT transducers are embedded respectively. In addition, a new EM impedance measuring method for the dual-PZT transducer is also introduced. In the measuring method, only a common signal generator and an oscilloscope are needed, by which the exciting and receiving voltage signals are obtained respectively. Combined with fast Fourier transform the EM impedance signatures of the dual-PZT transducers are obtained.
Impedance microflow cytometry for viability studies of microorganisms
Di Berardino, Marco; Hebeisen, Monika; Hessler, Thomas; Ziswiler, Adrian; Largiadèr, Stephanie; Schade, Grit
2011-02-01
Impedance-based Coulter counters and its derivatives are widely used cell analysis tools in many laboratories and use normally DC or low frequency AC to perform these electrical analyses. The emergence of micro-fabrication technologies in the last decade, however, provides a new means of measuring electrical properties of cells. Microfluidic approaches combined with impedance spectroscopy measurements in the radio frequency (RF) range increase sensitivity and information content and thus push single cell analyses beyond simple cell counting and sizing applications towards multiparametric cell characterization. Promising results have been shown already in the fields of cell differentiation and blood analysis. Here we emphasize the potential of this technology by presenting new data obtained from viability studies on microorganisms. Impedance measurements of several yeast and bacteria strains performed at frequencies around 10 MHz enable an easy discrimination between dead and viable cells. Moreover, cytotoxic effects of antibiotics and other reagents, as well as cell starvation can also be monitored easily. Control analyses performed with conventional flow cytometers using various fluorescent dyes (propidium iodide, oxonol) indicate a good correlation and further highlight the capability of this device. The label-free approach makes on the one hand the use of usually expensive fluorochromes obsolete, on the other hand practically eliminates laborious sample preparation procedures. Until now, online cell monitoring was limited to the determination of viable biomass, which provides rather poor information of a cell culture. Impedance microflow cytometry, besides other aspects, proposes a simple solution to these limitations and might become an important tool for bioprocess monitoring applications in the biotech industry.
Ke, Xianliang; Zhang, Yuan; Liu, Yan; Wang, Hanzhong
2015-11-27
Baculoviruses are potential vectors of gene therapy for the ability to transfer gene high efficiently into mammalian cells. However, cell membrane proteins which interact with baculoviral glycoproteins have not been identified. In this study, we developed a self-biotinylated AcMNPV bearing biotinylated GP64 glycoproteins. This recombinant virus demonstrated the capability to infect insect cells and to transduct mammalian cells. Using this biotinylated virus, a protein >170Kda which could specifically interact with GP64 proteins was identified from virus transducted BHK-21 cells through cross-linking and streptavidin purification. Our study provides a useful approach for identifying cell membrane proteins that interact with baculovirus surface proteins or proteins involved in virus attachment.
Impedance analysis of an enhanced piezoelectric biosensor
Kim, Gi-Ho
This study investigated the usefulness and characteristics of a five-megahertz quartz crystal resonator oscillating in a thickness-shear mode as a sensor of biological pathogens such as Salmonella typhimurium . An impedance analyzer measured the impedance of the oscillating quartz crystal, which determined all mechanical properties of the oscillating quartz and its immediate environment. In this study, the impedance behavior of the bare crystal was characterized in air and in potassium phosphate buffer solution. The potassium phosphate buffer was a Newtonian liquid. The resonance frequency of the oscillating quartz shifted down about 900 Hz by contacting with the buffer. An immobilized-antibody layer on the quartz surface behaved like a rigid mass when immersed in the buffer solution. The quartz crystal with immobilized antibodies was characterized in various solutions containing antibody- coated paramagnetic microspheres and varying concentrations of Salmonella typhimurium (102 - 108 cells/ml). The Salmonella cells were captured by antibody- coated paramagnetic microspheres, and then these complexes were moved magnetically to the oscillating quartz and were captured by antibodies immobilized on the crystal surface. The response of the crystal was expressed in terms of equivalent circuit parameters. The motional inductance and the motional resistance increased as a function of the concentration of Salmonella. The viscous damping was the main contribution to the resistance and the inductance in a liquid environment. The load resistance was the most effective and sensitive circuit parameter. A magnetic force was a useful method to collect the complexes of Salmonella-microspheres on the crystal surface and enhance the response sensor. In this system, the detection limit, based on resistance monitoring, was about 103 cells/ml.
