WorldWideScience

Sample records for ac electric arc

  1. Bifurcation theory of ac electric arcing

    International Nuclear Information System (INIS)

    Christen, Thomas; Peinke, Emanuel

    2012-01-01

    The performance of alternating current (ac) electric arcing devices is related to arc extinction or its re-ignition at zero crossings of the current (so-called ‘current zero’, CZ). Theoretical investigations thus usually focus on the transient behaviour of arcs near CZ, e.g. by solving the modelling differential equations in the vicinity of CZ. This paper proposes as an alternative approach to investigate global mathematical properties of the underlying periodically driven dynamic system describing the electric circuit containing the arcing device. For instance, the uniqueness of the trivial solution associated with the insulating state indicates the extinction of any arc. The existence of non-trivial attractors (typically a time-periodic state) points to a re-ignition of certain arcs. The performance regions of arcing devices, such as circuit breakers and arc torches, can thus be identified with the regions of absence and existence, respectively, of non-trivial attractors. Most important for applications, the boundary of a performance region in the model parameter space is then associated with the bifurcation of the non-trivial attractors. The concept is illustrated for simple black-box arc models, such as the Mayr and the Cassie model, by calculating for various cases the performance boundaries associated with the bifurcation of ac arcs. (paper)

  2. Finite element modelling of electric currents in AC submerged arc furnaces

    CSIR Research Space (South Africa)

    Mc Dougall, I

    2007-01-01

    Full Text Available and the power ratings is not a hindrance. 2. MATHEMATICAL FORMULATION As the frequency of the current is low, the quasi-static form of Maxwell’s equations is solved. (1) (2) (3) (4) where E denotes the electric field intensity, H the magnetic field... of Electric Currents in AC Submerged Arc Furnaces 637 REFERENCES [1] Bermudez, A., Muniz, M.C., Pena, F. , Bullon, J., “ Numerical Computation of the Electromagnetic Field in the Electrodes of a Three-Phase Arc Furnace”, Int. Jnl for Numerical Methods...

  3. dc Arc Fault Effect on Hybrid ac/dc Microgrid

    Science.gov (United States)

    Fatima, Zahra

    The advent of distributed energy resources (DER) and reliability and stability problems of the conventional grid system has given rise to the wide spread deployment of microgrids. Microgrids provide many advantages by incorporating renewable energy sources and increasing the reliability of the grid by isolating from the main grid in case of an outage. AC microgrids have been installed all over the world, but dc microgrids have been gaining interest due to the advantages they provide over ac microgrids. However the entire power network backbone is still ac and dc microgrids require expensive converters to connect to the ac power network. As a result hybrid ac/dc microgrids are gaining more attention as it combines the advantages of both ac and dc microgrids such as direct integration of ac and dc systems with minimum number of conversions which increases the efficiency by reducing energy losses. Although dc electric systems offer many advantages such as no synchronization and no reactive power, successful implementation of dc systems requires appropriate protection strategies. One unique protection challenge brought by the dc systems is dc arc faults. A dc arc fault is generated when there is a gap in the conductor due to insulation degradation and current is used to bridge the gap, resulting in an arc with very high temperature. Such a fault if it goes undetected and is not extinguished can cause damage to the entire system and cause fires. The purpose of the research is to study the effect of the dc arc fault at different locations in the hybrid ac/dc microgrid and provide insight on the reliability of the grid components when it is impacted by arc faults at various locations in the grid. The impact of dc arc fault at different locations on the performance of the PV array, wind generation, and constant power loads (CPL) interfaced with dc/dc converters is studied. MATLAB/Simulink is used to model the hybrid ac/dc microgrid and arc fault.

  4. The influence of Ac parameters in the process of micro-arc oxidation film electric breakdown

    Directory of Open Access Journals (Sweden)

    Ma Jin

    2016-01-01

    Full Text Available This paper studies the electric breakdown discharge process of micro-arc oxidation film on the surface of aluminum alloy. Based on the analysis of the AC parameters variation in the micro-arc oxidation process, the following conclusions can be drawn: The growth of oxide film can be divided into three stages, and Oxide film breakdown discharge occurs twice in the micro-arc oxidation process. The first stage is the formation and disruptive discharge of amorphous oxide film, producing the ceramic oxide granules, which belong to solid dielectric breakdown. In this stage the membrane voltage of the oxide film plays a key role; the second stage is the formation of ceramic oxide film, the ceramic oxide granules turns into porous structure oxide film in this stage; the third stage is the growth of ceramic oxide film, the gas film that forms in the oxide film’s porous structure is electric broken-down, which is the second breakdown discharge process, the current density on the oxide film surface could affect the breakdown process significantly.

  5. New perspectives on the dynamics of AC and DC plasma arcs exposed to cross-fields

    International Nuclear Information System (INIS)

    Abdo, Youssef; Rohani, Vandad; Cauneau, François; Fulcheri, Laurent

    2017-01-01

    Interactions between an arc and external fields are crucially important for the design and the optimization of modern plasma torches. Multiple studies have been conducted to help better understand the behavior of DC and AC current arcs exposed to external and ‘ self-induced ’ magnetic fields, but the theoretical foundations remain very poorly explored. An analytical investigation has therefore been carried out in order to study the general behavior of DC and AC arcs under the effect of random cross-fields. A simple differential equation describing the general behavior of a planar DC or AC arc has been obtained. Several dimensionless numbers that depend primarily on arc and field parameters and the main arc characteristics (temperature, electric field strength) have also been determined. Their magnitude indicates the general tendency pattern of the arc evolution. The analytical results for many case studies have been validated using an MHD numerical model. The main purpose of this investigation was deriving a practical analytical model for the electric arc, rendering possible its stabilization and control, and the enhancement of the plasma torch power. (paper)

  6. New perspectives on the dynamics of AC and DC plasma arcs exposed to cross-fields

    Science.gov (United States)

    Abdo, Youssef; Rohani, Vandad; Cauneau, François; Fulcheri, Laurent

    2017-02-01

    Interactions between an arc and external fields are crucially important for the design and the optimization of modern plasma torches. Multiple studies have been conducted to help better understand the behavior of DC and AC current arcs exposed to external and ‘self-induced’ magnetic fields, but the theoretical foundations remain very poorly explored. An analytical investigation has therefore been carried out in order to study the general behavior of DC and AC arcs under the effect of random cross-fields. A simple differential equation describing the general behavior of a planar DC or AC arc has been obtained. Several dimensionless numbers that depend primarily on arc and field parameters and the main arc characteristics (temperature, electric field strength) have also been determined. Their magnitude indicates the general tendency pattern of the arc evolution. The analytical results for many case studies have been validated using an MHD numerical model. The main purpose of this investigation was deriving a practical analytical model for the electric arc, rendering possible its stabilization and control, and the enhancement of the plasma torch power.

  7. Power quality analysis of DC arc furnace operation using the Bowman model for electric arc

    Science.gov (United States)

    Gherman, P. L.

    2018-01-01

    This work is about a relatively new domain. The DC electric arc is superior to the AC electric arc and it’s not used in Romania. This is why we analyzed the work functions of these furnaces by simulation and model checking of the simulation results.The conclusions are favorable, to be carried is to develop a real-time control system of steel elaboration process.

  8. Diode-rectified multiphase AC arc for the improvement of electrode erosion characteristics

    Science.gov (United States)

    Tanaka, Manabu; Hashizume, Taro; Saga, Koki; Matsuura, Tsugio; Watanabe, Takayuki

    2017-11-01

    An innovative multiphase AC arc (MPA) system was developed on the basis of a diode-rectification technique to improve electrode erosion characteristics. Conventionally, electrode erosion in AC arc is severer than that in DC arc. This originated from the fact that the required properties for the cathode and anode are different, although an AC electrode works as the cathode and the anode periodically. To solve this problem, a separation of AC electrodes into pairs of thoriated tungsten cathode and copper anode by diode-rectification was attempted. A diode-rectified multiphase AC arc (DRMPA) system was then successfully established, resulting in a drastic improvement of the erosion characteristics. The electrode erosion rate in the DRMPA was less than one-third of that in the conventional MPA without the diode rectification. In order to clarify its erosion mechanism, electrode phenomena during discharge were visualized by a high-speed camera system with appropriate band-pass filters. Fluctuation characteristics of the electrode temperature in the DRMPA were revealed.

  9. Physics-Based Modeling of Electric Operation, Heat Transfer, and Scrap Melting in an AC Electric Arc Furnace

    Science.gov (United States)

    Opitz, Florian; Treffinger, Peter

    2016-04-01

    Electric arc furnaces (EAF) are complex industrial plants whose actual behavior depends upon numerous factors. Due to its energy intensive operation, the EAF process has always been subject to optimization efforts. For these reasons, several models have been proposed in literature to analyze and predict different modes of operation. Most of these models focused on the processes inside the vessel itself. The present paper introduces a dynamic, physics-based model of a complete EAF plant which consists of the four subsystems vessel, electric system, electrode regulation, and off-gas system. Furthermore the solid phase is not treated to be homogenous but a simple spatial discretization is employed. Hence it is possible to simulate the energy input by electric arcs and fossil fuel burners depending on the state of the melting progress. The model is implemented in object-oriented, equation-based language Modelica. The simulation results are compared to literature data.

  10. The investigation of movement dynamics of an AC electric arc attachment along the working surface of a hollow cylindrical electrode under the action of gas-dynamic and electromagnetic forces

    International Nuclear Information System (INIS)

    Surov, A V; Popov, S D; Serba, E O; Nakonechny, G V; Spodobin, V A; Ovchinnikov, R V; Kumkova, I I; Shabalin, S A

    2012-01-01

    Stationary electric arc alternating current plasma torches are used today for realization of plasma chemical technologies requiring relatively high energy input. Waste treatment is one these directions. The paper reports on experiment results directed towards the increase in the lifetime characteristics of electrode units of the powerful high-voltage electric-arc AC plasma torches. The solution to the problem of obtainment the uniform wear of a copper hollow cylindrical electrode achieved by the controlled movement of the arc attachment along the working surface was offered. Organization of gas supply in the near electrode area and application of alternating magnetic field ensured movement of arc attachment along the surface with average speed from 2 to 14 m/s. Arc current was about 47 A and 84 A, gas flow rate in near electrode area was about 5 and 4.5 g/s. Due to researches on the experimental prototype of a hollow cylindrical electrode, the erosion of its material reached only 3 μg/C, that enables production of the electrode assembly with life time above 1000 hours at currents in the arc up to 100–200 A.

  11. Laws and ordinances on electric arc protection. Electric arc protection of electric plants; Gesetze und Verordnungen zur Stoerlichtbogensicherheit. Stoerlichtbogensicherheit von elektrischen Betriebsstaetten

    Energy Technology Data Exchange (ETDEWEB)

    Bernards, Stefan; Buenger, Stefan; Grote, Martin [Fritz Driescher KG - Spezialfabrik fuer Elektrizitaetswerksbedarf GmbH und Co., Wegberg (Germany); Boettcher, Lutz-Michael [Ingenieurbuero Boettcher-Consult, Schulzendorf (Germany); Weck, Karl-Heinz [Forschungsgemeinschaft fuer Elektrische Anlagen und Stromwirtschaft (FGH e.V.), Mannheim (Germany)

    2011-02-28

    With the publication of the new standards IEC 62271-200/VDE 0671 part 200-2003: AC metal-enclosed switchgear and controlgear for rated voltages above 1 kV and up to and including 52 kV, and IEC 62271-202/VDE 0671 part 202-2007: High voltage/low voltage prefabricated substations and their revision, the fundamentals of arc protection qualification of plants and stations were redefined with a view to personnel protection. In the case of new transformer stations, the application of these standards is state of the art. The publications and the application of the new standards for staff protection, plant protection and object protection via electric arc qualification has raised questions concerning the safety of older plants and stations, modernization, reconstruction, enhancement, maintenance, and the re-use of used stations and plants.

  12. Rocket measurements within a polar cap arc: Plasma, particle, and electric circuit parameters

    International Nuclear Information System (INIS)

    Weber, E.J.; Ballenthin, J.O.; Basu, S.; Carlson, H.C.; Hardy, D.A.; Maynard, N.C.; Smiddy, M.; Kelley, M.C.; Fleischman, J.R.; Sheehan, R.E.; Pfaff, R.F.; Rodriguez, P.

    1989-01-01

    An instrumented rocket payload was launched into a polar cap F layer aurora to investigate the energetic particle, plasma, and electric circuit parameters of a Sun-aligned arc. On-board instruments measured energetic electron flux, ion composition and density fluctuations, electron density and temperature, electron density fluctuations, and ac and dc electric fields. Real-time all-sky imaging photometer measurements of the location and motion of the aurora, were used to determine the proper geophysical situation for launch. Comparison of the in situ measurements with remote optical measurements shows that the arc was produced by fluxes of low-energy (< 1 keV) electrons. Field-aligned potentials in the arc inferred from the electron spectra had a maximum value of approximately 300 V, and from the spectral shape a parent population of preaccelerated electrons characteristic of the boundary plasma sheet or magnetosheath was inferred. Electric field components along and across the arc show sunward flow within the arc and duskward drift of the arc consistent with the drift direction and speed determined from optical imaging. Thus this arc is drifting duskward under the influence of the convection electric field. Three possible explanations for this (field-aligned currents, chemistry, and transport) are considered. Finally, ionospheric irregularity and electric field fluctuations indicate two different generation mechanisms on the dawnside and duskside of the arc. On the duskside, parameters are suggestive of an interchange process, while on the dawnside, fluctuation parameters are consistent with a velocity shear instability

  13. Electrical and optical investigations on the low voltage vacuum arc

    International Nuclear Information System (INIS)

    Braic, M.; Braic, V.; Pavelescu, G.; Balaceanu, M.; Pavelescu, D.; Dumitrescu, G.; Gherendi, F.

    2002-01-01

    Preliminary investigations of a low voltage circuit breaker, adapted from a real industrial device, were carried out by electrical and optical methods. Electrical, parameters were measured in the high current arc period and in zero current moment (C.Z) and corroborated with the arc plasma spectroscopic investigations. For the first time in vacuum arc diagnostics, the paper presents results based on single shot time resolved emission spectroscopy around C.Z. The short-circuit current was produced in a special high power installation in order to reproduce exactly the short-circuit regimes developing in low voltage distribution networks. A stainless steel vacuum chamber with classical Cu-Cr electrodes was used. Tests were performed for different current values in the range 3 - 20 kA rms , the voltages being varied between 200 and 1000 V ac . Interruption processes in the different arc regimes (from the diffuse arc mode to the constricted column mode) were analyzed. The success of the arc interruption was analyzed in terms of electric arc energy achieved in the first current halfperiod. The results obtained were corroborated with arc plasma spectroscopic investigations. The emission spectroscopy setup, using an Acton spectrograph and an intensified CCD camera, allowed the spatial and time-resolved investigation of spectra emitted by the vacuum arc plasma. The first truly time-resolved spectroscopic measurements on a single half-period was proven to be a good method to investigate the vacuum arc. Using single shot time resolved spectroscopy around zero current on partial unsuccessful interruption we concluded that the Cu ions, more that Cr ions were responsible for the arc reignition. The financial support for this work comes from NATO-STI SfP /974083 and CORINT-Romania projects. (authors)

  14. High-tension electrical-arc-induced thermal burns caused by railway overhead cables.

    Science.gov (United States)

    Koller, J

    1991-10-01

    Eleven patients with high-tension electrical-arc-induced thermal burns due to railway overhead cables were treated at the Bratislava Burn Department during a relatively short period of 18 months. All the injuries occurred by the same mechanism, that is persons climbing on top of railway carriages and approaching the 25,000 V a.c. overhead cables. All the burns were the result of an electrical arc passing externally to the body, with subsequent ignition of the victim's clothes. The cutaneous burns, ranging from 24 to 79 per cent of the BSA, were mostly deep partial to full skin thickness injuries. One patient died on day 5 postburn, the other survived. In spite of high-tension aetiology, no true electrical injuries appear to have occurred and no amputations were necessary. The pathophysiology and possible preventive measures are discussed. It must be stressed that arcing can be induced by an earthed object approaching, but not touching, a cable carrying a high voltage.

  15. Nonlinear system identification of the reduction nickel oxide smelting process in electric arc furnace

    Science.gov (United States)

    Gubin, V.; Firsov, A.

    2018-03-01

    As the title implies the article describes the nonlinear system identification of the reduction smelting process of nickel oxide in electric arc furnaces. It is suggested that for operational control ratio of components of the charge must be solved the problem of determining the qualitative composition of the melt in real time. The use of 0th harmonic of phase voltage AC furnace as an indirect measure of the melt composition is proposed. Brief description of the mechanism of occurrence and nature of the non-zero 0th harmonic of the AC voltage of the arc is given. It is shown that value of 0th harmonic of the arc voltage is not function of electrical parameters but depends of the material composition of the melt. Processed industrial data are given. Hammerstein-Wiener model is used for description of the dependence of 0th harmonic of the furnace voltage from the technical parameters of melting furnace: the melt composition and current. Recommendations are given about the practical use of the model.

  16. Determination of input/output characteristics of full-bridge AC/DC/DC converter for arc welding

    OpenAIRE

    Stefanov, Goce; Karadzinov, Ljupco; Sarac, Vasilija; Cingoski, Vlatko; Gelev, Saso

    2016-01-01

    This paper describes the design and practical implementation of AC/DC/DC converter in mode of arc welding. An analysis of the operation of AC/DC/DC converter and its input/output characteristics are determined with computer simulations. The practical part is consisted of AC/DC/DC converter prototype for arc welding with output power of 3 kW and switching frequency of 64 kHz. The operation of AC/DC/DC converter is validated with experimental measurements.

  17. Critical Length Criterion and the Arc Chain Model for Calculating the Arcing Time of the Secondary Arc Related to AC Transmission Lines

    International Nuclear Information System (INIS)

    Cong Haoxi; Li Qingmin; Xing Jinyuan; Li Jinsong; Chen Qiang

    2015-01-01

    The prompt extinction of the secondary arc is critical to the single-phase reclosing of AC transmission lines, including half-wavelength power transmission lines. In this paper, a low-voltage physical experimental platform was established and the motion process of the secondary arc was recorded by a high-speed camera. It was found that the arcing time of the secondary arc rendered a close relationship with its arc length. Through the input and output power energy analysis of the secondary arc, a new critical length criterion for the arcing time was proposed. The arc chain model was then adopted to calculate the arcing time with both the traditional and the proposed critical length criteria, and the simulation results were compared with the experimental data. The study showed that the arcing time calculated from the new critical length criterion gave more accurate results, which can provide a reliable criterion in term of arcing time for modeling and simulation of the secondary arc related with power transmission lines. (paper)

  18. Voltage Flicker Mitigation in Electric Arc Furnace using D-STATCOM

    OpenAIRE

    Deepthisree Madathil; Ilango Karuppasamy; Kirthika Devi V S; Manjula G Nair

    2014-01-01

    The major power quality issue of voltage flicker has resulted as a serious concern for the customers and heavy power companies. Voltage flicker is an impression of unsteadiness of visual sensation induced by a light source whose luminance fluctuates with time. This phenomenon is experienced when an Electric Arc Furnace (EAF) as load is connected to the power system. Flexible AC transmission devices (FACTS) devices were gradually utilized for voltage flicker reduction. In this paper the FACTS ...

  19. Auroral arc classification scheme based on the observed arc-associated electric field pattern

    International Nuclear Information System (INIS)

    Marklund, G.

    1983-06-01

    Radar and rocket electric field observations of auroral arcs have earlier been used to identify essentially four different arc types, namely anticorrelation and correlation arcs (with, respectively, decreased and increased arc-assocaited field) and asymmetric and reversal arcs. In this paper rocket double probe and supplementary observations from the literature, obtained under various geophysical conditions, are used to organize the different arc types on a physical rather than morphological basis. This classification is based on the relative influence on the arc electric field pattern from the two current continuity mechanisms, polarisation electric fields and Birkeland currents. In this context the tangential electric field plays an essential role and it is thus important that it can be obtained with both high accuracy and resolution. In situ observations by sounding rockets are shown to be better suited for this specific task than monostatic radar observations. Depending on the dominating mechanism, estimated quantitatively for a number of arc-crossings, the different arc types have been grouped into the following main categories: Polarisation arcs, Birkeland current arcs and combination arcs. Finally the high altitude potential distributions corresponding to some of the different arc types are presented. (author)

  20. Electric arc hydrogen heaters

    International Nuclear Information System (INIS)

    Zasypin, I.M.

    2000-01-01

    The experimental data on the electric arc burning in hydrogen are presented. Empirical and semiempirical dependences for calculating the arc characteristics are derived. An engineering method of calculating plasma torches for hydrogen heating is proposed. A model of interaction of a hydrogen arc with a gas flow is outlined. The characteristics of plasma torches for heating hydrogen and hydrogen-bearing gases are described. (author)

  1. High-Speed Visualization of Evaporation Phenomena from Tungsten Based Electrode in Multi-Phase AC Arc

    Science.gov (United States)

    Tanaka, Manabu; Hashizume, Taro; Imatsuji, Tomoyuki; Nawata, Yushi; Watanabe, Takayuki

    2015-09-01

    A multi-phase AC arc has been developed for applications in various fields of engineering because it possesses unique advantages such as high energy efficiency. However, understanding of fundamental phenomena in the multi-phase AC arc is still insufficient for practical use. Purpose of this study is to investigate electrode erosion mechanism by high-speed visualization of the electrode metal vapor in the arc. Results indicated that the electrode mainly evaporated at anodic period, leading to the arc constriction. Moreover, evaporation of W electrode with 2wt% La2O3 at the anodic period was much higher than that with 2wt% ThO2. This can be explained by different properties of these oxide additives. Evaporation of the oxide additive resulted in the arc constriction, which accelerated the evaporation of W electrode. Therefore, addition of La2O3 with lower melting and boiling point than ThO2 lead to stronger arc constriction, resulting in severer evaporation of W electrode.

  2. Electric arc behaviour in dynamic magnetic fields

    International Nuclear Information System (INIS)

    Put'ko, V.F.

    2000-01-01

    The behaviour of an electric arc in different time-dependent (dynamic) magnetic fields was investigated. New possibilities were found for spatial and energy stabilisation of a discharge, for intensifying heat exchange, extending the electric arc and distributed control of electric arc plasma. Rotating, alternating and travelling magnetic fields were studied. It was found that under the effect of a relatively low frequency of variations of dynamic magnetic fields (f 1000 Hz) the arc stabilised at the axis of the discharge chamber, the pulsation level decreased and discharge stability increased. The borders between these two arc existence modes were formed by a certain critical field variation frequency the period of which was determined by the heat relaxation time of the discharge. (author)

  3. Flame spread over inclined electrical wires with AC electric fields

    KAUST Repository

    Lim, Seung J.; Park, Sun H.; Park, Jeong; Fujita, Osamu; Keel, Sang I.; Chung, Suk-Ho

    2017-01-01

    Flame spread over polyethylene-insulated electrical wires was studied experimentally with applied alternating current (AC) by varying the inclination angle (θ), applied voltage (VAC), and frequency (fAC). For the baseline case with no electric field

  4. Electric fuses operation, a review: 2. Arcing period

    International Nuclear Information System (INIS)

    Bussière, W

    2012-01-01

    In the electric fuse operation the arcing period follows immediately the pre-arcing period depicted in Part 1 (Part 1. Pre-arcing period). The transition between these two operation steps is not fully understood at this time. To simplify the beginning of the arcing period can be identified with the electric arc ignition i.e. with the electrodes voltage drop. The consecutive plasma is of metallic type at the beginning of the arcing period and of metallic plus silica type with varying mixture up to the end of the arcing period. The energy brought by the fault current is withdrawn by means of the interaction between the electric arc and the arc quenching material (usually silica sand) whose morphometric properties influence the properties of the plasma column: composition, thermodynamic properties and transport coefficients of the plasma column depend on the porosity (and other morphometric properties) of the filler. The fuse element erosion also known as burn-back is responsible for the lengthening of the plasma column and the variations of the electric field. The whole of these processes is depicted by means of experimental results or modellings when possible.

  5. INFLUENCE OF CHEMICAL COMPOUNDS ON THE FORMING OF ELECTRIC ARC

    Directory of Open Access Journals (Sweden)

    I. O. Vakulenko

    2014-07-01

    Full Text Available Purpose. The purpose of work is a comparative analysis of chemical compounds influence on the process of electric arc forming and condition of its burning. Methodology. Material for an electrode was a wire 3 mm in diameter of low carbon steel with contain of carbon 0.15%. As chemical compounds, which determine the terms of forming of arc welding were used kaolin; CaCO3 with the admixtures of gypsum to 60%; SiO2 and Fe – Si with the iron concentration to 50%. Researches were conducted at the use of direct electric current and the arc of reverse polarity. As a source of electric current the welding transformer of type PSO-500 was used. On the special stand an initial gap between the electrode and metal-plate was equal to 1–1.5 mm. The interelectrode interval was filled with the probed chemical compounds and it was formed an electric arc. In the moment of electric arc arise the values of electric current and the arc voltage were determined. After the natural break of electric arc, the final size of the gap between electrodes was accepted as the maximal value of the arc lengths. Findings. In the conditions of experiment the metal transfer in interelectrode interval corresponded to the drop mechanism. According to external characteristics the ratio between the maximal arc length and the power of electric discharge has the appearance of exponential dependence. Specific power of electric arc characterizes environment of interelectrode interval in the moment of arc forming per unit of its length. Originality. 1. On the basis of influence analysis of the studied chemical compounds on the formation processes of electric arc inversely proportional relationship between the power of the electric current and the maximum arc length to the moment of its natural break is defined. 2. The ratio between the maximal arc length and the power of electric current with sufficiently high correlation coefficient is subjected to the exponential dependence. Influence of

  6. Electric contact arcing

    International Nuclear Information System (INIS)

    Cuthrell, R.E.

    1976-01-01

    Electrical contacts must function properly in many types of components used in nuclear weapon systems. Design, application, and testing of these components require detailed knowledge of chemical and physical phenomena associated with stockpile storage, stockpile testing, and operation. In the past, investigation of these phenomena has led to significant discoveries on the effects of surface contaminants, friction and wear, and the mechanics of closure on contact performance. A recent investigation of contact arcing phenomena which revealed that, preceding contact closure, arcs may occur at voltages lower than had been previously known is described. This discovery is important, since arcing may damage contacts, and repetitive testing of contacts performed as part of a quality assurance program might produce cumulative damage that would yield misleading life-test data and could prevent proper operation of the contacts at some time in the future. This damage can be avoided by determining the conditions under which arcing occurs, and ensuring that these conditions are avoided in contact testing

  7. Electrical actuation of electrically conducting and insulating droplets using ac and dc voltages

    International Nuclear Information System (INIS)

    Kumari, N; Bahadur, V; Garimella, S V

    2008-01-01

    Electrical actuation of liquid droplets at the microscale offers promising applications in the fields of microfluidics and lab-on-chip devices. Much prior research has targeted the electrical actuation of electrically conducting liquid droplets using dc voltages (classical electrowetting). Electrical actuation of conducting droplets using ac voltages and the actuation of insulating droplets (using dc or ac voltages) has remained relatively unexplored. This paper utilizes an energy-minimization-based analytical framework to study the electrical actuation of a liquid droplet (electrically conducting or insulating) under ac actuation. It is shown that the electromechanical regimes of classical electrowetting, electrowetting under ac actuation and insulating droplet actuation can be extracted from the generic electromechanical actuation framework, depending on the electrical properties of the droplet, the underlying dielectric layer and the frequency of the actuation voltage. This paper also presents experiments which quantify the influence of the ac frequency and the electrical properties of the droplet on its velocity under electrical actuation. The velocities of droplets moving between two parallel plates under ac actuation are experimentally measured; these velocities are then related to the actuation force on the droplet which is predicted by the electromechanical model developed in this work. It is seen that the droplet velocities are strongly dependent on the frequency of the ac actuation voltage; the cut-off ac frequency, above which the droplet fails to actuate, is experimentally determined and related to the electrical conductivity of the liquid. This paper then analyzes and directly compares the various electromechanical regimes for the actuation of droplets in microfluidic applications

  8. Electric Arc Furnace Modeling with Artificial Neural Networks and Arc Length with Variable Voltage Gradient

    Directory of Open Access Journals (Sweden)

    Raul Garcia-Segura

    2017-09-01

    Full Text Available Electric arc furnaces (EAFs contribute to almost one third of the global steel production. Arc furnaces use a large amount of electrical energy to process scrap or reduced iron and are relevant to study because small improvements in their efficiency account for significant energy savings. Optimal controllers need to be designed and proposed to enhance both process performance and energy consumption. Due to the random and chaotic nature of the electric arcs, neural networks and other soft computing techniques have been used for modeling EAFs. This study proposes a methodology for modeling EAFs that considers the time varying arc length as a relevant input parameter to the arc furnace model. Based on actual voltages and current measurements taken from an arc furnace, it was possible to estimate an arc length suitable for modeling the arc furnace using neural networks. The obtained results show that the model reproduces not only the stable arc conditions but also the unstable arc conditions, which are difficult to identify in a real heat process. The presented model can be applied for the development and testing of control systems to improve furnace energy efficiency and productivity.

  9. A novel estimation of electrical and cooling losses in electric arc furnaces

    International Nuclear Information System (INIS)

    Trejo, Eder; Martell, Fernando; Micheloud, Osvaldo; Teng, Lidong; Llamas, Armando; Montesinos-Castellanos, Alejandro

    2012-01-01

    A method to calculate electrical losses and a heat transfer model of a conventional Electric Arc Furnace (EAF) are presented. The application of a novel power theory for the EAF was used to compute electrical losses and it was compared with conventional power calculations. The electrical losses and electrical variables were used as input parameters to the proposed heat transfer model. Chemical energy sources were included as energy inputs to estimate the overall heat transferred including the heat losses in the cooling system. In the heat transfer model the furnace was divided in 11 inner surfaces and the radiation view factors between them were estimated by a commercial finite element software. Variations of the view factors for different arc coverage were evaluated. Different scenarios for cooling panels losses, with respect to arc coverage and thickness of slag layers adhered to cooling system panels, were analyzed. The approach presented in this work allows calculation of energy balances in electrical arc furnaces with low computational resources. Finally, the contribution of this research work is to define a framework for further research oriented to improve both the electrical and thermal energy efficiencies to increase productivity and reduce energy consumption in steel plants. -- Highlights: ► Radiation view factors for the electric arc furnace are estimated. ► Potential reduction in cooling losses is estimated to be 60 kWh/ton. ► Electrical losses are calculated based in the randomness power theory. ► The new approach yields an increase of 10% in the electrical losses. ► An analytic model is used to estimate the radiation mechanism.

  10. Electric arc, water jet cutting of metals

    International Nuclear Information System (INIS)

    Bruening, D.

    1991-01-01

    For thermal dismantling and cutting of metallic components, as electric arc, water jet cutting method was developed that can be used for underwater cutting work up to a depth of 20 m. Short-circuiting of a continuously fed electrode wire in contact with the metal generates an electric arc which induces partial melting of the metal, and the water jet surrounding the wire rinses away the molten material, thus making a continuous kerf in the material. The method was also tested and modified to allow larger area, surface cutting and removal of metallic surface coatings. This is achieved by melting parts of the surface with the electric arc and subsequent rinsing by the water jet. The cutting and melting depth for surface removal can be accurately controlled by the operating parameters chosen. (orig./DG) [de

  11. A Novel Arc Fault Detector for Early Detection of Electrical Fires.

    Science.gov (United States)

    Yang, Kai; Zhang, Rencheng; Yang, Jianhong; Liu, Canhua; Chen, Shouhong; Zhang, Fujiang

    2016-04-09

    Arc faults can produce very high temperatures and can easily ignite combustible materials; thus, they represent one of the most important causes of electrical fires. The application of arc fault detection, as an emerging early fire detection technology, is required by the National Electrical Code to reduce the occurrence of electrical fires. However, the concealment, randomness and diversity of arc faults make them difficult to detect. To improve the accuracy of arc fault detection, a novel arc fault detector (AFD) is developed in this study. First, an experimental arc fault platform is built to study electrical fires. A high-frequency transducer and a current transducer are used to measure typical load signals of arc faults and normal states. After the common features of these signals are studied, high-frequency energy and current variations are extracted as an input eigenvector for use by an arc fault detection algorithm. Then, the detection algorithm based on a weighted least squares support vector machine is designed and successfully applied in a microprocessor. Finally, an AFD is developed. The test results show that the AFD can detect arc faults in a timely manner and interrupt the circuit power supply before electrical fires can occur. The AFD is not influenced by cross talk or transient processes, and the detection accuracy is very high. Hence, the AFD can be installed in low-voltage circuits to monitor circuit states in real-time to facilitate the early detection of electrical fires.

  12. A Novel Arc Fault Detector for Early Detection of Electrical Fires

    Science.gov (United States)

    Yang, Kai; Zhang, Rencheng; Yang, Jianhong; Liu, Canhua; Chen, Shouhong; Zhang, Fujiang

    2016-01-01

    Arc faults can produce very high temperatures and can easily ignite combustible materials; thus, they represent one of the most important causes of electrical fires. The application of arc fault detection, as an emerging early fire detection technology, is required by the National Electrical Code to reduce the occurrence of electrical fires. However, the concealment, randomness and diversity of arc faults make them difficult to detect. To improve the accuracy of arc fault detection, a novel arc fault detector (AFD) is developed in this study. First, an experimental arc fault platform is built to study electrical fires. A high-frequency transducer and a current transducer are used to measure typical load signals of arc faults and normal states. After the common features of these signals are studied, high-frequency energy and current variations are extracted as an input eigenvector for use by an arc fault detection algorithm. Then, the detection algorithm based on a weighted least squares support vector machine is designed and successfully applied in a microprocessor. Finally, an AFD is developed. The test results show that the AFD can detect arc faults in a timely manner and interrupt the circuit power supply before electrical fires can occur. The AFD is not influenced by cross talk or transient processes, and the detection accuracy is very high. Hence, the AFD can be installed in low-voltage circuits to monitor circuit states in real-time to facilitate the early detection of electrical fires. PMID:27070618

  13. Electrical Safety and Arc Flash Protections

    Energy Technology Data Exchange (ETDEWEB)

    R. Camp

    2008-03-04

    Over the past four years, the Electrical Safety Program at PPPL has evolved in addressing changing regulatory requirements and lessons learned from accident events, particularly in regards to arc flash hazards and implementing NFPA 70E requirements. This presentation will discuss PPPL's approaches to the areas of electrical hazards evaluation, both shock and arc flash; engineered solutions for hazards mitigation such as remote racking of medium voltage breakers, operational changes for hazards avoidance, targeted personnel training and hazard appropriate personal protective equipment. Practical solutions for nominal voltage identification and zero voltage checks for lockout/tagout will also be covered. Finally, we will review the value of a comprehensive electrical drawing program, employee attitudes expressed as a personal safety work ethic, integrated safety management, and sustained management support for continuous safety improvement.

  14. Electrical Safety and Arc Flash Protections

    International Nuclear Information System (INIS)

    Camp, R.

    2008-01-01

    Over the past four years, the Electrical Safety Program at PPPL has evolved in addressing changing regulatory requirements and lessons learned from accident events, particularly in regards to arc flash hazards and implementing NFPA 70E requirements. This presentation will discuss PPPL's approaches to the areas of electrical hazards evaluation, both shock and arc flash; engineered solutions for hazards mitigation such as remote racking of medium voltage breakers, operational changes for hazards avoidance, targeted personnel training and hazard appropriate personal protective equipment. Practical solutions for nominal voltage identification and zero voltage checks for lockout/tagout will also be covered. Finally, we will review the value of a comprehensive electrical drawing program, employee attitudes expressed as a personal safety work ethic, integrated safety management, and sustained management support for continuous safety improvement.

  15. Arc-textured metal surfaces for high thermal emittance space radiators

    International Nuclear Information System (INIS)

    Banks, B.A.; Rutledge, S.K.; Mirtich, M.J.; Behrend, T.; Hotes, D.; Kussmaul, M.; Barry, J.; Stidham, C.; Stueber, T.; DiFilippo, F.

    1994-01-01

    Carbon arc electrical discharges struck across the surfaces of metals such as Nb-1% Zr, alter the morphology to produce a high thermal emittance surface. Metal from the surface and carbon from the arc electrode vaporize during arcing, and then condense on the metal surface to produce a microscopically rough surface having a high thermal emittance. Quantitative spectral reflectance measurements from 0.33 to 15 μm were made on metal surfaces which were carbon arc treated in an inert gas environment. The resulting spectral reflectance data were then used to calculate thermal emittance as a function of temperature for various methods of arc treatment. The results of arc treatment on various metals are presented for both ac and dc arcs. Surface characterization data, including thermal emittance as a function of temperature, scanning electron microscopy, and atomic oxygen durability, are also presented. Ac arc texturing was found to increase the thermal emittance at 800 K from 0.05. to 0.70

  16. Electric arc radius and characteristics

    International Nuclear Information System (INIS)

    Fang, T.M.

    1980-01-01

    The heat transfer equation of an arc discharge has been solved. The arc is assumed to be a cylinder with negligible axial variation and the dominant heat transfer process is conduction radially inside the column and radiation/convection at the outside edge. The symmetric consideration allows a simple one-dimensional formulation. By taking into account proper variation of the electrical conductivity as function of temperature, the heat balance equation has been solved analytically. The radius of the arc and its current-field characteristics have also been obtained. The conventional results that E approx. I 0 5385 and R approx. I 0 7693 with E being the applied field, I the current, and R the radius of the cylindrical arc, have been proved to be simply limiting cases of our more general characteristics. The results can be applied quite widely including, among others, the neutral beam injection project in nuclear fusion and MHD energy conversion

  17. Computer-integrated electric-arc melting process control system

    OpenAIRE

    Дёмин, Дмитрий Александрович

    2014-01-01

    Developing common principles of completing melting process automation systems with hardware and creating on their basis rational choices of computer- integrated electricarc melting control systems is an actual task since it allows a comprehensive approach to the issue of modernizing melting sites of workshops. This approach allows to form the computer-integrated electric-arc furnace control system as part of a queuing system “electric-arc furnace - foundry conveyor” and consider, when taking ...

  18. Flame spread over inclined electrical wires with AC electric fields

    KAUST Repository

    Lim, Seung J.

    2017-07-21

    Flame spread over polyethylene-insulated electrical wires was studied experimentally with applied alternating current (AC) by varying the inclination angle (θ), applied voltage (VAC), and frequency (fAC). For the baseline case with no electric field applied, the flame spread rate and the flame width of downwardly spreading flames (DSFs) decreased from the horizontal case for −20° ≤ θ < 0° and maintained near constant values for −90° ≤ θ < −20°, while the flame spread rate increased appreciably as the inclination angle of upwardly spreading flames (USFs) increased. When an AC electric field was applied, the behavior of flame spread rate in DSFs (USFs) could be classified into two (three) sub-regimes characterized by various functional dependences on VAC, fAC, and θ. In nearly all cases of DSFs, a globular molten polyethylene formed ahead of the spreading flame edge, occasionally dripping onto the ground. In these cases, an effective flame spread rate was defined to represent the burning rate by measuring the mass loss due to dripping. This effective spread rate was independent of AC frequency, while it decreased linearly with voltage and was independent of the inclination angle. In DSFs, when excessively high voltage and frequency were applied, the dripping led to flame extinction during propagation and the extinction frequency correlated well with applied voltage. In USFs, when high voltage and frequency were applied, multiple globular molten PEs formed at several locations, leading to ejections of multiple small flame segments from the main flame, thereby reducing the flame spread rate, which could be attributed to the electrospray phenomenon.

  19. Heat-electrical regeneration way to intensive energy saving in an electric arc furnaces

    Science.gov (United States)

    Kartavtcev, S.; Matveev, S.; Neshporenko, E.

    2018-03-01

    Energy saving in steel production is of great significance for its large economical scale of 1500 mil t/year and high-energy consumption. Steady trend of last years is an increase of steel production in electric arc furnaces (EAF) with a very high consumption of electricity up to 750 kWh/ton. The intention to reduce so much energy consumption they can reach by many ways. One of such way is a transforming heat energy of liquid steel to electricity and destine it to steel electric arc process. Under certain conditions, it may lead to “zero” consumption of electric power in the process. The development of these conditions leads to the formation of energy-efficient heat schemes, with a minimum electricity consumption from the external network.

  20. Effect of AC electric fields on flame spread over electrical wire

    KAUST Repository

    Kim, Minkuk

    2011-01-01

    The effect of electric fields on the characteristics of flame spread over insulated electrical wire has been investigated experimentally by varying AC voltage and frequency applied to the wire in the normal gravity condition. The polyethylene (PE) insulated electrical wire was placed horizontally on electrically non-conducting posts and one end of the wire was connected to the high voltage terminal. Thus, the electrical system is the single electrode configuration. The wire was ignited at one end and the flame spread rate along the wire has been measured from the images using a video camera. Two distinct regimes existed depending on the applied AC frequency. In the low frequency regime, the flame spread rate decreased with the frequency and voltage. While in the high frequency regime, it decreased initially with voltage and then increased. At high frequency, the spread rate was even over that without applying electric fields. This result implies that fire safety codes developed without considering the effect of electric fields may require modifications. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  1. AC Electric Field Communication for Human-Area Networking

    Science.gov (United States)

    Kado, Yuichi; Shinagawa, Mitsuru

    We have proposed a human-area networking technology that uses the surface of the human body as a data transmission path and uses an AC electric field signal below the resonant frequency of the human body. This technology aims to achieve a “touch and connect” intuitive form of communication by using the electric field signal that propagates along the surface of the human body, while suppressing both the electric field radiating from the human body and mutual interference. To suppress the radiation field, the frequency of the AC signal that excites the transmitter electrode must be lowered, and the sensitivity of the receiver must be raised while reducing transmission power to its minimally required level. We describe how we are developing AC electric field communication technologies to promote the further evolution of a human-area network in support of ubiquitous services, focusing on three main characteristics, enabling-transceiver technique, application-scenario modeling, and communications quality evaluation. Special attention is paid to the relationship between electro-magnetic compatibility evaluation and regulations for extremely low-power radio stations based on Japan's Radio Law.

  2. Electrical characteristics of TIG arcs in argon from non-equilibrium modelling and experiment

    Science.gov (United States)

    Baeva, Margarita; Uhrlandt, Dirk; Siewert, Erwan

    2016-09-01

    Electric arcs are widely used in industrial processes so that a thorough understanding of the arc characteristics is highly important to industrial research and development. TIG welding arcs operated with pointed electrodes made of tungsten, doped with cerium oxide, have been studied in order to analyze in detail the electric field and the arc voltage. Newly developed non-equilibrium model of the arc is based on a complete diffusion treatment of particle fluxes, a generalized form of Ohm's law, and boundary conditions accounting for the space-charge sheaths within the magneto-hydrodynamic approach. Experiments have been carried out for electric currents in the range 5-200 A. The electric arc has been initiated between a WC20 cathode and a water-cooled copper plate placed 0.8 mm from each other. The arc length has been continuously increased by 0.1 mm up to 15 mm and the arc voltage has been simultaneously recorded. Modelling and experimental results will be presented and discussed.

  3. Parameter estimation of extended free-burning electric arc within 1 kA

    Science.gov (United States)

    Sun, Qiuqin; Liu, Hao; Wang, Feng; Chen, She; Zhai, Yujia

    2018-05-01

    A long electric arc, as a common phenomenon in the power system, not only damages the electrical equipment but also threatens the safety of the system. In this work, a series of tests on a long electric arc in free air have been conducted. The arc voltage and current data were obtained, and the arc trajectories were captured using a high speed camera. The arc images were digitally processed by means of edge detection, and the length is formulated and achieved. Based on the experimental data, the characteristics of the long arc are discussed. It shows that the arc voltage waveform is close to the square wave with high-frequency components, whereas the current is almost sinusoidal. As the arc length elongates, the arc voltage and the resistance increase sharply. The arc takes a spiral shape with the effect of magnetic forces. The arc length will shorten briefly with the occurrence of the short-circuit phenomenon. Based on the classical Mayr model, the parameters of the long electric arc, including voltage gradient and time constant, with different lengths and current amplitudes are estimated using the linear least-square method. To reduce the computational error, segmentation interpolation is also employed. The results show that the voltage gradient of the long arc is mainly determined by the current amplitude but almost independent of the arc length. However, the time constant is jointly governed by these two variables. The voltage gradient of the arc with the current amplitude at 200-800 A is in the range of 3.9 V/cm-20 V/cm, and the voltage gradient decreases with the increase in current.

  4. Electric fields and energetic particle precipitation in an auroral arc

    International Nuclear Information System (INIS)

    Edwards, T.; Bryant, D.A.; Smith, M.J.; Fahleson, U.; Faelthammer, C.G.; Pedersen, A.

    1975-01-01

    Preliminary results are presented from a rocket flight across a single discrete auroral arc extending from early evening to magnetic midnight. The rocket was fired at the end of the growth phase of an isolated auroral substorm. It carried a separating payload to make simultaneous measurements of electrons (0.6 - 25 keV, pitch angle 0 - 60 0 ) at two points. From the main vehicle measurements were also made of ions (same energy range) as well as of the electric field vector and plasma parameters. The electron spectra were hardest towards the centre of the arc, where the peak intensity was at 9.5 keV. The precipitation structure observed was similar to that of an 'inverted V' but on a smaller scale. The electric field was northward south of the arc, southward within the arc and somewhat north of it, then again northward. At the northern edge of the precipitation region the field was very irregular. The field strength reached a maximum of about 50 mV/m some distance north of the arc. The line integral of the electric field across the arc was of the order of a kilovolt, too small to be responsible for the changes observed in the electron energy spectrum. An electric potential distribution, consistent with the results obtained, is present. (Auth.)

  5. DIAGNOSTIC FEATURES RESEARCH OF AC ELECTRIC POINT MOTORS

    Directory of Open Access Journals (Sweden)

    S. YU. Buryak

    2014-05-01

    Full Text Available Purpose.Considerable responsibility for safety of operation rests on signal telephone and telegraph department of railway. One of the most attackable nodes (both automation systems, and railway in whole is track switches. The aim of this investigation is developing such system for monitoring and diagnostics of track switches, which would fully meet the requirements of modern conditions of high-speed motion and heavy trains and producing diagnostics, collection and systematization of data in an automated way. Methodology. In order to achieve the desired objectives research of a structure and the operating principle description of the switch electric drive, sequence of triggering its main units were carried out. The operating characteristics and settings, operating conditions, the causes of failures in the work, andrequirements for electric drives technology and their service were considered and analyzed. Basic analysis principles of dependence of nature of the changes the current waveform, which flows in the working circuit of AC electric point motor were determined. Technical implementation of the monitoring and diagnosing system the state of AC electric point motors was carried out. Findings. Signals taken from serviceable and defective electric turnouts were researched. Originality. Identified a strong interconnectionbetween the technical condition of the track switchand curve shape that describes the current in the circuit of AC electric point motor during operation which is based on the research processes that have influence on it during operation. Practical value. Shown the principles of the technical approach to the transition from scheduled preventive maintenance to maintenance of real condition for a more objective assessment and thus more rapid response to emerging or failures when they occur gradually, damages and any other shortcomings in the work track switch AC drives.

  6. High benefits approach for electrical energy conversion in electric vehicles from DC to PWM-AC without any generated harmonic

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2014-01-01

    Highlights: • Novel hybrid power source including AC feature for using in electric/hybrid vehicles. • Minimizing the energy loss in electric/hybrid vehicles by using the proposed system. • Suitable AC wave form for braking/accelerating purposes in electric/hybrid vehicles. • A novelty is that the harmonic generated by the added AC feature is really zero. • Another novelty is the capability of choosing arbitrary frequency for AC feature. - Abstract: This paper presents a novel hybrid power source, including a Li-ion battery together with an interface, which generates simultaneously electrical energy with the forms of both DC and AC for electric vehicles. A novel and high benefits approach is applied to convert the electrical energy of the Li-ion battery from DC form to single-phase symmetric pulse-width modulation (PWM)-AC form. Harmonic generation is one of the important problems when electrical energy is converted from DC to AC but there are not any generated harmonic during the DC/AC conversion using the proposed technique. The proposed system will be widely used in electric/hybrid vehicles because it has many benefits. Minimizing the energy loss (saving energy), no generated harmonic (it is really zero), the capability of arbitrary/necessary frequency selection for output AC voltage and the ability of long distance energy transmission are some novelties and advantages of the proposed system. The proposed hybrid power source including DC/AC PWM inverter is simulated in Proteus 6 software environment and a laboratory-based prototype of the hybrid power source is constructed to validate the theoretical and simulation results. Simulation and experimental results are presented to prove the superiority of the proposed hybrid power supply

  7. Efficient use of power in electric arc furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, E R; Medley, J E

    1978-02-01

    The maximum transfer of electric energy to the metal in an arc furnace depends on the length of arc and the impedance of the electrical supply system from the generators to the arc itself. The use of directly-reduced sponge iron by continuous feeding results in long periods of flat-bath operation, when it is particularly important to keep a short high-current arc to get the heat into the metal rather than to the refractories, which would suffer excessive wear. By reference to a 125 ton furnace, a method of assessing the optimum operating currents and power factors and the effects of differing power-supply systems is illustrated. The importance of a low-impedance power system is illustrated, and the possibility of being unable to use the maximum furnace power without excessive refractory wear is noted. The particular problems of connecting arc-furnace loads to electrical supply systems are reviewed, and consideration is given to the problem of voltage flicker. The use of compensators is discussed with reference to existing installations, in which strong supplies from the supply-authority system are not economically available. The furnace operating characteristics, which indicate the optimum points of working, have to be checked on commissioning, and the test procedures are outlined. The optimum points for each type of charge and steel can be assessed only during their actual production. The importance of proper recording of relevant data is stressed, and reference is made to the use of computers and automatic power-input controllers.

  8. AC Application of HTS Conductors in Highly Dynamic Electric Motors

    International Nuclear Information System (INIS)

    Oswald, B; Best, K-J; Setzer, M; Duffner, E; Soell, M; Gawalek, W; Kovalev, L K

    2006-01-01

    Based on recent investigations we design highly dynamic electric motors up to 400 kW and linear motors up to 120 kN linear force using HTS bulk material and HTS tapes. The introduction of HTS tapes into AC applications in electric motors needs fundamental studies on double pancake coils under transversal magnetic fields. First theoretical and experimental results on AC field distributions in double-pancake-coils and corresponding AC losses will be presented. Based on these results the simulation of the motor performance confirms extremely high power density and efficiency of both types of electric motors. Improved characteristics of rare earth permanent magnets used in our motors at low temperatures give an additional technological benefit

  9. Particle injection into the Castor tokamak by electric arcs

    International Nuclear Information System (INIS)

    Hildebrandt, D.; Juettner, B.; Pursch, H.; Jakubka, K.; Stoeckel, J.; Zacek, F.

    1989-01-01

    The influence of arcing on the tokamak discharge was investigated in the Castor tokamak. A special calibrated gun which emitted tantalum by artificially ignited electric arcs, was used to study the transport of the injected tantalum ions, neutrals and droplets. The injection of tantalum led to an increase in electron density and to a change of plasma position only if the transported charge was higher than 0.01 C. As the naturally occurring arcs are well below this limit, the arcing in tokamaks is rather the consequence than the reason of instabilities. (J.U.)

  10. The use of rotating electric arc for spherical particle production

    International Nuclear Information System (INIS)

    Bica, I.

    2000-01-01

    This work presents and experimental device designed to obtain spherical particles by mans of a rotating electric arc. A rotation frequency of the electric arc of 750 s''-1, a voltage of 50 V(dc) and a current of 100 A was used. The mass flow rate was 3 g.min''-1. Under these conditions particles of 15 to 20 μm in diameter were obtained. (Author) 8 refs

  11. Coefficient of electrical transport vacuum arc for metals and alloys

    International Nuclear Information System (INIS)

    Markov, G.V.; Ehjzner, B.A.

    1998-01-01

    In this article the authors propose formulas for estimation coefficient of electrical transport vacuum arc for metals and alloys. They also represent results of analysis principal physical processes which take place in cathode spot vacuum arc

  12. Effect of AC electric fields on the stabilization of premixed bunsen flames

    KAUST Repository

    Kim, Minkuk

    2011-01-01

    The stabilization characteristics of laminar premixed bunsen flames have been investigated experimentally for stoichiometric methane-air mixture by applying AC voltage to the nozzle with the single-electrode configuration. The detachment velocity either at blowoff or partial-detachment has been measured by varying the applied voltage and frequency of AC. The result showed that the detachment velocity increased with the applied AC electric fields, such that the flame could be nozzle-attached even over five times of the blowoff velocity without having electric fields. There existed four distinct regimes depending on applied AC voltage and frequency. In the low voltage regime, the threshold condition of AC electric fields was identified, below which the effect of electric fields on the detachment velocity is minimal. In the moderate voltage regime, the flame base oscillated with the frequency synchronized to AC frequency and the detachment velocity increased linearly with the applied AC voltage and nonlinearly with the frequency. In the high voltage regime, two different sub-regimes depending on AC frequency were observed. For relatively low frequency, the flame base oscillated with the applied AC frequency together with the half frequency and the variation of the detachment velocity was insensitive to the applied voltage. For relatively high frequency, the stabilization of the flame was significantly affected by the generation of streamers and the detachment velocity decreased with the applied voltage. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  13. Measurement of ac electrical characteristics of SSC dipole magnets at Brookhaven

    International Nuclear Information System (INIS)

    Smedley, K.

    1992-04-01

    The SSC collider is designed to have circumference of 87 km. The superconducting magnets along the collider ring are grouped into ten sectors. Each sector, a string of average length of 8.7 km,m is powered by one power source located near the center of the sector. Because of the alternating-current (ac) electrical characteristics of the magnets, the power supply ripple currents and transients form a time and space distribution in the magnet string which affects particle motions. Additionally, since the power supply load is a magnet string, the current regulation loop design is highly dependent upon the ac electrical characteristics of the magnets. A means is needed to accurately determine the ac electrical characteristics of the superconducting magnets. The ac characteristics of magnets will be used to predict the ripple distribution of the long string of superconducting magnets. Magnet ac characteristics can also provide necessary information for the regulation loop design. This paper presents a method for measuring the ac characteristics of superconducting magnets. Two collider dipole magnets, one superconducting and one at room temperature, were tested at Brookhaven National Lab

  14. Nature of Dielectric Properties, Electric Modulus and AC Electrical Conductivity of Nanocrystalline ZnIn2Se4 Thin Films

    Science.gov (United States)

    El-Nahass, M. M.; Attia, A. A.; Ali, H. A. M.; Salem, G. F.; Ismail, M. I.

    2018-02-01

    The structural characteristics of thermally deposited ZnIn2Se4 thin films were indexed utilizing x-ray diffraction as well as scanning electron microscopy techniques. Dielectric properties, electric modulus and AC electrical conductivity of ZnIn2Se4 thin films were examined in the frequency range from 42 Hz to 106 Hz. The capacitance, conductance and impedance were measured at different temperatures. The dielectric constant and dielectric loss decrease with an increase in frequency. The maximum barrier height was determined from the analysis of the dielectric loss depending on the Giuntini model. The real part of the electric modulus revealed a constant maximum value at higher frequencies and the imaginary part of the electric modulus was characterized by the appearance of dielectric relaxation peaks. The AC electrical conductivity obeyed the Jonscher universal power law. Correlated barrier hopping model was the appropriate mechanism for AC conduction in ZnIn2Se4 thin films. Estimation of the density of states at the Fermi level and activation energy, for AC conduction, was carried out based on the temperature dependence of AC electrical conductivity.

  15. Thermal and Arc Flash Analysis of Electric Motor Drives in Distribution Networks

    OpenAIRE

    Nikolovski, Srete; Mlakić, Dragan; Alibašić, Emir

    2017-01-01

    The paper presents thermal analysis and arc flash analysis taking care of protection relays coordination settings for electric motor drives connected to the electrical network. Power flow analysis is performed to check if there are any voltage and loading violation conditions in the system. Fault analysis is performed to check the short circuit values and compute arc flash energy dissipated at industrial busbars to eliminate damage to electrical equipment and electrical shocks and hazard to p...

  16. Novel non-equilibrium modelling of a DC electric arc in argon

    Science.gov (United States)

    Baeva, M.; Benilov, M. S.; Almeida, N. A.; Uhrlandt, D.

    2016-06-01

    A novel non-equilibrium model has been developed to describe the interplay of heat and mass transfer and electric and magnetic fields in a DC electric arc. A complete diffusion treatment of particle fluxes, a generalized form of Ohm’s law, and numerical matching of the arc plasma with the space-charge sheaths adjacent to the electrodes are applied to analyze in detail the plasma parameters and the phenomena occurring in the plasma column and the near-electrode regions of a DC arc generated in atmospheric pressure argon for current levels from 20 A up to 200 A. Results comprising electric field and potential, current density, heating of the electrodes, and effects of thermal and chemical non-equilibrium are presented and discussed. The current-voltage characteristic obtained is in fair agreement with known experimental data. It indicates a minimum for arc current of about 80 A. For all current levels, a field reversal in front of the anode accompanied by a voltage drop of (0.7-2.6) V is observed. Another field reversal is observed near the cathode for arc currents below 80 A.

  17. Novel non-equilibrium modelling of a DC electric arc in argon

    International Nuclear Information System (INIS)

    Baeva, M; Uhrlandt, D; Benilov, M S; Almeida, N A

    2016-01-01

    A novel non-equilibrium model has been developed to describe the interplay of heat and mass transfer and electric and magnetic fields in a DC electric arc. A complete diffusion treatment of particle fluxes, a generalized form of Ohm’s law, and numerical matching of the arc plasma with the space-charge sheaths adjacent to the electrodes are applied to analyze in detail the plasma parameters and the phenomena occurring in the plasma column and the near-electrode regions of a DC arc generated in atmospheric pressure argon for current levels from 20 A up to 200 A. Results comprising electric field and potential, current density, heating of the electrodes, and effects of thermal and chemical non-equilibrium are presented and discussed. The current–voltage characteristic obtained is in fair agreement with known experimental data. It indicates a minimum for arc current of about 80 A. For all current levels, a field reversal in front of the anode accompanied by a voltage drop of (0.7–2.6) V is observed. Another field reversal is observed near the cathode for arc currents below 80 A. (paper)

  18. In-flight particle measurement of glass raw materials in hybrid heating of twelve-phase AC arc with oxygen burner

    International Nuclear Information System (INIS)

    Liu, Y; Tanaka, M; Ikeba, T; Choi, S; Watanabe, T

    2012-01-01

    The high temperature provided by a 12-phase AC arc plasma is beneficial to finish vitrification reaction in milliseconds. Another heating method called “hybrid plasma” combines multi-phase AC arc and oxygen burner are expected to improve glass quality and increase productivity with minimum energy consumption. In this study, recent works on the development of in-flight particle measurement in hybrid plasma system are presented. Two-colour pyrometry offers considerable advantages for measuring particle temperatures in flight. A high-speed camera equipped with a band-pass filter system was applied to measure the in-flight temperatures of glass particles. The intensity recorded by the camera was calibrated using a tungsten halogen lamp. This technique also allows evaluating the fluctuation of the average particle temperature within millisecond in plasma region.

  19. Studies of hydrogen pellet acceleration by electric arc discharge

    International Nuclear Information System (INIS)

    Andersen, S.

    1986-01-01

    A preliminary design for an arc heated gas gun is described. The experimental development of the final design constitutes the final phase in contract work for JET. The gun consist of a cryogenic arc chamber connected to the inlet of a gun barrel. With a dose of H 2 -gas condensed in the arc chamber and a D 2 -pellet punch loaded into the barrel the gun is fired by the ignition of an electrical discharge in the arc chamber. The pellet is accelerated by the exhaust of hot H 2 -gas from the arc chamber and its velocity and acceleration is measured by time-of-flight along and outside the barrel. The pressure development by the arc is monitored by pressure transducers as well in the arc chamber as in the barrel. The performance of the gun is described in terms of arc current and voltage versus time as functions of power supply configuration and H 2 propellant dose. The time behaviour of the propellant pressure in the arc chamber and in the barrel is shown in relation to the arc current. Pellet acceleration and pressure development in the gun barrel for the arc heated gas gun is discussed and compared to results obtained by conventional fast valve acceleration

  20. MATHEMATICAL MODELING OF AC ELECTRIC POINT MOTOR

    Directory of Open Access Journals (Sweden)

    S. YU. Buryak

    2014-03-01

    Full Text Available Purpose. In order to ensure reliability, security, and the most important the continuity of the transportation process, it is necessary to develop, implement, and then improve the automated methods of diagnostic mechanisms, devices and rail transport systems. Only systems that operate in real time mode and transmit data on the instantaneous state of the control objects can timely detect any faults and thus provide additional time for their correction by railway employees. Turnouts are one of the most important and responsible components, and therefore require the development and implementation of such diagnostics system.Methodology. Achieving the goal of monitoring and control of railway automation objects in real time is possible only with the use of an automated process of the objects state diagnosing. For this we need to know the diagnostic features of a control object, which determine its state at any given time. The most rational way of remote diagnostics is the shape and current spectrum analysis that flows in the power circuits of railway automatics. Turnouts include electric motors, which are powered by electric circuits, and the shape of the current curve depends on both the condition of the electric motor, and the conditions of the turnout maintenance. Findings. For the research and analysis of AC electric point motor it was developed its mathematical model. The calculation of parameters and interdependencies between the main factors affecting the operation of the asynchronous machine was conducted. The results of the model operation in the form of time dependences of the waveform curves of current on the load on engine shaft were obtained. Originality. During simulation the model of AC electric point motor, which satisfies the conditions of adequacy was built. Practical value. On the basis of the constructed model we can study the AC motor in various mode of operation, record and analyze current curve, as a response to various changes

  1. Effects of AC Electric Field on Small Laminar Nonpremixed Flames

    KAUST Repository

    Xiong, Yuan

    2015-01-01

    Electric field can be a viable method in controlling various combustion properties. Comparing to traditional actuators, an application of electric field requires very small power consumption. Especially, alternating current (AC) has received

  2. Internal Arc: People safety in the electrical wiring

    International Nuclear Information System (INIS)

    Inchausti, J. M.

