WorldWideScience

Sample records for abyssal sediment communities

  1. Has phytodetritus processing by an abyssal soft-sediment community recovered 26 years after an experimental disturbance?

    NARCIS (Netherlands)

    Stratmann, T.; Mevenkamp, L.; Sweetman, A.K.; Vanreusel, A.; van Oevelen, D.

    2018-01-01

    The potential harvest of polymetallic nodules will heavily impact the abyssal, soft sediment ecosystem by removing sediment, hard substrate, and associated fauna inside mined areas. It is therefore important to know whether the ecosystem can recover from this disturbance and if so at which rate. The

  2. Microbial diversity and stratification of South Pacific abyssal marine sediments.

    Science.gov (United States)

    Durbin, Alan M; Teske, Andreas

    2011-12-01

    Abyssal marine sediments cover a large proportion of the ocean floor, but linkages between their microbial community structure and redox stratification have remained poorly constrained. This study compares the downcore gradients in microbial community composition to porewater oxygen and nitrate concentration profiles in an abyssal marine sediment column in the South Pacific Ocean. Archaeal 16S rRNA clone libraries showed a stratified archaeal community that changed from Marine Group I Archaea in the aerobic and nitrate-reducing upper sediment column towards deeply branching, uncultured crenarchaeotal and euryarchaeotal lineages in nitrate-depleted, anaerobic sediment horizons. Bacterial 16S rRNA clone libraries revealed a similar shift on the phylum and subphylum level within the bacteria, from a complex community of Alpha-, Gamma- and Deltaproteobacteria, Actinobacteria and Gemmatimonadetes in oxic surface sediments towards uncultured Chloroflexi and Planctomycetes in the anaerobic sediment column. The distinct stratification of largely uncultured bacterial and archaeal groups within the oxic and nitrate-reducing marine sediment column provides initial constraints for their microbial habitat preferences. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  3. Has Phytodetritus Processing by an Abyssal Soft-Sediment Community Recovered 26 Years after an Experimental Disturbance?

    Directory of Open Access Journals (Sweden)

    Tanja Stratmann

    2018-02-01

    Full Text Available The potential harvest of polymetallic nodules will heavily impact the abyssal, soft sediment ecosystem by removing sediment, hard substrate, and associated fauna inside mined areas. It is therefore important to know whether the ecosystem can recover from this disturbance and if so at which rate. The first objective of this study was to measure recovery of phytodetritus processing by the benthic food web from a sediment disturbance experiment in 1989. The second objective was to determine the role of holothurians in the uptake of fresh phytodetritus by the benthic food web. To meet both objectives, large benthic incubation chambers (CUBEs; 50 × 50 × 50 cm were deployed inside plow tracks (with and without holothurian presence and at a reference site (holothurian presence, only at 4100 m water depth. Shortly after deployment, 13C- and 15N-labeled phytodetritus was injected in the incubation chambers and during the subsequent 3-day incubation period, water samples were taken five times to measure the production of 13C-dissolved inorganic carbon over time. At the end of the incubation, holothurians and sediment samples were taken to determine biomass, densities and incorporation of 13C and 15N into bacteria, nematodes, macrofauna, and holothurians. For the first objective, the results showed that biomass of bacteria, nematodes and macrofauna did not differ between reference sites and plow track sites when holothurians were present. Additionally, meiofauna and macrofauna taxonomic composition was not significantly different between the sites. In contrast, total 13C uptake by bacteria, nematodes and holothurians was significantly lower at plow track sites compared to reference sites, though the number of replicates was low. This result suggests that important ecosystem functions such as organic matter processing have not fully recovered from the disturbance that occurred 26 years prior to our study. For the second objective, the analysis indicated

  4. Lithology and surficial sediment distribution: northern Hatteras Abyssal Plain

    International Nuclear Information System (INIS)

    Dickson, S.M.; Laine, E.P.; Friedrich, N.E.

    1985-01-01

    Surficial sediments of the LLWODP study area E-N3 have several common characteristics and a few anomalous features. All of the 26 surficial samples examined are Holocene in age. In E-N3, the Holocene sequence ranges from 12-90 cm. The sequence is composed primarily of brown foraminiferal lutite. The lutites show evidence of burrowing by benthic animals in the form of burrows infilled with sediment of a different color. Below the bioturbated lutites is a dark brown, iron-enriched horizon stratigraphically near (within a few centimeters of) the Pleistocene/Holocene boundary. The vertical extent of this unit, which ranges from 2-22 cm, varies systematically within the study area. The maximum thickness is found in a region most removed from the terrigenous sediment entry points. Fine-grained turbidity currents, an abyssal current, and a debris flow created the uncommon features of the surficial sediments. The areal extent of these deposits is estimated as 10% of the E-N3 region below 5300 m. The largest turbidite is probably greater than 2000 km 2 in extent. However, evidence of coarse-grained turbidity current activity in the Holocene is absent. Hemipelagic deposition during the Holocene has resulted in a texturally uniform sequence of surficial sediments. 22 references, 10 figures, 6 tables

  5. Uranium in pore waters from North Atlantic (GME and Southern Nares Abyssal Plain) sediments

    International Nuclear Information System (INIS)

    Santschi, P.H.; Bajo, C.; Mantovani, M.; Orciuolo, D.; Cranston, R.E.; Bruno, J.

    1988-01-01

    Here we report the measurement of low uranium concentrations in composite pore-water samples from the uppermost 20-30 m of deep-sea abyssal plain sediments from the Great Meteor East and Southern Nares Abyssal Plains Area. Many values are the lowest uranium concentrations ever measured in the pore waters of deep-sea sediments. Our lowest value, 0.05 ± 0.01 p.p.b., is orders of magnitude lower than the predicted solubility of U0 2 or U 4 0 9 . The uranium concentrations obtained from both sites correlate closely with measured redox potentials in the sediments. The low mobility of uranium in pore waters from turbiditic deep-sea abyssal plain sediments, which can be deduced from these measurements, has important implications for the sub-seabed disposal of high-level radioactive waste, and for marine geochemistry of uranium. (author)

  6. Abyssal sediment erosion from the Central Indian Basin: Evidence from radiochemical and radiolarian studies

    Digital Repository Service at National Institute of Oceanography (India)

    Banakar, V.K.; Gupta, S.M.; Padmavati, V.K.

    ) 167-173 167 Elsevier Science Publishers B.V., Amsterdam Letter Section Abyssal sediment erosion in the Central Indian Basin: Evidence from radiochemical and radiolarian studies V.K. Banakar, S.M. Gupta and V.K. Padmavathi National Institute... of Oceanography, Dona-Paula, Goa-403 004, India (Revision accepted September 17, 1990) ABSTRACT Banakar, V.K., Gupta, S.M. and Padmavathi, V.K., 1991. Abyssal sediment erosion from the Central Indian Basin: Evi- dence from radiochemical and radiolarian studies...

  7. Rare earth elements during diagenesis of abyssal sediments: analogies with a transuranic element americium

    International Nuclear Information System (INIS)

    Boust, D.

    1987-03-01

    One of the possibilities for the storage of high-level radioactive wastes consists in burying them into abyssal sediments, the sediments being supposed to barrier out radionuclides migration. The objective of the work was to estimate the efficiency of sediment barrier with respect to americium. As there is no americium in abyssal sediments, an indirect approach was used: the behaviour of the rare earth elements, the best natural analogs of americium. They were analysed in a 15 m long core, from the Cap Verde abyssal plateau. The terrigenous phase derived from the African continent was modified by short-term processes (1-1000 years); the intermediate rare earth elements were dissolved. Mineral coatings, enriched in rare earth appeared. After burial, the evolution continued at a much slower rate (10 5 - 10 6 years). The rare elements of the mineral coatings derived from the dissolution of the terrigenous phase and from an additional source, deeper in the sediment column. The fluxes of rare earth elements from sediment to water column were estimated. In suboxic sediments, the dissolved particulate equilibrium was related to redox conditions. The short-term reactivity of americium was studied in laboratory experiments. Simple americium migration models showed that the sediments barrier was totally efficient with respect to americium. In the conditions, neptunium 237 a daughter product of americium 241 could induce fluxes of 10 16 atoms per year per ton of stored waste (10 -8 Ci y-1), during millions years, towards the water column [fr

  8. On the possible ''normalization'' of experimental curves of 230Th vertical distribution in abyssal oceanic sediments

    International Nuclear Information System (INIS)

    Kuznetsov, Yu.V.; Al'terman, Eh.I.; Lisitsyn, A.P.; AN SSSR, Moscow. Inst. Okeanologii)

    1981-01-01

    The possibilities of the method of normalization of experimental ionic curves in reference to dating of abyssal sediments and establishing their accumulation rapidities are studied. The method is based on using correlation between ionic curves extrema and variations of Fe, Mn, C org., and P contents in abyssal oceanic sediments. It has been found that the above method can be successfully applied for correction of 230 Th vertical distribution data obtained by low-background γ-spectrometry. The method leads to most reliable results in those cases when the vertical distribution curves in sediments of elements concentrators of 230 Th are symbasic between themselves. The normalization of experimental ionic curves in many cases gives the possibility to realize the sediment age stratification [ru

  9. Nares Abyssal Plain Sediment Flux Studies, FY 1985 Annual Report

    International Nuclear Information System (INIS)

    Dymond, J.; Collier, R.

    1987-01-01

    The sediment trap NAP-1 was successfully recovered and the materials have been analyzed for a set of bio- and geochemical components. The trap mooring NAP-2 was deployed and recovered but no analyses have been completed. The bulk fluxes are relatively low at this site and are approximately 50% biogenic and 50% terrigenous. The flux of terrigenous material is very high due to primary atmospheric inputs and horizontal transport of resuspended sediments. The buoyant particle fluxes are also extremely low. The accumulation of material in the sediments reflects the crustal nature of the vertical flux and also shows the normal loss of labile biogenic phases

  10. Glacial magnetite dissolution in abyssal NW Pacific sediments - evidence for carbon trapping?

    Science.gov (United States)

    Korff, Lucia; von Dobeneck, Tilo; Frederichs, Thomas; Kasten, Sabine; Kuhn, Gerhard; Gersonde, Rainer; Diekmann, Bernhard

    2016-04-01

    The abyssal North Pacific Ocean's large volume, depth, and terminal position on the deep oceanic conveyor make it a candidate site for deep carbon trapping as postulated by climate theory to explain the massive glacial drawdown of atmospheric CO2. As the major basins of the North Pacific have depths of 5500-6500m, far below the modern and glacial Calcite Compensation Depths (CCD), these abyssal sediments are carbonate-free and therefore not suitable for carbonate-based paleoceanographic proxy reconstructions. Instead, paleo-, rock and environmental magnetic methods are generally well applicable to hololytic abyssal muds and clays. In 2009, the international paleoceanographic research cruise SO 202 INOPEX ('Innovative North Pacific Experiment') of the German RV SONNE collected two ocean-spanning EW sediment core transects of the North Pacific and Bering Sea recovering a total of 50 piston and gravity cores from 45 sites. Out of seven here considered abyssal Northwest Pacific piston cores collected at water depths of 5100 to 5700m with mostly coherent shipboard susceptibility logs, the 20.23m long SO202-39-3, retrieved from 5102 m water depth east of northern Shatsky Rise (38°00.70'N, 164°26.78'E), was rated as the stratigraphically most promising record of the entire core transect and selected for detailed paleo- and environmental magnetic, geochemical and sedimentological investigations. This core was dated by correlating its RPI and Ba/Ti records to well-dated reference records and obviously provides a continuous sequence of the past 940 kyrs. The most striking orck magnetic features are coherent magnetite-depleted zones corresponding to glacial periods. In the interglacial sections, detrital, volcanic and even submicron bacterial magnetite fractions are excellently preserved. These alternating magnetite preservation states seem to reflect dramatic oxygenation changes in the deep North Pacific Ocean and hint at large-scale benthic glacial carbon trapping

  11. Acoustic structure and echo character of surficial sediments of the northern Hatteras Abyssal Plain

    International Nuclear Information System (INIS)

    McCreery, C.J.; Laine, E.P.

    1986-05-01

    A study has been made of the high frequency acoustic response of abyssal plain depositional facies. Piston cores have been obtained at six stations and deep hydrophone recordings at three stations on the northern Hatteras Abyssal Plain. 3.5 kHz seismic profiles indicate acoustically transparent lobes of surficial sediment which thicken towards the Hatteral Transverse Canyon and Sohm Gap/Wilmington Fan. Physical property data from piston cores indicate a higher percentage of coarse sediment in the areas of transparent acoustic response. Many of the characteristics normally used in mapping of conventional 3.5 kHz profiler acoustic response varied only slightly in the study area. Regions of diffuse 3.5 kHz surface echoes, similar to prolonged echoes attributed to high percent sand beds, have been identified in the study area. High trace to trace variation in deep hydrophone/pinger recordings in these areas suggests that the diffuse echo returns are due to unresolved microtopography and are not necessarily associated with a sandy seafloor

  12. The geology and geochemistry of Madeira abyssal plain sediments: a review

    International Nuclear Information System (INIS)

    Weaver, P.P.E.; Thomson, J.; Jarvis, I.

    1989-01-01

    The Madeira Abyssal Plain was chosen by the Nuclear Energy Agency (NEA) as a study area for high-level radioactive waste disposal in 1980. Subsequently, the area has been intensively investigated, in particular by the Geological Survey of the Netherlands, the Institute of Oceanographic Sciences, and latterly by the international ESOPE expedition organized by the NEA Seabed Working Group. The large data set from this area of 2 0 x 2 0 includes 16,000 km of low-frequency seismic lines, 28,000 km of high-frequency seismic lines, 70,000 km 2 of GLORIA sidescan and 120 sediment cores. Core coverage extends through the upper 34 m of the sediment column, representing the last 730,000 years, and shows deposition dominated by turbidite sedimentation. Seismic profiles indicate that total thickness of turbidites averages 350 m with about 200 m of pelagic sediment beneath. Thus the turbidites continue considerably deeper than proposed penetrator emplacement depths of 30-70 m. Individual turbidites are separated by thin pelagic layers which can be dated and show the turbidites to be emplaced at the beginning and end of glacial periods. (author)

  13. Geochemistry of the near surface sediments of the Nares Abyssal Plain

    International Nuclear Information System (INIS)

    Carpenter, M.S.N.; Colley, S.; Elderfield, H.; Kennedy, H.A.; Thomson, J.; Wilson, T.R.S.

    1983-01-01

    The geochemistry of a suite of box and 2m gravity cores from the Nares Abyssal Plain has been characterised by means of pore water analyses, XRF determination of major and trace element concentrations, mineralogy and 230 Thsub(excess) dating. The interstitial fluid environment of those deep-sea clays is mildly reducing, although one site exhibits manganese remobilisation and precipitation. Despite their marked colour differences, there is a similarity in clay mineralogy between the grey silt/clay turbidites and the brown clays found in the area. Sediment accumulation rates of pelagic brown clays range between 0.5 and 1.0 cm/10 3 yr. These pelagic brown clays are metal-rich relative to the grey clays, and a model is used to estimate the hydrogenous metal fluxes on the assumption that they are constant over the Plain. This model gives values of approx. 1300 μg/cm 2 /10 3 yr for Mn, approx. 2600 μg/cm 2 /10 3 yr for Fe and Co, Ni, Cu, V and Zn in the range 6 to 26 μg/cm 2 /10 3 yr. An associated model-derived estimate of the detrital contents of the same elements agrees well with the mean values of the grey clays and of average shale. Metal-poor brown clays and assorted minor lithologies are intermediate in composition between these two end-members. (author)

  14. Interelement relationship in abyssal Pacific ferromanganese nodules and associated pelagic sediments

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y H

    1982-01-01

    By R-mode factor analysis and enrichment factor calculations, most of the elements in abyssal ferromanganese nodules and associated pelagic sediments (excluding common authigenic minerals like apatite, barite, opal and carbonates) are found to be preferentially concentrated in one of the following three major phases: aluminosilicates (e.g., Al, Si, Sc, Ga, Cr, Be, Na, K, Rb and Cs), Fe-oxides (e.g., Fe, P, S, V, Se, Te, As, B, Sn, U, Hg, Pb, Ti, Ge, Y, Zr, Nb, Pd, In, rare-earths, Hf, Th, Pa, Pu, Am, Ru and Bi), and Mn-oxides (e.g., Mn, Tl, Ag, Cd, Mg, Ca, Ba, Ra, Co, Ni, Cu, Zn, Mo, Sb and probably W). The specific association of elements with these three phases can be explained by the difference in chemical forms of elements in seawater and by fundamental differences in physicochemical properties (e.g., the pH of zero point of charge and dielectric constant) of these three phases.

  15. Interelement relationship in abyssal Pacific ferromanganese nodules and associated pelagic sediments

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y -H

    1982-06-01

    By R-mode factor analysis and enrichment factor calculations, most of the elements in abyssal ferromanganese nodules and associated pelagic sediments (excluding common authigenic minerals like apatite, barite, opal and carbonates) are found to be preferentially concentrated in one of the following three major phases: aluminosilicates (e.g., Al, Si, Sc, Ga, Cr, Be, Na, K, Rb and Cs), Fe-oxides (e.g., Fe, P, S, V, Se, Te, As, B, Sn, U, Hg, Pb, Ti, Ge, Y, Zr, Nb, Pd, In, rare-earths, Hf, Th, Pa, Pu, Am, Ru and Bi), and Mn-oxides (e.g., Mn, Tl, Ag, Cd, Mg, Ca, Ba, Ra, Co, Ni, Cu, Zn, Mo, Sb and probably W). The specific association of elements with these three phases can be explained by the difference in chemical forms of elements in seawater and by fundamental differences in physiocochemical properties (e.g., the pH of zero point of charge and dieletric constant) of these three phases.

  16. Elemental analysis of sediments and organisms from the Cape Verde abyssal plain (CV 1 and CV 2 sites)

    International Nuclear Information System (INIS)

    Germain, P.; Boust, D.; Sibuet, M.; Philippot, J.C.; Hemon, G.

    1984-08-01

    Some 20 stable elements were determined by neutron activation analysis in epibenthic organisms and sediments from the Cape Verde abyssal plain. The levels measured in two Plesiopenaeus sp. (shrimp) individuals and one Barathrites sp. (fish) individual are similar to those found in others crustaceans and fish from oceanic and coastal areas. Concentration factors were calculated for the elements whose radioactive isotopes should be considered in the case of subseabed waste disposal ( 90 Sr, 135 Cs, 79 Se). The sediments are biogenous marly oozes. The levels measured reflect the variations of terrigenous inputs since the last glacial maximum 18,000 B.P [fr

  17. Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean.

    Science.gov (United States)

    Smith, Kenneth L; Ruhl, Henry A; Kahru, Mati; Huffard, Christine L; Sherman, Alana D

    2013-12-03

    The deep ocean, covering a vast expanse of the globe, relies almost exclusively on a food supply originating from primary production in surface waters. With well-documented warming of oceanic surface waters and conflicting reports of increasing and decreasing primary production trends, questions persist about how such changes impact deep ocean communities. A 24-y time-series study of sinking particulate organic carbon (food) supply and its utilization by the benthic community was conducted in the abyssal northeast Pacific (~4,000-m depth). Here we show that previous findings of food deficits are now punctuated by large episodic surpluses of particulate organic carbon reaching the sea floor, which meet utilization. Changing surface ocean conditions are translated to the deep ocean, where decadal peaks in supply, remineralization, and sequestration of organic carbon have broad implications for global carbon budget projections.

  18. Planktonic foraminifera-derived environmental DNA extracted from abyssal sediments preserves patterns of plankton macroecology

    Directory of Open Access Journals (Sweden)

    R. Morard

    2017-06-01

    Full Text Available Deep-sea sediments constitute a unique archive of ocean change, fueled by a permanent rain of mineral and organic remains from the surface ocean. Until now, paleo-ecological analyses of this archive have been mostly based on information from taxa leaving fossils. In theory, environmental DNA (eDNA in the sediment has the potential to provide information on non-fossilized taxa, allowing more comprehensive interpretations of the fossil record. Yet, the process controlling the transport and deposition of eDNA onto the sediment and the extent to which it preserves the features of past oceanic biota remains unknown. Planktonic foraminifera are the ideal taxa to allow an assessment of the eDNA signal modification during deposition because their fossils are well preserved in the sediment and their morphological taxonomy is documented by DNA barcodes. Specifically, we re-analyze foraminiferal-specific metabarcodes from 31 deep-sea sediment samples, which were shown to contain a small fraction of sequences from planktonic foraminifera. We confirm that the largest portion of the metabarcode originates from benthic bottom-dwelling foraminifera, representing the in situ community, but a small portion (< 10 % of the metabarcodes can be unambiguously assigned to planktonic taxa. These organisms live exclusively in the surface ocean and the recovered barcodes thus represent an allochthonous component deposited with the rain of organic remains from the surface ocean. We take advantage of the planktonic foraminifera portion of the metabarcodes to establish to what extent the structure of the surface ocean biota is preserved in sedimentary eDNA. We show that planktonic foraminifera DNA is preserved in a range of marine sediment types, the composition of the recovered eDNA metabarcode is replicable and that both the similarity structure and the diversity pattern are preserved. Our results suggest that sedimentary eDNA could preserve the ecological structure of

  19. Environmental and bathymetric influences on abyssal bait-attending communities of the Clarion Clipperton Zone

    Science.gov (United States)

    Leitner, Astrid B.; Neuheimer, Anna B.; Donlon, Erica; Smith, Craig R.; Drazen, Jeffrey C.

    2017-07-01

    The Clarion-Clipperton Zone (CCZ) is one of the richest manganese nodule provinces in the world and has recently become a focus area for manganese nodule mining interests. However, this vast area remains poorly studied and highly undersampled. In this study, the abyssal bait-attending fauna is documented for the first time using a series of baited camera deployments in various locations across the CCZ. A bait-attending community intermediate between those typical of the California margin and Hawaii was found in the larger CCZ area, generally dominated by rattail fishes, dendrobranchiate shrimp, and zoarcid and ophidiid fishes. Additionally, the western and eastern ends of the CCZ had different communities, with the western region characterized by decreased dominance of rattails and small shrimps and increased dominance of ophidiids (especially Bassozetus sp. and Barathrites iris) and large shrimps. This trend may be related to increasing distance from the continental margin. We also test the hypothesis that bait-attending communities change across the CCZ in response to key environmental predictors, especially topography and nodule cover. Our analyses showed that higher nodule cover and elevated topography, as quantified using the benthic positioning index (BPI), increase bait-attending community diversity. Elevated topography generally had higher relative abundances, but taxa also showed differing responses to the BPI metric and bottom temperature, causing significant community compositional change over varying topography and temperatures. Larger individuals of the dominant scavenger in the CCZ, Coryphaenoides spp., were correlated with areas of higher nodule cover and with abyssal hills, suggesting these areas may be preferred habitat. Our results suggest that nodule cover is important to all levels of the benthic ecosystem and that nodule mining could have negative impacts on even the top-level predators and scavengers in the CCZ. Additionally, there is

  20. Fate of corrosion products released from stainless steel in marine sediments and seawater. Part 4: Hatteras abyssal red clay

    International Nuclear Information System (INIS)

    Schmidt, R.L.

    1982-07-01

    A study in which neutron-activated 347 stainless steel was exposed to surficial sediment from a site in the Hatteras Abyssal Plain of the Northwest Atlantic Ocean is described. This sediment consists of approx. 20% CaCO 3 , which could lead to the formation of calcareous scale on the metal surface and reduce the corrosion rate. The distribution of indigenous metals among different chemical fractions shows that extractable Cr, Mn, Fe, Co, and Zn were associated with amorphous Mn and Fe oxides. Most of the remaining extractable Cr, and about a third of the extractable Cu appear to have been weakly complexed. Major fractions (25 to 36%) of extractable Mn, Co and Ni were present as adsorbed cations. Organic complexation appears to account for a large amount of extractable Fe, Ni, Cu and Zn. Neutron-activated 347 stainless steel specimens were exposed to sediment slurry under aerobic and non-oxygenated conditions for a period of 94 days. The redox potential measurements for air-sparged and N 2 , CO 2 -sparged sediment slurries were +410 and +60 mv, respectively. The presence of 0 2 produced increased amounts of corrosion products. Chemical extraction showed that relatively labile substances constituted about 84% of the 60 Co activity released in aerated sediment. Relatively labile substances constitute about 82% of the total 60 Co activity released under non-oxygenated conditions. A large fraction of 60 Co which was in the soluble or easily dissolved forms under non-oxygenated conditions appears to have been more strongly adsorbed to the sediment under aerated conditions

  1. Fate of corrosion products released from stainless steel in marine sediments and seawater. Part 4: Hatteras abyssal red clay

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.L.

    1982-07-01

    A study in which neutron-activated 347 stainless steel was exposed to surficial sediment from a site in the Hatteras Abyssal Plain of the Northwest Atlantic Ocean is described. This sediment consists of approx. 20% CaCO/sub 3/, which could lead to the formation of calcareous scale on the metal surface and reduce the corrosion rate. The distribution of indigenous metals among different chemical fractions shows that extractable Cr, Mn, Fe, Co, and Zn were associated with amorphous Mn and Fe oxides. Most of the remaining extractable Cr, and about a third of the extractable Cu appear to have been weakly complexed. Major fractions (25 to 36%) of extractable Mn, Co and Ni were present as adsorbed cations. Organic complexation appears to account for a large amount of extractable Fe, Ni, Cu and Zn. Neutron-activated 347 stainless steel specimens were exposed to sediment slurry under aerobic and non-oxygenated conditions for a period of 94 days. The redox potential measurements for air-sparged and N/sub 2/, CO/sub 2/-sparged sediment slurries were +410 and +60 mv, respectively. The presence of 0/sub 2/ produced increased amounts of corrosion products. Chemical extraction showed that relatively labile substances constituted about 84% of the /sup 60/Co activity released in aerated sediment. Relatively labile substances constitute about 82% of the total /sup 60/Co activity released under non-oxygenated conditions. A large fraction of /sup 60/Co which was in the soluble or easily dissolved forms under non-oxygenated conditions appears to have been more strongly adsorbed to the sediment under aerated conditions.

  2. High-resolution sub-bottom seismic and sediment core records from the Chukchi Abyssal Plain reveal Quaternary glaciation impacts on the western Arctic Ocean

    Science.gov (United States)

    Joe, Y. J.; Seokhoon, Y.; Nam, S. I.; Polyak, L.; Niessen, F.

    2017-12-01

    For regional context of the Quaternary history of Arctic marine glaciations, such as glacial events in northern North America and on the Siberian and Chukchi margins, we used CHIRP sub-bottom profiles (SBP) along with sediment cores, including a 14-m long piston core ARA06-04JPC taken from the Chukchi abyssal plain during the RV Araon expedition in 2015. Based on core correlation with earlier developed Arctic Ocean stratigraphies using distribution of various sedimentary proxies, core 04JPC is estimated to extend to at least Marine Isotope Stage 13 (>0.5 Ma). The stratigraphy developed for SBP lines from the Chukchi abyssal plain to surrounding slopes can be divided into four major seismostratigraphic units (SSU 1-4). SBP records from the abyssal plain show well preserved stratification, whereas on the surrounding slopes this pattern is disrupted by lens-shaped, acoustically transparent sedimentary bodies interpreted as glaciogenic debris flow deposits. Based on the integration of sediment physical property and SBP data, we conclude that these debris flows were generated during several ice-sheet grounding events on the Chukchi and East Siberian margins, including adjacent ridges and plateaus, during the middle to late Quaternary.

  3. In situ experimental evidence of the fate of a phytodetritus pulse at the abyssal sea floor

    DEFF Research Database (Denmark)

    Witte, U.; Wenzhöfer, F.; Sommer, S.

    2003-01-01

    More than 50% of the Earth's surface is sea floor below 3,000 m of water. Most of this major reservoir in the global carbon cycle and final repository for anthropogenic wastes is characterized by severe food limitation. Phytodetritus is the major food source for abyssal benthic communities...... quantified (over a period of 2.5 to 23 days) the response of an abyssal benthic community to a phytodetritus pulse, on the basis of 11 in situ experiments. Here we report that, in contrast to previous hypotheses(5-11), the sediment community oxygen consumption doubled immediately, and that macrofauna were...... very important for initial carbon degradation. The retarded response of bacteria and Foraminifera, the restriction of microbial carbon degradation to the sediment surface, and the low total carbon turnover distinguish abyssal from continental-slope 'deep-sea' sediments....

  4. Sphaerodoropsis kitazatoi, a new species and the first record of Sphaerodoridae (Annelida: Phyllodocida) in SW Atlantic abyssal sediments around a whale carcass

    Science.gov (United States)

    Shimabukuro, Maurício; Rizzo, Alexandra E.; Alfaro-Lucas, Joan M.; Fujiwara, Yoshihiro; Sumida, Paulo Y. G.

    2017-12-01

    A new polychaete species, Sphaerodoropsis kitazatoi (Annelida: Phyllodocida: Sphaerodoridae), is described from the abyssal Southwest Atlantic Ocean at the base of São Paulo Ridge (4204 m depth). This species was found in sediments impacted by a whale carcass. The new species has four longitudinal rows of macrotubercles and one transversal row per chaetiger and shares several characters with S. anae Aguado and Rouse, 2006 that is also associated with chemosynthetic environments. They can be clearly distinguished from S. anae and other Sphaerodoropsis species by the arrangement and the number of prostomial, body and parapodial papillae.

  5. Geomicrobiology of Archaeal Communities Isolated from an Off-axis Abyssal Hill Fault Scarp on the East Pacific Rise Flank at 9° 27'N

    Science.gov (United States)

    Ehrhardt, C. J.; Haymon, R.; Holden, P.; Lamontagne, M.

    2003-12-01

    Although heat flow studies suggest that ~70% of the hydrothermal heat loss in the oceans occurs in the abyssal hill terrain on the flanks of mid-ocean ridges, very few off-axis hydrothermal sites have been discovered. In May 2002, sedimentary blowout structures of probable hydrothermal origin were discovered along East Pacific Rise at 9° 27'N on an off-axis abyssal hill bounded by a fault scarp covered with orange-brown microbial flocculations. Recovered samples of these flocculations have presented an opportunity to study the unknown nature and role of thermophilic and hyperthermophilic microbial communities on the ridge flanks. Furthermore, the archaeal communities that we have identified in the samples are useful "microbial tracers" which can be used to locate off-axis areas of moderate-to-high temperature fluid flow (>50° C). In this study, we used molecular techniques to isolate, amplify, and sequence community archaeal RNA sequences from fault scarp flocculations collected with a slurp pump system mounted in the Alvin basket. Molecular phylogenies based on 16S rRNA were constructed. Phylogenetic relationships of isolated clones were used to infer temperature preferences of archaeal communities. We identified 12 clones that clustered within thermophilic or hyperthermophilic clades within Archaea suggesting that moderately high temperature fluid (>50° C) exited the seafloor along this abyssal hill fault scarp. Our studies also suggest that these communities mediate the formation of Fe-sulfide mineral phases. Analysis of the samples with an Environmental Scanning Electron Microscope (ESEM) and X-ray energy dispersive analysis (EDS) revealed unique iron sulfide mineral phases with anomalously low Fe/S ratios in direct association with microbial communities.

  6. Unexpectedly higher metazoan meiofauna abundances in the Kuril-Kamchatka Trench compared to the adjacent abyssal plains

    Science.gov (United States)

    Schmidt, Christina; Martínez Arbizu, Pedro

    2015-01-01

    We studied meiofauna standing stocks and community structure in the Kuril-Kamchatka Trench and its adjacent abyssal plains in the northwestern Pacific Ocean. In general, the Nematoda were dominant (93%) followed by the Copepoda (4%). Nematode abundances ranged from 87% to 96%; those of copepods from 2% to 7%. The most diverse deployment yielded 17 taxa: Acari, Amphipoda, Annelida, Bivalvia, Coelenterata, Copepoda, Cumacea, Gastrotricha, Isopoda, Kinorhyncha, Loricifera, Nematoda, Ostracoda, Priapulida, Tanaidacea, Tantulocarida, and Tardigrada. Nauplii were also present. Generally, the trench slope and the southernmost deployments had the highest abundances (850-1392 individuals/cm2). The results of non-metric multidimensional scaling indicated that these deployments were similar to each other in meiofauna community structure. The southernmost deployments were located in a zone of higher particulate organic carbon (POC) flux (g Corg m-2 yr-1), whereas the trench slope should have low POC flux due to depth attenuation. Also, POC and abundance were significantly correlated in the abyssal plains. This correlation may explain the higher abundances at the southernmost deployments. Lateral transport was also assumed to explain high meiofauna abundances on the trench slope. Abundances were generally higher than expected from model results. ANOSIM revealed significant differences between the trench slope and the northern abyssal plains, between the central abyssal plains and the trench slope, between the trench slope and the southern abyssal plains, between the central and the southern abyssal plains, and between the central and northern deployments. The northern and southern abyssal plains did not differ significantly. In addition, a U-test revealed highly significant differences between the trench-slope and abyssal deployments. The taxa inhabited mostly the upper 0-3 cm of the sediment layer (Nematoda 80-90%; Copepoda 88-100%). The trench-slope and abyssal did not differ

  7. Thermal, chemical, and mass transport processes induced in abyssal sediments by the emplacement of nuclear wastes: Experimental and modelling results

    International Nuclear Information System (INIS)

    McVey, D.F.; Erickson, K.L.; Seyfried, W.E. Jr.

    1983-01-01

    In this chapter the authors discuss the current status of heat and mass transport studies in the marine red clay sediments that are being considered as a nuclear waste isolation medium and review analytical and experimental studies. Calculations based on numerical models indicate that for a maximum allowable sediment-canister interface temperatures of 200 0 to 250 0 C, the sediment can absorb about 1.5kW initial power from waste buried 30 m in the sediment in a canister that is 3 m long and 0.3 m in diameter. The resulting fluid displacement due to convections is found to be small, less than 1 m. Laboratory studies of the geochemical effects induced by heating sediment-seawater mixtures indicate that the canister and waste form should be designed to resist a hot, relatively acidic oxidizing environment. Since the thermally altered sediment volume of about 5.5 m/sup 3/ is small relative to the sediment volume overlying the canister, the acid and oxidizing conditions should significantly affect the properties of the far field only if thermodiffusional process (Soret effect) prove to be significant. If thermodiffusional effects are important, however, near-field chemistry will differ considerably from that predicted from results of constant temperature sediment-seawater interaction experiments

  8. Landscape scale ecology at the Porcupine Abyssal Plain

    Science.gov (United States)

    Ruhl, H.; Morris, K. J.; Bett, B. J.; Jones, D.; Huvenne, V. A. I.; Robert, K.; Gooday, A. J.; Durden, J. M.; Laguionie-Marchais, C.; Stefanoudis, P. V.; Benoist, N. M.; Paterson, G. L.; Wolff, G. A.; Milligan, R. J.; Bailey, D. M.

    2016-02-01

    The distribution and abundance of life on the seafloor is set to some extent by the supply of sinking particulate organic matter from overlying surface water. However, the habitat landscape of the seafloor can also exert important ecological influences at local scales. Community differences on the scales of centimeters upwards can arise from drivers including changes in seafloor sediments, slope, and lateral movement of particulate organic matter. Here we use photographic survey data covering an extent on the order of 100 km2 to examine relationships between megafauna density, biomass, diversity, and community composition, as well as food availability and habitat type across landscape scales. The surveyed area at the Porcupine Abyssal Plain has a maximum water depth of about 4850 m and includes a range of topographic features from slight undulations of the seafloor to exposed bedrock scarps on an abyssal hill rising more than 200 m above the surrounding plain. We first examine community descriptors across the entire area and then sequentially break the analytical units into smaller units including variants based on habitat types and spatial extent. We repeat the examination of seafloor community descriptors with finer and finer analytical unit scales, as well as for different habitat types, and changing levels of phytodetritus coverage. We then examine the scales at which diversity and community composition go from statistically indistinguishable between analytical units to significantly different and which factors best explain these observations. Lastly, we relate the results from this megafauna study to other recent spatial studies at the Porcupine Abyssal Plain, from foraminifera to fishes, to build a landscape view of the ecology of the area.

  9. Seismic echo character northern Hatteras Abyssal Plain

    International Nuclear Information System (INIS)

    McCreery, C.J.; Laine, E.P.

    1985-01-01

    Latest efforts in echo-character mapping of the northern Hatteras Abyssal Plain have discerned variations in thickness in a near-surface sedimentary sequence which has been designated seismic unit A. This unit probably represents the last episode of progradation of the Hatteras Deep Sea Fan in the southern part of the study area, and has infilled probable paleochannels from the Wilmington Canyon and Sohm Gap in the north. Unit A thins to a minimum in the central part of the plain, where older sediments come within 1 meter of the surface. Variations in the character of the surface reflector probably represent differing degrees of microtopography developed on a Late Pleistocene surface overlain by Holocene sediments. With the exception of one area identified as a relict surface outcropping in the western plain, this microtopography seems related to present-day thalweg locations on the abyssal plain. 11 references, 13 figures

  10. Nematode communities in contaminated river sediments

    International Nuclear Information System (INIS)

    Heininger, Peter; Hoess, Sebastian; Claus, Evelyn; Pelzer, Juergen; Traunspurger, Walter

    2007-01-01

    Nematode communities of eight sites from three river catchments were investigated in terms of the genera composition, feeding types, and life-history strategists. The sampling sites showed a gradient of anthropogenic contamination with heavy metals and organic pollutants being important factors in differentiating the sites. Nematode community structure was related to sediment pollution and the hydro-morphological structure of the sampling sites. Heavily contaminated sites were characterized by communities with high relative abundances of omnivorous and predacious nematodes (Tobrilus, c-p 3; Mononchus, c-p 4), while sites with low to medium contamination were dominated by bacterivorous nematodes (Monhystera, Daptonema; c-p 2) or suction feeders (Dorylaimus, c-p 4). The relatively high Maturity Index values in the heavily polluted sites were surprising. Nematodes turned out to be a suitable organism group for monitoring sediment quality, with generic composition being the most accurate indicator for assessing differences in nematode community structure. - Nematode community structure of river sediments is related to pollution and site structure

  11. Nematode communities in contaminated river sediments

    Energy Technology Data Exchange (ETDEWEB)

    Heininger, Peter [Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz (Germany); Hoess, Sebastian [Ecossa - Ecological Sediment and Soil Assessment, Thierschstr. 43, 80538 Munich (Germany); Claus, Evelyn [Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz (Germany); Pelzer, Juergen [Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz (Germany); Traunspurger, Walter [University of Bielefeld, Department of Animal Ecology, Morgenbreede 45, 33615 Bielefeld (Germany)]. E-mail: traunspurger@uni-bielefeld.de

    2007-03-15

    Nematode communities of eight sites from three river catchments were investigated in terms of the genera composition, feeding types, and life-history strategists. The sampling sites showed a gradient of anthropogenic contamination with heavy metals and organic pollutants being important factors in differentiating the sites. Nematode community structure was related to sediment pollution and the hydro-morphological structure of the sampling sites. Heavily contaminated sites were characterized by communities with high relative abundances of omnivorous and predacious nematodes (Tobrilus, c-p 3; Mononchus, c-p 4), while sites with low to medium contamination were dominated by bacterivorous nematodes (Monhystera, Daptonema; c-p 2) or suction feeders (Dorylaimus, c-p 4). The relatively high Maturity Index values in the heavily polluted sites were surprising. Nematodes turned out to be a suitable organism group for monitoring sediment quality, with generic composition being the most accurate indicator for assessing differences in nematode community structure. - Nematode community structure of river sediments is related to pollution and site structure.

  12. Changes in abundance and community structure of nematodes from the abyssal polymetallic nodule field, Tropical Northeast Pacific

    Science.gov (United States)

    Miljutin, Dmitry; Miljutina, Maria; Messié, Monique

    2015-12-01

    Deep-sea fields of polymetallic nodules in the Clarion-Clipperton Zone (CCFZ, tropical NE Pacific) are currently being investigated to assess their potential for commercial mining. During such mining, benthic communities will be inevitably disturbed or destroyed. Therefore, assessments of their standing stock and composition may be helpful for the future evaluation of possible impacts of commercial nodule exploitation. Analysis of nematode communities (at genus level) inhabiting the French license area of the CCFZ were studied based on data from the cruises NODINAUT (2004) and BIONOD (2012). The total nematode density was ca. 1.5-fold higher in 2012 as compared with 2004. This reflected a 2-2.5 times higher density of non-selective deposit-feeders (i.e. possessing a small buccal cavity without armature) in 2012 compared with 2004, whereas no significant differences between sampling periods were observed in the density of the other feeding groups. Consequently, whilst the list of the most abundant genera was identical, their relative abundances changed significantly. The relative abundance of the genus Thalassomonhystera was two times greater in 2012 than in 2004, whereas the relative abundances of the genera Acantholaimus and Theristus were significantly lower in 2012 (10% and 4%, respectively) than in 2004 (28% and 9%). Nematode diversity (including values of diversity indices and total number of recorded genera) was significantly lower in 2012 in comparison with 2004. Although our data do not take into account seasonal and shorter temporal scales of variability in nematode assemblages, we report here that a certain fraction of variations observed between the two sampling periods could be associated with differences in primary production. Future studies should aim to better characterise temporal variability in nematode communities of the CCFZ at seasonal and interannual scales.

  13. Thermal, chemical, and mass-transport processes induced in abyssal sediments by the emplacement of nuclear waste: experimental and modeling results

    International Nuclear Information System (INIS)

    McVey, D.F.; Erickson, K.L.; Seyfried, W.

    1980-01-01

    This paper discusses heat and mass transport studies of marine red clay sediments being considered as a nuclear waste isolation medium. Numerical models indicate that for a maximum allowable sediment/canister interface temperature of 200 to 250 0 C, the sediment can absorb about 1.5 kW initial power from waste in a 3 m long by 0.3 m dia canister buried 30 m in the sediment. Fluid displacement due to convection is found to be less than 1 m. Laboratory studies of the geochemical effects induced by heating sediment/seawater mixtures indicate that the canister and waste form must be designed to resist a hot, acid (pH 3 to 4) oxidizing environment. Since the thermally altered sediment volume of about 5.5 m 3 is small relative to the sediment volume overlying the canister, the acid and oxidizing conditions are not anticipated to effect the properties of the far field. Using sorption coefficient correlations, the migration of four nuclides 239 Pu, 137 Cs, 129 I, and 99 Tc were computer for a canister buried 30 m deep in a 60 m thick red clay sediment layer. It was found that the 239 Pu and 137 Cs are essentially completely contained in the sediments, while 129 I and 99 Tc broke through the 30 m of sediment in about 5000 years. The resultant peak injection rates of 4.6 x 10 -5 μCi/year-m 2 for 129 I and 1.6 x 10 -2 μCi/year-m 2 for 99 Tc were less than the natural radioactive flux of 226 Ra (3.5 to 8.8 x 10 -4 μCi/year-m 2 ) and 222 Rn

  14. Testing deep-sea biodiversity paradigms on abyssal nematode genera and Acantholaimus species

    Science.gov (United States)

    Lins, Lidia; da Silva, Maria Cristina; Neres, Patrícia; Esteves, André Morgado; Vanreusel, Ann

    2018-02-01

    Biodiversity patterns in the deep sea have been extensively studied in the last decades. In this study, we investigated whether reputable concepts in deep-sea ecology also explain diversity and distribution patterns of nematode genera and species in the abyss. Among them, three paradigms were tackled: (1) the deep sea is a highly diverse environment at a local scale, while on a regional and even larger geographical scale, species and genus turnover is limited; (2) the biodiversity of deep-sea nematode communities changes with the nature and amount of organic matter input from the surface; and (3) patch-mosaic dynamics of the deep-sea environment drive local diversity. To test these hypotheses, diversity and density of nematode assemblages and of species of the genus Acantholaimus were studied along two abyssal E-W transects. These two transects were situated in the Southern Ocean ( 50°S) and the North Atlantic ( 10°N). Four different hierarchical scales were used to compare biodiversity: at the scale of cores, between stations from the same region, and between regions. Results revealed that the deep sea harbours a high diversity at a local scale (alpha diversity), but that turnover can be shaped by different environmental drivers. Therefore, these results question the second part of the paradigm about limited species turnover in the deep sea. Higher surface primary productivity was correlated with greater nematode densities, whereas diversity responses to the augmentation of surface productivity showed no trend. Areas subjected to a constant and low food input revealed similar nematode communities to other oligotrophic abyssal areas, while stations under high productivity were characterized by different dominant genera and Acantholaimus species, and by a generally low local diversity. Our results corroborate the species-energy hypothesis, where productivity can set a limit to the richness of an ecosystem. Finally, we observed no correlation between sediment

  15. Mangrove succession enriches the sediment microbial community in South China.

    Science.gov (United States)

    Chen, Quan; Zhao, Qian; Li, Jing; Jian, Shuguang; Ren, Hai

    2016-06-06

    Sediment microorganisms help create and maintain mangrove ecosystems. Although the changes in vegetation during mangrove forest succession have been well studied, the changes in the sediment microbial community during mangrove succession are poorly understood. To investigate the changes in the sediment microbial community during succession of mangroves at Zhanjiang, South China, we used phospholipid fatty acid (PLFA) analysis and the following chronosequence from primary to climax community: unvegetated shoal; Avicennia marina community; Aegiceras corniculatum community; and Bruguiera gymnorrhiza + Rhizophora stylosa community. The PLFA concentrations of all sediment microbial groups (total microorganisms, fungi, gram-positive bacteria, gram-negative bacteria, and actinomycetes) increased significantly with each stage of mangrove succession. Microbial PLFA concentrations in the sediment were significantly lower in the wet season than in the dry season. Regression and ordination analyses indicated that the changes in the microbial community with mangrove succession were mainly associated with properties of the aboveground vegetation (mainly plant height) and the sediment (mainly sediment organic matter and total nitrogen). The changes in the sediment microbial community can probably be explained by increases in nutrients and microhabitat heterogeneity during mangrove succession.

  16. Nematode communities in sediments of the Kermadec Trench, Southwest Pacific Ocean

    Science.gov (United States)

    Leduc, Daniel; Rowden, Ashley A.

    2018-04-01

    Hadal trenches are characterized by environmental conditions not found in any other deep-sea environment, such as steep topography and periodic disturbance by turbidity flows, which are likely responsible for the distinct nature of benthic communities of hadal trenches relative to those of the abyssal plain. Nematodes are the most abundant metazoans in the deep-sea benthos, but it is not yet clear if different trenches host distinct nematode communities, and no data are yet available on the communities of most trenches, including the Kermadec Trench in the Southwest Pacific. Quantitative core samples from the seafloor of the Kermadec Trench were recently obtained from four sites at 6000-9000 m depth which allowed for analyses of meiofauna, and nematodes in particular, for the first time. Nematode community and trophic structure was also compared with other trenches using published data. There was a bathymetric gradient in meiofauna abundance, biomass, and community structure within the Kermadec Trench, but patterns for species richness were ambiguous depending on which metric was used. There was a change in community structure from shallow to deep sites, as well as a consistent change in community structure from the upper sediment layers to the deeper sediment layers across the four sites. These patterns are most likely explained by variation in food availability within the trench, and related to trench topography. Together, deposit and microbial feeders represented 48-92% of total nematode abundance in the samples, which suggests that fine organic detritus and bacteria are major food sources. The relatively high abundance of epigrowth feeders at the 6000 and 9000 m sites (38% and 31%, respectively) indicates that relatively freshly settled microalgal cells represent another important food source at these sites. We found a significant difference in species community structure between the Kermadec and Tonga trenches, which was due to both the presence/absence of

  17. Abyssal near-bottom dispersal stages of benthic invertebrates in the Clarion-Clipperton polymetallic nodule province

    Science.gov (United States)

    Kersten, Oliver; Smith, Craig R.; Vetter, Eric W.

    2017-09-01

    Growing interest in polymetallic nodule mining has intensified the need to characterize the abundance, community structure and vertical flux of meroplankton in the Clarion-Clipperton Zone (CCZ) to facilitate the estimation of larval supply and potential connectivity of benthic populations. These ecological parameters are essential to predict recolonization processes following the expected large-scale, high intensity disturbances associated with nodule extraction. Here, we present the first description of the composition, abundance, temporal variability, and mesoscale distribution of dispersing stages of the benthos in two study areas in the eastern CCZ. Samples from free-vehicle plankton pumps showed little variation in meroplankton diversity and abundance over scales of 30-100 km for time scales of days to weeks. However, sediment-trap samples revealed high temporal variability in vertical flux over weeks to months. Larval abundances and fluxes measured in the abyssal CCZ are 1-2 orders of magnitude lower than observed at deep-sea ridge and hydrothermal-vent habitats. We found significantly higher downward larval fluxes at 11 m above the bottom (mab) than at 146 mab, indicating accumulation or retention of meroplankton within the Benthic Boundary Layer (BBL). The high abundance of meroplankton in the BBL emphasizes its importance to dispersing stages and suggests that the creation of large sediment plumes in the BBL during nodule mining could compromise the dispersal and recruitment abilities of the abyssal benthos, potentially slowing rates and altering patterns of benthic community recovery following mining disturbance.

  18. Carbohydrate secretion by phototrophic communities in tidal sediments

    NARCIS (Netherlands)

    de Winder, B.; Staats, N.; Stal, L.J.; Paterson, D.M.

    1999-01-01

    Two different benthic phototrophic communities on tidal flats were investigated for their carbohydrate content and distribution. Carbohydrates were analysed as two operationally defined fractions, related to the difficulty of extraction from the sediment matrix. Water-soluble (colloidal) and EDTA-

  19. Seasonal sediment dynamics shape temperate bedrock reef communities

    Science.gov (United States)

    Figurski, Jared D.; Freiwald, Jan; Lonhart, Steve I.; Storlazzi, Curt

    2016-01-01

    Mobilized seafloor sediment can impact benthic reef communities through burial, scour, and turbidity. These processes are ubiquitous in coastal oceans and, through their influence on the survival, fitness, and interactions of species, can alter the structure and function of benthic communities. In northern Monterey Bay, California, USA, as much as 30% of the seafloor is buried or exposed seasonally, making this an ideal location to test how subtidal temperate rocky reef communities vary in the presence and absence of chronic sediment-based disturbances. Designated dynamic plots were naturally inundated by sediment in summer (50 to 100% cover) and swept clean in winter, whereas designated stable plots remained free of sediment during our study. Multivariate analyses indicated significant differences in the structure of sessile and mobile communities between dynamic and stable reef habitats. For sessile species, community structure in disturbed plots was less variable in space and time than in stable plots due to the maintenance of an early successional state. In contrast, community structure of mobile species varied more in disturbed plots than in stable plots, reflecting how mobile species distribute in response to sediment dynamics. Some species were found only in these disturbed areas, suggesting that the spatial mosaic of disturbance could increase regional diversity. We discuss how the relative ability of species to tolerate disturbance at different life history stages and their ability to colonize habitat translate into community-level differences among habitats, and how this response varies between mobile and sessile communities.

  20. Late Quarternary evolution of the northern Hatteras Abyssal Plain

    International Nuclear Information System (INIS)

    Dickson, S.M.; Laine, E.P.