Daralammouri, Yunis; Ayoub, Khubaib; Badrieh, Najwan; Lauer, Bernward
2016-01-01
Background Impedance cardiography (IC) is a noninvasive modality that utilizes changes in impedance across the thorax to assess hemodynamic parameters, including stroke volume (SV). This study compared aortic valve area (AVA) as assessed by a hybrid approach of transthoracic echocardiography (TTE) and impedance cardiography (IC) to AVA determined at cardiac catheterization using the Gorlin equation. Methods A total of 30 patients with moderate to severe aortic stenosis underwent AVA measureme...
Online grid impedance estimation for single-phase grid-connected systems using PQ variations
DEFF Research Database (Denmark)
Ciobotaru, Mihai; Teodorescu, Remus; Rodriguez, Pedro;
2007-01-01
algorithms are used in order to estimate the value of the grid impedance. The online grid impedance estimation method can be used for compliance with the anti-islanding standard requirements (IEEE1574, IEEE929 and VDE0126) and for adaptive control of the grid-connected converters. The proposed method...
A compact broadband nonsynchronous noncommensurate impedance transformer
DEFF Research Database (Denmark)
Zhurbenko, Vitaliy; Kim, Kseniya; Narenda, Kumar
2012-01-01
Nonsynchronous noncommensurate impedance transformers consist of a combination of high‐ and low‐impedance transmission lines. High‐impedance lines have narrow tracks in strip and microstrip technology, which allows for high flexibility and miniaturization of the layout in comparison to the tradit......Nonsynchronous noncommensurate impedance transformers consist of a combination of high‐ and low‐impedance transmission lines. High‐impedance lines have narrow tracks in strip and microstrip technology, which allows for high flexibility and miniaturization of the layout in comparison...... to the traditional tapered line transformers. This flexibility of the broadband nonsynchronous noncommensurate impedance transformers is experimentally demonstrated in this article allowing the length reduction by almost three times. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 54:1832–1835, 2012; View...
Are active elements necessary in the basilar membrane impedance?
Diependaal, R J; Viergever, M A; de Boer, E
1986-07-01
This article is motivated by the current hypothesis [Kim et al., Psychological, Physiological and Behavioural Studies in Hearing (Delft U. P., The Netherlands, 1980); Neely, Doctoral dissertation, Washington University, St. Louis, MO (1981); de Boer, J. Acoust. Soc. Am. 73, 567-573 (1983a) and 73, 574-576 (1983b)] that it is necessary to include active elements in the basilar membrane (BM) impedance in order to explain recent data on the vibration of the BM [Khanna and Leonard, Science 215, 305-306 (1982); Sellick et al., J. Acoust. Soc. Am. 72, 131-141 (1982); Robles et al., Peripheral Auditory Mechanisms (Springer, New York, 1986)]. In order to test this hypothesis, first, a method which is an inversion of the customary description of cochlear mechanics is described. Instead of computing the BM velocity for a given point impedance of the membrane, we show how to compute the impedance function from a given BM velocity pattern in response to a sinusoidal input at the stapes. This method is then used to study the sensitivity of the recovered impedance to perturbations in the velocity pattern. The simulations used show that the real part of the impedance is extremely sensitive to such perturbations. Therefore, measured velocity patterns are unlikely to resolve the issue of whether active elements should be included. Frequency responses measured at a few points on the membrane are even less likely to do so.
Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy
Zhang, Yanxiang; Chen, Yu; Yan, Mufu; Chen, Fanglin
2015-06-01
Linear electrochemical impedance spectroscopy (EIS), and in particular its representation of distribution of relaxation time (DRT), enables the identification of the number of processes and their nature involved in electrochemical cells. With the advantage of high frequency resolution, DRT has recently drawn increasing attention for applications in solid oxide fuel cells (SOFCs). However, the method of DRT reconstruction is not yet presented clearly in terms of what mathematical treatments and theoretical assumptions have been made. Here we present unambiguously a method to reconstruct DRT function of impedance based on Tikhonov regularization. By using the synthetic impedances and analytic DRT functions of RQ element, generalized finite length Warburg element, and Gerischer element with physical quantities representative to those of SOFC processes, we show that the quality of DRT reconstruction is sensitive to the sampling points per decade (ppd) of frequency from the impedance measurement. The robustness of the DRT reconstruction to resist noise imbedded in impedance data and numerical calculations can be accomplished by optimizing the weighting factor λ according to well defined criterion.