    2009-01-01

    The aim of this article is to describe the internal arc phenomenon, an extremely fast, almost explosive and unattended process of transformation form an initial electric power to the generation of a pressure and heat wave inside the medium its produced its consequences for safety, current methods of limiting them and current regulations in general for equipment used in medium-voltage electrical distribution networks. Taking into account that this type of equipment is found thought the distribution network in both public buildings and unrestricted access areas, safety (of operators and the general public) must be taken into account in the design of equipment and installations to minimize the risk of internal arcs occurring. This is the gist of, for example, ITC 16 of the Spanish Regulation on Power Plants and transformer substations. In addition to the construction aspects specific to each device in which the manufacturer has to takes steps to minimize the risks of an internal arcs occurring. This is the gist of, for example, ITC 16 of the Spanish Regulation on Power Plants and transformer substations. In addition to the construction aspects specific to each device in which an internal arc occurring, it is understood to be vitally important that users, installers and designers of Medium Voltage installations are familiar with the installation conditions stated by the manufacturer and thus avoid risks. (Author) 14 refs

  3. Effects of AC Electric Field on Small Laminar Nonpremixed Flames

    KAUST Repository

    Xiong, Yuan

    2015-04-01

    Electric field can be a viable method in controlling various combustion properties. Comparing to traditional actuators, an application of electric field requires very small power consumption. Especially, alternating current (AC) has received attention recently, since it could modulate flames appreciably even for the cases when direct current (DC) has minimal effects. In this study, the effect of AC electric fields on small coflow diffusion flames is focused with applications of various laser diagnostic techniques. Flow characteristics of baseline diffusion flames, which corresponds to stationary small coflow diffusion flames when electric field is not applied, were firstly investigated with a particular focus on the flow field in near-nozzle region with the buoyancy force exerted on fuels due to density differences among fuel, ambient air, and burnt gas. The result showed that the buoyancy force exerted on the fuel as well as on burnt gas significantly distorted the near-nozzle flow-fields. In the fuels with densities heavier than air, recirculation zones were formed very close to the nozzle exit. Nozzle heating effect influenced this near-nozzle flow-field particularly among lighter fuels. Numerical simulations were also conducted and the results showed that a fuel inlet boundary condition with a fully developed velocity profile for cases with long fuel tubes should be specified inside the fuel tube to obtain satisfactory agreement in both the flow and temperature fields with those from experiment. With sub-critical AC applied to the baseline flames, particle image velocimetry (PIV), light scattering, laser-induced incandescence (LII), and laser-induced fluores- cence (LIF) techniques were adopted to identify the flow field and the structures of OH, polycyclic aromatic hydrocarbons (PAHs), soot zone. Under certain AC condi- tions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered from the

  4. Innovation in electric arc furnaces scientific basis for selection

    CERN Document Server

    Toulouevski, Yuri N

    2013-01-01

    This book equips a reader with knowledge necessary for critical analysis of  innovations in electric arc furnaces and helps to select the most effective ones and for their successful implementation. The book also covers general issues related to history of development, current state and prospects of steelmaking in Electric Arc Furnaces. Therefore, it can be useful for everybody who studies metallurgy, including students of colleges and universities. The modern concepts of mechanisms of Arc Furnace processes are are discussed in the book at the level sufficient to solve practical problems: To help readers lacking knowledge required in the field of heat transfer as well as hydro-gas dynamics, it contains several chapters which provide the required minimum of information in these fields of science. In order to better assess different innovations, the book describes experience of the application of similar innovations in open-hearth furnaces and oxygen converters. Some promising ideas on key issues regarding int...

  5. Elements of the electric arc furnace's environmental management

    Science.gov (United States)

    Ioana, Adrian; Semenescu, Augustin; Costoiu, Mihnea; Marcu, Dragoş

    2017-12-01

    The paper presents a theoretical and experimental analysis of the polluting generating mechanisms for steel making in the Electric Arc Furnaces (EAF). The scheme for the environment's polluting system through the EAF is designed and presented in this paper. The ecological experimenting consisted of determining by specialized measures of the dust percentage in the evacuated gases from the EAF and of thereof gas pollutants. From the point of view of reducing the impact on the environment, the main problem of the electric arc furnace (EAF) is the optimization of the powder collecting from the process gases, both from the furnace and from the work-area. The paper deals with the best dependence between the aggregate's constructive, functional and technological factors, which are necessary for the furnace's ecologization and for its energetically-technologically performances increasing.

  6. Low voltage initiation of damaging arcs between electrical contacts

    International Nuclear Information System (INIS)

    Cuthrell, R.E.

    1975-07-01

    Metallic arcs were found to precede the firm contacting of electrical contacts which were closed without bounce. When the open-circuit voltages were below the ionization potential, the initiation of these arcs was found to depend on the presence of asperities on the surfaces and on asperity contracting, melting, and pinching off by magnetic forces. The arc is thought to be initiated inductively when the molten metallic asperity contact is pinched off, and the electrode damage is similar to that produced by the arcing of opening contacts. Arcing could not be produced for exceptionally smooth surfaces, or, for rough surfaces when the open-circuit potential was below the melting voltages of the electrode metals. In order to prevent damage to contact surfaces by melting or arcing, it is suggested that test potentials be limited to below the melting voltages, that the current be limited, the test circuits be designed to prevent inductively generated high voltage transients, and the contact surfaces be very smooth. In order to facilitate arc initiation in arc welding applications, it is suggested that the surfaces of electrodes and work pieces be roughened. (U.S.)

  7. Study of the electric Held in HTS tape caused by perpendicular AC magnetic field

    International Nuclear Information System (INIS)

    Roiberg, V; Kopansky, F.

    2004-01-01

    Full Text: In a previous work we studied the influence of AC magnetic fields on voltage-currents (V-I) characteristics of high temperature superconducting (HTS) multi filament BSCC0-2223 tapes. It was found that AC magnetic fields perpendicular to the ab plane (the wide surface of the tape) cause a linear decrease of the critical current (IC) with amplitude of the AC magnetic field. The degradation of IC in .AC field was explained by the geometrical model according to which the transport current floe: is confined to the central zone of the tape where .AC field does not penetrate. For deeper understanding of the observed phenomena we carried out a study of the time dependence of the electric field during the cycle of AC field. At the same time we expanded the frequency range to low frequencies down to 1 Hz. The main results of the work are as following. 1. The time modulation of the electric field E in the HTS tape carrying transport DC current has the double frequency relating to AC magnetic field. 2. In field amplitudes less than 70 G the electric field modulation decreases with increasing frequency in opposite to its well-pronounced increase in higher AC field amplitudes. Alcove 70 G, the electric field increases with increasing the frequency of the external magnetic field. The wave forms of the electric field are different in both amplitudes ranges. 3. E-I curves of the tape in low amplitudes are frequency independent and coincide with E-l curves in AC field with intensity equal to the AC field amplitude. 4. In high AC field amplitudes, a strong dependence of the E-I curves on frequency is observed in the frequency range of 1-40 Hz and no dependence is observed in higher frequencies. Our results suggest that a combination of the geometrical model with flux creep concepts is necessary for a better understanding of the electric field behavior in our measurement conditions

  8. ac propulsion system for an electric vehicle

    Science.gov (United States)

    Geppert, S.

    1980-01-01

    It is pointed out that dc drives will be the logical choice for current production electric vehicles (EV). However, by the mid-80's, there is a good chance that the price and reliability of suitable high-power semiconductors will allow for a competitive ac system. The driving force behind the ac approach is the induction motor, which has specific advantages relative to a dc shunt or series traction motor. These advantages would be an important factor in the case of a vehicle for which low maintenance characteristics are of primary importance. A description of an EV ac propulsion system is provided, taking into account the logic controller, the inverter, the motor, and a two-speed transmission-differential-axle assembly. The main barrier to the employment of the considered propulsion system in EV is not any technical problem, but inverter transistor cost.

  9. AC electric field assisted orientational photorefractive effect in C60-doped nematic liquid crystal

    International Nuclear Information System (INIS)

    Sun Xiudong; Pei Yanbo; Yao Fengfeng; Zhang Jianlong; Hou Chunfeng

    2007-01-01

    Photorefractive gratings were produced in a C 60 -doped nematic liquid crystal cell under the application of two coherent beams and a nonbiased sinusoidal ac electric field. The beam coupling and diffraction of the ac electric field assisted gratings were studied systematically. A stable asymmetric energy transference was obtained. Diffraction was observed when the angle (between the normal of the cell and the bisector of the writing beams) was 0 0 , and the dependence of diffraction efficiency on the peak-to-peak value of the ac voltage was similar to that at an incidence angle of 45 0 , suggesting that the role of the ac field was to facilitate the charge separation, and the space-charge field (SCF) originated predominantly from the diffusion of the ac electric field assisted photo-induced carriers under the application of nonuniform illumination and an applied ac field. The grating was produced by director reorientation induced by the cooperation of the SCF and the applied ac electric field. A self-erasing phenomenon was observed in this cell. An explanation in terms of the movement of two kinds of carriers with opposite signs was proposed

  10. Dynamic voltage-current characteristics for a water jet plasma arc

    International Nuclear Information System (INIS)

    Yang Jiaxiang; Lan Sheng; Xu Zuoming

    2008-01-01

    A virtual instrument technology is used to measure arc current, arc voltage, dynamic V-I characteristics, and nonlinear conductance for a cone-shaped water jet plasma arc under ac voltage. Experimental results show that ac arc discharge mainly happens in water vapor evaporated from water when heated. However, due to water's cooling effect and its conductance, arc conductance, reignition voltage, extinguish voltage, and current zero time are very different from those for ac arc discharge in gas work fluid. These can be valuable to further studies on mechanism and characteristics of plasma ac discharge in water, and even in gas work fluid

  11. EHV AC undergrounding electrical power performance and planning

    CERN Document Server

    Benato, Roberto

    2014-01-01

    Analytical methods of cable performance in EHV AC electrical power are discussed in this comprehensive reference. Descriptions of energization, power quality, cable safety constraints and more, guide readers in cable planning and power network operations.

  12. Maximizing the transferred power to electric arc furnace for having maximum production

    International Nuclear Information System (INIS)

    Samet, Haidar; Ghanbari, Teymoor; Ghaisari, Jafar

    2014-01-01

    In order to increase production of an EAF (electric arc furnace) by reduction of melting time, one can increase transferred power to the EAF. In other words a certain value of energy can be transferred to the EAF in less time. The transferred power to the EAF reduces when series reactors are utilized in order to have stable arc with desired characteristics. To compensate the reduced transferred power, the secondary voltage of the EAF transformer should be increased by tap changing of the transformer. On the other hand, after any tap changing of the EAF transformer, improved arc stability is degraded. Therefore, the series reactor and EAF transformer tap changing should be simultaneously determined to achieve arc with desired characteristics. In this research, three approaches are proposed to calculate the EAF system parameters, by which the optimal set-points of the different series reactor and EAF transformer taps are determined. The electric characteristics relevant to the EAF for the all transformer and series reactor taps with and without SVC (static VAr compensator) are plotted and based on these graphs the optimal set-points are tabulated. Finally, an economic evaluation is also presented for the methods. - Highlights: • The main goal is to transfer the maximum power to electric arc furnace. • Optimal transformer and series reactor taps are determined. • Arc stability and transferred power to EAF determine the optimal performance. • An economic assessment is done and the number of increased meltings is calculated

  13. Electrical and hydrodynamic characterization of a high current pulsed arc

    International Nuclear Information System (INIS)

    Sousa Martins, R; Chemartin, L; Zaepffel, C; Lalande, Ph; Soufiani, A

    2016-01-01

    High current pulsed arcs are of significant industrial interest and, aiming to reduce time and cost, there is progressively more and more need for computation tools that describe and predict the behaviour of these arcs. These simulation codes need inputs and validations by experimental databases, but accurate data is missing for this category of electric discharges. The principal lack of understanding is with respect to the transient phase of the current, which can reach thousands of amperes in a few microseconds. In this paper, we present the work realized on an experimental setup that simulates in the laboratory an arc column subjected to five levels of high pulsed current, ranging from 10 kA to 100 kA, with the last one corresponding to the standard lightning current waveform used in aircraft certification processes. This device was instrumented by high speed video cameras to assess the characteristic sizes of the arc channel and to characterize the shock wave generated by the arc expansion. The arc channel radius was measured over time during the axisymmetric phase and reached 3.2 cm. The position and velocity of the shock wave was determined during the first 140 μs. The background-oriented schlieren method was used to study the shock wave and a model for the light deflection inside the shock wave was developed. The mass density profile of the shock wave was estimated and showed good agreement with Rankine–Hugoniot relations at the wave front. Electrical measurements were also used to estimate the time-dependent resistance and conductivity of the arc for times lasting up to 50 μs. (paper)

  14. Electrical and hydrodynamic characterization of a high current pulsed arc

    Science.gov (United States)

    Sousa Martins, R.; Chemartin, L.; Zaepffel, C.; Lalande, Ph; Soufiani, A.

    2016-05-01

    High current pulsed arcs are of significant industrial interest and, aiming to reduce time and cost, there is progressively more and more need for computation tools that describe and predict the behaviour of these arcs. These simulation codes need inputs and validations by experimental databases, but accurate data is missing for this category of electric discharges. The principal lack of understanding is with respect to the transient phase of the current, which can reach thousands of amperes in a few microseconds. In this paper, we present the work realized on an experimental setup that simulates in the laboratory an arc column subjected to five levels of high pulsed current, ranging from 10 kA to 100 kA, with the last one corresponding to the standard lightning current waveform used in aircraft certification processes. This device was instrumented by high speed video cameras to assess the characteristic sizes of the arc channel and to characterize the shock wave generated by the arc expansion. The arc channel radius was measured over time during the axisymmetric phase and reached 3.2 cm. The position and velocity of the shock wave was determined during the first 140 μs. The background-oriented schlieren method was used to study the shock wave and a model for the light deflection inside the shock wave was developed. The mass density profile of the shock wave was estimated and showed good agreement with Rankine-Hugoniot relations at the wave front. Electrical measurements were also used to estimate the time-dependent resistance and conductivity of the arc for times lasting up to 50 μs.

  15. Improved SCR ac Motor Controller for Battery Powered Urban Electric Vehicles

    Science.gov (United States)

    Latos, T. S.

    1982-01-01

    An improved ac motor controller, which when coupled to a standard ac induction motor and a dc propulsion battery would provide a complete electric vehicle power train with the exception of the mechanical transmission and drive wheels was designed. In such a system, the motor controller converts the dc electrical power available at the battery terminals to ac electrical power for the induction motor in response to the drivers commands. The performance requirements of a hypothetical electric vehicle with an upper weight bound of 1590 kg (3500 lb) were used to determine the power rating of the controller. Vehicle acceleration capability, top speed, and gradeability requisites were contained in the Society of Automotive Engineers (SAE) Schedule 227a(d) driving cycle. The important capabilities contained in this driving cycle are a vehicle acceleration requirement of 0 to 72.4 kmph (0 to 45 mph) in 28 seconds a top speed of 88.5 kmph (55 mph), and the ability to negotiate a 10% grade at 48 kmph (30 mph). A 10% grade is defined as one foot of vertical rise per 10 feet of horizontal distance.

  16. Diagnostic of the electrical characteristics to control the electric arc furnaces by a computer. Session 2. 2b N. 2. 2. 10

    Energy Technology Data Exchange (ETDEWEB)

    Hradilek, Z

    1984-01-01

    The article deals with a new method of diagnostic investigation into the instaneous electric power program of the electric arc furnace by use of thermoelectric converters. The electric magnitudes are recorded by a plotter and evaluated by a computer. The results obtained by this method are examined at the Vitkovice Steelworks/Czechoslovakia/ and can be applied to optimize the power program of an electric arc furnace by a control computer.

  17. Dynamical polarizability of graphene irradiated by circularly polarized ac electric fields

    DEFF Research Database (Denmark)

    Busl, Maria; Platero, Gloria; Jauho, Antti-Pekka

    2012-01-01

    We examine the low-energy physics of graphene in the presence of a circularly polarized electric field in the terahertz regime. Specifically, we derive a general expression for the dynamical polarizability of graphene irradiated by an ac electric field. Several approximations are developed...... that allow one to develop a semianalytical theory for the weak-field regime. The ac field changes qualitatively the single- and many-electron excitations of graphene: Undoped samples may exhibit collective excitations (in contrast to the equilibrium situation), and the properties of the excitations in doped...

  18. Application of a flow generated by IR laser and AC electric field in micropumping and micromixing

    International Nuclear Information System (INIS)

    Nakano, M; Mizuno, A

    2008-01-01

    In this paper, it is described that measurement of fluid flow generated by simultaneous operation of an infrared (IR) laser and AC electric field in a microfabricated channel. When an IR laser (1026 nm) was focused under an intense AC electric field, a circulating flow was generated around the laser focus. The IR laser and the electric field generate two flow patterns of the electrohydrodynamicss. When the laser focus is placed at the center of the gap between electrodes, the flow pattern is parallel to the AC electric field toward electrodes from the centre. On the other hand, when the laser focus is placed close to one of the electrodes, one directional flow is generated. First flow pattern can be used as a micromixer and the second one as a micropump. Flow velocity profiles of the two flow patterns were measured as a function of the laser power, intensity of the AC electric field and AC frequency.

  19. Stability of alternating current gliding arcs

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Salewski, Mirko; Leipold, Frank

    2014-01-01

    on Ohm’s law indicates that the critical length of alternating current (AC) gliding arc discharge columns can be larger than that of a corresponding direct current (DC) gliding arc. This finding is supported by previously published images of AC and DC gliding arcs. Furthermore, the analysis shows......A gliding arc is a quenched plasma that can be operated as a non-thermal plasma at atmospheric pressure and that is thus suitable for large-scale plasma surface treatment. For its practical industrial use the discharge should be extended stably in ambient air. A simple analytical calculation based...... that the critical length can be increased by increasing the AC frequency, decreasing the serial resistance and lowering the gas flow rate. The predicted dependence of gas flow rate on the arc length is experimentally demonstrated. The gap width is varied to study an optimal electrode design, since the extended non...

  20. Optical emission from a small scale model electric arc furnace in 250-600 nm region.

    Science.gov (United States)

    Mäkinen, A; Niskanen, J; Tikkala, H; Aksela, H

    2013-04-01

    Optical emission spectroscopy has been for long proposed for monitoring and studying industrial steel making processes. Whereas the radiative decay of thermal excitations is always taking place in high temperatures needed in steel production, one of the most promising environment for such studies are electric arc furnaces, creating plasma in excited electronic states that relax with intense characteristic emission in the optical regime. Unfortunately, large industrial scale electric arc furnaces also present a challenging environment for optical emission studies and application of the method is not straightforward. To study the usability of optical emission spectroscopy in real electric arc furnaces, we have developed a laboratory scale DC electric arc furnace presented in this paper. With the setup, optical emission spectra of Fe, Cr, Cr2O3, Ni, SiO2, Al2O3, CaO, and MgO were recorded in the wavelength range 250-600 nm and the results were analyzed with the help of reference data. The work demonstrates that using characteristic optical emission, obtaining in situ chemical information from oscillating plasma of electric arc furnaces is indeed possible. In spite of complications, the method could possibly be applied to industrial scale steel making process in order to improve its efficiency.

  1. Experimental study on the effects of AC electric fields on flame spreading over polyethylene-insulated electric-wire

    KAUST Repository

    Jin, Young Kyu

    2010-11-01

    In this present study, we experimentally investigated the effects of electric fields on the characteristics of flames spreading over electric-wires with AC fields. The dependence of the rate at which a flame spreads over polyethylene-insulated wires on the frequency and amplitude of the applied AC electric field was examined. The spreading of the flame can be categorized into linear spreading and non-linearly accelerated spreading of flame. This categorization is based on the axial distribution of the field strength of the applied electric field. The rate at which the flame spreads is highly dependent on the inclined direction of the wire fire. It could be possible to explain the spreading of the flame on the basis of thermal balance. © 2010 The Korean Society of Mechanical Engineers.

  2. Simulation of a DC electric arc furnace for steelmaking: study in the arc and bath regions

    International Nuclear Information System (INIS)

    Ramirez Argaez, M. A.; Trapaga Martinez, L. G.

    2001-01-01

    A mathematical model was developed to describe fluid flow, heat transfer, and electromagnetic phenomena in the arc and bath regions of DC electric Arc Furnaces (DC-EAF). The model is used to examine the effect on flow patterns and temperature distribution in the bath, under the influence of both an arc and bottom argon injection in steel or steel/slag systems. Validation of the model employed experimental measurements from systems physically related to DC-EAF from literature. For the conditions analyzed, electromagnetic forces dominate the fluid motion in the bath. Buoyancy and shear forces from the arc have a negligible effect in driving the flow; however, they partially counteract the electromagnetic forces. Slag decreases fluid motion in the steel and enhances temperature stratification in the system. Stirring of the bath, using a 3-nozzle inert gas injection system, is found to promote temperature uniformity in the regions near the lateral wall of the furnace. (Author) 24 refs

  3. Inner tubes cutting method by electrical arc saw

    International Nuclear Information System (INIS)

    Thome, P.

    1990-01-01

    The research program deals on the definition of tools used for dismantling steam generator tubes bundle of PWR and on tool used for cutting pipes of great diameter by using the process of cutting by electrical arc saw. The remote tools are used for cutting by the interior pipes of contamined circuits [fr

  4. Experimental Study on Downwardly Spreading Flame over Inclined Polyethylene-insulated Electrical Wire with Applied AC Electric Fields

    KAUST Repository

    Lim, Seung Jae

    2014-12-30

    An experimental study on downwardly spreading flame over slanted electrical wire, which is insulated by Polyethylene (PE), was conducted with applied AC electric fields. The result showed that the flame spread rate decreased initially with increase in inclination angle of wire and then became nearly constant. The flame shape was modified significantly with applied AC electric field due to the effect of ionic wind. Such a variation in flame spread rate could be explained by a thermal balance mechanism, depending on flame shape and slanted direction of flame. Extinction of the spreading flame was not related to angle of inclination, and was described well by a functional dependency upon the frequency and voltage at extinction.

  5. Space Charge Modulated Electrical Breakdown of Oil Impregnated Paper Insulation Subjected to AC-DC Combined Voltages

    Directory of Open Access Journals (Sweden)

    Yuanwei Zhu

    2018-06-01

    Full Text Available Based on the existing acknowledgment that space charge modulates AC and DC breakdown of insulating materials, this investigation promotes the related investigation into the situations of more complex electrical stress, i.e., AC-DC combined voltages. Experimentally, the AC-DC breakdown characteristics of oil impregnated paper insulation were systematically investigated. The effects of pre-applied voltage waveform, AC component ratio, and sample thickness on AC-DC breakdown characteristics were analyzed. After that, based on an improved bipolar charge transport model, the space charge profiles and the space charge induced electric field distortion during AC-DC breakdown were numerically simulated to explain the differences in breakdown characteristics between the pre-applied AC and pre-applied DC methods under AC-DC combined voltages. It is concluded that large amounts of homo-charges are accumulated during AC-DC breakdown, which results in significantly distorted inner electric field, leading to variations of breakdown characteristics of oil impregnated paper insulation. Therefore, space charges under AC-DC combined voltages must be considered in the design of converter transformers. In addition, this investigation could provide supporting breakdown data for insulation design of converter transformers and could promote better understanding on the breakdown mechanism of insulating materials subjected to AC-DC combined voltages.

  6. An Integrated Multifunctional Bidirectional AC/DC and DC/DC Converter for Electric Vehicles Applications

    OpenAIRE

    Liwen Pan; Chengning Zhang

    2016-01-01

    This paper presents an on-board vehicular battery charger that integrates bidirectional AC/DC converter and DC/DC converter to achieve high power density for application in electric vehicles (EVs). The integrated charger is able to transfer electrical energy between the battery pack and the electric traction system and to function as an AC/DC battery charger. The integrated charger topology is presented and the design of passive components is discussed. The control schemes are developed for m...

  7. Determination of the characteristics of an electric arc plasma contaminated by vapors from insulators

    International Nuclear Information System (INIS)

    Abbaoui, M.; Cheminat, B.

    1991-01-01

    An experimental study at atmospheric pressure carried out on plasma penetrated by vapors from different industrial insulators allowed the showing of the influence of the nature of the insulator upon the characteristics of the electric arc plasma; i.e., an increase of the temperature, electron density, electric field, and extinction velocity of the arc. Measurements have been made spectrometrically and by means of probes

  8. Translational, rotational, vibrational and electron temperatures of a gliding arc discharge

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Ehn, Andreas; Gao, Jinlong

    2017-01-01

    , 0) band was used to simulate the rotational temperature (Tr) of the gliding arc discharge whereas the NO A–X (1, 0) and (0, 1) bands were used to determine its vibrational temperature (Tv). The instantaneous reduced electric field strength E/N was obtained by simultaneously measuring......Translational, rotational, vibrational and electron temperatures of a gliding arc discharge in atmospheric pressure air were experimentally investigated using in situ, non-intrusive optical diagnostic techniques. The gliding arc discharge was driven by a 35 kHz alternating current (AC) power source...... and operated in a glow-type regime. The two-dimensional distribution of the translational temperature (Tt) of the gliding arc discharge was determined using planar laser-induced Rayleigh scattering. The rotational and vibrational temperatures were obtained by simulating the experimental spectra. The OH A–X (0...

  9. Highly stable carbon nanotube field emitters on small metal tips against electrical arcing for miniature X-ray tubes

    International Nuclear Information System (INIS)

    Ha, Jun Mok; Kim, Hyun Jin; Kim, Hyun Nam; Raza, Hamid Saeed; Cho, Sung Oh

    2015-01-01

    If CNT emitters are operated at a high voltage or at a high electric field, electrical arcing (or vacuum breakdown) can occur. Arcing can be initiated by the removed CNTs, impurities on the CNTs or substrates, protrusion of CNTs, low operating vacuum, and a very high electric field. Since arcing is accompanied with a very high current flow and it can produce plasma channel near the emitter, CNTs are seriously damaged or sometimes CNTs are almost completely removed from the substrate by the arcing events. Detachment of CNTs from a substrate is an irreversible catastrophic phenomenon for a device operation. In addition to the detachment of CNTs, arcing induces a sudden voltage drop and thus device operation is stopped. The metal mixture strongly attached CNTs to the tip substrate. Due to the strong adhesion, CNT emitters could be pre-treated with electrical conditioning process without seriously damaging the CNTs even though many intense arcing events were induced at the small and sharp geometry of the tip substrate. Impurities that were loosely bound to the substrates were almost removed and CNTs heights became uniform after the electrical conditioning process

  10. Electrodeformation of multi-bilayer spherical concentric membranes by AC electric fields

    Science.gov (United States)

    Lira-Escobedo, J.; Arauz-Lara, J.; Aranda-Espinoza, H.; Adlerz, K.; Viveros-Mendez, P. X.; Aranda-Espinoza, S.

    2017-09-01

    It is now well established that external stresses alter the behaviour of cells, where such alterations can be as profound as changes in gene expression. A type of stresses of particular interest are those due to alternating-current (AC) electric fields. The effect of AC fields on cells is still not well understood, in particular it is not clear how these fields affect the cell nucleus and other organelles. Here, we propose that one possible mechanism is through the deformation of the membranes. In order to investigate the effect of AC fields on the morphological changes of the cell organelles, we modelled the cell as two concentric bilayer membranes. This model allows us to obtain the deformations induced by the AC field by balancing the elastic energy and the work done by the Maxwell stresses. Morphological phase diagrams are obtained as a function of the frequency and the electrical properties of the media and membranes. We demonstrate that the organelle shapes can be changed without modifying the shape of the external cell membrane and that the organelle deformation transitions can be used to measure, for example, the conductivity of the nucleus.

  11. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD)

    International Nuclear Information System (INIS)

    Oustadakis, P.; Tsakiridis, P.E.; Katsiapi, A.; Agatzini-Leonardou, S.

    2010-01-01

    The present paper is the first of a series of two articles dealing with the development of an integrated process for the recovery of zinc from electric arc furnace dust (EAFD), a hazardous industrial waste generated in the collection of particulate material during steelmaking process via electric arc furnace. Part I presents the EAFD characterization and its leaching process by diluted sulphuric acid, whereas Part II deals with the purification of the leach liquor and the recovery of zinc by solvent extraction/electrowinning. The characterization of the examined electric arc furnace dust was carried out by using granulometry analysis, chemical analysis, X-ray diffraction (XRD), thermogravimetric/differential thermal analysis (TG/DTA) and scanning electron microscopy (SEM). The leaching process was based on the Zn extraction with diluted sulphuric acid from EAFD under atmospheric conditions and without using any preliminary treatment. Statistical design and analysis of experiments were used, in order to determine the main effects and interactions of the leaching process factors, which were: acid normality, temperature and solid to liquid ratio. The zinc recovery efficiency on the basis of EAFD weight reached 80%. X-ray diffraction and scanning electron microscopy were used for the characterization of the leached residues.

  12. An Integrated Multifunctional Bidirectional AC/DC and DC/DC Converter for Electric Vehicles Applications

    Directory of Open Access Journals (Sweden)

    Liwen Pan

    2016-06-01

    Full Text Available This paper presents an on-board vehicular battery charger that integrates bidirectional AC/DC converter and DC/DC converter to achieve high power density for application in electric vehicles (EVs. The integrated charger is able to transfer electrical energy between the battery pack and the electric traction system and to function as an AC/DC battery charger. The integrated charger topology is presented and the design of passive components is discussed. The control schemes are developed for motor drive system and battery-charging system with a power pulsation reduction circuit. Simulation results in MATLAB/Simulink and experiments on a 30-kW motor drive and 3.3-kW AC/DC charging prototype validate the performance of the proposed technology. In addition, power losses, efficiency comparison and thermal stress for the integrated charger are illustrated. The results of the analyses show the validity of the advanced integrated charger for electric vehicles.

  13. Linearized Model of Electrical Arc Furnace Suitable for Analysis of Flicker Mitigation

    Czech Academy of Sciences Publication Activity Database

    Valouch, Viktor

    2003-01-01

    Roč. 48, č. 2 (2003), s. 147-156 ISSN 0001-7043 R&D Projects: GA AV ČR IAA2057301 Institutional research plan: CEZ:AV0Z2057903 Keywords : flicker * electrical arc furnace * unified power quality conditioner Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  14. Sensorless AC electric motor control robust advanced design techniques and applications

    CERN Document Server

    Glumineau, Alain

    2015-01-01

    This monograph shows the reader how to avoid the burdens of sensor cost, reduced internal physical space, and system complexity in the control of AC motors. Many applications fields—electric vehicles, wind- and wave-energy converters and robotics, among them—will benefit. Sensorless AC Electric Motor Control describes the elimination of physical sensors and their replacement with observers, i.e., software sensors. Robustness is introduced to overcome problems associated with the unavoidable imperfection of knowledge of machine parameters—resistance, inertia, and so on—encountered in real systems. The details of a large number of speed- and/or position-sensorless ideas for different types of permanent-magnet synchronous motors and induction motors are presented along with several novel observer designs for electrical machines. Control strategies are developed using high-order, sliding-mode and quasi-continuous-sliding-mode techniques and two types of observer–controller schemes based on backstepping ...

  15. Static Measurements on HTS Coils of Fully Superconducting AC Electric Machines for Aircraft Electric Propulsion System

    Science.gov (United States)

    Choi, Benjamin B.; Hunker, Keith R.; Hartwig, Jason; Brown, Gerald V.

    2017-01-01

    The NASA Glenn Research Center (GRC) has been developing the high efficiency and high-power density superconducting (SC) electric machines in full support of electrified aircraft propulsion (EAP) systems for a future electric aircraft. A SC coil test rig has been designed and built to perform static and AC measurements on BSCCO, (RE)BCO, and YBCO high temperature superconducting (HTS) wire and coils at liquid nitrogen (LN2) temperature. In this paper, DC measurements on five SC coil configurations of various geometry in zero external magnetic field are measured to develop good measurement technique and to determine the critical current (Ic) and the sharpness (n value) of the super-to-normal transition. Also, standard procedures for coil design, fabrication, coil mounting, micro-volt measurement, cryogenic testing, current control, and data acquisition technique were established. Experimentally measured critical currents are compared with theoretical predicted values based on an electric-field criterion (Ec). Data here are essential to quantify the SC electric machine operation limits where the SC begins to exhibit non-zero resistance. All test data will be utilized to assess the feasibility of using HTS coils for the fully superconducting AC electric machine development for an aircraft electric propulsion system.

  16. Out-of-equilibrium fluctuation-dissipation relations verified by the electrical and thermoelectrical AC-conductances in a quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Crepieux, Adeline [Aix Marseille Univ., Universite de Toulon, CNRS, CPT, Marseille (France)

    2017-09-15

    The electrical and heat currents flowing through a quantum dot are calculated in the presence of a time-modulated gate voltage with the help of the out-of-equilibrium Green function technique. From the first harmonics of the currents, we extract the electrical and thermoelectrical trans-admittances and ac-conductances. Next, by a careful comparison of the ac-conductances with the finite-frequency electrical and mixed electrical-heat noises, we establish the fluctuation-dissipation relations linking these quantities, which are thus generalized out-of-equilibrium for a quantum system. It is shown that the electrical ac-conductance associated to the displacement current is directly linked to the electrical noise summed over reservoirs, whereas the relation between the thermoelectrical ac-conductance and the mixed noise contains an additional term proportional to the energy step that the electrons must overcome when traveling through the junction. A numerical study reveals however that a fluctuation-dissipation relation involving a single reservoir applies for both electrical and thermoelectrical ac-conductances when the frequency dominates over the other characteristic energies. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Improved cooler design of electric arc furnace refractory in mining industry using thermal analysis modeling and simulation

    International Nuclear Information System (INIS)

    Istadi, I.; Bindar, Y.

    2014-01-01

    Production of steel and nickel using the electric arc furnace should be focused on the intensification of energy. Improvement of energy efficiency of the most consuming facilities was achieved by improving the use of alternative energy minimization such as reducing the heat lost of hot gases, minimizing the heat radiated through refractory linings of metallurgical furnaces, and cooling the highly thermally stressed components. The refractory of electric arc furnace should be modified to achieve the best cooling system of the furnace. In this physical modeling and simulation works, four modification scenarios of wall refractory designs were simulated, i.e. refractory with basic design, refractory with deep plate coolers, refractory with extra plate coolers, and refractory with wall falling film coolers. Finally, the use of deep plate cooler and the existing waffle cooler system was considered to be the best design of efficient electric arc furnace operationally. - Highlights: • Electric arc furnace design should be focused on the intensification of energy. • Refractory of electric arc furnace were modified to achieve the best cooling system. • Four modification scenarios of the wall refractory designs were simulated. • Use of deep plate cooler and existing waffle cooler system is the best cooling

  18. 3D Numerical Analysis of the Arc Plasma Behavior in a Submerged DC Electric Arc Furnace for the Production of Fused MgO

    International Nuclear Information System (INIS)

    Wang Zhen; Wang Ninghui; Li Tie; Cao Yong

    2012-01-01

    A three dimensional steady-state magnetohydrodynamic model is developed for the arc plasma in a DC submerged electric arc furnace for the production of fused MgO. The arc is generated in a small semi-enclosed space formed by the graphite electrode, the molten bath and unmelted raw materials. The model is first used to solve a similar problem in a steel making furnace, and the calculated results are found to be in good agreement with the published measurements. The behavior of arcs with different arc lengths is also studied in the furnace for MgO production. From the distribution of the arc pressure on the bath surface it is shown that the arc plasma impingement is large enough to cause a crater-like depression on the surface of the MgO bath. The circulation of the high temperature air under the electrode may enhance the arc efficiency, especially for a shorter arc.

  19. Instability and electrical response of small laminar coflow diffusion flames under AC electric fields: Toroidal vortex formation and oscillating and spinning flames

    KAUST Repository

    Xiong, Yuan; Chung, Suk-Ho; Cha, Min

    2016-01-01

    Dynamical and electrical responses of a small coflow diffusion flame were investigated by applying a high-voltage alternating current (AC), to a fuel jet nozzle. High-speed imaging and electrical diagnostics were adopted to capture flame dynamics and electrical signals, such as voltage (V ), frequency (f ) and current (I ). In the V -f domain of 0-5kV and 0-5kHz, AC-driven instabilities, resulting in various flame modes such as an oscillation, pinch-off and spinning of flames were identified. Characteristic frequency of each mode was determined and a visualization of near-nozzle flow structures suggested a close causality of initial counter-rotating vortices (inner and outer toroidal vortices - ITV and OTV), to the other observed flame. An axisymmetric ITV shedding was identified within oscillating and pinch-off modes, while asymmetric ITV shedding was identified with the spinning mode. Integrated electric power over several AC periods correlated well with variation in the flame surface area for these instabilities, demonstrating that measured electric power is a potential indicator of combustion instabilities in electric-field-assisted combustion.

  20. Instability and electrical response of small laminar coflow diffusion flames under AC electric fields: Toroidal vortex formation and oscillating and spinning flames

    KAUST Repository

    Xiong, Yuan

    2016-06-24

    Dynamical and electrical responses of a small coflow diffusion flame were investigated by applying a high-voltage alternating current (AC), to a fuel jet nozzle. High-speed imaging and electrical diagnostics were adopted to capture flame dynamics and electrical signals, such as voltage (V ), frequency (f ) and current (I ). In the V -f domain of 0-5kV and 0-5kHz, AC-driven instabilities, resulting in various flame modes such as an oscillation, pinch-off and spinning of flames were identified. Characteristic frequency of each mode was determined and a visualization of near-nozzle flow structures suggested a close causality of initial counter-rotating vortices (inner and outer toroidal vortices - ITV and OTV), to the other observed flame. An axisymmetric ITV shedding was identified within oscillating and pinch-off modes, while asymmetric ITV shedding was identified with the spinning mode. Integrated electric power over several AC periods correlated well with variation in the flame surface area for these instabilities, demonstrating that measured electric power is a potential indicator of combustion instabilities in electric-field-assisted combustion.

  1. Electrical and spectroscopic diagnostic of an atmospheric double arc argon plasma jet

    International Nuclear Information System (INIS)

    Tu, X; Cheron, B G; Yan, J H; Cen, K F

    2007-01-01

    An atmospheric argon plasma jet generated by an original dc double anode plasma torch has been investigated through its electrical and spectroscopic diagnostics. The arc instabilities and dynamic behavior of the argon plasma are analyzed using classical tools such as the statistical method, fast Fourier transform (FFT) and correlation function. The takeover mode is identified as the fluctuation characteristic of the double arc argon plasma jet in our experiment. The FFT and correlation analysis of electrical signals exhibit the only characteristic frequency of 150 Hz, which originates from the torch power and is independent of any change in the operating parameters. No high frequency fluctuations (1-15 kHz) are observed. This indicates that the nature of fluctuations in an argon plasma jet is induced mainly by the undulation of the tri-phase rectified power supply. It is found that each arc root attachment is diffused rather than located at a fixed position on the anode wall. Moreover, the emission spectroscopic technique is performed to determine the electron temperature and number density of the plasma jet inside and outside the arc chamber. Along the torch axis, the measured electron temperature and number density of the double arc argon plasma drop from 12 300 K and 7.6 x 10 22 m -3 at the divergent part of the first anode nozzle, to 10 500 K and 3.1 x 10 22 m -3 at the torch exit. In addition, the validity criteria of the local thermodynamic equilibrium (LTE) state in the plasma arc are examined. The results show that the measured electron densities are in good agreement with those calculated from the LTE model, which indicates that the double arc argon plasma at atmospheric pressure is close to the LTE state under our experimental conditions

  2. On the Application of TLS Techniques to AC Electrical Drives

    Directory of Open Access Journals (Sweden)

    M. Cirrincione

    2005-03-01

    Full Text Available This paper deals with the application of a new neuron, the TLS EXIN neuron, to AC induction motor drives. In particular, it addresses two important subjects of AC induction motor drives: the on-line estimation of the electrical parameters of the machine and the speed estimation in sensorless drives. On this basis, this work summarizes the parameter estimation and sensorless techniques already developed by the authors over these last few years, all based on the TLS EXIN. With regard to sensorless, two techniques are proposed: one based on the MRAS and the other based on the full-order Luenberger observer. The work show some of the most significant results obtained by the authors in these fields and stresses the important potentiality of this new neural technique in AC induction machine drives.

  3. Optimal Design of TCR/FC in Electric Arc Furnaces for Power Quality Improvement in Power Systems

    Directory of Open Access Journals (Sweden)

    Mahdi TORABIAN ESFAHANI

    2009-12-01

    Full Text Available Electric Arc Furnaces (EAFs are unbalanced, nonlinear and time varying loads, which can cause many problems in the power system quality. As the use of arc furnace loads increases in industry, the importance of the power quality problems also increase. So in order to optimize the usages of electric power in EAFs, it is necessary to minimize the effects of arc furnace loads on power quality in power systems as much as possible. Therefore, in this paper, design and simulation of an electric plant supplying an arc furnace is considered. For this purpose, a three phase arc furnace model, which can simulate all the mentioned power quality indices, is developed based on Hyperbolic -Exponential model (V-I model. Then by considering the high changes of reactive power and voltage flicker of nonlinear furnace load, a thyristor controlled reactor compensation with fixed capacitor (TCR/FC are designed and simulated. In this procedure, the reactive power is measured so that maximum speed and accuracy are achieved. Finally, simulation results verify the accuracy of the load modelling and show the effectiveness of the proposed TCR/FC model for reactive compensating of the EAF.

  4. Methods of steel manufacturing - The electric arc furnace

    Science.gov (United States)

    Dragna, E. C.; Ioana, A.; Constantin, N.

    2018-01-01

    Initially, the carbon content was reduced by mixing “the iron” with metallic ingots in ceramic crucibles/melting pots, with external heat input. As time went by the puddling procedure was developed, a procedure which also assumes a mixture with oxidized iron ore. In 1856 Bessemer invented the convertor, thus demonstrating that steel can be obtained following the transition of an air stream through the liquid pig iron. The invention of Thomas, a slightly modified basic-lined converter, fostered the desulphurization of the steel and the removal of the phosphate from it. During the same period, in 1865, in Sireuil, the Frenchman Martin applies Siemens’ heat regeneration invention and brings into service the furnace with a charge composed of iron pig, scrap iron and iron ore, that produces a high quality steel [1]. An act worthy of being highlighted within the scope of steelmaking is the start-up of the converter with oxygen injection at the upper side, as there are converters that can produce 400 tons of steel in approximately 50 minutes. Currently, the share of the steel produced in electric arc furnaces with a charge composed of scrap iron has increased. Due to this aspect, the electric arc furnace was able to impose itself on the market.

  5. Electric-Arc Plasma Installation for Preparing Nanodispersed Carbon Structures

    International Nuclear Information System (INIS)

    Stefanov, P.; Garlanov, D.; Vissokov, G.

    2008-01-01

    An electric-arc plasma installation operated in the hidden anode arrangement is constructed and used for the preparation of carbon nanostructures. A contracted plasma arc generated by a plasma torch using an inert gas is used as heat source. The average mass temperature of arc is higher than 10 4 K, while its power density, which is directly transferred onto the electrode (anode), is ∼ 2 kW/mm 2 . The anode contact area formed on the electrode moves against the arc by way of shifting the electrode and is hidden completely in the interior of plasma gas stream moving towards it. As a result of both the direct plasma attack and the opposite movement of streams in the hidden anode contact area, a temperature higher than 6000 K is reached. Thus, intensive vaporization takes place, which forms a saturated plasma-gas-aerosol phase of the initial material of electrode (anode). This gas phase is mixed in and carried by the plasma stream. Over that mixed plasma stream, a controlled process of quenching (fixation) is carried out by twisted turbulent fluid streams. After the fixation, the resultant carbon nano-structures are caught by a filter and collected in a bunker.

  6. On arc efficiency in gas tungsten arc welding

    Directory of Open Access Journals (Sweden)

    Nils Stenbacka

    2013-12-01

    Full Text Available The aim of this study was to review the literature on published arc efficiency values for GTAW and, if possible, propose a narrower band. Articles between the years 1955 - 2011 have been found. Published arc efficiency values for GTAW DCEN show to lie on a wide range, between 0.36 to 0.90. Only a few studies covered DCEP - direct current electrode positive and AC current. Specific information about the reproducibility in calorimetric studies as well as in modeling and simulation studies (considering that both random and systematic errors are small was scarce. An estimate of the average arc efficiency value for GTAW DCEN indicates that it should be about 0.77. It indicates anyway that the GTAW process with DCEN is an efficient welding method. The arc efficiency is reduced when the arc length is increased. On the other hand, there are conflicting results in the literature as to the influence of arc current and travel speed.

  7. Pragmatic analysis of the electric submerged arc furnace continuum

    Science.gov (United States)

    Karalis, K.; Karkalos, N.; Antipas, G. S. E.; Xenidis, A.

    2017-09-01

    A transient mathematical model was developed for the description of fluid flow, heat transfer and electromagnetic phenomena involved in the production of ferronickel in electric arc furnaces. The key operating variables considered were the thermal and electrical conductivity of the slag and the shape, immersion depth and applied electric potential of the electrodes. It was established that the principal stimuli of the velocities in the slag bath were the electric potential and immersion depth of the electrodes and the thermal and electrical conductivities of the slag. Additionally, it was determined that, under the set of operating conditions examined, the maximum slag temperature ranged between 1756 and 1825 K, which is in accordance with industrial measurements. Moreover, it was affirmed that contributions to slag stirring due to Lorentz forces and momentum forces due to the release of carbon monoxide bubbles from the electrode surface were negligible.

  8. Frequency and voltage dependent profile of dielectric properties, electric modulus and ac electrical conductivity in the PrBaCoO nanofiber capacitors

    Directory of Open Access Journals (Sweden)

    S. Demirezen

    Full Text Available In this study, praseodymium barium cobalt oxide nanofiber interfacial layer was sandwiched between Au and n-Si. Frequency and voltage dependence of ε′, ε′, tanδ, electric modulus (M′ and M″ and σac of PrBaCoO nanofiber capacitor have been investigated by using impedance spectroscopy method. The obtained experimental results show that the values of ε′, ε′, tanδ, M′, M″ and σac of the PrBaCoO nanofiber capacitor are strongly dependent on frequency of applied bias voltage. The values of ε′, ε″ and tanδ show a steep decrease with increasing frequency for each forward bias voltage, whereas the values of σac and the electric modulus increase with increasing frequency. The high dispersion in ε′ and ε″ values at low frequencies may be attributed to the Maxwell–Wagner and space charge polarization. The high values of ε′ may be due to the interfacial effects within the material, PrBaCoO nanofibers interfacial layer and electron effect. The values of M′ and M″ reach a maximum constant value corresponding to M∞ ≈ 1/ε∞ due to the relaxation process at high frequencies, but both the values of M′ and M″ approach almost to zero at low frequencies. The changes in the dielectric and electrical properties with frequency can be also attributed to the existence of Nss and Rs of the capacitors. As a result, the change in the ε′, ε″, tanδ, M′, M″ and ac electric conductivity (σac is a result of restructuring and reordering of charges at the PrBaCoO/n-Si interface under an external electric field or voltage and interface polarization. Keywords: Thin films, Electrical properties, Interface/interphase

  9. Flame spread over electrical wire with AC electric fields: Internal circulation, fuel vapor-jet, spread rate acceleration, and molten insulator dripping

    KAUST Repository

    Lim, Seungjae

    2015-04-01

    The effect of electric field on the characteristics of flame spread along a polyethylene (PE) insulated electrical wire was investigated experimentally by varying the AC frequency and voltage applied to the wire. The results showed that the flame spread rate was accelerated due to the convergence of electric flux near the end of wire, having three distinct regimes depending on applied voltage. In each regime, several subregimes could be identified depending on AC frequency. Flame shape (height and width) and slanted direction of the spreading flame were influenced differently. Fuel-vapor jets were ejected from the molten PE surface even for the baseline case without the application of an electric field; this could be attributed to the bursting of fuel vapor bubbles generated from internal boiling at the molten PE surface. An internal circulation of molten-PE was also observed as a result of non-uniform heating by the spreading flame. In the high voltage regime with a high AC frequency, excessive dripping of molten PE led to flame extinction.

  10. Effect of ac electric fields on counterflow diffusion flame of methane

    KAUST Repository

    Chul Choi, Byung

    2012-08-01

    The effect of electric fields on the response of diffusion flames in a counterflow has been investigated experimentally by varying the AC voltage and frequency. The result showed that the flame was stationary with high AC frequency above the threshold frequency, and it increased with the applied voltage and then leveled off at 35 Hz. Below the threshold frequency, however, the flame oscillated with a frequency that was synchronized with the applied AC frequency. This oscillation can be attributed to the ionic wind effect due to the generation of bulk flow, which arises from the momentum transfer by molecular collisions between neutral molecules and ions, where the ions in the reaction zone were accelerated by the Lorentz force. © 2012 The Korean Society of Mechanical Engineers.

  11. Effect of ac electric fields on counterflow diffusion flame of methane

    KAUST Repository

    Chul Choi, Byung; Kuk Kim, Hyung; Chung, Suk-Ho

    2012-01-01

    The effect of electric fields on the response of diffusion flames in a counterflow has been investigated experimentally by varying the AC voltage and frequency. The result showed that the flame was stationary with high AC frequency above the threshold frequency, and it increased with the applied voltage and then leveled off at 35 Hz. Below the threshold frequency, however, the flame oscillated with a frequency that was synchronized with the applied AC frequency. This oscillation can be attributed to the ionic wind effect due to the generation of bulk flow, which arises from the momentum transfer by molecular collisions between neutral molecules and ions, where the ions in the reaction zone were accelerated by the Lorentz force. © 2012 The Korean Society of Mechanical Engineers.

  12. New algorithm for controlling electric arc furnaces using their vibrational and acoustic characteristics

    Science.gov (United States)

    Cherednichenko, V. S.; Bikeev, R. A.; Serikov, V. A.; Rechkalov, A. V.; Cherednichenko, A. V.

    2016-12-01

    The processes occurring in arc discharges are analyzed as the sources of acoustic radiation in an electric arc furnace (EAF). Acoustic vibrations are shown to transform into mechanical vibrations in the furnace laboratory. The shielding of the acoustic energy fluxes onto water-cooled wall panels by a charge is experimentally studied. It is shown that the rate of charge melting and the depth of submergence of arc discharges in the slag and metal melt can be monitored by measuring the vibrational characteristics of furnaces and using them in a universal industrial process-control system, which was developed for EAFs.

  13. Improved transistorized AC motor controller for battery powered urban electric passenger vehicles

    Science.gov (United States)

    Peak, S. C.

    1982-01-01

    An ac motor controller for an induction motor electric vehicle drive system was designed, fabricated, tested, evaluated, and cost analyzed. A vehicle performance analysis was done to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of ac motor and ac controller requirements. The power inverter is a three-phase bridge using power Darlington transistors. The induction motor was optimized for use with an inverter power source. The drive system has a constant torque output to base motor speed and a constant horsepower output to maximum speed. A gear shifting transmission is not required. The ac controller was scaled from the base 20 hp (41 hp peak) at 108 volts dec to an expanded horsepower and battery voltage range. Motor reversal was accomplished by electronic reversal of the inverter phase sequence. The ac controller can also be used as a boost chopper battery charger. The drive system was tested on a dynamometer and results are presented. The current-controlled pulse width modulation control scheme yielded improved motor current waveforms. The ac controller favors a higher system voltage.

  14. Electrorotation of novel electroactive polymer composites in uniform DC and AC electric fields

    International Nuclear Information System (INIS)

    Zrinyi, Miklós; Nakano, Masami; Tsujita, Teppei

    2012-01-01

    Novel electroactive polymer composites have been developed that could spin in uniform DC and AC electric fields. The angular displacement as well as rotation of polymer disks around an axis that is perpendicular to the direction of the applied electric field was studied. It was found that the dynamics of the polymer rotor is very complex. Depending on the strength of the static DC field, three regimes have been observed: no rotation occurs below a critical threshold field intensity, oscillatory motion takes place just above this value and continuous rotation can be observed above the critical threshold field intensity. It was also found that low frequency AC fields could also induce angular deformation. (paper)

  15. INFLUENCE OF FEEDING ELECTRIC ENERGY QUALITY ON HEATING OF THE AUXILIARY MA-CHINES OF AC ELECTRIC ROLLING STOCK

    Directory of Open Access Journals (Sweden)

    O. YU. Baliichuk

    2014-04-01

    Full Text Available Purpose. The article aims to study the problem of increase the reliability of auxiliary machines for AC electric trains during operation in real conditions. Methodology. The peculiarity of system construction of auxiliary machines for AC electric rolling stock is the use of asynchronous motors for general industrial purpose. An engineering method of influence determination on the feeding voltage asymmetry and its deviation from the nominal value on heating of auxiliary machines insulation was proposed. Findings. It is found out that in case when the auxiliary machines of AC electric trains work under asymmetry factor of the voltage 10% or more and feeding voltage deviation from the nominal order 0.6 relative unit then it is possible the overheat of their isolation, even if it has class H. Originality. For the first time the issue of the total insulation heating under such boundary parameters combinations of energy quality, when each of them contributes to the heating insulation increase as compared to the nominal regime of the "rotating phase splitter−auxiliary machinery" system was illuminated. Practical value. Conducted research allow us to establish the boundary parameter values of feeding energy quality (asymmetry factor, feeding voltage deviations from the nominal value, at which additional isolation overheating of this class under the effect of specified factors will not exceed the agreed value.

  16. AC electric field induced dipole-based on-chip 3D cell rotation.

    Science.gov (United States)

    Benhal, Prateek; Chase, J Geoffrey; Gaynor, Paul; Oback, Björn; Wang, Wenhui

    2014-08-07

    The precise rotation of suspended cells is one of the many fundamental manipulations used in a wide range of biotechnological applications such as cell injection and enucleation in nuclear transfer (NT) cloning. Noticeably scarce among the existing rotation techniques is the three-dimensional (3D) rotation of cells on a single chip. Here we present an alternating current (ac) induced electric field-based biochip platform, which has an open-top sub-mm square chamber enclosed by four sidewall electrodes and two bottom electrodes, to achieve rotation about the two axes, thus 3D cell rotation. By applying an ac potential to the four sidewall electrodes, an in-plane (yaw) rotating electric field is generated and in-plane rotation is achieved. Similarly, by applying an ac potential to two opposite sidewall electrodes and the two bottom electrodes, an out-of-plane (pitch) rotating electric field is generated and rolling rotation is achieved. As a prompt proof-of-concept, bottom electrodes were constructed with transparent indium tin oxide (ITO) using the standard lift-off process and the sidewall electrodes were constructed using a low-cost micro-milling process and then assembled to form the chip. Through experiments, we demonstrate rotation of bovine oocytes of ~120 μm diameter about two axes, with the capability of controlling the rotation direction and the rate for each axis through control of the ac potential amplitude, frequency, and phase shift, and cell medium conductivity. The maximum observed rotation rate reached nearly 140° s⁻¹, while a consistent rotation rate reached up to 40° s⁻¹. Rotation rate spectra for zona pellucida-intact and zona pellucida-free oocytes were further compared and found to have no effective difference. This simple, transparent, cheap-to-manufacture, and open-top platform allows additional functional modules to be integrated to become a more powerful cell manipulation system.

  17. AC and DC electrical behavior of MWCNT/epoxy nanocomposite near percolation threshold: Equivalent circuits and percolation limits

    Science.gov (United States)

    Alizadeh Sahraei, Abolfazl; Ayati, Moosa; Baniassadi, Majid; Rodrigue, Denis; Baghani, Mostafa; Abdi, Yaser

    2018-03-01

    This study attempts to comprehensively investigate the effects of multi-walled carbon nanotubes (MWCNTs) on the AC and DC electrical conductivity of epoxy nanocomposites. The samples (0.2, 0.3, and 0.5 wt. % MWCNT) were produced using a combination of ultrason and shear mixing methods. DC measurements were performed by continuous measurement of the current-voltage response and the results were analyzed via a numerical percolation approach, while for the AC behavior, the frequency response was studied by analyzing phase difference and impedance in the 10 Hz to 0.2 MHz frequency range. The results showed that the dielectric parameters, including relative permittivity, impedance phase, and magnitude, present completely different behaviors for the frequency range and MWCNT weight fractions studied. To better understand the nanocomposites electrical behavior, equivalent electric circuits were also built for both DC and AC modes. The DC equivalent networks were developed based on the current-voltage curves, while the AC equivalent circuits were proposed by using an optimization problem according to the impedance magnitude and phase at different frequencies. The obtained equivalent electrical circuits were found to be highly useful tools to understand the physical mechanisms involved in MWCNT filled polymer nanocomposites.

  18. Displacement of an electric arc by a stationary transverse magnetic field to different pressures of the ionized gas

    International Nuclear Information System (INIS)

    Ramos, J.

    1987-01-01

    The displacement of a wall-stabilized electric arc by a stationary transverse magnetic field is measured to different pressures of the ionized gas. The increase of the pressure makes the heat transfer function and the mass flow velocity in the arc column to raise, and it makes the arc displacement to decrease. (author)

  19. AC electric field induced droplet deformation in a microfluidic T-junction.

    Science.gov (United States)

    Xi, Heng-Dong; Guo, Wei; Leniart, Michael; Chong, Zhuang Zhi; Tan, Say Hwa

    2016-08-02

    We present for the first time an experimental study on the droplet deformation induced by an AC electric field in droplet-based microfluidics. It is found that the deformation of the droplets becomes stronger with increasing electric field intensity and frequency. The measured electric field intensity dependence of the droplet deformation is consistent with an early theoretical prediction for stationary droplets. We also proposed a simple equivalent circuit model to account for the frequency dependence of the droplet deformation. The model well explains our experimental observations. In addition, we found that the droplets can be deformed repeatedly by applying an amplitude modulation (AM) signal.

  20. Automatic Control Systems (ACS for Generation and Sale of Electric Power Under Conditions of Industry-Sector Liberalization

    Directory of Open Access Journals (Sweden)

    Yu. S. Petrusha

    2013-01-01

    Full Text Available Possible risks pertaining to transition of electric-power industry to market relations have been considered in the paper. The paper presents an integrated ACS for generation and sale of electric power as an improvement of methodology for organizational and technical management. The given system is based on integration of operating Automatic Dispatch Control System (ADCS and developing Automatic Electricity Meter Reading System (AEMRS. The paper proposes to form an inter-branch sector of ACS PLC (Automatic Control System for Prolongation of Life Cycle users which is oriented on provision of development strategy.

  1. Optical diagnostics of a gliding arc

    DEFF Research Database (Denmark)

    Sun, Z.W.; Zhu, J.J.; Li, Z.S.

    2013-01-01

    Dynamic processes in a gliding arc plasma generated between two diverging electrodes in ambient air driven by 31.25 kHz AC voltage were investigated using spatially and temporally resolved optical techniques. The life cycles of the gliding arc were tracked in fast movies using a high-speed camera...... triggered by Townsend breakdown between the two legs of the gliding arc. The emission from the plasma column is shown to pulsate at a frequency of 62.5 kHz, i.e., twice the frequency of the AC power supply. Optical emission spectra of the plasma radiation show the presence of excited N2, NO and OH radicals...... suggesting that ground-state OH is not formed in the plasma column but in its vicinity. ©2013 Optical Society of America...

  2. ELECTRIC PROBE INVESTIGATION OF ARC ANODE REGION IN PLASMA TORCH

    Czech Academy of Sciences Publication Activity Database

    Chumak, Oleksiy; Hrabovský, Milan; Kavka, Tetyana

    2006-01-01

    Roč. 10, č. 4 (2006), s. 515-524 ISSN 1093-3611. [High technology plasma processes. Saint-Petersburg, 27.5.2006-4.6.2006] R&D Projects: GA ČR GA202/05/0669 Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma torch * arc * anode attachment * restrike * electric probes Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.343, year: 2006

  3. Magnetohydrodynamic flow of generalized Maxwell fluids in a rectangular micropump under an AC electric field

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Guangpu [School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China); Jian, Yongjun, E-mail: jianyj@imu.edu.cn [School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China); Chang, Long [School of Mathematics and Statistics, Inner Mongolia University of Finance and Economics, Hohhot, Inner Mongolia 010051 (China); Buren, Mandula [School of Mathematical Science, Inner Mongolia University, Hohhot, Inner Mongolia 010021 (China)

    2015-08-01

    By using the method of separation of variables, an analytical solution for the magnetohydrodynamic (MHD) flow of the generalized Maxwell fluids under AC electric field through a two-dimensional rectangular micropump is reduced. By the numerical computation, the variations of velocity profiles with the electrical oscillating Reynolds number Re, the Hartmann number Ha, the dimensionless relaxation time De are studied graphically. Further, the comparison with available experimental data and relevant researches is presented. - Highlights: • MHD flow of the generalized Maxwell fluids under AC electric field is analyzed. • The MHD flow is confined to a two-dimensional rectangular micropump. • Analytical solution is obtained by using the method of separation of variables. • The influences of related parameters on the MHD velocity are discussed.

  4. Magnetohydrodynamic flow of generalized Maxwell fluids in a rectangular micropump under an AC electric field

    International Nuclear Information System (INIS)

    Zhao, Guangpu; Jian, Yongjun; Chang, Long; Buren, Mandula

    2015-01-01

    By using the method of separation of variables, an analytical solution for the magnetohydrodynamic (MHD) flow of the generalized Maxwell fluids under AC electric field through a two-dimensional rectangular micropump is reduced. By the numerical computation, the variations of velocity profiles with the electrical oscillating Reynolds number Re, the Hartmann number Ha, the dimensionless relaxation time De are studied graphically. Further, the comparison with available experimental data and relevant researches is presented. - Highlights: • MHD flow of the generalized Maxwell fluids under AC electric field is analyzed. • The MHD flow is confined to a two-dimensional rectangular micropump. • Analytical solution is obtained by using the method of separation of variables. • The influences of related parameters on the MHD velocity are discussed

  5. An experimental study on the thermal characteristics and heating effect of arc-fault from Cu core in residential electrical wiring fires.

    Science.gov (United States)

    Du, Jian-Hua; Tu, Ran; Zeng, Yi; Pan, Leng; Zhang, Ren-Cheng

    2017-01-01

    The characteristics of a series direct current (DC) arc-fault including both electrical and thermal parameters were investigated based on an arc-fault simulator to provide references for multi-parameter electrical fire detection method. Tests on arc fault behavior with three different initial circuit voltages, resistances and arc gaps were conducted, respectively. The influences of circuit conditions on arc dynamic image, voltage, current or power were interpreted. Also, the temperature rises of electrode surface and ambient air were studied. The results showed that, first, significant variations of arc structure and light emitting were observed under different conditions. A thin outer burning layer of vapor generated from electrodes with orange light was found due to the extremely high arc temperature. Second, with the increasing electrode gap in discharging, the arc power was shown to have a non monotonic relationship with arc length for constant initial circuit voltage and resistance. Finally, the temperature rises of electrode surface caused by heat transfer from arc were found to be not sensitive with increasing arc length due to special heat transfer mechanism. In addition, temperature of ambient air showed a large gradient in radial direction of arc.

  6. An experimental study on the thermal characteristics and heating effect of arc-fault from Cu core in residential electrical wiring fires.