    1986-05-01

    The sedimentary history and seismic structure of a deep-water turbidite basin in the Western North Atlantic Ocean has been investigated to understand further the evolution of abyssal plains. This study integrates analyses of sedimentary and seismic facies in order to examine the temporal and spatial patterns of sedimentation on the northern Hatteras Abyssal Plain during the Late Quaternary. Forty deep-sea sediment cores and 6000 km of high resolution (3.5 kHz) seismic reflection profiles from within 31-34 0 N and 69-74 0 W include portions of the Hatteras Outer Ridge, Lower Continental Rise and Bermuda Rise as well as the northern Hatteras Abyssal Plain. Seismic profiles (within 32-33 0 N, 70-71.5 0 W) define two acoustically-transparent seismic units beneath the Plain. The composition of these seismic units has been investigated with sediment cores. This study has found two notable features in the sedimentary framework of the Plain that appear to have resulted from temporal changes in sediment supply. The most recent change, a postglacial decline in turbidity current activity, produced a diagenetic iron enrichment at the Pleistocene-Holocene boundary. The stratigraphic thickness affected by diagenesis is related spatially to patterns of turbidite sedimentation. An earlier change, discovered in this research, occurred during the Wisconsinian glaciation and brought coarser-grained turbidity currents to the northern Plain. Deposition of sands from these flows appears to have been locally controlled by a broad topographic feature with less than ten meters relief. As a result of the topographic influence, there are abrupt boundaries, both verically and laterally, between an older mud facies and a younger sandy turbidite facies of the Plain

  1. Hydrocarbon pollutants shape bacterial community assembly of harbor sediments

    KAUST Repository

    Barbato, Marta

    2016-02-02

    Petroleum pollution results in co-contamination by different classes of molecules, entailing the occurrence of marine sediments difficult to remediate, as in the case of the Ancona harbor (Mediterranean Sea, Italy). Autochthonous bioaugmentation (ABA), by exploiting the indigenous microbes of the environment to be treated, could represent a successful bioremediation strategy. In this perspective we aimed to i) identify the main drivers of the bacterial communities\\' richness in the sediments, ii) establish enrichment cultures with different hydrocarbon pollutants evaluating their effects on the bacterial communities\\' composition, and iii) obtain a collection of hydrocarbon degrading bacteria potentially exploitable in ABA. The correlation between the selection of different specialized bacterial populations and the type of pollutants was demonstrated by culture-independent analyses, and by establishing a collection of bacteria with different hydrocarbon degradation traits. Our observations indicate that pollution dictates the diversity of sediment bacterial communities and shapes the ABA potential in harbor sediments.

  2. Planning for a National Community Sediment Transport Model

    Science.gov (United States)

    2002-01-01

    modeling project. The workshop did not develop a NOPP proposal because NOPP had not yet announced funding opportunities for a coastal community modeling...2002, titled “NOPP / USGS Coastal Community Sediment-Transport Model”. Dr. Sherwood presented status reports at the NOPP Nearshore Annual meeting in

  3. A Qualitative and Quantitative Study of the Distribution of Pelagic Sediment in the Atlantic Basin

    National Research Council Canada - National Science Library

    Webb, Helen

    1997-01-01

    By numerically modeling pelagic sedimentation as a diffusive process, we study sedimentation effects in terms of stochastic parameters including seafloor RMS height, abyssal hill spacing, and slope distribution...

  4. Sediment Microbial Communities Influenced by Cool Hydrothermal Fluid Migration

    Directory of Open Access Journals (Sweden)

    Laura A. Zinke

    2018-06-01

    Full Text Available Cool hydrothermal systems (CHSs are prevalent across the seafloor and discharge fluid volumes that rival oceanic input from rivers, yet the microbial ecology of these systems are poorly constrained. The Dorado Outcrop on the ridge flank of the Cocos Plate in the northeastern tropical Pacific Ocean is the first confirmed CHS, discharging minimally altered <15°C fluid from the shallow lithosphere through diffuse venting and seepage. In this paper, we characterize the resident sediment microbial communities influenced by cool hydrothermal advection, which is evident from nitrate and oxygen concentrations. 16S rRNA gene sequencing revealed that Thaumarchaea, Proteobacteria, and Planctomycetes were the most abundant phyla in all sediments across the system regardless of influence from seepage. Members of the Thaumarchaeota (Marine Group I, Alphaproteobacteria (Rhodospirillales, Nitrospirae, Nitrospina, Acidobacteria, and Gemmatimonadetes were enriched in the sediments influenced by CHS advection. Of the various geochemical parameters investigated, nitrate concentrations correlated best with microbial community structure, indicating structuring based on seepage of nitrate-rich fluids. A comparison of microbial communities from hydrothermal sediments, seafloor basalts, and local seawater at Dorado Outcrop showed differences that highlight the distinct niche space in CHS. Sediment microbial communities from Dorado Outcrop differ from those at previously characterized, warmer CHS sediment, but are similar to deep-sea sediment habitats with surficial ferromanganese nodules, such as the Clarion Clipperton Zone. We conclude that cool hydrothermal venting at seafloor outcrops can alter the local sedimentary oxidation–reduction pathways, which in turn influences the microbial communities within the fluid discharge affected sediment.

  5. Bacterial communities in sediment of a Mediterranean marine protected area.

    Science.gov (United States)

    Catania, Valentina; Sarà, Gianluca; Settanni, Luca; Quatrini, Paola

    2017-04-01

    Biodiversity is crucial in preservation of ecosystems, and bacterial communities play an indispensable role for the functioning of marine ecosystems. The Mediterranean marine protected area (MPA) "Capo Gallo-Isola delle Femmine" was instituted to preserve marine biodiversity. The bacterial diversity associated with MPA sediment was compared with that from sediment of an adjacent harbour exposed to intense nautical traffic. The MPA sediment showed higher diversity with respect to the impacted site. A 16S rDNA clone library of the MPA sediment allowed the identification of 7 phyla: Proteobacteria (78%), Firmicutes (11%), Acidobacteria (3%), Actinobacteria (3%), Bacteroidetes (2%), Planctomycetes (2%), and Cyanobacteria (1%). Analysis of the hydrocarbon (HC)-degrading bacteria was performed using enrichment cultures. Most of the MPA sediment isolates were affiliated with Gram-positive G+C rich bacteria, whereas the majority of taxa in the harbour sediment clustered with Alpha- and Gammaproteobacteria; no Gram-positive HC degraders were isolated from the harbour sediment. Our results show that protection probably has an influence on bacterial diversity, and suggest the importance of monitoring the effects of protection at microbial level as well. This study creates a baseline of data that can be used to assess changes over time in bacterial communities associated with a Mediterranean MPA.

  6. An Abyssal Current in the Central Labrador Sea

    Science.gov (United States)

    Hall, M. M.; Yashayaev, I.; Torres, D. J.

    2012-12-01

    Lowered acoustic Doppler current profiler (LADCP) data collected along the repeat hydrographic section AR7W in the Labrador Sea has unveiled a new abyssal current, confined to a narrow trench extending from NW to SE over the entire abyssal basin and crossing AR7W in the center of the basin at about 57.8°N, 51.3°W. Maximum water depth in the trough is 75 - 100 m greater depth than the surrounding topography, and the current extends from about 160 m above the bottom to the bottom (3610 m), headed in a south to southeasterly direction. Maximum speeds of 10-20 cm s-1 occur in the deepest part of the current, implying a net transport of as much as 0.2 Sv of Denmark Strait Overflow Water (DSOW). Potential temperature and salinity in the bottom-intensified current tend to be well mixed below 3520 m, suggesting that the mixed bottom boundary layer is about 100 m thick. This V-shaped trench is part of the Northwest Atlantic Mid-Ocean Channel (NAMOC), which has been recognized as a turbidity current pathway by petrologists (Chough and Hesse, 1980; Chough et al., 1986). Another small trough intersects the main branch of the NAMOC where the abyssal current is observed, which may account for the varying direction of the current. This network of abyssal channels may provide a pathway for DSOW, entering the Labrador Sea around the southern tip of Greenland, to reach the central Labrador Sea with little delay. Indeed, Yashayaev and Dickson (2008) have noted the rapidity with which signals of hydrographic change in DSOW spread across the entire abyssal basin, reaching the central Labrador Sea within several months after their first appearance at the eastern boundary. Chough, S. K. and R. Hesse (1980). The Northwest Atlantic Mid-Ocean Channel of the Labrador Sea: III. Head spill vs. body spill deposits from turbidity currents on natural levees. J. of Sedimentary Petrology 50, 227-234. Chough, S. K., R. Hesse, and J. Muller (1987). The Northwest Atlantic Mid-Ocean Channel of the

  7. Orogenic, Ophiolitic, and Abyssal Peridotites

    Science.gov (United States)

    Bodinier, J.-L.; Godard, M.

    2003-12-01

    "Tectonically emplaced" mantle rocks include subcontinental, suboceanic, and subarc mantle rocks that were tectonically exhumed from the upper mantle and occur:(i) as dispersed ultramafic bodies, a few meters to kilometers in size, in suture zones and mountain belts (i.e., the "alpine," or "orogenic" peridotite massifs - De Roever (1957), Thayer (1960), Den Tex (1969));(ii) as the lower ultramafic section of large (tens of kilometers) ophiolite or island arc complexes, obducted on continental margins (e.g., the Oman Ophiolite and the Kohistan Arc Complex - Coleman (1971), Boudier and Coleman (1981), Burg et al. (1998));(iii) exhumed above the sea level in ocean basins (e.g., Zabargad Island in the Red Sea, St. Paul's islets in the Atlantic and Macquarie Island in the southwestern Pacific - Tilley (1947), Melson et al. (1967), Varne and Rubenach (1972), Bonatti et al. (1981)).The "abyssal peridotites" are samples from the oceanic mantle that were dredged on the ocean floor, or recovered from drill cores (e.g., Bonatti et al., 1974; Prinz et al., 1976; Hamlyn and Bonatti, 1980).Altogether, tectonically emplaced and abyssal mantle rocks provide insights into upper mantle compositions and processes that are complementary to the information conveyed by mantle xenoliths (See Chapter 2.05). They provide coverage to vast regions of the Earth's upper mantle that are sparsely sampled by mantle xenoliths, particularly in the ocean basins and beneath passive continental margins, back-arc basins, and oceanic island arcs.Compared with mantle xenoliths, a disadvantage of some tectonically emplaced mantle rocks for representing mantle compositions is that their original geodynamic setting is not exactly known and their significance is sometimes a subject of speculation. For instance, the provenance of orogenic lherzolite massifs (subcontinental lithosphere versus upwelling asthenosphere) is still debated (Menzies and Dupuy, 1991, and references herein), as is the original setting

  8. Bacterial community survey of sediments at Naracoorte Caves, Australia

    Directory of Open Access Journals (Sweden)

    Ball Andrew S.

    2012-07-01

    Full Text Available Bacterial diversity in sediments at UNESCO World Heritage listed Naracoorte Caves was surveyed as part of an investigation carried out in a larger study on assessing microbial communities in caves. Cave selection was based on tourist accessibility; Stick Tomato and Alexandra Cave (> 15000 annual visits and Strawhaven Cave was used as control (no tourist access. Microbial analysis showed that Bacillus was the most commonly detected microbial genus by culture dependent and independent survey of tourist accessible and inaccessible areas of show (tourist accessible and control caves. Other detected sediment bacterial groups were assigned to the Firmicutes, Actinobacteria and Proteobacteria. The survey also showed differences in bacterial diversity in caves with human access compared to the control cave with the control cave having unique microbial sequences (Acinetobacter, Agromyces, Micrococcus and Streptomyces. The show caves had higher bacterial counts, different 16S rDNA based DGGE cluster patterns and principal component groupings compared to Strawhaven. Different factors such as human access, cave use and configurations could have been responsible for the differences observed in the bacterial community cluster patterns (tourist accessible and inaccessible areas of these caves. Cave sediments can therefore act as reservoirs of microorganisms. This might have some implications on cave conservation activities especially if these sediments harbor rock art degrading microorganisms in caves with rock art.

  9. Habitat filtering of bacterioplankton communities above polymetallic nodule fields and sediments in the Clarion-Clipperton zone of the Pacific Ocean.

    Science.gov (United States)

    Lindh, Markus V; Maillot, Brianne M; Smith, Craig R; Church, Matthew J

    2018-04-01

    Deep-sea mining of commercially valuable polymetallic nodule fields will generate a seabed sediment plume into the water column. Yet, the response of bacterioplankton communities, critical in regulating energy and matter fluxes in marine ecosystems, to such disturbances is unknown. Metacommunity theory, traditionally used in general ecology for macroorganisms, offers mechanistic understanding on the relative role of spatial differences compared with local environmental conditions (habitat filtering) for community assembly. We examined bacterioplankton metacommunities using 16S rRNA amplicons from the Clarion-Clipperton Zone (CCZ) in the eastern Pacific Ocean and in global ocean transect samples to determine sensitivity of these assemblages to environmental perturbations. Habitat filtering was the main assembly mechanism of bacterioplankton community composition in the epi- and mesopelagic waters of the CCZ and the Tara Oceans transect. Bathy- and abyssopelagic bacterioplankton assemblages were mainly assembled by undetermined metacommunity types or neutral and dispersal-driven patch-dynamics for the CCZ and the Malaspina transect. Environmental disturbances may alter the structure of upper-ocean microbial assemblages, with potentially even more substantial, yet unknown, impact on deep-sea communities. Predicting such responses in bacterioplankton assemblage dynamics can improve our understanding of microbially-mediated regulation of ecosystem services in the abyssal seabed likely to be exploited by future deep-sea mining operations. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Energy Gradients Structure Microbial Communities Across Sediment Horizons in Deep Marine Sediments of the South China Sea

    Directory of Open Access Journals (Sweden)

    Michael F. Graw

    2018-04-01

    Full Text Available The deep marine subsurface is a heterogeneous environment in which the assembly of microbial communities is thought to be controlled by a combination of organic matter deposition, electron acceptor availability, and sedimentology. However, the relative importance of these factors in structuring microbial communities in marine sediments remains unclear. The South China Sea (SCS experiences significant variability in sedimentation across the basin and features discrete changes in sedimentology as a result of episodic deposition of turbidites and volcanic ashes within lithogenic clays and siliceous or calcareous ooze deposits throughout the basin's history. Deep subsurface microbial communities were recently sampled by the International Ocean Discovery Program (IODP at three locations in the SCS with sedimentation rates of 5, 12, and 20 cm per thousand years. Here, we used Illumina sequencing of the 16S ribosomal RNA gene to characterize deep subsurface microbial communities from distinct sediment types at these sites. Communities across all sites were dominated by several poorly characterized taxa implicated in organic matter degradation, including Atribacteria, Dehalococcoidia, and Aerophobetes. Sulfate-reducing bacteria comprised only 4% of the community across sulfate-bearing sediments from multiple cores and did not change in abundance in sediments from the methanogenic zone at the site with the lowest sedimentation rate. Microbial communities were significantly structured by sediment age and the availability of sulfate as an electron acceptor in pore waters. However, microbial communities demonstrated no partitioning based on the sediment type they inhabited. These results indicate that microbial communities in the SCS are structured by the availability of electron donors and acceptors rather than sedimentological characteristics.

  11. Energy Gradients Structure Microbial Communities Across Sediment Horizons in Deep Marine Sediments of the South China Sea

    Science.gov (United States)

    Graw, Michael F.; D'Angelo, Grace; Borchers, Matthew; Thurber, Andrew R.; Johnson, Joel E.; Zhang, Chuanlun; Liu, Haodong; Colwell, Frederick S.

    2018-01-01

    The deep marine subsurface is a heterogeneous environment in which the assembly of microbial communities is thought to be controlled by a combination of organic matter deposition, electron acceptor availability, and sedimentology. However, the relative importance of these factors in structuring microbial communities in marine sediments remains unclear. The South China Sea (SCS) experiences significant variability in sedimentation across the basin and features discrete changes in sedimentology as a result of episodic deposition of turbidites and volcanic ashes within lithogenic clays and siliceous or calcareous ooze deposits throughout the basin's history. Deep subsurface microbial communities were recently sampled by the International Ocean Discovery Program (IODP) at three locations in the SCS with sedimentation rates of 5, 12, and 20 cm per thousand years. Here, we used Illumina sequencing of the 16S ribosomal RNA gene to characterize deep subsurface microbial communities from distinct sediment types at these sites. Communities across all sites were dominated by several poorly characterized taxa implicated in organic matter degradation, including Atribacteria, Dehalococcoidia, and Aerophobetes. Sulfate-reducing bacteria comprised only 4% of the community across sulfate-bearing sediments from multiple cores and did not change in abundance in sediments from the methanogenic zone at the site with the lowest sedimentation rate. Microbial communities were significantly structured by sediment age and the availability of sulfate as an electron acceptor in pore waters. However, microbial communities demonstrated no partitioning based on the sediment type they inhabited. These results indicate that microbial communities in the SCS are structured by the availability of electron donors and acceptors rather than sedimentological characteristics. PMID:29696012

  12. Impact of Oil on Bacterial Community Structure in Bioturbated Sediments

    Science.gov (United States)

    Stauffert, Magalie; Cravo-Laureau, Cristiana; Jézéquel, Ronan; Barantal, Sandra; Cuny, Philippe; Gilbert, Franck; Cagnon, Christine; Militon, Cécile; Amouroux, David; Mahdaoui, Fatima; Bouyssiere, Brice; Stora, Georges; Merlin, François-Xavier; Duran, Robert

    2013-01-01

    Oil spills threaten coastlines where biological processes supply essential ecosystem services. Therefore, it is crucial to understand how oil influences the microbial communities in sediments that play key roles in ecosystem functioning. Ecosystems such as sediments are characterized by intensive bioturbation due to burrowing macrofauna that may modify the microbial metabolisms. It is thus essential to consider the bioturbation when determining the impact of oil on microbial communities. In this study, an experimental laboratory device maintaining pristine collected mudflat sediments in microcosms closer to true environmental conditions – with tidal cycles and natural seawater – was used to simulate an oil spill under bioturbation conditions. Different conditions were applied to the microcosms including an addition of: standardized oil (Blend Arabian Light crude oil, 25.6 mg.g−1 wet sediment), the common burrowing organism Hediste (Nereis) diversicolor and both the oil and H. diversicolor. The addition of H. diversicolor and its associated bioturbation did not affect the removal of petroleum hydrocarbons. After 270 days, 60% of hydrocarbons had been removed in all microcosms irrespective of the H. diversicolor addition. However, 16S-rRNA gene and 16S-cDNA T-RFLP and RT-PCR-amplicon libraries analysis showed an effect of the condition on the bacterial community structure, composition, and dynamics, supported by PerMANOVA analysis. The 16S-cDNA libraries from microcosms where H. diversicolor was added (oiled and un-oiled) showed a marked dominance of sequences related to Gammaproteobacteria. However, in the oiled-library sequences associated to Deltaproteobacteria and Bacteroidetes were also highly represented. The 16S-cDNA libraries from oiled-microcosms (with and without H. diversicolor addition) revealed two distinct microbial communities characterized by different phylotypes associated to known hydrocarbonoclastic bacteria and dominated by

  13. Impact of oil on bacterial community structure in bioturbated sediments.

    Directory of Open Access Journals (Sweden)

    Magalie Stauffert

    Full Text Available Oil spills threaten coastlines where biological processes supply essential ecosystem services. Therefore, it is crucial to understand how oil influences the microbial communities in sediments that play key roles in ecosystem functioning. Ecosystems such as sediments are characterized by intensive bioturbation due to burrowing macrofauna that may modify the microbial metabolisms. It is thus essential to consider the bioturbation when determining the impact of oil on microbial communities. In this study, an experimental laboratory device maintaining pristine collected mudflat sediments in microcosms closer to true environmental conditions--with tidal cycles and natural seawater--was used to simulate an oil spill under bioturbation conditions. Different conditions were applied to the microcosms including an addition of: standardized oil (Blend Arabian Light crude oil, 25.6 mg.g⁻¹ wet sediment, the common burrowing organism Hediste (Nereis diversicolor and both the oil and H. diversicolor. The addition of H. diversicolor and its associated bioturbation did not affect the removal of petroleum hydrocarbons. After 270 days, 60% of hydrocarbons had been removed in all microcosms irrespective of the H. diversicolor addition. However, 16S-rRNA gene and 16S-cDNA T-RFLP and RT-PCR-amplicon libraries analysis showed an effect of the condition on the bacterial community structure, composition, and dynamics, supported by PerMANOVA analysis. The 16S-cDNA libraries from microcosms where H. diversicolor was added (oiled and un-oiled showed a marked dominance of sequences related to Gammaproteobacteria. However, in the oiled-library sequences associated to Deltaproteobacteria and Bacteroidetes were also highly represented. The 16S-cDNA libraries from oiled-microcosms (with and without H. diversicolor addition revealed two distinct microbial communities characterized by different phylotypes associated to known hydrocarbonoclastic bacteria and dominated by

  14. Geothermal influences on the abyssal ocean

    Science.gov (United States)

    Emile-Geay, J.; Madec, G.

    2017-12-01

    Long considered a negligible contribution to ocean dynamics, geothermal heat flow (GHF) is now increasingly recognized as an important contributor to the large scale ocean's deep structure and circulation. This presentation will review the history of theories regarding geothermal influences on the abyssal ocean. Though the contribution to the thermal structure was recognized early on, its potential in driving a circulation [Worthington, 1968] was largely ignored on the grounds that it could not materially affect potential vorticity. Huang [JPO, 1999] proposed that GHF may provide 30-50% of the energy available for deep mixing, a calculation that later proved too optimistic [Wunsch & Ferrari ARFM 2004]. Model simulations suggested that a uniform GHF of 50 mW/m2 could drive an abyssal of a few Sverdrups (1 Sv = 106 m3.s-1) [Adcroft et al, GRL 2001], but it was not until Emile-Geay & Madec [OS, 2009] (EM09) that GHF began to be taken seriously [Mashayek et al, GRL 2013; Voldoire et al. Clim. Dyn. 2013; Dufresnes et al., Clim. Dyn. 2013]. Using analytical and numerical approaches, the study made 3 main points: GHF brings as much energy to the deep ocean as intense diapycnal mixing (1 cm2/s). GHF consumes the densest water masses, inducing a deep circulation of 5 Sv even without mixing. This circulation varies in inverse proportion to abyssal stratification. The spatial structure of GHF, highest at mid-ocean ridges and lowest in abyssal plains, matters far less than the fact that it bathes vast fractions of the ocean floor in a relatively low, constant flux. EM09 concluded that GHF "is an important actor of abyssal dynamics, and should no longer be neglected in oceanographic studies". Recent work has confirmed that geothermal heat flow is of comparable importance to ocean circulation as bottom-intensified mixing induced by internal wave breaking [De Lavergne et al, JPO 2016a,b]. Thus, including GHF in ocean general circulation models improves abyssal structure and

  15. Effect of biostimulation on the microbial community in PCB-contaminated sediments through periodic amendment of sediment with iron.

    Science.gov (United States)

    Srinivasa Varadhan, A; Khodadoust, Amid P; Brenner, Richard C

    2011-10-01

    Reductive dehalogenation of polychlorinated biphenyls (PCBs) by indigenous dehalorespiring microorganisms in contaminated sediments may be enhanced via biostimulation by supplying hydrogen generated through the anaerobic corrosion of elemental iron added to the sediment. In this study, the effect of periodic amendment of sediment with various dosages of iron on the microbial community present in sediment was investigated using phospholipid fatty acid analysis (PLFA) over a period of 18 months. Three PCB-contaminated sediments (two freshwater lake sediments and one marine sediment) were used. Signature biomarker analysis of the microbial community present in all three sediments revealed the enrichment of Dehalococcoides species, the population of which was sustained for a longer period of time when the sediment microcosms were amended with the lower dosage of iron (0.01 g iron per g dry sediment) every 6 months as compared to the blank system (without iron). Lower microbial stress levels were reported for the system periodically amended with 0.01 g of iron per g dry sediment every 6 months, thus reducing the competition from other hydrogen-utilizing microorganisms like methanogens, iron reducers, and sulfate reducers. The concentration of hydrogen in the system was found to be an important factor influencing the shift in microbial communities in all sediments with time. Periodic amendment of sediment with larger dosages of iron every 3 months resulted in the early prevalence of Geobacteraceae and sulfate-reducing bacteria followed by methanogens. An average pH of 8.4 (range of 8.2-8.6) and an average hydrogen concentration of 0.75% (range of 0.3-1.2%) observed between 6 and 15 months of the study were found to be conducive to sustaining the population of Dehalococcoides species in the three sediments amended with 0.01 g iron per g dry sediment. Biostimulation of indigenous PCB dechlorinators by the periodic amendment of contaminated sediments with low dosages of

  16. Opportunistic Pathogens and Microbial Communities and Their Associations with Sediment Physical Parameters in Drinking Water Storage Tank Sediments

    Science.gov (United States)

    Qin, Ke; Struewing, Ian; Domingo, Jorge Santo; Lytle, Darren

    2017-01-01

    The occurrence and densities of opportunistic pathogens (OPs), the microbial community structure, and their associations with sediment elements from eight water storage tanks in Ohio, West Virginia, and Texas were investigated. The elemental composition of sediments was measured through X-ray fluorescence (XRF) spectra. The occurrence and densities of OPs and amoeba hosts (i.e., Legionella spp. and L. pneumophila, Mycobacterium spp., P. aeruginosa, V. vermiformis, Acanthamoeba spp.) were determined using genus- or species-specific qPCR assays. Microbial community analysis was performed using next generation sequencing on the Illumina Miseq platform. Mycobacterium spp. were most frequently detected in the sediments and water samples (88% and 88%), followed by Legionella spp. (50% and 50%), Acanthamoeba spp. (63% and 13%), V. vermiformis (50% and 25%), and P. aeruginosa (0 and 50%) by qPCR method. Comamonadaceae (22.8%), Sphingomonadaceae (10.3%), and Oxalobacteraceae (10.1%) were the most dominant families by sequencing method. Microbial communities in water samples were mostly separated with those in sediment samples, suggesting differences of communities between two matrices even in the same location. There were associations of OPs with microbial communities. Both OPs and microbial community structures were positively associated with some elements (Al and K) in sediments mainly from pipe material corrosions. Opportunistic pathogens presented in both water and sediments, and the latter could act as a reservoir of microbial contamination. There appears to be an association between potential opportunistic pathogens and microbial community structures. These microbial communities may be influenced by constituents within storage tank sediments. The results imply that compositions of microbial community and elements may influence and indicate microbial water quality and pipeline corrosion, and that these constituents may be important for optimal storage tank management

  17. Quantitative characterization of abyssal seafloor with transit multibeam backscatter data

    Science.gov (United States)

    Pockalny, R. A.; Ferrini, V. L.

    2014-12-01

    The expanding volume of deep-water multibeam echosounder data provides emerging opportunities for the improved characterization of the abyssal seafloor. Nearly 500 cruises criss-cross the oceans with modern wide-swath multibeam systems, and these cruise tracks have imaged a variety of morphologic, tectonic and magmatic environments. The qualitative analysis of the seafloor backscatter data strongly suggests a local and regional variability that correlates with sediment thickness, sediment type and/or depositional environment. We present our initial attempts to develop a method that quantifies this observed seafloor backscatter variability and to explore the causes and potential implications of this variability. Our approach is rooted in the Angular Range Analysis methodology, which utilizes changes in backscatter amplitude observed as a function of grazing angle, to characterize the seafloor. The primary difference in our approach is that we do not invert for geo-acoustical parameters, but rather explores empirical relationships between geological observations and stacked slope and y-intercept values. In addition, we also include the mean and the variance of detrended backscatter measurements. Our initial results indicate intriguing relationships between backscatter parameters and the CaCO3 content of surface sediments. Seafloor regions reported to have high manganese nodule concentrations also tend to have characteristic trends in backscatter parameters. We will present these regional correlations as well as some preliminary statistical analyses of the backscatter parameters and key environmental factors.

  18. Infaunal macrobenthic community of soft bottom sediment in a tropical shelf

    Digital Repository Service at National Institute of Oceanography (India)

    Jayaraj, K.A.; Jacob, J.; DineshKumar, P.K.

    Studies of benthic communities in tropical shelf waters are limited. In this study, we deal with the infaunal benthic community of soft bottom sediment of the tropical eastern Arabian Sea shelf. Benthic macroinfauna was sampled with a Smith...

  19. Abyssal ocean overturning shaped by seafloor distribution

    Science.gov (United States)

    de Lavergne, C.; Madec, G.; Roquet, F.; Holmes, R. M.; McDougall, T. J.

    2017-11-01

    The abyssal ocean is broadly characterized by northward flow of the densest waters and southward flow of less-dense waters above them. Understanding what controls the strength and structure of these interhemispheric flows—referred to as the abyssal overturning circulation—is key to quantifying the ocean’s ability to store carbon and heat on timescales exceeding a century. Here we show that, north of 32° S, the depth distribution of the seafloor compels dense southern-origin waters to flow northward below a depth of about 4 kilometres and to return southward predominantly at depths greater than 2.5 kilometres. Unless ventilated from the north, the overlying mid-depths (1 to 2.5 kilometres deep) host comparatively weak mean meridional flow. Backed by analysis of historical radiocarbon measurements, the findings imply that the geometry of the Pacific, Indian and Atlantic basins places a major external constraint on the overturning structure.

  20. CeDAMar global database of abyssal biological sampling

    OpenAIRE

    Stuart, Carol T.; Arbizu, Pedro Martinez; Smith, Craig R.; Molodtsova, Tina; Brandt, Angelika; Etter, Ron J.; Escobar-briones, Elva; Fabri, Marie-claire; Rex, Michael A.

    2008-01-01

    The Census of the Diversity of Abyssal Marine Life (CeDAMar), a division of the Census of Marine Life, has compiled the first comprehensive global database of biological samples taken in the abyssal plains of the world ocean. It is an essential resource for planning future exploration of the abyss, for synthesizing patterns of biogeography and biodiversity, and for environmentally safe exploitation of natural resources. The database is described in this article, and made available to investig...

  1. Linking geology and microbiology: inactive pockmarks affect sediment microbial community structure.

    Science.gov (United States)

    Haverkamp, Thomas H A; Hammer, Øyvind; Jakobsen, Kjetill S

    2014-01-01

    Pockmarks are geological features that are found on the bottom of lakes and oceans all over the globe. Some are active, seeping oil or methane, while others are inactive. Active pockmarks are well studied since they harbor specialized microbial communities that proliferate on the seeping compounds. Such communities are not found in inactive pockmarks. Interestingly, inactive pockmarks are known to have different macrofaunal communities compared to the surrounding sediments. It is undetermined what the microbial composition of inactive pockmarks is and if it shows a similar pattern as the macrofauna. The Norwegian Oslofjord contains many inactive pockmarks and they are well suited to study the influence of these geological features on the microbial community in the sediment. Here we present a detailed analysis of the microbial communities found in three inactive pockmarks and two control samples at two core depth intervals. The communities were analyzed using high-throughput amplicon sequencing of the 16S rRNA V3 region. Microbial communities of surface pockmark sediments were indistinguishable from communities found in the surrounding seabed. In contrast, pockmark communities at 40 cm sediment depth had a significantly different community structure from normal sediments at the same depth. Statistical analysis of chemical variables indicated significant differences in the concentrations of total carbon and non-particulate organic carbon between 40 cm pockmarks and reference sample sediments. We discuss these results in comparison with the taxonomic classification of the OTUs identified in our samples. Our results indicate that microbial communities at the sediment surface are affected by the water column, while the deeper (40 cm) sediment communities are affected by local conditions within the sediment.

  2. Linking geology and microbiology: inactive pockmarks affect sediment microbial community structure.

    Directory of Open Access Journals (Sweden)

    Thomas H A Haverkamp

    Full Text Available Pockmarks are geological features that are found on the bottom of lakes and oceans all over the globe. Some are active, seeping oil or methane, while others are inactive. Active pockmarks are well studied since they harbor specialized microbial communities that proliferate on the seeping compounds. Such communities are not found in inactive pockmarks. Interestingly, inactive pockmarks are known to have different macrofaunal communities compared to the surrounding sediments. It is undetermined what the microbial composition of inactive pockmarks is and if it shows a similar pattern as the macrofauna. The Norwegian Oslofjord contains many inactive pockmarks and they are well suited to study the influence of these geological features on the microbial community in the sediment. Here we present a detailed analysis of the microbial communities found in three inactive pockmarks and two control samples at two core depth intervals. The communities were analyzed using high-throughput amplicon sequencing of the 16S rRNA V3 region. Microbial communities of surface pockmark sediments were indistinguishable from communities found in the surrounding seabed. In contrast, pockmark communities at 40 cm sediment depth had a significantly different community structure from normal sediments at the same depth. Statistical analysis of chemical variables indicated significant differences in the concentrations of total carbon and non-particulate organic carbon between 40 cm pockmarks and reference sample sediments. We discuss these results in comparison with the taxonomic classification of the OTUs identified in our samples. Our results indicate that microbial communities at the sediment surface are affected by the water column, while the deeper (40 cm sediment communities are affected by local conditions within the sediment.

  3. Comparative Evaluation of Anaerobic Bacterial Communities Associated with Roots of Submerged Macrophytes Growing in Marine or Brackish Water Sediments

    Science.gov (United States)

    Sediment microbial communities are important for seagrass growth and carbon cycling, however relatively few studies have addressed the composition of prokaryotic communities in seagrass bed sediments. Selective media were used enumerate culturable anaerobic bacteria associated ...

  4. Th-230 dating of ∼30 m long piston cores taken from two North Atlantic abyssal plains during the ESOPE cruise

    International Nuclear Information System (INIS)

    Nozaki, Yoshiyuki; Sato, Mitsuyoshi; Shimooka, Kenji.

    1987-01-01

    Two sediment cores longer then 20 meters, obtained from two abyssal plains of the North Atlantic during the ESOPE (Etude des Sediments Oceaniques par Penetration) cruise, are analyzed for U and Th isotopes. In the Maderia Abyssal Plain sediment, excess 230 Th data do not show a simple exponential decrease with depth, being reflected by complex depositional history of the sediments, and hence the Th isotope data can only weakly constrain the rate of sediment accumulation. Relatively low 230 Th concentration in the top 5 meters may be caused by rapid accumulation of turbiditic materials. That a significant excess 230 Th exists even at depths of ∼20 m in the core suggests that the average sedimentation rate is high, perhaps ∼10 of centimeters per thousand years. This high rate of sediment accumulation has resulted largely from frequent turbidites, and not from pelagic clay sedimentation. In the Nares Abyssal Plain sediment, excess 230 Th relative to 234 U has been found down to ∼5 m, showing its almost exponential decrease with depth. Based on excess 230 Th distribution, an average sedimentation rate for the core is estimated to be 1.2 ± 0.3 cm-10 3 y. (Nogami, K.)

  5. Comparative geoscience studies of the Madeira and Southern Nares Abyssal Plains: NEA/SWG preference location document

    International Nuclear Information System (INIS)

    Auffret, G.A.; Buckley, D.E.; Schuttenhelm, R.T.E.; Searle, R.C.; Shephard, L.E.; Cranston, R.E.

    1986-01-01

    This document summarizes the status of geoscience investigations in the two primary North Atlantic study locations Great Meteor East (GME) in the Madeira Abyssal Plain, and the Southern Nares Abyssal Plain (SNAP), and assesses the characteristics of these locations relative to the guidelines considered desirable and necessary for a potential subseabed high-level waste repository. These characteristics will be continually reevaluated as additional data become available and as our understanding of deep-sea sediment processes within abyssal plain environments improves. Initially, a number of areas of minimum size were identified in the ocean basins that appeared to comply with most of the stability and barrier guidelines. However, detailed studies in both GME and SNAP demonstrate that as our level of knowledge improves, and the degree of resolution increases, the number of 100 km 2 areas complying with these guidelines becomes much more limited. This observation may be characteristic of abyssal plain and abyssal hill environments in both the North Atlantic and North Pacific basins. Marked differences in geoscience characteristics exist between the Great Meteor East and the Southern Nares Abyssal Plain study locations. The significance of these differences, as they impact the selection of a single preferred site for a potential subseabed repository, can only be determined by using an integrated systems risk assessment modeling approach. The known geoscience characteristics can, however, be used in conjunction with the site assessment guidelines to draw conclusions concerning the geoscience suitability of these two locations. These conclusions will be modified as specific types of data from future expeditions become available

  6. Effect of Elodea nuttallii roots on bacterial communities and MMHg proportion in a Hg polluted sediment.

    Science.gov (United States)

    Regier, Nicole; Frey, Beat; Converse, Brandon; Roden, Eric; Grosse-Honebrink, Alexander; Bravo, Andrea Garcia; Cosio, Claudia

    2012-01-01

    The objective of this study was to assess the effect of a rooted macrophyte Elodea nuttallii on rhizosphere bacterial communities in Hg contaminated sediments. Specimens of E. nuttallii were exposed to sediments from the Hg contaminated Babeni reservoir (Olt River, Romania) in our microcosm. Plants were allowed to grow for two months until they occupied the entirety of the sediments. Total Hg and MMHg were analysed in sediments where an increased MMHg percentage of the total Hg in pore water of rhizosphere sediments was found. E. nuttallii roots also significantly changed the bacterial community structure in rhizosphere sediments compared to bulk sediments. Deltaproteobacteria dominated the rhizosphere bacterial community where members of Geobacteraceae within the Desulfuromonadales and Desulfobacteraceae were identified. Two bacterial operational taxonomic units (OTUs) which were phylogenetically related to sulfate-reducing bacteria (SRB) became abundant in the rhizosphere. We suggest that these phylotypes could be potentially methylating bacteria and might be responsible for the higher MMHg percentage of the total Hg in rhizosphere sediments. However, SRB were not significantly favoured in rhizosphere sediments as shown by qPCR. Our findings support the hypothesis that rooted macrophytes created a microenvironment favorable for Hg methylation. The presence of E. nuttallii in Hg contaminated sediments should therefore not be overlooked.

  7. Effect of Elodea nuttallii roots on bacterial communities and MMHg proportion in a Hg polluted sediment.

    Directory of Open Access Journals (Sweden)

    Nicole Regier

    Full Text Available The objective of this study was to assess the effect of a rooted macrophyte Elodea nuttallii on rhizosphere bacterial communities in Hg contaminated sediments. Specimens of E. nuttallii were exposed to sediments from the Hg contaminated Babeni reservoir (Olt River, Romania in our microcosm. Plants were allowed to grow for two months until they occupied the entirety of the sediments. Total Hg and MMHg were analysed in sediments where an increased MMHg percentage of the total Hg in pore water of rhizosphere sediments was found. E. nuttallii roots also significantly changed the bacterial community structure in rhizosphere sediments compared to bulk sediments. Deltaproteobacteria dominated the rhizosphere bacterial community where members of Geobacteraceae within the Desulfuromonadales and Desulfobacteraceae were identified. Two bacterial operational taxonomic units (OTUs which were phylogenetically related to sulfate-reducing bacteria (SRB became abundant in the rhizosphere. We suggest that these phylotypes could be potentially methylating bacteria and might be responsible for the higher MMHg percentage of the total Hg in rhizosphere sediments. However, SRB were not significantly favoured in rhizosphere sediments as shown by qPCR. Our findings support the hypothesis that rooted macrophytes created a microenvironment favorable for Hg methylation. The presence of E. nuttallii in Hg contaminated sediments should therefore not be overlooked.

  8. Heat flow measurements in Great Meteor East, Madeira Abyssal Plain, during Discovery Cruise 144

    International Nuclear Information System (INIS)

    Noel, M.

    1984-01-01

    This report describes 21 closely spaced heat flow measurements which were made along two survey lines in an area of faulted sediments east of Great Meteor Seamount in the Madeira Abyssal Plain. The heat flow was found to be correlated with basement topography as mapped by seismic reflection profiling. Data modelling suggests that this is due both to the thermal conductivity contrast between sediments and basement rocks and to the presence of hydrothermal circulation within basement highs. The existence of non-linear temperature profiles in sediments covering basement highs suggests that the underlying circulation is causing an upward movement of porewater. There is no firm evidence to show that the sediment faults act as preferred pathways for porewater advection. (author)

  9. Abyssal fiction: common shares, colonial cleavages

    Directory of Open Access Journals (Sweden)

    Alexandre Montaury

    2016-12-01

    Full Text Available The paper aims to develop a reflection on the interaction between the legacies of colonialism and traditional symbolic and cultural practices in African Portuguese-speaking spaces. From a preliminary analysis of fictional texts of wide circulation in Brazil, aims to examine the cleavages, or “abyssal lines” that constitute experiences printed in the daily life of the former Portuguese colony of Cape Verde, Mozambique and Angola.---DOI: http://dx.doi.org/10.21881/abriluff.2016n17a378

  10. Profiling bacterial communities associated with sediment-based aquaculture bioremediation systems under contrasting redox regimes

    Science.gov (United States)

    Robinson, Georgina; Caldwell, Gary S.; Wade, Matthew J.; Free, Andrew; Jones, Clifford L. W.; Stead, Selina M.

    2016-12-01

    Deposit-feeding invertebrates are proposed bioremediators in microbial-driven sediment-based aquaculture effluent treatment systems. We elucidate the role of the sediment reduction-oxidation (redox) regime in structuring benthic bacterial communities, having direct implications for bioremediation potential and deposit-feeder nutrition. The sea cucumber Holothuria scabra was cultured on sediments under contrasting redox regimes; fully oxygenated (oxic) and redox stratified (oxic-anoxic). Taxonomically, metabolically and functionally distinct bacterial communities developed between the redox treatments with the oxic treatment supporting the greater diversity; redox regime and dissolved oxygen levels were the main environmental drivers. Oxic sediments were colonised by nitrifying bacteria with the potential to remediate nitrogenous wastes. Percolation of oxygenated water prevented the proliferation of anaerobic sulphate-reducing bacteria, which were prevalent in the oxic-anoxic sediments. At the predictive functional level, bacteria within the oxic treatment were enriched with genes associated with xenobiotics metabolism. Oxic sediments showed the greater bioremediation potential; however, the oxic-anoxic sediments supported a greater sea cucumber biomass. Overall, the results indicate that bacterial communities present in fully oxic sediments may enhance the metabolic capacity and bioremediation potential of deposit-feeder microbial systems. This study highlights the benefits of incorporating deposit-feeding invertebrates into effluent treatment systems, particularly when the sediment is oxygenated.

  11. Effects of hydraulic shellfish harvesting on benthic communities and sediment chemistry 2009-2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The effects of hydraulic shellfish harvesting on the ecology of biological communities and chemistry of benthic sediments were investigated through a series of...

  12. In-Well Sediment Incubators to Evaluate Microbial Community Stability and Dynamics following Bioimmobilization of Uranium

    International Nuclear Information System (INIS)

    Baldwin, Brett R.; Peacock, Aaron D.; Gan, M.; Resch, Charles T.; Arntzen, Evan V.; Smithgall, A.N.; Pfiffner, S.; Freifeld, Barry M.; White, D.C.; Long, Philip E.

    2009-01-01

    An in-situ incubation device (ISI) was developed in order to investigate the stability and dynamics of sediment associated microbial communities to prevailing subsurface oxidizing or reducing conditions. Here we describe the use of these devices at the Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) site. During the 7 month deployment oxidized Rifle aquifer background sediments (RABS) were deployed in previously biostimulated wells under iron reducing conditions, cell densities of known iron reducing bacteria including Geobacteraceae increased significantly showing the microbial community response to local subsurface conditions. PLFA profiles of RABS following in situ deployment were strikingly similar to those of adjacent sediment cores suggesting ISI results could be extrapolated to the native material of the test plots. Results for ISI deployed reduced sediments showed only slight changes in community composition and pointed toward the ability of the ISIs to monitor microbial community stability and response to subsurface conditions.

  13. Determinants of the microbial community structure of eutrophic, hyporheic river sediments polluted with chlorinated aliphatic hydrocarbons

    NARCIS (Netherlands)

    Hamonts, K.; Ryngaert, A.; Smidt, H.; Springael, D.; Dejonghe, W.

    2014-01-01

    Chlorinated aliphatic hydrocarbons (CAHs) often discharge into rivers as contaminated groundwater baseflow. As biotransformation of CAHs in the impacted river sediments might be an effective remediation strategy, we investigated the determinants of the microbial community structure of eutrophic,

  14. Ocean-Bottom Topography: The Divide between the Sohm and Hatteras Abyssal Plains.

    Science.gov (United States)

    Pratt, R M

    1965-06-18

    A compilation of precision echo soundings has delineated the complex topography between the Sohm and Hatteras abyssal plains off the Atlantic coast of the United States. At present the divide between the two plains is a broad, flat area about 4950 meters deep; however, the configuration of channels and depressions suggests spillage of turbidity currents from the Sohm Plain into the Hatteras Plain and a shifting of the divide toward the northeast. Hudson Canyon terminates in the divide area and has probably fed sediment into both plains.

  15. Analysis of effect of nicotine on microbial community structure in sediment using PCR-DGGE fingerprinting

    Directory of Open Access Journals (Sweden)

    Ai-dong Ruan

    2015-10-01

    Full Text Available Solid or liquid waste containing a high concentration of nicotine can pollute sediment in rivers and lakes, and may destroy the ecological balance if it is directly discharged into the environment without any treatment. In this study, the polymerase chain reaction (PCR and denaturing gradient gel electrophoresis (DGGE method was used to analyze the variation of the microbial community structure in the control and nicotine-contaminated sediment samples with nicotine concentration and time of exposure. The results demonstrated that the growth of some bacterial species in the nicotine-contaminated sediment samples was inhibited during the exposure. Some bacteria decreased in species diversity and in quantity with the increase of nicotine concentration or time of exposure, while other bacteria were enriched under the effect of nicotine, and their DGGE bands changed from undertones to deep colors. The microbial community structure, however, showed a wide variation in the nicotine-contaminated sediment samples, especially in the sediment samples treated with high-concentration nicotine. The Jaccard index was only 35.1% between the initial sediment sample and the sediment sample with a nicotine concentration of 0.030 μg/g after 28 d of exposure. Diversity indices showed that the contaminated groups had a similar trend over time. The diversity indices of contaminated groups all decreased in the first 7 d after exposure, then increased until day 42. It has been found that nicotine decreased the diversity of the microbial community in the sediment.

  16. Analysis of effect of nicotine on microbial community structure in sediment using PCR-DGGE fingerprinting

    Directory of Open Access Journals (Sweden)

    Ai-dong Ruan

    2015-10-01

    Full Text Available Solid or liquid waste containing a high concentration of nicotine can pollute sediment in rivers and lakes, and may destroy the ecological balance if it is directly discharged into the environment without any treatment. In this study, the polymerase chain reaction (PCR and denaturing gradient gel electrophoresis (DGGE method was used to analyze the variation of the microbial community structure in the control and nicotine-contaminated sediment samples with nicotine concentration and time of exposure. The results demonstrated that the growth of some bacterial species in the nicotine-contaminated sediment samples was inhibited during the exposure. Some bacteria decreased in species diversity and in quantity with the increase of nicotine concentration or time of exposure, while other bacteria were enriched under the effect of nicotine, and their DGGE bands changed from undertones to deep colors. The microbial community structure, however, showed a wide variation in the nicotine-contaminated sediment samples, especially in the sediment samples treated with high-concentration nicotine. The Jaccard index was only 35.1% between the initial sediment sample and the sediment sample with a nicotine concentration of 0.030 μg/g after 28 d of exposure. Diversity indices showed that the contaminated groups had a similar trend over time. The diversity indices of contaminated groups all decreased in the first 7 d after exposure, then increased until day 42. It has been found that nicotine decreased the diversity of the microbial community in the sediment.

  17. effects of sediment input on aquatic animal communities in New

    African Journals Online (AJOL)

    USER

    the silt determiners the abundance of macroinvertebrates hence the increase in the population in the month of Nov, while Sept(43%) ... result in sediments inputs and deposition in water bodies. (Cuker, 1987). ... reduction in food quality.

  18. Hydrocarbon pollutants shape bacterial community assembly of harbor sediments

    KAUST Repository

    Barbato, Marta; Mapelli, Francesca; Magagnini, Mirko; Chouaia, Bessem; Armeni, Monica; Marasco, Ramona; Crotti, Elena; Daffonchio, Daniele; Borin, Sara

    2016-01-01

    Petroleum pollution results in co-contamination by different classes of molecules, entailing the occurrence of marine sediments difficult to remediate, as in the case of the Ancona harbor (Mediterranean Sea, Italy). Autochthonous bioaugmentation

  19. Community effects of carbon nanotubes in aquatic sediments

    NARCIS (Netherlands)

    Velzeboer, I.; Kupryianchyk, D.; Peeters, E.T.H.M.; Koelmans, A.A.

    2011-01-01

    Aquatic sediments form an important sink for manufactured nanomaterials, like carbon nanotubes (CNT) and fullerenes, thus potentially causing adverse effects to the aquatic environment, especially to benthic organisms. To date, most nanoparticle effect studies used single species tests in the

  20. Scale-dependency of macroinvertebrate communities: responses to contaminated sediments within run-of-river dams.

    Science.gov (United States)

    Colas, Fanny; Archaimbault, Virginie; Devin, Simon

    2011-03-01

    Due to their nutrient recycling function and their importance in food-webs, macroinvertebrates are essential for the functioning of aquatic ecosystems. These organisms also constitute an important component of biodiversity. Sediment evaluation and monitoring is an essential aspect of ecosystem monitoring since sediments represent an important component of aquatic habitats and are also a potential source of contamination. In this study, we focused on macroinvertebrate communities within run-of-river dams, that are prime areas for sediment and pollutant accumulation. Little is known about littoral macroinvertebrate communities within run-of-river dam or their response to sediment levels and pollution. We therefore aimed to evaluate the following aspects: the functional and structural composition of macroinvertebrate communities in run-of-river dams; the impact of pollutant accumulation on such communities, and the most efficient scales and tools needed for the biomonitoring of contaminated sediments in such environments. Two run-of-river dams located in the French alpine area were selected and three spatial scales were examined: transversal (banks and channel), transversal x longitudinal (banks/channel x tail/middle/dam) and patch scale (erosion, sedimentation and vegetation habitats). At the patch scale, we noted that the heterogeneity of littoral habitats provided many available niches that allow for the development of diversified macroinvertebrate communities. This implies highly variable responses to contamination. Once combined on a global 'banks' spatial scale, littoral habitats can highlight the effects of toxic disturbances. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments.

    Science.gov (United States)

    Li, Dong; Sharp, Jonathan O; Drewes, Jörg E

    2016-01-01

    To reveal the variation of microbial community functions during water filtration process in river sediments, which has been utilized widely in natural water treatment systems, this study investigates the influence of municipal wastewater discharge to streams on the phylotype and metabolic potential of the microbiome in upstream and particularly various depths of downstream river sediments. Cluster analyses based on both microbial phylogenetic and functional data collectively revealed that shallow upstream sediments grouped with those from deeper subsurface downstream regions. These sediment samples were distinct from those found in shallow downstream sediments. Functional genes associated with carbohydrate, xenobiotic, and certain amino acid metabolisms were overrepresented in upstream and deep downstream samples. In contrast, the more immediate contact with wastewater discharge in shallow downstream samples resulted in an increase in the relative abundance of genes associated with nitrogen, sulfur, purine and pyrimidine metabolisms, as well as restriction-modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast, in shallow downstream sediments, genera affiliated with Betaproteobacteria and Gammaproteobacteria were enriched with putative functions that included ammonia and sulfur oxidation, polyphosphate accumulation, and methylotrophic bacteria. Collectively, these results highlight the enhanced capabilities of microbial communities residing in deeper stream sediments for the transformation of water contaminants and thus provide a foundation for better design of natural water treatment systems to further improve the removal of contaminants.

  2. Emergent macrophytes modify the abundance and community composition of ammonia oxidizers in their rhizosphere sediments.