Hirsch, Carl; Smirnoff, Alexander
2007-01-01
Under sex månader våren 2007 har ett samarbete mellan Volvo Lastvagnar och två studenter från KTH, inriktning Integrerad produktutveckling vid institutionen för maskinkonstruktion, pågått i form av ett examensarbete på 20 poäng. Dagens AC-system i Volvos lastbilar avger 20-40 g/år av köldmediet R134a som är en kraftfull växthusgas. Detta sker främst genom diffusion via slangar och tätningsmaterial. Syftet med detta examensarbete är att ta fram förslag på tekniska lösningar på ett nytt AC-syst...
Impedance planimetric description of normal rectoanal motility in humans
DEFF Research Database (Denmark)
Andersen, Inge S; Michelsen, Hanne B; Krogh, Klaus;
2007-01-01
PURPOSE: Manometry and pressure-volume measurements are commonly used to study anorectal physiology. However, the methods are limited by several sources of error. Recently, a new impedance planimetric system has been introduced in a porcine model. It allows simultaneous determination of anorectal...... pressures and multiple rectal luminal cross-sectional areas. This study was designed to study normal human rectoanal motility by means of impedance planimetry with multiple rectal cross-sectional areas and rectal and anal pressure. METHODS: Twelve healthy volunteers (10 females), aged 24 to 53 years, were...... the experiment, the cross-sectional area at all channels showed strong cyclic contractile activity and the anal pressure increased by approximately 100 percent. CONCLUSIONS: The new rectal impedance planimetry system allows highly detailed description of rectoanal motility patterns. It has promise as a new...
AC Zeeman potentials for atom chip-based ultracold atoms
Fancher, Charles; Pyle, Andrew; Ziltz, Austin; Aubin, Seth
2015-05-01
We present experimental and theoretical progress on using the AC Zeeman force produced by microwave magnetic near-fields from an atom chip to manipulate and eventually trap ultracold atoms. These AC Zeeman potentials are inherently spin-dependent and can be used to apply qualitatively different potentials to different spin states simultaneously. Furthermore, AC Zeeman traps are compatible with the large DC magnetic fields necessary for accessing Feshbach resonances. Applications include spin-dependent trapped atom interferometry and experiments in 1D many-body physics. Initial experiments and results are geared towards observing the bipolar detuning-dependent nature of the AC Zeeman force at 6.8 GHz with ultracold 87Rb atoms trapped in the vicinity of an atom chip. Experimental work is also underway towards working with potassium isotopes at frequencies of 1 GHz and below. Theoretical work is focused on atom chip designs for AC Zeeman traps produced by magnetic near-fields, while also incorporating the effect of the related electric near-fields. Electromagnetic simulations of atom chip circuits are used for mapping microwave propagation in on-chip transmission line structures, accounting for the skin effect, and guiding impedance matching.
Increased Ac excision (iae): Arabidopsis thaliana mutations affecting Ac transposition
International Nuclear Information System (INIS)
The maize transposable element Ac is highly active in the heterologous hosts tobacco and tomato, but shows very much reduced levels of activity in Arabidopsis. A mutagenesis experiment was undertaken with the aim of identifying Arabidopsis host factors responsible for the observed low levels of Ac activity. Seed from a line carrying a single copy of the Ac element inserted into the streptomycin phosphotransferase (SPT) reporter fusion, and which displayed typically low levels of Ac activity, were mutagenized using gamma rays. Nineteen mutants displaying high levels of somatic Ac activity, as judged by their highly variegated phenotypes, were isolated after screening the M2 generation on streptomycin-containing medium. The mutations fall into two complementation groups, iae1 and iae2, are unlinked to the SPT::Ac locus and segregate in a Mendelian fashion. The iae1 mutation is recessive and the iae2 mutation is semi-dominant. The iae1 and iae2 mutants show 550- and 70-fold increases, respectively, in the average number of Ac excision sectors per cotyledon. The IAE1 locus maps to chromosome 2, whereas the SPT::Ac reporter maps to chromosome 3. A molecular study of Ac activity in the iae1 mutant confirmed the very high levels of Ac excision predicted using the phenotypic assay, but revealed only low levels of Ac re-insertion. Analyses of germinal transposition in the iae1 mutant demonstrated an average germinal excision frequency of 3% and a frequency of independent Ac re-insertions following germinal excision of 22%. The iae mutants represents a possible means of improving the efficiency of Ac/Ds transposon tagging systems in Arabidopsis, and will enable the dissection of host involvement in Ac transposition and the mechanisms employed for controlling transposable element activity
Synthesis, impedance and dielectric properties of LaBi5Fe2Ti3O18
Indian Academy of Sciences (India)
N V Prasad; G Prasad; T Bhimasankaram; S V Suryanarayana; G S Kumar
2001-10-01
The compound, LaBi5Fe2Ti3O18, is a five-layered material belonging to the family of bismuth layered structure ferroelectromagnetics. D.c. and a.c. conductivity measurements were performed on the samples. Dielectric measurements were also performed on these samples. Combined impedance and modulus plots were used as tools to analyse the sample behaviour as a function of frequency. Cole–Cole plots showed non-Debye relaxation.