    Directory of Open Access Journals (Sweden)

    Jian-Hua Du

    Full Text Available The characteristics of a series direct current (DC arc-fault including both electrical and thermal parameters were investigated based on an arc-fault simulator to provide references for multi-parameter electrical fire detection method. Tests on arc fault behavior with three different initial circuit voltages, resistances and arc gaps were conducted, respectively. The influences of circuit conditions on arc dynamic image, voltage, current or power were interpreted. Also, the temperature rises of electrode surface and ambient air were studied. The results showed that, first, significant variations of arc structure and light emitting were observed under different conditions. A thin outer burning layer of vapor generated from electrodes with orange light was found due to the extremely high arc temperature. Second, with the increasing electrode gap in discharging, the arc power was shown to have a non monotonic relationship with arc length for constant initial circuit voltage and resistance. Finally, the temperature rises of electrode surface caused by heat transfer from arc were found to be not sensitive with increasing arc length due to special heat transfer mechanism. In addition, temperature of ambient air showed a large gradient in radial direction of arc.

  7. Computing anode heating voltage in high-pressure arc discharges and modelling rod electrodes in dc and ac regimes

    International Nuclear Information System (INIS)

    Almeida, N A; Cunha, M D; Benilov, M S

    2017-01-01

    Numerical modelling of near-anode layers in arc discharges in several gases (Ar, Xe and Hg) is performed in a wide range of current densities, anode surface temperatures, and plasma pressures. It is shown that the density of energy flux to the anode is only weakly affected by the anode surface temperature and varies linearly with the current density. This allows one to interpret the results in terms of anode heating voltage (volt equivalent of the heat flux to the anode). The computed data may be useful in different ways. An example considered in this work concerns the evaluation of thermal regime of anodes in the shape of a thin rod operating in the diffuse mode. Invoking the model of nonlinear surface heating for cathodes, one obtains a simple and free of empirical parameters model of thin rod electrodes applicable to dc and ac high-pressure arcs provided that no anode spots are present. The model is applied to a variety of experiments reported in the literature and a good agreement with the experimental data found. (paper)

  8. AC Electric Field Activated Shape Memory Polymer Composite

    Science.gov (United States)

    Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.

    2011-01-01

    Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.

  9. Modeling And Simulation Of Electrical Prevenion System Using Arduino Uno,Gsm Modem, And Acs712 Current Sensor

    Science.gov (United States)

    Khair, Ummul; Jabbar Lubis, Abdul; Agustha, Indra; Dharmawati; Zulfin, M.

    2017-12-01

    The current electricity needs is very primary, all objects including electronics require power, it encourages people not to be able to save electricity so the theft of electric power would be done. The use of ACS712 current sensor as the sensor with arduino uno would find out the power consumption continuously and prevent the theft of electricity because of the use of electricity which has been determined by PLN and the people fetl that it is not enough for every house, so the author made a tool for prevention of theft of electric power by using the arduino uno, buzzer, ACS712 current sensor, lcd, and relay then the power usage can be controlled according to the use to prevent the occurrence of theft of electricity so the use can be seen directly on the lcd 16x2and GSM modem to give information to employees of PLN so that it can reduceelectrical theft by the public.

  10. Characterization of the behaviour of the electric arc during VAR of a Ti alloy

    Science.gov (United States)

    Chapelle, P.; Noël, C.; Risacher, A.; Jourdan, J.; Jourdan, J.; Jardy, A.

    2016-07-01

    In this paper, we report experimental results based on the direct observation of the electric arc behaviour during vacuum arc remelting of a Ti alloy. These results were obtained in a specifically instrumented industrial furnace using high speed framing camera and optical emission spectroscopy, for a current density level of the order of 10 A/cm2 and a gap length of a few centimetres. It was observed that the arc exhibits a similar operating regime to that described in the literature for the case of Inconel 718 and Zr alloy electrodes. The arc structure corresponds essentially to that of a diffuse metal vapor arc with separate and rapidly moving cathode spots. Several critical parameters of the cathode spots, including their current, size and velocity, and of the interelectrode plasma were evaluated. Also, the interactions between the arc operation and the transfer of metal drops in the interelectrode gap were investigated. Three modes of transfer of the liquid metal drops in the interelectrode gap have been identified depending on the gap length: drop falling, drip short and drop erosion induced by the cathode spots.

  11. Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas

    2017-01-01

    A gliding arc discharge was generated in a turbulent air flow at atmospheric pressure driven by a 35 kHz alternating current (AC) electric power. The spatiotemporally resolved characteristics of the gliding arc discharge, including glow-type discharges, spark-type discharges, short-cutting events...... and transitions among the different types of discharges, were investigated using simultaneously optical and electrical diagnostics. The glow-type discharge shows sinusoidal-like voltage and current waveforms with a peak current of hundreds of milliamperes. The frequency of the emission intensity variation...... of the glow-type discharge is the same as that of the electronic power dissipated in the plasma column. The glow-type discharge can transfer into a spark discharge characterized by a sharp peak current of several amperes and a sudden increase of the brightness in the plasma column. Transitions can also...

  12. An Alternative Cu-Based Bond Layer for Electric Arc Coating Process

    Science.gov (United States)

    Fadragas, Carlos R.; Morales, E. V.; Muñoz, J. A.; Bott, I. S.; Lariot Sánchez, C. A.

    2011-12-01

    A Cu-Al alloy has been used as bond coat between a carbon steel substrate and a final coating deposit obtained by applying the twin wire electric arc spraying coating technique. The presence of a copper-based material in the composite system can change the overall temperature profile during deposition because copper exhibits a thermal conductivity several times higher than that of the normally recommended bond coat materials (such as nickel-aluminum alloys or nickel-chromium alloys). The microstructures of 420 and 304 stainless steels deposited by the electric arc spray process have been investigated, focusing attention on the deposit homogeneity, porosity, lamellar structure, and microhardness. The nature of the local temperature gradient during deposition can strongly influence the formation of the final coating deposit. This study presents a preliminary study, undertaken to investigate the changes in the temperature profile which occur when a Cu-Al alloy is used as bond coat, and the possible consequences of these changes on the microstructure and adhesion of the final coating deposit. The influence of the thickness of the bond layer on the top coating temperature has also been also evaluated.

  13. The Effect of Adding Antimony Trioxide (Sb2O3 ‎On A.C Electrical Properties of (PVA-PEG Films

    Directory of Open Access Journals (Sweden)

    Akeel Shakir Alkelaby

    2017-12-01

    Full Text Available In this work, many samples have been prepared by adding Antimony Trioxide (Sb2O3 to the polyvinyl alcohol-poly ethylene glycol (PVA-PEG. The effect of the Sb2O3 added as a filler with different weight percentages on the A.C electrical properties have been investigated. The samples were prepared as films by solution cast technique. The experimental results of the A.C electrical properties show that the dielectric constant increase with the increasing frequency of applied electrical field and concentration of the Antimony Trioxide. Dielectric loss decrease with the increasing the frequency, while it increases with the increase of the concentration of the Antimony Trioxide. The A.C electrical conductivity increase with increasing the Antimony Trioxide contain and frequency for the composition.

  14. High Voltage Hybrid Electric Propulsion - Multilayered Functional Insulation System (MFIS) NASA-GRC

    Science.gov (United States)

    Lizcano, M.

    2017-01-01

    High power transmission cables pose a key challenge in future Hybrid Electric Propulsion Aircraft. The challenge arises in developing safe transmission lines that can withstand the unique environment found in aircraft while providing megawatts of power. High voltage AC, variable frequency cables do not currently exist and present particular electrical insulation challenges since electrical arcing and high heating are more prevalent at higher voltages and frequencies. Identifying and developing materials that maintain their dielectric properties at high voltage and frequencies is crucial.

  15. Metal halide arc discharge lamp having short arc length

    Science.gov (United States)

    Muzeroll, Martin E. (Inventor)

    1994-01-01

    A metal halide arc discharge lamp includes a sealed light-transmissive outer jacket, a light-transmissive shroud located within the outer jacket and an arc tube assembly located within the shroud. The arc tube assembly includes an arc tube, electrodes mounted within the arc tube and a fill material for supporting an arc discharge. The electrodes have a spacing such that an electric field in a range of about 60 to 95 volts per centimeter is established between the electrodes. The diameter of the arc tube and the spacing of the electrodes are selected to provide an arc having an arc diameter to arc length ratio in a range of about 1.6 to 1.8. The fill material includes mercury, sodium iodide, scandium tri-iodide and a rare gas, and may include lithium iodide. The lamp exhibits a high color rendering index, high lumen output and high color temperature.

  16. Combined Experimental and Numerical Investigation of Electric-Arc Airspikes For Blunt Body at Mach 3

    Science.gov (United States)

    Misiewicz, C.; Myrabo, L. N.; Shneider, M. N.; Raizer, Y. P.

    2005-04-01

    Electric-arc airspike experiments were performed with a 1.25-inch diameter blunt body in the vacuum-driven Mach 3 wind tunnel at Rensselaer Polytechnic Institute. Schlieren movies at 30-Hz frame rate were recorded of the airspike flowfields, revealing substantial evolution over the 6-second run durations. Arc powers up to 2-kW were delivered into the airspike by an arc-welding power supply, using zirconiated tungsten electrodes. Aerodynamic drag was measured with a piezo-electric load cell, revealing reductions up to 70% when the airspike was energized. The test article was a small-scale model of the Mercury lightcraft, a laser-propelled transatmospheric vehicle designed to transport one-person into orbit. Numerical modeling of this airspike is based on the Euler gasdynamic equations for conditions identical to those tested in the RPI supersonic tunnel. Excellent agreement between the shock wave shapes given by first-order asymptotic theory, numerical modeling, and experiment is demonstrated. Results of the numerical modeling confirm both the significant drag reduction potential and the energy efficiency of the airspike concept.

  17. Electrohydrodynamics of a concentric compound drop in an AC electric field

    Science.gov (United States)

    Soni, Purushottam; Thaokar, Rochish M.; Juvekar, Vinay A.

    2018-03-01

    The dynamics of a compound drop suspended in another immiscible fluid in the presence of an AC electric field is investigated experimentally and using analytical theory. A closed-form analytical expression for the mean deformation and amplitude of deformation at cyclical steady state is derived in the small deformation limit. Experiments were performed with 0.1M NaCl/castor oil compound drops suspended in highly viscous silicone oil. In this case, both the core and the shell deform into prolate spheroids. The effect of two independent variables was investigated, namely, the ratio of the core radius to the shell radius and the frequency (ω) of the applied AC field. In the limit of ω → 0, the present analytical model reduces to the DC electric field model for the compound drop. It was observed that the size of the core significantly affects the dynamics of the compound drop. The mean and the amplitude of deformation of the shell increase considerably with an increase in the radius ratio. Since the present model is valid for a small deviation from a spherical shape, an excellent quantitative agreement is found between analytical and experimental results at low deformation, whereas, at large deformation, the match is only qualitative. It was also observed that the relative phase difference between the core and the shell decreases with an increase in the radius ratio and frequency of the applied electric field.

  18. Effective response of nonlinear cylindrical coated composites under external AC and DC electric field

    International Nuclear Information System (INIS)

    Yu-Yan, Shen; Xiao-Gang, Chen; Wei, Cui; Yan-Hua, Hao; Qian-Qian, Li

    2009-01-01

    This paper uses the perturbation method to study effective response of nonlinear cylindrical coated composites. Under the external AC and DC electric field E a (1 + sin ωt), the local potentials of composites at all harmonic frequencies are induced. An effective nonlinear response to composite is given for the cylindrical coated inclusions in the dilute limit. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. Measurement of Anisotropic Particle Interactions with Nonuniform ac Electric Fields.

    Science.gov (United States)

    Rupp, Bradley; Torres-Díaz, Isaac; Hua, Xiaoqing; Bevan, Michael A

    2018-02-20

    Optical microscopy measurements are reported for single anisotropic polymer particles interacting with nonuniform ac electric fields. The present study is limited to conditions where gravity confines particles with their long axis parallel to the substrate such that particles can be treated using quasi-2D analysis. Field parameters are investigated that result in particles residing at either electric field maxima or minima and with long axes oriented either parallel or perpendicular to the electric field direction. By nonintrusively observing thermally sampled positions and orientations at different field frequencies and amplitudes, a Boltzmann inversion of the time-averaged probability of states yields kT-scale energy landscapes (including dipole-field, particle-substrate, and gravitational potentials). The measured energy landscapes show agreement with theoretical potentials using particle conductivity as the sole adjustable material property. Understanding anisotropic particle-field energy landscapes vs field parameters enables quantitative control of local forces and torques on single anisotropic particles to manipulate their position and orientation within nonuniform fields.

  20. Particle Agglomeration in Bipolar Barb Agglomerator Under AC Electric Field

    International Nuclear Information System (INIS)

    Huang Chao; Ma Xiuqin; Sun Youshan; Wang Meiyan; Zhang Changping; Lou Yueya

    2015-01-01

    The development of an efficient technology for removing fine particles in flue gas is essential as the haze is becoming more and more serious. To improve agglomeration effectiveness of fine particles, a dual zone electric agglomeration device consisting of a charging chamber and an agglomeration chamber with bipolar barb electrodes was developed. The bipolar barb electric agglomerator with a polar distance of 200 mm demonstrates good agglomeration effectiveness for particles with a size less than 8.0 μm under applied AC electric field. An optimal condition for achieving better agglomeration effectiveness was found to be as follows: flue gas flow velocity of 3.00 m/s, particle concentration of 2.00 g/m 3 , output voltage of 35 kV and length of the barb of 16 mm. In addition, 4.0–6.0 μm particles have the best effectiveness with the variation of particle volume occupancy of −3.2. (paper)

  1. Particle Agglomeration in Bipolar Barb Agglomerator Under AC Electric Field

    Science.gov (United States)

    Huang, Chao; Ma, Xiuqin; Sun, Youshan; Wang, Meiyan; Zhang, Changping; Lou, Yueya

    2015-04-01

    The development of an efficient technology for removing fine particles in flue gas is essential as the haze is becoming more and more serious. To improve agglomeration effectiveness of fine particles, a dual zone electric agglomeration device consisting of a charging chamber and an agglomeration chamber with bipolar barb electrodes was developed. The bipolar barb electric agglomerator with a polar distance of 200 mm demonstrates good agglomeration effectiveness for particles with a size less than 8.0 μm under applied AC electric field. An optimal condition for achieving better agglomeration effectiveness was found to be as follows: flue gas flow velocity of 3.00 m/s, particle concentration of 2.00 g/m3, output voltage of 35 kV and length of the barb of 16 mm. In addition, 4.0-6.0 μm particles have the best effectiveness with the variation of particle volume occupancy of -3.2. supported by the Key Technology R&D Program of Hebei, China (No. 13211207D)

  2. Recycling of electric arc furnace dust

    International Nuclear Information System (INIS)

    Marques Sobrinho, Vicente de Paulo Ferreira; Oliveira, Jose Roberto de; Tenorio, Jorge Alberto Soares; Espinosa, Denise Crocce Romano

    2010-01-01

    This research aims to study the process of incorporation of the metal iron in electric arc furnace dust (EAFD), from a steel mill producing long steel by liquid iron in addition to the changing temperature of 1400 degrees Celsius of EAFD 'as received', the percentage of EAFD to be added (5, 10 and 20% of initial weight of sample pig iron) and the time of withdrawal of the sample of pig iron and slag (30 minutes after the addition of EAFD). Previously, the EAFD will be characterized using the following techniques: chemical analysis, size analysis, specific surface area, Xray diffraction, scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) microanalysis. . After characterization, the EAFD will be added to the bath of liquid pig iron. It is expected that the results obtained at the end of the research allow the evaluation of the iron metal incorporation of EAFD in pig iron bath. (author)

  3. INFLUENCE OF CHEMICAL COMPOUNDS ON THE FORMING OF WELDING ARC

    Directory of Open Access Journals (Sweden)

    I. О. Vakulenko

    2014-10-01

    Full Text Available Purpose. The purpose of work is a comparative analysis of chemical compounds influence on the process of forming arc welding and condition of its burning. Methodology. A wire with diameter 3 mm of low carbon steel with contain of carbon 0.15% was material for electrode. As chemical compounds, which determine the terms of arc welding forming the following compounds were used: kaolin; CaCO3 with admixtures of gypsum up to 60%; SiO2 and Fe − Si with the iron concentration up to 50%. Researches were conducted using the direct electric current and arc of reverse polarity. As a source of electric current a welding transformer of type PSO-500n was used. On the special stand initial gap between the electrode and metal plate was 1-1.5 mm. The inter electrode space was filled with the probed chemical compound and the electric arc was formed. At the moment of arc forming the values of electric current and arc voltage were determined. After the natural break of electric arc, the final gap value between electrodes was accepted as a maximal value of arc length. Findings. Experimentally the transfer of metal in interelectrode space corresponded to the tiny drop mechanism. According to external signs the relation between maximal arc length and the power of electric current has the form of exponential dependence. Specific power of electric arc at the moment of arc forming per unit of its length characterizes the environment in the interelectrode space. Originality. 1 Based on the analysis of influence of the studied chemical compounds on the formation processes of electric arc the inversely proportional relationship between the power of the electric current and the maximum arc length until the moment of its natural break is defined. 2 Ratio between the maximal arc length and the power of electric current, with the sufficiently high coefficient of correlation is submitted to the exponential dependence. Influence of the compounds under study on the process of

  4. Computer Modeling of Radiative Transfer in Hybrid-Stabilized Argon–Water Electric Arc

    Czech Academy of Sciences Publication Activity Database

    Jeništa, Jiří; Takana, H.; Nishiyama, H.; Křenek, Petr; Bartlová, M.; Aubrecht, V.

    2011-01-01

    Roč. 39, č. 11 (2011), s. 2892-2893 ISSN 0093-3813 Institutional research plan: CEZ:AV0Z20430508 Keywords : Divergence of radiation flux * hybrid-stabilized electric arc * mass flow rate * partial characteristics * radiation flux Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.174, year: 2011 http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=27

  5. Electrochemical properties of arc-black and carbon nano-balloon as electrochemical capacitor electrodes

    International Nuclear Information System (INIS)

    Sato, T; Suda, Y; Uruno, H; Takikawa, H; Tanoue, H; Ue, H; Aoyagi, N; Okawa, T; Shimizu, K

    2012-01-01

    In this study, we used two types of carbon nanomaterials, arc-black (AcB) which has an amorphous structure and carbon nano-balloon (CNB) which has a graphitic structure as electrochemical capacitor electrodes. We made a coin electrode from these carbon materials and fabricated an electric double-layer capacitor (EDLC) that sandwiches a separator between the coin electrodes. On the other hand, RuO 2 was loaded on these carbon materials, and we fabricated a pseudo-capacitor that has an ion insertion mechanism into RuO 2 . For comparison with these carbon materials, activated carbon (AC) was also used for a capacitor electrode. The electrochemical properties of all the capacitors were evaluated in 1M H 2 SO 4 aqueous solution. As a result of EDLC performance, AcB electrode had a higher specific capacitance than AC electrode at a high scan rate (≥ 100 mV/s). In the evaluation of pseudo-capacitor performance, RuO 2 -loaded CNB electrode showed a high specific capacitance of 734 F/g per RuO 2 weight.

  6. Electric arc discharge damage to ion thruster grids

    Science.gov (United States)

    Beebe, D. D.; Nakanishi, S.; Finke, R. C.

    1974-01-01

    Arcs representative of those occurring between the grids of a mercury ion thruster were simulated. Parameters affecting an arc and the resulting damage were studied. The parameters investigated were arc energy, arc duration, and grid geometry. Arc attenuation techniques were also investigated. Potentially serious damage occurred at all energy levels representative of actual thruster operating conditions. Of the grids tested, the lowest open-area configuration sustained the least damage for given conditions. At a fixed energy level a long duration discharge caused greater damage than a short discharge. Attenuation of arc current using various impedances proved to be effective in reducing arc damage. Faults were also deliberately caused using chips of sputtered materials formed during the operation of an actual thruster. These faults were cleared with no serious grid damage resulting using the principles and methods developed in this study.

  7. Measurement of AC electrical characteristics of SSC superconducting dipole magnets

    International Nuclear Information System (INIS)

    Smedley, K.M.; Shafer, R.E.

    1992-01-01

    Experiments were conducted to measure the AC electrical characteristics of SSC superconducting dipole magnets over the frequency range of 0.1 Hz to 10 kHz. A magnet equivalent circuit representing the magnet DC inductance, eddy current losses, coil-to-ground and turn-to-turn capacitance, was synthesized from the experimental data. This magnet equivalent circuit can be used to predict the current ripple distribution along the superconducting magnet string and can provide dynamic information for the design of the collider current regulation loop

  8. INFLUENCE OF THE MODERN SYSTEMS OF THE BLAST STEEL-FURNACE ELECTRICAL PARAMETERS CONTROL ON CAPACITY AND TECHNICAL AND ECONOMICAL INDICES OF MELTING

    Directory of Open Access Journals (Sweden)

    D. N. Andrianov

    2006-01-01

    Full Text Available The reduction of time under the current, electric energy rate, electrodes rate at working of arc steel-furnace with new transformer of capacity 95 MBA and with regulating system SIMELT-AC-NEC are noted.

  9. Electric fields and currents observed by S3-2 in the vicinity of discrete arcs

    International Nuclear Information System (INIS)

    Burke, W.J.

    1984-01-01

    The high time resolution of the electric and magnetic field detectors on the polar orbiting satellite S3-2 made it possible to examine the details of auroral events down to discrete-arc scales. Depending on the instantaneous look direction of an electron detector, information about field-aligned accelerations above the satellite could also be obtained. Case studies of four arc events, three in the auroral oval and one in the polar cap, have been completed. Field-aligned currents associated with arcs in the auroral oval appeared as matched pairs of oppositely directed current sheets. Magnetic deflections, almost exclusively in the east-west direction departed from and returned to baselines established by the large-scale Region 1/Region 2 currents. The upward currents had intensities of up to 145 microamperes/sq m and were carried by electrons that were accelerated through field aligned potential drops. The relationship between the field-aligned current density and potential drop is not inconsistent with predictions of a laminar flow model. The most intense return (downward) currents were in the 10 to 15 microamperes/sq m range. At satellite altitudes near 1000 km, these currents approximate the critical limit for current driven, ion cyclotron instabilities. The arc in the polar cap was sun-aligned and was found in a region of intense convective shear, with the electric field pointing toward the center of the arc. The field-aligned currents consisted of three sheets two with currents flowing into and one out of the ionosphere. The upward current was carried by polar-rain electrons that had undergone a field-aligned acceleration of approximately 1 kV. 19 references

  10. Introduction to AC machine design

    CERN Document Server

    Lipo, Thomas A

    2018-01-01

    AC electrical machine design is a key skill set for developing competitive electric motors and generators for applications in industry, aerospace, and defense. This book presents a thorough treatment of AC machine design, starting from basic electromagnetic principles and continuing through the various design aspects of an induction machine. Introduction to AC Machine Design includes one chapter each on the design of permanent magnet machines, synchronous machines, and thermal design. It also offers a basic treatment of the use of finite elements to compute the magnetic field within a machine without interfering with the initial comprehension of the core subject matter. Based on the author's notes, as well as after years of classroom instruction, Introduction to AC Machine Design: * Brings to light more advanced principles of machine design--not just the basic principles of AC and DC machine behavior * Introduces electrical machine design to neophytes while also being a resource for experienced designers * ...

  11. The electrical characteristics of copper slags in a 270 kVA DC arc furnace

    International Nuclear Information System (INIS)

    Derin, Bora; Sahin, Filiz Cinar; Yucel, Onuralp

    2003-01-01

    The electrical resistance of slags is the main criteria to determine the design and the operation conditions of slag resistance furnace (SRF) depending on temperature and composition. In this study, a 270 kVA DC electric arc furnace were used to determine the electrical characteristic of molten ancient copper slags. The specific conductivity of the slag was estimated by using furnace geometric factor given in the literature as an empirical formula and by using furnace resistance measured during smelting of the copper slag with or without different additives such as coke, CaO and Al 2 O 3 . (Original)

  12. Effects of tempering temperature on microstructural evolution and mechanical properties of high-strength low-alloy D6AC plasma arc welds

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Ming, E-mail: chunming@ntut.edu.tw [Department of Mechanical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan (China); Lu, Chi-Hao [Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 10673, Taiwan (China)

    2016-10-31

    This study prepared high-strength low-alloy (HSLA) D6AC weldments using a plasma arc welding (PAW) process. The PAW weldments were then tempered at temperatures of 300 °C, 450 °C, and 600 °C for 1000 min. Microstructural characteristics of the weld in as-welded HSLA-D6AC, tempered D6AC, and tensile-tested D6AC were observed via optical microscopy (OM). We also investigated the hardness, tensile strength, and V-notched tensile strength (NTS) of the tempered specimens using a Vickers hardness tester and a universal testing machine. The fracture surfaces of the specimens were observed using a scanning electron microscope (SEM). Our results show that the mechanical properties and microstructural features of the HSLA weldments are strongly dependent on tempering temperature. An increase in tempering temperature led to a decrease in the hardness and tensile strength of the weldments but led to an increase in ductility. These effects can be attributed to the transformation of the microstructure and its effect on fracture characteristics. The specimens tempered at 300 °C and 450 °C failed in a ductile-brittle manner due to the presence of inter-lath austenite in the microstructure. After tempering at a higher temperature of 600 °C, martensite embrittlement did not occur, such that specimens failure was predominantly in a ductile manner. In the NTS specimens, an increase in tempering temperature led to a reduction in tensile strength due to notch embrittlement and the effects of grain boundary thickening and sliding. Our findings provide a valuable reference for the application of HSLA-D6AC steel in engineering and other fields.

  13. An improved FEM model for computing transport AC loss in coils made of RABiTS YBCO coated conductors for electric machines

    International Nuclear Information System (INIS)

    Ainslie, Mark D; Yuan Weijia; Flack, Timothy J; Coombs, Timothy A; Rodriguez-Zermeno, Victor M; Hong Zhiyong

    2011-01-01

    AC loss can be a significant problem for any applications that utilize or produce an AC current or magnetic field, such as an electric machine. The authors investigate the electromagnetic properties of high temperature superconductors with a particular focus on the AC loss in superconducting coils made from YBCO coated conductors for use in an all-superconducting electric machine. This paper presents an improved 2D finite element model for the cross-section of such coils, based on the H formulation. The model is used to calculate the transport AC loss of a racetrack-shaped coil using constant and magnetic field-dependent critical current densities, and the inclusion and exclusion of a magnetic substrate, as found in RABiTS (rolling-assisted biaxially textured substrate) YBCO coated conductors. The coil model is based on the superconducting stator coils used in the University of Cambridge EPEC Superconductivity Group's all-superconducting permanent magnet synchronous motor design. To validate the modeling results, the transport AC loss of a stator coil is measured using an electrical method based on inductive compensation by means of a variable mutual inductance. Finally, the implications of the findings on the performance of the motor are discussed.

  14. An improved FEM model for computing transport AC loss in coils made of RABiTS YBCO coated conductors for electric machines

    Energy Technology Data Exchange (ETDEWEB)

    Ainslie, Mark D; Yuan Weijia; Flack, Timothy J; Coombs, Timothy A [Department of Engineering, University of Cambridge, 9 J J Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Rodriguez-Zermeno, Victor M [Department of Mathematics, Technical University of Denmark, Kongens Lyngby 2800 (Denmark); Hong Zhiyong, E-mail: mda36@cam.ac.uk [School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China)

    2011-04-15

    AC loss can be a significant problem for any applications that utilize or produce an AC current or magnetic field, such as an electric machine. The authors investigate the electromagnetic properties of high temperature superconductors with a particular focus on the AC loss in superconducting coils made from YBCO coated conductors for use in an all-superconducting electric machine. This paper presents an improved 2D finite element model for the cross-section of such coils, based on the H formulation. The model is used to calculate the transport AC loss of a racetrack-shaped coil using constant and magnetic field-dependent critical current densities, and the inclusion and exclusion of a magnetic substrate, as found in RABiTS (rolling-assisted biaxially textured substrate) YBCO coated conductors. The coil model is based on the superconducting stator coils used in the University of Cambridge EPEC Superconductivity Group's all-superconducting permanent magnet synchronous motor design. To validate the modeling results, the transport AC loss of a stator coil is measured using an electrical method based on inductive compensation by means of a variable mutual inductance. Finally, the implications of the findings on the performance of the motor are discussed.

  15. MeV-ion beam analysis of the interface between filtered cathodic arc-deposited a-carbon and single crystalline silicon

    International Nuclear Information System (INIS)

    Kamwanna, T.; Pasaja, N.; Yu, L.D.; Vilaithong, T.; Anders, A.; Singkarat, S.

    2008-01-01

    Amorphous carbon (a-C) films were deposited on Si(1 0 0) wafers by a filtered cathodic vacuum arc (FCVA) plasma source. A negative electrical bias was applied to the silicon substrate in order to control the incident energy of carbon ions. Effects of the electrical bias on the a-C/Si interface characteristics were investigated by using standard Rutherford backscattering spectrometry (RBS) in the channeling mode with 2.1-MeV He 2+ ions. The shape of the Si surface peaks of the RBS/channeling spectra reflects the degree of interface disorder due to atomic displacement from the bulk position of the Si crystal. Details of the analysis method developed are described. It was found that the width of the a-C/Si interface increases linearly with the substrate bias voltage but not the thickness of the a-C film.

  16. Progress on advanced dc and ac induction drives for electric vehicles

    Science.gov (United States)

    Schwartz, H. J.

    1982-01-01

    Progress is reported in the development of complete electric vehicle propulsion systems, and the results of tests on the Road Load Simulator of two such systems representative of advanced dc and ac drive technology are presented. One is the system used in the DOE's ETV-1 integrated test vehicle which consists of a shunt wound dc traction motor under microprocessor control using a transistorized controller. The motor drives the vehicle through a fixed ratio transmission. The second system uses an ac induction motor controlled by transistorized pulse width modulated inverter which drives through a two speed automatically shifted transmission. The inverter and transmission both operate under the control of a microprocessor. The characteristics of these systems are also compared with the propulsion system technology available in vehicles being manufactured at the inception of the DOE program and with an advanced, highly integrated propulsion system upon which technology development was recently initiated.

  17. Evaluation of semiconductor devices for Electric and Hybrid Vehicle (EHV) ac-drive applications, volume 1

    Science.gov (United States)

    Lee, F. C.; Chen, D. Y.; Jovanovic, M.; Hopkins, D. C.

    1985-01-01

    The results of evaluation of power semiconductor devices for electric hybrid vehicle ac drive applications are summarized. Three types of power devices are evaluated in the effort: high power bipolar or Darlington transistors, power MOSFETs, and asymmetric silicon control rectifiers (ASCR). The Bipolar transistors, including discrete device and Darlington devices, range from 100 A to 400 A and from 400 V to 900 V. These devices are currently used as key switching elements inverters for ac motor drive applications. Power MOSFETs, on the other hand, are much smaller in current rating. For the 400 V device, the current rating is limited to 25 A. For the main drive of an electric vehicle, device paralleling is normally needed to achieve practical power level. For other electric vehicle (EV) related applications such as battery charger circuit, however, MOSFET is advantageous to other devices because of drive circuit simplicity and high frequency capability. Asymmetrical SCR is basically a SCR device and needs commutation circuit for turn off. However, the device poses several advantages, i.e., low conduction drop and low cost.

  18. Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system.

    Science.gov (United States)

    Suetens, T; Guo, M; Van Acker, K; Blanpain, B

    2015-04-28

    To better understand the phenomena of ZnFe2O4 spinel formation in electric arc furnace dust, the dust was characterized with particle size analysis, X-ray fluorescence (XRF), electron backscatter diffraction (EBSD), and electron probe micro-analysis (EPMA). Different ZnFe2O4 formation reaction extents were observed for iron oxide particles with different particle sizes. ZnO particles were present as both individual particles and aggregated on the surface of larger particles. Also, the slag particles found in the off-gas were shown not to react with the zinc vapor. After confirming the presence of a ZnFe2O4 formation reaction, the thermodynamic feasibility of in-process separation - a new electric arc furnace dust treatment technology - was reevaluated. The large air intake and the presence of iron oxide particles in the off-gas were included into the thermodynamic calculations. The formation of the stable ZnFe2O4 spinel phase was shown to be thermodynamically favorable in current electric arc furnace off-gas ducts conditions even before reaching the post combustion chamber. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Electrical properties of a piezoelectric transformer for an AC-DC converter

    International Nuclear Information System (INIS)

    Park, Yong-Wook

    2010-01-01

    The electrical properties of a ring/dot piezoelectric transformer were analyzed for applications as an AC-DC converter using the step-down behavior of a piezoelectric transformer. The ring/dot piezoelectric transformer was prepared using Pb(Mn 1/3 Nb 2/3 )O 3 and Pb(Zn 1/3 Nb 2/3 )O 3 modified Pb(Zr,Ti)O 3 ceramics sintered at a relatively low temperature of 930 .deg. C for 90 min. When the transformer was matched with a load resistance of 1000 Ω, it transferred a maximum power of 27 W. The maximum power was produced at a dc output voltage of 30 V and a matching load resistance of 1000 Ω. While the manufactured ring/dot piezoelectric transformer released the maximum power at a resonance frequency of 71 kHz, the available frequency bandwidth was about 1 kHz at most due to strong frequency dependence of the piezoelectric transformer. The output dc current was highly improved up to 905 mA because no anisotropy of poling direction existed in the ring/dot piezoelectric transformer. Under a commercial input of 220 V ac , AC-DC converter successfully produced 27 W at 30 V dc and 905 mA.

  20. Electric arc welding gun

    Science.gov (United States)

    Luttrell, Edward; Turner, Paul W.

    1978-01-01

    This invention relates to improved apparatus for arc welding an interior joint formed by intersecting tubular members. As an example, the invention is well suited for applications where many similar small-diameter vertical lines are to be welded to a long horizontal header. The improved apparatus includes an arc welding gun having a specially designed welding head which is not only very compact but also produces welds that are essentially free from rolled-over solidified metal. The welding head consists of the upper end of the barrel and a reversely extending electrode holder, or tip, which defines an acute angle with the barrel. As used in the above-mentioned example, the gun is positioned to extend upwardly through the vertical member and the joint to be welded, with its welding head disposed within the horizontal header. Depending on the design of the welding head, the barrel then is either rotated or revolved about the axis of the vertical member to cause the electrode to track the joint.

  1. Rocket measurements within a polar cap arc - Plasma, particle, and electric circuit parameters

    Science.gov (United States)

    Weber, E. J.; Ballenthin, J. O.; Basu, S.; Carlson, H. C.; Hardy, D. A.; Maynard, N. C.; Kelley, M. C.; Fleischman, J. R.; Pfaff, R. F.

    1989-01-01

    Results are presented from the Polar Ionospheric Irregularities Experiment (PIIE), conducted from Sondrestrom, Greenland, on March 15, 1985, designed for an investigation of processes which lead to the generation of small-scale (less than 1 km) ionospheric irregularities within polar-cap F-layer auroras. An instrumented rocket was launched into a polar cap F layer aurora to measure energetic electron flux, plasma, and electric circuit parameters of a sun-aligned arc, coordinated with simultaneous measurements from the Sondrestrom incoherent scatter radar and the AFGL Airborne Ionospheric Observatory. Results indicated the existence of two different generation mechanisms on the dawnside and duskside of the arc. On the duskside, parameters are suggestive of an interchange process, while on the dawnside, fluctuation parameters are consistent with a velocity shear instability.

  2. Effect of electric fields on the stabilization of premixed laminar bunsen flames at low AC frequency: Bi-ionic wind effect

    KAUST Repository

    Kim, Minkuk

    2012-03-01

    The stabilization characteristics of laminar premixed bunsen flames have been investigated experimentally by applying AC electric fields at low frequency below 60. Hz together with DC in the single electrode configuration. The blowoff velocity has been measured for varying AC voltage and frequency. A transition frequency between low and high frequency regimes has been identified near 40-50. Hz, where AC electric fields have minimal effect on flame stabilization. In the low frequency regime, the blowoff velocity decreased linearly with AC voltage such that the flames became less stable. This was consistent with the DC result, implying the influence of the ionic wind effect. The variation of blowoff velocity with AC frequency showed a non-monotonic behavior in that the velocity decreased and then increased, exhibiting minimum blowoff velocity near 6-8. Hz. Based on the molecular kinetic theory, the developing degree of ionic wind was derived. By considering the ionic wind effects arising from both positive and negative ions in a flame zone, the bi-ionic wind effect successfully explained the non-monotonic behavior of blowoff velocity with AC frequency in the low frequency regime. © 2011 The Combustion Institute.

  3. Electrical conductivity of polytetrafluoroethylene in dc and ac electric fields under continuous electron bombardment

    International Nuclear Information System (INIS)

    Khatipov, S.A.; Turdybekov, K.M.; Milinchuk, V.K.

    1993-01-01

    A study has been made of the time of the radiation current density in dc and ac (10 2 -5-10 3 Hz) electric fields (10 3 -5-10 5 V/cm) at temperatures from 80 to 393 K and dose rates from 5-10 3 Gy/sec, for PTFE films (50-180 μm) with various thermal prehistories, when exposed to continuous bombardment by 9-MeV electrons. It has been shown that the experimental results cannot be interpreted from the standpoint of free-charge conduction; they can be explained qualitatively within the framework of concepts of inhomogeneous ionization of the substance, due to the formation of short tracks

  4. Experimental Investigation of the Corona Discharge in Electrical Transmission due to AC/DC Electric Fields

    Directory of Open Access Journals (Sweden)

    Fuangpian Phanupong

    2016-01-01

    Full Text Available Nowadays, using of High Voltage Direct Current (HVDC transmission to maximize the transmission efficiency, bulk power transmission, connection of renewable power source from wind farm to the grid is of prime concern for the utility. However, due to the high electric field stress from Direct Current (DC line, the corona discharge can easily be occurred at the conductor surface leading to transmission loss. Therefore, the polarity effect of DC lines on corona inception and breakdown voltage should be investigated. In this work, the effect of DC polarity and Alternating Current (AC field stress on corona inception voltage and corona discharge is investigated on various test objects, such as High Voltage (HV needle, needle at ground plane, internal defect, surface discharge, underground cable without cable termination, cable termination with simulated defect and bare overhead conductor. The corona discharge is measured by partial discharge measurement device with high-frequency current transformer. Finally, the relationship between supply voltage and discharge intensity on each DC polarity and AC field stress can be successfully determined.

  5. Theoretical and experimental study of AC electrical conduction mechanism in the low temperature range of p-CuIn3Se5

    Science.gov (United States)

    Essaleh, L.; Amhil, S.; Wasim, S. M.; Marín, G.; Choukri, E.; Hajji, L.

    2018-05-01

    In the present work, an attempt has been made to study theoretically and experimentally the AC electrical conduction mechanism in disordered semiconducting materials. The key parameter considered in this analysis is the frequency exponent s(ω , T) =( ∂ln(σAC(ω , T))/∂ ln(ω)T , where σAC is the AC electrical conductivity that depends on angular frequency ω and temperature T. In the theoretical part of this work, the effect of the barrier hopping energy, the polaron radius and the characteristic relaxation time is considered. The theoretical models of Quantum Mechanical Tunneling (QMT), Non overlapping Small Polaron Tunneling (NSPT), Overlapping Large Polaron Tunneling (OLPT) and Correlated Barrier Hopping (CBH) are considered to fit experimental data of σAC in p-CuIn3Se5 (p-CIS135) in the low temperature range up to 96 K. Some important parameters, as the polaron radius, the localization length and the barrier hopping energies, are estimated and their temperature and frequency dependence discussed.

  6. Study of time dependence and spectral composition of the signal in circuit of ac electric point motors

    Directory of Open Access Journals (Sweden)

    S. Yu. Buryak

    2014-12-01

    Full Text Available Purpose. The paper is aimed to establish the dependence of changes in the time domain and spectral components of the current in the circuit of the AC electric point motor on its technical condition, to identify the common features for the same type of damage. It is necessary using the analysis of the received signals to carry out the remote diagnosis and determination of faults and defects of electric point motors. In addition it suggested to accelerate the process of the failure, malfunction and damage search. Authors propose the automated approach to the service of remote floor automation equipment, which is located in the envelope of trains. Reduction of the threat to life and health of staff by reducing the residence time in the zone of train movement. Reduce the impact of human factors on the result of service. Methodology. The paper studies the structure, parameters and characteristics, the operation and maintenance characteristics of the AC electric point motors. Determination of the main types of possible faults in the process depending on the operating conditions. Presentation of the electric motor as an object of diagnosis. Findings. The time dependences of the current in the circuit of electric point motor for its various states was obtained. The connection between the technical condition of electric point motor and the performance of current curve in time and spectral domains was established. The revealed deviations from the reference signal were justified. According to the obtained results it was made the conclusion. Originality. A method for diagnosing the state of the AC electric point motor by the time dependence and the spectral composition of the current in its circuit was proposed. The connection diagram to the motor windings based on non-infringement of electric parameters of connection circuit in the actual operating conditions was applied. Practical value. The obtained results suggest the possibility and feasibility of

  7. Method and Mechanisms of Soil Stabilization Using Electric Arc Furnace Dust

    OpenAIRE

    Al-Amoudi, Omar S. Baghabra; Al-Homidy, Abdullah A.; Maslehuddin, Mohammed; Saleh, Tawfik A.

    2017-01-01

    This paper reports the method and mechanism for improving the strength of marl and desert sand utilizing electric arc furnace dust (EAFD), an industrial by-product, in lieu of cement or lime. EAFD was used in conjunction with a small quantity (2%) of cement. The mechanical properties and durability characteristics of marl and sand mixed with 2% cement plus 5-, 10-, 20- or 30%-EAFD, by weight of the soil, were evaluated. The soil-cement-EAFD mixtures were used to determine their unconfined com...

  8. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    Science.gov (United States)

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan; Ehn, Andreas; Aldén, Marcus; Larsson, Anders; Kusano, Yukihiro

    2014-12-01

    Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column, synchronized with simultaneously recorded current and voltage waveforms. Dynamic details of the novel non-equilibrium discharge are revealed, which is characterized by a sinusoidal current waveform with amplitude stabilized at around 200 mA intermediate between thermal arc and glow discharge, shedding light to the governing mechanism of the sustained spark-suppressed AC gliding arc discharge.

  9. Advanced AC permanent magnet axial flux disc motor for electric passenger vehicle

    Science.gov (United States)

    Kliman, G. B.

    1982-01-01

    An ac permanent magnet axial flux disc motor was developed to operate with a thyristor load commutated inverter as part of an electric vehicle drive system. The motor was required to deliver 29.8 kW (40 hp) peak and 10.4 kW (14 hp) average with a maximum speed of 11,000 rpm. It was also required to run at leading power factor to commutate the inverter. Three motors were built.

  10. Potential oxidative stress in the bodies of electric arc welding operators: effect of photochemical smog.

    Science.gov (United States)

    Zhu, You-Gen; Zhou, Jun-Fu; Shan, Wei-Ying; Zhou, Pei-Su; Tong, Gui-Zhong

    2004-12-01

    To investigate whether photochemical smog emitted during the process of electric arc welding might cause oxidative stress and potential oxidative damage in the bodies of welding operators. Seventy electric arc welding operators (WOs) and 70 healthy volunteers (HVs) were enrolled in a randomized controlled study design, in which the levels of vitamin C (VC) and vitamin E (VE) in plasma as well as the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), and the level of lipoperoxide (LPO) in erythrocytes were determined by spectrophotometry. Compared with the average values of the above experimental parameters in the HVs group, the average values of VC and VE in plasma as well as those of SOD, CAT and GPX in erythrocytes in the WOs group were significantly decreased (P smog the values of VC, VE, SOD, and GPX, except for CAT, in the WOs were decreased gradually (P smog in the bodies of WOs, thereby causing potential oxidative and lipoperoxidative damages in their bodies.

  11. Internal Arc: People safety in the electrical wiring; Arco interno: Seguridad de las personas ante instalaciones electricas

    Energy Technology Data Exchange (ETDEWEB)

    Inchausti, J. M.

    2009-07-01

    The aim of this article is to describe the internal arc phenomenon, an extremely fast, almost explosive and unattended process of transformation form an initial electric power to the generation of a pressure and heat wave inside the medium its produced its consequences for safety, current methods of limiting them and current regulations in general for equipment used in medium-voltage electrical distribution networks. Taking into account that this type of equipment is found thought the distribution network in both public buildings and unrestricted access areas, safety (of operators and the general public) must be taken into account in the design of equipment and installations to minimize the risk of internal arcs occurring. This is the gist of, for example, ITC 16 of the Spanish Regulation on Power Plants and transformer substations. In addition to the construction aspects specific to each device in which the manufacturer has to takes steps to minimize the risks of an internal arcs occurring. This is the gist of, for example, ITC 16 of the Spanish Regulation on Power Plants and transformer substations. In addition to the construction aspects specific to each device in which an internal arc occurring, it is understood to be vitally important that users, installers and designers of Medium Voltage installations are familiar with the installation conditions stated by the manufacturer and thus avoid risks. (Author) 14 refs.

  12. Suppression of the Second Harmonic Subgroup Injected by an AC EAF: Design Considerations and Performance Estimation of a Shunt APF

    OpenAIRE

    Emre Durna; Cem Özgür Gerçek; Özgül Salor; Muammer Ermiş

    2018-01-01

    This paper proposes a design methodology for an active power filter (APF) system to suppress the second harmonic subgroup injected by an AC electric arc furnace (EAF) to the utility grid. The APF system is composed of identical parallel units connected to the utility grid via a specially-designed coupling transformer. Each APF converter is a three-phase three-wire two-level voltage source converter (VSC). The number of parallel APF units, coupling transformer MVA rating, and turns ratio are o...

  13. Characterization of electric arc furnace dust aiming reuse

    International Nuclear Information System (INIS)

    Grillo, F.F.; Oliveira, E.B.G.; Oliveira, J.R. de; Telles, V.B.; Tenorio, J.A.S.

    2010-01-01

    This work aims to study the characterize of steelmaking dust, from the primary refining of steel in Electric Arc Furnace, in order to verify feasibility of reuse through the addition of hot metal in the form of briquette. The techniques used to characterize the dust was chemical analyses, size separation tests, X-ray diffraction analyses (XRD), Scanning Electron Microscopy (SEM). After characterization, was the calculation of reductant considering the complete reduction of iron oxides and then to briquetting. The waste sample is composed essentially of spherical particles and has a very small particle size (85% below 10 μm). The XRD has presented compounds such as ZnFe 2 O 4 , Fe 3 O 4 , ZnO e SiO 2 . This work showed that its possible recovery approximately 92% of metal iron from dust generated during steelmaking.This (author)

  14. Modeling and Simulation of Low Voltage Arcs

    NARCIS (Netherlands)

    Ghezzi, L.; Balestrero, A.

    2010-01-01

    Modeling and Simulation of Low Voltage Arcs is an attempt to improve the physical understanding, mathematical modeling and numerical simulation of the electric arcs that are found during current interruptions in low voltage circuit breakers. An empirical description is gained by refined electrical

  15. Multi-phase AC/AC step-down converter for distribution systems

    Science.gov (United States)

    Aeloiza, Eddy C.; Burgos, Rolando P.

    2017-10-25

    A step-down AC/AC converter for use in an electric distribution system includes at least one chopper circuit for each one of a plurality of phases of the AC power, each chopper circuit including a four-quadrant switch coupled in series between primary and secondary sides of the chopper circuit and a current-bidirectional two-quadrant switch coupled between the secondary side of the chopper circuit and a common node. Each current-bidirectional two-quadrant switch is oriented in the same direction, with respect to the secondary side of the corresponding chopper circuit and the common node. The converter further includes a control circuit configured to pulse-width-modulate control inputs of the switches, to convert a first multiphase AC voltage at the primary sides of the chopper circuits to a second multiphase AC voltage at the secondary sides of the chopper circuits, the second multiphase AC voltage being lower in voltage than the first multiphase AC voltage.

  16. Time evolution of propagating nonpremixed flames in a counterflow, annular slot burner under AC electric fields

    KAUST Repository

    Tran, Vu Manh

    2016-06-19

    The mechanism behind improved flame propagation speeds under electric fields is not yet fully understood. Although evidence supports that ion movements cause ionic wind, how this wind affects flame propagation has not been addressed. Here, we apply alternating current electric fields to a gap between the upper and lower parts of a counterflow, annular slot burner and present the characteristics of the propagating nonpremixed edge-flames produced. Contrary to many other previous studies, flame displacement speed decreased with applied AC voltage, and, depending on the applied AC frequency, the trailing flame body took on an oscillatory wavy motion. When flame displacement speeds were corrected using measured unburned flow velocities, we found no significant difference in flame propagation speeds, indicating no thermal or chemical effects by electric fields on the burning velocity. Thus, we conclude that the generation of bidirectional ionic wind is responsible for the impact of electric fields on flames and that an interaction between this bidirectional ionic wind and the flame parameters creates visible and/or measurable phenomenological effects. We also explain that the presence of trailing flame bodies is a dynamic response to an electric body force on a reaction zone, an area that can be considered to have a net positively charged volume. In addition, we characterize the wavy motion of the transient flame as a relaxation time independent of mixture strength, strain rate, and Lewis number.

  17. AC and DC electrical properties of graphene nanoplatelets reinforced epoxy syntactic foam

    Science.gov (United States)

    Zegeye, Ephraim; Wicker, Scott; Woldesenbet, Eyassu

    2018-04-01

    Benefits of employing graphene nanopletlates (GNPLs) in composite structures include mechanical as well as multifunctional properties. Understanding the impedance behavior of GNPLs reinforced syntactic foams may open new applications for syntactic foam composites. In this work, GNPLs reinforced syntactic foams were fabricated and tested for DC and AC electrical properties. Four sets of syntactic foam samples containing 0, 0.1, 0.3, and 0.5 vol% of GNPLs were fabricated and tested. Significant increase in conductivity of syntactic foams due to the addition of GNPLs was noted. AC impedance measurements indicated that the GNPLs syntactic foams become frequency dependent as the volume fraction of GNPLs increases. With addition of GNPLs, the characteristic of the syntactic foams are also observed to transition from dominant capacitive to dominant resistive behavior. This work was carried out at Southern University, Mechanical Engineering Department, Baton Rouge, LA 70802, United States of America.

  18. Observation of gliding arc surface treatment

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Zhu, Jiajian; Ehn, A.

    2015-01-01

    . Water contact angle measurements indicate that the treatment uniformity improves significantly when the AC gliding arc is tilted to the polymer surface. Thickness reduction of the gas boundary layer, explaining the improvement of surface treatment, by the ultrasonic irradiation was directly observed...

  19. Chemical, physical, structural and morphological characterization of the electric arc furnace dust

    International Nuclear Information System (INIS)

    Machado, Janaina G.M.S.; Brehm, Feliciane Andrade; Moraes, Carlos Alberto Mendes; Santos, Carlos Alberto dos; Vilela, Antonio Cezar Faria; Cunha, Joao Batista Marimon da

    2006-01-01

    Electric arc furnace dust (EAFD) is a hazardous industrial waste generated in the collection of particulate material during steelmaking process via electric arc furnace. Important elements to the industry such as, Fe and Zn are the main ones in EAFD. Due to their presence, it becomes very important to know how these elements are combined before studying new technologies for its processing. The aim of this work was to carry out a chemical, physical, structural and morphological characterization of the EAFD. The investigation was carried out by using granulometry analysis, chemical analysis, scanning electron microscopy (SEM), energy dispersive spectroscopy via SEM (EDS), X-ray mapping analysis via SEM, X-ray diffraction (XRD) and Moessbauer spectroscopy. By XRD the following phases were detected: ZnFe 2 O 4 , Fe 3 O 4 , MgFe 2 O 4 , FeCr 2 O 4 , Ca 0.15 Fe 2.85 O 4 , MgO, Mn 3 O 4 , SiO 2 and ZnO. On the other hand, the phases detected by Moessbauer spectroscopy were: ZnFe 2 O 4 , Fe 3 O 4 , Ca 0.15 Fe 2.85 O 4 and FeCr 2 O 4 . Magnesium ferrite (MgFe 2 O 4 ), observed in the XRD pattern as overlapped peaks, was not identified in the Moessbauer spectroscopy analysis

  20. Transfer functions of laminar premixed flames subjected to forcing by acoustic waves, AC electric fields, and non-thermal plasma discharges

    KAUST Repository

    Lacoste, Deanna

    2016-06-23

    The responses of laminar methane-air flames to forcing by acoustic waves, AC electric fields, and nanosecond repetitively pulsed (NRP) glow discharges are reported here. The experimental setup consists of an axisymmetric burner with a nozzle made from a quartz tube. Three different flame geometries have been studied: conical, M-shaped and V-shaped flames. A central stainless steel rod is used as a cathode for the electric field and plasma excitations. The acoustic forcing is obtained with a loudspeaker located at the bottom part of the burner. For forcing by AC electric fields, a metallic grid is placed above the rod and connected to an AC power supply. Plasma forcing is obtained by applying high-voltage pulses of 10-ns duration applied at 10 kHz, between the rod and an annular stainless steel ring, placed at the outlet of the quartz tube. The chemiluminescence of CH is used to determine the heat release rate fluctuations. For forcing by acoustic waves and plasma, the geometry of the flame plays a key role in the response of the combustion, while the flame shape does not affect the response of the combustion to electric field forcing. The flame response to acoustic forcing of about 10% of the incoming flow is similar to those obtained in the literature. The flames are found to be responsive to an AC electric field across the whole range of frequencies studied. A forcing mechanism, based on the generation of ionic wind, is proposed. The gain of the transfer function obtained for plasma forcing is found to be up to 5 times higher than for acoustic forcing. A possible mechanism of plasma forcing is introduced.

  1. Transfer functions of laminar premixed flames subjected to forcing by acoustic waves, AC electric fields, and non-thermal plasma discharges

    KAUST Repository

    Lacoste, Deanna; Xiong, Yuan; Moeck, Jonas P.; Chung, Suk-Ho; Roberts, William L.; Cha, Min

    2016-01-01

    The responses of laminar methane-air flames to forcing by acoustic waves, AC electric fields, and nanosecond repetitively pulsed (NRP) glow discharges are reported here. The experimental setup consists of an axisymmetric burner with a nozzle made from a quartz tube. Three different flame geometries have been studied: conical, M-shaped and V-shaped flames. A central stainless steel rod is used as a cathode for the electric field and plasma excitations. The acoustic forcing is obtained with a loudspeaker located at the bottom part of the burner. For forcing by AC electric fields, a metallic grid is placed above the rod and connected to an AC power supply. Plasma forcing is obtained by applying high-voltage pulses of 10-ns duration applied at 10 kHz, between the rod and an annular stainless steel ring, placed at the outlet of the quartz tube. The chemiluminescence of CH is used to determine the heat release rate fluctuations. For forcing by acoustic waves and plasma, the geometry of the flame plays a key role in the response of the combustion, while the flame shape does not affect the response of the combustion to electric field forcing. The flame response to acoustic forcing of about 10% of the incoming flow is similar to those obtained in the literature. The flames are found to be responsive to an AC electric field across the whole range of frequencies studied. A forcing mechanism, based on the generation of ionic wind, is proposed. The gain of the transfer function obtained for plasma forcing is found to be up to 5 times higher than for acoustic forcing. A possible mechanism of plasma forcing is introduced.

  2. Metal transfer during vacuum consumable arc remelting

    International Nuclear Information System (INIS)

    Zanner, F.J.

    1977-11-01

    A description of the vacuum consumable arc remelt process as related to solidification and a review of vacuum arc literature is presented. Metal transfer at arc lengths less than or equal to 3 cm was found to occur when liquid metal spikes hanging from the cathode form a low resistance bridge (drop short) by touching the anode and subsequently rupturing. During the bridge lifetime (0.0003 to 0.020 s) the arc is extinguished and all of the electrical power is directed through the molten bridge. The formation and rupture of these molten metal bridges are confirmed with electrical resistance measurements. At long arc lengths (greater than 10 cm) the spikes separate before touching the anode

  3. Study of electrical properties of Sc doped BaFe12O19 ceramic using dielectric, impedance, modulus spectroscopy and AC conductivity

    Science.gov (United States)

    Gupta, Surbhi; Deshpande, S. K.; Sathe, V. G.; Siruguri, V.

    2018-04-01

    We present dielectric, complex impedance, modulus spectroscopy and AC conductivity studies of the compound BaFe10Sc2O19 as a function of temperature and frequency to understand the conduction mechanism. The variation in complex dielectric constant with frequency and temperature were analyzed on the basis of Maxwell-Wagner-Koop's theory and charge hopping between ferrous and ferric ions. The complex impedance spectroscopy study shows only grain contribution whereas complex modulus plot shows two semicircular arcs which indicate both grain and grain boundary contributions in conduction mechanism. AC conductivity has also been evaluated which follows the Jonscher's law. The activation energy calculated from temperature dependence of DC conductivity comes out to be Ea˜ 0.31eV.

  4. Experiment and modeling of an atmospheric pressure arc in an applied oscillating magnetic field

    International Nuclear Information System (INIS)

    Karasik, Max; Roquemore, A. L.; Zweben, S. J.

    2000-01-01

    A set of experiments are carried out to measure and understand the response of a free-burning atmospheric pressure carbon arc to applied transverse dc and ac magnetic fields. The arc is found to deflect parabolically for the dc field and assumes a growing sinusoidal structure for the ac field. A simple analytic two-parameter fluid model of the arc dynamics is derived, in which the arc response is governed by the arc jet originating at the cathode, with the applied JxB force balanced by inertia. Time variation of the applied field allows evaluation of the parameters individually. A fit of the model to the experimental data gives a value for the average jet speed an order of magnitude below Maecker's estimate of the maximum jet speed [H. Maecker, Z. Phys. 141, 198 (1955)]. An example industrial application of the model is considered. (c) 2000 American Institute of Physics

  5. AC electrical breakdown phenomena of epoxy/layered silicate nanocomposite in needle-plate electrodes.

    Science.gov (United States)

    Park, Jae-Jun; Lee, Jae-Young

    2013-05-01

    Epoxy/layered silicate nanocomposite for the insulation of heavy electric equipments were prepared by dispersing 1 wt% of a layered silicate into an epoxy matrix with a homogenizing mixer and then AC electrical treeing and breakdown tests were carried out. Wide-angle X-ray diffraction (WAXD) analysis and transmission electron microscopy (TEM) observation showed that nano-sized monolayers were exfoliated from a multilayered silicate in the epoxy matrix. When the nano-sized silicate layers were incorporated into the epoxy matrix, the breakdown rate in needle-plate electrode geometry was 10.6 times lowered than that of the neat epoxy resin under the applied electrical field of 520.9 kV/mm at 30 degrees C, and electrical tree propagated with much more branches in the epoxy/layered silicate nanocomposite. These results showed that well-dispersed nano-sized silicate layers retarded the electrical tree growth rate. The effects of applied voltage and ambient temperature on the tree initiation, growth, and breakdown rate were also studied, and it was found that the breakdown rate was largely increased, as the applied voltage and ambient temperature increased.

  6. Numerical simulation for arc-plasma dynamics during contact opening process in electrical circuit-breakers

    International Nuclear Information System (INIS)

    Gupta, D N; Srinivas, D; Patil, G N; Kale, S S; Potnis, S B

    2010-01-01

    The high-energy, high-current thermal plasma that develops between electric contacts in a gas circuit-breaker during circuit interruption is an important phenomenon in the power transmission industry. The high temperature and pressure arc dissipates the tremendous amount of energy generated by the fault current. Simultaneously, this energy has to be transferred away from the contacts to build the dielectric strength level of the circuit-breaker. In order to interrupt the current, the arc must be weakened and finally extinguished. We model these phenomena by using a computer software code based on the solution of the unsteady Euler equations of gas dynamics. We consider the equations of fluid flows. These equations are solved numerically in complex circuit breaker geometries using a finite-volume method. The domain is initially filled with SF 6 gas. We begin our simulations from cold mode, where the fault current is not present (hence no arc). An axis-symmetric geometry of a 145 kV gas circuit-breaker is considered to study the pressure, density, and temperature profile during contact opening process.

  7. Material properties of the F82H melted in an electric arc furnace

    Energy Technology Data Exchange (ETDEWEB)

    Sakasegawa, Hideo, E-mail: sakasegawa.hideo@jaea.go.jp [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Tanigawa, Hiroyasu [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Kano, Sho; Abe, Hiroaki [Institute for Materials Research, Tohoku university, Sendai, Miyagi (Japan)

    2015-10-15

    Highlights: • We studied material properties of reduced activation ferritic/martensitic steel. • We melted F82H using a 20 tons electric arc furnace for the first time. • Mass effect likely affected material properties. • MX (M: Metal, C: Carbon and/or Nitrogen) precipitates mainly formed on grain and sub grain boundaries. - Abstract: Fusion DEMO reactor requires over 11,000 tons of reduced activation ferritic/martensitic steel. It is necessary to develop the manufacturing technology for fabricating such large-scale steel with appropriate mechanical properties. In this work, we focused fundamental mechanical properties and microstructures of F82H-BA12 heat which was melted using a 20 tons electric arc furnace followed by electroslag remelting process. Its raw material of iron was blast furnace iron, because the production volume of electrolytic iron which has been used in former heats, is limited. After melting and forging, this F82H-BA12 heat was heat-treated in four different conditions to consider their fluctuations and to optimize them, and tensile and Charpy impact tests were then performed. The result of these mechanical properties were comparable to those of former F82H heats less than 5 tons which were melted applying vacuum induction melting.

  8. Engineering Design of the ITER AC/DC Power Supplies

    International Nuclear Information System (INIS)

    Oh, B. H.; Lee, K. W.; Hwang, C. K.; Jin, J. T.; Chang, D. S.; Kim, T. S.