    Science.gov (United States)

    Zhao, Dayong; He, Xiaowei; Huang, Rui; Yan, Wenming; Yu, Zhongbo

    2017-07-01

    Ammonia oxidation is a crucial process in global nitrogen cycling, which is catalyzed by the ammonia oxidizers. Emergent plants play important roles in the freshwater ecosystem. Therefore, it is meaningful to investigate the effects of emergent macrophytes on the abundance and community composition of ammonia oxidizers. In the present study, two commonly found emergent macrophytes (Zizania caduciflora and Phragmitas communis) were obtained from freshwater lakes and the abundance and community composition of the ammonia-oxidizing prokaryotes in the rhizosphere sediments of these emergent macrophytes were investigated. The abundance of the bacterial amoA gene was higher in the rhizosphere sediments of the emergent macrophytes than those of bulk sediments. Significant positive correlation was found between the potential nitrification rates (PNRs) and the abundance of bacterial amoA gene, suggesting that ammonia-oxidizing bacteria (AOB) might play an important role in the nitrification process of the rhizosphere sediments of emergent macrophytes. The Nitrosotalea cluster is the dominant ammonia-oxidizing archaea (AOA) group in all the sediment samples. Analysis of AOB group showed that the N. europaeal cluster dominated the rhizosphere sediments of Z. caduciflora and the bulk sediments, whereas the Nitrosospira cluster was the dominant AOB group in the rhizosphere sediments of P. communis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments

    KAUST Repository

    Li, Dong

    2015-09-24

    To reveal the variation of microbial community functions during water filtration process in river sediments, which has been utilized widely in natural water treatment systems, this study investigates the influence of municipal wastewater discharge to streams on the phylotype and metabolic potential of the microbiome in upstream and particularly various depths of downstream river sediments. Cluster analyses based on both microbial phylogenetic and functional data collectively revealed that shallow upstream sediments grouped with those from deeper subsurface downstream regions. These sediment samples were distinct from those found in shallow downstream sediments. Functional genes associated with carbohydrate, xenobiotic, and certain amino acid metabolisms were overrepresented in upstream and deep downstream samples. In contrast, the more immediate contact with wastewater discharge in shallow downstream samples resulted in an increase in the relative abundance of genes associated with nitrogen, sulfur, purine and pyrimidine metabolisms, as well as restriction–modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast, in shallow downstream sediments, genera affiliated with Betaproteobacteria and Gammaproteobacteria were enriched with putative functions that included ammonia and sulfur oxidation, polyphosphate accumulation, and methylotrophic bacteria. Collectively, these results highlight the enhanced capabilities of microbial communities residing in deeper stream sediments for the transformation of water contaminants and thus provide a foundation for better design of natural water treatment systems to further improve the removal of contaminants. © 2015, Springer Science+Business Media New York.

  4. Distribution of the dominant microbial communities in marine sediments containing high concentrations of gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, B.; Colwell, F.; Carini, P.; Torres, M. [Oregon State Univ., Corvallis, OR (United States); Hangsterfer, A.; Kastner, M. [California Univ., San Diego, CA (United States). Scripps Inst. of Oceanography; Brodie, E. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Center for Environmental Biotechnology; Daly, R. [California Univ., Berkeley, CA (United States); Holland, M. [GeoTek, Daventry, Northants (United Kingdom); Long, P.; Schaef, H. [Pacific Northwest National Laboratory, Richland, WA (United States). Environmental Technology; Delwiche, M. [Idaho National Laboratory, Idaho Falls, ID (United States). Biotechnology; Winters, W. [United States Geological Survey, Woods Hole, MA (United States). Woods Hole Science Center; Riedel, M. [McGill Univ., Montreal, PQ (Canada). Dept. of Earth and Planetary Sciences

    2008-07-01

    Methane produced by microorganisms represents a large portion of the methane that occurs in marine sediments where gas hydrates are present. The diverse communities that populate these formations have been documented by cultures or through molecular traces. Previous studies have explored the biogeography of hydrate-bearing systems by comparing clone libraries developed from sediments where hydrates are abundant with those developed from sediments that lack hydrates. There is a distinct microbial community present in sediments that have methane hydrates. This paper presented an investigation into finer-scale biogeography, in order to determine how factors such as the presence or absence of hydrates, grain size, and the depositional environment in marine sediments may control the number, type and distribution of microbial communities in sediments. The purpose of the study was to understand the controls on the distribution and activity of all microbes that contribute to the conversion of organic matter to methane. To this aim, DNA was extracted from deep marine sediments cored from continental slope locations including offshore India and the Cascadia Margin. The data from the study was used to refine computational models that require biological rate terms that are consistent with sediment conditions in order to accurately describe the dynamics of this large methane reservoir. The paper discussed the materials and methods used for the study, including the sample site, sample collection and microbiological analysis. Results were presented in terms of DNA extractions; microbial diversity; and biofilm analyses. It was concluded that the findings from the study complemented previously reported studies which indicated the presence of diverse microbial communities in sediments containing methane hydrates. 9 refs., 5 figs.

  5. 15N indicates an active N-cycling microbial community in low carbon, freshwater sediments.

    Science.gov (United States)

    Sheik, C.

    2017-12-01

    Earth's large lakes are unique aquatic ecosystems, but we know little of the microbial life driving sedimentary biogeochemical cycles and ultimately the isotopic record. In several of these large lakes, water column productivity is constrained by element limitation, such as phosphorus and iron, creating oligotrophic water column conditions that drive low organic matter content in sediments. Yet, these sediments are biogeochemically active and have been shown to have oxygen consumption rates akin to pelagic ocean sediments and complex sulfur cycling dynamics. Thus, large oligotrophic lakes provide unique and interesting biogeochemical contrast to highly productive freshwater and coastal marine systems. Using Lake Superior as our study site, we found microbial community structure followed patterns in bulk sediment carbon and nitrogen concentrations. These observed patterns were loosely driven by land proximity, as some stations are more coastal and have higher rates of sedimentation, allochthonous carbon inputs and productivity than pelagic sites. Interestingly, upper sediment carbon and nitrogen stable isotopes were quite different from water column. Sediment carbon and nitrogen isotopes correlated significantly with microbial community structure. However, 15N showed much stronger correlation than 13C, and became heavier with core depth. Coinciding with the increase in 15N values, we see evidence of both denitrification and anammox processes in 16S rRNA gene libraries and metagenome assembled genomes. Given that microorganisms prefer light isotopes and that these N-cycling processes both contribute to N2 production and efflux from the sediment, the increase in 15N with sediment depth suggests microbial turnover. Abundance of these genomes also varies with depth suggesting these novel microorganisms are partitioning into specific sediment geochemical zones. Additionally, several of these genomes contain genes involved in sulphur cycling, suggesting a dual

  6. Bacterial Communities in Polluted Seabed Sediments: A Molecular Biology Assay in Leghorn Harbor

    Directory of Open Access Journals (Sweden)

    Carolina Chiellini

    2013-01-01

    Full Text Available Seabed sediments of commercial ports are often characterized by high pollution levels. Differences in number and distribution of bacteria in such areas can be related to distribution of pollutants in the port and to sediment conditions. In this study, the bacterial communities of five sites from Leghorn Harbor seabed were characterized, and the main bacterial groups were identified. T-RFLP was used for all samples; two 16S rRNA libraries and in silico digestion of clones were used to identify fingerprint profiles. Library data, phylogenetic analysis, and T-RFLP coupled with in silico digestion of the obtained sequences evidenced the dominance of Proteobacteria and the high percentage of Bacteroidetes in all sites. The approach highlighted similar bacterial communities between samples coming from the five sites, suggesting a modest differentiation among bacterial communities of different harbor seabed sediments and hence the capacity of bacterial communities to adapt to different levels and types of pollution.

  7. Geochemistry of abyssal peridotites from the super slow-spreading ...

    Indian Academy of Sciences (India)

    Serpentinites exhibit talc veins and major serpentine derived from ...... All trace element data used for this study are listed in table 5 ..... China for Distinguished Young Scholars (Grant. No. .... abyssal peridotites: A new perspective; Earth Planet.

  8. Nares Abyssal Plain sediment flux studies, FY 1986 annual report

    International Nuclear Information System (INIS)

    Dymond, J.; Collier, R.W.

    1987-01-01

    On 21 September, 1984, a mooring (NAP-2) was deployed at 23 0 14.5'N, 64 0 02.1'W with an approximate bottom depth of 5835 meters. This mooring contained 6 upward looking traps (at 720, 1420, 2870, 3785, 4770, 5780 meters) and two inverted traps (at 2900 and 4800 meters). This mooring was successfully recovered on 21 November, 1985. The details of this recovery and the samples are presented. On 22 November, 1985, another shorter trap mooring (NAP-3) was deployed. The mooring was similar in design to NAP-1 and has two normal traps at 750 and 4800 meters and an inverted trap at 4830 meters

  9. Bathymetry (Part I), sedimentary regimes (Part II), and abyssal waste-disposal potential near the conterminous United States

    Science.gov (United States)

    Bowles, Frederick A.; Vogt, Peter R.; Jung, Woo-Yeol

    1998-05-01

    Placing waste on the seafloor, with the intention that it remain in place and isolated from mankind, requires a knowledge of the environmental factors that may be applicable to a specific seafloor area. DBDB5 (Digital Bathymetric Database gridded at 5' latitude by 5' longitude cell dimension) is used here for regional assessments of seafloor depth, slope, and relief at five surrogate abyssal waste sites; two each in the western Atlantic and eastern Pacific, and one in the Gulf of Mexico. Only Pacific-1 exhibits a `high' slope (2°) by DBDB5 standards, whereas the remaining sites are located on almost level seafloor. Detailed examination of the sites using multibeam-based contour sheets show the area around Atlantic-1 to be a featureless plain. Atlantic-2 and both Pacific sites are surrounded by abyssal hill topography, with local slopes ranging from greater than 6° at all sites to above 15° at Pacific-2. Neither Pacific site features a seafloor as `flat' as at Atlantic-1 or at the Gulf of Mexico site. Locating waste sites on sedimented slopes could have serious consequences due to catastrophic slope failure and downslope displacement of waste by mass sediment-transport processes. Neither slumping nor sliding are perceived as critical processes affecting the surrogate sites because of their locations on negligibly sloping seafloors. However, debris flows and turbidity currents are capable of transporting large volumes of sediment for long distances over low gradients and, in the case of turbidity currents, at great speed. Dispersal of loose waste material by these processes is virtually assured, but less likely if the waste is bagged. The turbidity current problem is alleviated (but not eliminated) by locating waste sites on distal portions of abyssal plains. Both Pacific sites are surrounded by abyssal hills and, in the case of Pacific-2, far beyond the reach of land-derived turbidity currents. Thin sediment cover and low rates of sedimentation have also resulted

  10. Effects of pesticides on community composition and activity of sediment microbes - responses at various levels of microbial community organization

    International Nuclear Information System (INIS)

    Widenfalk, Anneli; Bertilsson, Stefan; Sundh, Ingvar; Goedkoop, Willem

    2008-01-01

    A freshwater sediment was exposed to the pesticides captan, glyphosate, isoproturon, and pirimicarb at environmentally relevant and high concentrations. Effects on sediment microorganisms were studied by measuring bacterial activity, fungal and total microbial biomass as community-level endpoints. At the sub-community level, microbial community structure was analysed (PLFA composition and bacterial 16S rRNA genotyping, T-RFLP). Community-level endpoints were not affected by pesticide exposure. At lower levels of microbial community organization, however, molecular methods revealed treatment-induced changes in community composition. Captan and glyphosate exposure caused significant shifts in bacterial community composition (as T-RFLP) at environmentally relevant concentrations. Furthermore, differences in microbial community composition among pesticide treatments were found, indicating that test compounds and exposure concentrations induced multidirectional shifts. Our study showed that community-level end points failed to detect these changes, underpinning the need for application of molecular techniques in aquatic ecotoxicology. - Molecular techniques revealed pesticide-induced changes at lower levels of microbial community organization that were not detected by community-level end points

  11. Effects of pesticides on community composition and activity of sediment microbes - responses at various levels of microbial community organization

    Energy Technology Data Exchange (ETDEWEB)

    Widenfalk, Anneli [Department of Environmental Assessment, Swedish University of Agricultural Sciences, P.O. Box 7050, SE-750 07 Uppsala (Sweden)], E-mail: anneli.widenfalk@kemi.se; Bertilsson, Stefan [Limnology/Department of Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvaegen 20, SE-752 36 Uppsala (Sweden); Sundh, Ingvar [Department of Microbiology, Swedish University of Agricultural Sciences, P.O. Box 7025, SE-750 07 Uppsala (Sweden); Goedkoop, Willem [Department of Environmental Assessment, Swedish University of Agricultural Sciences, P.O. Box 7050, SE-750 07 Uppsala (Sweden)

    2008-04-15

    A freshwater sediment was exposed to the pesticides captan, glyphosate, isoproturon, and pirimicarb at environmentally relevant and high concentrations. Effects on sediment microorganisms were studied by measuring bacterial activity, fungal and total microbial biomass as community-level endpoints. At the sub-community level, microbial community structure was analysed (PLFA composition and bacterial 16S rRNA genotyping, T-RFLP). Community-level endpoints were not affected by pesticide exposure. At lower levels of microbial community organization, however, molecular methods revealed treatment-induced changes in community composition. Captan and glyphosate exposure caused significant shifts in bacterial community composition (as T-RFLP) at environmentally relevant concentrations. Furthermore, differences in microbial community composition among pesticide treatments were found, indicating that test compounds and exposure concentrations induced multidirectional shifts. Our study showed that community-level end points failed to detect these changes, underpinning the need for application of molecular techniques in aquatic ecotoxicology. - Molecular techniques revealed pesticide-induced changes at lower levels of microbial community organization that were not detected by community-level end points.

  12. Prokaryotic community composition involved production of nitrogen in sediments of Mejillones Bay

    International Nuclear Information System (INIS)

    Moraga, Ruben; Galan, Alexander; Rosello-Mora, Ramon; Araya, Ruben; Valdes, Jorge

    2014-01-01

    Conventional denitrification and anaerobic ammonium oxidation (anammox) contributes to nitrogen loss in oxygen-deficient systems, thereby influencing many aspects of ecosystem function and global biogeochemistry. Mejillones Bay, northern Chile, presents ideal conditions to study nitrogen removal processes, because it is inserted in a coastal upwelling system, its sediments have anoxia and hypoxia conditions and under the influence of the Oxygen Minimum Zone (OMZ), unknown processes that occur there and what are the microbial communities responsible for their removal. Microbial communities associated with coastal sediments of Mejillones Bay were studied by denaturing gel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH), by incubation experiments with 15 N isotope tracers were studied nitrogen loss processes operating in these sediments. DGGE analysis showed high bacterial diversity, certain redundant phylotypes and differences in community structure given by the depth; this reflects the microbial community adaptations to environmental conditions. A large fraction (up to 70%) of DAPI-stained cells hybridized with the bacterial probes. Nearly 52-90% of the cell could be further identified to know phyla. Members of the Cytophaga-Flavobacterium cluster were most abundant in the sediments (13-26%), followed by Proteobacteria. Isotopic tracer experiments for the sediments studied indicated that nitrogen loss processes that predominated were performed by denitrifying communities (43.31-111.20 μMd -1 ) was not possible to detect anammox in the area and not anammox bacteria were detected

  13. Submerged macrophytes modify bacterial community composition in sediments in a large, shallow, freshwater lake.

    Science.gov (United States)

    Zhao, Da-Yong; Liu, Peng; Fang, Chao; Sun, Yi-Meng; Zeng, Jin; Wang, Jian-Qun; Ma, Ting; Xiao, Yi-Hong; Wu, Qinglong L

    2013-04-01

    Submerged aquatic macrophytes are an important part of the lacustrine ecosystem. In this study, the bacterial community compositions in the rhizosphere sediments from three kinds of submerged macrophytes (Ceratophyllum demersum, Potamogeton crispus, and Vallisneria natans) were investigated to determine whether submerged macrophytes could drive the variation of bacterial community in the eutrophic Taihu Lake, China. Molecular techniques, including terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified 16S rRNA gene and clone libraries, were employed to analyze the bacterial community compositions. Remarkable differences of the T-RFLP patterns were observed among the different samples, and the results of LIBSHUFF analysis also confirmed that the bacterial community compositions in the rhizosphere sediments of three kinds of submerged macrophytes were statistically different from that of the unvegetated sediment. Acidobacteria, Deltaproteobacteria, and Betaproteobacteria were the dominant bacterial groups in the rhizosphere sediments of Ceratophyllum demersum, Potamogeton crispus, and Vallisneria natans, respectively, accounting for 15.38%, 29.03%, and 18.00% of the total bacterial abundances. Our study demonstrated that submerged macrophytes could influence the bacterial community compositions in their rhizosphere sediments, suggesting that macrophytes have an effect on the cycling and transportation of nutrients in the freshwater lake ecosystem.

  14. Structural Iron (II) of Basaltic Glass as an Energy Source for Zetaproteobacteria in an Abyssal Plain Environment, Off the Mid Atlantic Ridge.

    Science.gov (United States)

    Henri, Pauline A; Rommevaux-Jestin, Céline; Lesongeur, Françoise; Mumford, Adam; Emerson, David; Godfroy, Anne; Ménez, Bénédicte

    2015-01-01

    To explore the capability of basaltic glass to support the growth of chemosynthetic microorganisms, complementary in situ and in vitro colonization experiments were performed. Microbial colonizers containing synthetic tholeitic basaltic glasses, either enriched in reduced or oxidized iron, were deployed off-axis from the Mid Atlantic Ridge on surface sediments of the abyssal plain (35°N; 29°W). In situ microbial colonization was assessed by sequencing of the 16S rRNA gene and basaltic glass alteration was characterized using Scanning Electron Microscopy, micro-X-ray Absorption Near Edge Structure at the Fe-K-edge and Raman microspectroscopy. The colonized surface of the reduced basaltic glass was covered by a rind of alteration made of iron-oxides trapped in a palagonite-like structure with thicknesses up to 150 μm. The relative abundance of the associated microbial community was dominated (39% of all reads) by a single operational taxonomic unit (OTU) that shared 92% identity with the iron-oxidizer Mariprofundus ferrooxydans PV-1. Conversely, the oxidized basaltic glass showed the absence of iron-oxides enriched surface deposits and correspondingly there was a lack of known iron-oxidizing bacteria in the inventoried diversity. In vitro, a similar reduced basaltic glass was incubated in artificial seawater with a pure culture of the iron-oxidizing M. ferrooxydans DIS-1 for 2 weeks, without any additional nutrients or minerals. Confocal Laser Scanning Microscopy revealed that the glass surface was covered by twisted stalks characteristic of this iron-oxidizing Zetaproteobacteria. This result supported findings of the in situ experiments indicating that the Fe(II) present in the basalt was the energy source for the growth of representatives of Zetaproteobacteria in both the abyssal plain and the in vitro experiment. In accordance, the surface alteration rind observed on the reduced basaltic glass incubated in situ could at least partly result from their activity.

  15. Community Composition and Abundance of Anammox Bacteria in Cattail Rhizosphere Sediments at Three Phenological Stages.

    Science.gov (United States)

    Zhou, Xiaohong; Zhang, Jinping; Wen, Chunzi

    2017-11-01

    The distribution of anammox bacteria in rhizosphere sediments of cattail (Typha orientalis) at different phenological stages was investigated. Results showed that the number of 16S rRNA gene copies of the anammox bacteria was considerably higher in the rhizosphere sediment than in the nonrhizosphere sediment and control sediment. The abundances of the anammox bacteria exhibited striking temporal variations in the three different cattail phenological stages. In addition, the Chao1 and Shannon H indexes of the anammox bacteria in cattail rhizosphere sediments had evident spatial and temporal variations at different phenological stages. Four anammox genera (Brocadia, Kuenenia, Jettenia, and a new cluster) were detected and had proportions of 34.18, 45.57, 0.63, and 19.62%, respectively. The CCA analysis results indicated that Cu, TN, Pb, and Zn were pivotal factors that affect anammox bacteria composition. The PCoA analysis results indicated that the community structure at the rhizosphere and nonrhizosphere sediments collected on July was relatively specific and was different from sediments collected on other months, suggesting that cattail can influence the community structures of the anammox bacteria at the maturity stage.

  16. Community Composition of Nitrous Oxide-Related Genes in Salt Marsh Sediments Exposed to Nitrogen Enrichment.

    Science.gov (United States)

    Angell, John H; Peng, Xuefeng; Ji, Qixing; Craick, Ian; Jayakumar, Amal; Kearns, Patrick J; Ward, Bess B; Bowen, Jennifer L

    2018-01-01

    Salt marshes provide many key ecosystem services that have tremendous ecological and economic value. One critical service is the removal of fixed nitrogen from coastal waters, which limits the negative effects of eutrophication resulting from increased nutrient supply. Nutrient enrichment of salt marsh sediments results in higher rates of nitrogen cycling and, commonly, a concurrent increase in the flux of nitrous oxide, an important greenhouse gas. Little is known, however, regarding controls on the microbial communities that contribute to nitrous oxide fluxes in marsh sediments. To address this disconnect, we generated profiles of microbial communities and communities of micro-organisms containing specific nitrogen cycling genes that encode several enzymes ( amoA, norB, nosZ) related to nitrous oxide flux from salt marsh sediments. We hypothesized that communities of microbes responsible for nitrogen transformations will be structured by nitrogen availability. Taxa that respond positively to high nitrogen inputs may be responsible for the elevated rates of nitrogen cycling processes measured in fertilized sediments. Our data show that, with the exception of ammonia-oxidizing archaea, the community composition of organisms involved in the production and consumption of nitrous oxide was altered under nutrient enrichment. These results suggest that previously measured rates of nitrous oxide production and consumption are likely the result of changes in community structure, not simply changes in microbial activity.

  17. Drivers of abundance and community composition of benthic macroinvertebrates in Ottawa River sediment near Chalk River Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Bond, M.J.; Rowan, D.; Silke, R.; Carr, J., E-mail: bondm@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-12-15

    The Ottawa River has received effluent from Chalk River Laboratories (CRL) for more than 60 years. Some radionuclides and contaminants released in effluents are bound rapidly to particles and deposited in bottom sediments where they may be biologically available to benthic invertebrates and other aquatic biota. As part of a larger ecological assessment, we assess the potential impact of contaminated sediments in the vicinity of CRL on local benthic community structure. Using bivariate and multivariate approaches, we demonstrate that CRL operations have had little impact on the local benthic community. Despite elevated anthropogenic radionuclide activity concentrations in sediment near CRL's process outfall, the benthic community is no less abundant or diverse than what is observed upstream at background levels. The Ottawa River benthic invertebrate community is structured predominantly by natural physical and biological conditions in the sediment, specifically sediment water content and organic content. These natural habitat conditions have a stronger influence on macroinvertebrate communities than sediment contamination. (author)

  18. Seasonal Changes in Microbial Community Structure in Freshwater Stream Sediment in a North Carolina River Basin

    Directory of Open Access Journals (Sweden)

    John P. Bucci

    2014-01-01

    Full Text Available This study examined seasonal differences in microbial community structure in the sediment of three streams in North Carolina’s Neuse River Basin. Microbes that reside in sediment are at the base of the food chain and have a profound influence on the health of freshwater stream environments. Terminal-Restriction Fragment Length Polymorphism (T-RFLP, molecular fingerprint analysis of 16S rRNA genes was used to examine the diversity of bacterial species in stream sediment. Sediment was sampled in both wet and dry seasons from an agricultural (Bear, mixed urban (Crabtree and forested (Marks Creek, and the microbiota examined. Gamma, Alpha and Beta proteobacteria were prevalent species of microbial taxa represented among all sites. Actinobacteria was the next most prevalent species observed, with greater occurrence in dry compared to the wet season. Discernable clustering was observed of Marks and Bear Creek samples collected during the wetter period (September–April, which corresponded with a period of higher precipitation and cooler surface water temperatures. Although not statistically significant, microbial community structure appeared different between season (ANOSIM, R = 0.60; p < 0.10. Principal components analysis confirmed this pattern and showed that the bacterial groups were separated by wet and dry seasonal periods. These results suggest seasonal differences among the microbial community structure in sediment of freshwater streams and that these communities may respond to changes in precipitation during wetter periods.

  19. Effects of fine suspended sediment releases on benthic communities in artificial flumes

    International Nuclear Information System (INIS)

    Bruno, Maria Cristina; Carolli, Mauro; Zolezzi, Guido; Palmia, Beatrice

    2016-01-01

    The Italian Alps feed a large number of reservoirs for hydropower production, which are losing storage capacity due to natural inflow of sediment of different origin (alluvial, glacial). Local government and local environmental agencies authorize periodical sediment flushes with a mandatory release regime when such measure is technically feasible. Management of reservoirs often includes fine sediment pulses, which cause several ecological impacts on downstream water bodies. We conducted a set of simulations in five semi artificial flumes naturally fed by an un-impacted Alpine stream (Trentino region, NE Italy), to: i) identify possible thresholds of concentration of fine suspended sediment inducing drift in the benthic community and, ii) assess the dynamics and intensity of the drift responses in the dominant taxa. The results can help to identify the least impacting release management practices. Sediment pulses were simulated by adding fine material of known concentration to the upstream end of the flumes. The benthic organisms drifting from the whole flume were collected by filtering the whole outflow for consecutive short time intervals. We tested four different concentration values, i.e. 10x,100x, 250x, 500x the base concentration of 4 NTU, and we repeated the simulations in two periods: July, when the community is composed mainly of young larval instars and the sediment wave lasted 10 minutes, and October, when later larval stages are dominant and the wave lasted 20 minutes. In July, the maximum concentration induced a significantly higher drift response than the three lower ones. In October, even if the sediment wave was twice as long as July one, drift responses where lower, and only the responses to the highest and lowest concentrations differed significantly. In our simulation, the only possible cause for the observed increase in drift was the sediment in the suspended phase, as the deposition of sediment was negligible, and discharge did not increase

  20. Increased sediment load during a large-scale dam removal changes nearshore subtidal communities.

    Directory of Open Access Journals (Sweden)

    Stephen P Rubin

    Full Text Available The coastal marine ecosystem near the Elwha River was altered by a massive sediment influx-over 10 million tonnes-during the staged three-year removal of two hydropower dams. We used time series of bathymetry, substrate grain size, remotely sensed turbidity, scuba dive surveys, and towed video observations collected before and during dam removal to assess responses of the nearshore subtidal community (3 m to 17 m depth. Biological changes were primarily driven by sediment deposition and elevated suspended sediment concentrations. Macroalgae, predominantly kelp and foliose red algae, were abundant before dam removal with combined cover levels greater than 50%. Where persistent sediment deposits formed, macroalgae decreased greatly or were eliminated. In areas lacking deposition, macroalgae cover decreased inversely to suspended sediment concentration, suggesting impacts from light reduction or scour. Densities of most invertebrate and fish taxa decreased in areas with persistent sediment deposition; however, bivalve densities increased where mud deposited over sand, and flatfish and Pacific sand lance densities increased where sand deposited over gravel. In areas without sediment deposition, most invertebrate and fish taxa were unaffected by increased suspended sediment or the loss of algae cover associated with it; however, densities of tubeworms and flatfish, and primary cover of sessile invertebrates increased suggesting benefits of increased particulate matter or relaxed competition with macroalgae for space. As dam removal neared completion, we saw evidence of macroalgal recovery that likely owed to water column clearing, indicating that long-term recovery from dam removal effects may be starting. Our results are relevant to future dam removal projects in coastal areas and more generally to understanding effects of increased sedimentation on nearshore subtidal benthic communities.

  1. Increased sediment load during a large-scale dam removal changes nearshore subtidal communities

    Science.gov (United States)

    Rubin, Stephen P.; Miller, Ian M.; Foley, Melissa M.; Berry, Helen D.; Duda, Jeffrey J.; Hudson, Benjamin; Elder, Nancy E.; Beirne, Matthew M.; Warrick, Jonathan; McHenry, Michael L.; Stevens, Andrew; Eidam, Emily; Ogston, Andrea; Gelfenbaum, Guy R.; Pedersen, Rob

    2017-01-01

    The coastal marine ecosystem near the Elwha River was altered by a massive sediment influx—over 10 million tonnes—during the staged three-year removal of two hydropower dams. We used time series of bathymetry, substrate grain size, remotely sensed turbidity, scuba dive surveys, and towed video observations collected before and during dam removal to assess responses of the nearshore subtidal community (3 m to 17 m depth). Biological changes were primarily driven by sediment deposition and elevated suspended sediment concentrations. Macroalgae, predominantly kelp and foliose red algae, were abundant before dam removal with combined cover levels greater than 50%. Where persistent sediment deposits formed, macroalgae decreased greatly or were eliminated. In areas lacking deposition, macroalgae cover decreased inversely to suspended sediment concentration, suggesting impacts from light reduction or scour. Densities of most invertebrate and fish taxa decreased in areas with persistent sediment deposition; however, bivalve densities increased where mud deposited over sand, and flatfish and Pacific sand lance densities increased where sand deposited over gravel. In areas without sediment deposition, most invertebrate and fish taxa were unaffected by increased suspended sediment or the loss of algae cover associated with it; however, densities of tubeworms and flatfish, and primary cover of sessile invertebrates increased suggesting benefits of increased particulate matter or relaxed competition with macroalgae for space. As dam removal neared completion, we saw evidence of macroalgal recovery that likely owed to water column clearing, indicating that long-term recovery from dam removal effects may be starting. Our results are relevant to future dam removal projects in coastal areas and more generally to understanding effects of increased sedimentation on nearshore subtidal benthic communities.

  2. Sedimentation

    Science.gov (United States)

    Cliff R. Hupp; Michael R. Schening

    2000-01-01

    Sedimentation is arguably the most important water-quality concern in the United States. Sediment trapping is cited frequently as a major function of riverine-forested wetlands, yet little is known about sedimcntation rates at the landscape scale in relation to site parameters, including woody vegetation type, elevation, velocity, and hydraulic connection to the river...

  3. Radionuclide sorption studies on abyssal red clays

    International Nuclear Information System (INIS)

    Erickson, K.L.

    1979-01-01

    The radionuclide sorption properties of a widely distributed abyssal red clay are being experimentally investigated using batch equilibration techniques. This paper summarizes sorption equilibrium data obtained when 0.68 N NaCl solutions containing either Tc, U, Pu, Am or Cm were contacted with samples of the red clay and also summarizes some initial results from experiments designed to determine the relative selectivity of the clay for various nuclides. Under mildly oxidizing conditions, the sorption equilibrium distribution coefficients for technetium were essentially zero. At solution-phase nuclide concentrations on the order of 10 -6 M and less and at solution pH values of about 6.9, the distribution coefficients for plutonium were about 3 x 10 3 m1/gm and for uranium, americium, and curium were about 10 5 ml/gm or greater. However, at solution pH values of about 2.7, the distribution coefficients for each of the nuclides were greatly diminished. Initial experiments conducted in order to determine the relative selectivity of the clay for cesium, barium, and cerium, indicated that the silicate phases in the clay were selective for cesium over barium and cerium. These experiments also indicated that the hydrous oxide phases were selective for cerium over barium and for barium over cesium

  4. Bacterial community dynamic associated with autochthonous bioaugmentation for enhanced Cu phytoremediation of salt-marsh sediments.

    Science.gov (United States)

    Almeida, C Marisa R; Oliveira, Tânia; Reis, Izabela; Gomes, Carlos R; Mucha, Ana P

    2017-12-01

    Autochthonous bioaugmentation for metal phytoremediation is still little explored, particularly its application to estuarine salt marshes, but results obtained so far are promising. Nevertheless, understanding the behaviour of the microbial communities in the process of bioaugmentation and their role in improving metal phytoremediation is very important to fully validate the application of this biological technology. This study aimed to characterize the bacterial community dynamic associated with the application of autochthonous bioaugmentation in an experimentation which showed that Phragmites australis rhizosphere microorganisms could increase this salt marsh plant potential to phytoremediate Cu contaminated sediments. Bacterial communities present in the autochthonous microbial consortium resistant to Cu added to the medium and in the sediment at the beginning and at the end of the experiment were characterized by ARISA. Complementarily, the consortium and the sediment used for its production were characterized by next generation sequencing using the pyrosequencing platform 454. The microbial consortium resistant to Cu obtained from non-vegetated sediment was dominated by the genus Lactococcus (46%), Raoultella (25%), Bacillus (12%) and Acinetobacter (11%), whereas the one obtained form rhizosediment was dominated by the genus Gluconacetobacter (77%), Bacillus (17%) and Dyella (3%). Results clearly showed that, after two months of experiment, Cu caused a shift in the bacterial community structure of sediments, an effect that was observed either with or without addition of the metal resistant microbial consortium. Therefore, bioaugmentation application improved the process of phytoremediation (metal translocation by the plant was increased) without inducing long term changes in the bacterial community structure of the sediments. So, phytoremediation combined with autochthonous bioaugmentation can be a suitable technology for the recovery of estuarine areas

  5. Organic Matter Loading Modifies the Microbial Community Responsible for Nitrogen Loss in Estuarine Sediments.

    Science.gov (United States)

    Babbin, Andrew R; Jayakumar, Amal; Ward, Bess B

    2016-04-01

    Coastal marine sediments, as locations of substantial fixed nitrogen loss, are very important to the nitrogen budget and to the primary productivity of the oceans. Coastal sediment systems are also highly dynamic and subject to periodic natural and anthropogenic organic substrate additions. The response to organic matter by the microbial community involved in nitrogen loss processes was evaluated using mesocosms of Chesapeake Bay sediments. Over the course of a 50-day incubation, rates of anammox and denitrification were measured weekly using (15)N tracer incubations, and samples were collected for genetic analysis. Rates of both nitrogen loss processes and gene abundances associated with them corresponded loosely, probably because heterogeneities in sediments obscured a clear relationship. The rates of denitrification were stimulated more, and the fraction of nitrogen loss attributed to anammox slightly reduced, by the higher organic matter addition. Furthermore, the large organic matter pulse drove a significant and rapid shift in the denitrifier community composition as determined using a nirS microarray, indicating that the diversity of these organisms plays an essential role in responding to anthropogenic inputs. We also suggest that the proportion of nitrogen loss due to anammox in these coastal estuarine sediments may be underestimated due to temporal dynamics as well as from methodological artifacts related to conventional sediment slurry incubation approaches.

  6. Microbial Community Response to Simulated Petroleum Seepage in Caspian Sea Sediments

    Directory of Open Access Journals (Sweden)

    Katrin Knittel

    2017-04-01

    Full Text Available Anaerobic microbial hydrocarbon degradation is a major biogeochemical process at marine seeps. Here we studied the response of the microbial community to petroleum seepage simulated for 190 days in a sediment core from the Caspian Sea using a sediment-oil-flow-through (SOFT system. Untreated (without simulated petroleum seepage and SOFT sediment microbial communities shared 43% bacterial genus-level 16S rRNA-based operational taxonomic units (OTU0.945 but shared only 23% archaeal OTU0.945. The community differed significantly between sediment layers. The detection of fourfold higher deltaproteobacterial cell numbers in SOFT than in untreated sediment at depths characterized by highest sulfate reduction rates and strongest decrease of gaseous and mid-chain alkane concentrations indicated a specific response of hydrocarbon-degrading Deltaproteobacteria. Based on an increase in specific CARD-FISH cell numbers, we suggest the following groups of sulfate-reducing bacteria to be likely responsible for the observed decrease in aliphatic and aromatic hydrocarbon concentration in SOFT sediments: clade SCA1 for propane and butane degradation, clade LCA2 for mid- to long-chain alkane degradation, clade Cyhx for cycloalkanes, pentane and hexane degradation, and relatives of Desulfobacula for toluene degradation. Highest numbers of archaea of the genus Methanosarcina were found in the methanogenic zone of the SOFT core where we detected preferential degradation of long-chain hydrocarbons. Sequencing of masD, a marker gene for alkane degradation encoding (1-methylalkylsuccinate synthase, revealed a low diversity in SOFT sediment with two abundant species-level MasD OTU0.96.

  7. Bacterial and archaeal communities in sediments of the north Chinese marginal seas.

    Science.gov (United States)

    Liu, Jiwen; Liu, Xiaoshou; Wang, Min; Qiao, Yanlu; Zheng, Yanfen; Zhang, Xiao-Hua

    2015-07-01

    Microbial communities of the Chinese marginal seas have rarely been reported. Here, bacterial and archaeal community structures and abundance in the surface sediment of four sea areas including the Bohai Sea (BS), North Yellow Sea (NYS), South Yellow Sea (SYS), and the north East China Sea (NECS) were surveyed by 16S ribosomal RNA (rRNA) gene pyrosequencing and quantitative PCR. The results showed that microbial communities of the four geographic areas were distinct from each other at the operational taxonomic unit (OTU) level, whereas the microbial communities of the BS, NYS, and SYS were more similar to each other than to the NECS at higher taxonomic levels. Across all samples, Bacteria were numerically dominant relative to Archaea, and among them, Gammaproteobacteria and Euryarchaeota were predominant in the BS, NYS, and SYS, while Deltaproteobacteria and Thaumarchaeota were prevalent in the NECS. The most abundant bacterial genera were putative sulfur oxidizer and sulfate reducer, suggesting that sulfur cycle processes might prevail in these areas, and the high abundance of dsrB (10(7)-10(8) copies g(-1)) in all sites verified the dominance of sulfate reducer in the north Chinese marginal seas. The differences in sediment sources among the sampling areas were potential explanations for the observed microbial community variations. Furthermore, temperature and dissolved oxygen of bottom water were significant environmental factors in determining both bacterial and archaeal communities, whereas chlorophyll a in sediment was significant only in structuring archaeal community. This study presented an outline of benthic microbial communities and provided insights into understanding the biogeochemical cycles in sediments of the north Chinese marginal seas.

  8. Biodiversity links above and below the marine sediment-water interface that may influence community stability

    NARCIS (Netherlands)

    Austen, M.C.; Lambshead, P.J.D.; Hutchings, P.; Boucher, G.; Snelgrove, P.V.R.; Heip, C.H.R.; King, G.; Koike, I.; Smith, C.

    2002-01-01

    Linkages across the sediment-water interface (SWI) between biodiversity and community stability appear to exist but are very poorly studied. Processes by which changes in biodiversity could affect stability on the other side of the SWI include carbon transfer during feeding, decomposition of organic

  9. Internal wave structures in abyssal cataract flows

    Science.gov (United States)

    Makarenko, Nikolay; Liapidevskii, Valery; Morozov, Eugene; Tarakanov, Roman

    2014-05-01

    We discuss some theoretical approaches, experimental results and field data concerning wave phenomena in ocean near-bottom stratified flows. Such strong flows of cold water form everywhere in the Atlantic abyssal channels, and these currents play significant role in the global water exchange. Most interesting wave structures arise in a powerful cataract flows near orographic obstacles which disturb gravity currents by forced lee waves, attached hydraulic jumps, mixing layers etc. All these effects were observed by the authors in the Romanche and Chain fracture zones of Atlantic Ocean during recent cruises of the R/V Akademik Ioffe and R/V Akademik Sergei Vavilov (Morozov et al., Dokl. Earth Sci., 2012, 446(2)). In a general way, deep-water cataract flows down the slope are similar to the stratified flows examined in laboratory experiments. Strong mixing in the sill region leads to the splitting of the gravity current into the layers having the fluids with different densities. Another peculiarity is the presence of critical layers in shear flows sustained over the sill. In the case under consideration, this critical level separates the flow of near-bottom cold water from opposite overflow. In accordance with known theoretical models and laboratory measurements, the critical layer can absorb and reflect internal waves generated by the topography, so the upward propagation of these perturbations is blocked from above. High velocity gradients were registered downstream in the vicinity of cataract and it indicates the existence of developed wave structures beyond the sill formed by intense internal waves. This work was supported by RFBR (grants No 12-01-00671-a, 12-08-10001-k and 13-08-10001-k).

  10. Distinct bacterial communities in surficial seafloor sediments following the 2010 Deepwater Horizon blowout

    Directory of Open Access Journals (Sweden)

    Tingting Yang

    2016-09-01

    Full Text Available A major fraction of the petroleum hydrocarbons discharged during the 2010 Macondo oil spill became associated with and sank to the seafloor as marine snow flocs. This sedimentation pulse induced the development of distinct bacterial communities. Between May 2010 and July 2011, full-length 16S rRNA gene clone libraries demonstrated bacterial community succession in oil-polluted sediment samples near the wellhead area. Libraries from early May 2010, before the sedimentation event, served as the baseline control. Freshly deposited oil-derived marine snow was collected on the surface of sediment cores in September 2010, and was characterized by abundantly detected members of the marine Roseobacter cluster within the Alphaproteobacteria. Samples collected in mid-October 2010 closest to the wellhead contained members of the sulfate-reducing, anaerobic bacterial families Desulfobacteraceae and Desulfobulbaceae within the Deltaproteobacteria, suggesting that the oil-derived sedimentation pulse triggered bacterial oxygen consumption and created patchy anaerobic microniches that favored sulfate-reducing bacteria. Phylotypes of the polycyclic aromatic hydrocarbon-degrading genus Cycloclasticus, previously found both in surface oil slicks and the deep hydrocarbon plume, were also found in oil-derived marine snow flocs sedimenting on the seafloor in September 2010, and in surficial sediments collected in October and November 2010, but not in any of the control samples. Due to the relative recalcitrance and stability of polycyclic aromatic compounds, Cycloclasticus represents the most persistent microbial marker of seafloor hydrocarbon deposition that we could identify in this dataset. The bacterial imprint of the DWH oil spill had diminished in late November 2010, when the bacterial communities in oil-impacted sediment samples collected near the Macondo wellhead began to resemble their pre-spill counterparts and spatial controls. Samples collected in summer

  11. Vertical distribution and community composition of anammox bacteria in sediments of a eutrophic shallow lake.

    Science.gov (United States)

    Qin, H; Han, C; Jin, Z; Wu, L; Deng, H; Zhu, G; Zhong, W

    2018-07-01

    The aim of this study was to explore the vertical distribution traits of anaerobic ammonium-oxidizing (anammox) bacterial relative abundance and community composition along the oxic/anoxic sediment profiles in a shallow lake. The Illumina Miseq-based sequencing and quantitative polymerase chain reactions were utilized to analyse relative abundance of anammox hydrazine synthase (hzsB) gene in comparison with bacterial 16S rRNA genes, anammox bacterial relative abundance (the number of anammox sequences divided by total number of sequences), community composition and diversity in sediments. The relative abundance of hzsB gene at the low-nitrogen (LN) site in the lake sediments showed that the vertical distribution of anammox bacteria increased to a peak, then decreased with increasing depth. Moreover, the relative abundance of hzsB gene at the high-nitrogen site was significantly lower than that at the LN site. Additionally, the community composition results showed that Candidatus Brocadia sp. was the dominant genus. In addition, the anammox bacterial diversity was also site specific. Redundancy analysis showed that the total N and the NH 4 + -N content might be the most important factors affecting anammox bacterial community composition in the studied sites. The results revealed the specific vertical variance of anammox bacterial distribution and community composition in oxic/anoxic sediments of a eutrophic shallow lake. This is the first study to demonstrate that anammox bacteria displayed the particular distribution in freshwater sediments, which implied a strong response to the anthropogenic eutrophication. © 2018 The Society for Applied Microbiology.

  12. Metal concentrations in stream biofilm and sediments and their potential to explain biofilm microbial community structure

    International Nuclear Information System (INIS)

    Ancion, Pierre-Yves; Lear, Gavin; Dopheide, Andrew; Lewis, Gillian D.

    2013-01-01

    Concentrations of metals associated with sediments have traditionally been analysed to assess the extent of heavy metal contamination in freshwater environments. Stream biofilms present an alternative medium for this assessment which may be more relevant to the risk incurred by stream ecosystems as they are intensively grazed by aquatic organisms at a higher trophic level. Therefore, we investigated zinc, copper and lead concentrations in biofilms and sediments of 23 stream sites variously impacted by urbanisation. Simultaneously, biofilm bacterial and ciliate protozoan community structure was analysed by Automated Ribosomal Intergenic Spacer Analysis and Terminal Restriction Fragment Length Polymorphism, respectively. Statistical analysis revealed that biofilm associated metals explained a greater proportion of the variations observed in bacterial and ciliate communities than did sediment associated-metals. This study suggests that the analysis of metal concentrations in biofilms provide a good assessment of detrimental effects of metal contaminants on aquatic biota. - Highlights: ► Zn, Cu and Pb concentrations in biofilm and sediments from 23 streams were assessed. ► Bacteria and ciliate protozoa were simultaneously used as biological indicators. ► Zn and Cu were generally enriched in biofilm compared to sediments. ► Metals in biofilm provide a useful assessment of freshwater ecosystem contamination. ► Results highlight the likely ecological importance of biofilm associated metals. - Metal concentrations in stream biofilms provide a good assessment of the effects of trace metal contaminants on freshwater ecosystems.

  13. Bacterial communities in the sediments of Dianchi Lake, a partitioned eutrophic waterbody in China.

    Directory of Open Access Journals (Sweden)

    Yaohui Bai

    Full Text Available Bacteria play an important role in the decomposition and cycling of a variety of compounds in freshwater aquatic environments, particularly nutrient-rich eutrophic lakes. A unique Chinese eutrophic lake--Dianchi--was selected for study because it has two separate and distinct basins, Caohai with higher organic carbon levels and Waihai with lower organic carbon levels. Sediment bacterial communities were studied in the two basins using samples collected in each season from June 2010 to March 2011. Barcoded pyrosequencing based on the 16 S rRNA gene found that certain common phyla, Proteobacteria, Bacteroidetes, Firmicutes and Chloroflexi, were dominant in the sediments from both basins. However, from the class to genus level, the dominant bacterial groups found in the sediments were distinct between the two basins. Correlation analysis revealed that, among the environmental parameters examined, total organic carbon (TOC accounted for the greatest proportion of variability in bacterial community. Interestingly, study results suggest that increasing allochthonous organic carbon could enhance bacterial diversity and biomass in the sediment. In addition, analysis of function genes (amoA and nosZ demonstrated that ammonia-oxidizing bacteria (AOB were dominant in sediments, with 99% belonging to Nitrosomonas. Denitrifying bacteria were comparatively diverse and were associated with some cultivatable bacteria.

  14. ANALYSIS OF BACTERIAL COMMUNITIES IN SEAGRASS BED SEDIMENTS BY DOUBLE-GRADIENT DENATURING GRADIENT GEL ELECTROPHORESIS OF PCR-AMPLIFIED 16SRRNA GENES

    Science.gov (United States)

    Bacterial communities associated with seagrass bed sediments are not well studied. The work presented here investigated several factors, including the presence or absence of vegetation, depth into sediment, and season, and their impact on bacterial community diversity. Double gra...

  15. Distinct Habitats Select Particular Bacterial Communities in Mangrove Sediments

    Directory of Open Access Journals (Sweden)

    Lidianne L. Rocha

    2016-01-01

    Full Text Available We investigated the relationship among environmental variables, composition, and structure of bacterial communities in different habitats in a mangrove located nearby to an oil exploitation area, aiming to retrieve the natural pattern of bacterial communities in this ecosystem. The T-RFLP analysis showed a high diversity of bacterial populations and an increase in the bacterial richness from habitats closer to the sea and without vegetation (S1 to habitats covered by Avicennia schaueriana (S2 and Rhizophora mangle (S3. Environmental variables in S1 and S2 were more similar than in S3; however, when comparing the bacterial compositions, S2 and S3 shared more OTUs between them, suggesting that the presence of vegetation is an important factor in shaping these bacterial communities. In silico analyses of the fragments revealed a high diversity of the class Gammaproteobacteria in the 3 sites, although in general they presented quite different bacterial composition, which is probably shaped by the specificities of each habitat. This study shows that microhabitats inside of a mangrove ecosystem harbor diverse and distinct microbiota, reinforcing the need to conserve these ecosystems as a whole.

  16. Distinct Habitats Select Particular Bacterial Communities in Mangrove Sediments

    Science.gov (United States)

    Rocha, Lidianne L.; Colares, Geórgia B.; Nogueira, Vanessa L. R.; Paes, Fernanda A.; Melo, Vânia M. M.

    2016-01-01

    We investigated the relationship among environmental variables, composition, and structure of bacterial communities in different habitats in a mangrove located nearby to an oil exploitation area, aiming to retrieve the natural pattern of bacterial communities in this ecosystem. The T-RFLP analysis showed a high diversity of bacterial populations and an increase in the bacterial richness from habitats closer to the sea and without vegetation (S1) to habitats covered by Avicennia schaueriana (S2) and Rhizophora mangle (S3). Environmental variables in S1 and S2 were more similar than in S3; however, when comparing the bacterial compositions, S2 and S3 shared more OTUs between them, suggesting that the presence of vegetation is an important factor in shaping these bacterial communities. In silico analyses of the fragments revealed a high diversity of the class Gammaproteobacteria in the 3 sites, although in general they presented quite different bacterial composition, which is probably shaped by the specificities of each habitat. This study shows that microhabitats inside of a mangrove ecosystem harbor diverse and distinct microbiota, reinforcing the need to conserve these ecosystems as a whole. PMID:26989418

  17. Biogeographical distribution and diversity of bacterial communities in surface sediments of the South China Sea.

    Science.gov (United States)

    Li, Tao; Wang, Peng

    2013-05-01

    This paper aims at an investigation of the features of bacterial communities in surface sediments of the South China Sea (SCS). In particular, biogeographical distribution patterns and the phylogenetic diversity of bacteria found in sediments collected from a coral reef platform, a continental slope, and a deep-sea basin were determined. Bacterial diversity was measured by an observation of 16S rRNA genes, and 18 phylogenetic groups were identified in the bacterial clone library. Planctomycetes, Deltaproteobacteria, candidate division OP11, and Alphaproteobacteria made up the majority of the bacteria in the samples, with their mean bacterial clones being 16%, 15%, 12%, and 9%, respectively. By comparison, the bacterial communities found in the SCS surface sediments were significantly different from other previously observed deep-sea bacterial communities. This research also emphasizes the fact that geographical factors have an impact on the biogeographical distribution patterns of bacterial communities. For instance, canonical correspondence analyses illustrated that the percentage of sand weight and water depth are important factors affecting the bacterial community composition. Therefore, this study highlights the importance of adequately determining the relationship between geographical factors and the distribution of bacteria in the world's seas and oceans.

  18. Macrobenthic community in the Douro estuary: relations with trace metals and natural sediment characteristics

    International Nuclear Information System (INIS)

    Mucha, A.P.; Vasconcelos, M.T.S.D.; Bordalo, A.A.