Fuzzy modeling of electrical impedance tomography images of the lungs
Directory of Open Access Journals (Sweden)
Harki Tanaka
2008-01-01
Full Text Available OBJECTIVES: Aiming to improve the anatomical resolution of electrical impedance tomography images, we developed a fuzzy model based on electrical impedance tomography's high temporal resolution and on the functional pulmonary signals of perfusion and ventilation. INTRODUCTION: Electrical impedance tomography images carry information about both ventilation and perfusion. However, these images are difficult to interpret because of insufficient anatomical resolution, such that it becomes almost impossible to distinguish the heart from the lungs. METHODS: Electrical impedance tomography data from an experimental animal model were collected during normal ventilation and apnea while an injection of hypertonic saline was administered. The fuzzy model was elaborated in three parts: a modeling of the heart, the pulmonary ventilation map and the pulmonary perfusion map. Image segmentation was performed using a threshold method, and a ventilation/perfusion map was generated. RESULTS: Electrical impedance tomography images treated by the fuzzy model were compared with the hypertonic saline injection method and computed tomography scan images, presenting good results. The average accuracy index was 0.80 when comparing the fuzzy modeled lung maps and the computed tomography scan lung mask. The average ROC curve area comparing a saline injection image and a fuzzy modeled pulmonary perfusion image was 0.77. DISCUSSION: The innovative aspects of our work are the use of temporal information for the delineation of the heart structure and the use of two pulmonary functions for lung structure delineation. However, robustness of the method should be tested for the imaging of abnormal lung conditions. CONCLUSIONS: These results showed the adequacy of the fuzzy approach in treating the anatomical resolution uncertainties in electrical impedance tomography images.
Fuzzy modeling of electrical impedance tomography images of the lungs
Energy Technology Data Exchange (ETDEWEB)
Tanaka, Harki; Ortega, Neli Regina Siqueira; Galizia, Mauricio Stanzione [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Medicina. Medical Informatics; Borges, Joao Batista; Amato, Marcelo Britto Passos [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Medicina. Dept. of Experimental Pneumology]. E-mail: harki_t@yahoo.com
2008-07-01
Objectives: Aiming to improve the anatomical resolution of electrical impedance tomography images, we developed a fuzzy model based on electrical impedance tomography's high temporal resolution and on the functional pulmonary signals of perfusion and ventilation. Introduction: Electrical impedance tomography images carry information about both ventilation and perfusion. However, these images are difficult to interpret because of insufficient anatomical resolution, such that it becomes almost impossible to distinguish the heart from the lungs. Methods: Electrical impedance tomography data from an experimental animal model were collected during normal ventilation and apnoea while an injection of hypertonic saline was administered. The fuzzy model was elaborated in three parts: a modeling of the heart, the pulmonary ventilation map and the pulmonary perfusion map. Image segmentation was performed using a threshold method, and a ventilation/perfusion map was generated. Results: Electrical impedance tomography images treated by the fuzzy model were compared with the hypertonic saline injection method and computed tomography scan images, presenting good results. The average accuracy index was 0.80 when comparing the fuzzy modeled lung maps and the computed tomography scan lung mask. The average ROC curve area comparing a saline injection image and a fuzzy modeled pulmonary perfusion image was 0.77. Discussion: The innovative aspects of our work are the use of temporal information for the delineation of the heart structure and the use of two pulmonary functions for lung structure delineation. However, robustness of the method should be tested for the imaging of abnormal lung conditions. Conclusions: These results showed the adequacy of the fuzzy approach in treating the anatomical resolution uncertainties in electrical impedance tomography images. (author)
AC electric motors control advanced design techniques and applications
Giri, Fouad
2013-01-01
The complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control designmethods to a variety of AC motors. Contributions from over thirty top researchers explain how modern control design methods can be used to achieve tight speed regulation, optimal energetic efficiency, and operation reliability and safety, by considering online state var
Bioelectrical impedance analysis as a laboratory activity: At the interface of physics and the body
Mylott, Elliot; Kutschera, Ellynne; Widenhorn, Ralf
2014-05-01
We present a novel laboratory activity on RC circuits aimed at introductory physics students in life-science majors. The activity teaches principles of RC circuits by connecting ac-circuit concepts to bioelectrical impedance analysis (BIA) using a custom-designed educational BIA device. The activity shows how a BIA device works and how current, voltage, and impedance measurements relate to bioelectrical characteristics of the human body. From this, useful observations can be made including body water, fat-free mass, and body fat percentage. The laboratory is engaging to pre-health and life-science students, as well as engineering students who are given the opportunity to observe electrical components and construction of a commonly used biomedical device. Electrical concepts investigated include alternating current, electrical potential, resistance, capacitance, impedance, frequency, phase shift, device design, and the use of such topics in biomedical analysis.