    2009-02-01

    To design high power pulse power supplies, especially in huge power supplies have not designed till now, it is necessary to analyze a system's characteristics and relations with another systems as well as to know high voltage, high current control technologies. Contents of this project are; - Study for the engineering designs changed recently by ITER Organization(IO) and writing specifications for the power supplies to reduce project risk. - Detailed analysis of the AC/DC Converters and writing subtask reports on the Task Agreement. - Study for thyristor numbers, DCR's specifications for Korea-China sharing meetings. - Study for the grounding systems of the ITER power supply system. The results may used as one of reference for practical designs of the high power coil power supplies and also may used in various field such as electroplating, plasma arc furnaces, electric furnaces

  9. Approximate entropy—a new statistic to quantify arc and welding process stability in short-circuiting gas metal arc welding

    International Nuclear Information System (INIS)

    Cao Biao; Xiang Yuanpeng; Lü Xiaoqing; Zeng Min; Huang Shisheng

    2008-01-01

    Based on the phase state reconstruction of welding current in short-circuiting gas metal arc welding using carbon dioxide as shielding gas, the approximate entropy of welding current as well as its standard deviation has been calculated and analysed to investigate their relation with the stability of electric arc and welding process. The extensive experimental and calculated results show that the approximate entropy of welding current is significantly and positively correlated with arc and welding process stability, whereas its standard deviation is correlated with them negatively. A larger approximate entropy and a smaller standard deviation imply a more stable arc and welding process, and vice versa. As a result, the approximate entropy of welding current promises well in assessing and quantifying the stability of electric arc and welding process in short-circuiting gas metal arc welding

  10. Compacting of fly dusts from cupola and electric arc furnace

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2012-01-01

    Full Text Available Recycling and utilization of dust waste is important not only from the point of view of its usage as an alternative source of raw materials, but regarding the environmental problems also. Dust emissions arise from thermal and chemical or physical processes and mechanical actions. Two kinds of fl y dusts from cupola furnaces (hot and cold blast cupola furnace and fl y dust from electric arc furnace were used by experiments. They were pelletized only with addition of water and briquetted with diff erent addition of water glass, bentonite and cement. Quality of briquettes was tested by compression – strength test and by break down test in green state, after drying and afterstoring (1 month.

  11. PREFACE: 1st International Symposium on Electrical Arc and Thermal Plasmas in Africa (ISAPA)

    Science.gov (United States)

    Andre, Pascal; Koalaga, Zacharie

    2012-02-01

    Logos of the University of Ouagadougou, ISAPA and Universite Blaise Pascal Africa (especially Sub-Saharan Africa) is a continent where electrification is at a low level. However, the development of the electrical power sector is a prerequisite for the growth of other industrial activities, that is to say for the social and economic development of African countries. Consequently, a large number of electrification projects (rural electrification, interconnection of different country's grids) takes place in many countries. These projects need expertise and make Africa a continent of opportunity for companies in different domains for business and research: energy; energetic production, transmission, distribution and protection of electricity; the supply of cable; the construction, engineering and expertise in the field of solar and wind power. The first International Symposium on electrical Arc and thermal Plasma in Africa (ISAPA) was held for the first time in Ouagadougou, Burkina Faso to progress and develop the research of new physical developments, technical breakthroughs, and ideas in the fields of electrical production and electrical applications. The ISAPA aims to encourage the advancement of the science and applications of electrical power transformation in Africa by bringing together specialists from many areas in Africa and the rest of the world. Such considerations have led us to define a Scientific Committee including representatives from many countries. This first meeting was an innovative opportunity for researchers and engineers from academic and industrial sectors to exchange views and knowledge. Both fundamental aspects such as thermal plasma, electrical arc, diagnostics and applied aspects as circuit breakers, ICP analyses, photovoltaic energy conversion and alternative energies, as well as space applications were covered. The Laboratory of Material and Environment (LAME) from Ouagadougou University and the Laboratory of Electric Arc and Thermal

  12. Principles of arc flash protection

    Energy Technology Data Exchange (ETDEWEB)

    Hirschmann, R. B.

    2003-04-01

    Recent developments in NFPA 70E, the electrical safety standards in the United States and Canada, designed to provide for a safe industrial work environment, are discussed. The emphasis in this instance is on arc explosions. Development of an arc flash protective program is discussed under various major components of an electrical safety program. These are: appropriate qualifications and training for workers, safe work practices, appropriate hazard assessment practices for any task exceeding 50V where there is the potential of an arc flash accident, flash protection equipment commensurate with the hazard associated with the task to be performed, layering in protective clothing over all body surfaces, and strict adherence to rules regarding use of safety garments and equipment.

  13. Chemical, physical, structural and morphological characterization of the electric arc furnace dust

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Janaina G.M.S. [Laboratorio de Siderurgia/LASID, Universidade Federal do Rio Grande do Sul, UFRGS/PPGEM Centro de Tecnologia, AV. Bento Goncalves 9500 CEP, 91501-970 Caixa postal 15021, Porto Alegre, RS (Brazil)]. E-mail: jana@ct.ufrgs.br; Brehm, Feliciane Andrade [Nucleo de Caracterizacao de Materiais/NucMat, Universidade do Vale do Rio dos Sinos, UNISINOS, Sao Leopoldo, RS (Brazil); Moraes, Carlos Alberto Mendes [Nucleo de Caracterizacao de Materiais/NucMat, Universidade do Vale do Rio dos Sinos, UNISINOS, Sao Leopoldo, RS (Brazil); Santos, Carlos Alberto dos [Nucleo de Educacao a Distancia, Universidade Estadual do Rio Grande do Sul, UERGS, Porto Alegre, RS (Brazil); Vilela, Antonio Cezar Faria [Laboratorio de Siderurgia/LASID, Universidade Federal do Rio Grande do Sul, UFRGS/PPGEM Centro de Tecnologia, AV. Bento Goncalves 9500 CEP, 91501-970 Caixa postal 15021, Porto Alegre, RS (Brazil); Cunha, Joao Batista Marimon da [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, UFRGS, Campus do Vale, Porto Alegre, RS (Brazil)

    2006-08-25

    Electric arc furnace dust (EAFD) is a hazardous industrial waste generated in the collection of particulate material during steelmaking process via electric arc furnace. Important elements to the industry such as, Fe and Zn are the main ones in EAFD. Due to their presence, it becomes very important to know how these elements are combined before studying new technologies for its processing. The aim of this work was to carry out a chemical, physical, structural and morphological characterization of the EAFD. The investigation was carried out by using granulometry analysis, chemical analysis, scanning electron microscopy (SEM), energy dispersive spectroscopy via SEM (EDS), X-ray mapping analysis via SEM, X-ray diffraction (XRD) and Moessbauer spectroscopy. By XRD the following phases were detected: ZnFe{sub 2}O{sub 4}, Fe{sub 3}O{sub 4}, MgFe{sub 2}O{sub 4}, FeCr{sub 2}O {sub 4}, Ca{sub 0.15}Fe{sub 2.85}O{sub 4}, MgO, Mn{sub 3}O{sub 4}, SiO{sub 2} and ZnO. On the other hand, the phases detected by Moessbauer spectroscopy were: ZnFe{sub 2}O{sub 4}, Fe{sub 3}O{sub 4}, Ca{sub 0.15}Fe{sub 2.85}O{sub 4} and FeCr{sub 2}O{sub 4}. Magnesium ferrite (MgFe{sub 2}O{sub 4}), observed in the XRD pattern as overlapped peaks, was not identified in the Moessbauer spectroscopy analysis.

  14. EFFICIENT USE OF ENERGY IN A ELECTRIC ARC FURNANCE BY HEAT INTEGRATION APPROACH

    OpenAIRE

    Umesh Kumar, Dr. A K Prasad, Sourabh Kumar Soni

    2016-01-01

    Based on the principles of heat integration, the present work investigates the design and operational modifications which can lead to efficient energy integration in an electric arc furnace being operated with direct reduction process. This process is one of the oldest and most widely applied processes amongst the commercially used process in India. For the purpose of energy integration stream data is extracted from the actual flow sheet of the plant, which consists of supply and target tempe...

  15. Numerical simulation of global formation of auroral arcs

    International Nuclear Information System (INIS)

    Miura, A.; Sato, T.

    1980-01-01

    Global simulation of auroral arcs is performed, based on the feedback theory of auroral arcs (Sato, 1978), for a three-dimensionally coupled ionosphere-magnetosphere system which includes two pairs of large-scale Birkeland currents, large-scale polar cap electric fields, and a day-night asymmetry of the electron density distribution. Simulation results have shown that auroral arcs are formed in the dark sector of the auroral oval, more preferentially in the evening sector. They usually appear in multiples with a shape elongating in the east-west direction, each arc being a couple of thousand kilometers in length and 10 to 40 km in width. A pair of small-scale, upward and downward, Birkeland currents is associated with each arc, the density of which becomes 10 to 200 μA/m 2 at 110-km height, and the intensity of the associated electrojet reaches 5 to 20 kA. Each arc is strongly polarized in the direction of the large-scale northsouth current so that the electric field inside the arc is reduced considerably from its ambient value. What controls the formation of auroral arcs (growing speed, locations, arc width, etc.) is examined in detail. For example, the arc width becomes sharper, as the bounce time of the Alfven wave decreases. The overall structure of auroras is largely dependent upon the large-scale Birkeland current, the electric field, and the electron density distribution in the auroral oval

  16. Sensoring fusion data from the optic and acoustic emissions of electric arcs in the GMAW-S process for welding quality assessment.

    Science.gov (United States)

    Alfaro, Sadek Crisóstomo Absi; Cayo, Eber Huanca

    2012-01-01

    The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms.

  17. Sensoring Fusion Data from the Optic and Acoustic Emissions of Electric Arcs in the GMAW-S Process for Welding Quality Assessment

    Directory of Open Access Journals (Sweden)

    Eber Huanca Cayo

    2012-05-01

    Full Text Available The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms.

  18. Fast electric dipole transitions in Ra-Ac nuclei

    International Nuclear Information System (INIS)

    Ahmad, I.

    1985-01-01

    Lifetime of levels in 225 Ra, 225 Ac, and 227 Ac have been measured by delayed coincidence techniques and these have been used to determine the E1 gamma-ray transition probabilities. The reduced E1 transition probabilities. The reduced E1 transition probabilities in 225 Ra and 225 Ac are about two orders of magnitude larger than the values in mid-actinide nuclei. On the other hand, the E1 rate in 227 Ac is similar to those measured in heavier actinides. Previous studies suggest the presence of octupole deformation in all the three nuclei. The present investigation indicates that fast E1 transitions occur for nuclei with octupole deformation. However, the studies also show that there is no one-to-one correspondence between E1 rate and octupole deformation. 13 refs., 4 figs

  19. Self-sustained firing activities of the cortical network with plastic rules in weak AC electrical fields

    International Nuclear Information System (INIS)

    Qin Ying-Mei; Wang Jiang; Men Cong; Zhao Jia; Wei Xi-Le; Deng Bin

    2012-01-01

    Both external and endogenous electrical fields widely exist in the environment of cortical neurons. The effects of a weak alternating current (AC) field on a neural network model with synaptic plasticity are studied. It is found that self-sustained rhythmic firing patterns, which are closely correlated with the cognitive functions, are significantly modified due to the self-organizing of the network in the weak AC field. The activities of the neural networks are affected by the synaptic connection strength, the external stimuli, and so on. In the presence of learning rules, the synaptic connections can be modulated by the external stimuli, which will further enhance the sensitivity of the network to the external signal. The properties of the external AC stimuli can serve as control parameters in modulating the evolution of the neural network. (interdisciplinary physics and related areas of science and technology)

  20. Equilibrium motion of quict auroral arcs

    International Nuclear Information System (INIS)

    Lyatskij, V.B.; Leont'ev, S.V.

    1981-01-01

    Ionospheric plasma convection across auroral arc is investigated. It is shown that the existence of plasma area of increased concentration adjoining arc results not only from the arc but also is a factor supporting its existence. Under stable conditions the arc and plasma zone connected to it will move at a velocity different from a velocity of plasma convection. Arc velocity will be higher or lower as compared with convection velocity depending on arc orientation relative to an external electric field. At that the plasma zone is located either in front of or behind aurora polaris [ru

  1. Approach to modeling of the fast energy discharge in cryogenic systems in the form of an electric arc

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Superconducting magnets are supplied with a few kA of electric current and can store a large amount of energy. Therefore, cryogenic systems which are comprised of such magnets are subject to the risk of fast energy discharge from the magnets themselves in the form of an electric arc. The arcing can be a result of failure in the insulation of an electric circuit or in the connection between the magnet and its current lead. During the discharge, energy can be partially dissipated into the cryogen and partially into the cryogenic system metallic structure. The part of the energy that is transferred to the metallic structure will strongly heat up the metal surface, which can lead to material burning. In this case, the cryogen will flow through the perforation to the insulation vacuum space, which can trigger a rapid increase in pressure in the vacuum enclosure. However, the discharged energy that has been stored in the cryogen also causes a rapid increase in cryogenic pressure. Hence, the proper estimation of the...

  2. Study of gliding arc discharge plasma

    International Nuclear Information System (INIS)

    Yang Chi; Lin Lie; Wu Bin

    2006-01-01

    The electric parameters change during discharge is studied and the relationship between non-equilibrium degree and parameters is discussed for gliding arc discharges. Using two-channel model, the rules of arc moving due to effect of the airflow is simulated. The numerical simulation results can help analyzing the generation mechanism of gliding arc non-equilibrium plasma. (authors)

  3. Auroral-arc splitting by intrusion of a new convection channel

    Directory of Open Access Journals (Sweden)

    H. U. Frey

    Full Text Available During a run of the Common Programme Three of the EISCAT radar the splitting of an auroral arc was observed by high time-resolution, ground-based cameras when the UHF radar beam was close to the arc. The evening eastward electrojet situation with a large-scale northward ionospheric electric field was disturbed by the intrusion of a convection channel with southward electric field from the east. The interaction of the new convection channel with the auroral arc caused changes in arc brightness and arc splitting, i.e. the creation of a new arc parallel to the pre-existing auroral arc. The event is described as one possibility for the creation of parallel arcs during slightly disturbed magnetic conditions far from the Harang discontinuity.

  4. Auroral-arc splitting by intrusion of a new convection channel

    Directory of Open Access Journals (Sweden)

    H. U. Frey

    1996-12-01

    Full Text Available During a run of the Common Programme Three of the EISCAT radar the splitting of an auroral arc was observed by high time-resolution, ground-based cameras when the UHF radar beam was close to the arc. The evening eastward electrojet situation with a large-scale northward ionospheric electric field was disturbed by the intrusion of a convection channel with southward electric field from the east. The interaction of the new convection channel with the auroral arc caused changes in arc brightness and arc splitting, i.e. the creation of a new arc parallel to the pre-existing auroral arc. The event is described as one possibility for the creation of parallel arcs during slightly disturbed magnetic conditions far from the Harang discontinuity.

  5. Ac-electrical conductivity of poly(propylene) before and after X-ray irradiation

    International Nuclear Information System (INIS)

    Gaafar, M.

    2001-01-01

    Study on the ac-electrical conductivity of poly(propylene), before and after X-ray irradiation within the temperature range 300-360 K are reported. The measurements have been performed in a wide range of frequencies (from 0 to 10 5 Hz) and under the effect of different X-ray irradiation doses (from 0 to 15 Gy). Cole-Cole diagrams have been used to show the frequency dependence of the complex impedance at different temperatures. The results exhibit semicircles which are consistent with existing equivalent circuit model. Analysis of the results reveal semiconducting features based mainly on a hopping mechanism. The study shows a pronounced effect of X-ray irradiation on the electrical conductivity at zero frequency σ DC . At the early stage of irradiation, σ DC increased as a result of free radical formation. As the irradiation progressed, it decreased as a result of crosslinking, then it increased again due to irradiation induced degradation, which motivates the generation of mobile free radicals. The study shows that this polymer is one among other polymers which its electrical conductivity is modified by irradiation

  6. Ac-electrical conductivity of poly(propylene) before and after X-ray irradiation

    Science.gov (United States)

    Gaafar, M.

    2001-05-01

    Study on the ac-electrical conductivity of poly(propylene), before and after X-ray irradiation within the temperature range 300-360 K are reported. The measurements have been performed in a wide range of frequencies (from 0 to 10 5 Hz) and under the effect of different X-ray irradiation doses (from 0 to 15 Gy). Cole-Cole diagrams have been used to show the frequency dependence of the complex impedance at different temperatures. The results exhibit semicircles which are consistent with existing equivalent circuit model. Analysis of the results reveal semiconducting features based mainly on a hopping mechanism. The study shows a pronounced effect of X-ray irradiation on the electrical conductivity at zero frequency σDC. At the early stage of irradiation, σDC increased as a result of free radical formation. As the irradiation progressed, it decreased as a result of crosslinking, then it increased again due to irradiation induced degradation, which motivates the generation of mobile free radicals. The study shows that this polymer is one among other polymers which its electrical conductivity is modified by irradiation.

  7. AC electric motors control advanced design techniques and applications

    CERN Document Server

    Giri, Fouad

    2013-01-01

    The complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control designmethods to a variety of AC motors. Contributions from over thirty top researchers explain how modern control design methods can be used to achieve tight speed regulation, optimal energetic efficiency, and operation reliability and safety, by considering online state var

  8. INFLUENCE OF STRUCTURAL PARAMETERS OF LOW-CARBON STEEL ON ELECTRIC ARC BURNING

    Directory of Open Access Journals (Sweden)

    I. O. Vakulenko

    2017-10-01

    Full Text Available Purpose. The article is aimed to evaluate the influence of structural parameters of low-carbon steel on arcing process. Methodology. The values of the micro- and substructure characteristics of the electrode wire metal were changed by varying the parameters of heat treatment and cold deformation by drawing. The degree of plastic deformation was obtained by drawing blanks from different initial diameter to final dimension of 1 mm. The thermal treatment was carried out in electric chamber furnace of the SNOL-1,6.2,5.1/11-IZ type. The temperature was measured by chromel-alumel thermocouple and the electromotive force was determined using the DC potentiometer. In order to obtain the substructure of different dispersion degree the steel (after quenching from temperatures and tempering at 650°C for 1 hour was subjected to cold drawing to reduction 17 – 80%. To form structure with different ferrite grain size the steel after drawing was annealed at 680°C for 1 hour. The microstructure was examined under a light and electron transmission microscope UEMV-100K at the accelerating voltage 100 kV. The grain and subgrain sizes were evaluated using the methodologies of quantitative metallography. A welding converter of the PSG-500 type was used to study the arc welding process of direct and reverse polarities. Findings. The experimentally detected value of the welding current, which depends on the degree of deformation during wire drawing, under conditions of stable arc burning of direct polarity is about an order of magnitude lower than the calculated value. Similar difference was found for the arc of reverse polarity: the experimental value of the welding current is 5...6 times less than the calculated value. Dependence analysis shows that, regardless of the polarity of the welding arc, a good enough agreement between the calculated and experimental values of the welding current is limited to deformations of 60%. For deformation degrees of more than 60

  9. 'LTE-diffusion approximation' for arc calculations

    International Nuclear Information System (INIS)

    Lowke, J J; Tanaka, M

    2006-01-01

    This paper proposes the use of the 'LTE-diffusion approximation' for predicting the properties of electric arcs. Under this approximation, local thermodynamic equilibrium (LTE) is assumed, with a particular mesh size near the electrodes chosen to be equal to the 'diffusion length', based on D e /W, where D e is the electron diffusion coefficient and W is the electron drift velocity. This approximation overcomes the problem that the equilibrium electrical conductivity in the arc near the electrodes is almost zero, which makes accurate calculations using LTE impossible in the limit of small mesh size, as then voltages would tend towards infinity. Use of the LTE-diffusion approximation for a 200 A arc with a thermionic cathode gives predictions of total arc voltage, electrode temperatures, arc temperatures and radial profiles of heat flux density and current density at the anode that are in approximate agreement with more accurate calculations which include an account of the diffusion of electric charges to the electrodes, and also with experimental results. Calculations, which include diffusion of charges, agree with experimental results of current and heat flux density as a function of radius if the Milne boundary condition is used at the anode surface rather than imposing zero charge density at the anode

  10. Characteristic study of DC electric Arc plasma igniter jet

    International Nuclear Information System (INIS)

    Lan Yudan; He Liming; Du Hongliang; Wang Feng; Chen Xin

    2012-01-01

    The spectrometer was adopted to measure the emission spectrum of Ar plasma jet at the igniter exit. Boltzmann curve slope method was applied to calculate the jet electron temperature. Ionization equilibrium equation was used to calculate jet temperature and measure the laws that jet length, jet velocity, electron temperature and jet temperature of igniter exit change with arc current and inlet Ar flow rate. Whether the electron temperature could be used to replace jet temperature in aircraft plasma arc jet was also discussed. The experiment results show that arc current reduces with the rising of inlet Ar flow rate; exit jet length and velocity increase with the rising of arc current, and increase at first and then reduce with the rising of inlet Ar flow rate; exit electron temperature, electron density and jet temperature increase with the rising of arc current and reduce with the rising of inlet Ar flow rate. (authors)

  11. Hall-effect based semi-fast AC on-board charging equipment for electric vehicles.

    Science.gov (United States)

    Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva

    2011-01-01

    The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented.

  12. Optical emission spectroscopy of metal vapor dominated laser-arc hybrid welding plasma

    International Nuclear Information System (INIS)

    Ribic, B.; DebRoy, T.; Burgardt, P.

    2011-01-01

    During laser-arc hybrid welding, plasma properties affect the welding process and the weld quality. However, hybrid welding plasmas have not been systematically studied. Here we examine electron temperatures, species densities, and electrical conductivity for laser, arc, and laser-arc hybrid welding using optical emission spectroscopy. The effects of arc currents and heat source separation distances were examined because these parameters significantly affect weld quality. Time-average plasma electron temperatures, electron and ion densities, electrical conductivity, and arc stability decrease with increasing heat source separation distance during hybrid welding. Heat source separation distance affects these properties more significantly than the arc current within the range of currents considered. Improved arc stability and higher electrical conductivity of the hybrid welding plasma result from increased heat flux, electron temperatures, electron density, and metal vapor concentrations relative to arc or laser welding.

  13. CHARACTERIZATION OF THE DUST GENERATED IN THE RECYCLING PROCESS OF THE ELECTRIC ARC FURNACE DUST

    Directory of Open Access Journals (Sweden)

    Fábio Gonçalves Rizz

    2013-10-01

    Full Text Available Electric Arc Furnace Dust (EAFD is a solid waste generated by the production of steel through the Electric Arc Furnace. This waste is labeled dangerous, which motivates studies aiming its recycling. Experiments were made to study a pyrometallurgical process for the recycling of the dust, using the insertion of dust briquettes in molten pig iron in three temperatures. In the briquettes, there were made additions of calcium fluoride in four different concentrations. This paper has the objective to characterize the dust that results from this process, verifying the influence of the temperature and the concentration of calcium fluoride in the briquette in the morphology and chemical composition of the new dust, determining the optimal conditions for the recovery of the zinc content of the dust. This newly generated dust was analyzed in an Scanning Electronic Microscope, used to capture micrographs and chemical composition by EDS. The micrographs show that the temperature and the calcium fluoride concentration interfere in the way the dust particles agglomerate. Chemical analysis points that the higher zinc recuperation occurrs in the experiments at 1500°C with 7% addition of calcium fluoride.

  14. Ionization and electric field properties of auroral arcs during magnetic quiescence

    International Nuclear Information System (INIS)

    Robinson, R.M.; Mende, S.B.

    1990-01-01

    Studies of the morphology of auroral precipitation during times of magnetic quiescence indicate that the polar cap shrinks and becomes distorted into a teardrop or pear-shaped region. On November 16, 1987, incoherent scatter radar and all-sky imaging photometer measurements were made of auroral arcs over Sondre Stromfjord, Greenland. The arcs were generally oriented in a geographic east-west direction which is approximately Sun aligned at a local time just after dusk. Kp was 1, and the interlplanetary magnetic field was northward during the time of observation, so tha the arcs occurred under magnetically quiet conditions. The Sondrestrom radar measurements were used to determine the electron density and plasma drifts associated with the arcs; the all-sky imaging photometer data were used to relate the radar measurements to the arc morphology. Assuming the arcs were produced by precipitating electrons, the height profiles of electron density indicate average energies less than about 2 keV and energy fluxes of 1 erg/(cm 2 s). F region electron densities were high in the polar cap north of the arcs and low within the region of the arcs. The poleward boundary of the arc system was a convection reversal boundary across which plasma exited the polar cap region moving antisunward and then turned sunward (westward). The observed arc-associated convection is consistent with that expected under these geomagnetic conditions. Comparison of these results with the electrodynamic properties of other arcs observed in the afternoon and early evening suggests that there is a system of arcs that delineates the afternoon convection cell. The observed gradient in F region electron density across the arc can be explained in terms of the recombination of ionization drifting in response to the arc-associated convection pattern

  15. Calorimeter probes for measuring high thermal flux. [in electric-arc jet facilities for planetary entry heating simulation

    Science.gov (United States)

    Russell, L. D.

    1979-01-01

    The paper describes expendable, slug-type calorimeter probes developed for measuring high heat-flux levels of 10-30 kW/sq cm in electric-arc jet facilities. The probes are constructed with thin tungsten caps mounted on Teflon bodies; the temperature of the back surface of the tungsten cap is measured, and its rate of change gives the steady-state, absorbed heat flux as the calorimeter probe heats to destruction when inserted into the arc jet. It is concluded that the simple construction of these probes allows them to be expendable and heated to destruction to obtain a measurable temperature slope at high heating rates.

  16. Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system

    International Nuclear Information System (INIS)

    Suetens, T.; Guo, M.; Van Acker, K.; Blanpain, B.

    2015-01-01

    Highlights: • EAF dust was characterized with particle size analysis, XRF, and EPMA. • Slag particles showed no sign of reaction with Zn vapor. • Fe 2 O 3 particles showed different degrees of reaction based on their size. • The thermodynamic stability of Zn vapor in EAF off-gas ducts was reevaluated. • In presence of Fe 2 O 3 , Zn vapor reacts to form ZnFe 2 O 4 and ZnO. - Abstract: To better understand the phenomena of ZnFe 2 O 4 spinel formation in electric arc furnace dust, the dust was characterized with particle size analysis, X-ray fluorescence (XRF), electron backscatter diffraction (EBSD), and electron probe micro-analysis (EPMA). Different ZnFe 2 O 4 formation reaction extents were observed for iron oxide particles with different particle sizes. ZnO particles were present as both individual particles and aggregated on the surface of larger particles. Also, the slag particles found in the off-gas were shown not to react with the zinc vapor. After confirming the presence of a ZnFe 2 O 4 formation reaction, the thermodynamic feasibility of in-process separation – a new electric arc furnace dust treatment technology – was reevaluated. The large air intake and the presence of iron oxide particles in the off-gas were included into the thermodynamic calculations. The formation of the stable ZnFe 2 O 4 spinel phase was shown to be thermodynamically favorable in current electric arc furnace off-gas ducts conditions even before reaching the post combustion chamber

  17. Modeling of an electric arc transferred on a melted glass bath; Modelisation d`un arc electrique transfere sur un bain de verre

    Energy Technology Data Exchange (ETDEWEB)

    Mehlman, G.; Langlois, A. [SGN, 78 - Saint Quentin en Yvelines (France)

    1997-12-31

    The aim of this study is to propose a methodology allowing the simulation of melting processes involving electromagnetic phenomena. This methodology is based on the use of scientific calculation tools currently used elsewhere. The case considered in this study has been defined in collaboration with Electricite de France (EdF) and concerns more particularly an electric arc vitrification process for wastes. Basic data have been determined in order to obtain results representative of the tests performed by EdF with pilot installations. (J.S.)

  18. AC/DC electrical conduction and dielectric properties of PMMA/PVAc/C60 down-shifting nanocomposite films

    Science.gov (United States)

    El-Bashir, S. M.; Alwadai, N. M.; AlZayed, N.

    2018-02-01

    Polymer nanocomposite films were prepared by doping fullerene C60 in polymer blend composed of polymethacrylate/polyvinyl acetate blends (PMMA/PVAc) using solution cast technique. The films were characterized by differential scanning calorimeter (DSC), Transmission electron microscope (TEM), DC/AC electrical conductivity and dielectric measurements in the frequency range (100 Hz- 1 MHz). The glass transition temperature, Tg, was increased by increasing the concentration of fullerene C60; this property reflects the increase of thermal stability by increasing the nanofiller content. The DC and AC electrical conductivities were enhanced by increasing C60 concentration due to the electron hopping or tunneling between filled and empty localized states above Tg. The relaxation time was determined from the αβ -relaxations and found to be attenuated by increasing the temperature as a typical behavior of amorphous polymers. The calculated values of thermodynamic parameters revealed the increase of molecular stability by increasing the doping concentration; this feature supports the application of PMMA/PVAc/C60 nanocomposite films in a wide scale of solar energy conversion applications such as luminescent down-shifting (LDS) coatings for photovoltaic cells.

  19. Modeling of zinc solubility in stabilized/solidified electric arc furnace dust

    International Nuclear Information System (INIS)

    Fernandez-Olmo, Ignacio; Lasa, Cristina; Irabien, Angel

    2007-01-01

    Equilibrium models which attempt for the influence of pH on the solubility of metals can improve the dynamic leaching models developed to describe the long-term behavior of waste-derived forms. In addition, such models can be used to predict the concentration of metals in equilibrium leaching tests at a given pH. The aim of this work is to model the equilibrium concentration of Zn from untreated and stabilized/solidified (S/S) electric arc furnace dust (EAFD) using experimental data obtained from a pH-dependence leaching test (acid neutralization capacity, ANC). EAFD is a hazardous waste generated in electric arc furnace steel factories; it contains significant amounts of heavy metals such as Zn, Pb, Cr or Cd. EAFD from a local factory was characterized by X-ray fluorescence (XRF), acid digestion and X-ray diffraction (XRD). Zn and Fe were the main components while the XRD analysis revealed that zincite, zinc ferrite and hematite were the main crystalline phases. Different cement/EAFD formulations ranging from 7 to 20% dry weight of cement were prepared and subjected to the ANC leaching test. An amphoteric behavior of Zn was found from the pH dependence test. To model this behavior, the geochemical model Visual MINTEQ (VMINTEQ) was used. In addition to the geochemical model, an empirical model based on the dissolution of Zn in the acidic zone and the re-dissolution of zinc compounds in the alkaline zone was considered showing a similar prediction than that obtained with VMINTEQ. This empirical model seems to be more appropriate when the metal speciation is unknown, or when if known, the theoretical solid phases included in the database of VMINTEQ do not allow to describe the experimental data

  20. Correlation methods in cutting arcs

    Energy Technology Data Exchange (ETDEWEB)

    Prevosto, L; Kelly, H, E-mail: prevosto@waycom.com.ar [Grupo de Descargas Electricas, Departamento Ing. Electromecanica, Universidad Tecnologica Nacional, Regional Venado Tuerto, Laprida 651, Venado Tuerto (2600), Santa Fe (Argentina)

    2011-05-01

    The present work applies similarity theory to the plasma emanating from transferred arc, gas-vortex stabilized plasma cutting torches, to analyze the existing correlation between the arc temperature and the physical parameters of such torches. It has been found that the enthalpy number significantly influence the temperature of the electric arc. The obtained correlation shows an average deviation of 3% from the temperature data points. Such correlation can be used, for instance, to predict changes in the peak value of the arc temperature at the nozzle exit of a geometrically similar cutting torch due to changes in its operation parameters.

  1. Correlation methods in cutting arcs

    International Nuclear Information System (INIS)

    Prevosto, L; Kelly, H

    2011-01-01

    The present work applies similarity theory to the plasma emanating from transferred arc, gas-vortex stabilized plasma cutting torches, to analyze the existing correlation between the arc temperature and the physical parameters of such torches. It has been found that the enthalpy number significantly influence the temperature of the electric arc. The obtained correlation shows an average deviation of 3% from the temperature data points. Such correlation can be used, for instance, to predict changes in the peak value of the arc temperature at the nozzle exit of a geometrically similar cutting torch due to changes in its operation parameters.

  2. Permian arc evolution associated with Panthalassa subduction along the eastern margin of the South China block, based on sandstone provenance and U-Pb detrital zircon ages of the Kurosegawa belt, Southwest Japan

    Science.gov (United States)

    Hara, Hidetoshi; Hirano, Miho; Kurihara, Toshiyuki; Takahashi, Toshiro; Ueda, Hayato

    2018-01-01

    We have studied the petrography, geochemistry, and detrital zircon U-Pb ages of sandstones from shallow-marine forearc sediments, accretionary complexes (ACs), and metamorphosed accretionary complexes (Meta-ACs) within the Kurosegawa belt of Southwest Japan. Those rocks formed in a forearc region of a Permian island arc associated with subduction of the Panthalassa oceanic crust along the eastern margin of the South China block (Yangtze block). The provenance of the shallow-marine sediments was dominated by basaltic to andesitic volcanic rocks and minor granitic rocks during the late Middle to Late Permian. The ACs were derived from felsic to andesitic volcanic rocks during the Late Permian. The provenance of Meta-ACs was dominated by andesitic volcanic rocks in the Middle Permian. The provenance, source rock compositions, and zircon age distribution for the forearc sediments, ACs and Meta-ACs have allowed us to reconstruct the geological history of the Permian arc system of the Kurosegawa belt. During the Middle Permian, the ACs were accreted along the eastern margin of the South China block. The Middle Permian arc was an immature oceanic island arc consisting of andesitic volcanic rocks. During the Late Permian, the ACs formed in a mature arc, producing voluminous felsic to andesitic volcanic rocks. A forearc basin developed during the late Middle to Late Permian. Subsequently, the Middle Permian ACs and part of the Late Permian AC underwent low-grade metamorphism in the Late to Early Jurassic, presenting the Meta-ACs.

  3. Magnetic Method to Characterize the Current Densities in Breaker Arc

    International Nuclear Information System (INIS)

    Machkour, Nadia

    2005-01-01

    The purpose of this research was to use magnetic induction measurements from a low voltage breaker arc, to reconstruct the arc's current density. The measurements were made using Hall effect sensors, which were placed close to, but outside the breaking device. The arc was modelled as a rectangular current sheet, composed of a mix of threadlike current segments and with a current density varying across the propagation direction. We found the magnetic induction of the arc is a convolution product of the current density, and a function depending on the breaker geometry and arc model. Using deconvolution methods, the current density in the electric arc was determined.The method is used to study the arc behavior into the breaker device. Notably, position, arc size, and electric conductivity could all be determined, and then used to characterize the arc mode, diffuse or concentrated, and study the condition of its mode changing

  4. Adsorption Study of Electric Arc Furnace Slag for the Removal of Manganese from Solution

    OpenAIRE

    C. L. Beh; Luqman Chuah; Thomas S.Y. Choong; Mohd. Z.B. Kamarudzaman; Khalina Abdan

    2010-01-01

    Problem statement: Steel making slag from Electric Arc Furnace (EAF) is an abundant by-product in Malaysia steel making industry. It has potential to be used for heavy metal removal from contaminated water or waste water. Approach: The aim of this study was to investigate the characteristic and behavior of manganese removal by using EAF slag for efficient metal removal. The removal characteristics of manganese were investigated in term of sorption kinetics and isotherm. The batch adsorption k...

  5. Deposition of titanium nitride layers by electric arc – Reactive plasma spraying method

    International Nuclear Information System (INIS)

    Şerban, Viorel-Aurel; Roşu, Radu Alexandru; Bucur, Alexandra Ioana; Pascu, Doru Romulus

    2013-01-01

    Highlights: ► Titanium nitride layers deposited by electric arc – reactive plasma spraying method. ► Deposition of titanium nitride layers on C45 steel at different spraying distances. ► Characterization of the coatings hardness as function of the spraying distances. ► Determination of the corrosion behavior of titanium nitride layers obtained. - Abstract: Titanium nitride (TiN) is a ceramic material which possesses high mechanical properties, being often used in order to cover cutting tools, thus increasing their lifetime, and also for covering components which are working in corrosive environments. The paper presents the experimental results on deposition of titanium nitride coatings by a new combined method (reactive plasma spraying and electric arc thermal spraying). In this way the advantages of each method in part are combined, obtaining improved quality coatings in the same time achieving high productivity. Commercially pure titanium wire and C45 steel as substrate were used for experiments. X-ray diffraction analysis shows that the deposited coatings are composed of titanium nitride (TiN, Ti 2 N) and small amounts of Ti 3 O. The microstructure of the deposited layers, investigated both by optical and scanning electron microscopy, shows that the coatings are dense, compact, without cracks and with low porosity. Vickers microhardness of the coatings presents maximum values of 912 HV0.1. The corrosion tests in 3%NaCl solution show that the deposited layers have a high corrosion resistance compared to unalloyed steel substrate.

  6. Near-optimal order-reduced control for A/C (air-conditioning) system of EVs (electric vehicles)

    International Nuclear Information System (INIS)

    Chiu, Chien-Chin; Tsai, Nan-Chyuan; Lin, Chun-Chi

    2014-01-01

    This work is aimed to investigate the regulation problem for thermal comfortableness and propose control strategies for cabin environment of EVs (electric vehicles) by constructing a reduced-scale A/C (air-conditioning) system which mainly consists of two modules: ECB (environmental control box) and AHU (air-handling unit). Temperature and humidity in the ECB can be regulated by AHU via cooling, heating, mixing air streams and adjusting speed of fans. To synthesize the near-optimal controllers, the mathematical model for the system thermodynamics is developed by employing the equivalent lumped heat capacity approach, energy/mass conservation principle and the heat transfer theories. In addition, from the clustering pattern of system eigenvalues, the thermodynamics of the interested system can evidently be characterized by two-time-scale property. That is, the studied system can be decoupled into two subsystems, slow mode and fast mode, by singular perturbation technique. As to the optimal control strategies for EVs, by taking thermal comfortableness, humidity and energy consumption all into account, a series of optimal controllers is synthesized on the base of the order-reduced thermodynamic model. The feedback control loop for the experimental test rig is examined and realized by the aid of the control system development kit dSPACE DS1104 and the commercial software MATLAB/Simulink. To sum up, the intensive computer simulations and experimental results verify that the performance of the near-optimal order-reduced control law is almost as superior as that of standard LQR (Linear-Quadratic Regulator). - Highlights: • A reduced-scale test rig for A/C (air-conditioning) system to imitate the temperature/humidity of cabin in EV (electric vehicle) is constructed. • The non-linear thermodynamic model of A/C system can be decoupled by singular perturbation technique. • The temperature/humidity in cabin is regulated to the desired values by proposed optimal

  7. The influence of electric ARC activation on the speed of heating and the structure of metal in welds

    Directory of Open Access Journals (Sweden)

    Savytsky Oleksandr M.

    2016-01-01

    Full Text Available This paper presents the results of a research related to the impact of electric arc activation onto drive welding energy and metal weld heating speed. It is confirmed that ATIG and AMIG methods, depending on metal thickness, single pass weldability and chemical composition of activating flux, enable the reduction of welding energy by 2-6 times when compared to conventional welding methods. Additionally, these procedures create conditions to increase metal weld heating speed up to 1,500-5,500°C/s-1. Steel which can be rapidly heated, allows for a hardened structure to form (with carbon content up to 0.4%, together with a released martensitic structure or a mixture of bainitic-martensitic structures. Results of the research of effectiveness of ATIG and AMIG welding showed that increase in the penetration capability of electric arc, which increases welding productivity, is the visible side of ATIG and AMIG welding capabilities.

  8. Simultaneous obtention of multicomponent ferroalloy and slag from black sands for the development of electrical arc welding consumables

    International Nuclear Information System (INIS)

    Cruz-Crespo, A.; Gomez-Rodriguez, L.; Garcia-Sanchez, L. L.; Quintana-Puchol, R.; Cerpa-Naranjo, A.; Cores-Sanchez, A.

    2004-01-01

    In this paper, chemical and mineralogical characterizations of the black sands of the Mejias placer of Sagua de Tanamo (the most important beach littoral placer of the northwest of oriental Cuba) are exposed. Starting from these characterizations a calculation strategy is developed for the making of the metallurgical load that allows to obtain simultaneously, when processed by carbothermic reduction in an electrical arc furnace, a multicomponent ferroalloy and a useful slag for the making of electric arch welding consumables. The powder of the obtained slag is agglomerated with liquid glass. The resulting pellets, due to their behavior on the submerged arc welding (SAW) present technological and metallurgical properties that correspond with the requirements of an agglomerated flux matrix. The chemical composition of the multicomponent ferroalloy is constituted by metallic elements of high metallurgical and alloyed values (V, Cr, Mo, Ti, Nb). It is appropriate for the formulation of consumables for manual welding (SMAW) and SAW, as well. (Author) 15 refs

  9. Influence of direct reduced iron on the energy balance of the electric arc furnace in steel industry

    International Nuclear Information System (INIS)

    Kirschen, Marcus; Badr, Karim; Pfeifer, Herbert

    2011-01-01

    A model of the EAF energy efficiency was developed based on a closed mass and energy balance of the EAF melting process. This model was applied to industrial EAFs in steel industry charged with scrap or with mixes of scrap and DRI. Complex mass and energy conversion in the EAF was simplified with the introduction of mass and energy conversion efficiencies for the conversion of oxygen and the energy conversion of electrical energy in the electric arcs, chemical energy from the oxidation reactions in the melt and energy from the combustion of burner gas. It turned out that close agreement with observed process parameters from 16 EAFs is obtained by slight variations of the efficiency values. Especially the sensitivity of the steel temperature from the energy conversion efficiency of the electric arc energy indicates the importance of efficient foaming slag operation in EAF steel making. Characteristics and process parameters of DRI charged EAFs are discussed. Model results for a series of case studies illustrate the correlations between DRI chemical composition, DRI portion, oxygen consumption, etc. with electrical energy demand in order to indentify cost-effective EAF process conditions. -- Highlights: → Energy demand and carbon dioxide emission figures of EAF steelmaking processes based on steel scrap and DRI. → Complete energy balance of the EAF process using various input materials. → Application of the model to industrial EAF in steel industry in 4 case studies and discussion of model results. → Comparison with other models, critical discussion.

  10. Proposition of a modification to the VAR process and its application in the consolidation of pressed zircaloy chips and the evaluation of the dynamical system of the electric arc

    International Nuclear Information System (INIS)

    Mucsi, Cristiano Stefano

    2005-01-01

    The objective of this work is the investigation of a new process as an alternative to the Vacuum Arc Remelting technology in the consolidation of Zircaloy chips. A procedure is proposed for the recycling of primary Zircaloy scraps by means of a modified VAR furnace. The performed studies were made in order to optimise the low cost new devices added to existing VAR furnace prototype, find ideal operational conditions, evaluate data acquisition system and the electric arc dynamical system in order to made viable the automated control of the modified VAR prototype. A funnel-crucible special device was developed and installed in a VAR prototype furnace allowing ingots to be obtained from pressed chips. This indicated the viability of creation of a new process for the consolidation of Zircaloy chips. The voltage of the electric arc during the melting runs was digitally recorded allowing the evaluation of the electric arc dynamics by using the topological invariant of the system: correlation dimension and the higher Liapunov exponent. (author)

  11. Numerical modeling of transferred arc melting bath heating; Modelisation numerique du chauffage de bains par arc transfere

    Energy Technology Data Exchange (ETDEWEB)

    Bouvier, A. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches; Trenty, L.; Guillot, J.B. [Ecole Centrale de Paris, Laboratoire EM2C. CNRS, 92 - Chatenay-Malabry (France); Delalondre, C. [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches

    1997-12-31

    This paper presents the modeling of a transferred electric arc inside a bath of melted metal. After a recall of the context of the study, the problem of the modeling, which involves magnetohydrodynamic coupling inside the arc and the bath, is described. The equations that govern the phenomena inside the arc and the bath are recalled and the approach used for the modeling of the anode region of the arc is explained using a 1-D sub-model. The conditions of connection between arc and bath calculations are explained and calculation results obtained with a 200 kW laboratory furnace geometry are presented. (J.S.) 8 refs.

  12. Three-dimensional numerical modelling of a magnetically deflected dc transferred arc in argon

    CERN Document Server

    Blais, A; Boulos, M I

    2003-01-01

    The aim of this work is to develop a numerical model for the deflection of dc transferred arcs using an external magnetic field as a first step into the modelling of industrial arc furnaces. The arc is deflected by the use of a conductor aligned parallel to the arc axis through which flows an electric current. The model is validated by comparing the results of axisymmetric calculations to modelling results from the scientific literature. The present model is found to be a good representation of the electric dc arc as differences with the literature are easily explained by model parameters such as the critical boundary conditions at the electrodes. Transferred arc cases exhibit the expected behaviour as the temperature T, the velocity v-vector and the electrical potential drop DELTA phi all increase with the arc current I and the argon flow rate Q. Three-dimensional geometry is implemented, enabling one to numerically deflect the arc. For the deflected arc cases, the deflection increases with the arc current I...

  13. Active control of massively separated high-speed/base flows with electric arc plasma actuators

    Science.gov (United States)

    DeBlauw, Bradley G.

    The current project was undertaken to evaluate the effects of electric arc plasma actuators on high-speed separated flows. Two underlying goals motivated these experiments. The first goal was to provide a flow control technique that will result in enhanced flight performance for supersonic vehicles by altering the near-wake characteristics. The second goal was to gain a broader and more sophisticated understanding of these complex, supersonic, massively-separated, compressible, and turbulent flow fields. The attainment of the proposed objectives was facilitated through energy deposition from multiple electric-arc plasma discharges near the base corner separation point. The control authority of electric arc plasma actuators on a supersonic axisymmetric base flow was evaluated for several actuator geometries, frequencies, forcing modes, duty cycles/on-times, and currents. Initially, an electric arc plasma actuator power supply and control system were constructed to generate the arcs. Experiments were performed to evaluate the operational characteristics, electromagnetic emission, and fluidic effect of the actuators in quiescent ambient air. The maximum velocity induced by the arc when formed in a 5 mm x 1.6 mm x 2 mm deep cavity was about 40 m/s. During breakdown, the electromagnetic emission exhibited a rise and fall in intensity over a period of about 340 ns. After breakdown, the emission stabilized to a near-constant distribution. It was also observed that the plasma formed into two different modes: "high-voltage" and "low-voltage". It is believed that the plasma may be switching between an arc discharge and a glow discharge for these different modes. The two types of plasma do not appear to cause substantial differences on the induced fluidic effects of the actuator. In general, the characterization study provided a greater fundamental understanding of the operation of the actuators, as well as data for computational model comparison. Preliminary investigations

  14. Simultaneous rocket and radar measurements of currents in an auroral arc

    International Nuclear Information System (INIS)

    Robinson, R.M.; Bering, E.A.; Vondrak, R.R.; Anderson, H.R.; Cloutier, P.A.

    1981-01-01

    A detailed study of electric field, current and conductivities associated with an auroral arc was made in a coordinated rocket and radar experiment in Alaska on March 9, 1978. The payload, designated 29.007 UE, was launched at 1013 p.m. local time. It penetrated the diffuse aurora on the upleg and at apogee traversed field lines connected to a stable auroral arc of 40 kR intensity. Among the instruments carried by the payload were a vector magnetometer, a set of electrostatic double probes and a set of electron and proton spectrometers. Simultaneous electron density and line-of-sight velocity measurements were made by Chatanika radar operating in an elevation scan mode in the magnetic meridian plane. Both the radar and rocket measurements indicated that the zonal electric field was westward and approximately constant across the arc with a magnitude of about 7 mV/m. Small differences between the rocket and radar zonal electric field measurements indicated the presence of upward drifting ions in the region of the arc. The meridional field was large and northward equatorward of the arc, but negligible within the arc. Conductivities computed from measured fluxes of energetic electrons agreed well with the conductivities derived from the radar measureements of electron density. The electric field and conductivity measurements indicated that the zonal currents were eastward equatorward of the arc and westward within the arc. These electrojet currents agreed well with those inferred from the rocket magnetometer data. Better agreement was obtained when a westward neutral wind was added. The westward wind was also consistent with differences between the rocket and radar meridional electric fields. The meridional currents computed from the electric field measurements were northward over the entire region

  15. Contaminación acústica por grupos electrógenos

    Directory of Open Access Journals (Sweden)

    Yanexy Cepero-Aguilera

    2009-05-01

    Full Text Available El trabajo tiene como tema el impacto ambiental por ruido de grupos electrógenos (GE. Se muestran diferentes definiciones y conceptos referidos a la explotación de los GE y las consecuencias que puede provocar a las personas que permanezcan cerca de ellos durante su funcionamiento. Los grupos electrógenos son además de generadores de energía, generadores de ruido y por tanto contribuyen a la contaminación acústica del lugar donde estén situados. En el documento se aborda la importancia del correcto uso y selección de los protectores auditivos para aquellas personas que trabajen directamente en las baterías de grupos electrógenos, así como algunas formas de atenuar el ruido. También se caracteriza la emisión sonora de estos a partir de estudios realizados.This paper concerns with the environmental damage due to noise emission introduced by Engine Generator Sets. Definitions and concepts about Engine Generator operation are shown as well as the consequences over the personnel who stand near the Engine Generators during their operation. Obviously, such kind of machines generates energy but they also generate noise which contaminates the environment around them. The paper states how important are the right selection and use of noise protection devices for those whose main job is to operate engine generator sets. Some methods for noise damping are also shown. Finally, some case studies are presented in order to describe the noise emission registered in the real world.

  16. Effect of temperature on the AC impedance of protein

    Indian Academy of Sciences (India)

    The depression parameter reveals the electrical equivalent circuit for the biopolymers. The AC electrical conductivity in the biopolymers follows the universal power law. From this, it is observed that the AC conductivity is frequency dependent and the biopolymer papain obeys large polaron tunnelling model, gum acacia and ...

  17. Arc Voltage Fluctuation in DC Laminar and Turbulent Plasma Jets Generation

    International Nuclear Information System (INIS)

    Pan Wenxia; Meng Xian; Wu Chengkang

    2006-01-01

    Arc voltage fluctuations in a direct current (DC) non-transferred arc plasma generator are experimentally studied, in generating a jet in the laminar, transitional and turbulent regimes. The study is with a view toward elucidating the mechanism of the fluctuations and their relationship with the generating parameters, arc root movement and flow regimes. Results indicate that the existence of a 300 Hz alternating current (AC) component in the power supply ripples does not cause the transition of the laminar plasma jet into a turbulent state. There exists a high frequency fluctuation at 4 kHz in the turbulent jet regime. It may be related to the rapid movement of the anode attachment point of the arc

  18. Calculation of the Arc Velocity Along the Polluted Surface of Short Glass Plates Considering the Air Effect

    Directory of Open Access Journals (Sweden)

    Tao Yuan

    2012-03-01

    Full Text Available To investigate the microphysics mechanism and the factors that influence arc development along a polluted surface, the arc was considered as a plasma fluid. Based on the image method and the collision ionization theory, the electric field of the arc needed to maintain movement with different degrees of pollution was calculated. According to the force of the charged particle in an arc plasma stressed under an electric field, a calculation model of arc velocity, which is dependent on the electric field of the arc head that incorporated the effects of airflow around the electrode and air resistance is presented. An experiment was carried out to measure the arc velocity, which was then compared with the calculated value. The results of the experiment indicated that the lighter the pollution is, the larger the electric field of the arc head and arc velocity is; when the pollution is heavy, the effect of thermal buoyancy that hinders arc movement increases, which greatly reduces the arc velocity.

  19. Presence and generation of AC and DC electric fields and small ions in closed rooms as a function of building materials, utilization, and electrical installation

    International Nuclear Information System (INIS)

    Reiter, R.

    1985-01-01

    In the discussion on possible biological effects of natural atmospheric electric fields or electromagnetic radiation it is frequently overlooked that man, under normal living and working conditions in closed rooms, is also exposed to considerable fields of various types and strengths. Therefore an extensive ''inventory'' has been made of such ac and dc fields as they occur in rooms of different construction, utilization, and electrical equipment. Results are presented and discussed, also with respect to biological conditions, including some typical examples from the relevant literature

  20. Three-dimensional numerical modelling of a magnetically deflected dc transferred arc in argon

    International Nuclear Information System (INIS)

    Blais, A; Proulx, P; Boulos, M I

    2003-01-01

    The aim of this work is to develop a numerical model for the deflection of dc transferred arcs using an external magnetic field as a first step into the modelling of industrial arc furnaces. The arc is deflected by the use of a conductor aligned parallel to the arc axis through which flows an electric current. The model is validated by comparing the results of axisymmetric calculations to modelling results from the scientific literature. The present model is found to be a good representation of the electric dc arc as differences with the literature are easily explained by model parameters such as the critical boundary conditions at the electrodes. Transferred arc cases exhibit the expected behaviour as the temperature T, the velocity v-vector and the electrical potential drop Δφ all increase with the arc current I and the argon flow rate Q. Three-dimensional geometry is implemented, enabling one to numerically deflect the arc. For the deflected arc cases, the deflection increases with the arc current I and conductor current I conductor and decreases with the flow rate Q and x 0 , the arc-conductor distance. These deflection behaviours are explained using physical arguments

  1. Sheath and arc-column voltages in high-pressure arc discharges

    International Nuclear Information System (INIS)

    Benilov, M S; Benilova, L G; Li Heping; Wu Guiqing

    2012-01-01

    Electrical characteristics of a 1 cm-long free-burning atmospheric-pressure argon arc are calculated by means of a model taking into account the existence of a near-cathode space-charge sheath and the discrepancy between the electron and heavy-particle temperatures in the arc column. The computed arc voltage exhibits a variation with the arc current I similar to the one revealed by the experiment and exceeds experimental values by no more than approximately 2 V in the current range 20-175 A. The sheath contributes about two-thirds or more of the arc voltage. The LTE model predicts a different variation of the arc voltage with I and underestimates the experimental values appreciably for low currents but by no more than approximately 2 V for I ≳ 120 A. However, the latter can hardly be considered as a proof of unimportance of the space-charge sheath at high currents: the LTE model overestimates both the resistance of the bulk of the arc column and the resistance of the part of the column that is adjacent to the cathode, and this overestimation to a certain extent compensates for the neglect of the voltage drop in the sheath. Furthermore, if the latter resistance were evaluated in the framework of the LTE model in an accurate way, then the overestimation would be still much stronger and the obtained voltage would significantly exceed those observed in the experiment.

  2. production of manual arc welding electrodes with local raw materials

    African Journals Online (AJOL)

    CHUKSSUCCESS 4 LOVE

    Manual arc welding using flux coated electrodes is carried out by producing an electric arc between ... major objectives: to form fusible slags, to stabilize the arc and to produce an inert gas shielding ... Current fusion welding techniques rely.

  3. Comportamiento del tiempo de duración, la frecuencia de los cortocircuitos y la conductividad eléctrica durante el reencendido del arco en la soldadura SMAW (AC con electrodos E6013 Behavior of short-circuit frequency and duration time and electrical conductivity on arc turn- on during SMAW (AC with E6013 electrodes

    Directory of Open Access Journals (Sweden)

    Alejandro García Rodríguez

    2009-03-01

    Full Text Available El presente trabajo tiene como objetivo la evaluación del comportamiento del tiempo de duración, la frecuencia de los cortocircuitos y la conductividad durante el reencendido del arco en el proceso de soldadura SMAW (Shielded Metal Arc Welding, con corriente alterna y electrodos E6013. El análisis estadístico no-paramétrico garantiza un procesamiento robusto de los datos, atenuando la influencia de valores atípicos y errores derivados del empleo de aproximaciones a distribuciones continuas conocidas. La mediana y la mediana de la desviación absoluta (MAD, respecto a la mediana de los datos, constituyen los estimadores de localización y dispersión utilizados, respectivamente. El electrodo, en el régimen de 160 A, presenta una mayor estabilidad, en el aporte metálico, dada por el menor valor del MAD promedio del período de cortocircuito (39,36 ms y de la duración del cortocircuito (1,43 ms, reafirmada con la presencia de una mayor conductividad eléctrica durante el reencendido (1766,17x10-3 S·s-1.The objective of this work is the valuation of the behavior of short-circuits frequency and duration time and electrical conductivity on arc reigniting in SMAW (Shielded Metal Arc Welding process with alternate current and E6013 electrodes. The non parametric statistic analysis realize a robust data processing, minimizing the outliers influence and mistakes derivates about employ of approximations to well know continues distributions. The median and the median absolute deviation (MAD respect to median of the data are the localization and dispersion estimators used, respectively. The electrode at 160 A present a better stability on metal transference supported on the most little value of MAD for the period of transference (39,36 ms, and the MAD of the short-circuit duration (1,43 ms, according with the presence of a major electric conductivity during the arc reigniting (1766,17x10-3 S·s-1.

  4. The influence of remelting parameters of the electric arc and conventional tempering on the tribological resistance of high speed steel HS 6-5-2

    Directory of Open Access Journals (Sweden)

    A. Dziedzic

    2011-07-01

    Full Text Available The present thesis depicts the results of the research of tribological high speed steel HS 6-5-2 remelted with the electric arc. Steel was remelted with different parameters. The amperage of electric arc was changed, the scanning speed was changed and the single, overlapping remeltings were used. There was also the influence of conventional tempering defined, which was conducted after remelting on the tribological resistance of hardened steel. For the previously mentioned processing variants, the intensity of tribological wear was defined and the linear wear were presented, and the friction coefficients. The type of tribological wear was also given, present during the friction, technically dry, of the hardened steel. The lower intensity of tribological wear was received for the single remelting by electric arc of 50 and 70A. Using the overlapping remeltings for the strengening of the surface layer of the high speed steel HS 6-5-2 causes the increase of the intensity of tribological wear in comparison to the steel with the single remelting. The conventional tempering leads to the decrease of the intensity of tribological wear.

  5. Numerical analysis of AC tungsten inert gas welding of aluminum plate in consideration of oxide layer cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Tashiro, Shinichi, E-mail: tashiro@jwri.osaka-u.ac.jp; Miyata, Minoru; Tanaka, Manabu

    2011-08-01

    A unified numerical simulation model of AC TIG welding of the aluminum plate considering energy balance among the electrode, the arc and the base metal and employing an analytical model for calculating cleaning rate of the oxide layer has been developed for investigating heat transport properties and weld pool formation process in AC TIG welding of aluminum plate. As a result of this simulation, it was shown that although the heat flux from the arc onto the base metal increases in EN (Electrode Negative) phase due to the electron condensation, that in EP (Electrode Positive) phase conversely decreases because mainly of cooling caused by the electron emission. Furthermore, the validity of the simulation model was confirmed by comparing to experimental results such as the arc voltage, the area of cleaning zone and the shape of weld pool.

  6. Test Plan: Phase 1 demonstration of 3-phase electric arc melting furnace technology for vitrifying high-sodium content low-level radioactive liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, W.C. [ed.

    1995-05-31

    This document provides a test plan for the conduct of electric arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384216] is the US Bureau of Mines, Department of the Interior, Albany Research Center, Albany, Oregon. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes feed preparation activities and melting of glass with Hanford LLW Double-Shell Slurry Feed waste simulant in a 3-phase electric arc (carbon electrode) furnace.

  7. Test Plan: Phase 1 demonstration of 3-phase electric arc melting furnace technology for vitrifying high-sodium content low-level radioactive liquid wastes

    International Nuclear Information System (INIS)

    Eaton, W.C.

    1995-01-01

    This document provides a test plan for the conduct of electric arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384216] is the US Bureau of Mines, Department of the Interior, Albany Research Center, Albany, Oregon. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes feed preparation activities and melting of glass with Hanford LLW Double-Shell Slurry Feed waste simulant in a 3-phase electric arc (carbon electrode) furnace

  8. Nickel recovery from electric arc furnace slag by magnetic separation

    Directory of Open Access Journals (Sweden)

    Sakaroglou Marianna

    2017-01-01

    Full Text Available During the pyrometallurgical treatment of the nickel-bearing laterite in the plant of G.M.M. S.A. LARCO, slag is produced after treatment in electric-arc furnace (EAF that contains 0.10 to 0.20 % Ni. Taking into account the great quantity of slag produced per year, the recovery of nickel from the EAF slag will add benefits to the entire process. The target of the current work is to investigate the possibility of nickel recovery from EAF slag by magnetic separation. To meet the target, the effect of the following parameters was studied: grain size, magnetic field intensity, thickness of slag layer, moisture content, and re-grinding of the coarser slag particles. The results show that it is possible to obtain a magnetic product with nickel grade close to that of the primary raw material or even better, with sufficient nickel recovery.

  9. Wind-powered asynchronous AC/DC/AC converter system. [for electric power supply regulation

    Science.gov (United States)

    Reitan, D. K.

    1973-01-01

    Two asynchronous ac/dc/ac systems are modelled that utilize wind power to drive a variable or constant hertz alternator. The first system employs a high power 60-hertz inverter tie to the large backup supply of the power company to either supplement them from wind energy, storage, or from a combination of both at a preset desired current; rectifier and inverter are identical and operate in either mode depending on the silicon control rectifier firing angle. The second system employs the same rectification but from a 60-hertz alternator arrangement; it provides mainly dc output, some sinusoidal 60-hertz from the wind bus and some high harmonic content 60-hertz from an 800-watt inverter.

  10. Investigations into electrical discharges in gases

    CERN Document Server

    Klyarfel'D, B N

    2013-01-01

    Investigations into Electrical Discharges in Gases is a compilation of scientific articles that covers the advances in the investigation of the fundamental processes occurring in electrical discharges in gases and vapors. The book details the different aspects of the whole life cycle of an arc, which include the initiation of a discharge, its transition into an arc, the lateral spread of the arc column, and the recovery of electric strength after extinction of an arc. The text also discusses the methods for the dynamic measurement of vapor density in the vicinity of electrical discharges, alon

  11. Production of Manual Metal Arc Welding Electrodes with Local Raw ...

    African Journals Online (AJOL)

    Manual arc welding using flux coated electrodes is carried out by producing an electric arc between the base metal and a flux covered metal electrode with electric current that depends on the type of electrode, material, welding position and the desired strength. The composition of flux coated electrodes is complex and a ...

  12. Comparative study of long-period gratings written in a boron co-doped fiber by an electric arc and UV irradiation

    International Nuclear Information System (INIS)

    Smietana, M; Bock, W J; Mikulic, P

    2010-01-01

    The paper presents for the first time a comparative study of long-period gratings (LPGs) written by point-by-point UV irradiation and by electrical arc discharges. These gratings were inscribed in a highly photosensitive boron co-doped fiber that can be considered as a suitable platform for LPG writing using either technology. The experimental transmission data for the manufactured LPG devices fit well when compared to the simulations we carried out in parallel. As a result of each of these writing processes, we were able to obtain a remarkably good quality of grating. Two reasons could explain the observed small differences between the spectra: a slight mismatch of the period of the gratings and an unintentional tapering of the fiber during the arc-based processes. We also found that the UV irradiation at λ = 248 nm can cause clearly visible damage to the fiber's surface. As a result of the UV writing, a coupling to the asymmetrical cladding modes can take place. Moreover, the gratings written using the two technologies show a very similar refractive index and temperature-sensing properties. The only differences between them can come from a physical deformation of the fiber induced by the electric arc discharges

  13. Preparation and investigation of diamond-like carbon stripper foils by filtered cathodic vacuum arc

    International Nuclear Information System (INIS)

    Fan, Qiwen; Du, Yinghui; Zhang, Rong; Xu, Guoji

    2013-01-01

    Thin diamond-like carbon (DLC) stripper foils ∼5μg/cm 2 in thickness were produced and evaluated as heavy-ion strippers for the Beijing HI-13 Tandem Accelerator. The DLC layers ∼4μg/cm 2 in thickness were produced by the filtered cathodic vacuum arc technology onto glass slides coated with betaine–saccharose as releasing agent, which were previously covered with evaporated carbon layers ∼1μg/cm 2 in thickness by the controlled ac arc-discharge method. Irradiation lifetimes of the DLC stripper foils were tested using the heavy-ion beams at the terminal of the Beijing HI-13 Tandem Accelerator, and compared with those of the standard carbon stripper foils made by the combined dc and ac arc-discharge method. The measurements indicate that the DLC stripper foils outlast the standard combined dc and ac arc-discharge carbon stripper foils by a factor of at least 13 and 4 for the 197 Au − (∼9MeV, ∼1μA) and 63 Cu − (∼9MeV, ∼1μA) ion beams, respectively. The structure and properties of the DLC foils deposited onto silicon substrates by the filtered cathodic vacuum arc technology were also evaluated and analyzed by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The scanning electron microscopy images show that the DLC foils contain hardly droplets through the double 90° filters. The X-ray photoelectron spectrum indicates that sp 3 bonds of the DLC foils exceed 70%. The integral intensity ratio of the D peak to the G peak (I D /I G ) measured by the Raman spectroscopy is 0.78

  14. Simultaneous distribution of AC and DC power

    Science.gov (United States)

    Polese, Luigi Gentile

    2015-09-15

    A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.