    2003-01-01

    This study used a novel approach to detect a clear signature of metal contamination and biological impacts in an estuary. - The relationship between macrobenthic community structure and natural characteristics of sediment and trace metal contamination were studied in the lower Douro estuary (Portugal, NW, Iberian Peninsula), using an innovative threefold approach (SQG, Sediment Quality Guidelines), metal normalization to Fe, and macrobenthic community structure. This study allowed detection of a clear signature of anthropogenic contamination, in terms of Zn, Cu, Pb, and Cr in the north bank of the estuary, which experiences high urban pressure. Using the SQG approach, metal concentrations above ERM (effects range--median) were observed only at one sampling station, but several stations had levels above ERL (effects range-low). The macrobenthic community had a low diversity, with only 19 species found in the entire estuarine area, dominated by opportunistic species. The granulometric distribution of the sediments (estimated from the combination of organic matter, Fe and Al) seemed to be the major structuring factor for the communities, establishing the natural macrobenthic distribution pattern. The metals (Zn, Cu, Pb, and Cr) seemed to act as a disturbing factor over the natural distribution, with deleterious consequences for the macrobenthic communities

  19. Microbial communities in methane- and short chain alkane-rich hydrothermal sediments of Guaymas Basin

    Directory of Open Access Journals (Sweden)

    Frederick eDowell

    2016-01-01

    Full Text Available The hydrothermal sediments of Guaymas Basin, an active spreading center in the Gulf of California (Mexico, are rich in porewater methane, short-chain alkanes, sulfate and sulfide, and provide a model system to explore habitat preferences of microorganisms, including sulfate-dependent, methane- and short chain alkane-oxidizing microbial communities. In this study, sediments (above 60˚C covered with sulfur-oxidizing microbial mats surrounding a hydrothermal mound (termed Mat Mound were characterized by porewater geochemistry of methane, C2-C6 short-chain alkanes, sulfate, sulfide, sulfate reduction rate measurements, in-situ temperature gradients, bacterial and archaeal 16S rRNA gene clone libraries and V6 tag pyrosequencing. The most abundantly detected groups in the Mat mound sediments include anaerobic methane-oxidizing archaea of the ANME-1 lineage and its sister clade ANME-1Guaymas, the uncultured bacterial groups SEEP-SRB2 within the Deltaproteobacteria and the separately branching HotSeep-1 Group; these uncultured bacteria are candidates for sulfate-reducing alkane oxidation and for sulfate-reducing syntrophy with ANME archaea. The archaeal dataset indicates distinct habitat preferences for ANME-1, ANME-1-Guaymas and ANME-2 archaea in Guaymas Basin hydrothermal sediments. The bacterial groups SEEP-SRB2 and HotSeep-1 co-occur with ANME-1 and ANME-1Guaymas in hydrothermally active sediments underneath microbial mats in Guaymas Basin. We propose the working hypothesis that this mixed bacterial and archaeal community catalyzes the oxidation of both methane and short-chain alkanes, and constitutes a microbial community signature that is characteristic for hydrothermal and/or cold seep sediments containing both substrates.

  20. Endeavor cruise 071 navigation and bathymetry, northern Hatteras Abyssal Plain

    International Nuclear Information System (INIS)

    Laine, E.P.; Friedrich, N.E.; McCreery, C.; Dickson, S.; Baker, M.

    1985-01-01

    Sub-bottom seismic profiling was carried out by R/V Endeavor during the summers of 1980 and 1981. Data collection was concentrated in LLWODP study area E-N3, which encompasses the northern Hatteras Abyssal Plain and the adjacent lower continental rise. Time, position, and depth were logged and marked on the seismic record at 15-minute intervals. These navigational and bathymetric data have been used to produce a time/position/depth listing, and a detailed bathymetric map of the northern Hatteras Abyssal Plain and surrounding physiographic provinces. 6 figures, 1 table

  1. Bacterial community composition and extracellular enzyme activity in temperate streambed sediment during drying and rewetting.

    Directory of Open Access Journals (Sweden)

    Elisabeth Pohlon

    Full Text Available Droughts are among the most important disturbance events for stream ecosystems; they not only affect stream hydrology but also the stream biota. Although desiccation of streams is common in Mediterranean regions, phases of dryness in headwaters have been observed more often and for longer periods in extended temperate regions, including Central Europe, reflecting global climate change and enhanced water withdrawal. The effects of desiccation and rewetting on the bacterial community composition and extracellular enzyme activity, a key process in the carbon flow of streams and rivers, were investigated in a typical Central European stream, the Breitenbach (Hesse, Germany. Wet streambed sediment is an important habitat in streams. It was sampled and exposed in the laboratory to different drying scenarios (fast, intermediate, slow for 13 weeks, followed by rewetting of the sediment from the fast drying scenario via a sediment core perfusion technique for 2 weeks. Bacterial community structure was analyzed using CARD-FISH and TGGE, and extracellular enzyme activity was assessed using fluorogenic model substrates. During desiccation the bacterial community composition shifted toward composition in soil, exhibiting increasing proportions of Actinobacteria and Alphaproteobacteria and decreasing proportions of Bacteroidetes and Betaproteobacteria. Simultaneously the activities of extracellular enzymes decreased, most pronounced with aminopeptidases and less pronounced with enzymes involved in the degradation of polymeric carbohydrates. After rewetting, the general ecosystem functioning, with respect to extracellular enzyme activity, recovered after 10 to 14 days. However, the bacterial community composition had not yet achieved its original composition as in unaffected sediments within this time. Thus, whether the bacterial community eventually recovers completely after these events remains unknown. Perhaps this community undergoes permanent changes

  2. Shifts in coastal sediment oxygenation cause pronounced changes in microbial community composition and associated metabolism.

    Science.gov (United States)

    Broman, Elias; Sjöstedt, Johanna; Pinhassi, Jarone; Dopson, Mark

    2017-08-09

    A key characteristic of eutrophication in coastal seas is the expansion of hypoxic bottom waters, often referred to as 'dead zones'. One proposed remediation strategy for coastal dead zones in the Baltic Sea is to mix the water column using pump stations, circulating oxygenated water to the sea bottom. Although microbial metabolism in the sediment surface is recognized as key in regulating bulk chemical fluxes, it remains unknown how the microbial community and its metabolic processes are influenced by shifts in oxygen availability. Here, coastal Baltic Sea sediments sampled from oxic and anoxic sites, plus an intermediate area subjected to episodic oxygenation, were experimentally exposed to oxygen shifts. Chemical, 16S rRNA gene, metagenomic, and metatranscriptomic analyses were conducted to investigate changes in chemistry fluxes, microbial community structure, and metabolic functions in the sediment surface. Compared to anoxic controls, oxygenation of anoxic sediment resulted in a proliferation of bacterial populations in the facultative anaerobic genus Sulfurovum that are capable of oxidizing toxic sulfide. Furthermore, the oxygenated sediment had higher amounts of RNA transcripts annotated as sqr, fccB, and dsrA involved in sulfide oxidation. In addition, the importance of cryptic sulfur cycling was highlighted by the oxidative genes listed above as well as dsvA, ttrB, dmsA, and ddhAB that encode reductive processes being identified in anoxic and intermediate sediments turned oxic. In particular, the intermediate site sediments responded differently upon oxygenation compared to the anoxic and oxic site sediments. This included a microbial community composition with more habitat generalists, lower amounts of RNA transcripts attributed to methane oxidation, and a reduced rate of organic matter degradation. These novel data emphasize that genetic expression analyses has the power to identify key molecular mechanisms that regulate microbial community responses

  3. Shifts in coastal sediment oxygenation cause pronounced changes in microbial community composition and associated metabolism

    DEFF Research Database (Denmark)

    Broman, Elias; Sjöstedt, Johanna; Pinhassi, Jarone

    2017-01-01

    . In particular, the intermediate site sediments responded differently upon oxygenation compared to the anoxic and oxic site sediments. This included a microbial community composition with more habitat generalists, lower amounts of RNA transcripts attributed to methane oxidation, and a reduced rate of organic...... efforts, depend largely on the oxygenation history of sites. Furthermore, it was shown that re-oxygenation efforts to remediate dead zones could ultimately be facilitated by in situ microbial molecular mechanisms involved in removal of toxic H2S and the potent greenhouse gas methane....

  4. Impacts of the Deepwater Horizon oil spill on deep-sea coral-associated sediment communities

    Science.gov (United States)

    Demopoulos, Amanda W.J.; Bourque, Jill R.; Cordes, Erik E.; Stamler, Katherine

    2016-01-01

    Cold-water corals support distinct populations of infauna within surrounding sediments that provide vital ecosystem functions and services in the deep sea. Yet due to their sedentary existence, infauna are vulnerable to perturbation and contaminant exposure because they are unable to escape disturbance events. While multiple deep-sea coral habitats were injured by the 2010 Deepwater Horizon (DWH) oil spill, the extent of adverse effects on coral-associated sediment communities is unknown. In 2011, sediments were collected adjacent to several coral habitats located 6 to 183 km from the wellhead in order to quantify the extent of impact of the DWH spill on infaunal communities. Higher variance in macrofaunal abundance and diversity, and different community structure (higher multivariate dispersion) were associated with elevated hydrocarbon concentrations and contaminants at sites closest to the wellhead (MC294, MC297, and MC344), consistent with impacts from the spill. In contrast, variance in meiofaunal diversity was not significantly related to distance from the wellhead and no other community metric (e.g. density or multivariate dispersion) was correlated with contaminants or hydrocarbon concentrations. Concentrations of polycyclic aromatic hydrocarbons (PAH) provided the best statistical explanation for observed macrofaunal community structure, while depth and presence of fine-grained mud best explained meiofaunal community patterns. Impacts associated with contaminants from the DWH spill resulted in a patchwork pattern of infaunal community composition, diversity, and abundance, highlighting the role of variability as an indicator of disturbance. These data represent a useful baseline for tracking post-spill recovery of these deep-sea communities.

  5. Effects of zinc pyrithione and copper pyrithione on microbial community function and structure in sediments

    DEFF Research Database (Denmark)

    Petersen, DG; Dahllof, I.; Nielsen, LP

    2004-01-01

    incorporation) were used, whereas molecular fingerprinting methods (polymerase chain reaction/ denaturing gradient gel electrophoresis) were used to describe the bacterial community structure. The lowest-observed-effect concentration (LOEC) for ZPT was 0.001 nmol/g dry sediment for the phosphate flux and total...... DNA content, whereas the LOEC for CPT was 0.1 nmol/g dry sediment for the nitrate flux and total DNA content. Nitrate fluxes increased significantly following additions of both ZPT and CPT, whereas ammonium fluxes decreased significantly after ZPT addition, suggesting changes in the nitrification...... and denitrification processes. The total DNA content decreased significantly following addition of both ZPT and CPT, but at the highest addition of ZPT (10 nmol ZPT/g dry sediment), an increase in total DNA content was found. Increased protein synthesis and bacterial diversity were also observed at this concentration...

  6. Modified niche optima and breadths explain the historical contingency of bacterial community responses to eutrophication in coastal sediments

    KAUST Repository

    Fodelianakis, Stylianos

    2016-09-23

    Previous studies have shown that the response of bacterial communities to disturbances depends on their environmental history. Historically fluctuating habitats host communities that respond better to disturbance than communities of historically stable habitats. However, the exact ecological mechanism that drives this dependency remains unknown. Here, we experimentally demonstrate that modifications of niche optima and niche breadths of the community members are driving this dependency of bacterial responses to past environmental conditions. First, we develop a novel, simple method to calculate the niche optima and breadths of bacterial taxa regarding single environmental gradients. Then, we test this method on sediment bacterial communities of three habitats, one historically stable and less loaded and two historically more variable and more loaded habitats in terms of historical chlorophyll-α water concentration, that we subject to hypoxia via organic matter addition ex situ. We find that communities containing bacterial taxa differently adapted to hypoxia show different structural and functional responses, depending on the sediment\\'s environmental history. Specifically, in the historically less fluctuating and loaded sediments where we find more taxa poorly adapted to hypoxic conditions, communities change a lot over time and organic matter is not degraded efficiently. The opposite is true for the historically more fluctuating and loaded sediments where we find more taxa well adapted to hypoxia. Based on the community responses observed here, we also propose an alternative calculation of community resistance that takes into account how rapidly the communities respond to disturbances and not just the initial and final states of the community.

  7. A discussion of non-linear temperature profiles at six closely spaced heat flow sites, southern Sohm Abyssal Plain, northwest Atlantic Ocean

    Science.gov (United States)

    Burgess, M. M.

    1986-09-01

    Six heat flow measurement sites were occupied in June 1980 in a 10 x 10 km 2 flat area of the southern Sohm Abyssal Plain, western North Atlantic Ocean. Non-linear sediment temperature profiles, measured to depths of 5 m, indicate perturbations in the temperature field in sediments overlying 90 Ma ocean floor. Temperature gradients average 59.0 mK m -1 in the lower half of the profile and decrease by 25% to an average of 44.24 mK m -1 in the upper half. Thermal conductivities of sediment cores down to 12 m ranged from 0.74 to 2.12 W m -1 K -1 and averaged 1.06 W m -1K -1. The non-linearity of sediment temperature profiles cannot be accounted for by the variations in thermal conductivity. Vertical fluid convection in the sediments, with a predominantly downward migration on the order of 5 x 10 -8 ms -1 in the upper 3 m, could explain the perturbations. However, in this study area of high abyssal kinetic energy and abyssal storms, bottom-water temperature fluctuations are the likely source of observed sediment temperature perturbations. A bottom-water temperature change of 50 mK occurring 3 months prior to the cruise could produce sediment temperature perturbations similar to those observed. Heat flow determined from the lower gradient (3-5 m sediment depth interval), assuming the non-linearity in the upper sensors to be principally due to bottom-water temperature fluctuations, averages 59.2 mW m -2, a slightly higher value than that predicted for 90 Ma crust.

  8. Profiling of Sediment Microbial Community in Dongting Lake before and after Impoundment of the Three Gorges Dam

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2016-06-01

    Full Text Available The sediment microbial community in downstream-linked lakes can be affected by the operation of large-scale water conservancy projects. The present study determined Illumina reads (16S rRNA gene amplicons to analyze and compare the bacterial communities from sediments in Dongting Lake (China before and after impoundment of the Three Gorges Dam (TGD, the largest hydroelectric project in the world. Bacterial communities in sediment samples in Dongting Lake before impoundment of the TGD (the high water period had a higher diversity than after impoundment of the TGD (the low water period. The most abundant phylum in the sediment samples was Proteobacteria (36.4%–51.5%, and this result was due to the significant abundance of Betaproteobacteria and Deltaproteobacteria in the sediment samples before impoundment of the TGD and the abundance of Gammaproteobacteria in the sediment samples after impoundment of the TGD. In addition, bacterial sequences of the sediment samples are also affiliated with Acidobacteria (11.0% on average, Chloroflexi (10.9% on average, Bacteroidetes (6.7% on average, and Nitrospirae (5.1% on average. Variations in the composition of the bacterial community within some sediment samples from the river estuary into Dongting Lake were related to the pH values. The bacterial community in the samples from the three lake districts of Dongting Lake before and after impoundment of the TGD was linked to the nutrient concentration.

  9. A new report on the occurrence of zeolitites in the abyssal depths of the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Sudhakar, M.

    of Oceanography, Dona Paula, Goa 403 004, India (Received August 13, 1992; revised version accepted November 18, 1992) ABSTRACT Forty-two indurated slabs of zeolites collected from the abyssal depths of the Central Indian Basin have been studied. The slabs... Depth Sampler Topography/ No. (dimensions in cm) (°S) (°E) (m) deployed sediment type 1 SS17/877 (A) Ferromanganese oxides with patches of 13.032 75.743 4275 Dredge Seamount flank/ orangish-yellow material, 25 × 21...

  10. Biodiversity and community composition of sediment macrofauna associated with deep-sea Lophelia pertusa habitats in the Gulf of Mexico

    Science.gov (United States)

    Demopoulos, Amanda W.J.; Bourque, Jill R.; Frometa, Janessy

    2014-01-01

    Scleractinian corals create three-dimensional reefs that provide sheltered refuges, facilitate sediment accumulation, and enhance colonization of encrusting fauna. While heterogeneous coral habitats can harbor high levels of biodiversity, their effect on the community composition within nearby sediments remains unclear, particularly in the deep sea. Sediment macrofauna from deep-sea coral habitats (Lophelia pertusa) and non-coral, background sediments were examined at three sites in the northern Gulf of Mexico (VK826, VK906, MC751, 350–500 m depth) to determine whether macrofaunal abundance, diversity, and community composition near corals differed from background soft-sediments. Macrofaunal densities ranged from 26 to 125 individuals 32 cm−2 and were significantly greater near coral versus background sediments only at VK826. Of the 86 benthic invertebrate taxa identified, 16 were exclusive to near-coral habitats, while 14 were found only in background sediments. Diversity (Fisher’s α) and evenness were significantly higher within near-coral sediments only at MC751 while taxon richness was similar among all habitats. Community composition was significantly different both between near-coral and background sediments and among the three primary sites. Polychaetes numerically dominated all samples, accounting for up to 70% of the total individuals near coral, whereas peracarid crustaceans were proportionally more abundant in background sediments (18%) than in those near coral (10%). The reef effect differed among sites, with community patterns potentially influenced by the size of reef habitat. Taxon turnover occurred with distance from the reef, suggesting that reef extent may represent an important factor in structuring sediment communities near L. pertusa. Polychaete communities in both habitats differed from other Gulf of Mexico (GOM) soft sediments based on data from previous studies, and we hypothesize that local environmental conditions found near L

  11. Biodiversity and community composition of sediment macrofauna associated with deep-sea Lophelia pertusa habitats in the Gulf of Mexico

    Science.gov (United States)

    Demopoulos, Amanda W. J.; Bourque, Jill R.; Frometa, Janessy

    2014-11-01

    Scleractinian corals create three-dimensional reefs that provide sheltered refuges, facilitate sediment accumulation, and enhance colonization of encrusting fauna. While heterogeneous coral habitats can harbor high levels of biodiversity, their effect on the community composition within nearby sediments remains unclear, particularly in the deep sea. Sediment macrofauna from deep-sea coral habitats (Lophelia pertusa) and non-coral, background sediments were examined at three sites in the northern Gulf of Mexico (VK826, VK906, MC751, 350-500 m depth) to determine whether macrofaunal abundance, diversity, and community composition near corals differed from background soft-sediments. Macrofaunal densities ranged from 26 to 125 individuals 32 cm-2 and were significantly greater near coral versus background sediments only at VK826. Of the 86 benthic invertebrate taxa identified, 16 were exclusive to near-coral habitats, while 14 were found only in background sediments. Diversity (Fisher's α) and evenness were significantly higher within near-coral sediments only at MC751 while taxon richness was similar among all habitats. Community composition was significantly different both between near-coral and background sediments and among the three primary sites. Polychaetes numerically dominated all samples, accounting for up to 70% of the total individuals near coral, whereas peracarid crustaceans were proportionally more abundant in background sediments (18%) than in those near coral (10%). The reef effect differed among sites, with community patterns potentially influenced by the size of reef habitat. Taxon turnover occurred with distance from the reef, suggesting that reef extent may represent an important factor in structuring sediment communities near L. pertusa. Polychaete communities in both habitats differed from other Gulf of Mexico (GOM) soft sediments based on data from previous studies, and we hypothesize that local environmental conditions found near L. pertusa

  12. Sulphur-oxidizing and sulphate-reducing communities in Brazilian mangrove sediments.

    Science.gov (United States)

    Varon-Lopez, Maryeimy; Dias, Armando Cavalcante Franco; Fasanella, Cristiane Cipolla; Durrer, Ademir; Melo, Itamar Soares; Kuramae, Eiko Eurya; Andreote, Fernando Dini

    2014-03-01

    Mangrove soils are anaerobic environments rich in sulphate and organic matter. Although the sulphur cycle is one of the major actors in this ecosystem, little is known regarding the sulphur bacteria communities in mangrove soils. We investigated the abundance, composition and diversity of sulphur-oxidizing (SOB) and sulphate-reducing (SRB) bacteria in sediments from three Brazilian mangrove communities: two contaminated, one with oil (OilMgv) and one with urban waste and sludge (AntMgv), and one pristine (PrsMgv). The community structures were assessed using quantitative real-time polymerase chain reaction (qPCR), polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and clone libraries, using genes for the enzymes adenosine-5'-phosphosulphate reductase (aprA) and sulphite reductase (Dsr) (dsrB). The abundance for qPCR showed the ratio dsrB/aprA to be variable among mangroves and higher according to the gradient observed for oil contamination in the OilMgv. The PCR-DGGE patterns analysed by Nonmetric Multidimensional Scaling revealed differences among the structures of the three mangrove communities. The clone libraries showed that Betaproteobacteria, Gammaproteobacteria and Deltaproteobacteria were the most abundant groups associated with sulphur cycling in mangrove sediments. We conclude that the microbial SOB and SRB communities in mangrove soils are different in each mangrove forest and that such microbial communities could possibly be used as a proxy for contamination in mangrove forests. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  13. Impact of Seasonal Hypoxia on Activity and Community Structure of Chemolithoautotrophic Bacteria in a Coastal Sediment.

    Science.gov (United States)

    Lipsewers, Yvonne A; Vasquez-Cardenas, Diana; Seitaj, Dorina; Schauer, Regina; Hidalgo-Martinez, Silvia; Sinninghe Damsté, Jaap S; Meysman, Filip J R; Villanueva, Laura; Boschker, Henricus T S

    2017-05-15

    Seasonal hypoxia in coastal systems drastically changes the availability of electron acceptors in bottom water, which alters the sedimentary reoxidation of reduced compounds. However, the effect of seasonal hypoxia on the chemolithoautotrophic community that catalyzes these reoxidation reactions is rarely studied. Here, we examine the changes in activity and structure of the sedimentary chemolithoautotrophic bacterial community of a seasonally hypoxic saline basin under oxic (spring) and hypoxic (summer) conditions. Combined 16S rRNA gene amplicon sequencing and analysis of phospholipid-derived fatty acids indicated a major temporal shift in community structure. Aerobic sulfur-oxidizing Gammaproteobacteria ( Thiotrichales ) and Epsilonproteobacteria ( Campylobacterales ) were prevalent during spring, whereas Deltaproteobacteria ( Desulfobacterales ) related to sulfate-reducing bacteria prevailed during summer hypoxia. Chemolithoautotrophy rates in the surface sediment were three times higher in spring than in summer. The depth distribution of chemolithoautotrophy was linked to the distinct sulfur oxidation mechanisms identified through microsensor profiling, i.e., canonical sulfur oxidation, electrogenic sulfur oxidation by cable bacteria, and sulfide oxidation coupled to nitrate reduction by Beggiatoaceae The metabolic diversity of the sulfur-oxidizing bacterial community suggests a complex niche partitioning within the sediment, probably driven by the availability of reduced sulfur compounds (H 2 S, S 0 , and S 2 O 3 2- ) and electron acceptors (O 2 and NO 3 - ) regulated by seasonal hypoxia. IMPORTANCE Chemolithoautotrophic microbes in the seafloor are dependent on electron acceptors, like oxygen and nitrate, that diffuse from the overlying water. Seasonal hypoxia, however, drastically changes the availability of these electron acceptors in the bottom water; hence, one expects a strong impact of seasonal hypoxia on sedimentary chemolithoautotrophy. A

  14. Effects of zinc pyrithione and copper pyrithione on microbial community function and structure in sediments

    DEFF Research Database (Denmark)

    Petersen, DG; Dahllof, I.; Nielsen, LP

    2004-01-01

    The effects of the new antifouling biocides, zinc pyrithione (ZPT) and copper pyrithione (CPT), on microbial communities in estuarine sediments were studied in microcosms. As functional endpoints, fluxes of nutrients (NO3-, NH4+, HPO42-, Si(OH)(4)) and protein synthesis ([C-14] leucine incorporat......The effects of the new antifouling biocides, zinc pyrithione (ZPT) and copper pyrithione (CPT), on microbial communities in estuarine sediments were studied in microcosms. As functional endpoints, fluxes of nutrients (NO3-, NH4+, HPO42-, Si(OH)(4)) and protein synthesis ([C-14] leucine...... DNA content, whereas the LOEC for CPT was 0.1 nmol/g dry sediment for the nitrate flux and total DNA content. Nitrate fluxes increased significantly following additions of both ZPT and CPT, whereas ammonium fluxes decreased significantly after ZPT addition, suggesting changes in the nitrification...... and denitrification processes. The total DNA content decreased significantly following addition of both ZPT and CPT, but at the highest addition of ZPT (10 nmol ZPT/g dry sediment), an increase in total DNA content was found. Increased protein synthesis and bacterial diversity were also observed at this concentration...

  15. Prokaryotic diversity, composition structure, and phylogenetic analysis of microbial communities in leachate sediment ecosystems.

    Science.gov (United States)

    Liu, Jingjing; Wu, Weixiang; Chen, Chongjun; Sun, Faqian; Chen, Yingxu

    2011-09-01

    In order to obtain insight into the prokaryotic diversity and community in leachate sediment, a culture-independent DNA-based molecular phylogenetic approach was performed with archaeal and bacterial 16S rRNA gene clone libraries derived from leachate sediment of an aged landfill. A total of 59 archaeal and 283 bacterial rDNA phylotypes were identified in 425 archaeal and 375 bacterial analyzed clones. All archaeal clones distributed within two archaeal phyla of the Euryarchaeota and Crenarchaeota, and well-defined methanogen lineages, especially Methanosaeta spp., are the most numerically dominant species of the archaeal community. Phylogenetic analysis of the bacterial library revealed a variety of pollutant-degrading and biotransforming microorganisms, including 18 distinct phyla. A substantial fraction of bacterial clones showed low levels of similarity with any previously documented sequences and thus might be taxonomically new. Chemical characteristics and phylogenetic inferences indicated that (1) ammonium-utilizing bacteria might form consortia to alleviate or avoid the negative influence of high ammonium concentration on other microorganisms, and (2) members of the Crenarchaeota found in the sediment might be involved in ammonium oxidation. This study is the first to report the composition of the microbial assemblages and phylogenetic characteristics of prokaryotic populations extant in leachate sediment. Additional work on microbial activity and contaminant biodegradation remains to be explored.

  16. Lower Cretaceous smarl turbidites of the Argo Abyssal Plain, Indian Ocean

    Science.gov (United States)

    Dumoulin, Julie A.; Stewart, Sondra K.; Kennett, Diana; Mazzullo, Elsa K.

    1992-01-01

    Sediments recovered during Ocean Drilling Program (ODP) Leg 123 from the Argo Abyssal Plain (AAP) consist largely of turbidites derived from the adjacent Australian continental margin. The oldest abundant turbidites are Valanginian-Aptian in age and have a mixed (smarl) composition; they contain subequal amounts of calcareous and siliceous biogenic components, as well as clay and lesser quartz. Most are thin-bedded, fine sand to mud-sized, and best described by Stow and Piper's model (1984) for fine-grained biogenic turbidites. Thicker (to 3 m), coarser-grained (medium-to-coarse sand-sized) turbidites fit Bouma's model (1962) for sandy turbidites; these generally are base-cut-out (BCDE, BDE) sequences, with B-division parallel lamination as the dominant structure. Parallel laminae most commonly concentrate quartz and/or calcispheres vs. lithic clasts or clay, but distinctive millimeter to centimeter-thick, radiolarian-rich laminae occur in both fine and coarse-grained Valanginian-Hauterivian turbidites.AAP turbidites were derived from relatively deep parts of the continental margin (outer shelf, slope, or rise) that lay below the photic zone, but above the calcite compensation depth (CCD). Biogenic components are largely pelagic (calcispheres, foraminifers, radiolarians, nannofossils); lesser benthic foraminifers are characteristic of deep-water (abyssal to bathyal) environments. Abundant nonbiogenic components are mostly clay and clay clasts; smectite is the dominant clay species, and indicates a volcanogenic provenance, most likely the Triassic-Jurassic volcanic suite exposed along the northern Exmouth Plateau.Lower Cretaceous smarl turbidites were generated during eustatic lowstands and may have reached the abyssal plain via Swan Canyon, a submarine canyon thought to have formed during the Late Jurassic. In contrast to younger AAP turbidites, however, Lower Cretaceous turbidites are relatively fine-grained and do not contain notably older reworked fossils. Early

  17. Distribution of polycyclic aromatic hydrocarbons (PAHs) and tributyltin (TBT) in Barcelona harbour sediments and their impact on benthic communities

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Llado, Xavier [Environmental Technology Area, CTM-UPC, Avda. Bases de Manresa 1, 08240 Manresa (Spain); Gibert, Oriol [Environmental Technology Area, CTM-UPC, Avda. Bases de Manresa 1, 08240 Manresa (Spain); Marti, Vicens [Environmental Technology Area, CTM-UPC, Avda. Bases de Manresa 1, 08240 Manresa (Spain)]. E-mail: vicens.marti@upc.edu; Diez, Sergi [Environmental Chemistry Department, IIQAB-CSIC, c/Jordi Girona 18-26, 08034 Barcelona (Spain); Environmental Geology Department, ICTJA-CSIC, Lluis Sole i Sabaris, s/n, 08028 Barcelona (Spain); Romo, Javier [Environmental Service of Barcelona Harbour Authority, Carretera de la Circumval.lacio, s/n, Tram VI, Sector 6, Barcelona (Spain); Bayona, Josep Maria [Environmental Chemistry Department, IIQAB-CSIC, c/Jordi Girona 18-26, 08034 Barcelona (Spain); Pablo, Joan de [Environmental Technology Area, CTM-UPC, Avda. Bases de Manresa 1, 08240 Manresa (Spain)

    2007-09-15

    Sediments have long been recognised as a sink for many contaminants like polycyclic aromatic hydrocarbons (PAHs) and tributyltin (TBT), which by virtue of their nature can strongly adsorb onto sediments affecting the benthic community inhabiting them. Using geographical information systems, this study reports and combines the results of several already existing studies along Barcelona harbour in order to assess the potential ecological impacts of these contaminants on the benthos of the harbour ecosystem. Chemical analysis indicated low to moderate contents of PAHs and high contents of TBT in sediments in Barcelona harbour. Comparison against existing sediment quality guidelines (SQGs) indicated that acutely toxic effects would not be expected for PAHs but for TBT, which represents a serious environmental threat for the benthic community. Benthos surveys revealed a deterioration of the benthic community throughout the harbour, especially in the inner port. - A possible correlation exists between TBT concentration in sediments and ecological effects on benthos in Barcelona harbour.

  18. Distribution of polycyclic aromatic hydrocarbons (PAHs) and tributyltin (TBT) in Barcelona harbour sediments and their impact on benthic communities

    International Nuclear Information System (INIS)

    Martinez-Llado, Xavier; Gibert, Oriol; Marti, Vicens; Diez, Sergi; Romo, Javier; Bayona, Josep Maria; Pablo, Joan de

    2007-01-01

    Sediments have long been recognised as a sink for many contaminants like polycyclic aromatic hydrocarbons (PAHs) and tributyltin (TBT), which by virtue of their nature can strongly adsorb onto sediments affecting the benthic community inhabiting them. Using geographical information systems, this study reports and combines the results of several already existing studies along Barcelona harbour in order to assess the potential ecological impacts of these contaminants on the benthos of the harbour ecosystem. Chemical analysis indicated low to moderate contents of PAHs and high contents of TBT in sediments in Barcelona harbour. Comparison against existing sediment quality guidelines (SQGs) indicated that acutely toxic effects would not be expected for PAHs but for TBT, which represents a serious environmental threat for the benthic community. Benthos surveys revealed a deterioration of the benthic community throughout the harbour, especially in the inner port. - A possible correlation exists between TBT concentration in sediments and ecological effects on benthos in Barcelona harbour

  19. Petroleum-influenced beach sediments of the campeche bank, Mexico: Diversity and bacterial community structure assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rosano-Hernandez, M. C.; Ramirez-Saad, H.; Fernandez-Linares, L.; Xoconostle, B.

    2009-07-01

    In Mexican, either spilled or seeped out petroleum impacts nearly 300 km of the beach between Dos Bocas (Tabasco State) to Champoton town (Campeche State), where between 9 to exceptionally 9 to exceptionally 300 tonnes of oil as tar balls have been measured. This study was focused to explore, for the first time, the bacterial diversity and community structure ({alpha}-diversity)- in a kilometric scale on petroleum influenced sediments of 100 km of sandy beach. (Author)

  20. Petroleum-influenced beach sediments of the campeche bank, Mexico: Diversity and bacterial community structure assessment

    International Nuclear Information System (INIS)

    Rosano-Hernandez, M. C.; Ramirez-Saad, H.; Fernandez-Linares, L.; Xoconostle, B.

    2009-01-01

    In Mexican, either spilled or seeped out petroleum impacts nearly 300 km of the beach between Dos Bocas (Tabasco State) to Champoton town (Campeche State), where between 9 to exceptionally 9 to exceptionally 300 tonnes of oil as tar balls have been measured. This study was focused to explore, for the first time, the bacterial diversity and community structure (α-diversity)- in a kilometric scale on petroleum influenced sediments of 100 km of sandy beach. (Author)

  1. Metal-macrofauna interactions determine microbial community structure and function in copper contaminated sediments.

    Science.gov (United States)

    Mayor, Daniel J; Gray, Nia B; Elver-Evans, Joanna; Midwood, Andrew J; Thornton, Barry

    2013-01-01

    Copper is essential for healthy cellular functioning, but this heavy metal quickly becomes toxic when supply exceeds demand. Marine sediments receive widespread and increasing levels of copper contamination from antifouling paints owing to the 2008 global ban of organotin-based products. The toxicity of copper will increase in the coming years as seawater pH decreases and temperature increases. We used a factorial mesocosm experiment to investigate how increasing sediment copper concentrations and the presence of a cosmopolitan bioturbating amphipod, Corophium volutator, affected a range of ecosystem functions in a soft sediment microbial community. The effects of copper on benthic nutrient release, bacterial biomass, microbial community structure and the isotopic composition of individual microbial membrane [phospholipid] fatty acids (PLFAs) all differed in the presence of C. volutator. Our data consistently demonstrate that copper contamination of global waterways will have pervasive effects on the metabolic functioning of benthic communities that cannot be predicted from copper concentrations alone; impacts will depend upon the resident macrofauna and their capacity for bioturbation. This finding poses a major challenge for those attempting to manage the impacts of copper contamination on ecosystem services, e.g. carbon and nutrient cycling, across different habitats. Our work also highlights the paucity of information on the processes that result in isotopic fractionation in natural marine microbial communities. We conclude that the assimilative capacity of benthic microbes will become progressively impaired as copper concentrations increase. These effects will, to an extent, be mitigated by the presence of bioturbating animals and possibly other processes that increase the influx of oxygenated seawater into the sediments. Our findings support the move towards an ecosystem approach for environmental management.

  2. Metal-macrofauna interactions determine microbial community structure and function in copper contaminated sediments.

    Directory of Open Access Journals (Sweden)

    Daniel J Mayor

    Full Text Available Copper is essential for healthy cellular functioning, but this heavy metal quickly becomes toxic when supply exceeds demand. Marine sediments receive widespread and increasing levels of copper contamination from antifouling paints owing to the 2008 global ban of organotin-based products. The toxicity of copper will increase in the coming years as seawater pH decreases and temperature increases. We used a factorial mesocosm experiment to investigate how increasing sediment copper concentrations and the presence of a cosmopolitan bioturbating amphipod, Corophium volutator, affected a range of ecosystem functions in a soft sediment microbial community. The effects of copper on benthic nutrient release, bacterial biomass, microbial community structure and the isotopic composition of individual microbial membrane [phospholipid] fatty acids (PLFAs all differed in the presence of C. volutator. Our data consistently demonstrate that copper contamination of global waterways will have pervasive effects on the metabolic functioning of benthic communities that cannot be predicted from copper concentrations alone; impacts will depend upon the resident macrofauna and their capacity for bioturbation. This finding poses a major challenge for those attempting to manage the impacts of copper contamination on ecosystem services, e.g. carbon and nutrient cycling, across different habitats. Our work also highlights the paucity of information on the processes that result in isotopic fractionation in natural marine microbial communities. We conclude that the assimilative capacity of benthic microbes will become progressively impaired as copper concentrations increase. These effects will, to an extent, be mitigated by the presence of bioturbating animals and possibly other processes that increase the influx of oxygenated seawater into the sediments. Our findings support the move towards an ecosystem approach for environmental management.

  3. Water level changes affect carbon turnover and microbial community composition in lake sediments.

    Science.gov (United States)

    Weise, Lukas; Ulrich, Andreas; Moreano, Matilde; Gessler, Arthur; Kayler, Zachary E; Steger, Kristin; Zeller, Bernd; Rudolph, Kristin; Knezevic-Jaric, Jelena; Premke, Katrin

    2016-05-01

    Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. (13)C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. © FEMS 2016.

  4. Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes.

    Science.gov (United States)

    Yang, Jian; Ma, Li'an; Jiang, Hongchen; Wu, Geng; Dong, Hailiang

    2016-04-26

    Investigating microbial response to environmental variables is of great importance for understanding of microbial acclimatization and evolution in natural environments. However, little is known about how microbial communities responded to environmental factors (e.g. salinity, geographic distance) in lake surface sediments of the Qinghai-Tibetan Plateau (QTP). In this study, microbial diversity and community structure in the surface sediments of nine lakes on the QTP were investigated by using the Illumina Miseq sequencing technique and the resulting microbial data were statistically analyzed in combination with environmental variables. The results showed total microbial community of the studied lakes was significantly correlated (r = 0.631, P diversity and community structure in the studied samples. In addition, the abundant and rare taxa (OTUs with relative abundance higher than 1% and lower than 0.01% within one sample, respectively) were significantly (P < 0.05) correlated (r = 0.427 and 0.783, respectively) with salinity, suggesting rare taxa might be more sensitive to salinity than their abundant counterparts, thus cautions should be taken in future when evaluating microbial response (abundant vs. rare sub-communities) to environmental conditions.

  5. LC/IRMS analysis: A powerful technique to trace carbon flow in microphytobenthic communities in intertidal sediments

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, T.C.W.; Stal, L.J.; Boschker, H.T.S.

    2014-01-01

    Microphytobenthic communities are important for primary production in intertidal marine sediments. Extracellular polymeric substances (EPS), comprising polysaccharides and proteins, play a key role in the structure and functioning of microphytobenthic biofilms and allow interactions between the

  6. Quantification of Microbial Communities in Subsurface Marine Sediments of the Black Sea and off Namibia.

    Science.gov (United States)

    Schippers, Axel; Kock, Dagmar; Höft, Carmen; Köweker, Gerrit; Siegert, Michael

    2012-01-01

    Organic-rich subsurface marine sediments were taken by gravity coring up to a depth of 10 m below seafloor at six stations from the anoxic Black Sea and the Benguela upwelling system off Namibia during the research cruises Meteor 72-5 and 76-1, respectively. The quantitative microbial community composition at various sediment depths was analyzed using total cell counting, catalyzed reporter deposition - fluorescence in situ hybridization (CARD-FISH) and quantitative real-time PCR (Q-PCR). Total cell counts decreased with depths from 10(9) to 10(10) cells/mL at the sediment surface to 10(7)-10(9) cells/mL below one meter depth. Based on CARD-FISH and Q-PCR analyses overall similar proportions of Bacteria and Archaea were found. The down-core distribution of prokaryotic and eukaryotic small subunit ribosomal RNA genes (16S and 18S rRNA) as well as functional genes involved in different biogeochemical processes was quantified using Q-PCR. Crenarchaeota and the bacterial candidate division JS-1 as well as the classes Anaerolineae and Caldilineae of the phylum Chloroflexi were highly abundant. Less abundant but detectable in most of the samples were Eukarya as well as the metal and sulfate-reducing Geobacteraceae (only in the Benguela upwelling influenced sediments). The functional genes cbbL, encoding for the large subunit of RuBisCO, the genes dsrA and aprA, indicative of sulfate-reducers as well as the mcrA gene of methanogens were detected in the Benguela upwelling and Black Sea sediments. Overall, the high organic carbon content of the sediments goes along with high cell counts and high gene copy numbers, as well as an equal abundance of Bacteria and Archaea.

  7. {sup 210}Pb-Excess and Sediment Accumulation Rates at the Iberian Continental Margin

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, F. P.; Oliveira, J. M.; Soares, A. M. [Nuclear and Technological Institute, Sacavem (Portugal)

    2013-07-15

    Sediments from the continental shelf, slope, and rise at the continental margin of northern Portugal and the adjacent Iberian abyssal basin were analysed for 210Pb, {sup 226}Ra, {sup 137}Cs and {sup 14}C. Pb-210 derived sedimentation rates at the continental shelf off the Portuguese coast were 0.2-0.6 cm/a. In some cores from fine sediment deposits at the outer shelf, the {sup 210}Pb excess continuum was interrupted and sediment layers were missing, suggesting that events such as sediment slides could have occurred. Higher sedimentation rates were determined in locations at the rise of the continental slope, confirming enhanced deposition by sediment slides. In the deeper Iberian Abyssal Basin, using the {sup 14}C age of sediment layers the sedimentation rate was determined at 3.2 cm/ka, thus four orders of magnitude lower than at the continental shelf. The spatial distribution of sedimentation rates determined by radionuclide based chronologies, suggested that fine sediments from river discharges are deposited mainly at the outer continental shelf. These deposits may became unstable with time and, occasionally, originate sediment slides that are drained by the canyons and reach the deep sea. The Iberian abyssal basin receives some advective contribution of these sediment slides and the sedimentation rate is one order of magnitude higher than in other abyssal basins of the NE Atlantic Ocean. (author)

  8. A comparison of microbial communities in deep-sea polymetallic nodules and the surrounding sediments in the Pacific Ocean

    Science.gov (United States)

    Wu, Yue-Hong; Liao, Li; Wang, Chun-Sheng; Ma, Wei-Lin; Meng, Fan-Xu; Wu, Min; Xu, Xue-Wei

    2013-09-01

    Deep-sea polymetallic nodules, rich in metals such as Fe, Mn, and Ni, are potential resources for future exploitation. Early culturing and microscopy studies suggest that polymetallic nodules are at least partially biogenic. To understand the microbial communities in this environment, we compared microbial community composition and diversity inside nodules and in the surrounding sediments. Three sampling sites in the Pacific Ocean containing polymetallic nodules were used for culture-independent investigations of microbial diversity. A total of 1013 near full-length bacterial 16S rRNA gene sequences and 640 archaeal 16S rRNA gene sequences with ~650 bp from nodules and the surrounding sediments were analyzed. Bacteria showed higher diversity than archaea. Interestingly, sediments contained more diverse bacterial communities than nodules, while the opposite was detected for archaea. Bacterial communities tend to be mostly unique to sediments or nodules, with only 13.3% of sequences shared. The most abundant bacterial groups detected only in nodules were Pseudoalteromonas and Alteromonas, which were predicted to play a role in building matrix outside cells to induce or control mineralization. However, archaeal communities were mostly shared between sediments and nodules, including the most abundant OTU containing 290 sequences from marine group I Thaumarchaeota. PcoA analysis indicated that microhabitat (i.e., nodule or sediment) seemed to be a major factor influencing microbial community composition, rather than sampling locations or distances between locations.

  9. Seasonality of community structure and carbon flow in Narragansett Bay sediments

    International Nuclear Information System (INIS)

    Rudnick, D.T.

    1984-01-01

    Seasonal patterns of benthic community dynamics and the pathways of detrital decomposition in Narragansett Bay were examined. Benthic meiofauna and macrofauna exhibited a pronounced seasonality, with peak abundances in the late spring and minima in the late summer. This pattern was most pronounced for surface dwelling fauna, particularly harpacticoid copepods. These results were attributed to the seasonality of detrital inputs to the sediment and the fate of these inputs. A six month study in which 14 C-sodium bicarbonate was added to a large (13 m 3 ) microcosm enabled the author to observe pathways of carbon flow. Half of the labeled organic carbon that was deposited on the sediment during the winter and spring was found in the sediment in July. At least 20 gC/m 2 had accumulated since December. Within the sediment, the existence of two discrete food webs was distinguished by measurement of faunal specific activity. Surface fauna, dominated by the meiofauna, exclusively assimilate fresh (labeled) organics, while subsurface fauna (meiofauna and macrofauna) predominantly assimilated older, non-labeled organics for the duration of the study. Only the subsurface food web had access to the storage of buried detritus. While there was a surplus of detritus for both food webs during the winter and spring, the authors expect that benthic respiration rates exceed organic deposition rates during the summer. Detrital storage may be critical for the survival of the fauna through the summer

  10. Shift in the microbial community composition of surface water and sediment along an urban river.

    Science.gov (United States)

    Wang, Lan; Zhang, Jing; Li, Huilin; Yang, Hong; Peng, Chao; Peng, Zhengsong; Lu, Lu

    2018-06-15

    Urban rivers represent a unique ecosystem in which pollution occurs regularly, leading to significantly altered of chemical and biological characteristics of the surface water and sediments. However, the impact of urbanization on the diversity and structure of the river microbial community has not been well documented. As a major tributary of the Yangtze River, the Jialing River flows through many cities. Here, a comprehensive analysis of the spatial microbial distribution in the surface water and sediments in the Nanchong section of Jialing River and its two urban branches was conducted using 16S rRNA gene-based Illumina MiSeq sequencing. The results revealed distinct differences in surface water bacterial composition along the river with a differential distribution of Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes and Acidobacteria (P urban water. PICRUSt metabolic inference analysis revealed a growing number of genes associated with xenobiotic metabolism and nitrogen metabolism in the urban water, indicating that urban discharges might act as the dominant selective force to alter the microbial communities. Redundancy analysis suggested that the microbial community structure was influenced by several environmental factors. TP (P urban river. These results highlight that river microbial communities exhibit spatial variation in urban areas due to the joint influence of chemical variables associated with sewage discharging and construction of hydropower stations. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Seasonal Effects in a Lake Sediment Archaeal Community of the Brazilian Savanna

    Directory of Open Access Journals (Sweden)

    Thiago Rodrigues

    2014-01-01

    Full Text Available The Cerrado is a biome that corresponds to 24% of Brazil’s territory. Only recently microbial communities of this biome have been investigated. Here we describe for the first time the diversity of archaeal communities from freshwater lake sediments of the Cerrado in the dry season and in the transition period between the dry and rainy seasons, when the first rains occur. Gene libraries were constructed, using Archaea-specific primers for the 16S rRNA and amoA genes. Analysis revealed marked differences between the archaeal communities found in the two seasons. I.1a and I.1c Thaumarchaeota were found in greater numbers in the transition period, while MCG Archaea was dominant on the dry season. Methanogens were only found in the dry season. Analysis of 16S rRNA sequences revealed lower diversity on the transition period. We detected archaeal amoA sequences in both seasons, but there were more OTUs during the dry season. These sequences were within the same cluster as Nitrosotalea devanaterra’s amoA gene. The principal coordinate analysis (PCoA test revealed significant differences between samples from different seasons. These results provide information on archaeal diversity in freshwater lake sediments of the Cerrado and indicates that rain is likely a factor that impacts these communities.

  12. Seasonal effects in a lake sediment archaeal community of the Brazilian Savanna.

    Science.gov (United States)

    Rodrigues, Thiago; Catão, Elisa; Bustamante, Mercedes M C; Quirino, Betania F; Kruger, Ricardo H; Kyaw, Cynthia M

    2014-01-01

    The Cerrado is a biome that corresponds to 24% of Brazil's territory. Only recently microbial communities of this biome have been investigated. Here we describe for the first time the diversity of archaeal communities from freshwater lake sediments of the Cerrado in the dry season and in the transition period between the dry and rainy seasons, when the first rains occur. Gene libraries were constructed, using Archaea-specific primers for the 16S rRNA and amoA genes. Analysis revealed marked differences between the archaeal communities found in the two seasons. I.1a and I.1c Thaumarchaeota were found in greater numbers in the transition period, while MCG Archaea was dominant on the dry season. Methanogens were only found in the dry season. Analysis of 16S rRNA sequences revealed lower diversity on the transition period. We detected archaeal amoA sequences in both seasons, but there were more OTUs during the dry season. These sequences were within the same cluster as Nitrosotalea devanaterra's amoA gene. The principal coordinate analysis (PCoA) test revealed significant differences between samples from different seasons. These results provide information on archaeal diversity in freshwater lake sediments of the Cerrado and indicates that rain is likely a factor that impacts these communities.

  13. Fringing reefs exposed to different levels of eutrophication and sedimentation can support similar benthic communities

    International Nuclear Information System (INIS)

    Rouzé, H.; Lecellier, G.; Langlade, M.J.; Planes, S.; Berteaux-Lecellier, V.

    2015-01-01

    Highlights: • We assess anthropogenic pressures on coral reef health. • We present a spatio-temporal survey of environmental parameters as bio-indicators. • Poor water quality (e.g. high turbidity and high sediments) was not correlated with lower coral cover. • Phytoplankton community size-composition and habitat stability were important predictors of coral reef health. - Abstract: Benthic communities are sensitive to anthropogenic disturbances which can result in changes in species assemblages. A spatio-temporal survey of environmental parameters was conducted over an 18-month period on four different fringing reefs of Moorea, French Polynesia, with unusual vs. frequent human pressures. This survey included assessment of biological, chemical, and physical parameters. First, the results showed a surprising lack of a seasonal trend, which was likely obscured by short-term variability in lagoons. More frequent sampling periods would likely improve the evaluation of a seasonal effect on biological and ecological processes. Second, the three reef habitats studied that were dominated by corals were highly stable, despite displaying antagonistic environmental conditions through eutrophication and sedimentation gradients, whereas the reef dominated by macroalgae was relatively unstable. Altogether, our data challenge the paradigm of labelling environmental parameters such as turbidity, sedimentation, and nutrient-richness as stress indicators

  14. Structure of hydrocarbonoclastic nitrate-reducing bacterial communities in bioturbated coastal marine sediments.

    Science.gov (United States)

    Stauffert, Magalie; Cravo-Laureau, Cristiana; Duran, Robert

    2014-09-01

    The organisation of denitrifying microorganisms in oil-polluted bioturbated sediments was investigated in mesocosms under conditions as closer as possible to that observed in the environment. Molecular and culture-dependent approaches revealed that denitrifying Gammaproteobacteria were abundant in oil-polluted and bioturbated sediments suggesting that they may play a key role in hydrocarbon degradation in the environment. T-RFLP and gene libraries analyses targeting nirS gene showed that denitrifying microbial communities structure was slightly affected by either the addition of Hediste diversicolor or crude oil revealing the metabolic versatility of denitrifying microorganisms. From oil-polluted sediments, distinct denitrifying hydrocarbonoclastic bacterial consortia were obtained by enrichment cultures on high molecular weight polyaromatic hydrocarbons (PAHs) (dibenzothiophene, fluoranthene, pyrene and chrysene) under nitrate-reducing conditions. Interestingly, molecular characterisation of the consortia showed that the denitrifying communities obtained from oiled microcosms with addition of H. diversicolor were different to that observed without H. diversicolor addition, especially with fluoranthene and chrysene revealing the bacterial diversity involved in the degradation of these PAHs. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Orphan Strontium-87 in Abyssal Peridotites: Daddy Was a Granite

    Science.gov (United States)

    Snow, Jonathan E.; Hart, Stanley R.; Dick, Henry J. B.

    1993-12-01

    The 87Sr/86Sr ratios in some bulk abyssal and alpine peridotites are too high to be binary mixtures of depleted mantle and seawater components. The apparent excess, or "orphan," 87Sr appears to be separated from its radioactive parent. Such observations were widely held to be analytical artifacts. Study of several occurrences of orphan 87Sr shows that the orphan component in abyssal peridotite is located in the alteration products of olivine and enstatite in the peridotite. The orphan 87Sr is most likely introduced by infiltration of low-temperature (<200^circC) seawater bearing suspended detrital particulates. These particulates include grains of detrital clay that are partly derived from continental (that is, granitic) sources and thus are highly radiogenic. Orphan 87Sr and other radiogenic isotopes may provide a tracer for low-temperature seawater penetrating into the oceanic crust.

  16. Evidences of intraplate deformation in the West Madeira Abyssal Plain (eastern North Atlantic) from seismic reflection and multibeam swath bathymetry data

    Science.gov (United States)

    Roque, C.; Simões, M.; Lourenço, N.; Pinto de Abreu, M.