Virtual Impedance Based Stability Improvement for DC Microgrids with Constant Power Loads
DEFF Research Database (Denmark)
Lu, Xiaonan; Sun, Kai; Huang, Lipei;
2014-01-01
, negative incremental impedance of CPL, proposed stabilizers are considered in the calculation of the impedance. It is demonstrated that with the proposed stabilizers, the instable poles can be moved to the stable region in the frequency domain. Simulation model with three interfacing converters......DC microgrid provides an efficient way to integrate different kinds of renewable energy sources with DC couplings. In this paper, in order to improve the stability of DC microgrids with constant power loads (CPLs), a virtual impedance based method is proposed. The CPLs have inherent instability...... issues induced by negative incremental impedances. This negative impedance makes the system poorly damped and the stability is thereby degraded. To enhance the system stability, virtual impedance based stabilizer comprised of series-connected inductance and resistance is employed. In particular, two...
Observations involving broadband impedance modelling
Energy Technology Data Exchange (ETDEWEB)
Berg, J.S.
1995-08-01
Results for single- and multi-bunch instabilities can be significantly affected by the precise model that is used for the broadband impendance. This paper discusses three aspects of broadband impendance modeling. The first is an observation of the effect that a seemingly minor change in an impedance model has on the single-bunch mode coupling threshold. The second is a successful attempt to construct a model for the high-frequency tails of an r.f cavity. The last is a discussion of requirements for the mathematical form of an impendance which follow from the general properties of impendances.
Impedance-Tunable Transformation Optics: A New Strategy for Refctionless Design of Optical Elements
Cao, Jun; Yan, Shenglin; Sun, Xiaohan
2013-01-01
We propose a new strategy to remove the reections resulted from the finite embedded transformation-optical design by putting forward an impedance-tunable coordinate transformation,on which the functions of impedance coefficients can be derived in the original space without changing the refractive index. Based on the method, two-dimensional (2D) reectionless beam compressors, bends and splitters are designed through tuning the impedance coefficients. The numerical simulations show that the reection can be removed without inserting an antireflective coating. The impedance-tunable coordinate transformation can also be applied to other transformation-optical designs, such as cloaking, lens, antennas, etc.
Daniels, Jonathan S.; Anderson, Erik P.; Lee, Thomas H.; Pourmand, Nader
2009-01-01
Impedance biosensors detect the binding of a target to an immobilized probe by quantifying changes in the impedance of the electrode-electrolyte interface. The interface's I-V relationship is inherently nonlinear, varying with DC bias, and target binding can alter the degree of nonlinearity. We propose and demonstrate a method to simultaneously measure the nonlinearity and conventional small-signal impedance using intermodulation products from a two-tone input. Intermodulation amplitudes accurately reflect the impedance's manually-measured voltage dependence. We demonstrate that changes in nonlinearity can discriminate protein binding. Our measurements suggest that target binding can alter nonlinearity via the voltage dependence of the ionic double layer. PMID:19164024
Determination of soil ionic concentration using impedance spectroscopy
Pandey, Gunjan; Kumar, Ratnesh; Weber, Robert J.