  15. Thermal efficiency on welding of AA6061-T6 alloy by modified indirect electric arc and current signals digitalisation

    International Nuclear Information System (INIS)

    Ambriz, R. R.; Barrera, G.; Garcia, R.; Lopez, V. H.

    2009-01-01

    The results of the thermal efficiency on welding by modified indirect electric arc technique (MIEA) [1] of the 6061- T6 aluminum alloy are presented. These values are in a range of 90 to 94 %, which depend of the preheating employed. Thermal efficiency was obtained by means of a balance energy which considers the heat input, the amount of melted mass of the welding profiles, and welding parameters during the joining, especially of the arc current data acquisition. Also, some dimensionless parameters were employed in order to determine the approximation grade of the melted pool, the heat affected zone (HAZ), and their corresponding values with the experimental results. (Author) 13 refs

  16. Effect of temperature on the AC impedance of protein and ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... The depression parameter reveals the electrical equivalent circuit for the biopolymers. The AC electrical conductivity in the biopolymers follows the universal power law. From this, it is observed that the AC conductivity is frequency dependent and the biopolymer papain obeys large polaron tunnelling model ...

  17. The AC photovoltaic module is here!

    Science.gov (United States)

    Strong, Steven J.; Wohlgemuth, John H.; Wills, Robert H.

    1997-02-01

    This paper describes the design, development, and performance results of a large-area photovoltaic module whose electrical output is ac power suitable for direct connection to the utility grid. The large-area ac PV module features a dedicated, integrally mounted, high-efficiency dc-to-ac power inverter with a nominal output of 250 watts (STC) at 120 Vac, 60 H, that is fully compatible with utility power. The module's output is connected directly to the building's conventional ac distribution system without need for any dc wiring, string combiners, dc ground-fault protection or additional power-conditioning equipment. With its advantages, the ac photovoltaic module promises to become a universal building block for use in all utility-interactive PV systems. This paper discusses AC Module design aspects and utility interface issues (including islanding).

  18. Structure and Distribution of Components in the Working Layer Upon Reconditioning of Parts by Electric-Arc Metallization

    Science.gov (United States)

    Skoblo, T. S.; Vlasovets, V. M.; Moroz, V. V.

    2001-11-01

    Reliable data on the structure of the deposited layer are very important due to the considerable instability of the process of deposition of coatings by the method of electric-arc metallization and the strict requirements for reconditioned crankshafts. The present paper is devoted to the structure of coatings obtained from powder wire based on ferrochrome-aluminum with additional alloying elements introduced into the charge.

  19. Liquid-Arc/Spark-Excitation Atomic-Emission Spectroscopy

    Science.gov (United States)

    Schlagen, Kenneth J.

    1992-01-01

    Constituents of solutions identified in situ. Liquid-arc/spark-excitation atomic-emission spectroscopy (LAES) is experimental variant of atomic-emission spectroscopy in which electric arc or spark established in liquid and spectrum of light from arc or spark analyzed to identify chemical elements in liquid. Observations encourage development of LAES equipment for online monitoring of process streams in such industries as metal plating, electronics, and steel, and for online monitoring of streams affecting environment.

  20. A glucose concentration and temperature sensor based on long period fiber gratings induced by electric-arc discharge

    Science.gov (United States)

    Du, Chao; Wang, Qi

    2017-10-01

    As one of the key parameters in biological and chemical reactions, glucose concentration objectively reflects the characteristics of reactions, so the real-time monitoring of glucose concentration is important in the field of biochemical. Meanwhile, the influence from temperature should be considered. The fiber sensors have been studied extensively for decades due to the advantages of small size, immunity to electromagnetic interference and high sensitivity, which are suitable for the application of biochemical sensing. A long period fiber grating (LPFG) sensor induced by electric-arc discharge has been fabricated and demonstrated for simultaneous measurement of glucose concentration and temperature. The proposed sensor was fabricated by inscribing a sing mode fiber (SMF) with periodic electric-arc discharge technology. During the fabrication process, the electric-arc discharge technology was produced by a commercial fusion splicer, and the period of inscribed LPFG was determined by the movement of translation stages. A serials of periodic geometrical deformations would be formed in SMF after the fabrication, and the discharge intensity and discharge time can be adjusted though the fusion splicer settings screen. The core mode can be coupled into the cladding modes at certain wavelength when they satisfy the phase-matching conditions, and there will be several resonance dips in the transmission spectrum in LPFG. The resonance dips formed by the coupling between cladding modes and core mode have different sensitivity responses, so the simultaneous measurement for multi-parameter can be realized by monitoring the wavelength shifts of the resonance dips. Compared with the LPFG based on conventional SMF, the glucose concentration sensitivity has been obviously enhanced by etching the cladding with hydrofluoric acid solution. Based on the independent measured results, a dual-parameter measurement matrix has been built for signal demodulation. Because of the easy

  1. Numerical Simulation of Stationary AC Tungsten Inert Gas Welding of Aluminum Plate in Consideration of Oxide Layer Cleaning

    Science.gov (United States)

    Tashiro, Shinichi; Tanaka, Manabu

    An unified numerical simulation model of AC TIG welding of the aluminum plate considering energy balance among the electrode, the arc and the base metal and employing an analytical model for calculating cleaning rate of the oxide layer has been developed for investigating heat transport properties and weld pool formation process in AC TIG welding of aluminum plate. As a result of this simulation, it was shown that although the heat flux from the arc onto the base metal increases in EN (Electrode Negative) phase due to the electron condensation, that in EP (Electrode Positive) phase conversely decreases because mainly of cooling caused by the electron emission. Furthermore, the validity of the simulation model was confirmed by comparing to experimental results such as the arc voltage, the area of cleaning zone and the shape of weld pool.

  2. Photovoltaic system with improved AC connections and method of making same

    Energy Technology Data Exchange (ETDEWEB)

    Cioffi, Philip Michael; Todorovic, Maja Harfman; Herzog, Michael Scott; Korman, Charles Steven; Doherty, Donald M.; Johnson, Neil Anthony

    2018-02-13

    An alternating current (AC) harness for a photovoltaic (PV) system includes a wire assembly having a first end and a second end, the wire assembly having a plurality of lead wires, and at least one AC connection module positioned at a location along a length of the wire assembly between the first end and the second end. Further, the at least one AC connection module includes a first connection terminal electrically coupled to the plurality of lead wires of the wire assembly and constructed to electrically couple the wire assembly with an output of a first PV module of the PV system. The at least one AC connection module also includes a second connection terminal electrically coupled to the plurality of lead wires of the wire assembly and constructed to electrically couple the wire assembly with an output of a second PV module of the PV system.

  3. Arc generators of low-temperature plasma

    International Nuclear Information System (INIS)

    Krolikowski, Cz.; Niewiedzial, R.; Siwiec, J.

    1979-01-01

    This paper is a review of works concerning investigation and use of low-temperature plasma in arc plasma generators made in Electric Power Institute of PP. There are discussed: analytical approach to a problem of volt-current and operational characteristics of DC arc plasma generators, determination of limits of their stable work and possibilities of their use to technological aims. (author)

  4. Peut-on envisager le remplacement de l'éthylène par l'acétylène à moyen terme ? Can the Substitution of Ethylene by Acetylene Be Imagined in the Medium Term?

    Directory of Open Access Journals (Sweden)

    Lefebvre G.

    2006-11-01

    Full Text Available L'accroissement considérable depuis 1973 du coût des énergies fossiles, notamment du pétrole, a fortement contribué au renchérissement du prix de l'éthylène alors que parallèlement l'acétylène fabriqué au départ de carbure de calcium ou par arc électrique pouvait espérer bénéficier d'un coût relatif plus faible de l'énergie électrique d'origine nucléaire. II ressort de la présente étude que malgré les hypothèses favorables suivantes : - taux de croissance moyen du prix du pétrole à monnaie constante 1982 de 7 % par an, - augmentation de celui du charbon limitée à 3 % par an, - énergie électrique disponible en permanence à 5 et 10 c/kWh, - capacité unitaire de production d'acétylène de l'ordre de 300 000 t/an comparable à celle de l'éthylène, il apparaît impossible que l'acétylène puisse concurrencer l'éthylène avant l'an 2000. Seul le chlorure de vinyle pourrait être fabriqué à partir d'acétylène favorisé par un important facteur d'échelle, à condition que l'électricité puisse être alimentée en permanence à 0,10 F le kWh. Cette constatation ne tient pas compte de la remise en cause des procédés pétrochimiques actuels d'obtention des intermédiaires de seconde génération dont la fabrication à partir d'acétylène nécessiterait la création d'installations de conception entièrement différente. Alors qu'en 1975 les procédés à l'arc électrique de production d'acétylène à partir de naphta apparaissaient plus économiques que la voie carbure de calcium, on constate actuellement une situation inverse, consécutive aux augmentations de prix du pétrole qui ont suivi. The considerable increase in the cost of fossil energy sources since 1973, and especially that of oil, has greatly helped drive up the price of ethylene, whereas at the same time acetylene manufactured initially from calcium carbide or by electric arc could have hoped to profit from the relative low price of electric

  5. Accelerated Detection of Viral Particles by Combining AC Electric Field Effects and Micro-Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Matthew Robert Tomkins

    2015-01-01

    Full Text Available A detection method that combines electric field-assisted virus capture on antibody-decorated surfaces with the “fingerprinting” capabilities of micro-Raman spectroscopy is demonstrated for the case of M13 virus in water. The proof-of-principle surface mapping of model bioparticles (protein coated polystyrene spheres captured by an AC electric field between planar microelectrodes is presented with a methodology for analyzing the resulting spectra by comparing relative peak intensities. The same principle is applied to dielectrophoretically captured M13 phage particles whose presence is indirectly confirmed with micro-Raman spectroscopy using NeutrAvidin-Cy3 as a labeling molecule. It is concluded that the combination of electrokinetically driven virus sampling and micro-Raman based signal transduction provides a promising approach for time-efficient and in situ detection of viruses.

  6. Accelerated detection of viral particles by combining AC electric field effects and micro-Raman spectroscopy.

    Science.gov (United States)

    Tomkins, Matthew Robert; Liao, David Shiqi; Docoslis, Aristides

    2015-01-08

    A detection method that combines electric field-assisted virus capture on antibody-decorated surfaces with the "fingerprinting" capabilities of micro-Raman spectroscopy is demonstrated for the case of M13 virus in water. The proof-of-principle surface mapping of model bioparticles (protein coated polystyrene spheres) captured by an AC electric field between planar microelectrodes is presented with a methodology for analyzing the resulting spectra by comparing relative peak intensities. The same principle is applied to dielectrophoretically captured M13 phage particles whose presence is indirectly confirmed with micro-Raman spectroscopy using NeutrAvidin-Cy3 as a labeling molecule. It is concluded that the combination of electrokinetically driven virus sampling and micro-Raman based signal transduction provides a promising approach for time-efficient and in situ detection of viruses.

  7. Stabilization of electric-arc furnace dust in concrete

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Caldas de Souza

    2010-12-01

    Full Text Available Electric-arc furnace dust (EAFD is a by-product of steel production and recycling. This fine-grained material contains high amounts of zinc and iron as well as significant amounts of potentially toxic elements such as lead, cadmium and chromium. Therefore, the treatment and stabilization of this industrial residue is necessary. Concrete is a well-known suitable environment for stabilization/solidification of materials which have leachable elements in need of fixation. The effect of the EAFD content on the mechanical and chemical performance of Portland cement concrete is investigated in this paper. The effect of the EAFD content on the setting time of cement slurry was also analyzed. The axial compressive strength of the concrete samples increases with the EAFD addition in the range of 10 to 20 wt. (% EAFD; also the tensile strength increases with the EAFD addition. An increase in EAFD content significantly increases the setting time of the concrete. The acetic acid leaching and water solubilization tests indicate low mobility of the potentially toxic elements from the EAFD concrete composite. The results of the immersion tests show that the addition of EAFD to the concrete seems to reduce chloride penetration, which may help prevent pitting corrosion in reinforced concrete.

  8. DC Electric Arc Furnace Application for Production of Nickel-Boron Master Alloys

    Science.gov (United States)

    Alkan, Murat; Tasyürek, Kerem Can; Bugdayci, Mehmet; Turan, Ahmet; Yücel, Onuralp

    2017-09-01

    In this study, nickel-boron (Ni-B) alloys were produced via a carbothermic reduction starting from boric acid (H3BO3) with high-purity nickel oxide (NiO), charcoal, and wood chips in a direct current arc furnace. In electric arc furnace experiments, different starting mixtures were used, and their effects on the chemical compositions of the final Ni-B alloys were investigated. After the reduction and melting stages, Ni-B alloys were obtained by tapping from the bottom of the furnace. The samples from the designated areas were also taken and analyzed. The chemical composition of the final alloys and selected samples were measured with wet chemical analysis. The Ni-B alloys had a composition of up to 14.82 mass% B. The phase contents of the final alloys and selected samples were measured using x-ray diffraction (XRD). The XRD data helped predict possible reactions and reaction mechanisms. The material and energy balance calculations were made via the XRD Rietveld and chemical compositions. Nickel boride phases started to form 600 mm below the surface. The targeted NiB phase was detected at the tapping zone of the crucible (850-900 mm depth). The energy consumption was 1.84-4.29 kWh/kg, and the electrode consumption was 10-12 g/kg of raw material charged.

  9. Geothermal Potential of the Cascade and Aleutian Arcs, with Ranking of Individual Volcanic Centers for their Potential to Host Electricity-Grade Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Shevenell, Lisa [ATLAS Geosciences, Inc., Reno, NV (United States); Coolbaugh, Mark [ATLAS Geosciences, Inc., Reno, NV (United States); Hinz, Nick [Univ. of Nevada, Reno, NV (United States); Stelling, Pete [Western Washington Univ., Bellingham, WA (United States); Melosh, Glenn [GEODE, Santa Rosa, CA (United States); Cumming, William [Cumming Geoscience, Santa Rosa, CA (United States)

    2015-10-16

    This project brings a global perspective to volcanic arc geothermal play fairway analysis by developing statistics for the occurrence of geothermal reservoirs and their geoscience context worldwide in order to rank U.S. prospects. The focus of the work was to develop play fairways for the Cascade and Aleutian arcs to rank the individual volcanic centers in these arcs by their potential to host electricity grade geothermal systems. The Fairway models were developed by describing key geologic factors expected to be indicative of productive geothermal systems in a global training set, which includes 74 volcanic centers world-wide with current power production. To our knowledge, this is the most robust geothermal benchmark training set for magmatic systems to date that will be made public.

  10. Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co{sub 3}O{sub 4}-PVA/p-Si structures

    Energy Technology Data Exchange (ETDEWEB)

    Bilkan, Çiğdem, E-mail: cigdembilkan@gmail.com [Department of Physics, Faculty of Sciences, The University of Çankırı Karatekin, 18100 Çankırı (Turkey); Azizian-Kalandaragh, Yashar [Department of Physics, Faculty of Science, The University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Altındal, Şemsettin [Department of Physics, Faculty of Sciences, The University of Gazi, 06500 Ankara (Turkey); Shokrani-Havigh, Roya [Department of Physics, Faculty of Science, The University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of)

    2016-11-01

    In this research a simple microwave-assisted method have been used for preparation of cobalt oxide nanostructures. The as-prepared sample has been investigated by UV–vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM). On the other hand, frequency and voltage dependence of both the real and imaginary parts of dielectric constants (ε′, ε″) and electric modulus (M′ and M″), loss tangent (tanδ), and ac electrical conductivity (σ{sub ac}) values of Al/Co{sub 3}O{sub 4}-PVA/p-Si structures were obtained in the wide range of frequency and voltage using capacitance (C) and conductance (G/ω) data at room temperature. The values of ε′, ε″ and tanδ were found to decrease with increasing frequency almost for each applied bias voltage, but the changes in these parameters become more effective in the depletion region at low frequencies due to the charges at surface states and their relaxation time and polarization effect. While the value of σ is almost constant at low frequency, increases almost as exponentially at high frequency which are corresponding to σ{sub dc} and σ{sub ac}, respectively. The M′ and M″ have low values at low frequencies region and then an increase with frequency due to short-range mobility of charge carriers. While the value of M′ increase with increasing frequency, the value of M″ shows two peak and the peaks positions shifts to higher frequency with increasing applied voltage due to the decrease of the polarization and N{sub ss} effects with increasing frequency.

  11. Formation of the ZnFe{sub 2}O{sub 4} phase in an electric arc furnace off-gas treatment system

    Energy Technology Data Exchange (ETDEWEB)

    Suetens, T., E-mail: thomas.suetens@mtm.kuleuven.be; Guo, M., E-mail: muxing.guo@mtm.kuleuven.be; Van Acker, K., E-mail: karel.vanacker@lrd.kuleuven.be; Blanpain, B., E-mail: bart.blanpain@mtm.kuleuven.be

    2015-04-28

    Highlights: • EAF dust was characterized with particle size analysis, XRF, and EPMA. • Slag particles showed no sign of reaction with Zn vapor. • Fe{sub 2}O{sub 3} particles showed different degrees of reaction based on their size. • The thermodynamic stability of Zn vapor in EAF off-gas ducts was reevaluated. • In presence of Fe{sub 2}O{sub 3}, Zn vapor reacts to form ZnFe{sub 2}O{sub 4} and ZnO. - Abstract: To better understand the phenomena of ZnFe{sub 2}O{sub 4} spinel formation in electric arc furnace dust, the dust was characterized with particle size analysis, X-ray fluorescence (XRF), electron backscatter diffraction (EBSD), and electron probe micro-analysis (EPMA). Different ZnFe{sub 2}O{sub 4} formation reaction extents were observed for iron oxide particles with different particle sizes. ZnO particles were present as both individual particles and aggregated on the surface of larger particles. Also, the slag particles found in the off-gas were shown not to react with the zinc vapor. After confirming the presence of a ZnFe{sub 2}O{sub 4} formation reaction, the thermodynamic feasibility of in-process separation – a new electric arc furnace dust treatment technology – was reevaluated. The large air intake and the presence of iron oxide particles in the off-gas were included into the thermodynamic calculations. The formation of the stable ZnFe{sub 2}O{sub 4} spinel phase was shown to be thermodynamically favorable in current electric arc furnace off-gas ducts conditions even before reaching the post combustion chamber.

  12. Transition towards DC micro grids: From an AC to a hybrid AC and DC energy infrastructure

    Directory of Open Access Journals (Sweden)

    Evi Ploumpidou

    2017-12-01

    Full Text Available Our electricity is predominantly powered by alternating current (AC, ever since the War of Currents ended in the favor of Nicola Tesla at the end of the 19th century. However, lots of the appliances we use, such as electronics and lights with light-emitting diode (LED technology, work internally on direct current (DC and it is projected that the number of these appliances will increase in the near future. Another contributor to the increase in DC consumption is the ongoing electrification of mobility (Electric Vehicles (EVs. At the same time, photovoltaics (PV generate DC voltages, while the most common storage technologies also use DC. In order to integrate all these appliances and technologies to the existing AC grid, there is a need for converters which introduce power losses. By distributing DC power to DC devices instead of converting it to AC first, it is possible to avoid substantial energy losses that occur every time electricity is converted. This situation initiated the concept for the implementation of the DC-Flexhouse project. A prototype DC installation will be developed and tested in one of the buildings of the developing living lab area called the District of Tomorrow (De Wijk van Morgen which is located in Heerlen, the Netherlands. A neighborhood cooperative (Vrieheide cooperatie is also part of the consortium in order to address the aspect of social acceptance. Although DC seems to be a promising solution for a more sustainable energy system, the business case is still debatable due to both technology- and market-related challenges. The current energy infrastructure is predominantly based on AC, manufacturers produce devices based on AC standards and people are using many AC products across a long life span. This Smart Energy Buildings & Cities (SEB&C PDEng project is a contribution to the DC-Flexhouse project. The aim is to analyze the challenges in the transition to DC micro grids, assess the market potential of DC

  13. The influence of amperage of electric arc on microhardness in the area single and overlapping remeltings of HS 6-5-2 steel

    Directory of Open Access Journals (Sweden)

    A. Dziedzic

    2011-07-01

    Full Text Available The present thesis depicts the microhardness of HV0,065 surface layer of high speed steel HS6-5-2 remelted with the electric arc. There were different surface layer variants of remelting used – the amperage was changed from 50 to 120A with the stable scanning speed of 300mm/min. There was also the influence of overlapping of the remeltings on the microhardness result. The highest average microhardness of the surface layer of high speed steel HS6-5-2 amounting 1100 HV0,065 was achieved by using the amperage of electric arc of 50 A. The overlapping of remeltings is connected with the possibility of occurence of the microhardness decrease in the area of overlapping of the heat influence zone of second remelting (another remelting on the first remelting (the previous one.

  14. Investigation of possibility for stabilization and valorization of electric ARC furnace dust and glass from electronic waste

    Directory of Open Access Journals (Sweden)

    Ranitović M.

    2014-01-01

    Full Text Available This paper presents investigation of possibility for electric arc furnace dust (EAFD and electronic waste (e-waste valorization trough stabilization process, in order to achieve concurrent management of these two serious ecological problems. EAFD is an ineviTab. waste material coming from the electric arc furnace steel production process, classified as a hazardous waste. Furthermore, it is well known that residual materials generated in the ewaste recycling process, like LCD (Liquid crystal displays waste glass, are not suiTab. for landfill or incineration. In this study, these two materials were used for investigation of possibility for their valorization in ceramic industry. Thus, an innovative synergy of waste streams from metallurgical and e-waste recycling industry is presented. Investigation included a complex characterization of raw materials and their mixtures, using chemical methods, optical microscopy, scanning electron microscopy, as well as methods for determining the physical and mechanical properties. Based on these results, it was found that material suiTab. for use in ceramics industry as a partial substituent of quartzite and fluxing components can be produced. Besides solving the environmental problem related to EAFD and LCD disposal, by replacement of raw materials certain economic effects can be achieved. [Projekat Ministarstva nauke Republike Srbije, br. 34033

  15. High voltage AC/AC electrochemical capacitor operating at low temperature in salt aqueous electrolyte

    Science.gov (United States)

    Abbas, Qamar; Béguin, François

    2016-06-01

    We demonstrate that an activated carbon (AC)-based electrochemical capacitor implementing aqueous lithium sulfate electrolyte in 7:3 vol:vol water/methanol mixture can operate down to -40 °C with good electrochemical performance. Three-electrode cell investigations show that the faradaic contributions related with hydrogen chemisorption in the negative AC electrode are thermodynamically unfavored at -40 °C, enabling the system to work as a typical electrical double-layer (EDL) capacitor. After prolonged floating of the AC/AC capacitor at 1.6 V and -40°C, the capacitance, equivalent series resistance and efficiency remain constant, demonstrating the absence of ageing related with side redox reactions at this temperature. Interestingly, when temperature is increased back to 24 °C, the redox behavior due to hydrogen storage reappears and the system behaves as a freshly prepared one.

  16. Improved Design Methods for Robust Single- and Three-Phase ac-dc-ac Power Converters

    DEFF Research Database (Denmark)

    Qin, Zian

    . The approaches for improving their performance, in terms of the voltage stress, efficiency, power density, cost, loss distribution, and temperature, will be studied. The structure of the thesis is as follows, Chapter 1 presents the introduction and motivation of the whole project as well as the background...... becomes a emerging challenge. Accordingly, installation of sustainable power generators like wind turbines and solar panels has experienced a large increase during the last decades. Meanwhile, power electronics converters, as interfaces in electrical system, are delivering approximately 80 % electricity...... back-to-back, and meanwhile improve the harmonics, control flexibility, and thermal distribution between the switches. Afterwards, active power decoupling methods for single-phase inverters or rectifiers that are similar to the single-phase ac-dc-ac converter, are studied in Chapter 4...

  17. An observation of ionospheric convection and auroral arc motion

    International Nuclear Information System (INIS)

    Doolittle, J.H.; Mende, S.B.; Robinson, R.M.; Swenson, G.R.; Valladares, C.E.

    1990-01-01

    An all-sky imager operated at Sondre Stromfjord, Greenland has been used to make auroral measurements in correlation with data from the incoherent scatter radar. Reviewing the images as movie sequences with an apparent time compression ratio of 60 allows the eye to discern features which are not apparent in the individual frames. The faint 630 nm airglow background lying poleward of the bright auroral oval arcs appears to be structured in the time lapse observations and drifting at a uniform rate. Analysis of the motion of the airglow structures shows excellent agreement with Doppler radar measurement of the ion drift velocities. Electron density profiles derived from the radar data corroborate the existence of high altitude F-region ionization enhancements. The electron temperature in the patches was about 1,000 K and no higher than outside of the patch signifying that the patches were not produced by local soft electron precipitation. According to the radar Doppler data there was a small component of the drift velocity parallel to the arc at either side of the auroral boundary. The sense of those small components was consistent with drifts driven by a convergent electric field which would also produce an up going field aligned current. The larger component of drift velocity perpendicular to the arc appeared to be continuous on either side of the arc. This drift component shows the existence of an electric field parallel to the arc, showing that the arc was not on an equipotential. During the observations the arc moved slowly in the opposite sense to the ion drift, signifying that the auroral arc motion is not driven by the electric field impressed on the atmosphere by the magnetosphere. Calculations of the expected intensity of the 630 nm emissions are in good agreement with the measured intensities of the moving patches

  18. Busbar arcs at large fusion magnets: Conductor to feeder tube arcing model experiments with the LONGARC device

    Energy Technology Data Exchange (ETDEWEB)

    Klimenko, Dmitry, E-mail: dmitry.klimenko@kit.edu; Pasler, Volker

    2014-10-15

    Highlights: •The LONGARC device was successfully implemented for busbar to feeder tubes arcing model experiments. •Arcing at an ITER busbar inside its feeder tube was simulated in scaled model experiments. •The narrower half tubes imply a slight increase of the arc propagation speed in compare to full tube experiments. •All simulated half tubes experiments show severe damage indicating that the ITER inner feeder tube will not withstand a busbar arc. -- Abstract: Electric arcs moving along the power cables (the so-called busbars) of the toroidal field (TF) coils of ITER may reach and penetrate the cryostat wall. Model experiments with the new LONGARC device continue the VACARC (VACuum ARC) experiments that were initiated to investigate the propagation and destruction mechanisms of busbar arcs in small scale [1]. The experiments are intended to support the development and validation of a numerical model. LONGARC overcomes the space limitations inside VACARC and allows also for advanced 1:3 (vs. ITER full scale) model setups. The LONGARC device and first results are presented below.

  19. Janus particle microshuttle: 1D directional self-propulsion modulated by AC electrical field

    Directory of Open Access Journals (Sweden)

    Jiliang Chen

    2014-03-01

    Full Text Available A catalytic Janus particle is capable of gaining energy from the surrounding fuel solution to drive itself to move continuously, which has an important impact in different fields, especially the field of micro-systems. However, the randomness of self-propulsion at the microscale restricts its use in practice. Achieving a directed self-propelled movement would greatly promote the application of the Janus particle. We proved experimentally that an AC electric field was an effective way to suppress Brownian motion and control the direction of self-propelled movement. The self-propulsion and dielectrophoretic response of a 2μm Janus particle were observed and the related basic data were collected. Interdigital electrodes, 20 μm in width, were energized in pulsed style to modulate the self-propulsion, which resulted in a shuttle-style motion in which a single Janus particle moved to and fro inside the strip electrode. The change of direction depends on its unique position: the catalyst side is always pointed outward and the orientation angle relative to the electrode is about 60°. Numerical simulation also proved that this position is reasonable. The present study could be beneficial with regard to self-propulsion and AC electrokinetics of the Janus particle.

  20. Stability of Alfvén eigenmodes in the vicinity of auroral arc

    Science.gov (United States)

    Hiraki, Yasutaka

    2013-08-01

    The purpose of this study is to give a theoretical suggestion to the essential question why east-west elongated auroral arc can keep its anisotropic structure for a long time. It could be related to the stability of east-westward traveling modes in the vicinity of arc, which may develop into wavy or spiral structures, whereas north-southward modes are related to splitting of arcs. Taking into account the arc-inducing field-aligned current and magnetic shears, we examine changes in the stability of Alfvén eigenmodes that are coupled to perpendicular modes in the presence of convection electric field. It is demonstrated that the poleward current shear suppresses growth of the westward mode in case of the westward convection electric field. Only the poleward mode is still unstable because of the properties of feedback shear waves. It is suggested that this tends to promote (poleward) arc splitting as often observed during quiet times. We further draw a diagram of the westward mode growth rate as a function of convection electric field and current shear, evaluating critical fields for instabilities of lower Alfvén harmonics. It is discovered that a switching phenomenon of fast-growing mode from fundamental to the first harmonic occurs for a high electric field regime. Our stability criterion is applied to some observed situations of auroral arc current system during pre-breakup active times.

  1. Ac-driven vortex-antivortex dynamics in nanostructured superconductor-ferromagnetic hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Clessio L.S., E-mail: clsl@df.ufpe.br [Nucleo de Tecnologia, Centro Academico do Agreste, Universidade Federal de Pernambuco, 55002-970 Caruaru-PE (Brazil); Souza Silva, Clecio C. de; Aguiar, J. Albino [Departamento de Fisica, Universidade Federal de Pernambuco, 50670-901 Recife-PE (Brazil)

    2012-09-15

    The dynamics of ac-driven vortices and antivortices in a superconducting film interacting with an array of magnetic dipoles on top is investigated via hybrid molecular dynamics-Monte Carlo simulations. The dipole array considered in this study is capable to stabilize in equilibrium vortex-antivortex pairs. The appearance of a net electric field out of the ac excitation demonstrates that this system behaves as a voltage rectifier. Because of the asymmetric nature of the effective pinning potential generated by the dipole array, the ac-driven vortices and antivortices are ratcheted in opposite directions, thereby contributing additively to the observed net voltage. In addition, for high frequency values, the dc electric field-ac amplitude curves present a series of steps. A careful analysis of the time series of the electric field and number of vortex-antivortex (v-av) pairs reveals that these steps are related to mode-locking between the drive frequency and the number of v-av creation-annihilation events.

  2. Applicability of Carbonated Electric Arc Furnace Slag to Mortar

    International Nuclear Information System (INIS)

    Yokoyama, S; Izaki, M; Arisawa, R; Hisyamudin, M N N; Murakami, K; Maegawa, A

    2012-01-01

    Authors have been studying the absorption of CO 2 in the steelmaking slag. In this study, an application of the electric arc furnace slag after the carbonation to admixture of mortar was investigated with the JIS (A6206-1997) method for ground granulated blast-furnace slag for concrete. The percent flows for the test mortar were smaller than that for the standard mortar. The percent flow of the carbonated slag whose average particle size of more than approximately 4 μm increased with an increase in the average size of the particles. Because the compressive strengths of the test mortar cured for 91 days were almost the same as those cured 28 days, the slag after the carbonation was thought not to have self-hardening property for a medium and long term. The compressive strength for the test mortar was almost unchanged within a range of approximately 2 to 7 μm of the average particle size, and it in this range was highest. The activity indexes for the test mortar prepared with the slag after the carbonation ranged from approximately 40 to 60%.

  3. Dedicated algorithm and software for the integrated analysis of AC and DC electrical outputs of piezoelectric vibration energy harvesters

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Eum [Catholic University of Daegu, Gyeongsan (Korea, Republic of)

    2014-10-15

    DC electrical outputs of a piezoelectric vibration energy harvester by nonlinear rectifying circuitry can hardly be obtained either by any mathematical models developed so far or by finite element analysis. To address the issue, this work used an equivalent electrical circuit model and newly developed an algorithm to efficiently identify relevant circuit parameters of arbitrarily-shaped cantilevered piezoelectric energy harvesters. The developed algorithm was then realized as a dedicated software module by adopting ANSYS finite element analysis software for the parameters identification and the Tcl/Tk programming language for a graphical user interface and linkage with ANSYS. For verifications, various AC electrical outputs by the developed software were compared with those by traditional finite element analysis. DC electrical outputs through rectifying circuitry were also examined for varying values of the smoothing capacitance and load resistance.

  4. Dedicated algorithm and software for the integrated analysis of AC and DC electrical outputs of piezoelectric vibration energy harvesters

    International Nuclear Information System (INIS)

    Kim, Jae Eum

    2014-01-01

    DC electrical outputs of a piezoelectric vibration energy harvester by nonlinear rectifying circuitry can hardly be obtained either by any mathematical models developed so far or by finite element analysis. To address the issue, this work used an equivalent electrical circuit model and newly developed an algorithm to efficiently identify relevant circuit parameters of arbitrarily-shaped cantilevered piezoelectric energy harvesters. The developed algorithm was then realized as a dedicated software module by adopting ANSYS finite element analysis software for the parameters identification and the Tcl/Tk programming language for a graphical user interface and linkage with ANSYS. For verifications, various AC electrical outputs by the developed software were compared with those by traditional finite element analysis. DC electrical outputs through rectifying circuitry were also examined for varying values of the smoothing capacitance and load resistance.

  5. Using arc voltage to locate the anode attachment in plasma arc cutting

    International Nuclear Information System (INIS)

    Osterhouse, D J; Heberlein, J V R; Lindsay, J W

    2013-01-01

    Plasma arc cutting is a widely used industrial process in which an electric arc in the form of a high velocity plasma jet is used to melt and blow away metal. The arc attaches inside the resulting cut slot, or kerf, where it both provides a large heat flux and determines the flow dynamics of the plasma. Knowledge of the position of the arc attachment is essential for understanding the phenomena present at the work piece. This work presents a new method of measuring the location of the arc attachment in which the arc voltage is measured during the cutting of a range of work piece thicknesses. The attachment location is then interpreted from the voltages. To support the validity of this method, the kerf shape, dross particle size and dross adhesion to the work piece are also observed. While these do not conclusively give an attachment location, they show patterns which are consistent with the attachment location found from the voltage measurements. The method is demonstrated on the cutting of mild steel, where the arc attachment is found to be stationary in the upper portion of the cut slot and in reasonable agreement with existing published findings. For a process optimized for the cutting of 12.7 mm mild steel, the attachment is found at a depth of 1.5–3.4 mm. For a slower process optimized for the cutting of 25.4 mm mild steel, the attachment is found at a depth of 3.4–4.8 mm, which enhances heat transfer further down in the kerf, allowing cutting of the thicker work piece. The use of arc voltage to locate the position of the arc attachment is unique when compared with existing methods because it is entirely independent of the heat distribution and visualization techniques. (paper)

  6. Electrical principles 3 checkbook

    CERN Document Server

    Bird, J O

    2013-01-01

    Electrical Principles 3 Checkbook aims to introduce students to the basic electrical principles needed by technicians in electrical engineering, electronics, and telecommunications.The book first tackles circuit theorems, single-phase series A.C. circuits, and single-phase parallel A.C. circuits. Discussions focus on worked problems on parallel A.C. circuits, worked problems on series A.C. circuits, main points concerned with D.C. circuit analysis, worked problems on circuit theorems, and further problems on circuit theorems. The manuscript then examines three-phase systems and D.C. transients

  7. Multi-cathode metal vapor arc ion source

    International Nuclear Information System (INIS)

    Brown, I.G.; MacGill, R.A.

    1988-01-01

    This patent describes an apparatus for generating an ion beam. It comprises: a vacuum enclosure; a support member; cathodes; an anode; means for transporting; a source of electrical power; means for producing an electric arc; means for guiding; and means for extracting ions

  8. Characterizing the thermal effects of High Energy Arc Faults

    Energy Technology Data Exchange (ETDEWEB)

    Putorti, Anthony; Bareham, Scott; Praydis, Joseph Jr. [National Institute of Standards and Technology (NIST), Gaithersburg, MD (United States); Melly, Nicholas B. [U.S. Nuclear Regulatory Commission (NRC), Washington, DC (United States)

    2015-12-15

    International and domestic operating experience involving High Energy Arc Faults (HEAF) in Nuclear Power Plant (NPP) electrical power systems have demonstrated the potential to cause extensive damage to electrical components and distribution systems along with damage to adjacent equipment and cables. An international study by the Committee on the Safety of Nuclear Installations (CSNI) gOECD Fire Project. Topical Report No. 1: Analysis of High Energy Arcing Fault (HEAF) Fire Events h published June 25, 2013 [1], illustrates that HEAF events have the potential to be major risk contributors with significant safety consequences and substantial economic loss. In an effort to better understand and characterize the threats posed by HEAF related phenomena, an international project has been chartered; the Joint Analysis of Arc Faults (Joan of ARC) OECD International Testing Program for High Energy Arc Faults. One of the major challenges of this research is how to properly measure and characterize the risk and influence of these events. Methods are being developed to characterize relevant parameters such as; temperature, heat flux, and heat release rate of fires resulting from HEAF events. Full scale experiments are being performed at low (≤ 1000 V) and medium (≤ 35 kV) voltages in electrical components. This paper introduces the methods being developed to measure thermal effects and discusses preliminary results of full scale HEAF experiments.

  9. Contaminación acústica por grupos electrógenos // Acoustic contamination by diesel driven electric plant.

    Directory of Open Access Journals (Sweden)

    Yanexy Cepero-Aguilera

    2009-05-01

    Full Text Available El trabajo tiene como tema el impacto ambiental por ruido de grupos electrógenos (GE. Semuestran diferentes definiciones y conceptos referidos a la explotación de los GE y lasconsecuencias que puede provocar a las personas que permanezcan cerca de ellos durante sufuncionamiento. Los grupos electrógenos son además de generadores de energía, generadores deruido y por tanto contribuyen a la contaminación acústica del lugar donde estén situados. En eldocumento se aborda la importancia del correcto uso y selección de los protectores auditivos paraaquellas personas que trabajen directamente en las baterías de grupos electrógenos, así comoalgunas formas de atenuar el ruido. También se caracteriza la emisión sonora de estos a partir deestudios realizados.Palabras claves: ruido, nivel sonoro, sonido.________________________________________________________________________AbstractThis paper concerns with the environmental damage due to noise emission introduced by EngineGenerator Sets. Definitions and concepts about Engine Generator operation are shown as well asthe consequences over the personnel who stand near the Engine Generators during theiroperation. Obviously, such kind of machines generates energy but they also generate noise whichcontaminates the environment around them. The paper states how important are the rightselection and use of noise protection devices for those whose main job is to operate enginegenerator sets. Some methods for noise damping are also shown. Finally, some case studies arepresented in order to describe the noise emission registered in the real world.Key words: noise, sound level, sound.

  10. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan

    2014-01-01

    Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating...... current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column...

  11. Cold-electrode voltage fall for impulse arcs in argon between copper electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, O; Cooray, V, E-mail: oscar.diaz@angstrom.uu.se [Lightning Research Group, Division for Electricity, Uppsala University Angstroemlaboratoriet Box 5234, 751 20, Uppsala (Sweden)

    2011-06-23

    The full electric arc discharge in gases for short gaps in homogeneous electric field and pressure{center_dot}distance (pd) below 150 Torr{center_dot}cm, can be described as a transition between different discharge mechanisms such as: Townsend, glow, and arc. Once the arc is achieved the measured voltage drops to some volts and the current density increases several orders of magnitude. Depending upon the type of gas used, the electrode surface characteristics and type of electrical excitation, the cathode and anode voltage fall might change. The present work is directed to study the electrode fall (sum of anode and cathode falls) during a current impulse arc discharge between copper electrodes in ceramic tubes filled with argon between 0.01 and 6.5 Torr{center_dot}cm. The copper electrodes were cleaned, degassed and hydrogen reduced. The arc voltages were measured with fast/slow rise times and short/long duration current impulses produced by a RLC circuit. An increasing variation of the electrode fall was found at the pressure{center_dot}distance range analyzed.

  12. Arc generation from sputtering plasma-dielectric inclusion interactions

    CERN Document Server

    Wickersham, C E J; Fan, J S

    2002-01-01

    Arcing during sputter deposition and etching is a significant cause of particle defect generation during device fabrication. In this article we report on the effect of aluminum oxide inclusion size, shape, and orientation on the propensity for arcing during sputtering of aluminum targets. The size, shape, and orientation of a dielectric inclusion plays a major role in determining the propensity for arcing and macroparticle emission. In previous studies we found that there is a critical inclusion size required for arcing to occur. In this article we used high-speed videos, electric arc detection, and measurements of particle defect density on wafers to study the effect of Al sub 2 O sub 3 inclusion size, shape, and orientation on arc rate, intensity, and silicon wafer particle defect density. We found that the cross-sectional area of the inclusion exposed to the sputtering plasma is the critical parameter that determines the arc rate and rate of macroparticle emission. Analysis of the arc rate, particle defect...

  13. Road load simulator tests of the Gould phase 1 functional model silicon controlled rectifier ac motor controller for electric vehicles

    Science.gov (United States)

    Gourash, F.

    1984-01-01

    The test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator are presented. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.

  14. Road load simulator tests of the Gould phase 1 functional model silicon controlled rectifier ac motor controller for electric vehicles

    Science.gov (United States)

    Gourash, F.

    1984-02-01

    The test results for a functional model ac motor controller for electric vehicles and a three-phase induction motor which were dynamically tested on the Lewis Research Center road load simulator are presented. Results show that the controller has the capability to meet the SAE-J227a D cycle test schedule and to accelerate a 1576-kg (3456-lb) simulated vehicle to a cruise speed of 88.5 km/hr (55 mph). Combined motor controller efficiency is 72 percent and the power inverter efficiency alone is 89 percent for the cruise region of the D cycle. Steady state test results for motoring, regeneration, and thermal data obtained by operating the simulator as a conventional dynamometer are in agreement with the contractor's previously reported data. The regeneration test results indicate that a reduction in energy requirements for urban driving cycles is attainable with regenerative braking. Test results and data in this report serve as a data base for further development of ac motor controllers and propulsion systems for electric vehicles. The controller uses state-of-the-art silicon controlled rectifier (SCR) power semiconductors and microprocessor-based logic and control circuitry. The controller was developed by Gould Laboratories under a Lewis contract for the Department of Energy's Electric and Hybrid Vehicle program.

  15. 21 CFR 880.5500 - AC-powered patient lift.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Therapeutic Devices § 880.5500 AC-powered patient lift. (a) Identification. An AC-powered lift is an electrically powered device either fixed or mobile, used to lift and transport patients in the horizontal or other...

  16. Pulmón del soldador de arco Arc welder's lung

    Directory of Open Access Journals (Sweden)

    Luciana Molinari

    2010-12-01

    Full Text Available La siderosis del soldador o neumoconiosis siderótica fue descripta por Doig y McLaughlin en 1936 como una enfermedad pulmonar causada por la inhalación crónica de polvo de hierro en soldadores de arco eléctrico. Presentamos un caso de siderosis del soldador asociada a aumento de los niveles de ferritina, sin hallazgo de depósito de hierro en otros órganos y sin causas evidentes de hemosiderosis secundaria.Pneumoconiosis of electric arc welder or siderotic pneumoconiosis was described by Doig and McLaughlin in 1936 as a lung disease caused by chronic inhalation of iron fumes in electric arc welders. We present a case report of electric arc welder siderosis associated with high levels of ferritin, without findings of iron deposit in any other organ.

  17. Growth of carbon nanotubes in arc plasma treated graphite disc: microstructural characterization and electrical conductivity study

    Science.gov (United States)

    Nayak, B. B.; Sahu, R. K.; Dash, T.; Pradhan, S.

    2018-03-01

    Circular graphite discs were treated in arc plasma by varying arcing time. Analysis of the plasma treated discs by field emission scanning electron microscope revealed globular grain morphologies on the surfaces, but when the same were observed at higher magnification and higher resolution under transmission electron microscope, growth of multiwall carbon nanotubes of around 2 nm diameter was clearly seen. In situ growth of carbon nanotube bundles/bunches consisting of around 0.7 nm tube diameter was marked in the case of 6 min treated disc surface. Both the untreated and the plasma treated graphite discs were characterized by X-ray diffraction, energy dispersive spectra of X-ray, X-ray photoelectron spectroscopy, transmission electron microscopy, micro Raman spectroscopy and BET surface area measurement. From Raman spectra, BET surface area and microstructure observed in transmission electron microscope, growth of several layers of graphene was identified. Four-point probe measurements for electrical resistivity/conductivity of the graphite discs treated under different plasma conditions showed significant increase in conductivity values over that of untreated graphite conductivity value and the best result, i.e., around eightfold increase in conductivity, was observed in the case of 6 min plasma treated sample exhibiting carbon nanotube bundles/bunches grown on disc surface. By comparing the microstructures of the untreated and plasma treated graphite discs, the electrical conductivity increase in graphite disc is attributed to carbon nanotubes (including bundles/bunches) growth on disc surface by plasma treatment.

  18. AC conductivity and dielectric behavior of bulk Furfurylidenemalononitrile

    Science.gov (United States)

    El-Nahass, M. M.; Ali, H. A. M.

    2012-06-01

    AC conductivity and dielectric behavior for bulk Furfurylidenemalononitrile have been studied over a temperature range (293-333 K) and frequency range (50-5×106 Hz). The frequency dependence of ac conductivity, σac, has been investigated by the universal power law, σac(ω)=Aωs. The variation of the frequency exponent (s) with temperature was analyzed in terms of different conduction mechanisms, and it was found that the correlated barrier hopping (CBH) model is the predominant conduction mechanism. The temperature dependence of σac(ω) showed a linear increase with the increase in temperature at different frequencies. The ac activation energy was determined at different frequencies. Dielectric data were analyzed using complex permittivity and complex electric modulus for bulk Furfurylidenemalononitrile at various temperatures.

  19. Method and Mechanisms of Soil Stabilization Using Electric Arc Furnace Dust

    Science.gov (United States)

    Al-Amoudi, Omar S. Baghabra; Al-Homidy, Abdullah A.; Maslehuddin, Mohammed; Saleh, Tawfik A.

    2017-04-01

    This paper reports the method and mechanism for improving the strength of marl and desert sand utilizing electric arc furnace dust (EAFD), an industrial by-product, in lieu of cement or lime. EAFD was used in conjunction with a small quantity (2%) of cement. The mechanical properties and durability characteristics of marl and sand mixed with 2% cement plus 5-, 10-, 20- or 30%-EAFD, by weight of the soil, were evaluated. The soil-cement-EAFD mixtures were used to determine their unconfined compressive strength (UCS), soaked California Bearing Ratio (CBR) and durability. The risk of leaching of toxic heavy metals, such as lead and cadmium, from the stabilized soils to the groundwater was also investigated. The mechanisms of stabilization of the selected soils due to the use of EAFD along with a small quantity of cement are also elucidated. The usage of 20 to 30% EAFD with 2% cement was noted to considerably improve the mechanical properties and durability of both marl and sand.

  20. Measuring Gravitational Flexion in ACS Clusters

    Science.gov (United States)

    Goldberg, David

    2005-07-01

    We propose measurement of the gravitational "Flexion" signal in ACS cluster images. The flexion, or "arciness" of a lensed background galaxy arises from variations in the lensing field. As a result, it is extremely sensitive to small scale perturbations in the field, and thus, to substructure in clusters. Moreover, because flexion represents gravitationally induced asymmetries in the lensed image, it is completely separable from traditional measurements of shear, which focus on the induced ellipticity of the image, and thus, the two signals may be extracted simultaneously. Since typical galaxies are roughly symmetric upon 180 degree rotation, even a small induced flexion can potentially produce a noticeable effect {Goldberg & Bacon, 2005}. We propose the measurement of substructure within approximately 4 clusters with high-quality ACS data, and will further apply a test of a new tomographic technique whereby comparisons of lensed arcs at different redshifts may be used to estimate the background cosmology, and thus place constraints on the equation of state of dark energy.

  1. Objectives and status of development of AC600

    International Nuclear Information System (INIS)

    Zhao Chengkun

    1997-01-01

    AC600 is a medium power capability nuclear power station of next generation, which is developed based on world nuclear power improving tendency, requirements of custom with considering China situation and technical foundation. Its main technical characteristics are as following: advanced core and passive safety system, double loop standard design and international popular equipment. Meanwhile, it a simplification of present system, using advanced control room and pattern construction thus developed the operation reliability of nuclear power station, lower construction and operating cost. In order to accelerate the development of next generation advanced reactor, cooperating with Westinghouse Electric Corporation, the joint economic technical research has been established. Based on AC600, the CAP600 is developed on further improving safety and reliability, economical and electric network adoption of AC600

  2. High thrust-to-power ratio micro-cathode arc thruster

    Directory of Open Access Journals (Sweden)

    Joseph Lukas

    2016-02-01

    Full Text Available The Micro-Cathode Arc Thruster (μCAT is an electric propulsion device that ablates solid cathode material, through an electrical vacuum arc discharge, to create plasma and ultimately produce thrust in the μN to mN range. About 90% of the arc discharge current is conducted by electrons, which go toward heating the anode and contribute very little to thrust, with only the remaining 10% going toward thrust in the form of ion current. A preliminary set of experiments were conducted to show that, at the same power level, thrust may increase by utilizing an ablative anode. It was shown that ablative anode particles were found on a collection plate, compared to no particles from a non-ablative anode, while another experiment showed an increase in ion-to-arc current by approximately 40% at low frequencies compared to the non-ablative anode. Utilizing anode ablation leads to an increase in thrust-to-power ratio in the case of the μCAT.

  3. Hybrid immersed interface-immersed boundary methods for AC dielectrophoresis

    International Nuclear Information System (INIS)

    Hossan, Mohammad Robiul; Dillon, Robert; Dutta, Prashanta

    2014-01-01

    Dielectrophoresis, a nonlinear electrokinetic transport mechanism, has become popular in many engineering applications including manipulation, characterization and actuation of biomaterials, particles and biological cells. In this paper, we present a hybrid immersed interface–immersed boundary method to study AC dielectrophoresis where an algorithm is developed to solve the complex Poisson equation using a real variable formulation. An immersed interface method is employed to obtain the AC electric field in a fluid media with suspended particles and an immersed boundary method is used for the fluid equations and particle transport. The convergence of the proposed algorithm as well as validation of the hybrid scheme with experimental results is presented. In this paper, the Maxwell stress tensor is used to calculate the dielectrophoretic force acting on particles by considering the physical effect of particles in the computational domain. Thus, this study eliminates the approximations used in point dipole methods for calculating dielectrophoretic force. A comparative study between Maxwell stress tensor and point dipole methods for computing dielectrophoretic forces are presented. The hybrid method is used to investigate the physics of dielectrophoresis in microfluidic devices using an AC electric field. The numerical results show that with proper design and appropriate selection of applied potential and frequency, global electric field minima can be obtained to facilitate multiple particle trapping by exploiting the mechanism of negative dielectrophoresis. Our numerical results also show that electrically neutral particles form a chain parallel to the applied electric field irrespective of their initial orientation when an AC electric field is applied. This proposed hybrid numerical scheme will help to better understand dielectrophoresis and to design and optimize microfluidic devices

  4. The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition

    KAUST Repository

    Wang, Na; Komvopoulos, Kyriakos

    2013-01-01

    The structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) deposition was investigated by high-resolution transmission electron microscopy, electron energy loss spectroscopy, and x-ray photoelectron

  5. On generalization of electric field strength in longitudinally blown arcs

    OpenAIRE

    Yas'ko, O.I.; Esipchuk, A.M.; Qing, Z.; Schram, D.C.; Fauchais, P.

    1997-01-01

    Generalization of av. elec. field strength for different discharge conditions in longitudinally blown arcs is considered. Exptl. data for distinctive devices and different gases were used for phys. modeling. Anal. showed that heat transfer processes are responsible for I-E characteristic formation. Turbulent heat transfer is the most effective for atm. pressure discharges while convection plays the main role in vacuum arcs. A generalized I-E characteristic was obtained. [on SciFinder (R)

  6. Magneto-Induced ac Electrical Permittivity of Metal-Dielectric Composites with a Two Characteristic Length Scales Periodic Microstructure

    International Nuclear Information System (INIS)

    Strelniker, Y.M.; Bergman, D.J.

    1998-01-01

    A new effect was recently predicted in conducting composites that have a periodic microstructure: an induced strongly anisotropic dc magneto-resistance. This phenomenon is already verified on high mobility n-GaAs films. Here we discuss the possibility of observing analogous behavior in the ac electric permittivity of a metal-dielectric composite with a periodic microstructure in the presence of a strong magnetic field. We developed new analytical and numerical methods to treat the low-frequency magneto-optical properties in composite media with both disordered and periodic conducting micro-structures. Those methods allow us to study composites with inclusions of arbitrary shape (and arbitrary volume fraction) at arbitrarily strong magnetic field. This is exploited in order to calculate an effective dielectric tensor for this system as a function of applied magnetic field and ac frequency. We show that in a non-dilute metal-dielectric composite medium the magneto-plasma resonance and the cyclotron resonance depend upon both the applied magnetic field as well as on the geometric shape of the inclusion. Near such a resonance, it is possible to achieve large values for the ratio of the off-diagonal-to-diagonal electric permittivity tensor components, ε xy /ε xx , (since ε xx →0, while ε xy ≠0), which is analogous to similar ratio of the resistivity tensor components, ρ xy /ρ xx , in the case of dc magneto-transport problem. Motivated by this observation and by results of previous studies of dc magneto-transport in composite conductors, we then performed a numerical study of the ac magneto-electric properties of a particular metal-dielectric composite film with a periodic columnar microstructure which has a two characteristic length scales. The unit cell of such composite is prepared as follows: We placed the conducting square (in cross section) rods (first characteristic length scale) along the perimeter of the unit cell in order to create a dielectric host

  7. Electric arc furnace dust utilization in iron ore sintering: influence of particle size; Utilizacao da poeira de aciaria eletrica na sinterizacao de minerio de ferro: influencia da granulometria

    Energy Technology Data Exchange (ETDEWEB)

    Telles, V.B.; Junca, E.; Rodrigues, G.F.; Espinosa, D.C.R.; Tenorio, J.A.S., E-mail: victor_bridit@hotmail.co [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Metalurgica e de Materiais

    2010-07-01

    The aim of this work was to study the utilization of electric arc furnace dust (EAFD) generated in steelmaking by electric arc furnace (EAF) as raw material in iron ore sintering. The waste was characterized by size, chemical composition and X-ray diffraction. The physical characterization showed that 90% of the particles have a size less then 1,78 {mu}m and the material have the tendency to agglomerate. The waste were submitted to a pre-agglomeration prior to its incorporation in the sinter. The influence on the addition of the waste with different granulometry in the iron or sinter production were analyzed by sinter characterization and sintering parameters. (author)

  8. The mechanisms and models of interaction between electrical arc and contact materials

    International Nuclear Information System (INIS)

    Kharin, S.N.

    1999-01-01

    Mechanisms of arc erosion in electrical contacts are different and depends on the conditions of contact separation. The first one, which occurs at low current with relatively slow rate of heat transfer, involves the evaporation of material from the contact surface. The second mechanism can be characterized by the formation of droplets of molten metal caused by high currents and vapor or magnetic pressure on a molten metal pool. However, in certain cases it is impossible to explain the formation of molten metal droplets in terms of pressure only. Therefore a new hypothesis regarding thermo-capillary mechanism of ejection of liquid metal is discussed. This hypothesis is based on the Marangoni effect which is important when the temperature gradient along the liquid contact zone and the temperature dependence of surface tension become significant (tungsten, zirconium, molybdenum etc.). The fourth erosion mechanism is associated with the ejection of solid particles of contact material with distinct crystalline structure during high current pulses of a short duration. It occurs when thermo-elastic processes overcome the mechanical strength. A mathematical model describing each of the four mechanisms of erosion is presented. Temperature fields and erosion characteristics are determined as a function of the commutation regime and the properties of contact materials. The experimental data are discussed in terms of theoretical approach with respect to the solid phase and droplet formation. Dynamics of each type of arc erosion is described, and recommendations for optimal selection of contact material with minimum erosion are given. (author)

  9. Slag Evaluation to Reduce Energy Consumption and EAF Electrical Instability

    OpenAIRE

    Vieira,Deisi; Almeida,Rodolfo Arnaldo Montecinos de; Bielefeldt,Wagner Viana; Vilela,Antônio Cezar Faria

    2016-01-01

    In steel mills that operate with electric arc furnaces (EAF), it is interesting to ensure greater stability to the electric arc to aim at less distortion in the electrical system, with consequent reduction in electric power consumption. The slag foaming increases electric arc stability by reducing the total harmonic distortion (THD) between EAF phases. In this study, information about the chemical composition of the slag and electrical parameters of an EAF were collected. With the composition...

  10. An effect of heat insulation parameters on thermal losses of water-cooled roofs for secondary steelmaking electric arc furnaces

    Directory of Open Access Journals (Sweden)

    E. Mihailov

    2016-07-01

    Full Text Available The aim of this work is research in the insulation parameters effect on the thermal losses of watercooled roofs for secondary steelmaking electric arc furnaces. An analytical method has been used for the investigation in heat transfer conditions in the working area. The results of the research can be used to choose optimal cooling parameters and select a suitable kind of insulation for water-cooled surfaces.

  11. Novel Direct Steelmaking by Combining Microwave, Electric Arc, and Exothermal Heating Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Xiaodi Huang; Dr. J. Y. Hwang

    2005-03-28

    Steel is a basic material broadly used by perhaps every industry and individual. It is critical to our nation's economy and national security. Unfortunately, the American steel industry is losing competitiveness in the world steel production field. There is an urgent need to develop the next generation of steelmaking technology for the American steel industry. Direct steelmaking through the combination of microwave, electric arc, and exothermal heating is a revolutionary change from current steelmaking technology. This technology can produce molten steel directly from a shippable agglomerate, consisting of iron oxide fines, powdered coal, and ground limestone. This technology is projected to eliminate many current intermediate steelmaking steps including coking, pellet sintering, blast furnace (BF) ironmaking, and basic oxygen furnace (BOF) steelmaking. This technology has the potential to (a) save up to 45% of the energy consumed by conventional steelmaking; (b) dramatically reduce the emission of CO{sub 2}, SO{sub 2}, NO{sub x}, VOCs, fine particulates, and air toxics; (c) substantially reduce waste and emission control costs; (d) greatly lower capital cost; and (e) considerably reduce steel production costs. This technology is based on the unique capability of microwaves to rapidly heat steelmaking raw materials to elevated temperature, then rapidly reduce iron oxides to metal by volumetric heating. Microwave heating, augmented with electric arc and exothermal reactions, is capable of producing molten steel. This technology has the components necessary to establish the ''future'' domestic steel industry as a technology leader with a strong economically competitive position in world markets. The project goals were to assess the utilization of a new steelmaking technology for its potential to achieve better overall energy efficiency, minimize pollutants and wastes, lower capital and operating costs, and increase the competitiveness of the

  12. Energy and flux variations across thin auroral arcs

    Directory of Open Access Journals (Sweden)

    H. Dahlgren

    2011-10-01

    Full Text Available Two discrete auroral arc filaments, with widths of less than 1 km, have been analysed using multi-station, multi-monochromatic optical observations from small and medium field-of-view imagers and the EISCAT radar. The energy and flux of the precipitating electrons, volume emission rates and local electric fields in the ionosphere have been determined at high temporal (up to 30 Hz and spatial (down to tens of metres resolution. A new time-dependent inversion model is used to derive energy spectra from EISCAT electron density profiles. The energy and flux are also derived independently from optical emissions combined with ion-chemistry modelling, and a good agreement is found. A robust method to obtain detailed 2-D maps of the average energy and number flux of small scale aurora is presented. The arcs are stretched in the north-south direction, and the lowest energies are found on the western, leading edges of the arcs. The large ionospheric electric fields (250 mV m−1 found from tristatic radar measurements are evidence of strong currents associated with the region close to the optical arcs. The different data sets indicate that the arcs appear on the boundaries between regions with different average energy of diffuse precipitation, caused by pitch-angle scattering. The two thin arcs on these boundaries are found to be related to an increase in number flux (and thus increased energy flux without an increase in energy.

  13. Quasi-equilibrium channel model of an constant current arc

    Directory of Open Access Journals (Sweden)

    Gerasimov Alexander V.

    2003-01-01

    Full Text Available The rather simple method of calculation of electronic and gas temperature in the channel of arc of plasma generator is offered. This method is based on self-consistent two-temperature channel model of an electric arc. The method proposed enables to obtain radial allocation of gas and electronic temperatures in a non-conducting zone of an constant current arc, for prescribed parameters of discharge (current intensity and power of the discharge, with enough good precision. The results obtained can be used in model and engineering calculations to estimate gas and electronic temperatures in the channel of an arc plasma generator.

  14. Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization.

    Science.gov (United States)

    Zhang, H-S; Komvopoulos, K

    2008-07-01

    Filtered cathodic vacuum arc (FCVA) deposition is characterized by plasma beam directionality, plasma energy adjustment via substrate biasing, macroparticle filtering, and independent substrate temperature control. Between the two modes of FCVA deposition, namely, direct current (dc) and pulsed arc, the dc mode yields higher deposition rates than the pulsed mode. However, maintaining the dc arc discharge is challenging because of its inherent plasma instabilities. A system generating a special configuration of magnetic field that stabilizes the dc arc discharge during film deposition is presented. This magnetic field is also part of the out-of-plane magnetic filter used to focus the plasma beam and prevent macroparticle film contamination. The efficiency of the plasma-stabilizing magnetic-field mechanism is demonstrated by the deposition of amorphous carbon (a-C) films exhibiting significantly high hardness and tetrahedral carbon hybridization (sp3) contents higher than 70%. Such high-quality films cannot be produced by dc arc deposition without the plasma-stabilizing mechanism presented in this study.