    2009-04-01

    The West Madeira Abyssal Plain is located in the eastern North Atlantic off Madeira Islands, forming part of the Canary Basin and reaching a mean water depth of 5300 m. This region is also located within Africa plate at about 500 km southwards from the Açores-Gibraltar plate boundary, and for that reason lacks seismic activity. Although this region being located in an intraplate setting, the presence of faulted sediments was reported in several works published during the eighties of last century following a study conducted in late 1970s to evaluate the feasibility of disposal of high-level radioactive wastes in the ocean. According these works, the Madeira Abyssal Plain sediments are cut by many normal growth faults and this deformation is a result of compaction and dewatering of the sediments. Evidences of tectonic deformation of oceanic sediments in intraplate settings are uncommon, but folded sediments and reverse faults extending into the basement, were recognized in the equatorial Indian Ocean and in the West African continental margin. Recently, during 2006 multi-channel seismic reflection and multibeam swath bathymetry surveys were carried out in the West Madeira Abyssal Plain by EMEPC in order to prepare the Portuguese proposal for the extension of the continental shelf. The seismic lines were acquired onboard R/V Akademik Shatskiy using a source of 5720 cu in bolt gun array, cable length of 7950 m and shot interval of 50.00 m. The multibeam swath bathymetry was acquired onboard NRP Gago Coutinho, and allowed a high resolution mapping of the main geomorphological features. The multichannel seismic lines, oriented WNW-ESE, image the Madeira island lower slope located at about 4000 m water depth and the almost flat abyssal plain at about 5300 m water depth. These seismic lines show a thick sedimentary succession that reaches a maximum thickness of about 1.5 sec twt in the deepest parts of the West Madeira Abyssal Plain, overlying an irregular diffractive

  17. Metagenomic Signatures of Microbial Communities in Deep-Sea Hydrothermal Sediments of Azores Vent Fields.

    Science.gov (United States)

    Cerqueira, Teresa; Barroso, Cristina; Froufe, Hugo; Egas, Conceição; Bettencourt, Raul

    2018-01-21

    The organisms inhabiting the deep-seafloor are known to play a crucial role in global biogeochemical cycles. Chemolithoautotrophic prokaryotes, which produce biomass from single carbon molecules, constitute the primary source of nutrition for the higher organisms, being critical for the sustainability of food webs and overall life in the deep-sea hydrothermal ecosystems. The present study investigates the metabolic profiles of chemolithoautotrophs inhabiting the sediments of Menez Gwen and Rainbow deep-sea vent fields, in the Mid-Atlantic Ridge. Differences in the microbial community structure might be reflecting the distinct depth, geology, and distance from vent of the studied sediments. A metagenomic sequencing approach was conducted to characterize the microbiome of the deep-sea hydrothermal sediments and the relevant metabolic pathways used by microbes. Both Menez Gwen and Rainbow metagenomes contained a significant number of genes involved in carbon fixation, revealing the largely autotrophic communities thriving in both sites. Carbon fixation at Menez Gwen site was predicted to occur mainly via the reductive tricarboxylic acid cycle, likely reflecting the dominance of sulfur-oxidizing Epsilonproteobacteria at this site, while different autotrophic pathways were identified at Rainbow site, in particular the Calvin-Benson-Bassham cycle. Chemolithotrophy appeared to be primarily driven by the oxidation of reduced sulfur compounds, whether through the SOX-dependent pathway at Menez Gwen site or through reverse sulfate reduction at Rainbow site. Other energy-yielding processes, such as methane, nitrite, or ammonia oxidation, were also detected but presumably contributing less to chemolithoautotrophy. This work furthers our knowledge of the microbial ecology of deep-sea hydrothermal sediments and represents an important repository of novel genes with potential biotechnological interest.

  18. Marine Subsurface Microbial Communities Across a Hydrothermal Gradient in Okinawa Trough Sediments

    Science.gov (United States)

    Brandt, L. D.; Hser Wah Saw, J.; Ettema, T.; House, C. H.

    2015-12-01

    IODP Expedition 331 to the Okinawa backarc basin provided an opportunity to study the microbial stratigraphy within the sediments surrounding a hydrothermal vent. The Okinawa backarc basin is a sedimented region of the seafloor located on a continental margin, and also hosts a hydrothermal network within the subsurface. Site C0014 within the Iheya North hydrothermal field is located 450 m east of the active vent and has a surface temperature of 5°C with no evidence of hydrothermal alteration within the top 10 meters below sea floor (mbsf). Temperature increases with depth at an estimated rate of 3°C/m and transitions from non-hydrothermal margin sediments to a hydrothermally altered regime below 10 mbsf. In this study, we utilized deep 16S rRNA sequencing of DNA from IODP Expedition 331 Site C0014 sediment horizons in order to assess diversity throughout the sediment column as well as determine the potential limits of the biosphere. Analysis of the amplicon data shows a shift over 15 mbsf from a heterogeneous community of cosmopolitan marine subsurface taxa toward an archaeal-dominated community in the deepest horizons of the predicted biosphere. Notably, the phylum Chloroflexi represents a substantial taxon through most horizons, where it appears to be replaced below 10 mbsf by punctuations of thermophilic and methanotrophic Archaea and Miscellaneous Crenarchaeotic Group abundances. DNA from the aforementioned transition horizons was further analyzed using metagenomic sequencing. Preliminary taxonomic analysis of the metagenomic data agrees well with amplicon data in capturing the shift in relative abundance of Archaea increasing with depth. Additionally, reverse gyrase, a gene found exclusively in hyperthermophilic microorganisms, was recovered only in the metagenome of the deepest horizon. A BLAST search of this protein sequence against the GenBank non-redudnant protein database produced top hits with reverse gyrase from Thermococcus and Pyrococcus, which are

  19. Suspended particulate studies over the Madeira Abyssal Plain

    International Nuclear Information System (INIS)

    Simpson, W.R.

    1987-01-01

    Various aspects relating to suspended matter over the Madeira Abyssal Plain are discussed. Special attention is paid to the nepheloid layer including resuspension and transport processes; time variabilities in particle concentrations and fluxes; particle morphology, microbiology and chemical composition; phase association of metals. Also, tentative predictions of the behaviour of some radionuclides are made based on theory and data on rare earth elements. Instrumentation developed for the project is detailed - the deep water particle sampler. (author)

  20. Benthic Community Structure and Sediment Geochemical Properties at Hydrocarbon Seeps Along the Continental Slope of the Western North Atlantic

    Science.gov (United States)

    Demopoulos, A. W.; Bourque, J. R.; Brooke, S.

    2015-12-01

    Hydrocarbon seeps support distinct benthic communities capable of utilizing reduced chemical compounds for nutrition. In recent years, methane seepage has been increasingly documented along the continental slope of the U.S. Atlantic margin. In 2012 and 2013, two seeps were investigated in this region: a shallow site near Baltimore Canyon (410-450 m) and a deep site near Norfolk Canyon (1600 m). Both sites contain extensive mussel beds and microbial mats. Sediment cores and grab samples were collected to quantify the abundance, diversity, and community structure of benthic macrofauna (>300 mm) in relationship to the associated sediment environment (organic carbon and nitrogen, stable isotopes 13C and 15N, grain size, and depth) of mussel beds, mats, and slope habitats. Macrofaunal densities in microbial mats were four times greater than those present in mussel beds and slope sediments. Macrofaunal communities were distinctly different both between depths and among habitat types. Specifically, microbial mat sediments were dominated by the annelid families Dorvilleidae, Capitellidae, and Tubificidae, while mussel habitats had higher proportions of crustaceans. Diversity was lower in Baltimore microbial mat habitats, but higher in mussel and slope sediments compared to Norfolk seep habitats found at deeper depths. Multivariate statistical analysis identified sediment carbon:nitrogen (C:N) ratios and 13C values as important variables for structuring the macrofaunal communities. Higher C:N ratios were present within microbial mat habitats and depleted 13C values occurred in sediments adjacent to mussel beds found in Norfolk Canyon seeps. Differences in the quality and source of organic matter present in the seep habitats are known to be important drivers in macrofaunal community structure and associated food webs. The multivariate analysis provides new insight into the relative importance of the seep sediment quality in supporting dense macrofaunal communities compared

  1. Active microbial community structure of deep subsurface sediments within Baltic Sea Basin

    Science.gov (United States)

    Reese, B. K.; Zinke, L.; Carvalho, G.; Lloyd, K. G.; Marshall, I.; Shumaker, A.; Amend, J.

    2014-12-01

    The Baltic Sea Basin (BSB) is a unique depositional setting that has experienced periods of glaciation and deglaciation as a result of climatic fluctuations over past tens of thousands of years. This has resulted in laminated sediments formed during periods with strong permanent salinity stratification. The high sedimentation rates make this an ideal setting to understand the microbial structure of a deep biosphere community in a relatively high carbon, and thus high-energy environment, compared to other deep subsurface sites. Samples were collected through scientific drilling during the International Ocean Discovery Program (IODP) Expedition 347 on board the Greatship Manisha, September-November 2013. We examined the active microbial community structure using the 16S rRNA gene transcript and active functional genes through metatranscriptome sequencing. Major biogeochemical shifts have been observed in response to the depositional history between the limnic, brackish, and marine phases. The active microbial community structure in the BSB is diverse and reflective of the unique changes in the geochemical profile. These data further refine our understanding of the existence life in the deep subsurface and the survival mechanisms required for this extreme environment.

  2. Comparative analyses of the bacterial community of hydrothermal deposits and seafloor sediments across Okinawa Trough

    Science.gov (United States)

    Wang, Long; Yu, Min; Liu, Yan; Liu, Jiwen; Wu, Yonghua; Li, Li; Liu, Jihua; Wang, Min; Zhang, Xiao-Hua

    2018-04-01

    As an ideal place to study back-arc basins and hydrothermal eco-system, Okinawa Trough has attracted the interests of scientists for decades. However, there are still no in-depth studies targeting the bacterial community of the seafloor sediments and hydrothermal deposits in Okinawa Trough. In the present study, we reported the bacterial community of the surface deposits of a newly found hydrothermal field in the southern Okinawa Trough, and the horizontal and vertical variation of bacterial communities in the sediments of the northern Okinawa Trough. The hydrothermal deposits had a relatively high 16S rRNA gene abundance but low bacterial richness and diversity. Epsilonproteobacteria and Bacteroidetes were predominant in hydrothermal deposits whereas Deltaproteobacteria, Gammaproteobacteria and Chloroflexi were abundant across all samples. The bacterial distribution in the seafloor of Okinawa Trough was significantly correlated to the content of total nitrogen, and had consistent relationship with total carbon. Gradual changes of sulfur-oxidizing bacteria were found with the distance away from hydrothermal fields, while the hydrothermal activity did not influence the distribution of the major clades of sulfate-reducing bacteria. Higher abundance of the sulfur cycle related genes (aprA and dsrB), and lower abundance of the bacterial ammonia-oxidizing related gene (amoA) were quantified in hydrothermal deposits. In addition, the present study also compared the inter-field variation of Epsilonproteobacteria among multi-types of hydrothermal vents, revealing that the proportion and diversity of this clade were quite various.

  3. Nitrogen cycling processes and microbial community composition in bed sediments in the Yukon River at Pilot Station

    Science.gov (United States)

    Repert, Deborah A.; Underwood, Jennifer C.; Smith, Richard L.; Song, Bongkeun

    2014-01-01

    Information on the contribution of nitrogen (N)-cycling processes in bed sediments to river nutrient fluxes in large northern latitude river systems is limited. This study examined the relationship between N-cycling processes in bed sediments and N speciation and loading in the Yukon River near its mouth at the Bering Sea. We conducted laboratory bioassays to measure N-cycling processes in sediment samples collected over distinct water cycle seasons. In conjunction, the microbial community composition in the bed sediments using genes involved in N-cycling (narG, napA, nosZ, and amoA) and 16S rRNA gene pyrosequences was examined. Temporal variation was observed in net N mineralization, nitrate uptake, and denitrification rate potentials and correlated strongly with sediment carbon (C) and extractable N content and microbial community composition rather than with river water nutrient concentrations. The C content of the bed sediment was notably impacted by the spring flood, ranging from 1.1% in the midst of an ice-jam to 0.1% immediately after ice-out, suggesting a buildup of organic material (OM) prior to scouring of the bed sediments during ice break up. The dominant members of the microbial community that explained differences in N-processing rates belonged to the genera Crenothrix,Flavobacterium, and the family of Comamonadaceae. Our results suggest that biogeochemical processing rates in the bed sediments appear to be more coupled to hydrology, nutrient availability in the sediments, and microbial community composition rather than river nutrient concentrations at Pilot Station.

  4. Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments

    DEFF Research Database (Denmark)

    Knoblauch, C.; Jørgensen, BB; Harder, J.

    1999-01-01

    The numbers of sulfate reducers in two Arctic sediments within situ temperatures of 2.6 and -1.7 degrees C were determined. Most-probable-number counts were higher at 10 degrees C than at 20 degrees C, indicating the predominance of a psychrophilic community. Mean specific sulfate reduction rates...... of 19 isolated psychrophiles were compared to corresponding rates of 9 marine, mesophilic sulfate-reducing bacteria. The results indicate that, as a physiological adaptation to the permanently cold Arctic environment, psychrophilic sulfate reducers have considerably higher specific metabolic rates than...... their mesophilic counterparts at similarly low temperatures....

  5. Sedimentological imprint on subseafloor microbial communities in Western Mediterranean Sea Quaternary sediments

    Science.gov (United States)

    Ciobanu, M.-C.; Rabineau, M.; Droz, L.; Révillon, S.; Ghiglione, J.-F.; Dennielou, B.; Jorry, S.-J.; Kallmeyer, J.; Etoubleau, J.; Pignet, P.; Crassous, P.; Vandenabeele-Trambouze, O.; Laugier, J.; Guégan, M.; Godfroy, A.; Alain, K.

    2012-09-01

    An interdisciplinary study was conducted to evaluate the relationship between geological and paleoenvironmental parameters and the bacterial and archaeal community structure of two contrasting subseafloor sites in the Western Mediterranean Sea (Ligurian Sea and Gulf of Lion). Both depositional environments in this area are well-documented from paleoclimatic and paleooceanographic point of views. Available data sets allowed us to calibrate the investigated cores with reference and dated cores previously collected in the same area, and notably correlated to Quaternary climate variations. DNA-based fingerprints showed that the archaeal diversity was composed by one group, Miscellaneous Crenarchaeotic Group (MCG), within the Gulf of Lion sediments and of nine different lineages (dominated by MCG, South African Gold Mine Euryarchaeotal Group (SAGMEG) and Halobacteria) within the Ligurian Sea sediments. Bacterial molecular diversity at both sites revealed mostly the presence of the classes Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria within Proteobacteria phylum, and also members of Bacteroidetes phylum. The second most abundant lineages were Actinobacteria and Firmicutes at the Gulf of Lion site and Chloroflexi at the Ligurian Sea site. Various substrates and cultivation conditions allowed us to isolate 75 strains belonging to four lineages: Alpha-, Gammaproteobacteria, Firmicutes and Actinobacteria. In molecular surveys, the Betaproteobacteria group was consistently detected in the Ligurian Sea sediments, characterized by a heterolithic facies with numerous turbidites from a deep-sea levee. Analysis of relative betaproteobacterial abundances and turbidite frequency suggested that the microbial diversity was a result of main climatic changes occurring during the last 20 ka. Statistical direct multivariate canonical correspondence analyses (CCA) showed that the availability of electron acceptors and the quality of electron donors (indicated by age

  6. Sedimentological imprint on subseafloor microbial communities in Western Mediterranean Sea Quaternary sediments

    Directory of Open Access Journals (Sweden)

    M.-C. Ciobanu

    2012-09-01

    Full Text Available An interdisciplinary study was conducted to evaluate the relationship between geological and paleoenvironmental parameters and the bacterial and archaeal community structure of two contrasting subseafloor sites in the Western Mediterranean Sea (Ligurian Sea and Gulf of Lion. Both depositional environments in this area are well-documented from paleoclimatic and paleooceanographic point of views. Available data sets allowed us to calibrate the investigated cores with reference and dated cores previously collected in the same area, and notably correlated to Quaternary climate variations. DNA-based fingerprints showed that the archaeal diversity was composed by one group, Miscellaneous Crenarchaeotic Group (MCG, within the Gulf of Lion sediments and of nine different lineages (dominated by MCG, South African Gold Mine Euryarchaeotal Group (SAGMEG and Halobacteria within the Ligurian Sea sediments. Bacterial molecular diversity at both sites revealed mostly the presence of the classes Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria within Proteobacteria phylum, and also members of Bacteroidetes phylum. The second most abundant lineages were Actinobacteria and Firmicutes at the Gulf of Lion site and Chloroflexi at the Ligurian Sea site. Various substrates and cultivation conditions allowed us to isolate 75 strains belonging to four lineages: Alpha-, Gammaproteobacteria, Firmicutes and Actinobacteria. In molecular surveys, the Betaproteobacteria group was consistently detected in the Ligurian Sea sediments, characterized by a heterolithic facies with numerous turbidites from a deep-sea levee. Analysis of relative betaproteobacterial abundances and turbidite frequency suggested that the microbial diversity was a result of main climatic changes occurring during the last 20 ka. Statistical direct multivariate canonical correspondence

  7. Heat flow measurements in the vicinity of Great Meteor East, Madeira Abyssal Plain, during Darwin Cruise CD9B

    International Nuclear Information System (INIS)

    Noel, M.; Hounslow, M.W.

    1986-12-01

    This report describes 37 new measurements of heat flow in the Madeira Abyssal Plain. These have comprised 22 values in the Great Meteor East Study Area and 15 measurements in the newly defined ''10 km Box'' to the southeast of this region. The aim of the project has been to examine in more detail than hitherto the thermal and fluid processes operating in the oceanic crust. For this purpose, a new thermistor string, with 1/2 m sensor spacing was used. Also, the heat flux data have been compared to the output from a finite element model for heat conduction. No non-linear sediment temperature profiles were discovered indicating that vertical advection of water through the sediment is absent or slow. The results of numerical modelling imply that the variability of measured heat flow cannot be explained entirely on the basis of basement topography. It is necessary to invoke either vertical basement intrusions of differing conductivity or basement hydrothermal circulation. (author)

  8. Impact of redox-stratification on the diversity and distribution of bacterial communities in sandy reef sediments in a microcosm

    Institute of Scientific and Technical Information of China (English)

    GAO Zheng; WANG Xin; Angelos K. HANNIDES; Francis J. SANSONE; WANG Guangyi

    2011-01-01

    Relationships between microbial communities and geochemical environments are important in marine microbial ecology and biogeochemistry.Although biogeochemical redox stratification has been well documented in marine sediments,its impact on microbial communities remains largely unknown.In this study,we applied denaturing gradient gel electrophoresis (DGGE) and clone library construction to investigate the diversity and stratification of bacterial communities in redox-stratified sandy reef sediments in a microcosm.A total of 88 Operational Taxonomic Units (OTU) were identified from 16S rRNA clone libraries constructed from sandy reef sediments in a laboratory microcosm.They were members of nine phyla and three candidate divisions,including Proteobacteria (Alpha-,Beta-,Gamma-,Delta-,and Epsilonproteobacteria),Actinobacteria,Acidobacteria,Bacteroidetes,Chloroflexi,Cyanobacteria,Firmicutes,Verrucomicrobia,Spirochaetes,and the candidate divisions WS3,SO31 and AO19.The vast majority of these phylotypes are related to clone sequences from other marine sediments,but OTUs of Epsilonproteobacteria and WS3 are reported for the first time from permeable marine sediments.Several other OTUs are potential new bacterial phylotypes because of their low similarity with reference sequences.Results from the 16S rRNA,gene clone sequence analyses suggested that bacterial communities exhibit clear stratification across large redox gradients in these sediments,with the highest diversity found in the anoxic layer (15-25 mm) and the least diversity in the suboxic layer (3-5 mm).Analysis of the nosZ,and amoA gene libraries also indicated the stratification of denitrifiers and nitrifiers,with their highest diversity being in the anoxic and oxic sediment layers,respectively.These results indicated that redox-stratification can affect the distribution of bacterial communities in sandy reef sediments.

  9. Assessing condition of macroinvertebrate communities and sediment toxicity in the St. Lawrence River at Massena Area-of-Concern

    Science.gov (United States)

    Duffy, Brian T.; Baldigo, Barry P.; Smith, Alexander J.; George, Scott D.; David, Anthony M.

    2016-01-01

    In 1972, the USA and Canada agreed to restore the chemical, physical, and biological integrity of the Great Lakes ecosystem under the first Great Lakes Water Quality Agreement. In subsequent amendments, part of the St. Lawrence River at Massena, New York and segments of three tributaries, were designated as an Area of Concern (AOC) due to the effects of polychlorinated biphenyls (PCBs), lead and copper contamination, and habitat degradation and resulting impairment to several beneficial uses. Because sediments have been largely remediated, the present study was initiated to evaluate the current status of the benthic macroinvertebrate (benthos) beneficial use impairment (BUI). Benthic macroinvertebrate communities and sediment toxicity tests using Chironomus dilutus were used to test the hypotheses that community condition and sediment toxicity at AOC sites were not significantly different from those of adjacent reference sites. Grain size was found to be the main driver of community composition and macroinvertebrate assemblages, and bioassessment metrics did not differ significantly between AOC and reference sites of the same sediment class. Median growth of C. dilutus and its survival in three of the four river systems did not differ significantly in sediments from AOC and reference sites. Comparable macroinvertebrate assemblages and general lack of toxicity across most AOC and reference sites suggest that the quality of sediments should not significantly impair benthic macroinvertebrate communities in most sites in the St. Lawrence River AOC.

  10. Examination of abyssal sea floor and near-bottom water mixing processes using Ra-226 and Rn-222

    International Nuclear Information System (INIS)

    Key, R.M.

    1981-01-01

    Since Broecker's (1965) original work, extensive studies have been made on abyssal near-bottom water-mixing processes using the radioactive parent-daughter pair radium-226 (Ra) - radon-222 (Rn). One assumption critical to all of these studies is that sediments immediately under a given water column are the source of excess radon (=Rn concentration - Ra concentration) found in bottom waters. Since 1965 theoretical works of increasing complexity have tried to explain areal variations of excess radon and radium. However, Key et al. (1979b) have reported the only extensive measurements of radium and radon in bottom water and sediments at the same location. This dissertation is an expansion of that work both in theory and in scope. A diagenetic sediment model based on the work of Schink and Guinasso (1978), Cochran (1979), and Key et al. (1979b) was developed to model Ra-Rn in near-surface abyssal sediments. In order to maximize model application information, the degrees of freedom were minimized by measuring as many of the model parameters as possible. The most glaring discrepancy found was that measured near-surface total radium profiles could not be fit using plutonium-derived bioturbation rates. There is an implication that plutonium profiles modeled with currently accepted bioturbation models do not give a true indication of the real biologically induced mixing process. After adjusting for this problem in the source function, diagenetic theory explains near-surface radon-distributions adequately. Using both the adjusted diagenetic model and the empirical model developed by Key et al. (1979b), reasonable agreement was found between the sedimentary radon deficit and near-bottom water surplus. Inadequacy of present diagenetic theory makes any attempt to differentiate sedimentary radium sources academic

  11. Salinity shifts in marine sediment: Importance of number of fluctuation rather than their intensities on bacterial denitrifying community.

    Science.gov (United States)

    Zaghmouri, Imen; Michotey, Valerie D; Armougom, Fabrice; Guasco, Sophie; Bonin, Patricia C

    2018-05-01

    The sensitivity of denitrifying community to salinity fluctuations was studied in microcosms filled with marine coastal sediments subjected to different salinity disturbances over time (sediment under frequent salinity changes vs sediment with "stable" salinity pattern). Upon short-term salinity shift, denitrification rate and denitrifiers abundance showed high resistance whatever the sediment origin is. Denitrifying community adapted to frequent salinity changes showed high resistance when salinity increases, with a dynamic nosZ relative expression level. Marine sediment denitrifying community, characterized by more stable pattern, was less resistant when salinity decreases. However, after two successive variations of salinity, it shifted toward the characteristic community of fluctuating conditions, with larger proportion of Pseudomonas-nosZ, exhibiting an increase of nosZ relative expression level. The impact of long-term salinity variation upon bacterial community was confirmed at ribosomal level with a higher percentage of Pseudomonas and lower proportion of nosZII clade genera. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Quantification of microbial communities in subsurface marine sediments of the Black Sea and off Namibia

    Directory of Open Access Journals (Sweden)

    Axel eSchippers

    2012-01-01

    Full Text Available Organic-rich subsurface marine sediments were taken by gravity coring up to a depth of 10 meters below seafloor at six stations from the anoxic Black Sea and the Benguela upwelling system off Namibia during the research cruises R/V Meteor 72/5 and 76/1, respectively. The quantitative microbial community composition at various sediment depths was analyzed using total cell counting, CARD-FISH and quantitative real-time PCR (Q-PCR. Total cell counts decreased with depths from 109 – 1010 cells /mL at the sediment surface to 107 – 109 cells /mL below one meter depth. Based on CARD-FISH and Q-PCR analysis overall similar proportions of Bacteria and Archaea were determined. The down core quantitative distribution of prokaryotic and eukaryotic small subunit ribosomal RNA genes as well as functional genes involved in different biogeochemical processes was successfully revealed by Q-PCR. Crenarchaeota and the bacterial candidate division JS-1 and the classes Anaerolineae and Caldilineae of the phylum Chloroflexi were as highly abundant as Archaea and Bacteria, respectively. Less abundant but detectable in most of the samples in high gene copy numbers were Eukarya and the Fe(III- and Mn(IV-reducing bacterial group Geobacteriaceae (off Namibia as well as the functional genes cbbL encoding for the large subunit of Rubisco, the functional genes dsrA and aprA of sulfate-reducers and the gene mcrA of methanogens. Overall the high organic carbon content of the sediments goes along with high cell counts and high gene copy numbers, as well as an equal abundance of Bacteria and Archaea.

  13. Variation in PAH inputs and microbial community in surface sediments of Hamilton Harbour: Implications to remediation and monitoring

    International Nuclear Information System (INIS)

    Slater, G.F.; Cowie, B.R.; Harper, N.; Droppo, I.G.

    2008-01-01

    Variations in concentrations of polycyclic aromatic hydrocarbons (PAHs) and microbial community indicators were investigated in representative highly contaminated and less contaminated surface sediment sites of Hamilton Harbour. Inputs of PAH to the upper 3 cm of sediments up to four times the average upper sediment concentrations were observed. Associated PAH fingerprint profiles indicated that the source was consistent with the PAH source to the industrial region of the harbour. Increased PAH loadings were associated with decreased bacterial populations as indicated by phospholipid fatty acid (PLFA) concentrations. However, relatively minor impacts on overall community composition were indicated. Porewater methane concentrations and isotopic data indicated a difference in the occurrence of methane oxidation between the two sites. This study confirms temporally limited transport of contaminants from highly impacted regions as a vector for contaminants within the harbour and the impact on microbial carbon cycling and bed stability. - Variations in PAH inputs to harbour sediments have implications to implementation and monitoring of mitigation/remediation efforts

  14. Effects of sediment removal on vegetation communities in Rainwater Basin playa wetlands.

    Science.gov (United States)

    Beas, Benjamin J; Smith, Loren M; LaGrange, Theodore G; Stutheit, Randy

    2013-10-15

    Sedimentation from cultivated agricultural land use has altered the natural hydrologic regimes of depressional wetlands in the Great Plains. These alterations can negatively affect native wetland plant communities. Our objective was to determine if restored wetlands are developing plant communities similar to reference wetland conditions following hydrologic restoration. For this study, hydrology was restored via sediment removal. Thirty-four playa wetlands in reference, restored, and agricultural condition within the Rainwater Basin Region of Nebraska were sampled in 2008 and 2009. In 2008, reference and restored wetlands had higher species richness and more native, annual, and perennial species than agricultural wetlands. Restored wetlands had similar exotic species richness compared to reference and agricultural wetlands; however, reference wetlands contained more than agricultural wetlands. Restored wetlands proportion of exotics was 3.5 and 2 times less than agricultural wetlands and reference wetlands respectively. In 2009, reference and restored wetlands had higher species richness, more perennial species, and more native species than agricultural wetlands. Restored wetlands contained a greater number and proportion of annuals than reference and agricultural wetlands. Canonical Correspondence Analysis showed that reference, restored, and agricultural wetlands are dominated by different plant species and guilds. Restored wetland plant communities do not appear to be acting as intermediates between reference and agricultural wetland conditions or on a trajectory to reach reference conditions. This may be attributed to differing seed bank communities between reference and restored wetlands, dispersal limitations of perennial plant guilds associated with reference wetland conditions, and/or management activities may be preventing restored wetlands from reaching reference status. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Molecular diversity and tools for deciphering the methanogen community structure and diversity in freshwater sediments.

    Science.gov (United States)

    Chaudhary, Prem Prashant; Brablcová, Lenka; Buriánková, Iva; Rulík, Martin

    2013-09-01

    Methanogenic archaeal communities existing in freshwater sediments are responsible for approximately 50 % of the total global emission of methane. This process contributes significantly to global warming and, hence, necessitates interventional control measures to limit its emission. Unfortunately, the diversity and functional interactions of methanogenic populations occurring in these habitats are yet to be fully characterized. Considering several disadvantages of conventional culture-based methodologies, in recent years, impetus is given to molecular biology approaches to determine the community structure of freshwater sedimentary methanogenic archaea. 16S rRNA and methyl coenzyme M reductase (mcrA) gene-based cloning techniques are the first choice for this purpose. In addition, electrophoresis-based (denaturing gradient gel electrophoresis, temperature gradient gel electrophoresis, and terminal restriction fragment length polymorphism) and quantitative real-time polymerase chain reaction techniques have also found extensive applications. These techniques are highly sensitive, rapid, and reliable as compared to traditional culture-dependent approaches. Molecular diversity studies revealed the dominance of the orders Methanomicrobiales and Methanosarcinales of methanogens in freshwater sediments. The present review discusses in detail the status of the diversity of methanogens and the molecular approaches applied in this area of research.

  16. Diffuse flow environments within basalt- and sediment-based hydrothermal vent ecosystems harbor specialized microbial communities.

    Science.gov (United States)

    Campbell, Barbara J; Polson, Shawn W; Zeigler Allen, Lisa; Williamson, Shannon J; Lee, Charles K; Wommack, K Eric; Cary, S Craig

    2013-01-01

    Hydrothermal vents differ both in surface input and subsurface geochemistry. The effects of these differences on their microbial communities are not clear. Here, we investigated both alpha and beta diversity of diffuse flow-associated microbial communities emanating from vents at a basalt-based hydrothermal system along the East Pacific Rise (EPR) and a sediment-based hydrothermal system, Guaymas Basin. Both Bacteria and Archaea were targeted using high throughput 16S rRNA gene pyrosequencing analyses. A unique aspect of this study was the use of a universal set of 16S rRNA gene primers to characterize total and diffuse flow-specific microbial communities from varied deep-sea hydrothermal environments. Both surrounding seawater and diffuse flow water samples contained large numbers of Marine Group I (MGI) Thaumarchaea and Gammaproteobacteria taxa previously observed in deep-sea systems. However, these taxa were geographically distinct and segregated according to type of spreading center. Diffuse flow microbial community profiles were highly differentiated. In particular, EPR dominant diffuse flow taxa were most closely associated with chemolithoautotrophs, and off axis water was dominated by heterotrophic-related taxa, whereas the opposite was true for Guaymas Basin. The diversity and richness of diffuse flow-specific microbial communities were strongly correlated to the relative abundance of Epsilonproteobacteria, proximity to macrofauna, and hydrothermal system type. Archaeal diversity was higher than or equivalent to bacterial diversity in about one third of the samples. Most diffuse flow-specific communities were dominated by OTUs associated with Epsilonproteobacteria, but many of the Guaymas Basin diffuse flow samples were dominated by either OTUs within the Planctomycetes or hyperthermophilic Archaea. This study emphasizes the unique microbial communities associated with geochemically and geographically distinct hydrothermal diffuse flow environments.

  17. The Vertical Distribution of Sediment Archaeal Community in the “Black Bloom” Disturbing Zhushan Bay of Lake Taihu

    Science.gov (United States)

    Fan, Xianfang; Xing, Peng

    2016-01-01

    Using the Illumina sequencing technology, we investigated the vertical distribution of archaeal community in the sediment of Zhushan Bay of Lake Taihu, where the black bloom frequently occurred in summer. Overall, the Miscellaneous Crenarchaeotal Group (MCG), Deep Sea Hydrothermal Vent Group 6 (DHVEG-6), and Methanobacterium dominated the archaeal community. However, we observed significant difference in composition of archaeal community among different depths of the sediment. DHVEG-6 dominated in the surface layer (0–3 cm) sediment. Methanobacterium was the dominating archaeal taxa in the L2 (3–6 cm) and L3 (6–10) sediment. MCG was most abundant in the L4 (10–15 cm) and L5 (15–20 cm) sediment. Besides, DHVEG-6 was significantly affected by the concentration of total phosphorus (TP). And loss on ignition (LOI) was an important environmental factor for Methanobacterium. As the typical archaeal taxa in the surface layer sediment, DHVEG-6 and Methanobacterium might be more adapted to abundant substrate supply from cyanobacterial blooms and take active part in the biomass transformation. We propose that DHVEG-6 and Methanobacterium could be the key archaeal taxa correlated with the “black bloom” formation in Zhushan Bay. PMID:26884723

  18. Anthropogenic impact on biogenic substance distribution and bacterial community in sediment along the Yarlung Tsangpo River on Tibet Plateau, China

    Science.gov (United States)

    Wang, C.; Peifang, W.; Wang, X.; Hou, J.; Miao, L.

    2017-12-01

    Lotic river system plays an important part in water-vapor transfer and biogenic substances migration and transformation. Anthropogenic activities, including wastewater discharging and river damming, have altered river ecosystem and continuum. However, as the longest alpine river in China and suffered from increasing anthropogenic activities, the Yarlung Tsangpo River has been rarely studied. Recently, more attention has also been paid to the bacteria in river sediment as they make vital contributions to the biogeochemical nutrient cycling. Here, the distribution of biogenic substances, including nitrogen, phosphorus, silicon and carbon, was explored in both water and sediment of the Yarlung Tsangpo River. By using the next generation 16S rRNA sequencing, the bacterial diversity and structure in river sediment were presented. The results indicated that the nutrient concentrations increased in densely populated sites, revealing that biogenic substance distribution corresponded with the intensity of anthropogenic activity along the river. Nitrogen, phosphorus, silicon and carbon in water and sediment were all retained by the Zangmu Dam which is the only dam in the mainstream of the river. Moreover, the river damming decreased the biomass and diversity of bacteria in sediment, but no significant alteration of community structure was observed upstream and downstream of the dam. The most dominant bacteria all along the river was Proteobacteria. Meanwhile, Verrucomicrobia and Firmicutes also dominated the community composition in upstream and downstream of the river, respectively. In addition, total organic carbon (TOC) was proved to be the most important environmental factor shaping the bacterial community in river sediment. Our study offered the preliminary insights into the biogenic substance distribution and bacterial community in sediment along an alpine river which was affected by anthropogenic activities. In the future, more studies are needed to reveal the

  19. Molecular Characterization of Methanogenic Communities in Core Sediments of the Dajiuhu Peatland, Central China

    Science.gov (United States)

    Wang, R.; Wang, H.

    2017-12-01

    Methane (CH4) is an important greenhouse gas with a global warming potential 22 times greater than carbon dioxide. Large amounts of CH4 can be produced and released by methanogenesis in peatland ecosystems, which make peatland ecosystems play an important role in mediating global climate change. Here we report the abundance and distribution of methanogenic communities and their correlation with physicochemical parameters along two sediment cores in the Dajiuhu Peatland via quantitative PCR, clone library construction of functional genes and statistical analysis. Uncultured Group and Fen Cluster were found to be the dominant methanogens at the upper part of the cores, and Rice and Related Rice Cluster became dominant in the bottom of the cores. Quantitative PCR showed that abundances of methanogenic communities ranged from 104 to 106 copies/ng DNA throughout the cores. Canonical Correlation Analysis (CCA) indicated that dissolved oxygen (DO) (P=0.046, F=1.4) was the main factor significantly controlling methanogenic communities. Our results enhance the understanding of the compositions and variations of methanogenic communities vertically and greatly help us to further investigate process of microbial methanogenesis in Dajiuhu Peatland.

  20. Bacterial Community Response in Deep Faroe-Shetland Channel Sediments Following Hydrocarbon Entrainment With and Without Dispersant Addition

    Directory of Open Access Journals (Sweden)

    Luis J. Perez Calderon

    2018-05-01

    Full Text Available Deep sea oil exploration is increasing and presents environmental challenges for deep ocean ecosystems. Marine oil spills often result in contamination of sediments with oil; following the Deepwater Horizon (DwH disaster up to 31% of the released oil entrained in the water column was deposited as oily residues on the seabed. Although the aftermath of DwH was studied intensely, lessons learned may not be directly transferable to other deep-sea hydrocarbon exploration areas, such as the Faroe-Shetland Channel (FSC which comprises cold temperatures and a unique hydrodynamic regime. Here, transport of hydrocarbons into deep FSC sediments, subsequent responses in benthic microbial populations and effects of dispersant application on hydrocarbon fate and microbial communities were investigated. Sediments from 1,000 m in the FSC were incubated at 0°C for 71 days after addition of a 20-hydrocarbon component oil-sediment aggregate. Dispersant was added periodically from day 4. An additional set of cores using sterilized and homogenized sediment was analyzed to evaluate the effects of sediment matrix modification on hydrocarbon entrainment. Sediment layers were independently analyzed for hydrocarbon content by gas chromatography with flame ionization detection and modeled with linear mixed effects models. Oil was entrained over 4 cm deep into FSC sediments after 42 days and dispersant effectiveness on hydrocarbon removal from sediment to the water column decreased with time. Sterilizing and homogenizing sediment resulted in hydrocarbon transport over 4 cm into sediments after 7 days. Significant shifts in bacterial populations were observed (DGGE profiling in response to hydrocarbon exposure after 42 days and below 2 cm deep. Dispersant application resulted in an accelerated and modified shift in bacterial communities. Bacterial 16S rRNA gene sequencing of oiled sediments revealed dominance of Colwellia and of Fusibacter when dispersant was applied over

  1. Intertidal soft-sediment community does not respond to disturbance as postulated by the intermediate disturbance hypothesis

    Science.gov (United States)

    Gerwing, Travis G.; Allen Gerwing, Alyssa M.; Macdonald, Tara; Cox, Kieran; Juanes, Francis; Dudas, Sarah E.

    2017-11-01

    The Intermediate Disturbance Hypothesis (IDH) predicts that disturbances of an intermediate frequency or intensity will maximize community biodiversity/richness. Once almost universally accepted, controversy now surrounds this hypothesis, and there have even been calls for its abandonment. Therefore, we experimentally evaluated if an infaunal community along the north coast of British Columbia, Canada, would respond to disturbances as predicted by the IDH. The characteristics of this soft-sediment intertidal mudflat (productivity, species pool, population growth rate) maximized our chances of finding evidence to support the IDH. More specifically, we tested if intermediate severities and frequencies of disturbance maximized infaunal community richness by mechanically disturbing sediment, and varying the intensity (0%, 25%, 50%, 75%, and 100% of the surface area of a plot disturbed) and frequency of sediment disturbance (never, once, twice, and every week during a four week period). No effect of frequency or intensity of sediment disturbance on community richness was observed. Further, none of our experimental treatments were statistically different than the controls. This is likely due to the subtle difference between successional stages in this soft-sediment habitat (difference of less than one taxa between treatments). Therefore, in habitats whose productivity, regional species pool, and population growth rates would otherwise suggest a response to disturbances as predicted by the IDH, minor differences between successional stages may result in richness patterns that deviate from those predicted by the IDH.

  2. Diversity analysis of bacterial community compositions in sediments of urban lakes by terminal restriction fragment length polymorphism (T-RFLP).

    Science.gov (United States)

    Zhao, Dayong; Huang, Rui; Zeng, Jin; Yan, Wenming; Wang, Jianqun; Ma, Ting; Wang, Meng; Wu, Qinglong L

    2012-11-01

    Bacteria are crucial components in lake sediments and play important role in various environmental processes. Urban lakes in the densely populated cities are often small, shallow, highly artificial and hypereutrophic compared to rural and natural lakes and have been overlooked for a long time. In the present study, bacterial community compositions in surface sediments of three urban lakes (Lake Mochou, Lake Qianhu and Lake Zixia) in Nanjing City, China, were investigated using the terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified 16S rRNA gene and clone libraries. Remarkable differences in the T-RFLP patterns were observed in different lakes or different sampling stations of the same lake. Canonical correspondence analysis indicated that total nitrogen (TN) had significant effects on bacterial community structure in the lake sediments. Chloroflexi were the most dominant bacterial group in the clone library from Lake Mochou (21.7 % of the total clones) which was partly associated with its higher TN and organic matters concentrations. However, Bacteroidetes appeared to be dominated colonizers in the sediments of Lake Zixia (20.4 % of the total clones). Our study gives a comprehensive insight into the structure of bacterial community of urban lake sediments, indicating that the environmental factors played a key role in influencing the bacterial community composition in the freshwater ecosystems.

  3. Carbon, metals and grain size correlate with bacterial community composition in sediments of a high arsenic aquifer

    Directory of Open Access Journals (Sweden)

    Teresa eLegg

    2012-03-01

    Full Text Available Bacterial communities can exert significant influence on the biogeochemical cycling of arsenic (As. This has globally important implications since As toxicity in drinking water affects the health of millions of people worldwide, including in the Ganges-Brahmaputra Delta region of Bangladesh where geogenic groundwater arsenic concentrations can be more than 10 times the World Health Organization’s limit. Thus, the goal of this research was to investigate patterns in bacterial community composition across environmental gradients in an aquifer with elevated groundwater As concentrations in Araihazar, Bangladesh. We characterized the bacterial community by pyrosequencing 16S rRNA genes from aquifer sediment samples collected at three locations along a groundwater flowpath, at a range of depths between 1.5 and 15 m. We identified significant shifts in bacterial community composition along the groundwater flowpath in the aquifer. In addition, we found that bacterial community structure was significantly related to sediment grain size, and sediment carbon (C, manganese (Mn, and iron (Fe concentrations. Deltaproteobacteria and Chloroflexi were more abundant in silty sediments with higher concentrations of C, Fe, and Mn. By contrast, Alphaproteobacteria and Betaproteobacteria were more abundant in sediments with higher concentrations of sand and Si, and lower concentrations of C and metals. Based on the phylogenetic affiliations of these taxa, these results may indicate a shift to more Fe-, Mn-, and humic substance- reducers in the high C and metal sediments. It is well-documented that C, Mn and Fe may influence the mobility of groundwater arsenic, and it is intriguing that these constituents may also structure the bacterial community.

  4. Chemical speciation modelling of the South Terras and Madeira Abyssal Plain natural analogue sites

    International Nuclear Information System (INIS)

    Duffield, J.R.; Xu Langqui; Williams, D.R.

    1988-11-01

    The chemical speciation of uranium has been modelled using field data from the South Terras and Madeira Abyssal Plain natural analogue sites. In general, validation is good, particularly for the Abyssal Plain model. Problems regarding uranium redox couples have been highlighted as have other areas requiring further consideration for building into the thermodynamic models. (author)

  5. Dispersion measurements from Sofar floats on the Iberian Abyssal plain

    International Nuclear Information System (INIS)

    Rees, J.M.; Gmitrowicz, M.

    1989-01-01

    Tracks of SOFAR floats launched on the Iberian Abyssal Plain are presented. The floats were launched in two groups in early October 1984 and mid-February 1985 to a nominal depth of 2500 m. Of these floats, 4 from the first deployment and 2 from the second functioned properly. Float signals were recorded by four autonomous listening stations at a depth of 1900 m. These preliminary results show the tracks of floats up to July 1986 and represent 3600 float days of information. The main task of the experiment was to especially study the dispersion of radioactive substances

  6. Microbial community responses to organophosphate substrate additions in contaminated subsurface sediments.

    Directory of Open Access Journals (Sweden)

    Robert J Martinez

    Full Text Available BACKGROUND: Radionuclide- and heavy metal-contaminated subsurface sediments remain a legacy of Cold War nuclear weapons research and recent nuclear power plant failures. Within such contaminated sediments, remediation activities are necessary to mitigate groundwater contamination. A promising approach makes use of extant microbial communities capable of hydrolyzing organophosphate substrates to promote mineralization of soluble contaminants within deep subsurface environments. METHODOLOGY/PRINCIPAL FINDINGS: Uranium-contaminated sediments from the U.S. Department of Energy Oak Ridge Field Research Center (ORFRC Area 2 site were used in slurry experiments to identify microbial communities involved in hydrolysis of 10 mM organophosphate amendments [i.e., glycerol-2-phosphate (G2P or glycerol-3-phosphate (G3P] in synthetic groundwater at pH 5.5 and pH 6.8. Following 36 day (G2P and 20 day (G3P amended treatments, maximum phosphate (PO4(3- concentrations of 4.8 mM and 8.9 mM were measured, respectively. Use of the PhyloChip 16S rRNA microarray identified 2,120 archaeal and bacterial taxa representing 46 phyla, 66 classes, 110 orders, and 186 families among all treatments. Measures of archaeal and bacterial richness were lowest under G2P (pH 5.5 treatments and greatest with G3P (pH 6.8 treatments. Members of the phyla Crenarchaeota, Euryarchaeota, Bacteroidetes, and Proteobacteria demonstrated the greatest enrichment in response to organophosphate amendments and the OTUs that increased in relative abundance by 2-fold or greater accounted for 9%-50% and 3%-17% of total detected Archaea and Bacteria, respectively. CONCLUSIONS/SIGNIFICANCE: This work provided a characterization of the distinct ORFRC subsurface microbial communities that contributed to increased concentrations of extracellular phosphate via hydrolysis of organophosphate substrate amendments. Within subsurface environments that are not ideal for reductive precipitation of uranium

  7. Diversity and survivability of microbial community in ancient permafrost sediment of northeast Siberia

    Science.gov (United States)

    Liang, R.; Lau, M.; Vishnivetskaya, T. A.; Lloyd, K. G.; Pfiffner, S. M.; Rivkina, E.; Onstott, T. C.

    2017-12-01

    The prevalence of microorganisms in frozen permafrost has been well documented in ancient sediment up to several million years old. However, the long term survivability and metabolic activity of microbes over geological timespans remain underexplored. Siberian permafrost sediment was collected at various depths (1.4m, 11.8 m and 24.8m) to represent a wide range of geological time from thousands to millions of years. Extracellular (eDNA) and intracellular DNA (iDNA) was simultaneously recovered for sequencing to characterize the potentially extinct and extant microbial community. Additionally, aspartic acid racemization assay (D/L Asp) was used to infer the metabolic activity of microbes in ancient permafrost. As compared with the young sample (1.4m), DNA yield and content of aspartic acid dramatically decreased in old samples (11.8m and 24.8m). However, D/L Asp and eDNA/iDNA significantly increased with the geological age. Such findings suggested that ancient microbiomes might be subjected to racemization or even DNA/proteins degradation at subzero temperature over the wide geological time scale. Preliminary characterization of microbial community indicated that the majority of sequences in old samples were identified as bacteria and only a small fraction was identified as archaea from the iDNA pool. While the eDNA and iDNA fractions shared similar dominant taxa at phylum level, the relative abundance of Proteobacteria in eDNA library was much higher than iDNA. By contrast, the phylum affiliated with Firmicutes was more numerically abundant in the iDNA fraction. More dramatic differences were observed between eDNA and iDNA library at lower taxonomic levels. Particularly, the microbial lineages affiliated with the genera Methanoregula, Desulfosporosinus and Syntrophomonas were only detected in the iDNA library. Such taxonomic difference between the relic eDNA and iDNA suggested that numerous species become locally "extinct" whereas many other taxa might survive in

  8. Effects of shelter and enrichment on the ecology and nutrient cycling of microbial communities of subtidal carbonate sediments.

    Science.gov (United States)

    Forehead, Hugh I; Kendrick, Gary A; Thompson, Peter A

    2012-04-01

    The interactions between physical disturbances and biogeochemical cycling are fundamental to ecology. The benthic microbial community controls the major pathway of nutrient recycling in most shallow-water ecosystems. This community is strongly influenced by physical forcing and nutrient inputs. Our study tests the hypotheses that benthic microbial communities respond to shelter and enrichment with (1) increased biomass, (2) change in community composition and (3) increased uptake of inorganic nutrients from the water column. Replicate in situ plots were sheltered from physical disturbance and enriched with inorganic nutrients or left without additional nutrients. At t(0) and after 10 days, sediment-water fluxes of nutrients, O(2) and N(2) , were measured, the community was characterized with biomarkers. Autochthonous benthic microalgal (BMA) biomass increased 30% with shelter and a natural fivefold increase in nutrient concentration; biomass did not increase with greater enrichment. Diatoms remained the dominant taxon of BMA, suggesting that the sediments were not N or Si limited. Bacteria and other heterotrophic organisms increased with enrichment and shelter. Daily exchanges of inorganic nutrients between sediments and the water column did not change in response to shelter or nutrient enrichment. In these sediments, physical disturbance, perhaps in conjunction with nutrient enrichment, was the primary determinant of microbial biomass. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. A Microbial Community in Sediments Beneath the Western Antarctic Ice Sheet, Ice Stream C (Kamb)

    Science.gov (United States)

    Skidmore, M.; Han, S.; Foo, W.; Bui, D.; Lanoil, B.

    2004-12-01

    In 2000, an ice-drilling project focusing on the "sticky spot" of Ice Stream C recovered cores of sub-glacial sediments from beneath the Western Antarctic Ice Sheet. We have characterized several chemical and microbiological parameters of the sole intact sediment core. Pore waters extracted from these sediments were brackish and some were supersaturated with respect to calcite. Ion chromatography demonstrated the presence of several organic acids at low, but detectable, levels in the pore water. DAPI direct cell counts were approximately 107 cells g-1. Aerobic viable plate counts were much lower than direct cell counts; however, they were two orders of magnitude higher on plates incubated at low temperature (4 ° C; 3.63 x 105 CFU ml-1) than at higher temperatures (ca. 22° C; 1.5 x 103 CFU ml-1); no colonies were detected on plates incubated anaerobically at either temperature. 16S rDNA clone library analysis indicates extremely limited bacterial diversity in these samples: six phylogenetic clades were detected. The three dominant bacterial phylogenetic clades in the clone libraries (252 clones total) were most closely related to Thiobacillus thioparus (180 clones), Polaromonas vacuolata (34 clones), and Gallionella ferruginea (35 clones) and their relatives; one clone each represented the other three phylogenetic clades (most closely related to Ralstonia pickettii, Lysobacter antibioticus, and Xylella fastidiosa, respectively). These sequences match closely with sequences previously obtained from other subglacial environments in Alaska, Ellesmere Island, Canada and New Zealand. Implications of this microbial community to subglacial chemistry and microbial biogeography will be discussed.

  10. Fungal Community Successions in Rhizosphere Sediment of Seagrasses Enhalus acoroides under PAHs Stress

    Directory of Open Access Journals (Sweden)

    Juan Ling

    2015-06-01

    Full Text Available Seagrass meadows represent one of the highest productive marine ecosystems and are of great ecological and economic values. Recently, they have been confronted with worldwide decline. Fungi play important roles in sustaining the ecosystem health as degraders of polycyclic aromatic hydrocarbons (PAHs, but fewer studies have been conducted in seagrass ecosystems. Hence, we investigated the dynamic variations of the fungal community succession under PAH stress in rhizosphere sediment of seagrasses Enhalus acoroides in this study. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE, quantitative PCR (qPCR and a clone library have been employed to analyze the fungal community’s shifts. Sequencing results of DGGE and the clone library showed that the predominant species belong to phyla Ascomycota and Basidiomycota. The abundance of three groups decreased sharply over the incubation period, whereas they demonstrated different fungal diversity patterns. Both the exposure time and the PAH concentrations affected the microbial diversity as assessed by PCR-DGGE analysis. Redundancy analysis (RDA indicated that significant factors driving community shifts were ammonium and pH (p < 0.05. Significant amounts of the variations (31.1% were explained by pH and ammonium, illustrating that those two parameters were the most likely ones to influence or be influenced by the fungal communities’ changes. Investigation results also indicated that fungal communities in seagrass meadow were very sensitive to PAH-induced stress and may be used as potential indicators for the PAH contamination.