2013-05-01
This paper presents a novel approach to estimate the soil ionic concentration by way of multi-frequency impedance measurements and using the quasi-static dielectric mixing models to infer the various ionic concentrations. In our approach, the permittivity of the soil dielectric mixture is measured using impedance spectroscopy and the results are used as input parameters to dielectric mixing models, combined with the debye-type dielectric relaxation models. We observe that the dielectric mixing models work well for low RF (radio-frequency) range and help in determining the individual ionic concentration in a multi-component soil mixture. Using the fact that the permittivity of a dielectric mixture is proportional to its impedance, we validated our approach by making multi-frequency impedance measurements of a soil mixture at different concentrations of various components. The method provides a good estimate of individual components such as air, water and ions like nitrates. While the paper is written with the perspective of soil constituent concentration determination, the underlying principle of determining individual component concentration using multi-frequency impedance measurement is applicable more generally in areas such as characterizing biological systems like pathogens, quality control of pharmaceuticals etc.
Study of PEM fuel cell performance by electrochemical impedance spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Asghari, Saeed; Mokmeli, Ali; Samavati, Mahrokh [Isfahan Engineering Research Center, 7th kilometer of Imam Khomeini ave., P.O. Box 81395-619, Isfahan (Iran)
2010-09-15
Electrochemical impedance spectroscopy is a suitable and powerful diagnostic testing method for fuel cells because it is non-destructive and provides useful information about fuel cell performance and its components. This paper presents the diagnostic testing results of a 120 W single cell and a 480 W PEM fuel cell short stack by electrochemical impedance spectroscopy. The effects of clamping torque, non-uniform assembly pressure and operating temperature on the single cell impedance spectrum were studied. Optimal clamping torque of the single cell was determined by inspection of variations of high frequency and mass transport resistances with the clamping torque. The results of the electrochemical impedance analysis show that the non-uniform assembly pressure can deteriorate the fuel cell performance by increasing the ohmic resistance and the mass transport limitation. Break-in procedure of the short stack was monitored and it is indicated that the ohmic resistance as well as the charge transfer resistance decrease to specified values as the break-in process proceeds. The effect of output current on the impedance plots of the short stack was also investigated. (author)
AC loss in large-scale superconducting cables
Mulder, G.B.J.
1993-01-01
A review is given of recent work on ac losses, carried out at our institute. The emphasis is on large-scale conductors for fusion applications, such as the `cable-in-conduit¿ prototype conductors to be used for NET. Calculation methods for the ac losses are presented together with some experimental
Spheromak Impedance and Current Amplification
Energy Technology Data Exchange (ETDEWEB)
Fowler, T K; Hua, D D; Stallard, B W
2002-01-31
It is shown that high current amplification can be achieved only by injecting helicity on the timescale for reconnection, {tau}{sub REC}, which determines the effective impedance of the spheromak. An approximate equation for current amplification is: dI{sub TOR}{sup 2}/dt {approx} I{sup 2}/{tau}{sub REC} - I{sub TOR}{sup 2}/{tau}{sub closed} where I is the gun current, I{sub TOR} is the spheromak toroidal current and {tau}{sub CLOSED} is the ohmic decay time of the spheromak. Achieving high current amplification, I{sub TOR} >> I, requires {tau}{sub REC} <<{tau}{sub CLOSED}. For resistive reconnection, this requires reconnection in a cold zone feeding helicity into a hot zone. Here we propose an impedance model based on these ideas in a form that can be implemented in the Corsica-based helicity transport code. The most important feature of the model is the possibility that {tau}{sub REC} actually increases as the spheromak temperature increases, perhaps accounting for the ''voltage sag'' observed in some experiments, and a tendency toward a constant ratio of field to current, B {proportional_to} I, or I{sub TOR} {approx} I. Program implications are discussed.
A Retrofit Technique for Kicker Beam-Coupling Impedance Reduction
Caspers, Friedhelm; Kroyer, T; Timmins, M; Uythoven, J; Kurennoy, S
2004-01-01
The reduction of the impedance of operational ferrite kicker structures may be desirable in order to avoid rebuilding such a device. Often resistively coated ceramic plates or tubes are installed for this purpose but at the expense of available aperture. Ceramic U-shaped profiles with a resistive coating fitting between the ellipse of the beam and the rectangular kicker aperture have been used to significantly reduce the impedance of the magnet, while having a limited effect on the available physical aperture. Details of this method, constraints, measurements and simulation results as well as practical aspects are presented and discussed.