  15. Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization

    International Nuclear Information System (INIS)

    Zhang, H.-S.; Komvopoulos, K.

    2008-01-01

    Filtered cathodic vacuum arc (FCVA) deposition is characterized by plasma beam directionality, plasma energy adjustment via substrate biasing, macroparticle filtering, and independent substrate temperature control. Between the two modes of FCVA deposition, namely, direct current (dc) and pulsed arc, the dc mode yields higher deposition rates than the pulsed mode. However, maintaining the dc arc discharge is challenging because of its inherent plasma instabilities. A system generating a special configuration of magnetic field that stabilizes the dc arc discharge during film deposition is presented. This magnetic field is also part of the out-of-plane magnetic filter used to focus the plasma beam and prevent macroparticle film contamination. The efficiency of the plasma-stabilizing magnetic-field mechanism is demonstrated by the deposition of amorphous carbon (a-C) films exhibiting significantly high hardness and tetrahedral carbon hybridization (sp 3 ) contents higher than 70%. Such high-quality films cannot be produced by dc arc deposition without the plasma-stabilizing mechanism presented in this study

  16. Radiative energy losses from a high-current air-blast arc

    International Nuclear Information System (INIS)

    Strachan, D.C.; Lidgate, D.; Jones, G.R.

    1977-01-01

    The importance of total radiation losses from high-current arcs burning in highly accelerated air flows representative of conditions existing in commercial gas-blast switchgear has been investigated. Such losses have been measured both in the high-pressure region upstream of a shaped orifice, where gas velocities are low, and in the region downstream where velocities become supersonic and pressure conditions approach ambient. The dominance of upstream electrode vapor as the source of plasma radiation losses is demonstrated and the importance of radiated losses within the arc energy balance is examined using measured values of axial electric field. For upstream electrodes of elkonite (sintered copper/tungsten) as used in high-power gas-blast circuit breakers, it is shown that some 30--40% of the electrical energy input upstream of the orifice is lost as radiation, while downstream this figure becomes 10--20%. The effect of reservoir pressure on arc electric fields is examined and the contribution to this effect of radiation losses is quantified

  17. Electrical conductivity of the screening residuals of coke production in context of ferrochromium production in a submerged arc furnace

    Energy Technology Data Exchange (ETDEWEB)

    Rousu, Arto; Mattila, Olli [Lab. of Process Metallurgy, Univ. of Oulu (Finland)

    2009-11-15

    Coke is used as a reducing agent in the production of ferrochromium in a submerged arc furnace (SAF). Its good electrical conductivity compared to other input materials makes it a dominant current conductivity substance in the burden. The resistance of the coke has to be high enough to ensure the proper functionality of the furnace. Used cokes for submerged arc furnace production are relatively small in size compared to e.g. blast furnace (BF) cokes. A common practice is to use screening residual coke, which is too small for the BF, in SAF. The goal of this study was to show differences in the electrical properties of screening residual cokes compared to coke formed in different parts of the coke battery, in dependence of particle size. The resistances of different cokes were measured and XRD measurements were performed to define the crystallographic structure of the selected cokes. The results indicate that small coke particles have higher overall resistance, which is due to their internal properties. This small weakly carbonized coke is formed in the middle of the coking battery and is subject to changes in varying coking practices. Continuous quality control of screening residual coke is needed to use it in the SAF. (orig.)

  18. Advanced DC/AC inverters applications in renewable energy

    CERN Document Server

    Luo, Fang Lin

    2013-01-01

    DC/AC inversion technology is of vital importance for industrial applications, including electrical vehicles and renewable energy systems, which require a large number of inverters. In recent years, inversion technology has developed rapidly, with new topologies improving the power factor and increasing power efficiency. Proposing many novel approaches, Advanced DC/AC Inverters: Applications in Renewable Energy describes advanced DC/AC inverters that can be used for renewable energy systems. The book introduces more than 100 topologies of advanced inverters originally developed by the authors,

  19. Effect of electric field configuration on streamer and partial discharge phenomena in a hydrocarbon insulating liquid under AC stress

    International Nuclear Information System (INIS)

    Liu, Z; Liu, Q; Wang, Z D

    2016-01-01

    This paper concerns pre-breakdown phenomena, including streamer characteristics from a fundamental perspective and partial discharge (PD) measurements from an industrial perspective, in a hydrocarbon insulating liquid. The aim was to investigate the possible changes of the liquid’s streamer and PD characteristics and their correlations when the uniformity of the AC electric field varies. In the experiments, a plane-to-plane electrode system incorporating a needle protrusion was used in addition to a needle-to-plane electrode system. When the applied electric field became more uniform, fewer radial branches occurred and streamer propagation towards the ground electrode was enhanced. The transition from streamer propagation dominated breakdown in divergent fields to streamer initiation dominated breakdown in uniform fields was evidenced. Relationships between streamer and PD characteristics were established, which were found to be electric field dependent. PD of the same apparent charge would indicate longer streamers if the electric field is more uniform. (paper)

  20. Investigation of the neutron diffraction anomaly and electrical behaviour of α-LiIO3 single crystal under AC field

    International Nuclear Information System (INIS)

    Wang Guang; Yang Zhen

    1990-01-01

    A systematic study of the unique neutron diffraction and electric behaviour of α-LiIO 3 single crystal under AC field is reported. A frequency dependent rectification effect was observed and can be explained as the relaxation process in the ionic conduction. Theoretical treatment using Boltzmann equation gives satisfactory agreement with experimental results. The neutron diffraction anomaly can be attributed to the effect of the rectified DC current in the sample

  1. Eddy intrusion of hot plasma into the polar cap and formation of polar-cap arcs

    International Nuclear Information System (INIS)

    Chiu, Y.T.; Gorney, D.J.

    1983-01-01

    We present plasma and electric field data obtained by the S3-3 satellite over the polar caps. We demonstrate that: (1) plasma signatures in the polar cap arc formation region near 5000 km altitude show clear intrusions of plasma sheet (approx.keV) and magneto sheath (approx.100 eV) plasma into a background of low-energy polar cap plasma; (2) the combined plasma and electric field signatures (electron inverted-V, ion beam and delxE<0) are exactly the same as in the evening discrete arc. We interpret this equivalence of polar cap and evening discrete arc signatures as indication that their formation processes are identical. The spatial structures of polar cap electric fields and the associated plasma signatures are consistent with the hypothesis that plasma intrusion into the polar cap takes the form of multiple cellular eddies. This hypothesis provides a unifying view of arc formation and arc configurations

  2. Double-ended metal halide arc discharge lamp with electrically isolated containment shroud

    Science.gov (United States)

    Muzeroll, Martin M. (Inventor)

    1994-01-01

    A double-ended arc discharge lamp includes a sealed, light-transmissive outer jacket, a light-transmissive shroud mounted within the outer jacket and directly supported by the outer jacket, and an arc discharge tube mounted within the shroud. The arc tube is typically a metal halide arc discharge tube. In a preferred embodiment, the shroud includes an outwardly flared portion at each end. The outwardly flared portions space the shroud from the outer jacket and support the shroud within the outer jacket. The outwardly flared portions of the shroud can be affixed to the outer jacket by fusing. The outer jacket can be provided with inwardly extending dimples for locating the shroud with respect to the outer jacket. In another embodiment, the outer jacket includes reduced diameter portions near each end which are attached to the shroud.

  3. Arc modeling for welding analysis

    International Nuclear Information System (INIS)

    Glickstein, S.S.

    1978-04-01

    A one-dimensional model of the welding arc that considers heat generation by the Joule effect and heat losses by radiation and conduction has been used to study the effects of various gases and gas mixtures currently employed for welding applications. Minor additions of low ionization potential impurities to these gases are shown to significantly perturb the electrical properties of the parent gas causing gross changes in the radial temperature distribution of the arc discharge. Such changes are reflected in the current density distribution and ultimately in the input energy distribution to the weldment. The result is observed as a variation in weld penetration. Recently published experiments and analyses of welding arcs are also evaluated and shown to contain erroneous data and results. Contrary to previous beliefs, the inclusion of a radiation loss term in the basic energy balance equation is important and cannot be considered as negligible in an argon arc at temperatures as low as 10,000 0 K. The one-dimensional analysis of the welding arc as well as the evaluation of these earlier published reports helps to explain the effects of various gases used for welding, improves our understanding of the physics of the welding arc, and provides a stepping stone for a more elaborate model which can be applied to help optimize welding parameters

  4. Study of dielectric relaxation and AC conductivity of InP:S single crystal

    Science.gov (United States)

    El-Nahass, M. M.; Ali, H. A. M.; El-Shazly, E. A.

    2012-07-01

    The dielectric relaxation and AC conductivity of InP:S single crystal were studied in the frequency range from 100 to 5.25 × 105 Hz and in the temperature range from 296 to 455 K. The dependence of the dielectric constant (ɛ1) and the dielectric loss (ɛ2) on both frequency and temperature was investigated. Since no peak was observed on the dielectric loss, we used a method based on the electric modulus to evaluate the activation energy of the dielectric relaxation. Scaling of the electric modulus spectra showed that the charge transport dynamics is independent of temperature. The AC conductivity (σAC) was found to obey the power law: Aωs. Analysis of the AC conductivity data and the frequency exponent showed that the correlated barrier hopping (CBH) model is the dominant mechanism for the AC conduction. The variation of AC conductivity with temperature at different frequencies showed that σAC is a thermally activated process.

  5. Optical arc sensor using energy harvesting power source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoo Nam, E-mail: knchoi@inu.ac.kr; Rho, Hee Hyuk, E-mail: rdoubleh0902@inu.ac.kr [Dept. of Information and Telecommunication Engineering Incheon National University Incheon 22012 (Korea, Republic of)

    2016-06-03

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17 J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  6. Optical arc sensor using energy harvesting power source

    Science.gov (United States)

    Choi, Kyoo Nam; Rho, Hee Hyuk

    2016-06-01

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  7. Computational Modeling of Arc-Slag Interaction in DC Furnaces

    Science.gov (United States)

    Reynolds, Quinn G.

    2017-02-01

    The plasma arc is central to the operation of the direct-current arc furnace, a unit operation commonly used in high-temperature processing of both primary ores and recycled metals. The arc is a high-velocity, high-temperature jet of ionized gas created and sustained by interactions among the thermal, momentum, and electromagnetic fields resulting from the passage of electric current. In addition to being the primary source of thermal energy, the arc jet also couples mechanically with the bath of molten process material within the furnace, causing substantial splashing and stirring in the region in which it impinges. The arc's interaction with the molten bath inside the furnace is studied through use of a multiphase, multiphysics computational magnetohydrodynamic model developed in the OpenFOAM® framework. Results from the computational solver are compared with empirical correlations that account for arc-slag interaction effects.

  8. Nitrogen Control in Electric Arc Furnace Steelmaking by DRI (TRP 0009)

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Gordon A. Irons

    2004-03-31

    Nitrogen is difficult to remove in electric arc furnace (EAF) steelmaking, requiring the use of more energy in the oxygen steelmaking route to produce low-nitrogen steel. The objective of this work was to determine if the injection of directly reduced iron (DRI) fines into EAFs could reduce the nitrogen content by creating fine carbon monoxide bubbles that rinse nitrogen from the steel. The proposed work included physical and chemical characterization of DRI fines, pilot-scale injection into steel, and mathematical modeling to aid in scale-up of the process. Unfortunately, the pilot-scale injections were unsuccessful, but some full-scale data was obtained. Therefore, the original objectives were met, and presented in the form of recommendations to EAF steelmakers regarding: (1) The best composition and size of DRI fines to use; (2) The amount of DRI fines required to achieve a specific reduction in nitrogen content in the steel; and (3) The injection conditions. This information may be used by steelmakers in techno-economic assessments of the cost of reducing nitrogen with this technology.

  9. Electromagnetic characteristic of twin-wire indirect arc welding

    Science.gov (United States)

    Shi, Chuanwei; Zou, Yong; Zou, Zengda; Wu, Dongting

    2015-01-01

    Traditional welding methods are limited in low heat input to workpiece and high welding wire melting rate. Twin-wire indirect arc(TWIA) welding is a new welding method characterized by high melting rate and low heat input. This method uses two wires: one connected to the negative electrode and another to the positive electrode of a direct-current(DC) power source. The workpiece is an independent, non-connected unit. A three dimensional finite element model of TWIA is devised. Electric and magnetic fields are calculated and their influence upon TWIA behavior and the welding process is discussed. The results show that with a 100 A welding current, the maximum temperature reached is 17 758 K, arc voltage is 14.646 V while maximum current density was 61 A/mm2 with a maximum Lorene force of 84.5 μN. The above mentioned arc parameters near the cathode and anode regions are far higher than those in the arc column region. The Lorene force is the key reason for plasma velocity direction deviated and charged particles flowed in the channel formed by the cathode, anode and upper part of arc column regions. This led to most of the energy being supplied to the polar and upper part of arc column regions. The interaction between electric and magnetic fields is a major determinant in shaping TWIA as well as heat input on the workpiece. This is a first study of electromagnetic characteristics and their influences in the TWIA welding process, and it is significant in both a theoretical and practical sense.

  10. Current transfer in dc non-transferred arc plasma torches

    International Nuclear Information System (INIS)

    Ghorui, S; Sahasrabudhe, S N; Das, A K

    2010-01-01

    Fundamentals of current transfer to the anodes in dc non-transferred arc plasma torches are investigated. Specially designed anodes made of three mutually isolated sections and external dc axial magnetic fields of various strengths are utilized to explore the conditions for different diffused and constricted attachments of the arc with the anode. A number of new facts are revealed in the exercise. Under constricted attachment, formation of arc root takes place. Spontaneous and magnetically induced movements of the arc root, their dependence on the arc current and the strength of the external magnetic field, most probable arc root velocity, variation of the root velocity with strength of the applied magnetic field, the effect of swirl on the rotational speed of the arc root are some of the important features investigated. Two new techniques are introduced: one for measurement of the arc root diameter and the other for determination of the negative electric field in the boundary layer over the anode. While the first one exploits the rigid column behaviour of the arcs, the second one utilizes the shooting back of the residual electrons over an arc spot. Sample calculations are provided.

  11. Recycling of electric arc furnace dust; Reciclagem de poeira de aciaria eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Marques Sobrinho, Vicente de Paulo Ferreira; Oliveira, Jose Roberto de, E-mail: vicente@ifes.edu.b [Instituto Federal de Ciencia e Tecnologia do Espirito Santo (IFES), Vitoria, ES (Brazil); Tenorio, Jorge Alberto Soares; Espinosa, Denise Crocce Romano [Universidade de Sao Paulo (EPUSP), SP (Brazil). Escola Politecnica

    2010-07-01

    This research aims to study the process of incorporation of the metal iron in electric arc furnace dust (EAFD), from a steel mill producing long steel by liquid iron in addition to the changing temperature of 1400 degrees Celsius of EAFD 'as received', the percentage of EAFD to be added (5, 10 and 20% of initial weight of sample pig iron) and the time of withdrawal of the sample of pig iron and slag (30 minutes after the addition of EAFD). Previously, the EAFD will be characterized using the following techniques: chemical analysis, size analysis, specific surface area, Xray diffraction, scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) microanalysis. . After characterization, the EAFD will be added to the bath of liquid pig iron. It is expected that the results obtained at the end of the research allow the evaluation of the iron metal incorporation of EAFD in pig iron bath. (author)

  12. A rotating arc plasma invertor

    International Nuclear Information System (INIS)

    Reusch, M.F.; Jayaram, K.

    1987-02-01

    A device is described for the inversion of direct current to alternating current. The main feature is the use of a rotating plasma arc in crossed electric and magnetic fields as a switch. This device may provide an economic alternative to other inversion methods in some circumstances

  13. Emissions of dioxin and dibenzofuran from electric arc furnaces

    Directory of Open Access Journals (Sweden)

    Figueira, S. L.

    2005-06-01

    Full Text Available This paper describes work done in order to clarify the formation mechanism of highly toxic micropoUutants, such as dioxins and dibenzofurans, from electric arc furnaces used in the production of carbon steel from scrap. The study is allowing to derive relationships between the levels of airborne micropoUutants and the operational parameters of the production process so that an abatement of pollution could be achieved. By using the European standard method CEN 1948 for dioxin like compounds sampling and measurement, it was possible to determine the characteristic fingerprint of micropoUutants emitted by this particular stationary source.

    Este artículo contiene resultados del trabajo ejecutado para el esclarecimiento de los mecanismos de formación de los micropolutantes muy tóxicos, como dioxinas y dibenzofuranos, que son emitidos por los hornos de arco eléctrico utilizados en la producción de acero. Estos estudios han permitido relacionar las concentraciones de polutantes emitidos a la atmósfera con las condiciones operación del homo eléctrico. Utilizando el método normalizado CEN 1948 para captación y análisis de muestras de compuestos análogos a las dioxinas ha sido posible determinar el perfil característico de los micropolutantes emitidos por esta fuente

  14. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: Circuitry and mechanical design

    Energy Technology Data Exchange (ETDEWEB)

    Kia, Kaveh Kazemi [Department of Electrical and Computer Engineering, Islamic Azad University of Bonab, Bonab (Iran, Islamic Republic of); Bonabi, Fahimeh [Department of Engineering, Islamic Azad University of Bonab, Bonab (Iran, Islamic Republic of)

    2012-12-15

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 {mu}s. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  15. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: circuitry and mechanical design.

    Science.gov (United States)

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    2012-12-01

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  16. Three-Dimensional Interaction of a Large Number of Dense DEP Particles on a Plane Perpendicular to an AC Electrical Field

    Directory of Open Access Journals (Sweden)

    Chuanchuan Xie

    2017-01-01

    Full Text Available The interaction of dielectrophoresis (DEP particles in an electric field has been observed in many experiments, known as the “particle chains phenomenon”. However, the study in 3D models (spherical particles is rarely reported due to its complexity and significant computational cost. In this paper, we employed the iterative dipole moment (IDM method to study the 3D interaction of a large number of dense DEP particles randomly distributed on a plane perpendicular to a uniform alternating current (AC electric field in a bounded or unbounded space. The numerical results indicated that the particles cannot move out of the initial plane. The similar particles (either all positive or all negative DEP particles always repelled each other, and did not form a chain. The dissimilar particles (a mixture of positive and negative DEP particles always attracted each other, and formed particle chains consisting of alternately arranged positive and negative DEP particles. The particle chain patterns can be randomly multitudinous depending on the initial particle distribution, the electric properties of particles/fluid, the particle sizes and the number of particles. It is also found that the particle chain patterns can be effectively manipulated via tuning the frequency of the AC field and an almost uniform distribution of particles in a bounded plane chip can be achieved when all of the particles are similar, which may have potential applications in the particle manipulation of microfluidics.

  17. Optical Sensors for Post Combustion Control in Electric Arc Furnace Steelmaking (TRP 9851)

    Energy Technology Data Exchange (ETDEWEB)

    Sarah W. Allendorf; David K. Ottesen; Robert W. Green; Donald R. Hardesty; Robert Kolarik; Howard Goodfellow; Euan Evenson; Marshall Khan; Ovidiu Negru; Michel Bonin; Soren Jensen

    2003-12-31

    Working in collaboration with Stantec Global Technologies, Process Metrix Corporation, and The Timken Company, Sandia National Laboratories constructed and evaluated a novel, laser-based off-gas sensor at the electric arc furnace facility of Timken's Faircrest Steel Plant (Canton, Ohio). The sensor is based on a mid-infrared tunable diode laser (TDL), and measures the concentration and temperature of specific gas species present in the off-gas emanating from the EAF. The laser beam is transmitted through the gas stream at the fourth hole of the EAF, and provides a real-time, in situ measurement that can be used for process optimization. Two sets of field tests were performed in parallel with Stantec's extractive probe off-gas system, and the tests confirm the TDL sensor's operation and applicability for electric steel making. The sensor measures real-time, in situ line-of-sight carbon monoxide (CO) concentrations between 5% and 35% CO, and measures off-gas temperature in the range of 1400 to 1900 K. In order to achieve commercial-ready status, future work is required to extend the sensor for simultaneous CO and CO{sub 2} concentration measurements. In addition, long-term endurance tests including process optimization must be completed.

  18. Electrical faults in vehicle powernets - Methodical investigation of arcing faults in passenger cars and HGV; Fehlerfaelle in Fahrzeug-Bordnetzen - Methodische Untersuchung von Lichtboegen in Pkw und Lkw

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, R.; Magenheimer, K.; Moenchmeier, A.; Stepec, H.; Viscido, T.; Wagner, C. [Forschungsgesellschaft Kraftfahrwesen Aachen mbH, Aachen (Germany)

    2004-07-01

    In vehicle powernets with a voltage higher than 20 V the possibility for the formation of electrical arcs is given. For that reason the electronics department of the fka analyses the characteristics of arc faults in vehicle powernets. Theoretical investigations and their validation by practical experiments help to determine the characteristic values of arcs. Regarding the insertion into powernets of real vehicles, either specific or general topologies get simulated. A further task of the ''fka powernet test bench'' is to bring out the technical validation of protection devices preventing arcing faults. For that purpose the protection devices get integrated into a realistic powernet replication to analyse their functionality. Within the scope of an analysis arcing faults were simulated which appear in commercial vehicle powernets by different reasons. For these purposes standard arcing tests were applied which are commonly used in aerospace and military applications. The analysis resulted in the cognition that a revision of the standard arcing tests is necessary to (a) improve the reproducibility of the tests, (b) to simulate the automotive surrounding more life like and (c) to enable a standardisation of the tests. In this article the revised tests are described. With these tests arc faults can be generated which can be used to verify the functionality of protection devices. The proposed tests can be used as a basis for standard tests. (orig.)

  19. Technique eliminates high voltage arcing at electrode-insulator contact area

    Science.gov (United States)

    Mealy, G.

    1967-01-01

    Coating the electrode-insulator contact area with silver epoxy conductive paint and forcing the electrode and insulator tightly together into a permanent connection, eliminates electrical arcing in high-voltage electrodes supplying electrical power to vacuum facilities.

  20. Clinical application of AcMAR (accelerated multiple-arc radiotherapy) for head and neck tumors. Results of a randomized, two-dose study in Kitami Red-Cross General Hospital

    International Nuclear Information System (INIS)

    Arimoto, Takuro; Yamazaki, Akira; Yonesaka, Akio; Matsuzawa, Tooru; Kanai, Naoki

    2003-01-01

    Enhanced acute mucositis is the limiting factor for accelerated, hyperfractionated radiotherapy in head and neck (H and N) squamous cell carcinomas (SCCs). We have developed a simple, new form of conformal radiotherapy, accelerated multiple arc radiotherapy (AcMAR), which covers the target volume by combined, segmental, and rotational arc fields. Two to three rotational fields were placed with CT guidance, each covering the primary tumor and lymph nodes separately. The optimal inter-isocenter distance was determined by 3D dose calculation. The surface area of oro-pharyngeal mucosa irradiated by more than a 50% dose by this method was reduced by 37-73% compared to that with a conventional parallel opposing technic. Dose searching, randomized two-dose study was initiated in Kitami Red-cross General Hospital (KRCGH) in January 1995, and 101 patients were registered and completed AcMAR in Oct 2000. All the patients were followed for up to 96 months (24-96 mo, median 48 mo) at the time of analysis. Fifty-one out of 101 patients were Stage III (17) and IV (34). Primary site of tumors were; 38 larynx, 25 oropharynx, 15 hypopharynx, 13 oral cavity, and 10 other miscellaneous sites. Patients were randomly allocated either to 60 Gy/24 fr/bid/3 wks to gross tumor volume (GTV) (Group A), or 66 Gy/33 fr/bid/4 wks to GTV (Group B). Forty Gy/16 fr/bid/2 wks was given to the volume of prophylactic'' irradiation in both groups of patients. Results were as follows: All the patients, except for one, completed AcMAR without treatment interruption. Acute mucositis at the site of high-dose irradiation was intense; 72% of Group A and 62.5% of Group B experienced World Health Organization (WHO) Grade 3 (confluent) mucositis focally. Fifty-one out of 53 in Group A and 48/48 in Group B, however, could maintain oral food intake (WHO Grade 1 or 2) even at the peak of their mucositis, because of the limited area of severe mucositis. With regard to late morbidity, however, 6/46 (followed >24 mo

  1. Introducing AC Inductive Reactance with a Power Tool

    Science.gov (United States)

    Bryant, Wesley; Baker, Blane

    2016-01-01

    The concept of reactance in AC electrical circuits is often non-intuitive and difficult for students to grasp. In order to address this lack of conceptual understanding, classroom exercises compare the predicted resistance of a power tool, based on electrical specifications, to measured resistance. Once students discover that measured resistance…

  2. Induced AC voltages on pipelines may present a serious hazard

    International Nuclear Information System (INIS)

    Kirkpatrick, E.L.

    1997-01-01

    The problem of induced AC voltages on pipelines has always been with us. Early pipeline construction consisted of bare steel or cast iron pipe, which was very well grounded. Bell and spigot, mechanical, or dresser-style joint couplings often were used, creating electrically discontinuous pipelines which are less susceptible to AC induction. Although induced AC affects any pipeline parallel to a high-voltage alternating current (HVAC) power line, the effects were not noticeable on bare pipelines. With the advent of welded steel pipelines, modern cathodic protection (CP) methods and materials, and the vastly improved quality of protective coatings, induced AC effects on pipelines have become a significant consideration on many pipeline rights-of-way. In the last two to three decades, one has been seeing much more joint occupancy of the same right-of-way by one or more pipelines and power lines. As the cost of right-of-way and the difficulty in acquisition, particularly in urban areas, have risen, the concept of joint occupancy rights-of-way has become more attractive to many utility companies. Federal and state regulations usually insist on joint-use right-of-way when a utility proposes crossing regulated or publicly owned lands, wherever there is an existing easement. Such joint use allows the induced AC phenomena to occur and may create electrical hazards and interference to pipeline facilities. Underground pipelines are especially susceptible if they are well-coated and electrically isolated for CP

  3. Carbothermic reduction of electric arc furnace dust and calcination of waelz oxide by semi-pilot scale rotary furnace

    Directory of Open Access Journals (Sweden)

    Morcali M.H.

    2012-01-01

    Full Text Available The paper gives a common outline about the known recycling techniques from electric arc furnace dusts and describes an investigation of a pyrometallurgical process for the recovery of zinc and iron from electric arc furnace dusts (EAFD. In the waelz process, the reduction of zinc and iron from the waste oxides using solid carbon (lignite coal was studied. In the reduction experiments; temperature, time and charge type (powder and pellet were investigated in detail. It was demonstrated that zinc and iron recovery (% increases with increasing temperature as well as time. Pelletizing was found to be a better method than using the powder as received for the zinc recovery and iron conversion (. In the calcination (roasting process, crude zinc oxide, which evaporated from non-ferric metals were collected as condensed product (crude waelz oxide, was heated in air atmosphere. Lead, cadmium as well as chlorine and other impurities were successfully removed from crude waelz oxide by this method. In the calcination experiments; temperature and time are investigated in detail. It was demonstrated that zinc purification (% increases with increasing temperature. The highest zinc refining (% was obtained at 1200°C for 120 minutes. A kinetic study was also undertaken to determine the activation energy of the process. Activation energies were 242.77 kJ/mol for the zinc recovery with powder forms, 261.99 kJ/mol for the zinc recovery with pellet forms respectively. It was found that, initially, the reaction was chemically controlled.

  4. The modelling of an SF6 arc in a supersonic nozzle: II. Current zero behaviour of the nozzle arc

    International Nuclear Information System (INIS)

    Zhang, Q; Liu, J; Yan, J D; Fang, M T C

    2016-01-01

    The present work (part II) forms the second part of an investigation into the behaviour of SF 6 nozzle arc. It is concerned with the aerodynamic and electrical behaviour of a transient nozzle arc under a current ramp specified by a rate of current decay (d i /d t ) before current zero and a voltage ramp (d V /d t ) after current zero. The five flow models used in part I [1] for cold gas flow and DC nozzle arcs have been applied to study the transient arc at three stagnation pressures ( P 0 ) and two values of d i /d t for the current ramp, representing a wide range of arcing conditions. An analysis of the physical mechanisms encompassed in each flow model is given with an emphasis on the adequacy of a particular model in describing the rapidly varying arc around current zero. The critical rate of rise of recovery voltage (RRRV) is found computationally and compared with test results of Benenson et al [2]. For transient nozzle arcs, the RRRV is proportional to the square of P 0 , rather than to the square root of P 0 for DC nozzle arcs. The physical mechanisms responsible for the strong dependence of RRRV on P 0 have been investigated. The relative merits of the flow models employed are discussed. (paper)

  5. A MEMS AC current sensor for residential and commercial electricity end-use monitoring

    International Nuclear Information System (INIS)

    Leland, E S; Wright, P K; White, R M

    2009-01-01

    This paper presents a novel prototype MEMS sensor for alternating current designed for monitoring electricity end-use in residential and commercial environments. This new current sensor design is comprised of a piezoelectric MEMS cantilever with a permanent magnet mounted on the cantilever's free end. When placed near a wire carrying AC current, the magnet is driven sinusoidally, producing a voltage in the cantilever proportional to the current being measured. Analytical models were developed to predict the applicable magnetic forces and piezoelectric voltage output in order to guide the design of a sensor prototype. This paper also details the fabrication process for this sensor design. Released piezoelectric MEMS cantilevers have been fabricated using a four-mask process and aluminum nitride as the active piezoelectric material. Dispenser-printed microscale composite permanent magnets have been integrated, resulting in the first MEMS-scale prototypes of this current sensor design

  6. Evaluation of SF6-alternative gas C5-PFK based on arc extinguishing performance and electric strength

    Science.gov (United States)

    Wu, Yi; Wang, Chunlin; Sun, Hao; Rong, Mingzhe; Murphy, Anthony Bruce; Li, Tianwei; Zhong, Jianying; Chen, Zhexin; Yang, Fei; Niu, Chunpin

    2017-09-01

    C5-PFK (C5-perfluoroketone, C5F10O) is under wide consideration as an environmentally-friendly alternative gas to SF6 in high-voltage applications, because of its superior insulation performance. The aim of this work is to study theoretically the arc extinguishing performance and electric strength of C5-PFK. The arc extinguishing performance of C5-PFK was evaluated by analyzing and comparing the thermophysical properties of C5-PFK, SF6, CF4, CO2 and N2 plasmas. It was difficult to obtain the species formed in C5-PFK plasmas because of the complex C5-PFK molecular decomposition process. In this work, the decomposition process of C5-PFK and the related species were analyzed by the bond energy analysis method. For the species for which parameters such as the partition function and the enthalpy of formation were not available, computational chemistry methods were used to obtain the required data. The collision integrals were calculated using the phenomenological potential model. Using these results, the local thermodynamic equilibrium composition at temperatures from 300 to 30 000 K at 1-10 atm of pure C5-PFK was calculated by the method of minimization of the Gibbs free energy, and the corresponding transport coefficients were calculated by Chapman-Enskog method. Through the comparison of the thermophysical properties, it was found that C5-PFK had similar characteristics to SF6, with large peaks in specific heat below 4500 K, indicating potentially good thermal interruption capability. However, the specific heat peak at 7000 K corresponding to CO decomposition may detract from the thermal interruption capability. Specific heat peaks at higher temperatures are associated with the breaking of double or triple bonds, and should be avoided if possible in the new alternative gases. The electric strength of C5-PFK was assessed using the molecular electrostatic potential, which can be accurately calculated or measured, and gives strong insights into important

  7. Effect of vacuum arc cathode spot distribution on breaking capacity of the arc-extinguishing chamber

    Science.gov (United States)

    Ding, Can; Yuan, Zhao; He, Junjia

    2017-10-01

    A DC circuit breaker performs a key function in breaking an intermediate-frequency (IF) current since breaking a pure IF current is equivalent to breaking a very small DC with a reverse IF current. In this study, it is found that cathode spots show a ring-shaped distribution at 2000 Hz. An arc with an uneven distribution of cathode spots has been simulated. The simulation results show that the distribution of cathode spots significantly affect the microparameter distribution of arc plasma. The current distribution on the anode side differs from that on the cathode side under the total radial electric field. Specifically, the anode current distribution is both uneven and concentrated. The applied axial magnetic field, which cannot reduce the concentrated anode current distribution effectively, might increase the concentration of the anode current. Finally, the uneven distribution of cathode spots reduces the breaking capacity of the arc-extinguishing chamber.

  8. The influence of the structure of the metal load removal from liquid steel in electric arc furnaces

    Science.gov (United States)

    Pǎcurar, Cristina; Hepuť, Teodor; Crisan, Eugen

    2016-06-01

    One of the main technical and economic indicators in the steel industry and steel respectively the development it is the removal of liquid steel. This indicator depends on several factors, namely technology: the structure and the quality metal load, the degree of preparedness of it, and the content of non-metallic material accompanying the unit of drawing up, the technology for the elaboration, etc. research has been taken into account in drawing up steel electric arc furnace type spring EBT (Electric Bottom taping), seeking to load and removing components of liquid steel. Metal load has been composed of eight metal grades, in some cases with great differences in terms of quality. Data obtained were processed in the EXCEL spreadsheet programs and MATLAB, the results obtained being presented both graphically and analytically. On the basis of the results obtained may opt for a load optimal structure metal.

  9. Calculation of gas release from DC and AC arc furnaces in a foundry

    Science.gov (United States)

    Krutyanskii, M. M.; Nekhamin, S. M.; Rebikov, E. M.

    2016-12-01

    A procedure for the calculation of gas release from arc furnaces is presented. The procedure is based on the stoichiometric ratios of the oxidation of carbon in liquid iron during the oxidation heat period and the oxidation of iron from a steel charge by oxygen in the period of solid charge melting during the gas exchange of the furnace cavity with the external atmosphere.

  10. A No-Arc DC Circuit Breaker Based on Zero-Current Interruption

    Science.gov (United States)

    Xiang, Xuewei; Chai, Jianyun; Sun, Xudong

    2017-05-01

    A dc system has no natural current zero-crossing point, so a dc arc is more difficult to extinguish than an ac arc. In order to effectively solve the problem of the dc arc, this paper proposes a dc circuit breaker (DCCB) capable of implementing a no-arc interruption. The proposed DCCB includes a main branch consisting of a mechanical switch, a diode and a current-limiting inductor, a semi-period resonance circuit consisting of a diode, an inductor and a capacitor, and a buffer branch consisting of a capacitor, a thyristor and a resistor. The mechanical switch is opened in a zero-current state, and the overvoltage caused by the counter electromotive force of the inductor does not exist. Meanwhile, the capacitor has a buffering effect on the voltage. The rising of the voltage of the mechanical switch is slower than the rising of the insulating strength of a contact gap of the mechanical switch, resulting in the contact gap not able to be broken down. Thus, the arc cannot be generated. The simulation results show that the proposed DCCB does not generate the arc in the interruption process, the rise rate of the short circuit current can be effectively limited, and the short circuit fault point can be rapidly isolated from the dc power supply.

  11. A Simple and General Approach to Determination of Self and Mutual Inductances for AC machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Ritchie, Ewen

    2011-01-01

    Modelling of AC electrical machines plays an important role in electrical engineering education related to electrical machine design and control. One of the fundamental requirements in AC machine modelling is to derive the self and mutual inductances, which could be position dependant. Theories...... developed so far for inductance determination are often associated with complicated machine magnetic field analysis, which exhibits a difficulty for most students. This paper describes a simple and general approach to the determination of self and mutual inductances of different types of AC machines. A new...... determination are given for a 3-phase, salient-pole synchronous machine, and an induction machine....

  12. Arc generation from sputtering plasma-dielectric inclusion interactions

    International Nuclear Information System (INIS)

    Wickersham, C.E. Jr.; Poole, J.E.; Fan, J.S.

    2002-01-01

    Arcing during sputter deposition and etching is a significant cause of particle defect generation during device fabrication. In this article we report on the effect of aluminum oxide inclusion size, shape, and orientation on the propensity for arcing during sputtering of aluminum targets. The size, shape, and orientation of a dielectric inclusion plays a major role in determining the propensity for arcing and macroparticle emission. In previous studies we found that there is a critical inclusion size required for arcing to occur. In this article we used high-speed videos, electric arc detection, and measurements of particle defect density on wafers to study the effect of Al 2 O 3 inclusion size, shape, and orientation on arc rate, intensity, and silicon wafer particle defect density. We found that the cross-sectional area of the inclusion exposed to the sputtering plasma is the critical parameter that determines the arc rate and rate of macroparticle emission. Analysis of the arc rate, particle defect density, and the intensity of the optical emission from the arcing plasma indicates that the critical aluminum oxide inclusion area for arcing is 0.22±0.1 mm2 when the sputtering plasma sheath dark-space λ d , is 0.51 mm. Inclusions with areas greater than this critical value readily induce arcing and macroparticle ejection during sputtering. Inclusions below this critical size do not cause arcing or macroparticle ejection. When the inclusion major axis is longer than 2λ d and lies perpendicular to the sputter erosion track tangent, the arcing activity increases significantly over the case where the inclusion major axis lies parallel to the erosion track tangent

  13. Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas

    Science.gov (United States)

    Zhang, Hao; Zhu, Fengsen; Tu, Xin; Bo, Zheng; Cen, Kefa; Li, Xiaodong

    2016-05-01

    In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals, high speed photography, and optical emission spectroscopic diagnostics. Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g., 10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone, in this RGA system, a lower gas flow rate (e.g., 2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions. Two different motion patterns can be clearly observed in the N2 and air RGA plasmas. The time-resolved arc voltage signals show that three different arc dynamic modes, the arc restrike mode, takeover mode, and combined modes, can be clearly identified in the RGA plasmas. The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate. supported by National Natural Science Foundation of China (No. 51576174), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120101110099) and the Fundamental Research Funds for the Central Universities (No. 2015FZA4011)

  14. Characteristics of a stable arc based on FAST and MIRACLE observations

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2000-02-01

    Full Text Available A stable evening sector arc is studied using observations from the FAST satellite at 1250 km altitude and the MIRACLE ground-based network, which contains all-sky cameras, coherent radars (STARE, and magnetometers. Both FAST and STARE observe a northward electric field region of about 200 km width and a field magnitude of about 50 mV/m southward of the arc, which is a typical signature for an evening-sector arc. The field-aligned current determined from FAST electron and magnetometer data are in rather good agreement within the arcs. Outside the arcs, the electron data misses the current carriers of the downward FAC probably because it is mainly carried by electrons of smaller energy than the instrument threshold. Studying the westward propagation speed of small undulations associated with the arc using the all-sky cameras gives a velocity of about 2 km/s. This speed is higher than the background ionospheric plasma speed (about 1 km/s, but it agrees rather well with the idea originally proposed by Davis that the undulations reflect an E × B motion in the acceleration region. The ground magnetograms indicate that the main current flows slightly south of the arc. Computing the ionospheric conductivity from FAST electron data and using the ground magnetograms to estimate the current yields an ionospheric electric field pattern, in rather good agreement with FAST results.Key words: Ionosphere (auroral ionosphere; ionosphere-magnetosphere interactions - Magnetospheric physics (auroral phenomena

  15. AC electric field induced vortex in laminar coflow diffusion flames

    KAUST Repository

    Xiong, Yuan

    2014-09-22

    Experiments were performed by applying sub-critical high-voltage alternating current (AC) to the nozzle of laminar propane coflow diffusion flames. Light scattering, laser-induced incandescence and laser-induced fluorescence techniques were used to identify the soot zone, and the structures of OH and polycyclic aromatic hydrocarbons (PAHs). Particle image velocimetry was adopted to quantify the velocity field. Under certain AC conditions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered, leading to the formation of toroidal vortices. Increased residence time and heat recirculation inside the vortex resulted in appreciable formation of PAHs and soot near the nozzle exit. Decreased residence time along the jet axis through flow acceleration by the vortex led to a reduction in the soot volume fraction in the downstream sooting zone. Electromagnetic force generated by AC was proposed as a viable mechanism for the formation of the toroidal vortex. The onset conditions for the vortex formation supported the role of an electromagnetic force acting on charged particles in the flame zone. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  16. AC electric field induced vortex in laminar coflow diffusion flames

    KAUST Repository

    Xiong, Yuan; Cha, Min; Chung, Suk-Ho

    2014-01-01

    Experiments were performed by applying sub-critical high-voltage alternating current (AC) to the nozzle of laminar propane coflow diffusion flames. Light scattering, laser-induced incandescence and laser-induced fluorescence techniques were used to identify the soot zone, and the structures of OH and polycyclic aromatic hydrocarbons (PAHs). Particle image velocimetry was adopted to quantify the velocity field. Under certain AC conditions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered, leading to the formation of toroidal vortices. Increased residence time and heat recirculation inside the vortex resulted in appreciable formation of PAHs and soot near the nozzle exit. Decreased residence time along the jet axis through flow acceleration by the vortex led to a reduction in the soot volume fraction in the downstream sooting zone. Electromagnetic force generated by AC was proposed as a viable mechanism for the formation of the toroidal vortex. The onset conditions for the vortex formation supported the role of an electromagnetic force acting on charged particles in the flame zone. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  17. Nontrivial ac spin response in the effective Luttinger model

    International Nuclear Information System (INIS)

    Hu Liangbin; Zhong Jiansong; Hu Kaige

    2006-01-01

    Based on the three-dimensional effective Luttinger Hamiltonian and the exact Heisenberg equations of motion and within a self-consistent semiclassical approximation, we present a theoretical investigation on the nontrivial ac spin responses due to the intrinsic spin-orbit coupling of holes in p-doped bulk semiconductors. We show that the nontrivial ac spin responses induced by the combined action of an ac external electric field and the intrinsic spin-orbit coupling of holes may lead to the generation of a nonvanishing ac spin Hall current in a p-doped bulk semiconductor, which shares some similarities with the dissipationless dc spin Hall current conceived previously and also exhibits some interesting new features that was not found before

  18. AC-loss considerations of a pulse SMES for an accelerator

    International Nuclear Information System (INIS)

    Lyly, M; Hiltunen, I; Jaervelae, J; Korpela, A; Lehti, L; Stenvall, A; Mikkonen, R

    2010-01-01

    In particle accelerators quasi-DC superconducting magnets are used to keep particles in desired tracks. The needed rapid field variations of these high energy magnets require large energy bursts. If these bursts are taken from and fed back to the utility grid, its voltage is distorted and the quality of the electricity degrades. In addition, these bursts may decrease operation life time of generators and extra arrangements may be required by the electricity producers. Thus, an energy storage is an essential component for a cost-effective particle accelerator. Flywheels, capacitors and superconducting magnetic energy storage (SMES) are possible options for these relatively large and high power energy storages. Here we concentrate on AC-loss of a pulse SMES aiming to demonstrate the feasibility of NbTi SMES in a particle accelerator. The designing of a SMES requires highly reliable AC-loss simulations. In this paper, calorimetric AC-loss measurements of a NbTi magnet have been carried out to consider conductor's suitability in a pulse SMES. In addition, the measured results are compared with AC-loss simulations.

  19. A complete electrical hazard classification system and its application

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Lloyd B [Los Alamos National Laboratory; Cartelli, Laura [Los Alamos National Laboratory

    2009-01-01

    The Standard for Electrical Safety in the Workplace, NFPA 70E, and relevant OSHA electrical safety standards evolved to address the hazards of 60-Hz power that are faced primarily by electricians, linemen, and others performing facility and utility work. This leaves a substantial gap in the management of electrical hazards in Research and Development (R&D) and specialized high voltage and high power equipment. Examples include lasers, accelerators, capacitor banks, electroplating systems, induction and dielectric heating systems, etc. Although all such systems are fed by 50/60 Hz alternating current (ac) power, we find substantial use of direct current (dc) electrical energy, and the use of capacitors, inductors, batteries, and radiofrequency (RF) power. The electrical hazards of these forms of electricity and their systems are different than for 50160 Hz power. Over the past 10 years there has been an effort to develop a method of classifying all of the electrical hazards found in all types of R&D and utilization equipment. Examples of the variation of these hazards from NFPA 70E include (a) high voltage can be harmless, if the available current is sufficiently low, (b) low voltage can be harmful if the available current/power is high, (c) high voltage capacitor hazards are unique and include severe reflex action, affects on the heart, and tissue damage, and (d) arc flash hazard analysis for dc and capacitor systems are not provided in existing standards. This work has led to a comprehensive electrical hazard classification system that is based on various research conducted over the past 100 years, on analysis of such systems in R&D, and on decades of experience. Initially, national electrical safety codes required the qualified worker only to know the source voltage to determine the shock hazard. Later, as arc flash hazards were understood, the fault current and clearing time were needed. These items are still insufficient to fully characterize all types of

  20. Deliberation of arc plasma characteristics according to experimental results in a typical gas circuit-breaker

    International Nuclear Information System (INIS)

    Borghei, M.

    2005-01-01

    One of the industrial plasma applications is in the gas circuit breakers (GCB) and switching processes. During GCB operation and opening of its two contacts, current flows through of the inter-electrode medium (generally SF 6 or its mixture) and electric arc forms from the plasma that has been created between the contacts. The electric arc is a self-sustained discharge having low voltage drop and able to support great amplitudes of current. The technical basis of circuit breaker is: initiating arc plasma, flowing a large current, cooling it effectively to avoid re-ignition, and finally the transition from a well-conducting medium into insulating gas space in a very short time interval. In other words, for a successful interruption we need to know about power brought to the arc and that of removed. In this paper an attempt has been made to study, characterize and understand some arc behaviors such as arc conductance and its changes according to recorded current and voltage traces experimentally. From physical point of view, there are different phenomena that affect on arc behavior. According to methodology used here, we tried to understand some of arc behavior from experimental results and finally we extract some arc parameters. (author)

  1. Preparation of concrete mixtures with electric arc furnace slag and recycled ground glass

    Science.gov (United States)

    Pérez Rojas, Y.; López, E. Vera; López Rodríguez, M.; Díaz Pita, J.

    2017-12-01

    The present work includes the first advances in the development of investigations that seek to include Ground Grinding Glass (GRR) and the Electric Arc Furnace Slag (EAFS) in the production of mixtures of hydraulic concrete mixing them simultaneously, so that it satisfies the specifications techniques to be used in the construction of rigid pavements. Firstly, we cite the tests carried out on the different materials to obtain their physical, chemical and mechanical characterization and determine their compliance, as well as the measurement of certain characteristics that may be somewhat empirical to standardize their control. Technique such as X-Ray Diffraction (XRD), X-ray Fluorescence Spectrometry (XFR) and Scanning Electron Microscopy (SEM) have been used. Once the results of the characterization tests and their correspondence with the Colombian technical standards have been obtained, it has become possible to select the use of the Transparent Recycled Ground Glass (TRGG) as the most suitable for the replacement of the sand in the dosage of new mixtures modified concrete.

  2. DOE Fundamentals Handbook: Electrical Science, Volume 1

    International Nuclear Information System (INIS)

    1992-06-01

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of electrical theory, terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors, and generators; AC power and reactive components; batteries; AC and DC voltage regulators; transformers; and electrical test instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment

  3. DOE Fundamentals Handbook: Electrical Science, Volume 3

    International Nuclear Information System (INIS)

    1992-06-01

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of electrical theory, terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors and generators; AC power and reactive components; batteries; AC and DC voltage regulators; transformers; and electrical test instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment

  4. DOE Fundamentals Handbook: Electrical Science, Volume 4

    International Nuclear Information System (INIS)

    1992-06-01

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of electrical theory, terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors, and generators; AC power and reactive transformers; and electrical test components; batteries; AC and DC voltage regulators; instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment

  5. Structural ceramics containing electric arc furnace dust.

    Science.gov (United States)

    Stathopoulos, V N; Papandreou, A; Kanellopoulou, D; Stournaras, C J

    2013-11-15

    In the present work the stabilization of electric arc furnace dust EAFD waste in structural clay ceramics was investigated. EAFD was collected over eleven production days. The collected waste was characterized for its chemical composition by Flame Atomic Absorption Spectroscopy. By powder XRD the crystal structure was studied while the fineness of the material was determined by a laser particle size analyzer. The environmental characterization was carried out by testing the dust according to EN12457 standard. Zn, Pb and Cd were leaching from the sample in significant amounts. The objective of this study is to investigate the stabilization properties of EAFD/clay ceramic structures and the potential of EAFD utilization into structural ceramics production (blocks). Mixtures of clay with 2.5% and 5% EAFD content were studied by TG/DTA, XRD, SEM, EN12457 standard leaching and mechanical properties as a function of firing temperature at 850, 900 and 950 °C. All laboratory facilities maintained 20 ± 1 °C. Consequently, a pilot-scale experiment was conducted with an addition of 2.5% and 5% EAFD to the extrusion mixture for the production of blocks. During blocks manufacturing, the firing step reached 950 °C in a tunnel kiln. Laboratory heating/cooling gradients were similar to pilot scale production firing. The as produced blocks were then subjected to quality control tests, i.e. dimensions according to EN772-17, water absorbance according to EN772-6, and compressive strength according to EN772-1 standard, in laboratory facilities certified under EN17025. The data obtained showed that the incorporation of EAFD resulted in an increase of mechanical strength. Moreover, leaching tests performed according to the Europeans standards on the EAFD-block samples showed that the quantities of heavy metals leached from crushed blocks were within the regulatory limits. Thus the EAFD-blocks can be regarded as material of no environmental concern. Copyright © 2013 Elsevier B

  6. Recycling of rubber tires in electric arc furnace steelmaking: simultaneous combustion of metallurgical coke and rubber tyres blends

    Energy Technology Data Exchange (ETDEWEB)

    Magdalena Zaharia; Veena Sahajwalla; Byong-Chul Kim; Rita Khanna; N. Saha-Chaudhury; Paul O' Kane; Jonathan Dicker; Catherine Skidmore; David Knights [University of New South Wales, Sydney, NSW (Australia). School of Materials Science and Engineering

    2009-05-15

    The present study investigates the effect of addition of waste rubber tires on the combustion behavior of its blends with coke for carbon injection in electric arc furnace steelmaking. Waste rubber tires were mixed in different proportions with metallurgical coke (MC) (10:90, 20:80, 30:70) for combustion and pyrolysis at 1473 K in a drop tube furnace (DTF) and thermogravimetric analyzer (TGA), respectively. Under experimental conditions most of the rubber blends indicated higher combustion efficiencies compared to those of the constituent coke. In the early stage of combustion the weight loss rate of the blends is much faster compared to that of the raw coke due to the higher volatile yield of rubber. The presence of rubber in the blends may have had an impact upon the structure during the release and combustion of their high volatile matter (VM) and hence increased char burnout. Measurements of micropore surface area and bulk density of the chars collected after combustion support the higher combustion efficiency of the blends in comparison to coke alone. The surface morphology of the 30% rubber blend revealed pores in the residual char that might be attributed to volatile evolution during high temperature reaction in oxygen atmosphere. Physical properties and VM appear to have a major effect upon the measured combustion efficiency of rubber blends. The study demonstrates that waste rubber tires can be successfully co-injected with metallurgical coke in electric arc furnace steelmaking process to provide additional energy from combustion. 44 refs., 11 figs., 2 tabs.

  7. Remote disassembly of radioactively contaminated vessels by means of an arc saw

    International Nuclear Information System (INIS)

    Beitel, G.A.

    1977-01-01

    The arc saw, a newly developed tool, is a toothless circular saw which cuts by means of an electric arc. Cutting speeds between 20 to 30 cm 2 /S and depths up to 45 cm are possible. There is no mechanical contact between blade and work piece, no binding, and no blade breakage. The arc saw will be applied to the rapid and remote disassembly of multiple ton, contaminated stainless steel vessels

  8. Application of a radiant heat transfer model to complex industrial reactive flows: combustion chambers, electric arcs; Application d`un modele de transfert radiatif a des ecoulements reactifs industriels complexes: chambres de combustion, arcs electriques

    Energy Technology Data Exchange (ETDEWEB)

    Mechitoua, N; Dalsecco, S; Delalondre, C; Simonin, O [Electricite de France (EDF), 78 - Chatou (France). Lab. National d` Hydraulique

    1997-12-31

    The direction of studies and researches (DER) of Electricite de France (EdF) has been involved for several years in a research program on turbulent reactive flows. The objectives of this program concern: the reduction of pollutant emissions from existing fossil-fueled power plants, the study of new production means (fluidized beds), and the promotion of electric power applications in the industry. An important part of this program is devoted to the development and validation of 3-D softwares and to the modeling of physical phenomena. This paper presents some industrial applications (furnaces, boilers, electric arcs) for which radiant heat transfers play an important role and the radiation models used. (J.S.) 8 refs.

  9. Application of a radiant heat transfer model to complex industrial reactive flows: combustion chambers, electric arcs; Application d`un modele de transfert radiatif a des ecoulements reactifs industriels complexes: chambres de combustion, arcs electriques

    Energy Technology Data Exchange (ETDEWEB)

    Mechitoua, N.; Dalsecco, S.; Delalondre, C.; Simonin, O. [Electricite de France (EDF), 78 - Chatou (France). Lab. National d`Hydraulique

    1996-12-31

    The direction of studies and researches (DER) of Electricite de France (EdF) has been involved for several years in a research program on turbulent reactive flows. The objectives of this program concern: the reduction of pollutant emissions from existing fossil-fueled power plants, the study of new production means (fluidized beds), and the promotion of electric power applications in the industry. An important part of this program is devoted to the development and validation of 3-D softwares and to the modeling of physical phenomena. This paper presents some industrial applications (furnaces, boilers, electric arcs) for which radiant heat transfers play an important role and the radiation models used. (J.S.) 8 refs.

  10. On the choice of electromagnetic model for short high-intensity arcs, applied to welding

    International Nuclear Information System (INIS)

    Choquet, Isabelle; Shirvan, Alireza Javidi; Nilsson, Håkan

    2012-01-01

    We have considered four different approaches for modelling the electromagnetic fields of high-intensity electric arcs: (i) three-dimensional, (ii) two-dimensional axi-symmetric, (iii) the electric potential formulation and (iv) the magnetic field formulation. The underlying assumptions and the differences between these models are described in detail. Models (i) to (iii) reduce to the same limit for an axi-symmetric configuration with negligible radial current density, contrary to model (iv). Models (i) to (iii) were retained and implemented in the open source CFD software OpenFOAM. The simulation results were first validated against the analytic solution of an infinite electric rod. Perfect agreement was obtained for all the models tested. The electromagnetic models (i) to (iii) were then coupled with thermal fluid mechanics, and applied to axi-symmetric gas tungsten arc welding test cases with short arc (2, 3 and 5 mm) and truncated conical electrode tip. Models (i) and (ii) lead to the same simulation results, but not model (iii). Model (iii) is suited in the specific limit of long axi-symmetric arc with negligible electrode tip effect, i.e. negligible radial current density. For short axi-symmetric arc with significant electrode tip effect, the more general axi-symmetric formulation of model (ii) should instead be used. (paper)

  11. Spatial structure of the arc in a pulsed GMAW process

    International Nuclear Information System (INIS)

    Kozakov, R; Gött, G; Schöpp, H; Uhrlandt, D; Schnick, M; Häßler, M; Füssel, U; Rose, S

    2013-01-01

    A pulsed gas metal arc welding (GMAW) process of steel under argon shielding gas in the globular mode is investigated by measurements and simulation. The analysis is focussed on the spatial structure of the arc during the current pulse. Therefore, the radial profiles of the temperature, the metal vapour species and the electric conductivity are determined at different heights above the workpiece by optical emission spectroscopy (OES). It is shown that under the presence of metal vapour the temperature minimum occurs at the centre of the arc. This minimum is preserved at different axial positions up to 1 mm above the workpiece. In addition, estimations of the electric field in the arc from the measurements are given. All these results are compared with magneto-hydrodynamic simulations which include the evaporation of the wire material and the change of the plasma properties due to the metal vapour admixture in particular. The experimental method and the simulation model are validated by means of the satisfactory correspondence between the results. Possible reasons for the remaining deviations and improvements of the methods which should be aspired are discussed. (paper)

  12. AC-Conductivity measurements on γ-aluminium oxynitride

    NARCIS (Netherlands)

    Willems, H.X.; Hal, van P.F.; Metselaar, R.; With, de G.

    1995-01-01

    AC-conductivity measurements were performed on aluminium oxynitrides (Alons) because of their interesting defect structure. Although it became apparent that these Alons are not stable in the temperature range used, the electrical properties of the materials could be measured with impedance

  13. Pyrolysis of poly(vinyl chloride) and-electric arc furnacedust mixtures.

    Science.gov (United States)

    Al-Harahsheh, Mohammad; Al-Otoom, Awni; Al-Makhadmah, Leema; Hamilton, Ian E; Kingman, Sam; Al-Asheh, Sameer; Hararah, Muhanned

    2015-12-15

    An investigation into the pyrolysis kinetics of PVC mixed with electric arc furnace dust (EAFD) was performed. Mixtures of both materials with varying PVC ratios (1:1, 1:2, 1:3) were prepared and pyrolyzed in a nitrogen atmosphere under dynamic heating conditions at different heating rates (5, 10, 30 and 50 °C/min). The pyrolysis process proceeded through two main decomposition steps; the first step involved the release of HCl which reacted with the metal oxides present in the dust, subsequently forming metal chlorides and water vapor. Benzene was also found to release as detected by TGA-MS. The remaining hydrocarbons in the polymer backbone decomposed further in the second step releasing further volatile hydrocarbons. Different models were used to fit the kinetic data namely the integral, the Van Krevelen, and Coats and Red fern methods. The presence of EAFD during PVC decomposition resulted in a considerable decrease in the activation energy of the reaction occurring during the first decomposition region. Furthermore, iron oxides were retained in the pyrolysis residue, whilst other valuable metals, including Zn and Pb, were converted to chlorides that are recoverable by leaching in water. It is believed that EAFD can be utilized as an active catalyst to produce energy gases such as propyneas evident from the TGA-MS. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Non-Intrusive Magneto-Optic Detecting System for Investigations of Air Switching Arcs

    International Nuclear Information System (INIS)

    Zhang Pengfei; Zhang Guogang; Dong Jinlong; Liu Wanying; Geng Yingsan

    2014-01-01

    In current investigations of electric arc plasmas, experiments based on modern testing technology play an important role. To enrich the testing methods and contribute to the understanding and grasping of the inherent mechanism of air switching arcs, in this paper, a non-intrusive detecting system is described that combines the magneto-optic imaging (MOI) technique with the solution to inverse electromagnetic problems. The detecting system works in a sequence of main steps as follows: MOI of the variation of the arc flux density over a plane, magnetic field information extracted from the magneto-optic (MO) images, arc current density distribution and spatial pattern reconstruction by inverting the resulting field data. Correspondingly, in the system, an MOI set-up is designed based on the Faraday effect and the polarization properties of light, and an intelligent inversion algorithm is proposed that involves simulated annealing (SA). Experiments were carried out for high current (2 kA RMS) discharge cases in a typical low-voltage switchgear. The results show that the MO detection system possesses the advantages of visualization, high resolution and response, and electrical insulation, which provides a novel diagnostics tool for further studies of the arc. (low temperature plasma)

  15. Increase in the efficiency of electric melting of pellets in an arc furnace with allowance for the energy effect of afterburning of carbon oxide in slag using fuel-oxygen burners

    Science.gov (United States)

    Stepanov, V. A.; Krakht, L. N.; Merker, E. E.; Sazonov, A. V.; Chermenev, E. A.

    2015-12-01

    The problems of increasing the efficiency of electric steelmaking using fuel-oxygen burners to supply oxygen for the afterburning of effluent gases in an arc furnace are considered. The application of a new energy-saving regime based on a proposed technology of electric melting is shown to intensify the processes of slag formation, heating, and metal decarburization.

  16. Arc melter demonstration baseline test results

    International Nuclear Information System (INIS)

    Soelberg, N.R.; Chambers, A.G.; Anderson, G.L.; Oden, L.L.; O'Connor, W.K.; Turner, P.C.

    1994-07-01

    This report describes the test results and evaluation for the Phase 1 (baseline) arc melter vitrification test series conducted for the Buried Waste Integrated Demonstration program (BWID). Phase 1 tests were conducted on surrogate mixtures of as-incinerated wastes and soil. Some buried wastes, soils, and stored wastes at the INEL and other DOE sites, are contaminated with transuranic (TRU) radionuclides and hazardous organics and metals. The high temperature environment in an electric arc furnace may be used to process these wastes to produce materials suitable for final disposal. An electric arc furnace system can treat heterogeneous wastes and contaminated soils by (a) dissolving and retaining TRU elements and selected toxic metals as oxides in the slag phase, (b) destroying organic materials by dissociation, pyrolyzation, and combustion, and (c) capturing separated volatilized metals in the offgas system for further treatment. Structural metals in the waste may be melted and tapped separately for recycle or disposal, or these metals may be oxidized and dissolved into the slag. The molten slag, after cooling, will provide a glass/ceramic final waste form that is homogeneous, highly nonleachable, and extremely durable. These features make this waste form suitable for immobilization of TRU radionuclides and toxic metals for geologic timeframes. Further, the volume of contaminated wastes and soils will be substantially reduced in the process

  17. E-region echo characteristics governed by auroral arc electrodynamics

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    2003-07-01

    Full Text Available Observations of a pair of auroral arc features by two imagers, one ground- and one space-based, allows the associated field-aligned current (FAC and electric field structure to be inferred. Simultaneous observations of HF radar echoes provide an insight into the irregularity-generating mechanisms. This is especially interesting for the E-region echoes observed, which form the focus of our analysis, and from which several conclusions can be drawn, summarized as follows. Latitudinal variations in echo characteristics are governed by the FAC and electric field background. Particularly sharp boundaries are found at the edges of auroral arcs. Within regions of auroral luminosity, echoes have Doppler shifts below the ion-acoustic speed and are proportional to the electric field, suggesting scatter from gradient drift waves. Regions of downward FAC are associated with mixed high and low Doppler shift echoes. The high Doppler shift component is greatly in excess of the ion-acoustic speed, but seems to be commensurate with the driving electric field. The low Doppler shift component appears to be much depressed below expectations.Key words. Ionosphere (ionospheric irregularities; electric fields and currents

  18. E-region echo characteristics governed by auroral arc electrodynamics

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    Full Text Available Observations of a pair of auroral arc features by two imagers, one ground- and one space-based, allows the associated field-aligned current (FAC and electric field structure to be inferred. Simultaneous observations of HF radar echoes provide an insight into the irregularity-generating mechanisms. This is especially interesting for the E-region echoes observed, which form the focus of our analysis, and from which several conclusions can be drawn, summarized as follows. Latitudinal variations in echo characteristics are governed by the FAC and electric field background. Particularly sharp boundaries are found at the edges of auroral arcs. Within regions of auroral luminosity, echoes have Doppler shifts below the ion-acoustic speed and are proportional to the electric field, suggesting scatter from gradient drift waves. Regions of downward FAC are associated with mixed high and low Doppler shift echoes. The high Doppler shift component is greatly in excess of the ion-acoustic speed, but seems to be commensurate with the driving electric field. The low Doppler shift component appears to be much depressed below expectations.