  11. Functional diversity and redundancy across fish gut, sediment and water bacterial communities.

    Science.gov (United States)

    Escalas, Arthur; Troussellier, Marc; Yuan, Tong; Bouvier, Thierry; Bouvier, Corinne; Mouchet, Maud A; Flores Hernandez, Domingo; Ramos Miranda, Julia; Zhou, Jizhong; Mouillot, David

    2017-08-01

    This article explores the functional diversity and redundancy in a bacterial metacommunity constituted of three habitats (sediment, water column and fish gut) in a coastal lagoon under anthropogenic pressure. Comprehensive functional gene arrays covering a wide range of ecological processes and stress resistance genes to estimate the functional potential of bacterial communities were used. Then, diversity partitioning was used to characterize functional diversity and redundancy within (α), between (β) and across (γ) habitats. It was showed that all local communities exhibit a highly diversified potential for the realization of key ecological processes and resistance to various environmental conditions, supporting the growing evidence that macro-organisms microbiomes harbour a high functional potential and are integral components of functional gene dynamics in aquatic bacterial metacommunities. Several levels of functional redundancy at different scales of the bacterial metacommunity were observed (within local communities, within habitats and at the metacommunity level). The results suggested a high potential for the realization of spatial ecological insurance within this ecosystem, that is, the functional compensation among microorganisms for the realization and maintenance of key ecological processes, within and across habitats. Finally, the role of macro-organisms as dispersal vectors of microbes and their potential influence on marine metacommunity dynamics were discussed. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Effects of the antibiotic ciprofloxacin on the bacterial community structure and degradation of pyrene in marine sediment

    International Nuclear Information System (INIS)

    Naeslund, Johan; Hedman, Jenny E.; Agestrand, Cecilia

    2008-01-01

    The ecological consequences of antibiotics in the aquatic environment have been an issue of concern over the past years due to the potential risk for negative effects on indigenous microorganisms. Microorganisms provide important ecosystem services, such as nutrient recycling, organic matter mineralization and degradation of pollutants. In this study, effects of exposure to the antibiotic ciprofloxacin on the bacterial diversity and pollutant degradation in natural marine sediments were studied using molecular methods (T-RFLP) in combination with radiorespirometry. In a microcosm experiment, sediment spiked with 14 C-labelled pyrene was exposed to five concentrations of ciprofloxacin (0, 20, 200, 1000 and 2000 μg L -1 ) in a single dose to the overlying water. The production of 14 CO 2 (i.e. complete mineralization of pyrene) was measured during 11 weeks. Sediment samples for bacterial community structure analysis were taken after 7 weeks. Results showed a significant dose-dependent inhibition of pyrene mineralization measured as the total 14 CO 2 production. The nominal EC 50 was calculated to 560 μg L -1 , corresponding to 0.4 μg/kg d.w. sediment. The lowest effect concentration on the bacterial community structure was 200 μg L -1 , which corresponds to 0.1 μg/kg d.w. sediment. Our results show that antibiotic pollution can be a potential threat to both bacterial diversity and an essential ecosystem service they perform in marine sediment

  13. Spatiotemporal and species variations in prokaryotic communities associated with sediments from surface-flow constructed wetlands for treating swine wastewater.

    Science.gov (United States)

    Jia, Fen; Lai, Cui; Chen, Liang; Zeng, Guangming; Huang, Danlian; Liu, Feng; Li, Xi; Luo, Pei; Wu, Jinshui; Qin, Lei; Zhang, Chen; Cheng, Min; Xu, Piao

    2017-10-01

    Microorganisms are the main mechanisms of pollutants removals in constructed wetlands (CWs) used for wastewater treatment. However, the different biological processes and variations of prokaryotic community in CWs remain poorly understood. In this study, we applied a high-throughput sequencing technique to investigate the prokaryotic communities associated with sediments from pilot-scale surface-flow constructed wetlands (SFCWs) treating swine wastewater (SW) of varying strengths. Our results revealed that highly diverse prokaryotic communities were present in the SFCWs, with Proteobacteria (16.44-44.44%), Acidobacteria (3.25-24.40%), and Chloroflexi (5.77-14.43%) being the major phyla, and Nitrospira (4.14-12.02%), the most dominant genus. The prokaryotic communities in the sediments varied greatly with location and season, which markedly altered the microenvironmental conditions. Principal co-ordinates analysis indicated that SW strength significantly influenced the community structure in sediments of the SFCWs, and canonical correspondence analysis illustrated that the shifts in prokaryotic communities were strongly related to NO 3 - -N and TN in winter; and in summer with NH 4 + N, NO 3 - -N, NO 2 - -N, TN, TP, SOM, and pH. In conclusion, the use of high-throughput sequencing greatly enhanced our understanding of prokaryotic communities with different functional groups in SFCWs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Lead pollution in a large, prairie-pothole lake (Rush Lake, WI, USA): Effects on abundance and community structure of indigenous sediment bacteria

    International Nuclear Information System (INIS)

    Grandlic, Christopher J.; Geib, Ian; Pilon, Renee; Sandrin, Todd R.

    2006-01-01

    Rush Lake (WI, USA), the largest prairie-pothole lake east of the Mississippi River, has been contaminated with lead pollution as a result of over 140 years of waterfowl hunting. We examined: (1) the extent of lead pollution in Rush Lake sediments and (2) whether lead pollution in Rush Lake is affecting the abundance and community structure of indigenous sediment bacteria. Sediment lead concentrations did not exceed 59 mg Pb kg -1 dry sediment. No relationship was observed between sediment lead concentration and the abundance of aerobic (P = 0.498) or anaerobic (P = 0.416) heterotrophic bacteria. Similarly, lead did not appear to affect bacterial community structure when considering both culturable and nonculturable community members. In contrast, the culturable fraction of sediment bacteria in samples containing 59 mg Pb kg -1 exhibited a unique community structure. While factors other than lead content likely play roles in determining bacterial community structure in the sediments of Rush Lake, these data suggest that the culturable fraction of sediment bacterial communities is affected by elevated lead levels. - Low levels of lead pollution in Rush Lake are not impinging upon the abundance of indigenous sediment bacteria, but may be affecting the community structure of the culturable fraction of these bacteria

  15. Looking at biological community level to improve ecotoxicological assessment of freshwater sediments: report on a first French-Swiss workshop.

    Science.gov (United States)

    Pesce, Stéphane; Perceval, Olivier; Bonnineau, Chloé; Casado-Martinez, Carmen; Dabrin, Aymeric; Lyautey, Emilie; Naffrechoux, Emmanuel; Ferrari, Benoit J D

    2018-01-01

    The first French-Swiss workshop on ecotoxicology of freshwater sediment communities was co-organized by the French Research Institute of Science and Technology for Environment and Agriculture (Irstea) and the Swiss Centre for Applied Ecotoxicology (Ecotox Centre EAWAG-EPFL) in Villié-Morgon (Beaujolais Region, France) on April 27-28, 2017. The workshop brought together scientists working in different fields of expertise (ecotoxicologists, ecologists, environmental chemists…), environmental stakeholder groups and managers, as well as economic players (start-ups and consultancies) to better connect research needs of potential end-users with research outputs. The objectives of this workshop were (i) to establish the state of the art of research in the characterization of sediment contamination and in the evaluation of the effects on sediment-associated biological communities and ecosystem functioning and (ii) to give an overview of the French and Swiss regulations dealing with the assessment of contaminated sediments in freshwater ecosystems. The ultimate goal was to collectively identify research needs and knowledge gaps, as well as to highlight ways to improve the ecotoxicological assessment of sediments in freshwater environments by further considering the structure and functions of associated microbial and invertebrate communities.

  16. Microbial processes and communities in sediment samples along a transect across the Lusi mud volcano, Indonesia

    Science.gov (United States)

    Krueger, Martin; Straaten, Nontje; Mazzini, Adriano

    2015-04-01

    The Lusi eruption represents one of the largest ongoing sedimentary hosted geothermal systems. This eruption started in 2006 following to a 6.3 M earthquake that stroke Java Island. Since then it has been spewing boiling mud from a central crater with peaks reaching 180.000 m3 per day. Today an area of about 8 km2 is covered by locally dried mud breccia where a network of hundreds of satellite seeping pools is active. Numerous investigations focused on the study of offshore microbial colonies that commonly thrive at offshore methane seeps and mud volcanoes, however very little has been done for onshore seeping structures. Lusi represents a unique opportunity to complete a comprehensive study of onshore microbial communities fed by the seepage of CH4 and CO2 as well as of heavier liquid hydrocarbons originating from several km below the surface. We conducted a sampling campaign at the Lusi site collecting samples of fresh mud close to the erupting crater using a remote controlled drone. In addition we completed a transect towards outer parts of the crater to collect older, weathered samples for comparison. In all samples active microorganisms were present. The highest activities for CO2 and CH4 production as well as for CH4 oxidation and hydrocarbon degradation were observed in medium-age mud samples collected roughly in the middle of the transect. Rates for aerobic methane oxidation were high, as was the potential of the microbial communities to degrade hydrocarbons (oils, alkanes, BTEX tested). The data suggests a transition of microbial populations from an anaerobic, hydrocarbon-driven metabolism in fresher samples from center or from small seeps to more generalistic, aerobic microbial communities in older, more consolidated sediments. Currently, the microbial communities in the different sediment samples are analyzed using quantitative PCR and T-RFLP combined with MiSeq sequencing. This study represents an initial step to better understand onshore seepage

  17. Environmental conditions outweigh geographical contiguity in determining the similarity of nifH-harboring microbial communities in sediments of two disconnected marginal seas

    Directory of Open Access Journals (Sweden)

    Haixia Zhou

    2016-07-01

    Full Text Available Ecological evidence suggests that heterotrophic diazotrophs fueled by organic carbon respiration in sediments play an important role in marine nitrogen fixation. However, fundamental knowledge about the identities, abundance, diversity, biogeography and controlling environmental factors of nitrogen-fixing communities in open ocean sediments is still elusive. Surprisingly, little is known also about nitrogen-fixing communities in sediments of the more research-accessible marginal seas. Here we report on an investigation of the environmental geochemistry and putative diazotrophic microbiota in the sediments of Bohai Sea, an eutrophic marginal sea of the western Pacific Ocean. Diverse and abundant nifH gene sequences were identified and sulfate-reducing bacteria were found to be the dominant putative nitrogen-fixing microbes. Community statistical analyses suggested bottom water temperature, bottom water chlorophyll a content (or the covarying turbidity and sediment porewater Eh (or the covarying pH as the most significant environmental factors controlling the structure and spatial distribution of the putative diazotrophic communities, while sediment Hg content, sulfide content and porewater SiO32--Si content were identified as the key environmental factors correlated positively with the nifH gene abundance in Bohai Sea sediments. Comparative analyses between the Bohai Sea and the northern South China Sea identified a significant composition difference of the putative diazotrophic communities in sediments between the shallow-water (estuarine and nearshore and deep-water (offshore and deep-sea environments, and sediment porewater dissolved oxygen content, water depth and in situ temperature as the key environmental factors tentatively controlling the species composition, community structure and spatial distribution of the marginal sea sediment nifH-harboring microbiota. This confirms the ecophysiological specialization and niche differentiation

  18. Arsenic release from shallow aquifers of the Hetao basin, Inner Mongolia: evidence from bacterial community in aquifer sediments and groundwater.

    Science.gov (United States)

    Li, Yuan; Guo, Huaming; Hao, Chunbo

    2014-12-01

    Indigenous microbes play crucial roles in arsenic mobilization in high arsenic groundwater systems. Databases concerning the presence and the activity of microbial communities are very useful in evaluating the potential of microbe-mediated arsenic mobilization in shallow aquifers hosting high arsenic groundwater. This study characterized microbial communities in groundwaters at different depths with different arsenic concentrations by DGGE and one sediment by 16S rRNA gene clone library, and evaluated arsenic mobilization in microcosm batches with the presence of indigenous bacteria. DGGE fingerprints revealed that the community structure changed substantially with depth at the same location. It indicated that a relatively higher bacterial diversity was present in the groundwater sample with lower arsenic concentration. Sequence analysis of 16S rRNA gene demonstrated that the sediment bacteria mainly belonged to Pseudomonas, Dietzia and Rhodococcus, which have been widely found in aquifer systems. Additionally, NO3(-)-reducing bacteria Pseudomonas sp. was the largest group, followed by Fe(III)-reducing, SO4(2-)-reducing and As(V)-reducing bacteria in the sediment sample. These anaerobic bacteria used the specific oxyanions as electron acceptor and played a significant role in reductive dissolution of Fe oxide minerals, reduction of As(V), and release of arsenic from sediments into groundwater. Microcosm experiments, using intact aquifer sediments, showed that arsenic release and Fe(III) reduction were microbially mediated in the presence of indigenous bacteria. High arsenic concentration was also observed in the batch without amendment of organic carbon, demonstrating that the natural organic matter in sediments was the potential electron donor for microbially mediated arsenic release from these aquifer sediments.

  19. Salinity Affects the Composition of the Aerobic Methanotroph Community in Alkaline Lake Sediments from the Tibetan Plateau.

    Science.gov (United States)

    Deng, Yongcui; Liu, Yongqin; Dumont, Marc; Conrad, Ralf

    2017-01-01

    Lakes are widely distributed on the Tibetan Plateau, which plays an important role in natural methane emission. Aerobic methanotrophs in lake sediments reduce the amount of methane released into the atmosphere. However, no study to date has analyzed the methanotroph community composition and their driving factors in sediments of these high-altitude lakes (>4000 m). To provide new insights on this aspect, the abundance and composition in the sediments of six high-altitude alkaline lakes (including both freshwater and saline lakes) on the Tibetan Plateau were studied. The quantitative PCR, terminal restriction fragment length polymorphism, and 454-pyrosequencing methods were used to target the pmoA genes. The pmoA gene copies ranged 10 4 -10 6 per gram fresh sediment. Type I methanotrophs predominated in Tibetan lake sediments, with Methylobacter and uncultivated type Ib methanotrophs being dominant in freshwater lakes and Methylomicrobium in saline lakes. Combining the pmoA-pyrosequencing data from Tibetan lakes with other published pmoA-sequencing data from lake sediments of other regions, a significant salinity and alkalinity effect (P = 0.001) was detected, especially salinity, which explained ∼25% of methanotroph community variability. The main effect was Methylomicrobium being dominant (up to 100%) in saline lakes only. In freshwater lakes, however, methanotroph composition was relatively diverse, including Methylobacter, Methylocystis, and uncultured type Ib clusters. This study provides the first methanotroph data for high-altitude lake sediments (>4000 m) and shows that salinity is a driving factor for the community composition of aerobic methanotrophs.

  20. Geothermal heating, diapycnal mixing and the abyssal circulation

    Directory of Open Access Journals (Sweden)

    J. Emile-Geay

    2009-06-01

    Full Text Available The dynamical role of geothermal heating in abyssal circulation is reconsidered using three independent arguments. First, we show that a uniform geothermal heat flux close to the observed average (86.4 mW m−2 supplies as much heat to near-bottom water as a diapycnal mixing rate of ~10−4 m2 s−1 – the canonical value thought to be responsible for the magnitude of the present-day abyssal circulation. This parity raises the possibility that geothermal heating could have a dynamical impact of the same order. Second, we estimate the magnitude of geothermally-induced circulation with the density-binning method (Walin, 1982, applied to the observed thermohaline structure of Levitus (1998. The method also allows to investigate the effect of realistic spatial variations of the flux obtained from heatflow measurements and classical theories of lithospheric cooling. It is found that a uniform heatflow forces a transformation of ~6 Sv at σ4=45.90, which is of the same order as current best estimates of AABW circulation. This transformation can be thought of as the geothermal circulation in the absence of mixing and is very similar for a realistic heatflow, albeit shifted towards slightly lighter density classes. Third, we use a general ocean circulation model in global configuration to perform three sets of experiments: (1 a thermally homogenous abyssal ocean with and without uniform geothermal heating; (2 a more stratified abyssal ocean subject to (i no geothermal heating, (ii a constant heat flux of 86.4 mW m−2, (iii a realistic, spatially varying heat flux of identical global average; (3 experiments (i and (iii with enhanced vertical mixing at depth. Geothermal heating and diapycnal mixing are found to interact non-linearly through the density field, with geothermal heating eroding the deep stratification supporting a downward diffusive flux, while diapycnal mixing acts to map

  1. Bacterial communities potentially involved in iron-cycling in Baltic Sea and North Sea sediments revealed by pyrosequencing

    DEFF Research Database (Denmark)

    Reyes, Carlen; Dellwig, Olaf; Dähnke, K.

    2016-01-01

    To gain insight into the bacterial communities involved in iron-(Fe) cycling under marine conditions, we analysed sediments with Fe-contents (0.5-1.5 wt %) from the suboxic zone at a marine site in the Skagerrak (SK) and a brackish site in the Bothnian Bay (BB) using 16S rRNA gene pyrosequencing....

  2. Characterizing bacterial communities in tilapia pond surface sediment and their responses to pond differences and temporal variations.

    Science.gov (United States)

    Fan, Limin; Barry, Kamira; Hu, Gengdong; Meng, Shunlong; Song, Chao; Qiu, Liping; Zheng, Yao; Wu, Wei; Qu, Jianhong; Chen, Jiazhang; Xu, Pao

    2017-01-01

    Bacterial community compositions in the surface sediment of tilapia ponds and their responses to pond characteristics or seasonal variations were investigated. For that, three ponds with different stocking densities were selected to collect the samples. And the method of Illumina high-throughput sequencing was used to amplify the bacterial 16S rRNA genes. A total of 662, 876 valid reads and 5649 operational taxonomic units were obtained. Further analysis showed that the dominant phyla in all three ponds were Proteobacteria, Bacteroidetes, Chloroflexi, and Acidobacteria. The phyla Planctomycetes, Firmicutes, Chlorobi, and Spirochaetae were also relatively abundant. Among the eight phyla, the abundances of only Proteobacteria, Bacteroidetes, Firmicutes, and Spirochaetae were affected by seasonal variations, while seven of these (with the exception of Acidobacteria) were affected by pond differences. A comprehensive analysis of the richness and diversity of the bacterial 16S rRNA gene, and of the similarity in bacterial community composition in sediment also showed that the communities in tilapia pond sediment were shaped more by pond differences than by seasonal variations. Linear discriminant analysis further indicated that the influences of pond characteristics on sediment bacterial communities might be related to feed coefficients and stocking densities of genetically improved farmed tilapia (GIFT).

  3. Different bacterial communities associated with the roots and bulk sediment of the seagrass Zostera marina

    DEFF Research Database (Denmark)

    Jensen, Sheila Ingemann; Kühl, Michael; Priemé, Anders

    2007-01-01

    to Epsilonproteobacteria showed a relative mean distribution of between 5% and 11% in the root-associated communities of the youngest root bundle, in contrast to the bulk-sediment where this TRF only contributed Actinobacteria and Gammaproteobacteria also seemed important first root...

  4. Vema-TRANSIT - An interdisciplinary study on the bathymetry of the Vema-Fracture Zone and Puerto Rico Trench as well as abyssal Atlantic biodiversity

    Science.gov (United States)

    Riehl, Torben; Kaiser, Stefanie; Brandt, Angelika

    2018-02-01

    The seafloor below 3500 m remains largely unexplored. The paucity of knowledge of abyssal and hadal environments encompasses a wide spectrum of geological and biological patterns and processes as well as their interactions. Historically most marine research has been conducted in the North Atlantic. However, the high proportion of undescribed taxa frequently discovered at greater depth there underline the need to fill in these knowledge gaps. The Vema-TRANSIT campaign in northern winter 2014-2015 surveyed and sampled along almost the entire extent of one of the major offsets of the Mid-Atlantic Ridge (MAR), the Vema Fracture Zone (VFZ), as well as the deepest trench in the Atlantic, the Puerto Rico Trench (PRT). The discoveries that were made include new data on deep-sea habitats showing geologically complex features across all crust ages from 110 Ma until present. Moreover, some new species and genera of the abyssal and hadal benthos were described herein. Not only the taxa themselves, but also their distributions and genetic structure were elucidated. In this context, significant differences in abundances, community composition, and species distribution were detected that were affected by the MAR as well as by the depth transition between hadal PRT and the adjacent abyss. Despite significant differences between eastern and western communities, the MAR does not represent an absolute barrier. Instead, the VFZ, and especially the VTF may serve as a connecting feature between east and west and this may be exemplary for fracture zones across the whole Atlantic. Nevertheless, the MAR as well as the 3000-m-depth gradient between abyss and hadal appear to restrict gene flow for poor dispersers and thus contribute to speciation processes in the deep sea.

  5. Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a California hypersaline lake, the Salton Sea.

    Science.gov (United States)

    Swan, Brandon K; Ehrhardt, Christopher J; Reifel, Kristen M; Moreno, Lilliana I; Valentine, David L

    2010-02-01

    Sulfidic, anoxic sediments of the moderately hypersaline Salton Sea contain gradients in salinity and carbon that potentially structure the sedimentary microbial community. We investigated the abundance, community structure, and diversity of Bacteria and Archaea along these gradients to further distinguish the ecologies of these domains outside their established physiological range. Quantitative PCR was used to enumerate 16S rRNA gene abundances of Bacteria, Archaea, and Crenarchaeota. Community structure and diversity were evaluated by terminal restriction fragment length polymorphism (T-RFLP), quantitative analysis of gene (16S rRNA) frequencies of dominant microorganisms, and cloning and sequencing of 16S rRNA. Archaea were numerically dominant at all depths and exhibited a lesser response to environmental gradients than that of Bacteria. The relative abundance of Crenarchaeota was low (0.4 to 22%) at all depths but increased with decreased carbon content and increased salinity. Salinity structured the bacterial community but exerted no significant control on archaeal community structure, which was weakly correlated with total carbon. Partial sequencing of archaeal 16S rRNA genes retrieved from three sediment depths revealed diverse communities of Euryarchaeota and Crenarchaeota, many of which were affiliated with groups previously described from marine sediments. The abundance of these groups across all depths suggests that many putative marine archaeal groups can tolerate elevated salinity (5.0 to 11.8% [wt/vol]) and persist under the anaerobic conditions present in Salton Sea sediments. The differential response of archaeal and bacterial communities to salinity and carbon patterns is consistent with the hypothesis that adaptations to energy stress and availability distinguish the ecologies of these domains.

  6. Assessing condition of macroinvertebrate communities and bed sediment toxicity in the Rochester Embayment Area of Concern, New York, USA

    Science.gov (United States)

    Duffy, Brian; George, Scott D.; Baldigo, Barry P.; Smith, Alexander J.

    2017-01-01

    The United States and Canada agreed to restore the chemical, physical, and biological integrity of the Great Lakes ecosystem under the first Great Lakes Water Quality Agreement in 1972. The lowest reach of the Genesee River and the Rochester Embayment on Lake Ontario between Bogus Point and Nine Mile Point, including Braddock Bay, were designated as an Area of Concern (AOC) due to effects of contaminated sediments and physical disturbance on several beneficial uses. Following sediment remedial efforts and with conditions improving in the AOC, the present study was conducted to reevaluate the status of the benthic macroinvertebrate (benthos) beneficial use impairment (BUI). Benthic macroinvertebrate community assessments and 10-day Chironomus dilutus bioassays were used to test the hypotheses that sediments within the AOC were no more toxic than sediments from surrounding reference areas. The study was separated into three discrete systems (Genesee River, Lake Ontario, and Braddock Bay) and non-parametric analyses determined that a multimetric index of benthic macroinvertebrate community integrity was significantly higher at AOC sites compared to reference sites on the Genesee River and in Braddock Bay while AOC and reference sites on Lake Ontario did not differ significantly. Survival and growth of C. dilutus were also similar between AOC and reference sites for each system with the exception of significantly higher growth at reference sites on Lake Ontario. Results generally indicated that the condition of benthos and toxicity of sediment of the Rochester Embayment AOC are similar to or better than that in the surrounding area.

  7. Property Changes of Abyssal Waters in the Western Tropical Atlantic

    Science.gov (United States)

    Herrford, Josefine; Brandt, Peter; Zenk, Walter

    2017-04-01

    Flowing northward towards the equator, Antarctic Bottom Water (AABW) encounters the lighter overlying North Atlantic Deep Water (NADW), both water masses creating an abyssal stratification and gradually mixing across their interface. Changes in the associated water mass formation and/or along-path transformation, observable in the evolution of water mass volume and characteristics, might impact the deep oceans uptake of anthropogenic CO2 or its contribution to global sea level rise. We compile historic and recent shipboard measurements of hydrography and velocity to provide a comprehensive view on water mass distribution, pathways, along-path transformation and long-term temperature changes of abyssal waters in the western South and Equatorial Atlantic. We are able to confirm previous results showing that the northwest corner of the Brazil Basin represents a splitting point for the southward/northward flow of NADW/AABW. The available measurements sample water mass transformation along the two major routes for deep and bottom waters in the tropical to South Atlantic - along the deep western boundary and eastward, parallel to the equator - as well as the hot spots of extensive mixing. We find lower NADW and lighter AABW to form a highly interactive transition layer in the northern Brazil Basin. The AABW north of 5°S is relatively homogeneous with only lighter AABW being able to pass through the Equatorial Channel (EQCH) into the North Atlantic. Spanning a period of 26 years, our data also allow an estimation of long-term temperature trends in abyssal waters. We find a warming of 2.5 ± 0.7•10-3 °C yr-1 of the waters in the northern Brazil Basin being colder than 0.6 °C throughout the period 1989-2014 and can relate that warming to a thinning of the dense AABW layer. While isopycnal heave is the dominant effect defining the vertical distribution of temperature trends on isobars, we also find temperature changes on isopycnals in the transition layer the lower NADW

  8. Structural and functional diversity of microbial communities from a lake sediment contaminated with trenbolone, an endocrine-disrupting chemical

    Energy Technology Data Exchange (ETDEWEB)

    Radl, Viviane [GSF National Research Center for Environment and Health, Institute of Soil Ecology, PO Box 1129, D-85764, Neuherberg (Germany)]. E-mail: barbosa@gsf.de; Pritsch, Karin [GSF National Research Center for Environment and Health, Institute of Soil Ecology, PO Box 1129, D-85764, Neuherberg (Germany); Munch, Jean Charles [GSF National Research Center for Environment and Health, Institute of Soil Ecology, PO Box 1129, D-85764, Neuherberg (Germany); Schloter, Michael [GSF National Research Center for Environment and Health, Institute of Soil Ecology, PO Box 1129, D-85764, Neuherberg (Germany)

    2005-09-15

    Effects of trenbolone (TBOH), a hormone used in cattle production, on the structure and function of microbial communities in a fresh water sediment from a lake in Southern Germany were studied in a microcosm experiment. The microbial community structure and the total gene pool of the sediment, assessed by 16S rRNA/rDNA and RAPD fingerprint analysis, respectively, were not significantly affected by TBOH. In contrast, the N-acetyl-glucosaminidase activity was almost 50% lower in TBOH treated samples (P<0.05). Also, the substrate utilization potential, measured using the BIOLOG[reg] system, was reduced after TBOH treatment. Interestingly, this potential did not recover at the end of the experiment, i.e. 19 days after the addition of the chemical. Repeated application of TBOH did not lead to an additional reduction in the substrate utilization potential. Overall results indicate that microbial community function was more sensitive to TBOH treatment than the community structure and the total gene pool. - The steroid hormone trenbolone affects microbial community function in a lake sediment.

  9. Chronic polyaromatic hydrocarbon (PAH contamination is a marginal driver for community diversity and prokaryotic predicted functioning in coastal sediments

    Directory of Open Access Journals (Sweden)

    Mathilde Jeanbille

    2016-08-01

    Full Text Available Benthic microorganisms are key players in the recycling of organic matter and recalcitrant compounds such as polyaromatic hydrocarbons (PAHs in coastal sediments. Despite their ecological importance, the response of microbial communities to chronic PAH pollution, one of the major threats to coastal ecosystems, has received very little attention. In one of the largest surveys performed so far on coastal sediments, the diversity and composition of microbial communities inhabiting both chronically contaminated and non-contaminated coastal sediments were investigated using high-throughput sequencing on the 18S and 16S rRNA genes. Prokaryotic alpha-diversity showed significant association with salinity, temperature, and organic carbon content. The effect of particle size distribution was strong on eukaryotic diversity. Similarly to alpha-diversity, beta-diversity patterns were strongly influenced by the environmental filter, while PAHs had no influence on the prokaryotic community structure and a weak impact on the eukaryotic community structure at the continental scale. However, at the regional scale, PAHs became the main driver shaping the structure of bacterial and eukaryotic communities. These patterns were not found for PICRUSt predicted prokaryotic functions, thus indicating some degree of functional redundancy. Eukaryotes presented a greater potential for their use as PAH contamination biomarkers, owing to their stronger response at both regional and continental scales.

  10. Structural and functional diversity of microbial communities from a lake sediment contaminated with trenbolone, an endocrine-disrupting chemical

    International Nuclear Information System (INIS)

    Radl, Viviane; Pritsch, Karin; Munch, Jean Charles; Schloter, Michael

    2005-01-01

    Effects of trenbolone (TBOH), a hormone used in cattle production, on the structure and function of microbial communities in a fresh water sediment from a lake in Southern Germany were studied in a microcosm experiment. The microbial community structure and the total gene pool of the sediment, assessed by 16S rRNA/rDNA and RAPD fingerprint analysis, respectively, were not significantly affected by TBOH. In contrast, the N-acetyl-glucosaminidase activity was almost 50% lower in TBOH treated samples (P<0.05). Also, the substrate utilization potential, measured using the BIOLOG[reg] system, was reduced after TBOH treatment. Interestingly, this potential did not recover at the end of the experiment, i.e. 19 days after the addition of the chemical. Repeated application of TBOH did not lead to an additional reduction in the substrate utilization potential. Overall results indicate that microbial community function was more sensitive to TBOH treatment than the community structure and the total gene pool. - The steroid hormone trenbolone affects microbial community function in a lake sediment

  11. Biostimulation induces syntrophic interactions that impact C, S and N cycling in a sediment microbial community

    Energy Technology Data Exchange (ETDEWEB)

    Handley, KM [University of California, Berkeley; Verberkmoes, Nathan C [ORNL; Steefel, Carl I [Lawrence Berkeley National Laboratory (LBNL); Sharon, I [University of California, Berkeley; Williams, Ken [Lawrence Berkeley National Laboratory (LBNL); Miller, CS [University of California, Berkeley; Frischkorn, Kyle C [University of California, Berkeley; Chourey, Karuna [ORNL; Thomas, Brian [University of California, Berkeley; Shah, Manesh B [ORNL; Long, Phil [Pacific Northwest National Laboratory (PNNL); Hettich, Robert {Bob} L [ORNL; Banfield, Jillian F. [University of California, Berkeley

    2013-01-01

    Stimulation of subsurface microorganisms to induce reductive immobilization of metals is a promising approach for bioremediation, yet the overall microbial community response is typically poorly understood. Here we used community proteogenomics to test the hypothesis that excess input of acetate activates syntrophic interactions among autotrophs and heterotrophs. A flow-through sediment column was incubated in a groundwater well of an acetate-amended aquifer. Genomic sequences from the community recovered during microbial sulfate reduction were used to econstruct, de novo, near-complete genomes for Desulfobacter (Deltaproteobacteria) and relatives of Sulfurovum and Sulfurimonas (Epsilonproteobacteria), and Bacteroidetes. Partial genomes were obtained for Clostridiales (Firmicutes) and Desulfuromonadales-like Deltaproteobacteria. The majority of proteins identified by mass spectrometry corresponded to Desulfobacter-like species, and demonstrate the role of this organism in sulfate reduction (Dsr and APS), nitrogen-fixation (Nif) and acetate oxidation to CO2 during amendment. Results suggest less abundant Desulfuromonadales and Bacteroidetes also actively contributed to CO2 production via the TCA cycle. Proteomic data indicate that sulfide was partially re-oxidized by Epsilonproteobacteria through nitrate-dependent sulfide oxidation (using Nap, Nir, Nos, SQR and Sox), with CO2 fixed using the reverse TCA cycle. Modeling shows that this reaction was thermodynamically possible, and kinetically favorable relative to acetate-dependent denitrification. We conclude that high-levels of carbon amendment aimed to stimulate anaerobic heterotrophy led to carbon fixation in co-dependent chemoautotrophs. These results have implications for understanding complex ecosystem behavior, and show that high levels of organic carbon supplementation can expand the range of microbial functionalities accessible for ecosystem manipulation.

  12. Bacterial community structure in response to environmental impacts in the intertidal sediments along the Yangtze Estuary, China.

    Science.gov (United States)

    Guo, Xing-Pan; Lu, Da-Pei; Niu, Zuo-Shun; Feng, Jing-Nan; Chen, Yu-Ru; Tou, Fei-Yun; Liu, Min; Yang, Yi

    2018-01-01

    This study was designed to investigate the characteristics of bacterial communities in intertidal sediments along the Yangtze Estuary and their responses to environmental factors. The results showed that bacterial abundance was significantly correlated with salinity, SO 4 2- and total organic carbon, while bacterial diversity was significantly correlated with SO 4 2- and total nitrogen. At different taxonomic levels, both the dominant taxa and their abundances varied among the eight samples, with Proteobacteria being the most dominant phylum in general. Cluster analysis revealed that the bacterial community structure was influenced by river runoff and sewerage discharge. Moreover, SO 4 2- , salinity and total phosphorus were the vital environmental factors that influenced the bacterial community structure. Quantitative PCR and sequencing of sulphate-reducing bacteria indicated that the sulphate reduction process occurs frequently in intertidal sediments. These findings are important to understand the microbial ecology and biogeochemical cycles in estuarine environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Shallow water marine sediment bacterial community shifts along a natural CO2 gradient in the Mediterranean Sea off Vulcano, Italy.

    Science.gov (United States)

    Kerfahi, Dorsaf; Hall-Spencer, Jason M; Tripathi, Binu M; Milazzo, Marco; Lee, Junghoon; Adams, Jonathan M

    2014-05-01

    The effects of increasing atmospheric CO(2) on ocean ecosystems are a major environmental concern, as rapid shoaling of the carbonate saturation horizon is exposing vast areas of marine sediments to corrosive waters worldwide. Natural CO(2) gradients off Vulcano, Italy, have revealed profound ecosystem changes along rocky shore habitats as carbonate saturation levels decrease, but no investigations have yet been made of the sedimentary habitat. Here, we sampled the upper 2 cm of volcanic sand in three zones, ambient (median pCO(2) 419 μatm, minimum Ω(arag) 3.77), moderately CO(2)-enriched (median pCO(2) 592 μatm, minimum Ω(arag) 2.96), and highly CO(2)-enriched (median pCO(2) 1611 μatm, minimum Ω(arag) 0.35). We tested the hypothesis that increasing levels of seawater pCO(2) would cause significant shifts in sediment bacterial community composition, as shown recently in epilithic biofilms at the study site. In this study, 454 pyrosequencing of the V1 to V3 region of the 16S rRNA gene revealed a shift in community composition with increasing pCO(2). The relative abundances of most of the dominant genera were unaffected by the pCO(2) gradient, although there were significant differences for some 5 % of the genera present (viz. Georgenia, Lutibacter, Photobacterium, Acinetobacter, and Paenibacillus), and Shannon Diversity was greatest in sediments subject to long-term acidification (>100 years). Overall, this supports the view that globally increased ocean pCO(2) will be associated with changes in sediment bacterial community composition but that most of these organisms are resilient. However, further work is required to assess whether these results apply to other types of coastal sediments and whether the changes in relative abundance of bacterial taxa that we observed can significantly alter the biogeochemical functions of marine sediments.

  14. Taxonomic profiling of bacterial community structure from coastal sediment of Alang-Sosiya shipbreaking yard near Bhavnagar, India.

    Science.gov (United States)

    Patel, Vilas; Munot, Hitendra; Shah, Varun; Shouche, Yogesh S; Madamwar, Datta

    2015-12-30

    The Alang-Sosiya shipbreaking yard (ASSBY) is considered the largest of its kind in the world, and a major source of anthropogenic pollutants. The aim of this study was to investigate the impact of shipbreaking activities on the bacterial community structure with a combination of culture-dependent and culture-independent approaches. In the culture-dependent approach, 200 bacterial cultures were isolated and analyzed by molecular fingerprinting and 16S ribosomal RNA (r-RNA) gene sequencing, as well as being studied for degradation of polycyclic aromatic hydrocarbons (PAHs). In the culture-independent approach, operational taxonomic units (OTUs) were related to eight major phyla, of which Betaproteobacteria (especially Acidovorax) was predominantly found in the polluted sediments of ASSBY and Gammaproteobacteria in the pristine sediment sample. The statistical approaches showed a significant difference in the bacterial community structure between the pristine and polluted sediments. To the best of our knowledge, this is the first study investigating the effect of shipbreaking activity on the bacterial community structure of the coastal sediment at ASSBY. Copyright © 2015. Published by Elsevier Ltd.

  15. Mineralization of PAHs in coal-tar impacted aquifer sediments and associated microbial community structure investigated with FISH

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, S W; Ong, S K; Moorman, T B [Iowa State University, Ames, IA (USA)

    2007-11-15

    The microbial community structure and mineralization of polycyclic aromatic hydrocarbons (PAHs) in a coal-tar contaminated aquifer were investigated spatially using fluorescence in situ hybridization (FISH) and in laboratory-scale incubations of the aquifer sediments. DAPI-detected microbial populations in the contaminated sediments were three orders of magnitude greater than nearby uncontaminated sediments, suggesting growth on coal-tar constituents in situ. Actinobacteria, {beta}- and {gamma}-Proteobacteria, and Flavobacteria dominated the in situ aerobic (> 1 mg l{sup -1} dissolved oxygen) microbial community, whereas sulfate-reducing bacteria comprised 37% of the microbial community in the sulfidogenic region of the aquifer. Rapid mineralization of naphthalene and phenanthrene were observed in aerobic laboratory microcosms and resulted in significant enrichment of {beta}- and {gamma}-Proteobacteria potentially explaining their elevated presence in situ. Nitrate- and sulfate-limited mineralization of naphthalene in laboratory microcosms occurred to a small degree in aquifer sediments from locations where groundwater chemistry indicated nitrate- and sulfate-reduction, respectively. The results of this study suggest that FISH may be a useful tool for providing a link between laboratory microcosms and groundwater measurements made in situ necessary to better demonstrate the potential for natural attenuation at complex PAH contaminated sites.

  16. Effect of redox conditions on bacterial community structure in Baltic Sea sediments with contrasting redox conditions

    NARCIS (Netherlands)

    Steenbergh, A.K.; Bodelier, P.L.E.; Slomp, C.P; Laanbroek, H.J.

    2014-01-01

    Phosphorus release from sediments can exacerbate the effect of eutrophication in coastal marine ecosystems. The flux of phosphorus from marine sediments to the overlying water is highly dependent on the redox conditions at the sediment-water interface. Bacteria are key players in the biological

  17. Phylogenetic characterization of phosphatase-expressing bacterial communities in Baltic Sea sediments

    NARCIS (Netherlands)

    Steenbergh, Anne; Bodelier, Paul; Hoogveld, H.L.; Slomp, C.P; Laanbroek, H.J.

    2015-01-01

    Phosphate release from sediments hampers the remediation of aquatic systems from a eutrophic state. Microbial phosphatases in sediments release phosphorus during organic matter degradation. Despite the important role of phosphatase-expressing bacteria, the identity of these bacteria in sediments is

  18. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria.

    Science.gov (United States)

    Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

    2012-11-01

    Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 10(6) acetate-utilizing manganese-reducing cells cm(-3) in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments.

  19. Pore water geochemistry and the oxidation of sedimentary organic matter: Hatteras Abyssal Plain 1981

    International Nuclear Information System (INIS)

    Heggie, D.; Lewis, T.; Graham, D.

    1985-01-01

    This report presents the pore water geochemistry from R/V an Endeavor cruise to an area of the Hatteras Abyssal Plain between 31 0 45' - 34 0 00'N and 69 0 37.5 - 72 0 07.5'W. The authors report on the down core variations of the products of organic matter oxidation, the stoichiometry of reactions and make a preliminary assessment of the rates of organic matter oxidation at several core locations. The authors found concentrations of total inorganic nitrogen species; nitrate, nitrite and ammonia in pore waters to be less than those predicted from a model of organic matter oxidation (Froelich et al. 1979) in sediments. The observations indicate that nitrogen is depleted over carbon as compared to typical marine organic matter. The down-core nitrate profiles over the study area were used to infer depths at which oxygen is near totally consumed in the sediments and hence to compute rates of oxygen consumption. The authors found oxygen consumption rates to vary by nearly an order of magnitude between core locations (1.7 - >15μmO 2 cm -2 yr -1 ). A simple model which combines the computed rates of oxidant consumption and the stoichiometry of organic matter oxidation was used to make estimates of organic carbon oxidation rates. These latter were found to vary between 1.3 and > 11.5 μm C cm -2 yr -1 . Highest carbon oxidation rates were found at the western boundary of the study area, and in all cases oxygen consumption was responsible for >85% of carbon oxidized. 11 references, 5 figures, 4 tables

  20. Abyssal Upwelling and Downwelling and the role of boundary layers

    Science.gov (United States)

    McDougall, T. J.; Ferrari, R. M.

    2016-02-01

    The bottom-intensified mixing activity arising from the interaction of internal tides with bottom topography implies that the dianeutral advection in the ocean interior is downwards, rather than upwards as is required by continuity. The upwelling of Bottom Water through density surfaces in the deep ocean is however possible because of the sloping nature of the sea floor. A budget study of the abyss (deeper than 2000m) will be described that shows that while the upwelling of Bottom Water might be 25 Sv, this is achieved by very strong upwelling in the bottom turbulent boundary layer (of thickness 50m) of 100 Sv and strong downwelling in the ocean interior of 75 Sv. This downwelling occurs within 10 degrees of longitude of the continental boundaries. This near-boundary confined strong upwelling and downwelling clearly has implications for the Stommel-Arons circulation.

  1. Bacterial community composition of South China Sea sediments through pyrosequencing-based analysis of 16S rRNA genes.

    Science.gov (United States)

    Zhu, Daochen; Tanabe, Shoko-Hosoi; Yang, Chong; Zhang, Weimin; Sun, Jianzhong

    2013-01-01

    Subseafloor sediments accumulate large amounts of organic and inorganic materials that contain a highly diverse microbial ecosystem. The aim of this study was to survey the bacterial community of subseafloor sediments from the South China Sea. Pyrosequencing of over 265,000 amplicons of the V3 hypervariable region of the 16S ribosomal RNA gene was performed on 16 sediment samples collected from multiple locations in the northern region of the South China Sea from depths ranging from 35 to 4000 m. A total of 9,726 operational taxonomic units (OTUs; between 695 and 2819 unique OTUs per sample) at 97% sequence similarity level were generated. In total, 40 bacterial phyla including 22 formally described phyla and 18 candidate phyla, with Proteobacteria, Firmicutes, Planctomycetes, Actinobacteria and Chloroflexi being most diverse, were identified. The most abundant phylotype, accounting for 42.6% of all sequences, belonged to Gammaproteobacteria, which possessed absolute predominance in the samples analyzed. Among the 18 candidate phyla, 12 were found for the first time in the South China Sea. This study provided a novel insight into the composition of bacterial communities of the South China Sea subseafloor. Furthermore, abundances and community similarity analysis showed that the compositions of the bacterial communities are very similar at phylum level at different depths from 35-4000 m.

  2. Bacterial community composition of South China Sea sediments through pyrosequencing-based analysis of 16S rRNA genes.

    Directory of Open Access Journals (Sweden)

    Daochen Zhu

    Full Text Available BACKGROUND: Subseafloor sediments accumulate large amounts of organic and inorganic materials that contain a highly diverse microbial ecosystem. The aim of this study was to survey the bacterial community of subseafloor sediments from the South China Sea. METHODOLOGY/PRINCIPAL FINDINGS: Pyrosequencing of over 265,000 amplicons of the V3 hypervariable region of the 16S ribosomal RNA gene was performed on 16 sediment samples collected from multiple locations in the northern region of the South China Sea from depths ranging from 35 to 4000 m. A total of 9,726 operational taxonomic units (OTUs; between 695 and 2819 unique OTUs per sample at 97% sequence similarity level were generated. In total, 40 bacterial phyla including 22 formally described phyla and 18 candidate phyla, with Proteobacteria, Firmicutes, Planctomycetes, Actinobacteria and Chloroflexi being most diverse, were identified. The most abundant phylotype, accounting for 42.6% of all sequences, belonged to Gammaproteobacteria, which possessed absolute predominance in the samples analyzed. Among the 18 candidate phyla, 12 were found for the first time in the South China Sea. CONCLUSIONS: This study provided a novel insight into the composition of bacterial communities of the South China Sea subseafloor. Furthermore, abundances and community similarity analysis showed that the compositions of the bacterial communities are very similar at phylum level at different depths from 35-4000 m.

  3. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine Arctic sediments

    DEFF Research Database (Denmark)

    Ravenschlag, K.; Sahm, K.; Knoblauch, C.

    2000-01-01

    The community structure of sulfate-reducing bacteria (SRB) of a marine Arctic sediment (Smeerenburg-fjorden, Svalbard) a-as characterized by both fluorescence in situ hybridization (FISH) and rRNA slot blot hybridization by using group- and genus-specific 16S rRNA-targeted oligonucleotide probes...... that FISH and rRNA slot blot hybridization gave comparable results. Furthermore, a combination of the two methods allowed us to calculate specific cellular rRNA contents with respect to localization in the sediment profile. The rRNA contents of Desulfosarcina-Desulfococcus cells were highest in the first 5...... mm of the sediment (0.9 and 1.4 fg, respectively) and decreased steeply with depth, indicating that maximal metabolic activity occurred close to the surface, Based on SRB cell numbers, cellular sulfate reduction rates were calculated. The rates were highest in the surface layer (0.14 fmol cell(-1...

  4. Ferromanganese oxides from Mid-Indian ridge, seamounts and abyssal plains from the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, P.S.; Pattan, J.N.

    .47%) in the seamount crusts. The ferromanganese oxides from the Mid-Indian Ridge, seamount crusts and abyssal nodules appear to be of hydrothermal, hydrogenous and early-diagenetic in origin respectively...

  5. Exploring the Impacts of Anthropogenic Disturbance on Seawater and Sediment Microbial Communities in Korean Coastal Waters Using Metagenomics Analysis

    Directory of Open Access Journals (Sweden)

    Nam-Il Won

    2017-01-01

    Full Text Available The coastal ecosystems are considered as one of the most dynamic and vulnerable environments under various anthropogenic developments and the effects of climate change. Variations in the composition and diversity of microbial communities may be a good indicator for determining whether the marine ecosystems are affected by complex forcing stressors. DNA sequence-based metagenomics has recently emerged as a promising tool for analyzing the structure and diversity of microbial communities based on environmental DNA (eDNA. However, few studies have so far been performed using this approach to assess the impacts of human activities on the microbial communities in marine systems. In this study, using metagenomic DNA sequencing (16S ribosomal RNA gene, we analyzed and compared seawater and sediment communities between sand mining and control (natural sites in southern coastal waters of Korea to assess whether anthropogenic activities have significantly affected the microbial communities. The sand mining sites harbored considerably lower levels of microbial diversities in the surface seawater community during spring compared with control sites. Moreover, the sand mining areas had distinct microbial taxonomic group compositions, particularly during spring season. The microbial groups detected solely in the sediment load/dredging areas (e.g., Marinobacter, Alcanivorax, Novosphingobium are known to be involved in degradation of toxic chemicals such as hydrocarbon, oil, and aromatic compounds, and they also contain potential pathogens. This study highlights the versatility of metagenomics in monitoring and diagnosing the impacts of human disturbance on the environmental health of marine ecosystems from eDNA.

  6. Epithermal neutron activation analysis investigation of Clarion-Clipperton abyssal plane clay and polymetallic micronodules.

    Science.gov (United States)

    Duliu, O G; Cristache, C I; Culicovc, O A; Frontasyeva, M V; Szobotca, S A; Toma, M

    2009-05-01

    The content of seven major (Na, Al, Cl, Mn, K, Ca, Ti, Fe) and 30 trace (Sc, V, Cr, Ni, Co, Zn, Cu, As, Sr, Rb, Zr, Mo, Sn, In, Sb, Ba, Cs, La, Ce, Nd, Eu, Sm, Tb, Dy, Yb, Hf, Ta, W, Th, U) elements determined by INAA in 13 samples of abyssal clay and two samples of micronodules collected from the North pacific Ocean Clarion-Clipperton abyssal plane is presented and discussed with respect to some rocks models.

  7. Epithermal neutron activation analysis investigation of Clarion-Clipperton abyssal plane clay and polymetallic micronodules

    International Nuclear Information System (INIS)

    Duliu, O.G.; Cristache, C.I.; Culicovc, O.A.; Frontasyeva, M.V.; Szobotca, S.A.; Toma, M.

    2009-01-01

    The content of seven major (Na, Al, Cl, Mn, K, Ca, Ti, Fe) and 30 trace (Sc, V, Cr, Ni, Co, Zn, Cu, As, Sr, Rb, Zr, Mo, Sn, In, Sb, Ba, Cs, La, Ce, Nd, Eu, Sm, Tb, Dy, Yb, Hf, Ta, W, Th, U) elements determined by INAA in 13 samples of abyssal clay and two samples of micronodules collected from the North pacific Ocean Clarion-Clipperton abyssal plane is presented and discussed with respect to some rocks models.

  8. Epithermal neutron activation analysis investigation of Clarion-Clipperton abyssal plane clay and polymetallic micronodules

    Energy Technology Data Exchange (ETDEWEB)

    Duliu, O.G. [University of Bucharest, Department of Atomic and Nuclear Physics, P.O. Box MG-11, 077125 Magurele, Ilfov (Romania)], E-mail: duliu@b.astral.ro; Cristache, C.I. [National Institute of Research and Development for Physics and Nuclear Engineering ' Horia-Hulubei' , P.O. Box MG-6, 077125 Magurele, Ilfov (Romania)], E-mail: ocarmen@ifin.nipne.ro; Culicovc, O.A. [Joint Institute of Nuclear Research, 6, Joliot Curie str., 141980 Dubna (Russian Federation)], E-mail: otilia_culicov@yahoo.com; Frontasyeva, M.V. [Joint Institute of Nuclear Research, 6, Joliot Curie str., 141980 Dubna (Russian Federation)], E-mail: marina@nf.jinr.ru; Szobotca, S.A. [National Institute of Geoecology and Marine Geology, 34 Dimitrie Onciul str., 024504 Bucharest (Romania)], E-mail: szobi@geoecomar.ro; Toma, M. [National Institute of Research and Development for Physics and Nuclear Engineering ' Horia-Hulubei' , P.O. Box MG-6, 077125 Magurele, Ilfov (Romania)

    2009-05-15

    The content of seven major (Na, Al, Cl, Mn, K, Ca, Ti, Fe) and 30 trace (Sc, V, Cr, Ni, Co, Zn, Cu, As, Sr, Rb, Zr, Mo, Sn, In, Sb, Ba, Cs, La, Ce, Nd, Eu, Sm, Tb, Dy, Yb, Hf, Ta, W, Th, U) elements determined by INAA in 13 samples of abyssal clay and two samples of micronodules collected from the North pacific Ocean Clarion-Clipperton abyssal plane is presented and discussed with respect to some rocks models.