A transient model to simulate HTPEM fuel cell impedance spectra
DEFF Research Database (Denmark)
Vang, Jakob Rabjerg; Andreasen, Søren Juhl; Kær, Søren Knudsen
2012-01-01
This paper presents a spatially resolved transient fuel cell model applied to the simulation of high temperature PEM fuel cell impedance spectra. The model is developed using a 2D finite volume method approach. The model is resolved along the channel and across the membrane. The model considers...... diffusion of cathode gas species in gas diffusion layers and catalyst layer, transport of protons in the membrane and the catalyst layers, and double layer capacitive effects in the catalyst layers. The model has been fitted simultaneously to a polarization curve and to an impedance spectrum recorded...... this, phenomena neglected in this version of the model must be incorporated in future versions....
Amplifier input impedance in dry electrode ECG recording.
Assambo, Cedric; Burke, Martin J
2009-01-01
This paper presents a novel approach for designing the front-end of instrumentation amplifiers for use in dry electrode recording of the human electrocardiogram (ECG). The method relies on information provided by the characterization of the skin-electrode interface and the analysis of low frequency ECG criteria defined by international standards. Marginal measurements of capacitive elements of the skin-electrode interface as small as 0.01 microF, suggest values of input impedance in the order of 1.3 GOmega. However, results in 99% of the data analyzed indicate that a recording amplifier providing an input impedance of 500 MOmega should ensure clear signal sensing without distortion.
Electrochemical Impedance Modeling of a Solid Oxide Fuel Cell Anode
DEFF Research Database (Denmark)
Mohammadi, R.; Søgaard, Martin; Ramos, Tania;
2014-01-01
A simulation package for the impedance response of SOFC anodes is presented here. The model couples the gas transport in gas channels and within a porous electrode with the electrochemical kinetics. The gas phase mass transport is modeled using mass conservation equations. A transmission line model...... (TLM), which is suitably modified to account for the electrode microstructural details, is used for modeling the impedance arising from the electrochemical reactions. In order to solve the system of nonlinear equations, an in-house code based on the finite difference method was developed. Some...
Electrical Modeling and Impedance Analysis of Biological Cells
Directory of Open Access Journals (Sweden)
Gowri Sree V.
2014-03-01
Full Text Available It was proved that the external electric field intensity has significant effects on the biological systems. The applied electric field intensity changes the electrical behavior of the cell systems. The impact of electric field intensity on the cell systems should be studied properly to optimize the electric field treatments of biological systems. Based on the cell dimensions and its dielectric properties, an electrical equivalent circuit for an endosperm cell in rice was developed and its total impedance and capacitance were verified with measurement results. The variations of impedance and conductance with respect to applied impulse voltage at different frequencies were plotted. This impedance analysis method can be used to determine the optimum voltage level for electric field treatment and also to determine the cell rupture due to electric field applications.
Wave impedance of W-Mo system composite
Institute of Scientific and Technical Information of China (English)
Qiang Shen; Lianmeng Zhang; Hua Tan; Fuqian Jing
2003-01-01
W-Mo composites with different mass fractions of W and Mo were prepared at 1473 K by Spark Plasma Sintering technique. The transverse and longitudinal wave velocities of the samples were accurately measured using the ultrasonic pulse echo overlap method, and the wave impedance values of the samples were then calculated. The results show that W-Mo system composites are of nearly full dense and can be regarded as a mechanical mixture system. The ideal mixture model was adopted to estimate the wave impedance of W-Mo composites. Comparisons with the experimental data demonstrate that the suggested model is sufficiently accurate to predict the wave impedance of W-Mo composites.
Experimental verification of depolarization effects in bioelectrical impedance measurement.
Chen, Xiaoyan; Lv, Xinqiang; Du, Meng
2014-01-01
The electrode polarization effects on bioelectrical impedance measurement at low-frequency cannot be ignored. In this paper, the bioelectrical data of mice livers are measured to specify the polarization effects on the bio-impedance measurement data. We firstly introduce the measurement system and methodology. Using the depolarization method, the corrected results are obtained. Besides, the specific effects of electrode polarization on bio-impedance measurement results are investigated using comparative analysis of the previous and posterior correction results from dielectric spectroscopy, Cole-Cole plot, conductivity and spectroscopy of dissipation tangent. Experimental results show that electrode polarization has a significant influence on the characteristic parameters of mouse liver tissues. To be specific, we see a low-frequency limit resistance R0 increase by 19.29%, a reactance peak XP increase by 8.50%, a low-frequency limit conductivity Kl decrease by 17.65% and a dissipation peak tangent decrease by 160%.