    Key words. Ionosphere (ionospheric irregularities; electric fields and currents

  19. Arc plasma devices: Evolving mechanical design from numerical

    Indian Academy of Sciences (India)

    A recipe for obtaining mechanical design of arc plasma devices from numerical ... to the plasma of the mixture of molecular gases like nitrogen and oxygen. ... Temperature field, associated fluid dynamics and electrical characteristics of a ...

  20. Biocompatible Silver-containing a-C:H and a-C coatings: AComparative Study

    Energy Technology Data Exchange (ETDEWEB)

    Endrino, Jose Luis; Allen, Matthew; Escobar Galindo, Ramon; Zhang, Hanshen; Anders, Andre; Albella, Jose Maria

    2007-04-01

    Hydrogenated diamond-like-carbon (a-C:H) and hydrogen-free amorphous carbon (a-C) coatings are known to be biocompatible and have good chemical inertness. For this reason, both of these materials are strong candidates to be used as a matrix that embeds metallic elements with antimicrobial effect. In this comparative study, we have incorporated silver into diamond-like carbon (DLC) coatings by plasma based ion implantation and deposition (PBII&D) using methane (CH4) plasma and simultaneously depositing Ag from a pulsed cathodic arc source. In addition, we have grown amorphous carbon - silver composite coatings using a dual-cathode pulsed filtered cathodic-arc (FCA) source. The silver atomic content of the deposited samples was analyzed using glow discharge optical spectroscopy (GDOES). In both cases, the arc pulse frequency of the silver cathode was adjusted in order to obtain samples with approximately 5 at.% of Ag. Surface hardness of the deposited films was analyzed using the nanoindentation technique. Cell viability for both a-C:H/Ag and a-C:/Ag samples deposited on 24-well tissue culture plates has been evaluated.

  1. Dynamics of particle chain formation in a liquid polymer under ac electric field: modeling and experiments

    International Nuclear Information System (INIS)

    Belijar, G; Valdez-Nava, Z; Diaham, S; Laudebat, L; Lebey, T; Jones, T B

    2017-01-01

    Polymer/ceramic composite materials are of great interest for their many potential applications because of their ability to combine at least two properties of the constitutive elements: particles and matrix. In most cases, such enhanced properties are required only in one direction. Orthotropic materials can be elaborated by applying an ac electric field to form particle chain structures in the direction of the electric field due to the dielectrophoretic interactions affecting the particles. However, there is still a lack in the understanding of the impact of the structures on the properties of the material. The aim of this study is to propose a predictive model for the evolution of the permittivity during the chain formation, by including micro- and macroscopic phenomena. The chaining model is based on dipole–dipole interactions and the dielectric permittivity is computed through a finite element method. In parallel, an experimental study is performed with online permittivity measurements of composites during chaining. The developed model is able to predict the experimental results from 1 vol% while taking into account parameters such as the resin viscosity and permittivity and the transient evolution of the applied electric field. The formation of particle chains inside a material has applications in many domains such as electrorheological fluids, anisotropic composites, self-recovery materials etc. Such a developed model is a valuable tool for the tailoring of materials. (paper)

  2. Electric arc spraying for restoration and repair of metallurgical equipment parts

    Directory of Open Access Journals (Sweden)

    В’ячеслав Олександрович Роянов

    2016-07-01

    Full Text Available It has been shown that the electric arc spraying with the use of powder wires can be used to repair and restore parts of metallurgical equipment. The technology of spraying parts by means of the cored wire Steelcored M8TUV; T462MMIN5 and combinations of steel and aluminum wires to restore shaft-gears, shaft-beams, cranes axles for the foundry of the Moldavian Metallurgical Plant has been introduced. The composition of the flux-cored wires MMP-2,3 developed at the Department of Equipment and welding production technology of PSTU that provides the required hardness and adhesion of the coating and the substrate have been shown and the results of the coatings properties studies have been published. Studies have shown matching properties of the coatings to be used for details of the metallurgical equipment working under difficult conditions, including the rolls of rolling mills. Cored wire was used for pilot plating of the rolls surface of the skin-rolling stand at the cold-rolling mill at Illich Steel and Iron Works, Mariupol. Residual coating thickness ranged from 15 to 25 microns. Strip sized 0,9 × 1025 mm has been rolled, the squeezing is equal to 0,8...1,0%.

  3. Effects of Environmental Factors and Metallic Electrodes on AC Electrical Conduction Through DNA Molecule.

    Science.gov (United States)

    Abdalla, S; Obaid, A; Al-Marzouki, F M

    2017-12-01

    Deoxyribonucleic acid (DNA) is one of the best candidate materials for various device applications such as in electrodes for rechargeable batteries, biosensors, molecular electronics, medical- and biomedical-applications etc. Hence, it is worthwhile to examine the mechanism of charge transport in the DNA molecule, however, still a question without a clear answer is DNA a molecular conducting material (wire), semiconductor, or insulator? The answer, after the published data, is still ambiguous without any confirmed and clear scientific answer. DNA is found to be always surrounded with different electric charges, ions, and dipoles. These surrounding charges and electric barrier(s) due to metallic electrodes (as environmental factors (EFs)) play a substantial role when measuring the electrical conductivity through λ-double helix (DNA) molecule suspended between metallic electrodes. We found that strong frequency dependence of AC-complex conductivity comes from the electrical conduction of EFs. This leads to superimposing serious incorrect experimental data to measured ones. At 1 MHz, we carried out a first control experiment on electrical conductivity with and without the presence of DNA molecule. If there are possible electrical conduction due to stray ions and contribution of substrate, we will detected them. This control experiment revealed that there is an important role played by the environmental-charges around DNA molecule and any experiment should consider this role. We have succeeded to measure both electrical conductivity due to EFs (σ ENV ) and electrical conductivity due to DNA molecule (σ DNA ) independently by carrying the measurements at different DNA-lengths and subtracting the data. We carried out measurements as a function of frequency (f) and temperature (T) in the ranges 0.1 Hz molecule from all EFs effects that surround the molecule, but also to present accurate values of σ DNA and the dielectric constant of the molecule ε' DNA as a

  4. In-depth investigation of high-energy arcing faults (HEAF) of electrical components with possible induced fires; Vertiefte Untersuchungen zum hochenergetischen Versagen elektrischer Komponenten (HEAF) mit moeglicher Brandfolge

    Energy Technology Data Exchange (ETDEWEB)

    Roewekamp, Marina

    2015-11-15

    Main objective of the project 3611R01301 performed on behalf of the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB) is an in-depth investigation of fires at electrical components induced by high energy arcing faults (HEAF) according to their non-negligible significance to nuclear safety. This report provides an overview on the insights with respect to high energy arcing faults at electrical components mainly gained from investigations of the national as well as international operating experience from nuclear installations. Moreover, the insights from the international operating experience have resulted in an experimental program carried out in the frame of a task by the OECD Nuclear Energy Agency (NEA) in order to investigate failures of electrical components, e. g. breakers, switchgears or transformers, installed in nuclear power plants of the member countries due to HEAF and potential consequential fires. The results of the in-depth analyses and experimental investigations shall be used for identifying potential areas of damage in a suitable manner. The results based on inter-national research shall also be checked with respect to their applicability to the situation in German nuclear power plants.

  5. Electromagnetic radiation generated by arcing in low density plasma

    Science.gov (United States)

    Vayner, Boris V.; Ferguson, Dale C.; Snyder, David B.; Doreswamy, C. V.

    1996-01-01

    An unavoidable step in the process of space exploration is to use high-power, very large spacecraft launched into Earth orbit. Obviously, the spacecraft will need powerful energy sources. Previous experience has shown that electrical discharges occur on the surfaces of a high-voltage array, and these discharges (arcs) are undesirable in many respects. Moreover, any high voltage conductor will interact with the surrounding plasma, and that interaction may result in electrical discharges between the conductor and plasma (or between two conductors with different potentials, for example, during docking and extravehicular activity). One very important aspect is the generation of electromagnetic radiation by arcing. To prevent the negative influence of electromagnetic noise on the operation of spacecraft systems, it seems necessary to determine the spectra and absolute levels of the radiation, and to determine limitations on the solar array bias voltage that depend on the parameters of LEO plasma and the technical requirements of the spacecraft equipment. This report describes the results of an experimental study and computer simulation of the electromagnetic radiation generated by arcing on spacecraft surfaces. A large set of high quality data was obtained during the Solar Array Module Plasma Interaction Experiment (SAMPIE, flight STS-62) and ground test. These data include the amplitudes of current, pulse forms, duration of each arc, and spectra of plasma waves. A theoretical explanation of the observed features is presented in this report too. The elaborated model allows us to determine the parameters of the electromagnetic noise for different frequency ranges, distances from the arcing site, and distinct kinds of plasma waves.

  6. Modelling of plasma generation and expansion in a vacuum arc: application to the vacuum arc remelting process

    International Nuclear Information System (INIS)

    Chapelle, P.; Bellot, J.P.; Duval, H.; Jardy, A.; Ablitzer, D.

    2002-01-01

    As part of a complete theoretical description of the behaviour of the electric arc in the vacuum arc remelting process, a model has been developed for the column of plasma generated by a single cluster of cathode spots. The model combines a kinetic approach, taking into account the formation of the plasma in the cathodic region, and a hydrodynamic approach, describing the expansion of the plasma in the vacuum between the electrodes. The kinetic model is based on a system of Boltzmann-Vlasov-Poisson equations and uses a particle-type simulation procedure, combining the PIC (particle in cell) and FPM (finite point set method) methods. In the two-dimensional hydrodynamic model, the plasma is assimilated to a mixture of two continuous fluids (the electrons and the ions), each described by a system of coupled transport equations. Finally, a simplified method has been defined for calculating the electric current density and the energy flux density transmitted by the plasma to the anode. The results of the numerical simulation presented are consistent with a certain number of experimental data available in the literature. In particular, the model predicts a percentage of the electric power of the cluster transmitted to the anode (25%) in good agreement with the value indicated in the literature. (author)

  7. Baseline tests for arc melter vitrification of INEL buried wastes. Volume 1: Facility description and summary data report

    International Nuclear Information System (INIS)

    Oden, L.L.; O'Connor, W.K.; Turner, P.C.; Soelberg, N.R.; Anderson, G.L.

    1993-01-01

    This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc melting furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests

  8. Electrical conductivity of highly ionized dense hydrogen plasma. 1. Electrical measurements and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, R; Guenther, K [Akademie der Wissenschaften der DDR, Berlin. Zentralinstitut fuer Elektronenphysik

    1976-05-11

    A diagnostic technique for the determination of pressure, temperature and its radial distribution, the strength of the electric field and the current of a wall-stabilized pulse hydrogen arc at a pressure of 10 atm and a maximum power of 120 kW/cm arc length is developed.

  9. Analytic analysis on asymmetrical micro arcing in high plasma potential RF plasma systems

    International Nuclear Information System (INIS)

    Yin, Y; McKenzie, D R; Bilek, M M M

    2006-01-01

    We report experimental and analytical results on asymmetrical micro arcing in a RF (radio frequency) plasma. Micro arcing, resulting from high plasma potential, in RF plasma was found to occur only on the grounded electrode for a variety of electrode and surface configurations. The analytic derivation was based on a simple RF time-dependent Child-Langmuir sheath model and electric current continuity. We found that the minimum potential difference in one RF period across the grounded electrode sheath depends on the area ratio of the grounded electrode to the powered electrode. As the area ratio increases, the minimum potential difference across a sheath increases for the grounded electrode but not for the RF powered electrode. We showed that discharge time in micro arcing is more than 100 RF periods; thus the presence of a continuous high electric field in one RF cycle results in micro arcing on the grounded electrode. However, the minimum potential difference in one RF period across the powered electrode sheath is always small so that it prevents micro arcing occurring even though the average sheath voltage can be large. This simple analytic model is consistent with particle-in-cell simulation results

  10. Note: Triggering behavior of a vacuum arc plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Lan, C. H., E-mail: lanchaohui@163.com; Long, J. D.; Zheng, L.; Dong, P.; Yang, Z.; Li, J.; Wang, T.; He, J. L. [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-08-15

    Axial symmetry of discharge is very important for application of vacuum arc plasma. It is discovered that the triggering method is a significant factor that would influence the symmetry of arc discharge at the final stable stage. Using high-speed multiframe photography, the transition processes from cathode-trigger discharge to cathode-anode discharge were observed. It is shown that the performances of the two triggering methods investigated are quite different. Arc discharge triggered by independent electric source can be stabilized at the center of anode grid, but it is difficult to achieve such good symmetry through resistance triggering. It is also found that the triggering process is highly correlated to the behavior of emitted electrons.

  11. Radiation of transient high-current arcs: energy measurements in the optical range

    International Nuclear Information System (INIS)

    Bauchire, J M; Hong, D; Rabat, H; Riquel, G

    2012-01-01

    When no protection is used, the radiation emitted by a high-power electric arc can be dangerous for the eyes and the skin of a person. To ensure effective protection, it is first necessary to know the energy emitted by such arcs. The aim of our work was to experimentally determine the energy emitted by high-current (from 4 to 40 kA) transient arcs, for two different (10 cm and 2 m) lengths and for electrodes in copper or steel. These experiments enabled the radiative energy of the arcs to be quantified and also showed the influence of metal vapors in the spectral distribution of the radiation.

  12. DOE Fundamentals Handbook: Electrical Science, Volume 2

    International Nuclear Information System (INIS)

    1992-06-01

    The Electrical Science Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding terminology, and application. The handbook includes information on alternating current (AC) and direct current (DC) theory, circuits, motors, and generators; AC power and reactive components; batteries; AC and DC voltage regulators; transformers; and electrical test instruments and measuring devices. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility electrical equipment

  13. Superconducting three element synchronous ac machine

    International Nuclear Information System (INIS)

    Boyer, L.; Chabrerie, J.P.; Mailfert, A.; Renard, M.

    1975-01-01

    There is a growing interest in ac superconducting machines. Of several new concepts proposed for these machines in the last years one of the most promising seems to be the ''three elements'' concept which allows the cancellation of the torque acting on the superconducting field winding, thus overcoming some of the major contraints. This concept leads to a device of induction-type generator. A synchronous, three element superconducting ac machine is described, in which a room temperature, dc fed rotating winding is inserted between the superconducting field winding and the ac armature. The steady-state machine theory is developed, the flux linkages are established, and the torque expressions are derived. The condition for zero torque on the field winding, as well as the resulting electrical equations of the machine, are given. The theoretical behavior of the machine is studied, using phasor diagrams and assuming for the superconducting field winding either a constant current or a constant flux condition

  14. Electric arc apparatus for severing split-pin assemblies of guide tubes of nuclear reactors

    International Nuclear Information System (INIS)

    Burns, D.C.; Kauric, C.E.; Persang, J.C.

    1987-01-01

    This patent describes an apparatus for use in the replacement of an old split-pin assembly of a guide tube of a nuclear reactor by a new split-pin assembly, the old split-pin assembly including an old split pin and an old nut securing the old split pin to the guide tube, the old split-pin assembly and the guide tube being radioactive. The apparatus includes a metal disintegration machining tool, the tool having an electrode, means for mounting the tool submerged in a pool of water in engagement with the guide tube and with the old split-pin assembly secured to the guide tube, the tool being so mounted with the electrode in position to coact electrically with the last-named old split-pin assembly but not with the guide tube, and means, connected to the tool, for firing a disintegrating arc between the electrode and the assembly to disintegrate the assembly into readily removable fragments

  15. Heavy metal recovery from electric arc furnace steel slag by using hydrochloric acid leaching

    Science.gov (United States)

    Wei, Lim Jin; Haan, Ong Teng; Shean Yaw, Thomas Choong; Chuah Abdullah, Luqman; Razak, Mus'ab Abdul; Cionita, Tezara; Toudehdehghan, Abdolreza

    2018-03-01

    Electric Arc Furnace steel slag (EAFS) is the waste produced in steelmaking industry. Environmental problem such as pollution will occur when dumping the steel slag waste into the landfill. These steel slags have properties that are suitable for various applications such as water treatment and wastewater. The objective of this study is to develop efficient and economical chlorination route for EAFS extraction by using leaching process. Various parameters such as concentration of hydrochloric acid, particle size of steel slag, reaction time and reaction temperature are investigated to determine the optimum conditions. As a result, the dissolution rate can be determined by changing the parameters, such as concentration of hydrochloric acid, particle size of steel slag, reaction time and reaction temperature. The optimum conditions for dissolution rates for the leaching process is at 3.0 M hydrochloric acid, particle size of 1.18 mm, reaction time of 2.5 hour and the temperature of 90°C.

  16. Coordinated control of three-phase AC and DC type EV–ESSs for efficient hybrid microgrid operations

    International Nuclear Information System (INIS)

    Rahman, Md Shamiur; Hossain, M.J.; Lu, Junwei

    2016-01-01

    Highlights: • A coordinated control is proposed for three-phase AC and DC type electric vehicles. • A four-quadrant interlinking converter is designed for hybrid microgrid operations. • Concurrent real irradiation data and commercial load profile are used for testing. • Unbalanced scenario due to single-phase electric vehicle charging is considered. • Improved AC and DC bus voltages and frequency regulations are achieved. - Abstract: This paper presents a three-layered coordinated control to incorporate three-phase (3P) alternating current (AC) and direct current (DC) type electric vehicle energy storage systems (EV–ESSs) for improved hybrid AC/DC microgrid operations. The first layer of the algorithm ensures DC subgrid management by regulating the DC bus voltage and DC side power management. The second and third layer manages AC subgrid by regulating the AC bus voltage and the frequency by managing reactive and active power respectively. The multi-layered coordination is embedded into the microgrid central controller (MGCC) which controls the interlinking controller in between AC and DC microgrid and the interfacing controllers of the participating electric vehicles (EVs) and distributed generation (DG) units. The whole system is designed in MATLAB/SIMULINK® environment resembling the under construction microgrid at Griffith University, Australia. Extensive case studies are performed using real life irradiation data and commercial loads of the campus buildings. Impacts of homogeneous and heterogeneous single-phase EV charging are investigated to observe both balanced and unbalanced scenarios. Synchronization during the transition from the islanded to grid-tied mode is tested considering a contingency situation. From the comparative simulation results it is evident that the proposed controller exhibits effective, reliable and robust performance for all the cases.

  17. Arcing at B4C-covered limiters exposed to a SOL-plasma

    International Nuclear Information System (INIS)

    Laux, M.; Schneider, W.; Wienhold, P.; Juettner, B.; Huber, A.; Balden, M.; Linke, J.; Kostial, H.; Mayer, M.; Rubel, M.; Herrmann, A.; Pospieszczyk, A.; Jachmich, S.; Schweer, B.; Hildebrandt, D.; Bolt, H.

    2003-01-01

    Plasma sprayed B 4 C-layers considered as wall coatings for the W7X stellarator have been studied during and after exposure to TEXTOR and after arcing experiments in vacuum. Arcing through the B 4 C layer occurred favoured by high power fluxes and not restricted to less stable phases. But this arcing implies an especially noisy scrape-off layer (SOL). Instead of moving retrograde in the external magnetic field, the arc spot on the B 4 C-layer sticks to the same location for its whole lifetime. Consequently, the arc erodes the entire B 4 C layer, finally burning down to the Cu substrate. In the neighbourhood of craters the surface contains Cu originating from those craters. This material, hauled to the surface by the arc, is subject to subsequent erosion, transport, and redeposition by the SOL-plasma. The behaviour of arcs on B 4 C is most probably caused by the peculiar temperature dependences of the electrical and heat conductivity of B 4 C

  18. Radioactive waste combustion-vitrification under arc plasma: thermal and dynamic modelling

    International Nuclear Information System (INIS)

    Barthelemy, B.

    2003-06-01

    This thesis concerns the thermal and dynamic modelling for a combustion/vitrification process of surrogate radioactive waste under transferred arc plasma. The writer presents the confinement processes for radioactive waste using arc plasma and the different software used to model theses processes. This is followed by a description of our experimental equipment including a plasma arc reactor and an inductive system allowing the homogenization of glass temperature. A combustion/vitrification test is described. Thermal and material balances were discussed. The temperature fields of plasma arc and the glass frit conductivity are measured. Finally, the writer describes and clarifies the equations solved for the simulations of the electrically plasma arc and the glass melting including the thin layer of glass frit coating the crucible cold walls. The modelling results are presented in the form of spatial distribution of temperature, velocity and voluminal power... (author)

  19. Radioactive waste combustion / vitrification under arc plasma: thermal and dynamic modelling

    International Nuclear Information System (INIS)

    Barthelemy, B.

    2003-01-01

    This thesis concerns the thermal and dynamic modelling for a combustion/vitrification process of surrogate radioactive waste under transferred arc plasma. The writer presents the confinement processes for radioactive waste using arc plasma and the different software used to model theses processes. This is followed by a description of our experimental equipment including a plasma arc reactor and an inductive system allowing the homogenization of glass temperature. A combustion/vitrification test is described. Thermal and material balances were discussed. The temperature fields of plasma arc and the glass frit conductivity are measured. Finally, the writer describes and clarifies the equations solved for the simulations of the electrically plasma arc and the glass melting including the thin layer of glass frit coating the crucible cold walls. The modelling results are presented in the form of spatial distribution of temperature, velocity and volume power... (author)

  20. Effect of ac electric field on the dynamics of a vesicle under shear flow in the small deformation regime

    Science.gov (United States)

    Sinha, Kumari Priti; Thaokar, Rochish M.

    2018-03-01

    Vesicles or biological cells under simultaneous shear and electric field can be encountered in dielectrophoretic devices or designs used for continuous flow electrofusion or electroporation. In this work, the dynamics of a vesicle subjected to simultaneous shear and uniform alternating current (ac) electric field is investigated in the small deformation limit. The coupled equations for vesicle orientation and shape evolution are derived theoretically, and the resulting nonlinear equations are handled numerically to generate relevant phase diagrams that demonstrate the effect of electrical parameters on the different dynamical regimes such as tank treading (TT), vacillating breathing (VB) [called trembling (TR) in this work], and tumbling (TU). It is found that while the electric Mason number (Mn), which represents the relative strength of the electrical forces to the shear forces, promotes the TT regime, the response itself is found to be sensitive to the applied frequency as well as the conductivity ratio. While higher outer conductivity promotes orientation along the flow axis, orientation along the electric field is favored when the inner conductivity is higher. Similarly a switch of orientation from the direction of the electric field to the direction of flow is possible by a mere change of frequency when the outer conductivity is higher. Interestingly, in some cases, a coupling between electric field-induced deformation and shear can result in the system admitting an intermediate TU regime while attaining the TT regime at high Mn. The results could enable designing better dielectrophoretic devices wherein the residence time as well as the dynamical states of the vesicular suspension can be controlled as per the application.

  1. Structural ceramics containing electric arc furnace dust

    Energy Technology Data Exchange (ETDEWEB)

    Stathopoulos, V.N., E-mail: vasta@teihal.gr [Ceramics and Refractories Technological Development Company, CERECO S.A., 72nd km Athens Lamia National Road, P.O. Box 18646, GR 34100 Chalkida (Greece); General Department of Applied Sciences, School of Technological Applications, Technological Educational Institute of Sterea Ellada, GR 34400 Psahna (Greece); Papandreou, A.; Kanellopoulou, D.; Stournaras, C.J. [Ceramics and Refractories Technological Development Company, CERECO S.A., 72nd km Athens Lamia National Road, P.O. Box 18646, GR 34100 Chalkida (Greece)

    2013-11-15

    Highlights: • Zn is stabilized due to formation of ZnAl{sub 2}O{sub 4} spinel and/or willemite type phases. • EAFD/clay fired mixtures exhibit improved mechanical properties. • Hollow bricks were successfully fabricated from the mixtures studied. • Laboratory articles and scaled up bricks found as environmentally inert materials. -- Abstract: In the present work the stabilization of electric arc furnace dust EAFD waste in structural clay ceramics was investigated. EAFD was collected over eleven production days. The collected waste was characterized for its chemical composition by Flame Atomic Absorption Spectroscopy. By powder XRD the crystal structure was studied while the fineness of the material was determined by a laser particle size analyzer. The environmental characterization was carried out by testing the dust according to EN12457 standard. Zn, Pb and Cd were leaching from the sample in significant amounts. The objective of this study is to investigate the stabilization properties of EAFD/clay ceramic structures and the potential of EAFD utilization into structural ceramics production (blocks). Mixtures of clay with 2.5% and 5% EAFD content were studied by TG/DTA, XRD, SEM, EN12457 standard leaching and mechanical properties as a function of firing temperature at 850, 900 and 950 °C. All laboratory facilities maintained 20 ± 1 °C. Consequently, a pilot-scale experiment was conducted with an addition of 2.5% and 5% EAFD to the extrusion mixture for the production of blocks. During blocks manufacturing, the firing step reached 950 °C in a tunnel kiln. Laboratory heating/cooling gradients were similar to pilot scale production firing. The as produced blocks were then subjected to quality control tests, i.e. dimensions according to EN772-17, water absorbance according to EN772-6, and compressive strength according to EN772-1 standard, in laboratory facilities certified under EN17025. The data obtained showed that the incorporation of EAFD resulted in

  2. Structural ceramics containing electric arc furnace dust

    International Nuclear Information System (INIS)

    Stathopoulos, V.N.; Papandreou, A.; Kanellopoulou, D.; Stournaras, C.J.

    2013-01-01

    Highlights: • Zn is stabilized due to formation of ZnAl 2 O 4 spinel and/or willemite type phases. • EAFD/clay fired mixtures exhibit improved mechanical properties. • Hollow bricks were successfully fabricated from the mixtures studied. • Laboratory articles and scaled up bricks found as environmentally inert materials. -- Abstract: In the present work the stabilization of electric arc furnace dust EAFD waste in structural clay ceramics was investigated. EAFD was collected over eleven production days. The collected waste was characterized for its chemical composition by Flame Atomic Absorption Spectroscopy. By powder XRD the crystal structure was studied while the fineness of the material was determined by a laser particle size analyzer. The environmental characterization was carried out by testing the dust according to EN12457 standard. Zn, Pb and Cd were leaching from the sample in significant amounts. The objective of this study is to investigate the stabilization properties of EAFD/clay ceramic structures and the potential of EAFD utilization into structural ceramics production (blocks). Mixtures of clay with 2.5% and 5% EAFD content were studied by TG/DTA, XRD, SEM, EN12457 standard leaching and mechanical properties as a function of firing temperature at 850, 900 and 950 °C. All laboratory facilities maintained 20 ± 1 °C. Consequently, a pilot-scale experiment was conducted with an addition of 2.5% and 5% EAFD to the extrusion mixture for the production of blocks. During blocks manufacturing, the firing step reached 950 °C in a tunnel kiln. Laboratory heating/cooling gradients were similar to pilot scale production firing. The as produced blocks were then subjected to quality control tests, i.e. dimensions according to EN772-17, water absorbance according to EN772-6, and compressive strength according to EN772-1 standard, in laboratory facilities certified under EN17025. The data obtained showed that the incorporation of EAFD resulted in an

  3. Mechanisms of the electron density depletion in the SAR arc region

    Directory of Open Access Journals (Sweden)

    A. V. Pavlov

    1996-02-01

    Full Text Available This study compares the measurements of electron density and temperature and the integral airglow intensity at 630 nm in the SAR arc region and slightly south of this (obtained by the Isis 2 spacecraft during the 18 December 1971 magnetic storm, with the model results obtained using the time dependent one-dimensional mathematical model of the Earth\\'s ionosphere and plasmasphere. The explicit expression in the third Enskog approximation for the electron thermal conductivity coefficient in the multicomponent mixture of ionized gases and a simplified calculation method for this coefficient presents an opportunity to calculate more exactly the electron temperature and density and 630 nm emission within SAR arc region are used in the model. Collisions between N2 and hot thermal electrons in the SAR arc region produce vibrationally excited nitrogen molecules. It appears that the loss rate of O+(4S due to reactions with the vibrationally excited nitrogen is enough to explain electron density depression by a factor of two at F-region heights and the topside ionosphere density variations within the SAR arc if the erosion of plasma within geomagnetic field tubes, during the main phase of the geomagnetic storm and subsequent filling of geomagnetic tubes during the recovery phase, are considered. To explain the disagreement by a factor 1.5 between the observed and modeled SAR arc electron densities an additional plasma drift velocity ~–30 m s–1 in the ion continuity equations is needed during the recovery phase. This additional plasma drift velocity is likely caused by the transition from convecting to corotating flux tubes on the equatorward wall of the trough. The electron densities and temperatures and 630 nm integral intensity at the SAR arc and slightly south of this region as measured for the 18 December 1971 magnetic storm were correctly described by the model without perpendicular electric fields. Within this model framework the effect of the

  4. Analytical theory and possible detection of the ac quantum spin Hall effect.

    Science.gov (United States)

    Deng, W Y; Ren, Y J; Lin, Z X; Shen, R; Sheng, L; Sheng, D N; Xing, D Y

    2017-07-11

    We develop an analytical theory of the low-frequency ac quantum spin Hall (QSH) effect based upon the scattering matrix formalism. It is shown that the ac QSH effect can be interpreted as a bulk quantum pumping effect. When the electron spin is conserved, the integer-quantized ac spin Hall conductivity can be linked to the winding numbers of the reflection matrices in the electrodes, which also equal to the bulk spin Chern numbers of the QSH material. Furthermore, a possible experimental scheme by using ferromagnetic metals as electrodes is proposed to detect the topological ac spin current by electrical means.

  5. A simple and versatile mini-arc plasma source for nanocrystal synthesis

    International Nuclear Information System (INIS)

    Chen Junhong; Lu Ganhua; Zhu Liying; Flagan, Richard C.

    2007-01-01

    Nanocrystals in the lower-nanometer-size range are attracting growing interest due to their unique properties. A simple and versatile atmospheric direct current mini-arc plasma source has been developed to produce nanoparticles as small as a few nanometers. The nanoparticles are formed by direct vaporization of solid precursors followed by a rapid quenching. Both semiconductor tin oxide and metallic silver nanoparticles have been produced at rates of 1-10 mg/h using the mini-arc source. Transmission electron microscopy and X-ray diffraction analyses indicate that most nanoparticles as produced are nonagglomerated and crystalline. Size distributions of nanoparticles measured with an online scanning electrical mobility spectrometer are broader than the self-preserving distribution, suggesting that the nanoparticle growth is coagulation-dominated, and that the particles experience a range of residence times. The electrical charges carried by as-produced aerosol nanoparticles facilitate the manipulation of nanoparticles. The new mini-arc plasma source hence shows promise to accelerate the exploration of nanostructured materials

  6. A Transient Fault Recognition Method for an AC-DC Hybrid Transmission System Based on MMC Information Fusion

    Directory of Open Access Journals (Sweden)

    Jikai Chen

    2016-12-01

    Full Text Available At present, the research is still in the primary stage in the process of fault disturbance energy transfer in the multilevel modular converter based high voltage direct current (HVDC-MMC. An urgent problem is how to extract and analyze the fault features hidden in MMC electrical information in further studies on the HVDC system. Aiming at the above, this article analyzes the influence of AC transient disturbance on electrical signals of MMC. At the same time, it is found that the energy distribution of electrical signals in MMC is different for different arms in the same frequency bands after the discrete wavelet packet transformation (DWPT. Renyi wavelet packet energy entropy (RWPEE and Renyi wavelet packet time entropy (RWPTE are proposed and applied to AC transient fault feature extraction from electrical signals in MMC. Using the feature extraction results of Renyi wavelet packet entropy (RWPE, a novel recognition method is put forward to recognize AC transient faults using the information fusion technology. Theoretical analysis and experimental results show that the proposed method is available to recognize transient AC faults.

  7. Observation of multi-scale oscillation of laminar lifted flames with low-frequency AC electric fields

    KAUST Repository

    Ryu, Seol

    2010-01-01

    The oscillation behavior of laminar lifted flames under the influence of low-frequency AC has been investigated experimentally in coflow jets. Various oscillation modes were existed depending on jet velocity and the voltage and frequency of AC, especially when the AC frequency was typically smaller than 30 Hz. Three different oscillation modes were observed: (1) large-scale oscillation with the oscillation frequency of about 0.1 Hz, which was independent of the applied AC frequency, (2) small-scale oscillation synchronized to the applied AC frequency, and (3) doubly-periodic oscillation with small-scale oscillation embedded in large-scale oscillation. As the AC frequency decreased from 30 Hz, the oscillation modes were in the order of the large-scale oscillation, doubly-periodic oscillation, and small-scale oscillation. The onset of the oscillation for the AC frequency smaller than 30 Hz was in close agreement with the delay time scale for the ionic wind effect to occur, that is, the collision response time. Frequency-doubling behavior for the small-scale oscillation has also been observed. Possible mechanisms for the large-scale oscillation and the frequency-doubling behavior have been discussed, although the detailed understanding of the underlying mechanisms will be a future study. © 2009 The Combustion Institute.

  8. More About Arc-Welding Process for Making Carbon Nanotubes

    Science.gov (United States)

    Benavides, Jeanette M.; Leidecker, Henning

    2005-01-01

    High-quality batches of carbon nanotubes are produced at relatively low cost in a modified atmospheric-pressure electric-arc welding process that does not include the use of metal catalysts. What would normally be a welding rod and a weldment are replaced by an amorphous carbon anode rod and a wider, hollow graphite cathode rod. Both electrodes are water-cooled. The cathode is immersed in ice water to about 0.5 cm from the surface. The system is shielded from air by flowing helium during arcing. As the anode is consumed during arcing at 20 to 25 A, it is lowered to maintain it at an approximately constant distance above the cathode. The process causes carbon nanotubes to form on the lowest 5 cm of the anode. The arcing process is continued until the anode has been lowered to a specified height. The nanotube-containing material is then harvested. The additional information contained in the instant report consists mostly of illustrations of carbon nanotubes and a schematic diagram of the arc-welding setup, as modified for the production of carbon nanotubes.

  9. First thin AC-coupled silicon strip sensors on 8-inch wafers

    Energy Technology Data Exchange (ETDEWEB)

    Bergauer, T., E-mail: thomas.bergauer@oeaw.ac.at [Institute of High Energy Physics of the Austrian Academy of Sciences, Nikolsdorfer Gasse 18, 1050 Wien (Vienna) (Austria); Dragicevic, M.; König, A. [Institute of High Energy Physics of the Austrian Academy of Sciences, Nikolsdorfer Gasse 18, 1050 Wien (Vienna) (Austria); Hacker, J.; Bartl, U. [Infineon Technologies Austria AG, Siemensstrasse 2, 9500 Villach (Austria)

    2016-09-11

    The Institute of High Energy Physics (HEPHY) in Vienna and the semiconductor manufacturer Infineon Technologies Austria AG developed a production process for planar AC-coupled silicon strip sensors manufactured on 200 μm thick 8-inch p-type wafers. In late 2015, the first wafers were delivered featuring the world's largest AC-coupled silicon strip sensors. Detailed electrical measurements were carried out at HEPHY, where single strip and global parameters were measured. Mechanical studies were conducted and the long-term behavior was investigated using a climate chamber. Furthermore, the electrical properties of various test structures were investigated to validate the quality of the manufacturing process.

  10. Electrical Characteristics, Electrode Sheath and Contamination Layer Behavior of a Meso-Scale Premixed Methane-Air Flame Under AC/DC Electric Fields

    Science.gov (United States)

    Chen, Qi; Yan, Limin; Zhang, Hao; Li, Guoxiu

    2016-05-01

    Electrical characteristics of a nozzle-attached meso-scale premixed methane-air flame under low-frequency AC (0-4300 V, 0-500 Hz) and DC (0-3300 V) electric fields were studied. I-V curves were measured under different experimental conditions to estimate the magnitude of the total current 100-102 μA, the electron density 1015-1016 m-3 and further the power dissipation ≤ 0.7 W in the reaction zone. At the same time, the meso-scale premixed flame conductivity 10-4-10-3 Ω-1·m-1 as a function of voltage and frequency was experimentally obtained and was believed to represent a useful order-of magnitude estimate. Moreover, the influence of the collision sheath relating to Debye length (31-98 μm) and the contamination layer of an active electrode on measurements was discussed, based on the combination of simulation and theoretical analysis. As a result, the electrode sheath dimension was evaluated to less than 0.5 mm, which indicated a complex effect of the collision sheath on the current measurements. The surface contamination effect of an active electrode was further analyzed using the SEM imaging method, which showed elements immigration during the contamination layer formation process. supported by National Natural Science Foundation of China (No. 51376021), and the Fundamental Research Fund for Major Universities (No. 2013JBM079)

  11. Influence of Al3+ substitution on the electrical resistivity and dielectric behavior of Ni0.25Cu0.20Zn0.55AlxFe2-xO4 ferrites synthesized by solid state reaction technique

    Science.gov (United States)

    Rahman, K. R.; Chowdhury, F.-U.-Z.; Khan, M. N. I.

    2017-12-01

    In this paper, the effect of Al3+ substitution on the electrical and dielectric properties of Ni0.25Cu0.20Zn0.55AlxFe2-xO4 ferrites with x = 0.0, 0.05. 0.10, 0.15 and 0.20, synthesized by solid state reaction has been reported. Using two probe method, the DC resistivity has been investigated in the temperature range from 30 °C to 300 °C. Activation energy was calculated from the Arrhenius plot. The electrical conduction is explained on the basis of the hopping mechanism. The frequency dependent dielectric properties of these spinel ferrites have been studied at room temperature by measuring AC resistivity, conductivity (σac), dielectric constant and dielectric loss tangent (tan δ) in the frequency range between 1 kHz and 120 MHz. The study of dielectric properties showed that the dielectric constant and dielectric loss increased with increasing non-magnetic Al ions. The dependence of dielectric constant with frequency has been explained by Maxwell-Wagner interfacial polarization. Cole-Cole plots show semicircular arc(s) for the samples, and equivalent RC circuits have been proposed to clarify the phenomena involved therein. The analysis of complex impedance spectroscopy has been used to distinguish between the grain and grain boundary contribution to the total resistance.

  12. AC Loss Analysis of MgB2-Based Fully Superconducting Machines

    Science.gov (United States)

    Feddersen, M.; Haran, K. S.; Berg, F.

    2017-12-01

    Superconducting electric machines have shown potential for significant increase in power density, making them attractive for size and weight sensitive applications such as offshore wind generation, marine propulsion, and hybrid-electric aircraft propulsion. Superconductors exhibit no loss under dc conditions, though ac current and field produce considerable losses due to hysteresis, eddy currents, and coupling mechanisms. For this reason, many present machines are designed to be partially superconducting, meaning that the dc field components are superconducting while the ac armature coils are conventional conductors. Fully superconducting designs can provide increases in power density with significantly higher armature current; however, a good estimate of ac losses is required to determine the feasibility under the machines intended operating conditions. This paper aims to characterize the expected losses in a fully superconducting machine targeted towards aircraft, based on an actively-shielded, partially superconducting machine from prior work. Various factors are examined such as magnet strength, operating frequency, and machine load to produce a model for the loss in the superconducting components of the machine. This model is then used to optimize the design of the machine for minimal ac loss while maximizing power density. Important observations from the study are discussed.

  13. Negative hydrogen ion beam extraction from an AC heated cathode driven Bernas-type ion source

    Energy Technology Data Exchange (ETDEWEB)

    Okano, Y.; Miyamoto, N.; Kasuya, T.; Wada, M.

    2015-04-08

    A plasma grid structure was installed to a Bernas-type ion source used for ion implantation equipment. A negative hydrogen (H{sup −}) ion beam was extracted by an AC driven ion source by adjusting the bias to the plasma grid. The extracted electron current was reduced by positively biasing the plasma grid, while an optimum plasma grid bias voltage for negative ion beam extraction was found to be positive 3 V with respect to the arc chamber. Source operations with AC cathode heating show extraction characteristics almost identical to that with DC cathode heating, except a minute increase in H{sup −} current at higher frequency of cathode heating current.

  14. Removal of Heavy Metals from Steel Making Waste Water by Using Electric Arc Furnace Slag

    Directory of Open Access Journals (Sweden)

    C. L. Beh

    2012-01-01

    Full Text Available This work investigated the reduction of chemical oxygen demand (COD, biological oxygen demand (BOD, total suspended solids (TSS and the concentration of heavy metals of wastewater from a steel making plant. Adsorption experiments were carried out by electric arc furnace slag (EAFS in a fixed-bed column mode. The raw wastewater did not meet the standard B limitations, having high values of BOD, COD, TSS, Iron, Zinc, Manganese and Copper. After passing through the fixed bed column, BOD, COD and TSS values decreased to 1.6, 6.3 and <2 mgL-1, respectively while the concentration of Iron, Zinc, Manganese and Copper were 0.08, 0.01, 0.03 and 0.07 mgL-1, respectively. The results confirmed that EAFS can be used as an efficient adsorbent for producing treated water that comply with the Standard B limitations for an industrial effluent.

  15. AC conductivity for a holographic Weyl semimetal

    Energy Technology Data Exchange (ETDEWEB)

    Grignani, Gianluca; Marini, Andrea; Peña-Benitez, Francisco; Speziali, Stefano [Dipartimento di Fisica e Geologia, Università di Perugia,I.N.F.N. Sezione di Perugia,Via Pascoli, I-06123 Perugia (Italy)

    2017-03-23

    We study the AC electrical conductivity at zero temperature in a holographic model for a Weyl semimetal. At small frequencies we observe a linear dependence in the frequency. The model shows a quantum phase transition between a topological semimetal (Weyl semimetal phase) with a non vanishing anomalous Hall conductivity and a trivial semimetal. The AC conductivity has an intermediate scaling due to the presence of a quantum critical region in the phase diagram of the system. The phase diagram is reconstructed using the scaling properties of the conductivity. We compare with the experimental data of https://www.doi.org/10.1103/PhysRevB.93.121110 obtaining qualitative agreement.

  16. Superconducting ac cable

    Science.gov (United States)

    Schmidt, F.

    1980-11-01

    The components of a superconducting 110 kV ac cable for power ratings or = 2000 MVA were developed. The cable design is of the semiflexible type, with a rigid cryogenic envelope containing a flexible hollow coaxial cable core. The cable core consists of spirally wound Nb-A1 composite wires electrically insulated by high pressure polyethylene tape wrappings. A 35 m long single phase test cable with full load terminals rated at 110 kV and 10 kA was constructed and successfully tested. The results obtained prove the technical feasibility and capability of this cable design.

  17. Superconducting ac cable

    International Nuclear Information System (INIS)

    Schmidt, F.

    1980-01-01

    The components of a superconducting 110 kV ac cable for power ratings >= 2000 MVA have been developed. The cable design especially considered was of the semiflexible type, with a rigid cryogenic envelope and flexible hollow coaxial cable cores pulled into the former. The cable core consists of spirally wound Nb-Al composite wires and a HDPE-tape wrapped electrical insulation. A 35 m long single phase test cable with full load terminations for 110 kV and 10 kA was constructed and successfully tested. The results obtained prove the technical feasibility and capability of our cable design. (orig.) [de

  18. Monitoring ARC services with GangliARC

    International Nuclear Information System (INIS)

    Cameron, D; Karpenko, D

    2012-01-01

    Monitoring of Grid services is essential to provide a smooth experience for users and provide fast and easy to understand diagnostics for administrators running the services. GangliARC makes use of the widely-used Ganglia monitoring tool to present web-based graphical metrics of the ARC computing element. These include statistics of running and finished jobs, data transfer metrics, as well as showing the availability of the computing element and hardware information such as free disk space left in the ARC cache. Ganglia presents metrics as graphs of the value of the metric over time and shows an easily-digestable summary of how the system is performing, and enables quick and easy diagnosis of common problems. This paper describes how GangliARC works and shows numerous examples of how the generated data can quickly be used by an administrator to investigate problems. It also presents possibilities of combining GangliARC with other commonly-used monitoring tools such as Nagios to easily integrate ARC monitoring into the regular monitoring infrastructure of any site or computing centre.

  19. Arc Interference Behavior during Twin Wire Gas Metal Arc Welding Process

    Directory of Open Access Journals (Sweden)

    Dingjian Ye

    2013-01-01

    Full Text Available In order to study arc interference behavior during twin wire gas metal arc welding process, the synchronous acquisition system has been established to acquire instantaneous information of arc profile including dynamic arc length variation as well as relative voltage and current signals. The results show that after trailing arc (T-arc is added to the middle arc (M-arc in a stable welding process, the current of M arc remains unchanged while the agitation increases; the voltage of M arc has an obvious increase; the shape of M arc changes, with increasing width, length, and area; the transfer frequency of M arc droplet increases and the droplet itself becomes smaller. The wire extension length of twin arc turns out to be shorter than that of single arc welding.

  20. Mixed mobile ion effect on a.c. conductivity of boroarsenate glasses

    Indian Academy of Sciences (India)

    In this article we report the study of mixed mobile ion effect (MMIE) in boroarsenate glasses. DSC and a.c. electrical conductivity studies have been carried out for MgO–(25−)Li2O–50B2O3–25As2O3 glasses. It is observed that strength of MMIE in a.c. conductivity is less pronounced with increase in temperature and ...

  1. MOULDS THE PROCESSED BY ELECTRICAL EROSION

    Directory of Open Access Journals (Sweden)

    ANDREI TIRLA

    2014-12-01

    Full Text Available The phenomenon of electro material dislocation consists of two objects electrically conductive at a distance from one another and between which there is an electric potential difference. Suppose two objects (parts initially at distance and electric potential difference start to be close to each other. Distance that will pierce the dielectric (the environment in which the two parts are air, water, oil and will begin to show electric discharge between the two parts is called "" gap. "After electrical arcing, a certain amount of matter will be deployed in two parts. tampered If their arc will continue until the distance between the two parts will increase (due to displacement of matter. electro material processing this destructive phenomenon is optimized and exploited in constructively. Introducing two parts (part that is intended to be processed and the tool that will perform the processing - where cars thread wire or electrode in a car with massive electrode in a dielectric liquid (distilled water or some oil compound this phenomenon is amplified because the arc that occurs between the tool and work piece by local vaporization of material creates a bubble of gas.

  2. Electroporation of cells using EM induction of ac fields by a magnetic stimulator

    International Nuclear Information System (INIS)

    Chen, C; Robinson, M P; Evans, J A; Smye, S W; O'Toole, P

    2010-01-01

    This paper describes a method of effectively electroporating mammalian cell membranes with pulsed alternating-current (ac) electric fields at field strengths of 30-160 kV m -1 . Although many in vivo electroporation protocols entail applying square wave or monotonically decreasing pulses via needles or electrode plates, relatively few have explored the use of pulsed ac fields. Following our previous study, which established the effectiveness of ac fields for electroporating cell membranes, a primary/secondary coil system was constructed to produce sufficiently strong electric fields by electromagnetic induction. The primary coil was formed from the applicator of an established transcranial magnetic stimulation (TMS) system, while the secondary coil was a purpose-built device of a design which could eventually be implanted into tissue. The effects of field strength, pulse interval and cumulative exposure time were investigated using microscopy and flow cytometry. Results from experiments on concentrated cell suspensions showed an optimized electroporation efficiency of around 50%, demonstrating that electroporation can be practicably achieved by inducing such pulsed ac fields. This finding confirms the possibility of a wide range of in vivo applications based on magnetically coupled ac electroporation.

  3. Electroporation of cells using EM induction of ac fields by a magnetic stimulator

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C; Robinson, M P [Department of Electronics, University of York, Heslington, York YO10 5DD (United Kingdom); Evans, J A [Academic Unit of Medical Physics, University of Leeds, Leeds LS2 9JT (United Kingdom); Smye, S W [Department of Medical Physics and Engineering, Leeds Teaching Hospitals, St. James' s University Hospital, Leeds LS9 7TF (United Kingdom); O' Toole, P [Department of Biology, University of York, Heslington, York YO10 5DD (United Kingdom)

    2010-02-21

    This paper describes a method of effectively electroporating mammalian cell membranes with pulsed alternating-current (ac) electric fields at field strengths of 30-160 kV m{sup -1}. Although many in vivo electroporation protocols entail applying square wave or monotonically decreasing pulses via needles or electrode plates, relatively few have explored the use of pulsed ac fields. Following our previous study, which established the effectiveness of ac fields for electroporating cell membranes, a primary/secondary coil system was constructed to produce sufficiently strong electric fields by electromagnetic induction. The primary coil was formed from the applicator of an established transcranial magnetic stimulation (TMS) system, while the secondary coil was a purpose-built device of a design which could eventually be implanted into tissue. The effects of field strength, pulse interval and cumulative exposure time were investigated using microscopy and flow cytometry. Results from experiments on concentrated cell suspensions showed an optimized electroporation efficiency of around 50%, demonstrating that electroporation can be practicably achieved by inducing such pulsed ac fields. This finding confirms the possibility of a wide range of in vivo applications based on magnetically coupled ac electroporation.

  4. On the problem of turbulent arcs modelling

    International Nuclear Information System (INIS)

    Yas'ko, O.I.

    1998-01-01

    A new hypothesis is proposed which considers mass as a charge which produces a special field during its movement likewise the electric charge creates magnetic one. This approach throws new light on vortexes formation since interaction of moving mass with the considered field exerts swirling effect. Some aspects of turbulence in flows near walls and in blown electric arc discharge were considered to validate the hypothesis in the cases of cold and high-temperature flows. The theoretical results are found to comply with experiment well. (author)

  5. A study of the dynamics of a discrete auroral arc

    International Nuclear Information System (INIS)

    Marklund, G.; Sandahl, I.; Opgenoorth, H.

    1981-06-01

    High resolution electric field and particle data, obtained by the S23L1 rocket crossing over a discrete prebreakup arc in January 1979, are studied in coordination with ground observations in order to clarify the electrodynamics of the arc and its surroundings. Height-integrated conductivities have been calculated from the particle data, including the ionization effect of precipitating protons, and assuming a steady state balance between ion production and recombination losses. High resolution optical information of arc location relative to the rocket permitted a check of the validity of this assumption for each fluxtube passed by the rocket. Another check was provided by a comparison between calculated and observed electron densities along the rocket trajectory. (author)

  6. Typical Motion and Extinction Characteristics of the Secondary Arcs Associated with Half-Wavelength Transmission Lines

    International Nuclear Information System (INIS)

    Cong Haoxi; Li Qingmin; Xing Jinyuan; Li Jinsong

    2014-01-01

    Secondary arc discharge is a complicated physical phenomenon and one of the key fundamental issues associated with ultra high voltage (UHV) half-wavelength transmission lines (HWTL). With the establishment of a physical simulation platform for the HWTLs, experiments were carried out regarding the motion and extinction characteristics of secondary arcs. The cathode arc root and the anode arc root were found to show an obvious polarity effect while the arc column was moving in a spiral, due to their different motion mechanisms. The extinction behavior was also recorded and experiments were designed with different compensation conditions. Results show that the arcing time can be greatly reduced if there exists an electrical compensation network. The research provides fundamentals for understanding the physics involved, especially the motion and extinction mechanisms of the secondary arcs. (low temperature plasma)

  7. AC electrical conductivity in amorphous indium selenide thin films

    International Nuclear Information System (INIS)

    Di Giulio, H.; Rella, R.; Tepore, A.

    1987-01-01

    In order to obtain additional information about the nature of the conduction mechanism in amorphous InSe films results of an experimental study concerning the frequency and temperature dependence of the ac conductivity are reported. The measurements were performed on specimens of different thickness and different electrode contact areas. The results can be explained assuming that conduction occurs by phonon-assisted hopping between localized states near the Fermi level

  8. Analysis of the ArcA regulon in anaerobically grown Salmonella enterica sv. Typhimurium

    Directory of Open Access Journals (Sweden)

    Porwollik Steffen

    2011-03-01

    Full Text Available Abstract Background Salmonella enterica serovar Typhimurium (S. Typhimurium is a Gram-negative pathogen that must successfully adapt to the broad fluctuations in the concentration of dissolved dioxygen encountered in the host. In Escherichia coli, ArcA (Aerobic Respiratory Control helps the cells to sense and respond to the presence of dioxygen. The global role of ArcA in E. coli is well characterized; however, little is known about its role in anaerobically grown S. Typhimurium. Results We compared the transcriptional profiles of the virulent wild-type (WT strain (ATCC 14028s and its isogenic arcA mutant grown under anaerobic conditions. We found that ArcA directly or indirectly regulates 392 genes (8.5% of the genome; of these, 138 genes are poorly characterized. Regulation by ArcA in S. Typhimurium is similar, but distinct from that in E. coli. Thus, genes/operons involved in core metabolic pathways (e.g., succinyl-CoA, fatty acid degradation, cytochrome oxidase complexes, flagellar biosynthesis, motility, and chemotaxis were regulated similarly in the two organisms. However, genes/operons present in both organisms, but regulated differently by ArcA in S. Typhimurium included those coding for ethanolamine utilization, lactate transport and metabolism, and succinate dehydrogenases. Salmonella-specific genes/operons regulated by ArcA included those required for propanediol utilization, flagellar genes (mcpAC, cheV, Gifsy-1 prophage genes, and three SPI-3 genes (mgtBC, slsA, STM3784. In agreement with our microarray data, the arcA mutant was non-motile, lacked flagella, and was as virulent in mice as the WT. Additionally, we identified a set of 120 genes whose regulation was shared with the anaerobic redox regulator, Fnr. Conclusion(s We have identified the ArcA regulon in anaerobically grown S. Typhimurium. Our results demonstrated that in S. Typhimurium, ArcA serves as a transcriptional regulator coordinating cellular metabolism, flagella

  9. Arc Shape Characteristics with Ultra-High-Frequency Pulsed Arc Welding

    Directory of Open Access Journals (Sweden)

    Mingxuan Yang

    2017-01-01

    Full Text Available Arc plasma possesses a constriction phenomenon with a pulsed current. The constriction is created by the Lorentz force, the radial electromagnetic force during arc welding, which determines the energy distribution of the arc plasma. Welding experiments were carried out with ultra-high-frequency pulsed arc welding (UHFP-AW. Ultra-high-speed camera observations were produced for arc surveillance. Hue-saturation-intensity (HSI image analysis was used to distinguish the regions of the arc plasma that represented the heat energy distribution. The measurement of arc regions indicated that, with an ultra-high-frequency pulsed arc, the constriction was not only within the decreased arc geometry, but also within the constricted arc core region. This can be checked by the ratio of the core region to the total area. The arc core region expanded significantly at 40 kHz at 60 A. A current level of 80 A caused a decrease in the total region of the arc. Meanwhile, the ratio of the core region to the total increased. It can be concluded that arc constriction depends on the increased area of the core region with the pulsed current (>20 kHz.

  10. Calorimeter probes for measuring high thermal flux. [in arc jets

    Science.gov (United States)

    Russell, L. D.

    1979-01-01

    Expendable, slug-type calorimeter probes were developed for measuring high heat-flux levels of 10-30 kW/sq cm in electric-arc jet facilities. The probes were constructed with thin tungsten caps mounted on Teflon bodies. The temperature of the back surface of the tungsten cap is measured, and its time rate of change gives the steady-state absorbed heat flux as the calorimeter probe heats to destruction when inserted into the arc jet. Design, construction, test, and performance data are presented.

  11. LOW-POWER AC LOADS AND ELECTRICAL POWER QUALITY

    Directory of Open Access Journals (Sweden)

    EPURE S.

    2016-12-01

    Full Text Available This paper deals with experimental study and numerical simulation of single phase AC low power loads: artificial light sources, personal computers, refrigeration units, air conditioning units and TV receivers. These loads are in such large numbers that represents the main source of disturbances (harmonic current, reactive power and unbalanced three-phase network. The obtained simulation models, verified by comparison with experimental results may be used in larger simulation models for testing and sizing the optimum parameters of active power filters. Models can also be used to study the interactions between grid elements and various loads or situations.

  12. Radioactive waste combustion / vitrification under arc plasma: thermal and dynamic modelling; Combustion - vitrification de dechets radioactifs par plasma d'arc: modelisation de la thermique et de la dynamique

    Energy Technology Data Exchange (ETDEWEB)

    Barthelemy, B

    2003-07-01

    This thesis concerns the thermal and dynamic modelling for a combustion/vitrification process of surrogate radioactive waste under transferred arc plasma. The writer presents the confinement processes for radioactive waste using arc plasma and the different software used to model theses processes. This is followed by a description of our experimental equipment including a plasma arc reactor and an inductive system allowing the homogenization of glass temperature. A combustion/vitrification test is described. Thermal and material balances were discussed. The temperature fields of plasma arc and the glass frit conductivity are measured. Finally, the writer describes and clarifies the equations solved for the simulations of the electrically plasma arc and the glass melting including the thin layer of glass frit coating the crucible cold walls. The modelling results are presented in the form of spatial distribution of temperature, velocity and volume power... (author)

  13. Radioactive waste combustion-vitrification under arc plasma: thermal and dynamic modelling; Combustion - vitrification de dechets radioactifs par plasma d'arc: modelisation de la thermique et de la dynamique

    Energy Technology Data Exchange (ETDEWEB)

    Barthelemy, B

    2003-06-01

    This thesis concerns the thermal and dynamic modelling for a combustion/vitrification process of surrogate radioactive waste under transferred arc plasma. The writer presents the confinement processes for radioactive waste using arc plasma and the different software used to model theses processes. This is followed by a description of our experimental equipment including a plasma arc reactor and an inductive system allowing the homogenization of glass temperature. A combustion/vitrification test is described. Thermal and material balances were discussed. The temperature fields of plasma arc and the glass frit conductivity are measured. Finally, the writer describes and clarifies the equations solved for the simulations of the electrically plasma arc and the glass melting including the thin layer of glass frit coating the crucible cold walls. The modelling results are presented in the form of spatial distribution of temperature, velocity and voluminal power... (author)

  14. On the electrodynamic explanation of the retrograde motion of the electric arc

    International Nuclear Information System (INIS)

    Hong, J.S.; Allen, J.E.

    1992-01-01

    The retrograde motion of the cathode spot in a transverse magnetic field is one of the more intriguing phenomena of the electric arc. Although the phenomenon has been known for nearly ninety years since its discovery by Stark and has stimulated numerous investigations which result in many models giving explanation from different points of view, there is still no theory that can account both qualitatively and quantitatively for all the observations. Most of the explanations of the retrograde motion involve the study of cathode processes to give the preferential formation of new cathode spots along the retrograde direction. One line of explanation, which is rather different from the others, is based on electrodynamics. In this approach the retrograde motion is treated as an electrodynamic event. The present paper develops the theory suggested by Robson and von Engel. A more complete model is proposed and studied in detail by means of electromagnetic field theory. The results obtained not only show that the retrograde motion can be explained by the electrodynamics, but also confirm that the average current density on the cathode spot must be around the order of 10 12 A/m 2 . Recent studies of spot current density have shown values of this order. (author) 22 refs., 4 figs., 1 tab

  15. Electricity

    CERN Document Server

    Basford, Leslie

    2013-01-01

    Electricity Made Simple covers the fundamental principles underlying every aspect of electricity. The book discusses current; resistance including its measurement, Kirchhoff's laws, and resistors; electroheat, electromagnetics and electrochemistry; and the motor and generator effects of electromagnetic forces. The text also describes alternating current, circuits and inductors, alternating current circuits, and a.c. generators and motors. Other methods of generating electromagnetic forces are also considered. The book is useful for electrical engineering students.

  16. Similarity and scaling laws for transient arcs in a strongly accelerating gas flow

    International Nuclear Information System (INIS)

    Blundell, R.E.; Fang, M.T.C.; Terrill, R.M.

    1995-01-01

    A high-power electric arc, such as that burning in the interrupter (usually a supersonic nozzle) of a gas-blast circuit-breaker, presents a challenging problem both to theoretical and experimental investigators. The complex non-linear nature of the governing equations and steep radial gradients of arc quantities make analytic and numerical solution of the equations extremely difficult. Experimental work is also difficult due to the extreme physical conditions encountered. It is therefore highly desirable to use similarity theory to extend the limited results available to as wide a variety of arcing conditions as possible

  17. Mechanisms of the electron density depletion in the SAR arc region

    Directory of Open Access Journals (Sweden)

    A. V. Pavlov

    Full Text Available This study compares the measurements of electron density and temperature and the integral airglow intensity at 630 nm in the SAR arc region and slightly south of this (obtained by the Isis 2 spacecraft during the 18 December 1971 magnetic storm, with the model results obtained using the time dependent one-dimensional mathematical model of the Earth's ionosphere and plasmasphere. The explicit expression in the third Enskog approximation for the electron thermal conductivity coefficient in the multicomponent mixture of ionized gases and a simplified calculation method for this coefficient presents an opportunity to calculate more exactly the electron temperature and density and 630 nm emission within SAR arc region are used in the model. Collisions between N2 and hot thermal electrons in the SAR arc region produce vibrationally excited nitrogen molecules. It appears that the loss rate of O+(4S due to reactions with the vibrationally excited nitrogen is enough to explain electron density depression by a factor of two at F-region heights and the topside ionosphere density variations within the SAR arc if the erosion of plasma within geomagnetic field tubes, during the main phase of the geomagnetic storm and subsequent filling of geomagnetic tubes during the recovery phase, are considered. To explain the disagreement by a factor 1.5 between the observed and modeled SAR arc electron densities an additional plasma drift velocity ~–30 m s–1 in the ion continuity equations is needed during the recovery phase. This additional plasma drift velocity is likely caused by the transition from convecting to corotating flux tubes on the equatorward wall of the trough. The electron densities and temperatures and 630 nm integral intensity at the SAR arc and slightly south of this region as measured for the 18 December 1971 magnetic storm were correctly described by the model without perpendicular electric fields

  18. Lessons Learned "Establishing an Electrically Safe Work Condition" Specifically related to Racking Electrical Breakers

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Tommy Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Philbert Roland [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Garcia, Samuel Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-09

    During low voltage electrical equipment maintenance, a bad breaker was identified. The breaker was racked out from the substation cubicle without following the hazardous energy control process identified in the Integrated Work Document (IWD). The IWD required the substation to be in an electrically safe work condition prior to racking the breaker. Per NFPA 70E requirements, electrical equipment shall be put into an electrically safe work condition before an employee performs work on or interacts with equipment in a manner that increases the likelihood of creating an arc flash. Racking in or out a breaker on an energized bus may increase the likelihood of creating an arc flash dependent on equipment conditions. A thorough risk assessment must be performed prior to performing such a task. The risk assessment determines the risk control measures to be put in place prior to performing the work. Electrical Safety Officers (ESO) can assist in performing risk assessments and incorporating risk control measures.