  9. Degradation potential and microbial community structure of heavy oil-enriched microbial consortia from mangrove sediments in Okinawa, Japan.

    Science.gov (United States)

    Bacosa, Hernando P; Suto, Koichi; Inoue, Chihiro

    2013-01-01

    Mangroves constitute valuable coastal resources that are vulnerable to oil pollution. One of the major processes to remove oil from contaminated mangrove sediment is microbial degradation. A study on heavy oil- and hydrocarbon-degrading bacterial consortia from mangrove sediments in Okinawa, Japan was performed to evaluate their capacity to biodegrade and their microbial community composition. Surface sediment samples were obtained from mangrove sites in Okinawa (Teima, Oura, and Okukubi) and enriched with heavy oil as the sole carbon and energy source. The results revealed that all enriched microbial consortia degraded more than 20% of heavy oil in 21 days. The K1 consortium from Okukubi site showed the most extensive degradative capacity after 7 and 21 days. All consortia degraded more than 50% of hexadecane but had little ability to degrade polycyclic aromatic hydrocarbons (PAHs). The consortia were dominated by Pseudomonas or Burkholderia. When incubated in the presence of hydrocarbon compounds, the active bacterial community shifted to favor the dominance of Pseudomonas. The K1 consortium was a superior degrader, demonstrating the highest ability to degrade aliphatic and aromatic hydrocarbon compounds; it was even able to degrade heavy oil at a concentration of 15%(w/v). The dominance and turn-over of Pseudomonas and Burkholderia in the consortia suggest an important ecological role for and relationship between these two genera in the mangrove sediments of Okinawa.

  10. A field experimental study on recolonization and succession of subtidal macrobenthic community in sediment contaminated with industrial wastes.

    Science.gov (United States)

    Lu, L; Wu, R S S

    2007-02-01

    A field experiment was carried out in Hong Kong to study the patterns of recolonization and succession of subtidal macrobenthos in defaunated sediment contaminated with industrial wastes and to determine the time required for benthic recovery in the industrial-contaminated sediment. A total of 50 species was found with an average of 172 animals/tray and 24 species/tray recorded one month after deployment. Initial colonizers were predominantly polychaetes (96 animals/tray, accounting for 55.7%) and gastropods (47 animals/tray, accounting for 27.2%). Abundance of macrobenthos increased quickly to a peak (505 animals/tray) after four months, declined afterwards, and increased again till the end of the experiment. Species number peaked (57 species/tray) in the same month as abundance did, and gradually declined thereafter. Abundance, species number and diversity were significantly lower in the industrial-contaminated sediment as compared to the controls during the early successional stages, indicating the harmful effects of industrial wastes on recolonization and succession of macrobenthos. Although no significant differences in community parameters between the industrial-contaminated and the control sediments were found after eleven months, significant difference in species composition still existed after fourteen months, showing a relatively long-term impact of industrial wastes on macrobenthic community structure.

  11. Anaerobic biodegradation of nonylphenol in river sediment under nitrate- or sulfate-reducing conditions and associated bacterial community

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhao; Yang, Yuyin; Dai, Yu; Xie, Shuguang, E-mail: xiesg@pku.edu.cn

    2015-04-09

    Highlights: • NP biodegradation can occur under both nitrate- and sulfate-reducing conditions. • Anaerobic condition affects sediment bacterial diversity during NP biodegradation. • NP-degrading bacterial community structure varies under different anaerobic conditions. - Abstract: Nonylphenol (NP) is a commonly detected pollutant in aquatic ecosystem and can be harmful to aquatic organisms. Anaerobic degradation is of great importance for the clean-up of NP in sediment. However, information on anaerobic NP biodegradation in the environment is still very limited. The present study investigated the shift in bacterial community structure associated with NP degradation in river sediment microcosms under nitrate- or sulfate-reducing conditions. Nearly 80% of NP (100 mg kg{sup −1}) could be removed under these two anaerobic conditions after 90 or 110 days’ incubation. Illumina MiSeq sequencing analysis indicated that Proteobacteria, Firmicutes, Bacteroidetes and Chloroflexi became the dominant phylum groups with NP biodegradation. The proportion of Gammaproteobacteria, Deltaproteobacteria and Choloroflexi showed a marked increase in nitrate-reducing microcosm, while Gammaproteobacteria and Firmicutes in sulfate-reducing microcosm. Moreover, sediment bacterial diversity changed with NP biodegradation, which was dependent on type of electron acceptor.

  12. Anaerobic Methane-Oxidizing Microbial Community in a Coastal Marine Sediment: Anaerobic Methanotrophy Dominated by ANME-3.

    Science.gov (United States)

    Bhattarai, Susma; Cassarini, Chiara; Gonzalez-Gil, Graciela; Egger, Matthias; Slomp, Caroline P; Zhang, Yu; Esposito, Giovanni; Lens, Piet N L

    2017-10-01

    The microbial community inhabiting the shallow sulfate-methane transition zone in coastal sediments from marine Lake Grevelingen (The Netherlands) was characterized, and the ability of the microorganisms to carry out anaerobic oxidation of methane coupled to sulfate reduction was assessed in activity tests. In vitro activity tests of the sediment with methane and sulfate demonstrated sulfide production coupled to the simultaneous consumption of sulfate and methane at approximately equimolar ratios over a period of 150 days. The maximum sulfate reduction rate was 5 μmol sulfate per gram dry weight per day during the incubation period. Diverse archaeal and bacterial clades were retrieved from the sediment with the majority of them clustered with Euryarchaeota, Thaumarcheota, Bacteroidetes, and Proteobacteria. The 16S rRNA gene sequence analysis showed that the sediment from marine Lake Grevelingen contained anaerobic methanotrophic Archaea (ANME) and methanogens as archaeal clades with a role in the methane cycling. ANME at the studied site mainly belong to the ANME-3 clade. This study provides one of the few reports for the presence of ANME-3 in a shallow coastal sediment. Sulfate-reducing bacteria from Desulfobulbus clades were found among the sulfate reducers, however, with very low relative abundance. Desulfobulbus has previously been commonly found associated with ANME, whereas in our study, ANME-3 and Desulfobulbus were not observed simultaneously in clusters, suggesting the possibility of independent AOM by ANME-3.

  13. Community Response to a Heavy Precipitation Event in High Temperature, Chemosynthetic Biofilms and Sediments

    Science.gov (United States)

    Meyer-Dombard, D. R.; Loiacono, S. T.; Shock, E.

    2012-12-01

    Coordinated analysis of the "Bison Pool" (BP) Environmental Genome and a complementary contextual geochemical dataset of ~75 parameters revealed biogeochemical cycling and metabolic and microbial community shifts in a Yellowstone National Park hot spring ecosystem (1). The >22m outflow of BP is a gradient of decreasing temperature, increasing dissolved oxygen, and changing availability of nutrients. Microbial life at BP transitions from a 92°C chemosynthetic community in the BP source pool to a 56°C photosynthetic mat community. Metagenomic data at BP showed the potential for both heterotrophic and autotrophic carbon metabolism (rTCA and acetyl-CoA cycles) in the highest temperature, chemosynthetic regions (1). This region of the outflow is dominated by Aquificales and Pyrococcus relatives, with smaller contributions of heterotrophic Bacteria. Following a 2h heavy precipitation event we observed an influx of exogenous organic material into the source pool supplied from the meadow surrounding the BP area. We sampled biomass and fluid at several locations within the outflow immediately following the event, and on several occasions for the next eight days. Elemental analysis and carbon and nitrogen isotopic analyses were conducted on biomass and sediment, and dissolved organic and inorganic carbon content and δ13C of fluids were analyzed. DNA and RNA were extracted, and following RT-PCR, nitrogen cycle functional gene expression was evaluated. Previous work at BP has shown that chemosynthetic biomass may carry isotopic signatures of fractionation during carbon fixation, via the acetyl-CoA and rTCA cycles (2). However, the addition of exogenous organic carbon during the rain event had an immediate and dramatic effect on the sediments and biofilms in the chemosynthetic zone of the outflow. Dissolved organic carbon was the highest measured in six years. Chemosynthetic biomass responded by incorporating the organic carbon. Carbon isotopic signatures in chemosynthetic

  14. Response of microbial community and catabolic genes to simulated petroleum hydrocarbon spills in soils/sediments from different geographic locations.

    Science.gov (United States)

    Liu, Q; Tang, J; Liu, X; Song, B; Zhen, M; Ashbolt, N J

    2017-10-01

    Study the response of microbial communities and selected petroleum hydrocarbon (PH)-degrading genes on simulated PH spills in soils/sediments from different geographic locations. A microcosm experiment was conducted by spiking mixtures of petroleum hydrocarbons (PHs) to soils/sediments collected from four different regions of China, including the Dagang Oilfield (DG), Sand of Bohai Sea (SS), Northeast China (NE) and Xiamen (XM). Changes in bacterial community and the abundance of PH-degrading genes (alkB, nah and phe) were analysed by denaturing gradient electrophoresis (DGGE) and qPCR, respectively. Degradation of alkanes and PAHs in SS and NE materials were greater (P < 0·05) than those in DG and XM. Clay content was negatively correlated with the degradation of total alkanes by 112 days and PAHs by 56 days, while total organic carbon content was negatively correlated with initial degradation of total alkanes as well as PAHs. Abundances of alkB, nah and phe genes increased 10- to 100-fold and varied by soil type over the incubation period. DGGE fingerprints identified the dominance of α-, β- and γ-Proteobacteria (Gram -ve) and Actinobacteria (Gram +ve) bacteria associated with degradation of PHs in the materials studied. The geographic divergence resulting from the heterogeneity of physicochemical properties of soils/sediments appeared to influence the abundance of metabolic genes and community structure of microbes capable of degrading PHs. When developing practical in-situ bioremediation approaches for PHs contamination of soils/sediment, appropriate microbial community structures and the abundance of PH-degrading genes appear to be influenced by geographic location. © 2017 The Society for Applied Microbiology.

  15. Macro and Microelements Drive Diversity and Composition of Prokaryotic and Fungal Communities in Hypersaline Sediments and Saline-Alkaline Soils.

    Science.gov (United States)

    Liu, Kaihui; Ding, Xiaowei; Tang, Xiaofei; Wang, Jianjun; Li, Wenjun; Yan, Qingyun; Liu, Zhenghua

    2018-01-01

    Understanding the effects of environmental factors on microbial communities is critical for microbial ecology, but it remains challenging. In this study, we examined the diversity (alpha diversity) and community compositions (beta diversity) of prokaryotes and fungi in hypersaline sediments and salinized soils from northern China. Environmental variables were highly correlated, but they differed significantly between the sediments and saline soils. The compositions of prokaryotic and fungal communities in the hypersaline sediments were different from those in adjacent saline-alkaline soils, indicating a habitat-specific microbial distribution pattern. The macroelements (S, P, K, Mg, and Fe) and Ca were, respectively, correlated closely with the alpha diversity of prokaryotes and fungi, while the macronutrients (e.g., Na, S, P, and Ca) were correlated with the prokaryotic and fungal beta-diversity ( P ≤ 0.05). And, the nine microelements (e.g., Al, Ba, Co, Hg, and Mn) and micronutrients (Ba, Cd, and Sr) individually shaped the alpha diversity of prokaryotes and fungi, while the six microelements (e.g., As, Ba, Cr, and Ge) and only the trace elements (Cr and Cu), respectively, influenced the beta diversity of prokaryotes and fungi ( P analysis (VPA) showed that environmental variables jointly explained 55.49% and 32.27% of the total variation for the prokaryotic and fungal communities, respectively. Together, our findings demonstrate that the diversity and community composition of the prokaryotes and fungi were driven by different macro and microelements in saline habitats, and that geochemical elements could more widely regulate the diversity and community composition of prokaryotes than these of fungi.

  16. Macro and Microelements Drive Diversity and Composition of Prokaryotic and Fungal Communities in Hypersaline Sediments and Saline–Alkaline Soils

    Science.gov (United States)

    Liu, Kaihui; Ding, Xiaowei; Tang, Xiaofei; Wang, Jianjun; Li, Wenjun; Yan, Qingyun; Liu, Zhenghua

    2018-01-01

    Understanding the effects of environmental factors on microbial communities is critical for microbial ecology, but it remains challenging. In this study, we examined the diversity (alpha diversity) and community compositions (beta diversity) of prokaryotes and fungi in hypersaline sediments and salinized soils from northern China. Environmental variables were highly correlated, but they differed significantly between the sediments and saline soils. The compositions of prokaryotic and fungal communities in the hypersaline sediments were different from those in adjacent saline–alkaline soils, indicating a habitat-specific microbial distribution pattern. The macroelements (S, P, K, Mg, and Fe) and Ca were, respectively, correlated closely with the alpha diversity of prokaryotes and fungi, while the macronutrients (e.g., Na, S, P, and Ca) were correlated with the prokaryotic and fungal beta-diversity (P ≤ 0.05). And, the nine microelements (e.g., Al, Ba, Co, Hg, and Mn) and micronutrients (Ba, Cd, and Sr) individually shaped the alpha diversity of prokaryotes and fungi, while the six microelements (e.g., As, Ba, Cr, and Ge) and only the trace elements (Cr and Cu), respectively, influenced the beta diversity of prokaryotes and fungi (P analysis (VPA) showed that environmental variables jointly explained 55.49% and 32.27% of the total variation for the prokaryotic and fungal communities, respectively. Together, our findings demonstrate that the diversity and community composition of the prokaryotes and fungi were driven by different macro and microelements in saline habitats, and that geochemical elements could more widely regulate the diversity and community composition of prokaryotes than these of fungi. PMID:29535703

  17. Harnessing a methane-fueled, sediment-free mixed microbial community for utilization of distributed sources of natural gas.

    Science.gov (United States)

    Marlow, Jeffrey J; Kumar, Amit; Enalls, Brandon C; Reynard, Linda M; Tuross, Noreen; Stephanopoulos, Gregory; Girguis, Peter

    2018-06-01

    Harnessing the metabolic potential of uncultured microbial communities is a compelling opportunity for the biotechnology industry, an approach that would vastly expand the portfolio of usable feedstocks. Methane is particularly promising because it is abundant and energy-rich, yet the most efficient methane-activating metabolic pathways involve mixed communities of anaerobic methanotrophic archaea and sulfate reducing bacteria. These communities oxidize methane at high catabolic efficiency and produce chemically reduced by-products at a comparable rate and in near-stoichiometric proportion to methane consumption. These reduced compounds can be used for feedstock and downstream chemical production, and at the production rates observed in situ they are an appealing, cost-effective prospect. Notably, the microbial constituents responsible for this bioconversion are most prominent in select deep-sea sediments, and while they can be kept active at surface pressures, they have not yet been cultured in the lab. In an industrial capacity, deep-sea sediments could be periodically recovered and replenished, but the associated technical challenges and substantial costs make this an untenable approach for full-scale operations. In this study, we present a novel method for incorporating methanotrophic communities into bioindustrial processes through abstraction onto low mass, easily transportable carbon cloth artificial substrates. Using Gulf of Mexico methane seep sediment as inoculum, optimal physicochemical parameters were established for methane-oxidizing, sulfide-generating mesocosm incubations. Metabolic activity required >∼40% seawater salinity, peaking at 100% salinity and 35 °C. Microbial communities were successfully transferred to a carbon cloth substrate, and rates of methane-dependent sulfide production increased more than threefold per unit volume. Phylogenetic analyses indicated that carbon cloth-based communities were substantially streamlined and were

  18. Influence of biochar on heavy metals and microbial community during composting of river sediment with agricultural wastes.

    Science.gov (United States)

    Chen, Yaoning; Liu, Yao; Li, Yuanping; Wu, Yanxin; Chen, Yanrong; Zeng, Guangming; Zhang, Jiachao; Li, Hui

    2017-11-01

    Studies were performed to evaluate influence of biochar addition on physico-chemical process, heavy metals transformation and bacterial community diversity during composting of sediment with agricultural wastes. Simultaneously, the relationships between those parameters including heavy metals and bacterial community compositions were evaluated by redundancy analysis (RDA). The results show that the extraction efficiency of DTPA extractable heavy metals decreased in both piles, and reduced more in pile with biochar addition about 0.1-2.96%. Biochar addition dramatically influenced the bacterial community structure during the composting process. Moreover, the bacterial community composition was significantly correlated with C/N ratio, water soluble carbon (WSC), and organic matter (OM) (Pheavy metals contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Cold-seep-like macrofaunal communities in organic- and sulfide-rich sediments of the Congo deep-sea fan

    Science.gov (United States)

    Olu, K.; Decker, C.; Pastor, L.; Caprais, J.-C.; Khripounoff, A.; Morineaux, M.; Ain Baziz, M.; Menot, L.; Rabouille, C.

    2017-08-01

    Methane-rich fluids arising from organic matter diagenesis in deep sediment layers sustain chemosynthesis-based ecosystems along continental margins. This type of cold seep develops on pockmarks along the Congo margin, where fluids migrate from deep-buried paleo-channels of the Congo River, acting as reservoirs. Similar ecosystems based on shallow methane production occur in the terminal lobes of the present-day Congo deep-sea fan, which is supplied by huge quantities of primarily terrestrial material carried by turbiditic currents along the 800 km channel, and deposited at depths of up to nearly 5000 m. In this paper, we explore the effect of this carbon enrichment of deep-sea sediments on benthic macrofauna, along the prograding lobes fed by the current active channel, and on older lobes receiving less turbiditic inputs. Macrofaunal communities were sampled using either USNEL cores on the channel levees, or ROV blade cores in the chemosynthesis-based habitats patchily distributed in the active lobe complex. The exceptionally high organic content of the surface sediment in the active lobe complex was correlated with unusual densities of macrofauna for this depth, enhanced by a factor 7-8, compared with those of the older, abandoned lobe, whose sediment carbon content is still higher than in Angola Basin at same depth. Macrofaunal communities, dominated by cossurid polychaetes and tanaids were also more closely related to those colonizing low-flow cold seeps than those of typical deep-sea sediment. In reduced sediments, microbial mats and vesicomyid bivalve beds displayed macrofaunal community patterns that were similar to their cold-seep counterparts, with high densities, low diversity and dominance of sulfide-tolerant polychaetes and gastropods in the most sulfidic habitats. In addition, diversity was higher in vesicomyid bivalve beds, which appeared to bio-irrigate the upper sediment layers. High beta-diversity is underscored by the variability of geochemical

  20. Relationship between bifenthrin sediment toxic units and benthic community metrics in urban California streams.

    Science.gov (United States)

    Hall, Lenwood W; Anderson, Ronald D

    2013-08-01

    The objective of this study was to use ecologically relevant field measurements for determining the relationship between bifenthrin sediment toxic units (TUs) (environmental concentrations/Hyalella acute LC50 value) and 15 benthic metrics in four urban California streams sampled from 2006 to 2011. Data from the following four California streams were used in the analysis: Kirker Creek (2006, 2007), Pleasant Grove Creek (2006, 2007, and 2008), Arcade Creek (2009, 2010, and 2011), and Salinas streams (2009, 2010, and 2011). The results from univariate analysis of benthic metrics versus bifenthrin TU calculations for the four California streams with multiple-year datasets combined by stream showed that there were either nonsignificant relationships or lack of metric data for 93 % of cases. For 7 % of the data (4 cases) where significant relationships were reported between benthic metrics and bifenthrin TUs, these relationships were ecologically meaningful. Three of these significant direct relationships were an expression of tolerant benthic taxa (either % tolerant taxa or tolerance values, which are similar metrics), which would be expected to increase in a stressed environment. These direct significant tolerance relationships were reported for Kirker Creek, Pleasant Grove Creek, and Arcade Creek. The fourth significant relationship was an inverse relationship between taxa richness and bifenthrin TUs for the 3-year Pleasant Grove Creek dataset. In summary, only a small percent of the benthic metric × bifenthrin TU relationships were significant for the four California streams. Therefore, the general summary conclusion from this analysis is that there is no strong case for showing consistent meaningful relationships between various benthic metrics used to characterize the status of benthic communities and bifenthrin TUs for these four California streams.

  1. Geomorphological and sedimentary processes of the glacially influenced northwestern Iberian continental margin and abyssal plains

    Science.gov (United States)

    Llave, Estefanía; Jané, Gloria; Maestro, Adolfo; López-Martínez, Jerónimo; Hernández-Molina, F. Javier; Mink, Sandra

    2018-07-01

    The offshore region of northwestern Iberia offers an opportunity to study the impacts of along-slope processes on the morphology of a glacially influenced continental margin, which has traditionally been conceptually characterised by predominant down-slope sedimentary processes. High-resolution multibeam bathymetry, acoustic backscatter and ultrahigh-resolution seismic reflection profile data are integrated and analysed to describe the present-day and recent geomorphological features and to interpret their associated sedimentary processes. Seventeen large-scale seafloor morphologies and sixteen individual echo types, interpreted as structural features (escarpments, marginal platforms and related fluid escape structures) and depositional and erosional bedforms developed either by the influence of bottom currents (moats, abraded surfaces, sediment waves, contourite drifts and ridges) or by gravitational features (gullies, canyons, slides, channel-levee complexes and submarine fans), are identified for the first time in the study area (spanning 90,000 km2 and water depths of 300 m to 5 km). Different types of slope failures and turbidity currents are mainly observed on the upper and lower slopes and along submarine canyons and deep-sea channels. The middle slope morphologies are mostly determined by the actions of bottom currents (North Atlantic Central Water, Mediterranean Outflow Water, Labrador Sea Water and North Atlantic Deep Water), which thereby define the margin morphologies and favour the reworking and deposition of sediments. The abyssal plains (Biscay and Iberian) are characterised by pelagic deposits and channel-lobe systems (the Cantabrian and Charcot), although several contourite features are also observed at the foot of the slope due to the influence of the deepest water masses (i.e., the North Atlantic Deep Water and Lower Deep Water). This work shows that the study area is the result of Mesozoic to present-day tectonics (e.g. the marginal platforms

  2. Bacterial and archaeal communities in the deep-sea sediments of inactive hydrothermal vents in the Southwest India Ridge

    Science.gov (United States)

    Zhang, Likui; Kang, Manyu; Xu, Jiajun; Xu, Jian; Shuai, Yinjie; Zhou, Xiaojian; Yang, Zhihui; Ma, Kesen

    2016-05-01

    Active deep-sea hydrothermal vents harbor abundant thermophilic and hyperthermophilic microorganisms. However, microbial communities in inactive hydrothermal vents have not been well documented. Here, we investigated bacterial and archaeal communities in the two deep-sea sediments (named as TVG4 and TVG11) collected from inactive hydrothermal vents in the Southwest India Ridge using the high-throughput sequencing technology of Illumina MiSeq2500 platform. Based on the V4 region of 16S rRNA gene, sequence analysis showed that bacterial communities in the two samples were dominated by Proteobacteria, followed by Bacteroidetes, Actinobacteria and Firmicutes. Furthermore, archaeal communities in the two samples were dominated by Thaumarchaeota and Euryarchaeota. Comparative analysis showed that (i) TVG4 displayed the higher bacterial richness and lower archaeal richness than TVG11; (ii) the two samples had more divergence in archaeal communities than bacterial communities. Bacteria and archaea that are potentially associated with nitrogen, sulfur metal and methane cycling were detected in the two samples. Overall, we first provided a comparative picture of bacterial and archaeal communities and revealed their potentially ecological roles in the deep-sea environments of inactive hydrothermal vents in the Southwest Indian Ridge, augmenting microbial communities in inactive hydrothermal vents.

  3. Differences in meiofauna communities with sediment depth are greater than habitat effects on the New Zealand continental margin: implications for vulnerability to anthropogenic disturbance

    Directory of Open Access Journals (Sweden)

    Norliana Rosli

    2016-07-01

    Full Text Available Studies of deep-sea benthic communities have largely focused on particular (macro habitats in isolation, with few studies considering multiple habitats simultaneously in a comparable manner. Compared to mega-epifauna and macrofauna, much less is known about habitat-related variation in meiofaunal community attributes (abundance, diversity and community structure. Here, we investigated meiofaunal community attributes in slope, canyon, seamount, and seep habitats in two regions on the continental slope of New Zealand (Hikurangi Margin and Bay of Plenty at four water depths (700, 1,000, 1,200 and 1,500 m. We found that patterns were not the same for each community attribute. Significant differences in abundance were consistent across regions, habitats, water and sediment depths, while diversity and community structure only differed between sediment depths. Abundance was higher in canyon and seep habitats compared with other habitats, while between sediment layer, abundance and diversity were higher at the sediment surface. Our findings suggest that meiofaunal community attributes are affected by environmental factors that operate on micro- (cm to meso- (0.1–10 km, and regional scales (> 100 km. We also found a weak, but significant, correlation between trawling intensity and surface sediment diversity. Overall, our results indicate that variability in meiofaunal communities was greater at small scale than at habitat or regional scale. These findings provide new insights into the factors controlling meiofauna in these deep-sea habitats and their potential vulnerability to anthropogenic activities.

  4. Geochemical impacts of waste disposal on the abyssal seafloor

    Science.gov (United States)

    Jahnke, Richard A.

    1998-05-01

    The response of pore water oxygen, nitrate, sulfate, sulfide, ammonium and methane and particulate organic carbon distributions to the input of 8.5 million m 3 (3.8×10 12 g) of organic-rich waste materials is simulated. The deposit is assumed to be conical with a maximum thickness of approximately 20 m. Remineralization reactions within the deposit rapidly deplete any initially available pore water oxidants such as oxygen, nitrate and sulfate, and are subsequently dominated by fermentation reactions. Diffusion downward of reduced metabolites, sulfide, ammonium and methane, depletes the available oxidants in the pore waters below the waste pile, increasing the thickness of the anoxic layer. While the impacted region is limited to essentially the deposition site, recovery of the pore waters is estimated to be >10 4 years. The overall computational results are corroborated by the pore water distributions observed at turbidite boundaries. Numerous uncertainties in the parameterizations limit the overall accuracy of the calculations presented. The most significant of these are: (1) A quantitatively accurate assessment of the remineralization rate of the deposited organic matter including its rate of inoculation by abyssal microorganisms; (2) a detailed assessment of potential non-diffusive pore water transport processes including advection due to compaction and buoyancy-driven flows and enhanced exchange due to macrobenthic irrigation activities and (3) an assessment of the potential alteration of pore space and methane reactivity due to gas hydrate formation.

  5. The abyssal and deep circulation of the Northeast Pacific Basin

    Science.gov (United States)

    Hautala, Susan L.

    2018-01-01

    Three-dimensional abyssal and deep circulation of the region to the east and north of the Emperor Seamount Chain/Hawaiian Ridge is determined from a compilation of CTD and Argo float data, using a new overdetermined inverse technique for the geostrophic reference velocity and diapycnal/lateral mixing coefficients. The Northeast Pacific Basin is primarily sourced from its northern boundary, at a rate of 3.5 Sv across 47°N below 3000 m. Bottom water in the western subarctic gyre recirculates cyclonically between the Emperor Seamount Chain and 155°W. Bottom water east of 155°W takes a more direct path southward along the flank of a broad topographic slope. In the deep water, a ridge of potential vorticity lying along the Mendocino Fracture Zone separates circulation systems north and south of ∼40°N. The region has very weak diapycnal and lateral mixing, and an aspect ratio for the overturning circulation that is correspondingly flat, with bottom water parcels rising less than 1 km during their long transit from the Aleutian Trench to the latitude of Hawaii.

  6. Shifts in phylogenetic diversity of archaeal communities in mangrove sediments at different sites and depths in southeastern Brazil.

    Science.gov (United States)

    Mendes, Lucas William; Taketani, Rodrigo Gouvêa; Navarrete, Acácio Aparecido; Tsai, Siu Mui

    2012-06-01

    This study focused on the structure and composition of archaeal communities in sediments of tropical mangroves in order to obtain sufficient insight into two Brazilian sites from different locations (one pristine and another located in an urban area) and at different depth levels from the surface. Terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified 16S rRNA gene fragments was used to scan the archaeal community structure, and 16S rRNA gene clone libraries were used to determine the community composition. Redundancy analysis of T-RFLP patterns revealed differences in archaeal community structure according to location, depth and soil attributes. Parameters such as pH, organic matter, potassium and magnesium presented significant correlation with general community structure. Furthermore, phylogenetic analysis revealed a community composition distributed differently according to depth where, in shallow samples, 74.3% of sequences were affiliated with Euryarchaeota and 25.7% were shared between Crenarchaeota and Thaumarchaeota, while for the deeper samples, 24.3% of the sequences were affiliated with Euryarchaeota and 75.7% with Crenarchaeota and Thaumarchaeota. Archaeal diversity measurements based on 16S rRNA gene clone libraries decreased with increasing depth and there was a greater difference between depths (25% of sequences shared). Taken together, our findings indicate that mangrove ecosystems support a diverse archaeal community; it might possibly be involved in nutrient cycles and are affected by sediment properties, depth and distinct locations. Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  7. DEBRIS FLOW DISASTER MITIGATION THROUGH COMMUNITY-BASED INTEGRATED SEDIMENT MANAGEMENT (BEST PRACTICE IN MT. MERAPI AREA, INDONESIA

    Directory of Open Access Journals (Sweden)

    Kazuhiko Otani

    2015-02-01

    Full Text Available Mt. Merapi is one of many active volcanoes in Indonesia which erupts frequently. The small eruption occurred nearly every year, whereas the big ones occurred at approximately once every five years. The eruption often produces impacts at both positive and negative view points, such as production of sediment as construction material and damage on infrastructures due to debris flow occurrences respectively. The eruption produces two types of disasters, i.e. primary disaster (such as ash fall, pyroclastic flow, and lava flow, and secondary disaster such as debris flow. This paper presents the long term effort on the development of community participation in the sand mining management as one of strategic disaster mitigation activities. The raising awareness of the community on the necessity of conducting proper sand mining management and its effect on reducing the risk due to debris flow disaster has shown the effectives of the approach being introduced. The local government acceptance on the presence of the community participation in the whole system of sediment management may involve further collaboration between the local government authority and community society in the future.

  8. Bacterial community composition in the gut content and ambient sediment of sea cucumber Apostichopus japonicus revealed by 16S rRNA gene pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Fei Gao

    Full Text Available The composition of the bacterial communities in the contents of the foregut and hindgut of the sea cucumber Apostichopus japonicus and in the ambient surface sediment was surveyed by 16S rRNA gene 454-pyrosequencing. A total of 188,623 optimized reads and 15,527 operational taxonomic units (OTUs were obtained from the ten gut contents samples and four surface sediment samples. The sequences in the sediments, foregut contents, and hindgut contents were assigned to 38.0±4.7, 31.2±6.2 and 27.8±6.5 phyla, respectively. The bacterial richness and Shannon diversity index were both higher in the ambient sediments than in the gut contents. Proteobacteria was the predominant phylum in both the gut contents and sediment samples. The predominant classes in the foregut, hindgut, and ambient sediment were Holophagae and Gammaproteobacteria, Deltaproteobacteria and Gammaproteobacteria, and Gammaproteobacteria and Deltaproteobacteria, respectively. The potential probiotics, including sequences related to Bacillus, lactic acid bacteria (Lactobacillus, Lactococcus, and Streptococcus and Pseudomonas were detected in the gut of A. japonicus. Principle component analysis and heatmap figure showed that the foregut, hindgut, and ambient sediment respectively harbored different characteristic bacterial communities. Selective feeding of A. japonicus may be the primary source of the different bacterial communities between the foregut contents and ambient sediments.

  9. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments

    KAUST Repository

    Li, Dong; Sharp, Jonathan O.; Drewes, Jorg

    2015-01-01

    , sulfur, purine and pyrimidine metabolisms, as well as restriction–modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast

  10. An Integrated Assessment of Geochemical and Community Structure Determinants of Metal Reduction Rates in Subsurface Sediments. Final report

    International Nuclear Information System (INIS)

    Pfiffner, Susan

    2010-01-01

    The objective of this research was to examine the importance of microbial community structure in influencing uranium reduction rates in subsurface sediments. If the redox state alone is the key to metal reduction, then any organisms that can utilize the oxygen and nitrate in the subsurface can change the geochemical conditions so metal reduction becomes an energetically favored reaction. Thus, community structure would not be critical in determining rates or extent of metal reduction unless community structure influenced the rate of change in redox. Alternatively, some microbes may directly catalyze metal reduction (e.g., specifically reduce U). In this case the composition of the community may be more important and specific types of electron donors may promote the production of communities that are more adept at U reduction. Our results helped determine if the type of electron donor or the preexisting community is important in the bioremediation of metal-contaminated environments subjected to biostimulation. In a series of experiments at the DOE FRC site in Oak Ridge we have consistently shown that all substrates promoted nitrate reduction, while glucose, ethanol, and acetate always promoted U reduction. Methanol only occasionally promoted extensive U reduction which is possibly due to community heterogeneity. There appeared to be limitations imposed on the community related to some substrates (e.g. methanol and pyruvate). Membrane lipid analyses (phospholipids and respiratory quinones) indicated different communities depending on electron donor used. Terminal restriction fragment length polymorphism and clone libraries indicated distinct differences among communities even in treatments that promoted U reduction. Thus, there was enough metabolic diversity to accommodate many different electron donors resulting in the U bioimmobilization.

  11. Microbial Communities and Organic Matter Composition in Surface and Subsurface Sediments of the Helgoland Mud Area, North Sea

    Science.gov (United States)

    Oni, Oluwatobi E.; Schmidt, Frauke; Miyatake, Tetsuro; Kasten, Sabine; Witt, Matthias; Hinrichs, Kai-Uwe; Friedrich, Michael W.

    2015-01-01

    The role of microorganisms in the cycling of sedimentary organic carbon is a crucial one. To better understand relationships between molecular composition of a potentially bioavailable fraction of organic matter and microbial populations, bacterial and archaeal communities were characterized using pyrosequencing-based 16S rRNA gene analysis in surface (top 30 cm) and subsurface/deeper sediments (30–530 cm) of the Helgoland mud area, North Sea. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) was used to characterize a potentially bioavailable organic matter fraction (hot-water extractable organic matter, WE-OM). Algal polymer-associated microbial populations such as members of the Gammaproteobacteria, Bacteroidetes, and Verrucomicrobia were dominant in surface sediments while members of the Chloroflexi (Dehalococcoidales and candidate order GIF9) and Miscellaneous Crenarchaeota Groups (MCG), both of which are linked to degradation of more recalcitrant, aromatic compounds and detrital proteins, were dominant in subsurface sediments. Microbial populations dominant in subsurface sediments (Chloroflexi, members of MCG, and Thermoplasmata) showed strong correlations to total organic carbon (TOC) content. Changes of WE-OM with sediment depth reveal molecular transformations from oxygen-rich [high oxygen to carbon (O/C), low hydrogen to carbon (H/C) ratios] aromatic compounds and highly unsaturated compounds toward compounds with lower O/C and higher H/C ratios. The observed molecular changes were most pronounced in organic compounds containing only CHO atoms. Our data thus, highlights classes of sedimentary organic compounds that may serve as microbial energy sources in methanic marine subsurface environments. PMID:26635758

  12. Molecular detection of Candidatus Scalindua pacifica and environmental responses of sediment anammox bacterial community in the Bohai Sea, China.

    Directory of Open Access Journals (Sweden)

    Hongyue Dang

    Full Text Available The Bohai Sea is a large semi-enclosed shallow water basin, which receives extensive river discharges of various terrestrial and anthropogenic materials such as sediments, nutrients and contaminants. How these terrigenous inputs may influence the diversity, community structure, biogeographical distribution, abundance and ecophysiology of the sediment anaerobic ammonium oxidation (anammox bacteria was unknown. To answer this question, an investigation employing both 16S rRNA and hzo gene biomarkers was carried out. Ca. Scalindua bacteria were predominant in the surface sediments of the Bohai Sea, while non-Scalindua anammox bacteria were also detected in the Yellow River estuary and inner part of Liaodong Bay that received strong riverine and anthropogenic impacts. A novel 16S rRNA gene sequence clade was identified, putatively representing an anammox bacterial new candidate species tentatively named "Ca. Scalindua pacifica". Several groups of environmental factors, usually with distinct physicochemical or biogeochemical natures, including general marine and estuarine physicochemical properties, availability of anammox substrates (inorganic N compounds, alternative reductants and oxidants, environmental variations caused by river discharges and associated contaminants such as heavy metals, were identified to likely play important roles in influencing the ecology and biogeochemical functioning of the sediment anammox bacteria. In addition to inorganic N compounds that might play a key role in shaping the anammox microbiota, organic carbon, organic nitrogen, sulfate, sulfide and metals all showed the potentials to participate in the anammox process, releasing the strict dependence of the anammox bacteria upon the direct availability of inorganic N nutrients that might be limiting in certain areas of the Bohai Sea. The importance of inorganic N nutrients and certain other environmental factors to the sediment anammox microbiota suggests that these

  13. High resolution study of the spatial distributions of abyssal fishes by autonomous underwater vehicle.

    Science.gov (United States)

    Milligan, R J; Morris, K J; Bett, B J; Durden, J M; Jones, D O B; Robert, K; Ruhl, H A; Bailey, D M

    2016-05-16

    On abyssal plains, demersal fish are believed to play an important role in transferring energy across the seafloor and between the pelagic and benthic realms. However, little is known about their spatial distributions, making it difficult to quantify their ecological significance. To address this, we employed an autonomous underwater vehicle to conduct an exceptionally large photographic survey of fish distributions on the Porcupine Abyssal Plain (NE Atlantic, 4850 m water depth) encompassing two spatial scales (1-10 km(2)) on and adjacent to a small abyssal hill (240 m elevation). The spatial distributions of the total fish fauna and that of the two dominant morphotypes (Coryphaenoides sp. 1 and C. profundicolus) appeared to be random, a result contrary to common expectation but consistent with previous predictions for these fishes. We estimated total fish density on the abyssal plain to be 723 individuals km(-2) (95% CI: 601-844). This estimate is higher, and likely more precise, than prior estimates from trawl catch and baited camera techniques (152 and 188 individuals km(-2) respectively). We detected no significant difference in fish density between abyssal hill and plain, nor did we detect any evidence for the existence of fish aggregations at any spatial scale assessed.

  14. Sediment bacterial community structures and their predicted functions implied the impacts from natural processes and anthropogenic activities in coastal area.

    Science.gov (United States)

    Su, Zhiguo; Dai, Tianjiao; Tang, Yushi; Tao, Yile; Huang, Bei; Mu, Qinglin; Wen, Donghui

    2018-06-01

    Coastal ecosystem structures and functions are changing under natural and anthropogenic influences. In this study, surface sediment samples were collected from disturbed zone (DZ), near estuary zone (NEZ), and far estuary zone (FEZ) of Hangzhou Bay, one of the most seriously polluted bays in China. The bacterial community structures and predicted functions varied significantly in different zones. Firmicutes were found most abundantly in DZ, highlighting the impacts of anthropogenic activities. Sediment total phosphorus was most influential on the bacterial community structures. Predicted by PICRUSt analysis, DZ significantly exceeded FEZ and NEZ in the subcategory of Xenobiotics Biodegradation and Metabolism; and DZ enriched all the nitrate reduction related genes, except nrfA gene. Seawater salinity and inorganic nitrogen, respectively as the representative natural and anthropogenic factor, performed exact-oppositely in nitrogen metabolism functions. The changes of bacterial community compositions and predicted functions provide a new insight into human-induced pollution impacts on coastal ecosystem. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Origin of salt giants in abyssal serpentinite systems

    Science.gov (United States)

    Scribano, Vittorio; Carbone, Serafina; Manuella, Fabio C.; Hovland, Martin; Rueslåtten, Håkon; Johnsen, Hans-K.

    2017-10-01

    Worldwide marine salt deposits ranging over the entire geological record are generally considered climate-related evaporites, derived from the precipitation of salts (mainly chlorides and sulfates) from saturated solutions driven by solar evaporation of seawater. This explanation may be realistic for a salt thickness ≤100 m, being therefore inadequate for thicker (>1 km) deposits. Moreover, sub-seafloor salt deposits in deep marine basins are difficult to reconcile with a surface evaporation model. Marine geology reports on abyssal serpentinite systems provide an alternative explanation for some salt deposits. Seawater-driven serpentinization consumes water and increases the salinity of the associated aqueous brines. Brines can be trapped in fractures and cavities in serpentinites and the surrounding `country' rocks. Successive thermal dehydration of buried serpentinites can mobilize and accumulate the brines, forming highly saline hydrothermal solutions. These can migrate upwards and erupt onto the seafloor as saline geysers, which may form salt-saturated water pools, as are currently observed in numerous deeps in the Red Sea and elsewhere. The drainage of deep-seated saline brines to seafloor may be a long-lasting, effective process, mainly occurring in areas characterized by strong tectonic stresses and/or igneous intrusions. Alternatively, brines could be slowly expelled from fractured serpentinites by buoyancy gradients and, hence, separated salts/brines could intrude vertically into surrounding rocks, forming salt diapirs. Serpentinization is an ubiquitous, exothermic, long-lasting process which can modify large volumes of oceanic lithosphere over geological times. Therefore, buried salt deposits in many areas of the world can be reasonably related to serpentinites.

  16. Methane emission in a specific riparian-zone sediment decreased with bioelectrochemical manipulation and corresponded to the microbial community dynamics

    Directory of Open Access Journals (Sweden)

    Elliot S. Friedman

    2016-01-01

    Full Text Available Dissimilatory metal-reducing bacteria are widespread in terrestrial ecosystems, especially in anaerobic soils and sediments. Thermodynamically, dissimilatory metal reduction is more favorable than sulfate reduction and methanogenesis but less favorable than denitrification and aerobic respiration. It is critical to understand the complex relationships, including the absence or presence of terminal electron acceptors, that govern microbial competition and coexistence in anaerobic soils and sediments, because subsurface microbial processes can effect greenhouse gas emissions from soils, possibly resulting in impacts at the global scale. Here, we elucidated the effect of an inexhaustible, ferrous-iron and humic-substance mimicking terminal electron acceptor by deploying potentiostatically poised electrodes in the sediment of a very specific stream riparian zone in Upstate New York state. At two sites within the same stream riparian zone during the course of six weeks in the spring of 2013, we measured CH4 and N2/N2O emissions from soil chambers containing either poised or unpoised electrodes, and we harvested biofilms from the electrodes to quantify microbial community dynamics. At the upstream site, which had a lower vegetation cover and highest soil temperatures, the poised electrodes inhibited CH4 emissions by ~45% (when normalized to remove temporal effects. CH4 emissions were not significantly impacted at the downstream site. N2/N2O emissions were generally low at both sites and were not impacted by poised electrodes. We did not find a direct link between bioelectrochemical treatment and microbial community membership; however, we did find a correspondence between environment/function and microbial community dynamics.

  17. Regional and sediment depth differences in nematode community structure greater than between habitats on the New Zealand margin: Implications for vulnerability to anthropogenic disturbance

    Science.gov (United States)

    Rosli, Norliana; Leduc, Daniel; Rowden, Ashley A.; Probert, P. Keith; Clark, Malcolm R.

    2018-01-01

    Deep-sea community attributes vary at a range of spatial scales. However, identifying the scale at which environmental factors affect variability in deep-sea communities remains difficult, as few studies have been designed in such a way as to allow meaningful comparisons across more than two spatial scales. In the present study, we investigated nematode diversity, community structure and trophic structure at different spatial scales (sediment depth (cm), habitat (seamount, canyon, continental slope; 1-100 km), and geographic region (100-10000 km)), while accounting for the effects of water depth, in two regions on New Zealand's continental margin. The greatest variability in community attributes was found between sediment depth layers and between regions, which explained 2-4 times more variability than habitats. The effect of habitat was consistently stronger in the Hikurangi Margin than the Bay of Plenty for all community attributes, whereas the opposite pattern was found in the Bay of Plenty where effect of sediment depth was greater in Bay of Plenty. The different patterns at each scale in each region reflect the differences in the environmental variables between regions that control nematode community attributes. Analyses suggest that nematode communities are mostly influenced by sediment characteristics and food availability, but that disturbance (fishing activity and bioturbation) also accounts for some of the observed patterns. The results provide new insight on the relative importance of processes operating at different spatial scales in regulating nematode communities in the deep-sea, and indicate potential differences in vulnerability to anthropogenic disturbance.

  18. Bacterial abundance and activity in deep-sea sediments from the eastern North Atlantic

    Science.gov (United States)

    Eardly, D. F.; Carton, M. W.; Gallagher, J. M.; Patching, J. W.

    Results are presented from four cruises to the Porcupine Abyssal Plain (PAP site) that took place during the BENGAL project from September 1996 to March 1998, and two cruises to the PAP and an oligotrophic site (EUMELI) that took place during the DEEPSEAS project between September 1993 and March 1994. Bacterial abundances in sediment and sediment contact water were measured by epifluorescence microscopy. Bacterial activity was determined by 3H-thymidine incorporation as a measure of DNA synthesis, and by 3H-leucine incorporation as a measure of protein synthesis. Activities were measured under atmospheric and in situ pressures and temperatures. Bacterial activity was usually higher in samples incubated at in situ pressure than those incubated at atmospheric pressure indicating that a barophilic community was dominant. Inter-cruise comparisons of abundance and activity during the BENGAL project showed no firm evidence of there being a seasonal response in the benthic microbial community to any episodic phytodetritus event. This was probably because of inter-annual variations in the quality and quantity of phytodetritus deposition at the PAP site, the rapid remineralization of fresh organic material by the microbial communities and the timing of cruises to the study area. 3H-thymidine and 3H-leucine incorporation in sediments was higher during the BENGAL period than the DEEPSEAS programme. A methodological change in the 3H-thymidine incorporation technique for sediments may explain the differences in DNA synthesis observed between the two projects, whereas the lower levels of protein synthesis observed during the DEEPSEAS programme probably reflected both inter-annual variations in activity at the PAP site and the lower productivity that prevailed at surface at the EUMELI oligotrophic site. Rates of 3H-thymidine incorporation in sediment contact water were similar during both projects.

  19. Bacterial sulfur cycle shapes microbial communities in surface sediments of an ultramafic hydrothermal vent field

    DEFF Research Database (Denmark)

    Schauer, Regina; Røy, Hans; Augustin, Nico

    2011-01-01

    RNA sequence analysis, was characterized by the capability to metabolize sulfur components. High sulfate reduction rates as well as sulfide depleted in (34)S further confirmed the importance of the biogeochemical sulfur cycle. In contrast, methane was found to be of minor relevance for microbial life in mat......, these sediments were investigated in order to determine biogeochemical processes and key organisms relevant for primary production. Temperature profiling at two mat-covered sites showed a conductive heating of the sediments. Elemental sulfur was detected in the overlying mat and metal-sulfides in the upper...

  20. Transport and deposition of plutonium in the ocean: Evidence from Gulf of Mexico sediments

    International Nuclear Information System (INIS)

    Scott, M.R.; Salter, P.F.; Halverson, J.E.

    1983-01-01

    A study of sediments in the Gulf of Mexico shows dramatic gradients in Pu content and isotope ratios from the continental shelf to the Sigsbee Abyssal Plain. In terms of predicted direct fallout inventory of Pu, one shelf core contains 745% of the predicted inventory, while abyssal plain sediments contain only 15-20% of the predicted value. Absolute Pu concentrations of shelf sediments are also conspicuously high, up to 110 dpm/kg, compared to 13.5 dpm/kg in Mississippi River suspended sediment. There is no evidence of Pu remobilization in Gulf of Mexico shelf sediments, based on comparison of Pu profiles with Mn/Al and Fe/Al profiles. Horizontal transport of fallout nuclides from the open ocean to removal sites in ocean margin sediments is concluded to be the source of both the high concentrations and high inventories of Pu reported here. The shelf sediments show 240 Pu/ 239 Pu ratios close to 0.179, the average stratospheric fallout value, but the ratios decrease progressively across the Gulf to low values of 0.06 in abyssal plain sediments. The source of low-ratio Pu in deep-water sediments may be debris from low yield tests transported in the troposphere. Alternatively, it may represent a fraction of the Pu from global stratospheric fallout which has been separated in the water column from the remainder of the Pu in the ocean. In either case, the low-ratio material must have been removed rapidly to the sea floor where it composes a major fraction of the Pu in abyssal plain sediments. Pu delivered by global atmospheric fallout from the stratosphere has apparently remained for the most part in the water or has been transported horizontally and removed into shallow-water sediments. (orig.)

  1. The Pseudomonas community in metal-contaminated sediments as revealed by quantitative PCR: a link with metal bioavailability.

    Science.gov (United States)

    Roosa, Stéphanie; Wauven, Corinne Vander; Billon, Gabriel; Matthijs, Sandra; Wattiez, Ruddy; Gillan, David C

    2014-10-01

    Pseudomonas bacteria are ubiquitous Gram-negative and aerobic microorganisms that are known to harbor metal resistance mechanisms such as efflux pumps and intracellular redox enzymes. Specific Pseudomonas bacteria have been quantified in some metal-contaminated environments, but the entire Pseudomonas population has been poorly investigated under these conditions, and the link with metal bioavailability was not previously examined. In the present study, quantitative PCR and cell cultivation were used to monitor and characterize the Pseudomonas population at 4 different sediment sites contaminated with various levels of metals. At the same time, total metals and metal bioavailability (as estimated using an HCl 1 m extraction) were measured. It was found that the total level of Pseudomonas, as determined by qPCR using two different genes (oprI and the 16S rRNA gene), was positively and significantly correlated with total and HCl-extractable Cu, Co, Ni, Pb and Zn, with high correlation coefficients (>0.8). Metal-contaminated sediments featured isolates of the Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas lutea and Pseudomonas aeruginosa groups, with other bacterial genera such as Mycobacterium, Klebsiella and Methylobacterium. It is concluded that Pseudomonas bacteria do proliferate in metal-contaminated sediments, but are still part of a complex community. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  2. Marine Microbial Community Response to Inorganic and Organic Sediment Amendments in Laboratory Mesocosms

    Science.gov (United States)

    2011-07-23

    2H2O, 1 g yeast extract, 10 mL Vitamin solution (100 stock) (Kieft et al., 1999), and 10 mL Mineral solution (100 stock) (Bretschger et al., 2007...space) and weighted by k3 . Identification of zinc phases in the sediment samples was accomplished by principal component analysis (PCA) and linear

  3. Sediment diatom species and community response to nitrogen addition in Oregon (USA) estuarine tidal wetlands

    Science.gov (United States)

    Sediment microalgae play an important role in nutrient cycling and are important primary producers in the food web in Pacific Northwest estuaries. This study examines the effects of nitrogen addition to benthic microalgae in tidal wetlands of Yaquina Bay estuary on the Oregon c...

  4. Open ocean pelago-benthic coupling: cyanobacteria as tracers of sedimenting salp faeces

    Science.gov (United States)

    Pfannkuche, Olaf; Lochte, Karin

    1993-04-01

    Coupling between surface water plankton and abyssal benthos was investigated during a mass development of salps ( Salpa fusiformis) in the Northeast Atlantic. Cyanobacteria numbers and composition of photosynthetic pigments were determined in faeces of captured salps from surface waters, sediment trap material, detritus from plankton hauls, surface sediments from 4500-4800 m depth and Holothurian gut contents. Cyanobacteria were found in all samples containing salp faeces and also in the guts of deep-sea Holothuria. The ratio between zeaxanthin (typical of cyanobacteria) and sum of chlorophyll a pigments was higher in samples from the deep sea when compared to fresh salp faeces, indicating that this carotenoid persisted longer in the sedimenting material than total chlorophyll a pigments. The microscopic and chemical observations allowed us to trace sedimenting salp faeces from the epipelagial to the abyssal benthos, and demonstrated their role as a fast and direct link between both systems. Cyanobacteria may provide a simple tracer for sedimenting phytodetritus.