Using FOCUS to determine the radiation impedance for square transducers
Jennings, Matthew R.; McGough, Robert J.
2012-10-01
The power radiated by an ultrasound transducer is calculated with the radiation resistance, which is the real part of the radiation impedance. For circular transducers, an analytical solution for the radiation impedance is known, but an analytical expression for the radiation impedance is not available for rectangular or square transducers. To determine the radiation resistance in FOCUS, the pressure on the surface of a square transducer is computed with the fast nearfield method, and then the force on the transducer face is computed by integrating the pressure. Results using this approach are numerically evaluated for a range of ka values from 0.1 to 16. The pressure on the transducer face is also computed with the Rayleigh-Sommerfeld integral, and the results are compared. The numerical value of the radiation resistance computed with FOCUS and with the Rayleigh-Sommerfeld integral converge to the same value, although FOCUS calculates the same result in about one-quarter of the time.
2011-10-24
... 1904-AC43. Comments may be submitted using any of the following methods: Federal eRulemaking Portal... and avoid the use of special characters or any form of encryption. Postal Mail: Ms. Brenda Edwards, U... FR 56678 (September 14, 2011) to make available and invite comments on the framework document...
Pumping slots: impedances and power losses
Energy Technology Data Exchange (ETDEWEB)
Kurennoy, S. [Maryland Univ., College Park, MD (United States). Dept. of Physics
1996-08-01
Contributions of pumping slots to the beam coupling impedances and power losses in a B-factory ring are considered. While their leading contribution is to the inductive impedance, for high-intensity machines with short bunches like e{sup +}e{sup -} B-factories the real part of the impedance and related loss factors are also important. Using an analytical approach we calculate the coupling impedances and loss factors due to slots in a ring with an arbitrary cross section of the vacuum chamber. Effects of the slot tilt on the beam impedance are also considered, and restrictions on the tilt angle are derived from limitations on the impedance increase. The power leakage through the slots is discussed briefly. The results are applied to the KEK B-factory. (author)
Ahmad, Mukhtar
2010-01-01
This book presents a comprehensive view of high performance ac drives. It may be considered as both a text book for graduate students and as an up-to-date monograph. It may also be used by R & D professionals involved in the improvement of performance of drives in the industries. The book will also be beneficial to the researchers pursuing work on multiphase drives as well as sensorless and direct torque control of electric drives since up-to date references in these topics are provided. It will also provide few examples of modeling, analysis and control of electric drives using MATLAB/SIMULIN
Identification of Critical Transmission Limits in Injection Impedance Plane
DEFF Research Database (Denmark)
Jóhannsson, Hjörtur; Østergaard, Jacob; Nielsen, Arne Hejde
2012-01-01
for the critical and characteristic lines in the impedance plane form the basis for a new phasormeasurement based situational awareness method, which uses the results in this paper to identify critical operational boundariesin real time and to visualize the system operating conditions in an informative way...
Lower leg electrical impedance after distal bypass surgery
DEFF Research Database (Denmark)
Belanger, G K; Bolbjerg, M L; Heegaard, N H;
1998-01-01
Electrical impedance was determined in 13 patients following distal bypass surgery to evaluate lower leg oedema as reflected by its circumference. Tissue injury was assessed by the plasma concentration of muscle enzymes. After surgery, the volume of the control lower leg increased from 1250 (816...... to be a useful method for the evaluation of lower leg oedema after distal bypass surgery....
Monitoring early zeolite formation via in situ electrochemical impedance spectroscopy.
Brabants, G; Lieben, S; Breynaert, E; Reichel, E K; Taulelle, F; Martens, J A; Jakoby, B; Kirschhock, C E A
2016-04-01
Hitherto zeolite formation has not been fully understood. Although electrochemical impedance spectroscopy has proven to be a versatile tool for characterizing ionic solutions, it was never used for monitoring zeolite growth. We show here that EIS can quantitatively monitor zeolite formation, especially during crucial early steps where other methods fall short.