  19. FORMATION OF THE INITIAL DISTRIBUTION OF PLASMA COMPONENTS ON THE PHASE PLANE OF LARGE PARTICLES METHOD IN ELECTRIC ARC SYNTHESIS CNS

    Directory of Open Access Journals (Sweden)

    G. V. Abramov

    2014-01-01

    Full Text Available The article deals with the modeling of charged particles in a multicomponent plasma of electric arc discharge with binary collisions in the synthesis of carbon nanostructures (CNS. One of the common methods of obtaining the quality of fullerenes and nanotubes is arc synthesis under inert gas (helium. The determination of the necessary conditions and the mechanism of formation of carbon clusters in the plasma forming set CNS will more effectively and efficiently manage this process. Feature of the problem is that in a plasma arc discharge is a large number of particle interactions and on the cathode surface. Due to the high temperatures and high energy concentration in plasma detailed experimental investigation difficult to carry out. With the aim of avoiding difficult and costly physical experiments developed numerical methods for the analysis of plasma processes. In this article to solve a system of equations of Maxwell - Boltzmann basis for the authors had taken the method of large particles, which reduces the amount of computation and reduce the demands on computing resources. The authors cites the general design scheme of the large particles, and the algorithm of particle distribution of a multicomponent plasma in the phase plane at the initial time. In conclusion, the author argues that the results in the future will define the zone satisfies the energy conditions, the probability of formation of a plasma cluster groups of carbon involved in the synthesis of the CNS.

  20. Electric drives

    CERN Document Server

    Boldea, Ion

    2005-01-01

    ENERGY CONVERSION IN ELECTRIC DRIVESElectric Drives: A DefinitionApplication Range of Electric DrivesEnergy Savings Pay Off RapidlyGlobal Energy Savings Through PEC DrivesMotor/Mechanical Load MatchMotion/Time Profile MatchLoad Dynamics and StabilityMultiquadrant OperationPerformance IndexesProblemsELECTRIC MOTORS FOR DRIVESElectric Drives: A Typical ConfigurationElectric Motors for DrivesDC Brush MotorsConventional AC MotorsPower Electronic Converter Dependent MotorsEnergy Conversion in Electric Motors/GeneratorsPOWER ELECTRONIC CONVERTERS (PECs) FOR DRIVESPower Electronic Switches (PESs)The

  1. Suppression of the Second Harmonic Subgroup Injected by an AC EAF: Design Considerations and Performance Estimation of a Shunt APF

    Directory of Open Access Journals (Sweden)

    Emre Durna

    2018-04-01

    Full Text Available This paper proposes a design methodology for an active power filter (APF system to suppress the second harmonic subgroup injected by an AC electric arc furnace (EAF to the utility grid. The APF system is composed of identical parallel units connected to the utility grid via a specially-designed coupling transformer. Each APF converter is a three-phase three-wire two-level voltage source converter (VSC. The number of parallel APF units, coupling transformer MVA rating, and turns ratio are optimized in the view of the ratings of commercially-available high voltage (HV IGBTs. In this research work, line current waveforms sampled at 25.6-kS/s on the medium voltage (MV side of a 65-MVA EAF transformer are then used to extract the second harmonic subgroup, 95-, 100-, and 105-Hz current components, by multiple synchronous reference frame (MSRF analysis, which was previously proposed to decompose EAF current interharmonics and harmonics in real-time. By summing up this digital data of the second harmonic subgroup, the reference current signal for the APF system is produced in real-time. A detailed model of the APF system is then run on EMTDC/PSCAD to follow the produced reference current signal according to hysteresis band control philosophy. The simulation results show that the proposed APF system can successfully suppress the second harmonic subgroup of an AC EAF.

  2. Dielectric behavior and ac electrical conductivity of nanocrystalline nickel aluminate

    International Nuclear Information System (INIS)

    Kurien, Siby; Mathew, Jose; Sebastian, Shajo; Potty, S.N.; George, K.C.

    2006-01-01

    Nanocrystalline nickel aluminate was prepared by chemical co-precipitation, and nanoparticles having different particle size were obtained by annealing the precursor at different temperatures. The TG/DTA measurements showed thermal decomposition was a three-step process with crystallisation of the spinel phase started at a temperature 420 deg. C. The X-ray diffraction analysis confirmed that the specimen began to crystallise on annealing above 420 deg. C and became almost crystalline at about 900 deg. C. The particle sizes were calculated from XRD. Dielectric properties of nickel aluminate were studied as a function of the frequency of the applied ac signal at different temperatures. It was seen the real dielectric constant ε', and dielectric loss tan δ decreased with frequency of applied field while the ac conductivity increased as the frequency of the applied field increased. The dielectric relaxation mechanism is explained by considering nanostructured NiAl 2 O 4 as a carrier-dominated dielectric with high density of hopping charge carriers. The variation of ε' with different particle size depends on several interfacial region parameters, which change with the average particle size

  3. Protective and control relays as coal-mine power-supply ACS subsystem

    Science.gov (United States)

    Kostin, V. N.; Minakova, T. E.

    2017-10-01

    The paper presents instantaneous selective short-circuit protection for the cabling of the underground part of a coal mine and central control algorithms as a Coal-Mine Power-Supply ACS Subsystem. In order to improve the reliability of electricity supply and reduce the mining equipment down-time, a dual channel relay protection and central control system is proposed as a subsystem of the coal-mine power-supply automated control system (PS ACS).

  4. AC, DC or EC motor? What type of engine for what purpose?; AC-, DC- oder EC-Motor? Welche Motorausfuehrung fuer welchen Zweck

    Energy Technology Data Exchange (ETDEWEB)

    Zeiff, Andreas; Homburg, Dietrich

    2009-01-15

    Electronics is the key technology in control engineering, but even the best control system requires reliable modules to transmit signals. Modern electric motors have become indispensable here. There are nearly as many motor types as there are applications. Electromagnetic conversion of electric into mechanical power is directly related to motor design. There are AC and DC motors, one-speed motors and variable-speed motors. Rotary momentum and synchronisation can be optimized by selecting the appropriate motor type, as can dynamics and detent torque. Correct selection of the electric motor therefore is essential for an optimal drive concept. (orig.)

  5. Plasma's sweeping arc

    International Nuclear Information System (INIS)

    Pichon, Max

    2010-01-01

    Full text: It is purely elemental, returning materials to their basic atoms through extreme heat and then recondensing them in useful ways. Plasma arc gasification is the latest advanced waste treatment (AWT)concept to hit our shores, courtesy of Zenergy Australia. According to its fans, plasma technology can eliminate all domestic waste to landfill and turn it into beneficial by-products. Japan has toyed with it for a decade, but the idea is now creating a bit of buzz, in the US in particular. Consultancy URS last year undertook a review of 16 advanced technologies for the City of Los Angeles and determined plasma arc gasification was one of the most promising. The Waste Management Association of Australia (VVMAA), however, is cautious - too many AWT projects here have failed to live up to their promises. Plasma arc gasification works on the same principle as a welding machine. An inert gas is passed through an electrical arc between two electrodes and becomes ionised (called plasma), reaching temperatures as high as 13,900°C. It is then injected into the plasma converter holding the waste. Zenergy is working with US technology company Plasma Waste Recycling (PWR), which says it can convert 80 per cent of waste to syngas, a mixture of carbon monoxide and hydrogen that can be used to generate renewable electricity. The inorganic compounds in the waste come out as a solid, either molten metal to be cast as scrap steel or a slag that can be used as a building material aggregate or spun into mineral wool. “The plasma arc process is the next generation for AWT plants as there is no incineration involved, no fly ash, no bottom ash and nothing left to landfill,” said Zenergy Australia's Paul Prasad. He estimates a plant could convert up to 175,000 tonnes of household waste a year into energy or reusable by-products. Technically, it also gets around Australia's fears over incineration, though whether that is really the case in practice remains to be seen. Prasad says

  6. Thermodynamic analysis of the selective chlorination of electric arc furnace dust

    International Nuclear Information System (INIS)

    Pickles, C.A.

    2009-01-01

    The remelting of automobile scrap in an electric arc furnace (EAF) results in the production of a dust, which contains high concentrations of the oxides of zinc, iron, calcium and other metals. Typically, the lead and zinc are of commercial value, while the other metals are not worth recovering. At the present time, EAF dusts are treated in high temperature Waelz rotary kiln-type processes, where the lead and zinc oxides are selectively reduced and simultaneously reoxidized and a crude zinc oxide is produced. Another alternative processing route is selective chlorination, in which the non-ferrous metals are preferentially chlorinated to their gaseous chlorides and in this manner separated from the iron. In the present research, a detailed thermodynamic analysis of this chlorination process has been performed and the following factors were investigated; temperature, amount of chlorine, lime content, silica content, presence of an inert gas and the oxygen potential. High lead and zinc recoveries as gaseous chlorides could be achieved but some of the iron oxide was also chlorinated. Additionally, the calcium oxide in the dust consumes chlorine, but this can be minimized by adding silica, which results in the formation of stable calcium silicates. The optimum conditions were determined for a typical dust composition. The selectivities achieved with chlorination were lower than those for reduction, as reported in the literature, but there are other advantages such as the potential recovery of copper.

  7. Thermodynamic analysis of the selective chlorination of electric arc furnace dust

    Energy Technology Data Exchange (ETDEWEB)

    Pickles, C.A., E-mail: pickles-c@mine.queensu.ca [Department of Mining Engineering, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada)

    2009-07-30

    The remelting of automobile scrap in an electric arc furnace (EAF) results in the production of a dust, which contains high concentrations of the oxides of zinc, iron, calcium and other metals. Typically, the lead and zinc are of commercial value, while the other metals are not worth recovering. At the present time, EAF dusts are treated in high temperature Waelz rotary kiln-type processes, where the lead and zinc oxides are selectively reduced and simultaneously reoxidized and a crude zinc oxide is produced. Another alternative processing route is selective chlorination, in which the non-ferrous metals are preferentially chlorinated to their gaseous chlorides and in this manner separated from the iron. In the present research, a detailed thermodynamic analysis of this chlorination process has been performed and the following factors were investigated; temperature, amount of chlorine, lime content, silica content, presence of an inert gas and the oxygen potential. High lead and zinc recoveries as gaseous chlorides could be achieved but some of the iron oxide was also chlorinated. Additionally, the calcium oxide in the dust consumes chlorine, but this can be minimized by adding silica, which results in the formation of stable calcium silicates. The optimum conditions were determined for a typical dust composition. The selectivities achieved with chlorination were lower than those for reduction, as reported in the literature, but there are other advantages such as the potential recovery of copper.

  8. Thermodynamic analysis of the selective chlorination of electric arc furnace dust.

    Science.gov (United States)

    Pickles, C A

    2009-07-30

    The remelting of automobile scrap in an electric arc furnace (EAF) results in the production of a dust, which contains high concentrations of the oxides of zinc, iron, calcium and other metals. Typically, the lead and zinc are of commercial value, while the other metals are not worth recovering. At the present time, EAF dusts are treated in high temperature Waelz rotary kiln-type processes, where the lead and zinc oxides are selectively reduced and simultaneously reoxidized and a crude zinc oxide is produced. Another alternative processing route is selective chlorination, in which the non-ferrous metals are preferentially chlorinated to their gaseous chlorides and in this manner separated from the iron. In the present research, a detailed thermodynamic analysis of this chlorination process has been performed and the following factors were investigated; temperature, amount of chlorine, lime content, silica content, presence of an inert gas and the oxygen potential. High lead and zinc recoveries as gaseous chlorides could be achieved but some of the iron oxide was also chlorinated. Additionally, the calcium oxide in the dust consumes chlorine, but this can be minimized by adding silica, which results in the formation of stable calcium silicates. The optimum conditions were determined for a typical dust composition. The selectivities achieved with chlorination were lower than those for reduction, as reported in the literature, but there are other advantages such as the potential recovery of copper.

  9. Effect of applied DC electric fields in flame spread over polyethylene-coated electrical wire

    KAUST Repository

    Jin, Young Kyu

    2011-03-01

    We experimentally investigated the effect of applied DC electric fields on the flame spread over polyethylene-coated electrical wire. The flame-spread rates over electrical wire with negative and positive DC electric fields from 0 to ±7 kV were measured and analyzed. We compared the results for DC electric fields with previous results for AC electric fields. We explored whether or not various flame shapes could be obtained with DC electric fields and the main reason for the flame-spread acceleration, particularly at the end of the electrical wire, for AC electric fields. We found that DC electric fields do not significantly affect the flame-spread rates. However, the flame shape is mildly altered by the ionic wind effect even for DC electric fields. The flame-spread rate is relevant to the flame shape and the slanted direction in spite of the mild impact. A possible explanation for the flame spread is given by a thermal-balance mechanism and fuel-vapor jet. © 2011 The Korean Society of Mechanical Engineers.

  10. Baking of tandem accelerator tube by low voltage arc discharge

    International Nuclear Information System (INIS)

    Nakajima, Yutaka

    1982-01-01

    In designing the accelerating tube for a static tandem accelerator in Kyushu University, the basic policy was as described below: individual unit composing the accelerating tube should fully withstand the electric field of 2 MV/m, and electric discharge must not be propagated from one unit to the adjacent unit when these are assembled to the accelerating tube. The accelerating tube units are each 25 cm in length, and both high and low energy sides are composed of 20 units, respectively. Although about 10 -9 Torr vacuum was obtained at the both ends of the accelerating tube by baking the tube at 300 to 350 deg C with electric heaters wound outside the tube in the conventional method, vast outgas was generated, which decreased vacuum by two or three figures if breakdown occurred through the intermediary of outgas. As a method of positively outgassing and cleaning the electrodes inside the accelerating tube, it was attempted to directly bake all the electrodes in the accelerating tube by causing strong arc discharge flowing H 2 gas in the tube. As a result of considering the conditions for this method, the low voltage arc discharge was employed using oxide cathodes. Thus, after implementing 10A arc discharge for several hours, the voltage was able to be raised to 10 MV almost immediately after the vacuum recovery, and further, after another conditioning for several hours, it was successful to raise voltage up to 11 MV. (Wakatsuki, Y.)

  11. Calculation of single phase AC and monopolar DC hybrid corona effects

    International Nuclear Information System (INIS)

    Zhao, T.; Sebo, S.A.; Kasten, D.G.

    1996-01-01

    Operating a hybrid HVac and HVdc line is an option for increasing the efficiency of power transmission and overcoming the difficulties in obtaining a new right-of-way. This paper proposes a new calculation method for the study of hybrid line corona. The proposed method can be used to calculate dc corona losses and corona currents in dc or ac conductors for single phase ac and monopolar dc hybrid lines. Profiles of electric field strength and ion current density at ground level can be estimated. The effects of the presence of an energized ac conductor on dc conductor corona and dc voltage on ac conductor corona are included in the method. Full-scale and reduced-scale experiments were utilized to investigate the hybrid line corona effects. Verification of the proposed calculation method is given

  12. Low AC Loss YBCO Coated Conductor Geometry by Direct Inkjet Printing

    Energy Technology Data Exchange (ETDEWEB)

    Rupich, Martin, Dr. [American Superconductor Corporation; Duckworth, Robert, Dr. [Oak Ridge National Laboratory

    2009-10-01

    The second generation (2G) high temperature superconductors (HTS) wire offers potential benefits for many electric power applications, including ones requiring filamentized conductors with low ac loss, such as transformers and fault current limiters. However, the use of 2G wire in these applications requires the development of both novel multi-filamentary conductor designs with lower ac losses and the development of advanced manufacturing technologies that enable the low-cost manufacturing of these filamentized architectures. This Phase I SBIR project focused on testing inkjet printing as a potential low-cost, roll-to-roll manufacturing technique to fabricate potential low ac loss filamentized architectures directly on the 2G template strips.

  13. Anode sheath transition in an anodic arc for synthesis of nanomaterials

    Science.gov (United States)

    Nemchinsky, V. A.; Raitses, Y.

    2016-06-01

    The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium.

  14. Anode sheath transition in an anodic arc for synthesis of nanomaterials

    International Nuclear Information System (INIS)

    Nemchinsky, V A; Raitses, Y

    2016-01-01

    The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium. (paper)

  15. Plasma-arc reactor for production possibility of powdered nano-size materials

    International Nuclear Information System (INIS)

    Hadzhiyski, V; Mihovsky, M; Gavrilova, R

    2011-01-01

    Nano-size materials of various chemical compositions find increasing application in life nowadays due to some of their unique properties. Plasma technologies are widely used in the production of a range of powdered nano-size materials (metals, alloys, oxides, nitrides, carbides, borides, carbonitrides, etc.), that have relatively high melting temperatures. Until recently, the so-called RF-plasma generated in induction plasma torches was most frequently applied. The subject of this paper is the developments of a new type of plasma-arc reactor, operated with transferred arc system for production of disperse nano-size materials. The new characteristics of the PLASMALAB reactor are the method of feeding the charge, plasma arc control and anode design. The disperse charge is fed by a charge feeding system operating on gravity principle through a hollow cathode of an arc plasma torch situated along the axis of a water-cooled wall vertical tubular reactor. The powdered material is brought into the zone of a plasma space generated by the DC rotating transferred plasma arc. The arc is subjected to Auto-Electro-Magnetic Rotation (AEMR) by an inductor serially connected to the anode circuit. The anode is in the form of a water-cooled copper ring. It is mounted concentrically within the cylindrical reactor, with its lower part electrically insulated from it. The electric parameters of the arc in the reactor and the quantity of processed charge are maintained at a level permitting generation of a volumetric plasma discharge. This mode enables one to attain high mean mass temperature while the processed disperse material flows along the reactor axis through the plasma zone where the main physico-chemical processes take place. The product obtained leaves the reactor through the annular anode, from where it enters a cooling chamber for fixing the produced nano-structure. Experiments for AlN synthesis from aluminium power and nitrogen were carried out using the plasma reactor

  16. Two-temperature chemically non-equilibrium modelling of transferred arcs

    International Nuclear Information System (INIS)

    Baeva, M; Kozakov, R; Gorchakov, S; Uhrlandt, D

    2012-01-01

    A two-temperature chemically non-equilibrium model describing in a self-consistent manner the heat transfer, the plasma chemistry, the electric and magnetic field in a high-current free-burning arc in argon has been developed. The model is aimed at unifying the description of a thermionic tungsten cathode, a flat copper anode, and the arc plasma including the electrode sheath regions. The heat transfer in the electrodes is coupled to the plasma heat transfer considering the energy fluxes onto the electrode boundaries with the plasma. The results of the non-equilibrium model for an arc current of 200 A and an argon flow rate of 12 slpm are presented along with results obtained from a model based on the assumption of local thermodynamic equilibrium (LTE) and from optical emission spectroscopy. The plasma shows a near-LTE behaviour along the arc axis and in a region surrounding the axis which becomes wider towards the anode. In the near-electrode regions, a large deviation from LTE is observed. The results are in good agreement with experimental findings from optical emission spectroscopy. (paper)

  17. Resistivity of flame plasma in an electric field

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1989-01-01

    A generalized Ohm's law is obtained for a flame plasma in an electric field for the study of arc resistivity in an electromagnetic launcher (EML). The effective resistivity of flame plasma is reduced by the source, which suggests the injection of premixed combustible fuel into the arc plasma in EML in order to reduce the electron energy of the arc. The reduction of electron energy in the arc is desirable to minimize the damage of electrodes in EML. (author)

  18. Incidence Angle Effect of Energetic Carbon Ions on Deposition Rate, Topography, and Structure of Ultrathin Amorphous Carbon Films Deposited by Filtered Cathodic Vacuum Arc

    KAUST Repository

    Wang, N.; Komvopoulos, K.

    2012-01-01

    The effect of the incidence angle of energetic carbon ions on the thickness, topography, and structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) was examined in the context of numerical

  19. A hybrid simulation model for a stable auroral arc

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    Full Text Available We present a new type of hybrid simulation model, intended to simulate a single stable auroral arc in the latitude/altitude plane. The ionospheric ions are treated as particles, the electrons are assumed to follow a Boltzmann response and the magnetospheric ions are assumed to be so hot that they form a background population unaffected by the electric fields that arise. The system is driven by assumed parallel electron energisation causing a primary negative charge cloud and an associated potential structure to build up. The results show how a closed potential structure and density depletion of an auroral arc build up and how they decay after the driver is turned off. The model also produces upgoing energetic ion beams and predicts strong static perpendicular electric fields to be found in a relatively narrow altitude range (~ 5000–11 000 km.

    Key words. Magnetospheric physics (magnetosphere-ionosphere interactions; auroral phenomena – Space plasma physics (numerical simulation studies

  20. AC losses in horizontally parallel HTS tapes for possible wireless power transfer applications

    Science.gov (United States)

    Shen, Boyang; Geng, Jianzhao; Zhang, Xiuchang; Fu, Lin; Li, Chao; Zhang, Heng; Dong, Qihuan; Ma, Jun; Gawith, James; Coombs, T. A.

    2017-12-01

    This paper presents the concept of using horizontally parallel HTS tapes with AC loss study, and the investigation on possible wireless power transfer (WPT) applications. An example of three parallel HTS tapes was proposed, whose AC loss study was carried out both from experiment using electrical method; and simulation using 2D H-formulation on the FEM platform of COMSOL Multiphysics. The electromagnetic induction around the three parallel tapes was monitored using COMSOL simulation. The electromagnetic induction and AC losses generated by a conventional three turn coil was simulated as well, and then compared to the case of three parallel tapes with the same AC transport current. The analysis demonstrates that HTS parallel tapes could be potentially used into wireless power transfer systems, which could have lower total AC losses than conventional HTS coils.

  1. Direct electrical arc ignition of hybrid rocket motors

    Science.gov (United States)

    Judson, Michael I., Jr.

    Hybrid rockets motors provide distinct safety advantages when compared to traditional liquid or solid propellant systems, due to the inherent stability and relative inertness of the propellants prior to established combustion. As a result of this inherent propellant stability, hybrid motors have historically proven difficult to ignite. State of the art hybrid igniter designs continue to require solid or liquid reactants distinct from the main propellants. These ignition methods however, reintroduce to the hybrid propulsion system the safety and complexity disadvantages associated with traditional liquid or solid propellants. The results of this study demonstrate the feasibility of a novel direct electrostatic arc ignition method for hybrid motors. A series of small prototype stand-alone thrusters demonstrating this technology were successfully designed and tested using Acrylonitrile Butadiene Styrene (ABS) plastic and Gaseous Oxygen (GOX) as propellants. Measurements of input voltage and current demonstrated that arc-ignition will occur using as little as 10 watts peak power and less than 5 joules total energy. The motor developed for the stand-alone small thruster was adapted as a gas generator to ignite a medium-scale hybrid rocket motor using nitrous oxide /and HTPB as propellants. Multiple consecutive ignitions were performed. A large data set as well as a collection of development `lessons learned' were compiled to guide future development and research. Since the completion of this original groundwork research, the concept has been developed into a reliable, operational igniter system for a 75mm hybrid motor using both gaseous oxygen and liquid nitrous oxide as oxidizers. A development map of the direct spark ignition concept is presented showing the flow of key lessons learned between this original work and later follow on development.

  2. TIG Wire and Arc Additive Manufacturing of 5A06 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    HUANG Dan

    2017-03-01

    Full Text Available Wire and arc additive manufacturing(WAAM was investigated by tungsten inert gas arc welding method(TIG, in which φ1.2mm filler wire of aluminum alloy 5A06(Al-6Mg-Mn-Si was selected as deposition metal. The prototyping process was conducted by a TIG power source(working in AC mode manipulated by a four-axis linkage CNC machine. Backplate preheating temperature and arc current on deposited morphologies of single layer and multi-layer were researched. The microstructure was observed and the sample tensile strength was tested. For single layer, a criterion that describes the correlation between backplate preheating temperature and arc peak current, of which both contribute to the smoothening of the deposited layer. The results show that the layer height drops sharply from the first layer of 3.4mm and keeps at 1.7mm after the 8th layer. Fine dendrite grain and equiaxed grain are found inside a layer and coarsest columnar dendrite structure at layer boundary zone; whereas the microstructure of top region of the deposited sample changes from fine dendrite grain to equiaxed grain that turns to be the finest structure. Mechanical property of the deposited sample is isotropic, in which the tensile strength is approximately 295MPa with the elongation around 36%.

  3. Formation of self-organized anode patterns in arc discharge simulations

    International Nuclear Information System (INIS)

    Trelles, Juan Pablo

    2013-01-01

    Pattern formation and self-organization are phenomena commonly observed experimentally in diverse types of plasma systems, including atmospheric-pressure electric arc discharges. However, numerical simulations reproducing anode pattern formation in arc discharges have proven exceedingly elusive. Time-dependent three-dimensional thermodynamic non-equilibrium simulations reveal the spontaneous formation of self-organized patterns of anode attachment spots in the free-burning arc, a canonical thermal plasma flow established by a constant dc current between an axi-symmetric electrode configuration in the absence of external forcing. The number of spots, their size and distribution within the pattern depend on the applied total current and on the resolution of the spatial discretization, whereas the main properties of the plasma flow, such as maximum temperatures, velocity and voltage drop, depend only on the former. The sensibility of the solution to the spatial discretization stresses the computational requirements for comprehensive arc discharge simulations. The obtained anode patterns qualitatively agree with experimental observations and confirm that the spots originate at the fringes of the arc–anode attachment. The results imply that heavy-species–electron energy equilibration, in addition to thermal instability, has a dominant role in the formation of anode spots in arc discharges. (paper)

  4. Prediction of scaling physics laws for proton acceleration with extended parameter space of the NIF ARC

    Science.gov (United States)

    Bhutwala, Krish; Beg, Farhat; Mariscal, Derek; Wilks, Scott; Ma, Tammy

    2017-10-01

    The Advanced Radiographic Capability (ARC) laser at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is the world's most energetic short-pulse laser. It comprises four beamlets, each of substantial energy ( 1.5 kJ), extended short-pulse duration (10-30 ps), and large focal spot (>=50% of energy in 150 µm spot). This allows ARC to achieve proton and light ion acceleration via the Target Normal Sheath Acceleration (TNSA) mechanism, but it is yet unknown how proton beam characteristics scale with ARC-regime laser parameters. As theory has also not yet been validated for laser-generated protons at ARC-regime laser parameters, we attempt to formulate the scaling physics of proton beam characteristics as a function of laser energy, intensity, focal spot size, pulse length, target geometry, etc. through a review of relevant proton acceleration experiments from laser facilities across the world. These predicted scaling laws should then guide target design and future diagnostics for desired proton beam experiments on the NIF ARC. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LLNL LDRD program under tracking code 17-ERD-039.

  5. Structural, dielectric and AC conductivity study of Sb2O3 thin film ...

    Indian Academy of Sciences (India)

    52

    However, to date, no reports have appeared on impedance spectroscopy, modulus behavior, electrical conductivity, dielectric relaxation and dielectric properties of crystalline Sb2O3 thin films. This paper deals for the first time with the frequency and temperature dependence of AC conductivity and complex electric modulus ...

  6. Increased Ac excision (iae): Arabidopsis thaliana mutations affecting Ac transposition

    International Nuclear Information System (INIS)

    Jarvis, P.; Belzile, F.; Page, T.; Dean, C.

    1997-01-01

    The maize transposable element Ac is highly active in the heterologous hosts tobacco and tomato, but shows very much reduced levels of activity in Arabidopsis. A mutagenesis experiment was undertaken with the aim of identifying Arabidopsis host factors responsible for the observed low levels of Ac activity. Seed from a line carrying a single copy of the Ac element inserted into the streptomycin phosphotransferase (SPT) reporter fusion, and which displayed typically low levels of Ac activity, were mutagenized using gamma rays. Nineteen mutants displaying high levels of somatic Ac activity, as judged by their highly variegated phenotypes, were isolated after screening the M2 generation on streptomycin-containing medium. The mutations fall into two complementation groups, iae1 and iae2, are unlinked to the SPT::Ac locus and segregate in a Mendelian fashion. The iae1 mutation is recessive and the iae2 mutation is semi-dominant. The iae1 and iae2 mutants show 550- and 70-fold increases, respectively, in the average number of Ac excision sectors per cotyledon. The IAE1 locus maps to chromosome 2, whereas the SPT::Ac reporter maps to chromosome 3. A molecular study of Ac activity in the iae1 mutant confirmed the very high levels of Ac excision predicted using the phenotypic assay, but revealed only low levels of Ac re-insertion. Analyses of germinal transposition in the iae1 mutant demonstrated an average germinal excision frequency of 3% and a frequency of independent Ac re-insertions following germinal excision of 22%. The iae mutants represents a possible means of improving the efficiency of Ac/Ds transposon tagging systems in Arabidopsis, and will enable the dissection of host involvement in Ac transposition and the mechanisms employed for controlling transposable element activity

  7. Dielectric behaviour and a.c. conductivity in CuxFe3–xO4 ferrite

    Indian Academy of Sciences (India)

    Unknown

    frequency on the dielectric behaviour and a.c. electrical conductivity offers valuable information about conduction phenomenon in ferrites based on localized electric charge carriers (El Hitti 1996). The d.c. electrical conductivity and thermoelectric power have already been studied for copper ferrite (Patil et al 1994), while a.c. ...

  8. Experimental investigation on the motion of cathode spots in removing oxide film on metal surface by vacuum arc

    International Nuclear Information System (INIS)

    Shi Zongqian; Jia Shenli; Wang Lijun; Yuan Qingjun; Song Xiaochuan

    2008-01-01

    The motion of vacuum arc cathode spots has a very important influence on the efficiency of removing the oxide film on the metal surface. In this paper, the characteristics of cathode spot motion are investigated experimentally. Experiments were conducted in a detachable vacuum chamber with ac (50 Hz) arc current of 1 kA (rms). A stainless steel plate covered by an oxide layer was used as the cathode. The motion of cathode spots during the descaling process was photographed by a high-speed digital camera with an exposure time of 2 μs. Experimental results indicate that the motion of cathode spots is influenced by the interaction among individual cathode jets and the position of the anode as well as the surface condition. The waveform of arc voltage is also influenced by the motion of cathode spots

  9. Rheological Characterization of Warm-Modified Asphalt Mastics Containing Electric Arc Furnace Steel Slags

    Directory of Open Access Journals (Sweden)

    M. Pasetto

    2016-01-01

    Full Text Available The environmental sustainability of road materials and technologies plays a key role in pavement engineering. In this sense, the use of Warm Mix Asphalt (WMA, that is, a modified asphalt concrete that can be produced and applied at lower temperature, is considered an effective solution leading to environmental and operational benefits. The environmental sustainability of WMA can be further enhanced with the inclusion of steel slag in partial substitution of natural aggregates. Nevertheless, such innovative material applied at lower temperatures containing warm additives and steel slag should be able to guarantee at least the same performance of traditional hot mix asphalts, thus assuring acceptable mechanical properties and durability. Therefore, the purpose of this study is to investigate the rheological behaviour of bituminous mastics obtained combining a warm-modified binder and a filler (material passing to 0.063 mm coming from electric arc furnace steel slag. To evaluate the influence of both warm additive and steel slag, a plain binder and limestone filler were also used for comparison purposes. Complex modulus and permanent deformation resistance of bitumens and mastics were assessed using a dynamic shear rheometer. Experimental results showed that steel slag warm mastics assure enhanced performance demonstrating promising applicability.

  10. Design and analysis of high current DC power supply for vacuum arc melting furnace

    International Nuclear Information System (INIS)

    Adhikary, Santu; Sharma, Vishnu Kumar; Sharma, Archana

    2015-01-01

    Vacuum Arc furnace (VAR), is used for melting of ingot in many industrial units. Till now in many industries the existing power supply for VAR is based on magnetic amplifier, which is a lossy component. Thus an efficient topology is needed to develop as a suitable alternative for the existing power supply. Basically Arc in electrical furnace is an unstable phenomena, it has drooping characteristic in nature so to stabilize the arc we need a power supply across the load (arc), which is more drooping in nature than arc characteristics. So this paper highlights the stability and response analysis of several alternative topologies and Stabilization of arc using the feedback and firing angle control in MATLAB. The work also covers comparison among those topologies to choose the optimized topology as a suitable alternative of the existing magnetic amplifier based power supply and the detail design of the proposed topology with a tested trail circuit in PROTEUS. (author)

  11. Investigation of High Voltage Breakdown and Arc Localization in RF Structures

    International Nuclear Information System (INIS)

    Bigelow, T.S.; Goulding, R.H.; Swain, D.W.

    1999-01-01

    An effort is underway to improve the voltage standoff capabilities of ion cyclotron range of frequencies (ICRF) heating and current drive systems. One approach is to develop techniques for determining the location of an electrical breakdown (arc) when it occurs. A technique is described which uses a measurement of the reflection coefficient of a swept frequency signal to determine the arc location. The technique has several advantages including a requirement for only a small number of sensors and very simple data interpretation. In addition a test stand is described which will be used for studies of rf arc behavior. The device uses a quarter-wave resonator to produce voltages to 90 kV in the frequency range of 55-80 MHz

  12. Application of alkaline solid residue of electric arc furnace dust for neutralization/purification of electroplating wastewaters.

    Science.gov (United States)

    Elez, Loris; Orescanin, Visnja; Sofilic, Tahir; Mikulic, Nenad; Ruk, Damir

    2008-10-01

    The purpose of this work was development of an appropriate procedure for the neutralization/purification of electroplating wastewater (EWW) with alkaline solid residue (ASR) by-product of the alkaline extraction of zinc and lead from electric arc furnace dust (EAFD). Removal efficiency of ASR at optimum purification conditions (pH 8 and mixing time; 20 minutes) for the elements Pb, Cr (VI), Cr (III), Fe, Ni, Cu and Zn were 94.92%, 97.58%, 99.59%, 99.48%, 97.25% and 99.97%, respectively. The concentrations of all elements in the purified wastewater were significantly lower in relation to the upper permissible limit for wastewaters suitable for discharge into the environment. The remaining waste mud was regenerated in the strong alkaline medium and successfully applied once again for the neutralization/purification of EWW. Removal efficiencies of heavy metals accomplished with regenerated waste mud were comparable to these achieved by original ASR. Elemental concentrations in the leachates of the waste mud were in accordance with regulated values.

  13. Industrial study of iron oxide reduction by injection of carbon particles into the electric arc furnace

    International Nuclear Information System (INIS)

    Conejo, A. N.; Torres, R.; Cuellar, E.

    1999-01-01

    An industrial study was conducted in electric arc furnaces (EAF) employing 100% direct reduced iron to evaluate the oxidation level of the slag-metal system. Energy consumption is decreased by injecting gaseous oxygen, however, slag oxidation also increases. In order to reduce the extent of oxidation while keeping a high volume of the oxygen injected , it is required: a) to optimize the carbon injection practice, b) to increase the carbon concentration of sponge iron, c) to operate with soluble carbon in both the metal and the slag beyond a critical level and d) to employ a low temperature profile, on average 1,650 degree centigrade. A method to define the proper amount of carbon in sponge iron which considers their metallization as well as the amount of oxygen injected is proposed. The position of the lance is critical in order to optimize the practice of carbon injection and assure a better residence time of the carbon particles within the furnace. (Author) 23 refs

  14. Enhanced Understanding of High Energy Arcing Fault Phenomena in NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Seuk; Kim, Me Kyoung; Lee, Sang Kyu [KINS, Daejeon (Korea, Republic of)

    2016-05-15

    This study reviews the recent HEAF events in nuclear power plants (NPPs) and investigates the HEAF phenomena with the experiment data performed at KEMA supported by OECD/NEA HEAF project. High Energy Arcing Fault (HEAF) can occur in an electrical components or systems through an arc path to ground and has the potential to cause extensive damage to the equipment involved. The intense radiant heat produced by the arc can cause significant damage or even destructions of equipment and can injure people. Affected components include a specific high-energy electrical devices, such as switch gears, load centers, bus bars/ducts, transformers, cables, etc., operating mainly on voltage levels of more than 380V but the voltage levels in NUREG/CR-6580 is more than 440. As stated before, HEAF may cause the significant damage to adjacent facilities as well as the equipment involved. Quantitative estimation of the equipment damage, determining the damage area, and predicting the secondary fire after initiating HEAF event should be further studied in depth. Draft test report produced by KEMA does not give comprehensive understanding of the HEAF phenomena. It is expected that a detail information of slug calorimeter and the test data to show the HEAF characteristics will be given in the final test reports.

  15. Theoretical Simulation on the Assembly of Carbon Nanotubes Between Electrodes by AC Dielectrophoresis

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2008-01-01

    Full Text Available Abstract The assembly of single-walled carbon nanotubes (SWCNTs using the AC dielectrophoresis technique is studied theoretically. It is found that the comb electrode bears better position control of SWCNTs compared to the parallel electrode. In the assembly, when some SWCNTs bridge the electrode first, they can greatly alter the local electrical field so as to “screen off” later coming SWCNTs, which contributes to the formation of dispersed SWCNT array. The screening distance scales with the gap width of electrodes and the length of SWCNTs, which provides a way to estimate the assembled density of SWCNTs. The influence of thermal noise on SWCNTs alignment is also analyzed in the simulation. It is shown that the status of the array distribution for SWCNTs is decided by the competition between the thermal noise and the AC electric-field strength. This influence of the thermal noise can be suppressed by using higher AC voltage to assemble the SWCNTs.

  16. Influence of Electric Fields and Conductivity on Pollen Tube Growth assessed via Electrical Lab-on-Chip

    Science.gov (United States)

    Agudelo, Carlos; Packirisamy, Muthukumaran; Geitmann, Anja

    2016-01-01

    Pollen tubes are polarly growing plant cells that are able to rapidly respond to a combination of chemical, mechanical, and electrical cues. This behavioural feature allows them to invade the flower pistil and deliver the sperm cells in highly targeted manner to receptive ovules in order to accomplish fertilization. How signals are perceived and processed in the pollen tube is still poorly understood. Evidence for electrical guidance in particular is vague and highly contradictory. To generate reproducible experimental conditions for the investigation of the effect of electric fields on pollen tube growth we developed an Electrical Lab-on-Chip (ELoC). Pollen from the species Camellia displayed differential sensitivity to electric fields depending on whether the entire cell or only its growing tip was exposed. The response to DC fields was dramatically higher than that to AC fields of the same strength. However, AC fields were found to restore and even promote pollen growth. Surprisingly, the pollen tube response correlated with the conductivity of the growth medium under different AC frequencies—consistent with the notion that the effect of the field on pollen tube growth may be mediated via its effect on the motion of ions. PMID:26804186

  17. Electric transmission technology

    International Nuclear Information System (INIS)

    Shah, K.R.

    1990-01-01

    Electric transmission technology has matured and can transmit bulk power more reliably and economically than the technology 10 years ago.In 1882, Marcel Depres transmitted 15 kW electric power at 2 kV, using a constant direct current; present transmission voltages have risen to ± 600 kV direct current (DC) and 765 kV alternating current (AC), and it is now possible to transmit bulk electric power at voltages as high as ± 1000 kV DC and 1500 kV AC. Affordable computer systems are now available to optimize transmission reliably. New materials have reduced the bulk of insulation for lines and equipment. New conducting materials and configurations have reduced losses in transmission. Advances in line structures and conductor motion, understanding of flashover characteristics of insulators and air-gaps and electrical performance of lines have resulted in more compact urban transmission lines. (author). 15 refs., 7 tabs., 11 figs

  18. Numerical and experimental study of heat transfers in an arc plasma. Application to TIG arc welding

    International Nuclear Information System (INIS)

    Borel, Damien

    2013-01-01

    The arc welding is used for many industrial applications, especially GTA welding. Given the excellent quality of the produced welds, GTA welding is used for the majority of the interventions (repairs, joined sealing) on the French nuclear park. This work is part of a project carried out by EDF R and D which aims to simulate the whole process and builds a tool able to predict the welds quality. In this study, we focus on the development of a predictive model of the exchanged heat flux at the arc - work piece interface, responsible of the work piece fusion. The modeling of the arc plasma using the electric module of the hydrodynamics software Code Saturne R developed by EDF R and D is required. Two types of experimental tests are jointly carried out to validate this numerical model: i) on density and temperature measurements of plasma by atomic emission spectroscopy and ii) on the evaluation of the heat transfers on the work piece surface. This work also aims at demonstrate that the usual method of using an equivalent thermal source to model the welding process, can be replaced by our plasma model, without the numerous trials inherent to the usual method. (author)

  19. Simulation of electric arc with hysteresis during discharge of a fusion superconducting magnet system

    International Nuclear Information System (INIS)

    Kraus, H.G.; Jones, J.L.

    1986-01-01

    Simulation of an internal voltage induced arc strike and attendant voltage-current hysteresis characteristics in an FED/INTOR scale superconducting magnet and circuit protection system during discharge was performed. To begin, an analytical solution was used to investigate system response for an internally shorted magnet and simplified circuit protection system during magnet discharge. The short produced a current split within the magnet resulting in a transformer like mutual inductance effect. Thus, the coupling coefficient was introduced in the equations to be physically realistic and to prevent degeneration of the associated eigenvalue problem. The effects of varying short resistance, dump resistance, and number of coil turns shorted are presented. This led to simulation of an arc strike, including hysteresis effects, which is then compared to the usual constant resistance used to simulate magnet shorts. Tracking of arc characteristics was made possible through specially developed multiple tripping capabilities recently incorporated into MSCAP (Magnet Systems Circuitry Analysis Program) for safety and instrumentation control simulation

  20. Swirling flow and its influence on dc arcs in a duo-flow hybrid circuit breaker

    International Nuclear Information System (INIS)

    Kweon, K Y; Lee, H S; Yan, J D; Fang, M T C; Park, K Y

    2009-01-01

    The effects of swirling flow on the behaviour of dc SF 6 arcs in a duo-flow nozzle are computationally investigated in the electric current range 3-7 kA. A swirling flow is produced by the interaction of the magnetic field of a current-carrying coil and the plasma. Results show that a strong swirling flow is generated in regions where a large radial current density exists as a result of the conducting arc column rapidly changing its radial dimension. The presence of the swirling flow reduces the axis pressure, modifies the arc shape and slightly lowers the arc voltage (2-5%) in comparison with the case without considering the swirling flow. The different natures of swirling flows in a plasma jet/arc heater and in a hybrid circuit breaker are also discussed.

  1. Electrical and Biological Effects of Transmission Lines: A Review.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jack M.

    1989-06-01

    This review describes the electrical properties of a-c and d-c transmission lines and the resulting effects on plants, animals, and people. Methods used by BPA to mitigate undesirable effects are also discussed. Although much of the information in this review pertains to high-voltage transmission lines, information on distribution lines and electrical appliances is included. The electrical properties discussed are electric and magnetic fields and corona: first for alternating-current (a-c) lines, then for direct current (d-c).

  2. Low AC-Loss Superconducting Cable Technology for Electric Aircraft Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The availability of low AC loss magnesium diboride (MgB2) superconducting wires enables much lighter weight superconducting stator coils than with any other metal or...

  3. Effect of AC electric fields on the stabilization of premixed bunsen flames

    KAUST Repository

    Kim, Minkuk; Chung, Suk-Ho; Kim, Hwanho

    2011-01-01

    The stabilization characteristics of laminar premixed bunsen flames have been investigated experimentally for stoichiometric methane-air mixture by applying AC voltage to the nozzle with the single-electrode configuration. The detachment velocity

  4. The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition

    KAUST Repository

    Wang, Na

    2013-08-01

    The structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) deposition was investigated by high-resolution transmission electron microscopy, electron energy loss spectroscopy, and x-ray photoelectron spectroscopy. Results of the plasmon excitation energy shift and through-thickness elemental concentration show a multilayered a-C film structure comprising an interface layer consisting of C, Si, and, possibly, SiC, a buffer layer with continuously increasing sp 3 fraction, a relatively thicker layer (bulk film) of constant sp 3 content, and an ultrathin surface layer rich in sp 2 hybridization. A detailed study of the C K-edge spectrum indicates that the buffer layer between the interface layer and the bulk film is due to the partial backscattering of C+ ions interacting with the heavy atoms of the silicon substrate. The results of this study provide insight into the minimum thickness of a-C films deposited by FCVA under optimum substrate bias conditions. Copyright © 2013 Materials Research Society.

  5. The electrodynamic, thermal, and energetic character of intense sun-aligned arcs in the polar cap

    International Nuclear Information System (INIS)

    Valladares, C.E.; Carlson, H.C. Jr.

    1991-01-01

    The authors report here measurements of two intense Sun-aligned arcs. The two arcs were diagnosed on two different nights (February 26 and March 1, 1987) using the Sondre Stromfjord radar as a stand-alone diagnostic. Repeatable patterns are found in mesoscale area (order 10 3 km by 10 3 km) maps of altitude profiles for observed electron and ion gas number densities, temperatures and line-of-sight velocities, and projected mesoscale area maps of derived electric fields, Pedersen and Hall conductivities (N e , T e , T i , V, E, Σ p , Σ H ), horizontal and field-aligned currents, joule heating rate, and Poynting flux. They confirm, for the first time with continuous mesoscale area maps, that the arcs have the anticipated simple arc electrodynamics. That is, the visual and enhanced ionization signatures of the arc are produced by incoming energetic electrons carrying the outgoing current from the electric field convergence in the arc. Strong electron temperature enhancements (>2,000 K) are found as expected within the sheets of ionizing particle precipitation. Dawn to dusk decreases in the antisunward plasma flow of order 1 km s -1 , across order 100 km, correspond to peak electron densities of order 10 5 cm -3 down to altitudes as low as 120 km, and upward currents of order 1 μA m -2 . These data also lead to important implications for the physics of polar cap arcs. The high-velocity (antisunward flow on the dawnside) edge of the arc marks the location of strong persistent Joule heating driven by downward Poynting flux. The deposition rate into the atmosphere of the net electromagnetic energy well exceeds the net particle energy deposited by the ionizing energetic electron flux. This heating is a substantial source of heat into the polar thermosphere

  6. Clustering of arc volcanoes caused by temperature perturbations in the back-arc mantle.

    Science.gov (United States)

    Lee, Changyeol; Wada, Ikuko

    2017-06-29

    Clustering of arc volcanoes in subduction zones indicates along-arc variation in the physical condition of the underlying mantle where majority of arc magmas are generated. The sub-arc mantle is brought in from the back-arc largely by slab-driven mantle wedge flow. Dynamic processes in the back-arc, such as small-scale mantle convection, are likely to cause lateral variations in the back-arc mantle temperature. Here we use a simple three-dimensional numerical model to quantify the effects of back-arc temperature perturbations on the mantle wedge flow pattern and sub-arc mantle temperature. Our model calculations show that relatively small temperature perturbations in the back-arc result in vigorous inflow of hotter mantle and subdued inflow of colder mantle beneath the arc due to the temperature dependence of the mantle viscosity. This causes a three-dimensional mantle flow pattern that amplifies the along-arc variations in the sub-arc mantle temperature, providing a simple mechanism for volcano clustering.

  7. AC Initiation System.

    Science.gov (United States)

    An ac initiation system is described which uses three ac transmission signals interlocked for safety by frequency, phase, and power discrimination...The ac initiation system is pre-armed by the application of two ac signals have the proper phases, and activates a load when an ac power signal of the proper frequency and power level is applied. (Author)

  8. Mathematical modelling of heat transfer in dedusting plants and comparison to off-gas measurements at electric arc furnaces

    International Nuclear Information System (INIS)

    Kirschen, Marcus; Velikorodov, Viktor; Pfeifer, Herbert

    2006-01-01

    A mathematical simulation tool is presented in order to model enthalpy flow rates of off-gas and heat transfer of cooling systems at dedusting plants in electric steel making sites. The flexibility of the simulation tool is based on a user-defined series of modular units that describe elementary units of industrial dedusting systems, e.g. water-cooled hot gas duct, air injector, drop-out box, mixing chamber, post-combustion chamber, filter, etc. Results of simulation were checked with measurements at industrial electric steel making plants in order to validate the models for turbulence, heat transfer and chemical reaction kinetics. Comparison between computed and measured gas temperature and composition yield excellent agreement. The simulation tool is used to calculate off-gas temperature and volume flow rate, where off-gas measurements are very difficult to apply due to high gas temperatures and high dust load. Heat transfer from the off-gas to the cooling system was calculated in detail for a pressurised hot water EAF cooling system in order to investigate the impact of the cooling system and the dedusting plant operation on the energy sinks of the electric arc furnace. It is shown that optimum efficiency of post-combustion of EAF off-gas in the water-cooled hot gas duct requires continuous off-gas analysis. Common operation parameters of EAF dedusting systems do not consider the non-steady-state of the EAF off-gas emission efficiently

  9. Mathematical modelling of heat transfer in dedusting plants and comparison to off-gas measurements at electric arc furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Kirschen, Marcus [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany)]. E-mail: kirschen@iob.rwth-aachen.de; Velikorodov, Viktor [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany); Pfeifer, Herbert [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany)

    2006-11-15

    A mathematical simulation tool is presented in order to model enthalpy flow rates of off-gas and heat transfer of cooling systems at dedusting plants in electric steel making sites. The flexibility of the simulation tool is based on a user-defined series of modular units that describe elementary units of industrial dedusting systems, e.g. water-cooled hot gas duct, air injector, drop-out box, mixing chamber, post-combustion chamber, filter, etc. Results of simulation were checked with measurements at industrial electric steel making plants in order to validate the models for turbulence, heat transfer and chemical reaction kinetics. Comparison between computed and measured gas temperature and composition yield excellent agreement. The simulation tool is used to calculate off-gas temperature and volume flow rate, where off-gas measurements are very difficult to apply due to high gas temperatures and high dust load. Heat transfer from the off-gas to the cooling system was calculated in detail for a pressurised hot water EAF cooling system in order to investigate the impact of the cooling system and the dedusting plant operation on the energy sinks of the electric arc furnace. It is shown that optimum efficiency of post-combustion of EAF off-gas in the water-cooled hot gas duct requires continuous off-gas analysis. Common operation parameters of EAF dedusting systems do not consider the non-steady-state of the EAF off-gas emission efficiently.

  10. Proposition of a modification to the VAR process and its application in the consolidation of pressed zircaloy chips and the evaluation of the dynamical system of the electric arc; Proposicao de um processo alternativo a fusao via forno VAR para a consolidacao de cavacos prensados de zircaloy e estudo do sistema dinamico do arco eletrico

    Energy Technology Data Exchange (ETDEWEB)

    Mucsi, Cristiano Stefano

    2005-07-01

    The objective of this work is the investigation of a new process as an alternative to the Vacuum Arc Remelting technology in the consolidation of Zircaloy chips. A procedure is proposed for the recycling of primary Zircaloy scraps by means of a modified VAR furnace. The performed studies were made in order to optimise the low cost new devices added to existing VAR furnace prototype, find ideal operational conditions, evaluate data acquisition system and the electric arc dynamical system in order to made viable the automated control of the modified VAR prototype. A funnel-crucible special device was developed and installed in a VAR prototype furnace allowing ingots to be obtained from pressed chips. This indicated the viability of creation of a new process for the consolidation of Zircaloy chips. The voltage of the electric arc during the melting runs was digitally recorded allowing the evaluation of the electric arc dynamics by using the topological invariant of the system: correlation dimension and the higher Liapunov exponent. (author)

  11. Investigation of pellet acceleration by an arc heated gas gun

    International Nuclear Information System (INIS)

    Andersen, S.A.; Baekmark, L.; Jensen, V.O.; Michelsen, P.; Weisberg, K.V.

    1988-10-01

    This report describes work on pellet acceleration by means of an arc heated gas gun. Preliminary results were described in Riso-M-2536 and in Riso-M-2650. This final report describes the work carried out from 1987.03.31 to 1988.09.30. An arc heated hydrogen gas source, for pneumatic acceleration of deuterium pellets to velocities above 2 km/s, was developed. Experiments were performed with an arc chamber to which different methods of hydrogen supply were possible, and to which the input of electrical power could be programmed. Results in terms of pressure transients and acceleration curves are presented. Maximum pellet velocities approaching 2 km/s were obtained. This limit is discussed in relation to the presented data. Finally this report contains a summary and a conclusion for the entire project. (author) 34 ills., 3 refs

  12. Inverted V's and/or discrete arcs: a three-dimensional phenomenon at boundaries between magnetic flux tubes

    International Nuclear Information System (INIS)

    Atkinson, G.

    1982-01-01

    If discrete arcs and inverted V's are associated with current sheets and the U shaped electric potential structure, then existing two-dimensional models are probably inadequate. The rapid east-west electric-field associated flow in the arms of the U shaped potential structure requires that there must be a substantial inflow to the outflow from each arm somewhere along the system since arcs and inverted V's have a limited east-west extent. Thus strong north-south polarization currents occur as the plasma enters and leaves the arms of the U. It is hypothesized that these currents, determine the north-south thickness. Three representative three-dimensional models are considered in which the current sheets are either tangential or rotational discontinuities modified by the U shaped potential structure. Thicknesses of the order of a few tens of kilometers are obtained. The occurence and type of discontinuity expected at various locations in the magnetosphere are considered. Discontinuities and hence inverted V's and/or arcs are expected at the interface between open and closed field lines, which explains quiet time polar cap sun-aligned arcs, and at interfaces between plasmas which have merged or been injected on the dayside or reconnected on the nightside in different impulsive events. The last two account for arcs occurring near the throat at active times and for parallel arcs within the oval. The occurrence of long parallel arcs within the oval is encouraged by the convective flow pattern and by the differences in precipitation from flux tubes with differential histories

  13. Arc-discharge system for nondestructive detection of flaws in thin ceramic coatings

    International Nuclear Information System (INIS)

    Scott, G.W.; Davis, E.V.

    1978-04-01

    The feasibility of nondestructively detecting small cracks or holes in plasma-sprayed ceramic coatings with an electric arc-discharge system was studied. We inspected ZrO 2 coatings 0.46 mm (0.018 in.) thick on Incoloy alloy 800 substrates. Cracks were artificially induced in controlled areas of the specimens by straining the substrates in tension. We designed and built a system to scan the specimen's surface at approximately 50 μm (0.002 in.) clearance with a sharp-pointed metal-tipped probe at high dc potential. The system measures the arc currents occurring at flaws, or plots a map of the scanned area showing points where the arc current exceeds a preset threshold. A theoretical model of the probe-specimen circuit shows constant dc potential to be the best choice for arc-discharge inspection of insulating coatings. Experimental observations and analysis of the data disclosed some potential for flaw description

  14. 3D static and time-dependent modelling of a dc transferred arc twin torch system

    International Nuclear Information System (INIS)

    Colombo, V; Ghedini, E; Boselli, M; Sanibondi, P; Concetti, A

    2011-01-01

    The transferred arc plasma torch device consists of two electrodes generating a plasma arc sustained by means of an electric current flowing through the body of the discharge. Modelling works investigating transferred electric arc discharges generated between two suspended metallic electrodes, in the so-called twin torch configuration, are scarce. The discharge generated by this particular plasma source configuration is characterized by a complex shape and fluid dynamics and needs a 3D description in order to be realistically predicted. The extended discharge length that goes from the tungsten pencil cathode to the flat copper anode without any particular confinement wall and the fluid dynamics and magnetic forces acting on the arc may induce an unsteady behaviour. In order to capture the dynamic behaviour of a twin torch discharge, a 3D time-dependent plasma arc model has been developed using a customized commercial code FLUENT form in both local thermodynamic equilibrium (LTE) and non-LTE. A two temperature (2T) model has been developed taking into account only the thermal non-equilibrium effects in argon plasma. The main differences between LTE and 2T models' results concern the increased extension of the horizontal section of the discharge and the predicted reduced (of about 60-80 V) voltage drop between the electrodes when using a 2T model.

  15. Surface breakdown igniter for mercury arc devices

    Science.gov (United States)

    Bayless, John R.

    1977-01-01

    Surface breakdown igniter comprises a semiconductor of medium resistivity which has the arc device cathode as one electrode and has an igniter anode electrode so that when voltage is applied between the electrodes a spark is generated when electrical breakdown occurs over the surface of the semiconductor. The geometry of the igniter anode and cathode electrodes causes the igniter discharge to be forced away from the semiconductor surface.

  16. Design and implementation of co-operative control strategy for hybrid AC/DC microgrids

    Science.gov (United States)

    Mahmud, Rasel

    This thesis is mainly divided in two major sections: 1) Modeling and control of AC microgrid, DC microgrid, Hybrid AC/DC microgrid using distributed co-operative control, and 2) Development of a four bus laboratory prototype of an AC microgrid system. At first, a distributed cooperative control (DCC) for a DC microgrid considering the state-of-charge (SoC) of the batteries in a typical plug-in-electric-vehicle (PEV) is developed. In DC microgrids, this methodology is developed to assist the load sharing amongst the distributed generation units (DGs), according to their ratings with improved voltage regulation. Subsequently, a DCC based control algorithm for AC microgrid is also investigated to improve the performance of AC microgrid in terms of power sharing among the DGs, voltage regulation and frequency deviation. The results validate the advantages of the proposed methodology as compared to traditional droop control of AC microgrid. The DCC-based control methodology for AC microgrid and DC microgrid are further expanded to develop a DCC-based power management algorithm for hybrid AC/DC microgrid. The developed algorithm for hybrid microgrid controls the power flow through the interfacing converter (IC) between the AC and DC microgrids. This will facilitate the power sharing between the DGs according to their power ratings. Moreover, it enables the fixed scheduled power delivery at different operating conditions, while maintaining good voltage regulation and improved frequency profile. The second section provides a detailed explanation and step-by-step design and development of an AC/DC microgrid testbed. Controllers for the three-phase inverters are designed and tested on different generation units along with their corresponding inductor-capacitor-inductor (LCL) filters to eliminate the switching frequency harmonics. Electric power distribution line models are developed to form the microgrid network topology. Voltage and current sensors are placed in the proper

  17. Effect of arc suppression on the physical properties of low temperature dc magnetron sputtered tantalum thin films

    International Nuclear Information System (INIS)

    Subrahmanyam, A.; Valleti, Krishna; Joshi, Srikant V.; Sundararajan, G.

    2007-01-01

    Arcing is a common phenomenon in the sputtering process. Arcs and glow discharges emit electrons which may influence the physical properties of films. This article reports the properties of tantalum (Ta) thin films prepared by continuous dc magnetron sputtering in normal and arc-suppression modes. The substrate temperature was varied in the range of 300-673 K. The tantalum films were ∼1.8 μm thick and have good adherence to 316 stainless steel and single-crystal silicon substrates. The phase of the Ta thin film determines the electrical and tribological properties. The films deposited at 300 K using both methods were crystallized in a tetragonal structure (β phase) with a smooth surface (grain size of ∼10 nm) and exhibited an electrical resistivity of ∼194 μΩ cm and a hardness of ∼20 GPa. When the substrate temperature was 473 K and higher, the arc-suppression mode appears to influence the films to crystallize in the α phase with a grain size of ∼40 nm, whereas the normal power mode gave mixed phases β and α beyond 473 K, the arc-suppression mode yields larger grain sizes in the Ta thin films and the hardness decreases. These changes in the physical properties in arc-suppression mode are attributed to either the change in plasma characteristics or the energetic particle bombardment onto the substrate, or both

  18. Arc saw development report

    International Nuclear Information System (INIS)

    Deichelbohrer, P.R.; Beitel, G.A.

    1981-01-01

    The arc saw is one of the key components of the Contaminated Equipment Volume Reduction (CEVR) Program. This report describes the progress of the arc saw from its inception to its current developmental status. History of the arc saw and early contributors are discussed. Particular features of the arc saw and their advantages for CEVR are detailed. Development of the arc saw including theory of operation, pertinent experimental results, plans for the large arc saw and advanced control systems are covered. Associated topics such as potential applications for the arc saw and other arc saw installations in the world is also touched upon

  19. Modelling of gas-metal arc welding taking into account metal vapour

    Energy Technology Data Exchange (ETDEWEB)

    Schnick, M; Fuessel, U; Hertel, M; Haessler, M [Institute of Surface and Manufacturing Technology, Technische Universitaet Dresden, D-01062 Dresden (Germany); Spille-Kohoff, A [CFX Berlin Software GmbH, Karl-Marx-Allee 90, 10243 Berlin (Germany); Murphy, A B [CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070 (Australia)

    2010-11-03

    The most advanced numerical models of gas-metal arc welding (GMAW) neglect vaporization of metal, and assume an argon atmosphere for the arc region, as is also common practice for models of gas-tungsten arc welding (GTAW). These models predict temperatures above 20 000 K and a temperature distribution similar to GTAW arcs. However, spectroscopic temperature measurements in GMAW arcs demonstrate much lower arc temperatures. In contrast to measurements of GTAW arcs, they have shown the presence of a central local minimum of the radial temperature distribution. This paper presents a GMAW model that takes into account metal vapour and that is able to predict the local central minimum in the radial distributions of temperature and electric current density. The influence of different values for the net radiative emission coefficient of iron vapour, which vary by up to a factor of hundred, is examined. It is shown that these net emission coefficients cause differences in the magnitudes, but not in the overall trends, of the radial distribution of temperature and current density. Further, the influence of the metal vaporization rate is investigated. We present evidence that, for higher vaporization rates, the central flow velocity inside the arc is decreased and can even change direction so that it is directed from the workpiece towards the wire, although the outer plasma flow is still directed towards the workpiece. In support of this thesis, we have attempted to reproduce the measurements of Zielinska et al for spray-transfer mode GMAW numerically, and have obtained reasonable agreement.

  20. A two-dimensional finite element method to calculate the AC loss in superconducting cables, wires and coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Z; Jiang, Y; Pei, R; Coombs, T A [Electronic, Power and Energy Conversion Group, Engineering Department, University of Cambridge, CB2 1PZ (United Kingdom); Ye, L [Department of Electrical Power Engineering, CAU, P. O. Box 210, Beijing 100083 (China); Campbell, A M [Interdisciplinary Research Centre in Superconductivity, University of Cambridge, CB3 0HE (United Kingdom)], E-mail: Zh223@cam.ac.uk

    2008-02-15

    In order to utilize HTS conductors in AC electrical devices, it is very important to be able to understand the characteristics of HTS materials in the AC electromagnetic conditions and give an accurate estimate of the AC loss. A numerical method is proposed in this paper to estimate the AC loss in superconducting conductors including MgB{sub 2} wires and YBCO coated conductors. This method is based on solving a set of partial differential equations in which the magnetic field is used as the state variable to get the current and electric field distributions in the cross sections of the conductors and hence the AC loss can be calculated. This method is used to model a single-element and a multi-element MgB{sub 2} wires. The results demonstrate that the multi-element MgB{sub 2} wire has a lower AC loss than a single-element one when carrying the same current. The model is also used to simulate YBCO coated conductors by simplifying the superconducting thin tape into a one-dimensional region where the thickness of the coated conductor can be ignored. The results show a good agreement with the measurement.