  5. A novel approach to the assess biotic oxygen consumption in marine sediment communities

    Science.gov (United States)

    Baranov, Victor; Queiros, Ana; Widdicombe, Stephen; Stephens, Nick; Lessin, Gennadi; Krause, Stefan; Lewandowski, Joerg

    2016-04-01

    Bioturbation , the mixing of the sediment matrix by burrowing animals impacts sediment metabolism, including respiration through redistribution of particulate organics, changes in bacterial biota diversity and acitivity, as well as via burrowing fauna's own metabolism. Bioturbation, reflecting faunal activity, is also a proxy for the general sedimentary ecosystem health, and can be impacted by many of emerging marine environmental issues such as ocean acidification, warming and the occurrence of heat waves. Sedimentary oxygen consumption is often taken as a proxy for the activity of bioturbating fauna, but determining baselines can be difficult because of the confounding effects of other fauna and microbes present in sediments, as well as irnorganic processes that consume oxygen. Limitations therefore exist in current methodologies, and numerous confounding factors are hampering progress in this area. Here, we present novel method for the assessment of sediment respiration which is expected to be affected only by the biogenic oxygen consumption (namely aerobic respiration). As long as tracer reduction "immune" to inorganic oxygen consumption, so that measurements using this method can be used, alongside traditional methods, to decouple biological respiration from inorganic oxygen consumption reactions. The tracer is easily detectable, non-toxic and can be applied in systems with constant oxygen supply. The latter allow for incubation without the need to to work with unsealed experimental units, bringing procedural advantage over traditional methods. Consequently assessed bioturbating fauna is not exposed to hypoxia and additional stress. Here, we had applied system for the first time to investigate impacts of a common North-Atlantic bioturbator, the brittle star Amphiura filiformis, - on respiration of marine sediments. Two series of experiments were conducted with animals and sediment collected from Cawsand Bay, Plymouth, UK Preliminary results show that tracer

  6. Effects of Spartina alterniflora invasion on the communities of methanogens and sulfate-reducing bacteria in estuarine marsh sediments

    Directory of Open Access Journals (Sweden)

    Jemaneh eZeleke

    2013-08-01

    Full Text Available The effect of plant invasion on the microorganisms of soil sediments is very important for estuary ecology. The community structures of methanogens and sulfate-reducing bacteria (SRB as a function of Spartina alterniflora invasion in Phragmites australis-vegetated sediments of the Dongtan wetland in the Yangtze River estuary, China, were investigated using 454 pyrosequencing and quantitative real-time PCR (qPCR of the methyl coenzyme M reductase A (mcrA and dissimilatory sulfite-reductase (dsrB genes. Sediment samples were collected from two replicate locations, and each location included three sampling stands each covered by monocultures of P. australis, S. alterniflora and both plants (transition stands, respectively. qPCR analysis revealed higher copy numbers of mcrA genes in sediments from S. alterniflora stands than P. australis stands (5- and 7.5-fold more in the spring and summer, respectively, which is consistent with the higher methane flux rates measured in the S. alterniflora stands (up to 8.01 ± 5.61 mg m-2 h-1. Similar trends were observed for SRB, and they were up to two orders of magnitude higher than the methanogens. Diversity indices indicated a lower diversity of methanogens in the S. alterniflora stands than the P. australis stands. In contrast, insignificant variations were observed in the diversity of SRB with the invasion. Although Methanomicrobiales and Methanococcales, the hydrogenotrophic methanogens, dominated in the salt marsh, Methanomicrobiales displayed a slight increase with the invasion and growth of S. alterniflora, whereas the later responded differently. Methanosarcina, the metabolically diverse methanogens, did not vary with the invasion of, but Methanosaeta, the exclusive acetate utilizers, appeared to increase with S. alterniflora invasion. In SRB, sequences closely related to the families Desulfobacteraceae and Desulfobulbaceae dominated in the salt marsh, although they displayed minimal changes with the S

  7. Bacterial Community Sstructure and Novel Species of Magnetotactic Bacteria in Sediments from a Seamount in the Mariana Volcanic Arc

    Science.gov (United States)

    PAN, H.; LIU, J.; Zhang, W.; Xiao, T.; Wu, L. F.

    2017-12-01

    Seamounts are unique ecosystems where undersea mountains rise abruptly from the sea floor and interact dynamically with underwater currents, creating peculiar biological habitats with various microbial community structures. Certain bacteria associated with seamounts form conspicuous extracellular iron oxide structures, including encrusted stalks, flattened bifurcating tubes, and filamentous sheaths. To extend knowledge of seamount microorganisms we performed a systematic analysis of the population composition and occurrence of live magnetotactic bacteria (MTB) in sediments of a seamount in the Mariana volcanic arc. Proteobacteria dominated at 13 stations, and were the second in abundance to members of the Firmicutes at a deep station on a steep slope facing the Yap-Mariana trench. We found MTB that synthesize intracellular iron-oxide nanocrystals in biogenic sediments at all 14 stations, at seawater depths ranging from 238 to 2023 m. A novel flagellar apparatus, and the most complex yet reported, was observed in magnetotactic cocci; it comprises one or two bundles of 19 flagella arranged in a 3:4:5:4:3 array. Phylogenetic analysis of 16S rRNA gene sequences identified 16 novel species of MTB specific to this seamount. The geographic properties at the various stations on the seamount appear to be important in shaping the microbial community structure.

  8. The impact of heavy metal pollution gradients in sediments on benthic macrofauna at population and community levels

    International Nuclear Information System (INIS)

    Ryu, Jongseong; Khim, Jong Seong; Kang, Seong-Gil; Kang, Daeseok; Lee, Chang-hee; Koh, Chul-hwan

    2011-01-01

    The effect of sediment pollution on benthos was investigated in the vicinity of a large sewage treatment outflow at Incheon North Harbor, Korea. Animal size, vertical distribution and standard community parameters were analyzed along a 3 km transect line (n = 7). Univariate parameters showed a general trend of increasing species diversity with increasing distance from the pollution source. Multi-dimensional scaling analysis led to the clear separation of 3 locational groups, supporting gradient-dependent faunal composition. The innermost location was dominated by small sub-surface dwellers while the outer locations by large mid to deep burrowers. Looking for the size-frequency distribution, most abundance species (Heteromastus filiformis) showed the presence of larger size animals with increasing proximity to the pollution source. Meanwhile, species-specific vertical distributions, regardless of the pollution gradient, indicated that such shifts were due to species replacement resulting from a higher tolerance to pollutants over some species. - Highlights: → Hypotheses on benthic responses to sediment pollution were tested. → Decrease of species diversity with the proximity to the pollution source. → Shift of vertical distribution along the transect line attributes to species replacement. → Larger-size species occurred distant from the pollution source. → Larger individuals of Heteromastus filiformis occurred closer to the pollution source. - Community and population level response to the polluted environment of the harbor reflected an integration effect, together with biological interactions.

  9. Redox-Stratified Bacterial Communities in Sediments Associated with Multiple Lucinid Bivalve Species: Implications for Symbiosis in Changing Coastal Habitats

    Science.gov (United States)

    Paterson, A. T.; Fortier, C. M.; Long, B.; Kokesh, B. S.; Lim, S. J.; Campbell, B. J.; Anderson, L. C.; Engel, A. S.

    2017-12-01

    Lucinids, chemosymbiotic marine bivalves, occupy strong redox gradient habitats, including the rhizosphere of coastal seagrass beds and mangrove forests in subtropical to tropical ecosystems. Lucinids and their sulfide-oxidizing gammaproteobacterial endosymbionts, which are acquired from the environment, provide a critical ecosystem service by removing toxic reduced sulfur compounds from the surrounding environment, and lucinids may be an important food source to economically valuable fisheries. The habitats of Phacoides pectinatus, Stewartia floridana, Codakia orbicularis, Ctena orbiculata, and Lucina pensylvanica lucinids in Florida and San Salvador in The Bahamas were evaluated in comprehensive malacological, microbiological, and geochemical surveys. Vegetation cover included different seagrass species or calcareous green macroalgae. All sites were variably affected by anthropogenic activities, as evidenced by visible prop scars in seagrass beds, grain size distributions atypical of low energy environments (i.e., artificial fill or dredge material from nearby channels), and high levels of pyrogenic hydrocarbon compounds in sediment indicative of urbanization impact. Where present, lucinid population densities frequently exceeded 2000 individuals per cubic meter, and were typically more abundant underlying seagrass compared to unvegetated, bare sand. Dissolved oxygen and sulfide levels varied from where lucinids were recovered. The sediment bacterial communities from classified 16S rRNA gene sequences indicated that the diversity of putative anaerobic groups increased with sediment depth, but putative aerobes, including of Gammaproteobacteria related to the lucinid endosymbionts, decreased with depth. Where multiple seagrass species co-occurred, retrieved bacterial community compositions correlated to overlying seagrass species, but diversity differed from bare sand patches, including among putative free-living endosymbiont groups. As such, continued sea

  10. Effects of farmhouse hotel and paper mill effluents on bacterial community structures in sediment and surface water of Nanxi River, China.

    Science.gov (United States)

    Lu, Xiao-Ming; Lu, Peng-Zhen

    2014-11-01

    The pyrosequencing technique was used to evaluate bacterial community structures in sediment and surface water samples taken from Nanxi River receiving effluents from a paper mill and a farmhouse hotel, respectively. For each sample, 4,610 effective bacterial sequences were selected and used to do the analysis of diversity and abundance, respectively. Bacterial phylotype richness in the sediment sample without effluent input was higher than the other samples, and the surface water sample with addition of effluent from the paper mill contained the least richness. Effluents from both the paper mill and farmhouse hotel have a potential to reduce the bacterial diversity and abundance in the sediment and surface water, especially it is more significant in the sediment. The effect of the paper mill effluent on the sediment and surface water bacterial communities was more serious than that of the farmhouse hotel effluent. Characterization of microbial community structures in the sediment and surface water from two tributaries of the downstream river indicated that various effluents from the paper mill and farmhouse hotel have the similar potential to decrease the natural variability in riverine microbial ecosystems.

  11. Sup(10)Be variation in surficial sediments of the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; Aldahan, A.; Possnert, G.; Selvaraj, K.; Mascarenhas-Pereira, M.B.L.; Chen, C.T.A.

    Distribution of 10Be in systematically collected (degree + degree interval at 10 to 16 degrees S; 73.5 to 76.5 degrees E) surficial siliceous ooze, siliceous clay and pelagic clay sediments (top 2 cm) from the abyssal Central Indian Basin...

  12. Differences in nutrient concentrations and resources between seagrass communities on carbonate and terrigenous sediments in South Sulawesi, Indonesia

    NARCIS (Netherlands)

    Erftemeijer, P.L.A.

    1994-01-01

    Water column, sediment and plant parameters were studied in six tropical seagrass beds in South Sulawesi, Indonesia, to evaluate the relation between seagrass bed nutrient concentrations and sediment type. Coastal seagrass beds on terrigenous sediments had considerably higher biomass of

  13. Oxygen dynamics in periphyton communities and associated effects on phosphorus release from lake sediments

    International Nuclear Information System (INIS)

    Carlton, R.G.

    1986-01-01

    Periphyton is typically a heterogeneous assemblage of filamentous and single celled photoautotrophic and heterotrophic micoorganisms suspended in a mucopolysaccharide matrix which they produce. By definition, the assemblage is attached to a substratum such as rock, sediment, or plant in an aquatic environment. Microtechniques with high spatial and temporal resolution are required to define metabolic interactions among the heterotrophic and autotrophic constituents, and between periphyton and its environment. This study used oxygen sensitive microelectrodes with tip diameters of 32 P radiotracer and that permitted manipulation of the velocity, flushing rate, and oxygen concentration of overlying water was developed to investigate the role of photosynthetic oxygen production on the phosphorus dynamics in lake sediments colonized by epipelic periphyton. 89 refs., 20 figs

  14. Coral community structure and sedimentation at different distances from the coast of the Abrolhos Bank, Brazil

    Directory of Open Access Journals (Sweden)

    Bárbara Segal

    2011-06-01

    Full Text Available Sedimentation has previously been considered an important source of impact in coral reefs. We compared 3 sites on the Abrolhos Bank, Brazil, regarding sedimentation rates, carbonate sediment composition, coral cover, and colony size for the commonest local coral species (Mussismilia braziliensis, Siderastrea stellata, and Favia gravida. The sites are located at different distances from the mainland: Pedra de Leste (14 km, Pontas Sul (26 km, and Parcel dos Abrolhos (58 km. Sedimentation was higher in winter (p A sedimentação tem sido considerada uma importante fonte de impacto nos recifes de coral. Uma comparação entre as taxas de sedimentação, teor de carbonatos nos sedimentos, cobertura coralínea e tamanho de colônias de corais para as espécies mais comuns (Mussismilia braziliensis, Siderastrea stellata, e Favia gravida foi realizada em 3 locais no Banco dos Abrolhos. Os locais representam um gradiente de distância da costa: Pedra de Leste (14 km, Pontas Sul (26 km e Parcel dos Abrolhos (58 km. A sedimentação foi maior no inverno (p <0,05, mas não foi observada diferença entre os locais. O tipo de sedimento diferiu entre locais (P <0,05, sendo que Parcel dos Abrolhos apresentou 90% de carbonatos, Pontas Sul 65% e Pedra de Leste 50%. A cobertura coralínea foi maior no local mais afastado de terra (p <0,01, onde a cobertura de zoantídeos foi menor. Diferenças de tamanho de colônias foram encontradas apenas para M. braziliensis, com menores colônias em Pedra de Leste (p <0,05. A distribuição dos sedimentos terrígenos e a turbidez devem ser os principais fatores controladores do desenvolvimento dos recifes de Abrolhos.

  15. Archaeal community changes in Lateglacial lake sediments: Evidence from ancient DNA

    Science.gov (United States)

    Ahmed, Engy; Parducci, Laura; Unneberg, Per; Ågren, Rasmus; Schenk, Frederik; Rattray, Jayne E.; Han, Lu; Muschitiello, Francesco; Pedersen, Mikkel W.; Smittenberg, Rienk H.; Yamoah, Kweku Afrifa; Slotte, Tanja; Wohlfarth, Barbara

    2018-02-01

    The Lateglacial/early Holocene sediments from the ancient lake at Hässeldala Port, southern Sweden provide an important archive for the environmental and climatic shifts at the end of the last ice age and the transition into the present Interglacial. The existing multi-proxy data set highlights the complex interplay of physical and ecological changes in response to climatic shifts and lake status changes. Yet, it remains unclear how microorganisms, such as Archaea, which do not leave microscopic features in the sedimentary record, were affected by these climatic shifts. Here we present the metagenomic data set of Hässeldala Port with a special focus on the abundance and biodiversity of Archaea. This allows reconstructing for the first time the temporal succession of major Archaea groups between 13.9 and 10.8 ka BP by using ancient environmental DNA metagenomics and fossil archaeal cell membrane lipids. We then evaluate to which extent these findings reflect physical changes of the lake system, due to changes in lake-water summer temperature and seasonal lake-ice cover. We show that variations in archaeal composition and diversity were related to a variety of factors (e.g., changes in lake water temperature, duration of lake ice cover, rapid sediment infilling), which influenced bottom water conditions and the sediment-water interface. Methanogenic Archaea dominated during the Allerød and Younger Dryas pollen zones, when the ancient lake was likely stratified and anoxic for large parts of the year. The increase in archaeal diversity at the Younger Dryas/Holocene transition is explained by sediment infilling and formation of a mire/peatbog.

  16. Indicators: Sediment Enzymes

    Science.gov (United States)

    Sediment enzymes are proteins that are produced by microorganisms living in the sediment or soil. They are indicators of key ecosystem processes and can help determine which nutrients are affecting the biological community of a waterbody.

  17. A survey of alterations in microbial community diversity in marine sediments in response to oil from the Deepwater Horizon spill: Northern Gulf of Mexico shoreline, Texas to Florida

    Science.gov (United States)

    Lisle, John T.

    2011-01-01

    Microbial community genomic DNA was extracted from sediment samples collected from the northern Gulf of Mexico (NGOM) coast. These samples had a high probability of being impacted by Macondo-1 (M-1) well oil from the Deepwater Horizon (DWH) drilling site. The hypothesis for this project was that presence of M-1 oil in coastal sediments would significantly alter the diversity within the microbial communities associated with the impacted sediments. To determine if community-level changes did or did not occur following exposure to M-1 oil, microbial community-diversity fingerprints were generated and compared. Specific sequences within the community's genomic DNA were first amplified using the polymerase chain reaction (PCR) using a primer set that provides possible resolution to the species level. A second nested PCR that was performed on the primary PCR products using a primer set on which a GC-clamp was attached to one of the primers. These nested PCR products were separated using denaturing-gradient gel electrophoresis (DGGE) that resolves the nested PCR products based on sequence dissimilarities (or similarities), forming a genomic fingerprint of the microbial diversity within the respective samples. Sediment samples with similar fingerprints were grouped and compared to oil-fingerprint data from Rosenbauer and others (2010). The microbial community fingerprints grouped closely when identifying those sites that had been impacted by M-1 oil (N=12) and/or some mixture of M-1 and other oil (N=4), based upon the oil fingerprints. This report represents some of the first information on naturally occurring microbial communities in sediment from shorelines along the NGOM coast. These communities contain microbes capable of degrading oil and related hydrocarbons, making this information relevant to response and recovery of the NGOM from the DWH incident.

  18. Impacts of Alterations of Organic Inputs on the Bacterial Community within the sediments of Wind Cave, South Dakota, USA

    Directory of Open Access Journals (Sweden)

    Chelius Marisa K.

    2009-01-01

    Full Text Available Wind Cave (WICA in the Black Hills of South Dakota, like many mostly dry caves in temperate regions is an energy-starved system.The biotic communities that reside in these systems are low in diversity and simple in structure, and sensitive to changes in externalinputs of organic matter. Caves open to tourist traffic offer an opportunity to study the impacts of organic matter amendments in theform of human and rodent hair and dander, clothing lint, material from rodent activity (nesting materials and feces, and algal growthin and around artificial lighting. This study reports on the impacts of carbon amendments from humans and rodents on the bacterialand archaeal communities within the sediments of WICA from annual surveys and from a manipulative study that added lint (‘L’;cellulose plus rodent dander and rodent hair, rodent feces (‘F’, and a combination of both (‘LF’. The survey confirmed that bacterialbiomass was higher in regions of the cave with the highest rates of lint (hair and natural clothing fibers input. The manipulative studyfound that organic amendments in the forms of lint (L and rodent feces (F altered the WICA bacterial community structure in bothabundance and diversity, with the combined lint and feces (LF amendment having the most significant response. The high similarityof the LF and L communities suggests that the cave bacterial community is more carbon than nitrogen limited. The implication ofcave development to management practices is immediate and practical. Even small amounts of lint and organic matter foreign tocave bacteria significantly compromise the integrity of the endemic community resulting in the replacement of undescribed speciesby assemblages with at best, unknown impacts to natural cave features.

  19. Methane-metabolizing microbial communities in sediments of the Haima cold seep area, northwest slope of the South China Sea.

    Science.gov (United States)

    Niu, Mingyang; Fan, Xibei; Zhuang, Guangchao; Liang, Qianyong; Wang, Fengping

    2017-09-01

    Cold seeps are widespread chemosynthetic ecosystems in the deep-sea environment, and cold seep microbial communities of the South China Sea are poorly constrained. Here we report on the archaeal communities, particularly those involved in methane metabolization, in sediments of a newly discovered cold seep (named 'Haima') on the northwest slope of the South China Sea. Archaeal diversity, abundance and distribution were investigated in two piston cores collected from a seep area (QDN-14B) and a non-seep control site (QDN-31B). Geochemical investigation of the QDN-14B core identified an estimated sulfate-methane transition zone (Estimated SMTZ) at 300-400 cm below sea floor (cmbsf), where a high abundance of anaerobic methane-oxidizing archaea (ANME) occurred, as revealed by analysis of the 16S rRNA gene and the gene (mcrA) encoding the α-subunit of the key enzyme methyl-coenzyme M reductase. ANME-2a/b was predominant in the upper and middle layers of the estimated SMTZ, whereas ANME-1b outcompeted ANME-2 in the sulfate-depleted bottom layers of the estimated SMTZ and the methanogenic zone. Fine-scale phylogenetic analysis further divided the ANME-1b group into three subgroups with different distribution patterns: ANME-1bI, ANME-1bII and ANME-1bIII. Multivariate analyses indicated that dissolved inorganic carbon and sulfate may be important factors controlling the composition of the methane-metabolizing community. Our study on ANME niche separation and interactions with other archaeal groups improves our understanding of the metabolic diversity and flexibility of ANME, and the findings further suggest that ANME subgroups may have evolved diversified/specified metabolic capabilities other than syntrophic anaerobic oxidation of methane coupled with sulfate reduction in marine sediments. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Benthic community structure and composition in sediment from the northern Gulf of Mexico shoreline, Texas to Florida

    Science.gov (United States)

    Demopoulos, Amanda W.J.; Strom, Douglas G.

    2012-01-01

    From April 20 through July 15, 2010, approximately 4.93 million barrels of crude oil spilled into the Gulf of Mexico from the British Petroleum Macondo-1 well, representing the largest spill in U.S. waters. Baseline benthic community conditions were assessed from shoreline sediment samples collected from 56 stations within the swash zone (for example, sample depth ranged from 0 to 1.5 feet) along the northern Gulf of Mexico coastline. These sites were selected because they had a high probability of being impacted by the oil. Cores collected at 24 stations contained no sediment infauna. Benthic community metrics varied greatly among the remaining stations. Mississippi stations had the highest mean abundances (38.9 ± 23.9 individuals per 32 square centimeters (cm2); range: 0 to 186), while Texas had the lowest abundances, 4.9 ± 3 individuals per 32 cm2 (range: 0 to 25). Dominant phyla included Annelida, Arthropoda, and Mollusca, but proportional contributions of each group varied by State. Diversity indices Margalef's richness (d) and Shannon-Wiener diversity (H') were highest at Louisiana and Mississippi stations (0.4 and 0.4, for both, respectively) and lowest at Texas (values for both indices were 0.1 ± 0.1). Evenness (J') was low for all the States, ranging from 0.2 to 0.3, indicating a high degree of patchiness at these sites. Across stations within a State, average similarity ranged from 11.1 percent (Mississippi) to 41.1 percent (Louisiana). Low within-state similarity may be a consequence of differing habitat and physical environment conditions. Results provide necessary baseline information that will facilitate future comparisons with post-spill community metrics.

  1. Methane Seep in Shallow-Water Permeable Sediment Harbors High Diversity of Anaerobic Methanotrophic Communities, Elba, Italy.

    Science.gov (United States)

    Ruff, S Emil; Kuhfuss, Hanna; Wegener, Gunter; Lott, Christian; Ramette, Alban; Wiedling, Johanna; Knittel, Katrin; Weber, Miriam

    2016-01-01

    The anaerobic oxidation of methane (AOM) is a key biogeochemical process regulating methane emission from marine sediments into the hydrosphere. AOM is largely mediated by consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB), and has mainly been investigated in deep-sea sediments. Here we studied methane seepage at four spots located at 12 m water depth in coastal, organic carbon depleted permeable sands off the Island of Elba (Italy). We combined biogeochemical measurements, sequencing-based community analyses and in situ hybridization to investigate the microbial communities of this environment. Increased alkalinity, formation of free sulfide and nearly stoichiometric methane oxidation and sulfate reduction rates up to 200 nmol g(-1) day(-1) indicated the predominance of sulfate-coupled AOM. With up to 40 cm thickness the zones of AOM activity were unusually large and occurred in deeper sediment horizons (20-50 cm below seafloor) as compared to diffusion-dominated deep-sea seeps, which is likely caused by advective flow of pore water due to the shallow water depth and permeability of the sands. Hydrodynamic forces also may be responsible for the substantial phylogenetic and unprecedented morphological diversity of AOM consortia inhabiting these sands, including the clades ANME-1a/b, ANME-2a/b/c, ANME-3, and their partner bacteria SEEP-SRB1a and SEEP-SRB2. High microbial dispersal, the availability of diverse energy sources and high habitat heterogeneity might explain that the emission spots shared few microbial taxa, despite their physical proximity. Although the biogeochemistry of this shallow methane seep was very different to that of deep-sea seeps, their key functional taxa were very closely related, which supports the global dispersal of key taxa and underlines strong selection by methane as the predominant energy source. Mesophilic, methane-fueled ecosystems in shallow-water permeable sediments may comprise distinct

  2. Methane seep in shallow-water permeable sediment harbors high diversity of anaerobic methanotrophic communities, Elba, Italy

    Directory of Open Access Journals (Sweden)

    S Emil Ruff

    2016-03-01

    Full Text Available The anaerobic oxidation of methane (AOM is a key biogeochemical process regulating methane emission from marine sediments into the hydrosphere. AOM is largely mediated by consortia of anaerobic methanotrophic archaea (ANME and sulfate-reducing bacteria (SRB, and has mainly been investigated in deep-sea sediments. Here we studied methane seepage at four spots located at 12 m water depth in coastal, organic-carbon depleted permeable sands off the Island of Elba (Italy. We combined biogeochemical measurements, sequencing-based community analyses and in situ hybridization to investigate the microbial communities of this environment. Increased alkalinity, formation of free sulfide and nearly stoichiometric methane oxidation and sulfate reduction rates up to 200 nmol g-1 day-1 indicated the predominance of sulfate-coupled AOM. With up to 40 cm thickness the zones of AOM activity were unusually large and occurred in deeper sediment horizons (20–50 cm below seafloor as compared to diffusion-dominated deep-sea seeps, which is likely caused by advective flow of pore water due to the shallow water depth and permeability of the sands. Hydrodynamic forces also may be responsible for the substantial phylogenetic and unprecedented morphological diversity of AOM consortia inhabiting these sands, including the clades ANME-1a/b, ANME-2a/b/c, ANME-3 and their partner bacteria SEEP-SRB1a and SEEP-SRB2. High microbial dispersal, the availability of diverse energy sources and high habitat heterogeneity might explain that the emission spots shared few microbial taxa, despite their physical proximity. Although the biogeochemistry of this shallow methane seep was very different to that of deep-sea seeps, their key functional taxa were very closely related, which supports the global dispersal of key taxa and underlines strong selection by methane as the predominant energy source. Mesophilic, methane-fueled ecosystems in shallow-water permeable sediments may comprise

  3. Methane Seep in Shallow-Water Permeable Sediment Harbors High Diversity of Anaerobic Methanotrophic Communities, Elba, Italy

    Science.gov (United States)

    Ruff, S. Emil; Kuhfuss, Hanna; Wegener, Gunter; Lott, Christian; Ramette, Alban; Wiedling, Johanna; Knittel, Katrin; Weber, Miriam

    2016-01-01

    The anaerobic oxidation of methane (AOM) is a key biogeochemical process regulating methane emission from marine sediments into the hydrosphere. AOM is largely mediated by consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB), and has mainly been investigated in deep-sea sediments. Here we studied methane seepage at four spots located at 12 m water depth in coastal, organic carbon depleted permeable sands off the Island of Elba (Italy). We combined biogeochemical measurements, sequencing-based community analyses and in situ hybridization to investigate the microbial communities of this environment. Increased alkalinity, formation of free sulfide and nearly stoichiometric methane oxidation and sulfate reduction rates up to 200 nmol g-1 day-1 indicated the predominance of sulfate-coupled AOM. With up to 40 cm thickness the zones of AOM activity were unusually large and occurred in deeper sediment horizons (20–50 cm below seafloor) as compared to diffusion-dominated deep-sea seeps, which is likely caused by advective flow of pore water due to the shallow water depth and permeability of the sands. Hydrodynamic forces also may be responsible for the substantial phylogenetic and unprecedented morphological diversity of AOM consortia inhabiting these sands, including the clades ANME-1a/b, ANME-2a/b/c, ANME-3, and their partner bacteria SEEP-SRB1a and SEEP-SRB2. High microbial dispersal, the availability of diverse energy sources and high habitat heterogeneity might explain that the emission spots shared few microbial taxa, despite their physical proximity. Although the biogeochemistry of this shallow methane seep was very different to that of deep-sea seeps, their key functional taxa were very closely related, which supports the global dispersal of key taxa and underlines strong selection by methane as the predominant energy source. Mesophilic, methane-fueled ecosystems in shallow-water permeable sediments may comprise distinct

  4. Microbial Community Response to Carbon Substrate Amendment in Mercury Impacted Sediments: Implications on Microbial Methylation of Mercury.

    Science.gov (United States)

    Elias, D. A.; Somenahally, A. C.; Moberly, J. G.; Hurt, R. A., Jr.; Brown, S. D.; Podar, M.; Palumbo, A. V.; Gilmour, C. C.

    2015-12-01

    Methylmercury (MeHg) is a neurotoxic and bio-accumulative product of the microbial methylation of inorganic mercury (Hg(II)). Methylating organisms are now known to exist in almost all anaerobic niches including fermentation, Fe(III)- and sulfate- reduction as well as methanogenesis. The study objective was to determine the effect of different carbon sources on the microbial community and methylating populations in particular along a Hg contaminated creek. Sediment cores from upstream and downstream at the Hg contaminated East Fork Poplar Creek (EFPC), Oak Ridge TN, and a background site were sectioned by depth, and Hg-methylation potential (HgMP) assays were performed using stable isotope spikes. Sediments from the lowest depth possessed the highest in-situ activity. Replicate samples were amended with different carbon substrates (cellulose, acetate, propionate, lactate, ethanol and methanol), spiked with stable isotopes for HgMP assays and incubated for 24hrs. Sequencing of the 16S rRNA gene was performed to determine alterations in Bacterial and Archaeal population dynamics. Additionally, bioinformatics and our new qualitative and quantitative hgcAB primers were utilized to determine microbial community structure alterations and correlate organism and gene abundance with altered MeHg generation. HgMP was significantly reduced in cellulose amended sediments while acetate and propionate slightly decreased HgMP in both sites. Methanol, ethanol and lactate increased the HgMP in EFPC downstream while cellulose amendment significantly decreased the Proteobacteria, and the Firmicutes increased but none are currently known to produce MeHg. Geobacter bemidjiensis in particular significantly decreased in cellulose amended sediments in all three sites from being predominant in-situ. This suggests that in EFPC downstream and background sites, the prevalent Hg-methyaltors might be Deltaprotebacteria, since upstream, cellulose amendment did not reduce HgMP even though

  5. Thermoluminescence dating of abyssal deposits in the north region of the South China Sea

    International Nuclear Information System (INIS)

    Peng Xiaoxian

    1988-01-01

    The ages of abyssal deposits have been studied by TL dating. The ages of the deposits from the wells Weima 1, 5 and 6 at the slope in the north of the South China Sea are 36,100 and 128 thousand years respectively

  6. New occurrence of Youngest Toba Tuff in abyssal sediments of the Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Shane, P.; Banakar, V.K.

    S). This provides evidence for bi-hemispheric dispersal of the ash cloud and supports global dispersal of gas and aerosols from the eruption. Such dispersal could have facilitated the global impact of the eruption.  1999 Elsevier Science B.V. All rights reserved... global impact on climate near the oxygen isotope stage boundary (5a=4) (Rampino and Self, 1993). However, ice-core records indicate that the Toba eruption occurred prior to a short-lived stadial (1 ka) during a fluctuating climate and not at the on- set...

  7. Seismic evidence of exhumed mantle rock basement at the Gorringe Bank and the adjacent Horseshoe and Tagus abyssal plains (SW Iberia)

    Science.gov (United States)

    Sallarès, Valentí; Martínez-Loriente, Sara; Prada, Manel; Gràcia, Eulàlia; Ranero, César; Gutscher, Marc-André; Bartolome, Rafael; Gailler, Audrey; Dañobeitia, Juan José; Zitellini, Nevio

    2013-03-01

    The Gorringe Bank is a gigantic seamount that separates the Horseshoe and Tagus abyssal plains offshore SW Iberia, in a zone that hosts the convergent boundary between the Africa and Eurasia plates. Although the region has been the focus of numerous investigations since the early 1970s, the lack of appropriate geophysical data makes the nature of the basement, and thus the origin of the structures, still debated. In this work, we present combined P-wave seismic velocity and gravity models along a transect that crosses the Gorringe Bank from the Tagus to the Horseshoe abyssal plains. The P-wave velocity structure of the basement is similar in the Tagus and Horseshoe plains. It shows a 2.5-3.0 km-thick top layer with a velocity gradient twice stronger than oceanic Layer 2 and an abrupt change to an underlying layer with a five-fold weaker gradient. Velocity and density is lower beneath the Gorringe Bank probably due to enhanced fracturing, that have led to rock disaggregation in the sediment-starved northern flank. In contrast to previous velocity models of this region, there is no evidence of a sharp crust-mantle boundary in any of the record sections. The modelling results indicate that the sediment overlays directly serpentinite rock, exhumed from the mantle with a degree of serpentinization decreasing from a maximum of 70-80% under the top of Gorringe Bank to less than 5% at a depth of ˜20 km. We propose that the three domains were originally part of a single serpentine rock band, of nature and possibly origin similar to the Iberia Abyssal Plain ocean-continent transition, which was probably generated during the earliest phase of the North Atlantic opening that followed continental crust breakup (Early Cretaceous). During the Miocene, the NW-SE trending Eurasia-Africa convergence resulted in thrusting of the southeastern segment of the exhumed serpentinite band over the northwestern one, forming the Gorringe Bank. The local deformation associated to plate

  8. Effects of acid mine drainage on water, sediment and associated benthic macroinvertebrate communities

    International Nuclear Information System (INIS)

    Rutherford, L.G.; Cherry, D.S.; Dobbs, M.G.; Cairns, J. Jr.; Zipper, C.E.

    1995-01-01

    The toxic constituents of abandoned mined land (AML) discharges (acidic pH, heavy metals, total suspended solids) are extremely toxic to aquatic life . Studies were undertaken to ascertain environmental impacts to the upper Powell River, Lee and Wise Counties, Va. These impacts included disruptions in physical water quality, sediment quality, altered benthic macroinvertebrate assemblages, and toxicity of the water column and sediments from short-term impairment bioassays, and the potential to bioaccumulate selected metals (Al, Fe, Mn, P, Zn, Cu, Mg, S, Ni, Cd) by periphyton and resident bivalves. Water chemistry and macroinvertebrate assemblages were collected at upstream control, just below acid mine drainage and other downstream sites. Selected trace metal concentrations (Al, Fe, Mn, P, Zn, Cu, Mg, S, Ni, Cd) were determined for water, sediment and resident bivalves using ICP-AES. Acidic pH ranged from 2.15--3.3 at three AML-influenced seeps and varied from 6.4--8.0 at reference stations. At one AML-influenced creek, acidic pH conditions worsened from summer to fall and eradicated aquatic life throughout a 1.5 km stretch of that creek as it flowed into another creek. An additional dilution of 3.4 km in the second creek was needed to nearly neutralize the acidic pH problem. Conductivity (umhos/cm) ranged from 32--278 at reference sites and from 245--4,180 at AML-impact sites. Benthic macroinvertebrate abundance and taxon richness were essentially eliminated in the seeps or reached numbers of 1 -3 taxa totaling < 10 organisms relative to reference areas where richness values were 12--17 and comprised 300--977 organisms. Concentrations of Fe, Al, Mg and Cu and Zn were highest in the environmentally stressed stations of low pH and high conductivity relative to the reference stations. Iron was, by far, the element in highest concentration followed by Al and Mg

  9. Adaption of the microbial community to continuous exposures of multiple residual antibiotics in sediments from a salt-water aquacultural farm.

    Science.gov (United States)

    Xi, Xiuping; Wang, Min; Chen, Yongshan; Yu, Shen; Hong, Youwei; Ma, Jun; Wu, Qian; Lin, Qiaoyin; Xu, Xiangrong

    2015-06-15

    Residual antibiotics from aquacultural farming may alter microbial community structure in aquatic environments in ways that may adversely or positively impact microbially-mediated ecological functions. This study investigated 26 ponds (26 composited samples) used to produce fish, razor clam and shrimp (farming and drying) and 2 channels (10 samples) in a saltwater aquacultural farm in southern China to characterize microbial community structure (represented by phospholipid fatty acids) in surface sediments (0-10 cm) with long-term exposure to residual antibiotics. 11 out of 14 widely-used antibiotics were quantifiable at μg kg(-1) levels in sediments but their concentrations did not statistically differ among ponds and channels, except norfloxacin in drying shrimp ponds and thiamphenicol in razor clam ponds. Concentrations of protozoan PLFAs were significantly increased in sediments from razor clam ponds while other microbial groups were similar among ponds and channels. Both canonical-correlation and stepwise-multiple-regression analyses on microbial community and residual antibiotics suggested that roxithromycin residuals were significantly related to shifts in microbial community structure in sediments. This study provided field evidence that multiple residual antibiotics at low environmental levels from aquacultural farming do not produce fundamental shifts in microbial community structure. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. [Prokaryotic community of subglacial bottom sediments of Antarctic Lake Untersee: detection by cultural and direct microscopic techniques].

    Science.gov (United States)

    Muliukin, A L; Demkina, E V; Manucharova, N A; Akimov, V N; Andersen, D; McKay, C; Gal'chenko, V F

    2014-01-01

    The heterotrophic mesophilic component was studied in microbial communities of the samples of frozen regolith collected from the glacier near Lake Untersee collected in 2011 during the joint Russian-American expedition to central Dronning Maud Land (Eastern Antarctica). Cultural techniques revealed high bacterial numbers in the samples. For enumeration of viable cells, the most probable numbers (MPN) method proved more efficient than plating on agar media. Fluorescent in situ hybridization with the relevant oligonucleotide probes revealed members of the groups Eubacteria (Actinobacteria, Firmicutes) and Archaea. Application of the methods of cell resuscitation, such as the use of diluted media and prevention of oxidative stress, did not result in a significant increase in the numbers of viable cells retrieved form subglacial sediment samples. Our previous investigations demonstrated the necessity for special procedures for efficient reactivation of the cells from microbial communities of preserved fossil soil and permafrost samples collected in the Arctic zone. The differences in response to the special resuscitation procedures may reflect the differences in the physiological and morphological state of bacterial cells in microbial communities subject to continuous or periodic low temperatures and dehydration.

  11. Integration of community structure data reveals observable effects below sediment guideline thresholds in a large estuary

    KAUST Repository

    Tremblay, Louis A.; Clark, Dana; Sinner, Jim; Ellis, Joanne

    2017-01-01

    The sustainable management of estuarine and coastal ecosystems requires robust frameworks due to the presence of multiple physical and chemical stressors. In this study, we assessed whether ecological health decline, based on community structure

  12. [Changes in phytoperiphyton community during seasonal succession: influence of plankton sedimentation and grazing by phytophages--Chironomid larvae].

    Science.gov (United States)

    Lukin, V B

    2002-01-01

    The investigation of seasonal changes in spatial structure of phytoperiphyton during succession was conducted at the lower reaches of Akulovsky water channel from April to August 2000. At the beginning of succession from April to June dominant forms were chain-forming diatoms and filamentous green algae, sedimented from plankton. Later, at the middle of June under increasing pressure of herbivorous, they were replaced by stretched unicellular diatoms and colonial cyanobacteria. In late June-August, when herbivorous predation was the most intensive, the relative abundance of typical periphytonic forms decreased while that of settled planktonic forms increased. The effect of planktonic algae sedimentation on periphyton composition was evaluated as similarity between phytoperiphyton and phytoplankton communities measured with Chekanovski--Sorensen index. The value of this index tends to decrease with the development of periphyton while showing some relation to intensity of herbivorous pressure. Minimal values of Chekanovski--Sorensen index were under moderate herbivorous density, whereas maximal values were observed in periods of extremely high or low herbivorous density.

  13. Activity, Microenvironments, and Community Structure of Aerobic and Anaerobic Ammonium Oxidizing Prokaryotes in Estuarine Sediment (Randers Fjord, DK)

    DEFF Research Database (Denmark)

    Schramm, Andreas; Revsbech, Niels Peter; Dalsgaard, Tage

    2006-01-01

    ACTIVITY, MICROENVIRONMENTS, AND COMMUNITY STRUCTURE OF AEROBIC AND ANAEROBIC AMMONIUM OXIDIZING PROKARYOTES IN ESTUARINE SEDIMENT (RANDERS FJORD, DK) A. Schramm 1, N.P. Revsbech 1, T. Dalsgaard 2, E. Piña-Ochoa 3, J. de la Torré 4, D.A. Stahl 4, N. Risgaard-Petersen 2 1 Department of Biological...... conversion of ammonium with nitrite to N2, is increasingly recognized as link in the aquatic nitrogen cycle. However, factors regulating the occurrence and activity of anammox bacteria are still poorly understood. Besides the influence of abiotic factors, anammox might be controlled by either aerobic ammonia...... oxidizing bacteria and archaea (AOB and AOA) or nitrate-reducing/denitrifying bacteria via their supply of nitrite. Along the Randers Fjord estuary (Denmark), gradients of salinity, nutrients, and organic loading can be observed, and anammox has been detected previously at some sites. The aim of this study...

  14. Assessment of sediment metal contamination in the Mar Menor coastal lagoon (SE Spain: Metal distribution, toxicity, bioaccumulation and benthic community structure

    Directory of Open Access Journals (Sweden)

    2005-01-01

    Full Text Available The Mar Menor coastal lagoon is one of the largest of the Mediterranean Sea. Ancient mining activities in the mountains near its southern basin have resulted in metal contamination in the sediment. The metal bioavailability of these sediments was determined through laboratory toxicity bioassays using three Mediterranean sea urchin species and two amphipod species, and by means of field bioaccumulation measurements involving the seagrass Cymodocea nodosa. The effect of sediment metal contamination on benthic communities was assessed through benthic infaunal analyses, applying classical descriptive parameters and multivariate techniques. The sediments affected by the mining activities presented high levels of toxicity and metals were also accumulated in the seagrass tissues, pointing to metal bioavailability. Although the classical benthic indices were not clear indicators of disturbance, the multivariate techniques applied provided more consistent conclusions.

  15. Insights into the abundance and diversity of abyssal megafauna in a polymetallic-nodule region in the eastern Clarion-Clipperton Zone.

    Science.gov (United States)

    Amon, Diva J; Ziegler, Amanda F; Dahlgren, Thomas G; Glover, Adrian G; Goineau, Aurélie; Gooday, Andrew J; Wiklund, Helena; Smith, Craig R

    2016-07-29

    There is growing interest in mining polymetallic nodules in the abyssal Clarion-Clipperton Zone (CCZ) in the Pacific. Nonetheless, benthic communities in this region remain poorly known. The ABYSSLINE Project is conducting benthic biological baseline surveys for the UK Seabed Resources Ltd. exploration contract area (UK-1) in the CCZ. Using a Remotely Operated Vehicle, we surveyed megafauna at four sites within a 900 km(2) stratum in the UK-1 contract area, and at a site ~250 km east of the UK-1 area, allowing us to make the first estimates of abundance and diversity. We distinguished 170 morphotypes within the UK-1 contract area but species-richness estimators suggest this could be as high as 229. Megafaunal abundance averaged 1.48 ind. m(-2). Seven of 12 collected metazoan species were new to science, and four belonged to new genera. Approximately half of the morphotypes occurred only on polymetallic nodules. There were weak, but statistically significant, positive correlations between megafaunal and nodule abundance. Eastern-CCZ megafaunal diversity is high relative to two abyssal datasets from other regions, however comparisons with CCZ and DISCOL datasets are problematic given the lack of standardised methods and taxonomy. We postulate that CCZ megafaunal diversity is driven in part by habitat heterogeneity.

  16. Comparative analysis of bacterial community-metagenomics in coastal Gulf of Mexico sediment microcosms following exposure to Macondo oil (MC252)

    KAUST Repository

    Koo, Hyunmin

    2014-09-10

    The indigenous bacterial communities in sediment microcosms from Dauphin Island (DI), Petit Bois Island (PB) and Perdido Pass (PP) of the coastal Gulf of Mexico were compared following treatment with Macondo oil (MC252) using pyrosequencing and culture-based approaches. After quality-based trimming, 28,991 partial 16S rRNA sequence reads were analyzed by rarefaction, confirming that analyses of bacterial communities were saturated with respect to species diversity. Changes in the relative abundances of Proteobacteria, Bacteroidetes and Firmicutes played an important role in structuring bacterial communities in oil-treated sediments. Proteobacteria were dominant in oil-treated samples, whereas Firmicutes and Bacteroidetes were either the second or the third most abundant taxa. Tenericutes, members of which are known for oil biodegradation, were detected shortly after treatment, and continued to increase in DI and PP sediments. Multivariate statistical analyses (ADONIS) revealed significant dissimilarity of bacterial communities between oil-treated and untreated samples and among locations. In addition, a similarity percentage analysis showed the contribution of each species to the contrast between untreated and oil-treated samples. PCR amplification using DNA from pure cultures of Exiguobacterium,  Pseudoalteromonas,  Halomonas and Dyadobacter, isolated from oil-treated microcosm sediments, produced amplicons similar to polycyclic aromatic hydrocarbon-degrading genes. In the context of the 2010 Macondo blowout, the results from our study demonstrated that the indigenous bacterial communities in coastal Gulf of Mexico sediment microcosms responded to the MC252 oil with altered community structure and species composition. The rapid proliferation of hydrocarbonoclastic bacteria suggests their involvement in the degradation of the spilt oil in the Gulf of Mexico ecosystem.

  17. The ability of microbial community of Lake Baikal bottom sediments associated with gas discharge to carry out the transformation of organic matter under thermobaric conditions

    Directory of Open Access Journals (Sweden)

    Sergei Viktorovich Bukin

    2016-05-01

    Full Text Available The ability to compare the composition and metabolic potential of microbial communities inhabiting the subsurface sediment in geographically distinct locations is one of the keys to understanding the evolution and function of the subsurface biosphere. Prospective areas for study of the subsurface biosphere are the sites of hydrocarbon discharges on the bottom of the Lake Baikal rift, where ascending fluxes of gas-saturated fluids and oil from deep layers of bottom sediments seep into near-surface sediment. The samples of surface sediments collected in the area of the Posolskaya Bank methane seep were cultured for 17 months under thermobaric conditions (80°С, 5 MPa with the addition of complementary organic substrate, and a different composition for the gas phase. After incubation, the presence of intact cells of microorganisms, organic matter transformation and the formation of oil biomarkers was confirmed in the samples, with the addition of Baikalian diatom alga Synedra acus detritus, and gas mixture СH4:H2:CO2. Taxonomic assignment of the 16S rRNA sequence data indicates that the predominant sequences in the enrichment were Sphingomonas (55.3%, Solirubrobacter (27.5% and Arthrobacter (16.6%. At the same time, in heat-killed sediment and in sediment without any additional substrates, which were cultivated in a CH4 atmosphere, no geochemical changes were detected, nor the presence of intact cells and 16S rRNA sequences of Bacteria and Archaea. This data may suggest that the decomposition of organic matter under culturing conditions could be performed by microorganisms from low-temperature sediment layers. One possible explanation of this phenomenon is migration of the representatives of the deep thermophilic community through fault zones in the near surface sediment layers, together with gas-bearing fluids.

  18. An Integrated Assessment of Geochemical and Community Structure Determinants of Metal Reduction Rates in Subsurface Sediments

    International Nuclear Information System (INIS)

    Pfiffner, Susan M.; Brandt, Craig C.; Kostka, Joel E.; Palumbo, Anthony V.

    2005-01-01

    Our current research represents a joint effort between Oak Ridge National Laboratory (ORNL), Florida State University (FSU), and the University of Tennessee. ORNL will serve as the lead institution with Dr. A.V. Palumbo responsible for project coordination, integration, and deliverables. This project was initiated in November, 2004, in the Integrative Studies Element of the NABIR program. The overall goal of our project is to provide an improved understanding of the relationships between microbial community structure, geochemistry, and metal reduction rates. The research seeks to address the following questions: Is the metabolic diversity of the in situ microbial community sufficiently large and redundant that bioimmobilization of uranium will occur regardless of the type of electron donor added to the system? Are their donor specific effects that lead to enrichment of specific community members that then impose limits on the functional capabilities of the system? Will addition of humics change rates of uranium reduction without changing community structure? Can resource-ratio theory be used to understand changes in uranium reduction rates and community structure with respect to changing C:P ratios?

  19. Dynamics of microalgal communities in the water-column/sediment interface of the inner shelf off Parana State, Southern Brazil

    Directory of Open Access Journals (Sweden)

    Ricardo Luiz Queiroz

    2004-12-01

    Full Text Available The composition and biomass of the microalgal community at the water-column/sediment interface on the continental shelf off Parana State (Brazil were studied every 2 months during 1999. Samples for cell identification and determination of chlorophyll a were taken from the interface layer and at discrete depths up to 4 m above the sediment. Results showed a community mainly formed by benthic and planktonic diatoms >30 µm, benthic diatoms 30 µm, which accounted for most of the pigment biomass, were resuspended from the interface after turbulent periods, and may take advantage of calm periods to stay and grow at the interface. Small benthic diatoms were more susceptible to wind-induced turbulence occurring in higher densities in the water column just above the water-sediment interface. A cyanobacterial bloom (Trichodesmiun was observed at these bottom layers in the spring-summer periods.A composição geral e a biomassa da comunidade microalgal da interface sedimento/água da plataforma do Estado do Paraná (Brasil foram estudadas em 1999 em relação ao regime de ventos. A cada dois meses foram coletadas amostras para a identificação de organismos e determinação de clorofila a, na interface água-sedimento e em profundidades discretas, ao longo da coluna d'água, até 4m acima do sedimento. Os resultados obtidos revelaram uma comunidade constituída principalmente por diatomáceas planctônicas e bentônicas maiores que 30 µm, diatomáceas bentônicas menores que 30 µm, e cianobactérias coloniais. As densidades celulares foram geralmente mais altas na interface. Eventos de mistura e sedimentação parecem ser determinantes na regulação da composição e biomassa de tais comunidades. Formas menores, mais susceptíveis à turbulência, dominaram a comunidade de água de fundo na maioria das ocasiões, e foram as mais abundantes na interface apenas em períodos de extrema estabilidade. Células maiores, aparentemente contendo a maior parte

  20. Integration of community structure data reveals observable effects below sediment guideline thresholds in a large estuary

    KAUST Repository

    Tremblay, Louis A.

    2017-04-07

    The sustainable management of estuarine and coastal ecosystems requires robust frameworks due to the presence of multiple physical and chemical stressors. In this study, we assessed whether ecological health decline, based on community structure composition changes along a pollution gradient, occurred at levels below guideline threshold values for copper, zinc and lead. Canonical analysis of principal coordinates (CAP) was used to characterise benthic communities along a metal contamination gradient. The analysis revealed changes in benthic community distribution at levels below the individual guideline values for the three metals. These results suggest that field-based measures of ecological health analysed with multivariate tools can provide additional information to single metal guideline threshold values to monitor large systems exposed to multiple stressors.

  1. Diversity and function of the microbial community on anodes of sediment microbial fuel cells fueled by root exudates

    Energy Technology Data Exchange (ETDEWEB)

    Cabezas da Rosa, Angela

    2010-11-26

    Anode microbial communities are essential for current production in microbial fuel cells. Anode reducing bacteria are capable of using the anode as final electron acceptor in their respiratory chain. The electrons delivered to the anode travel through a circuit to the cathode where they reduce oxygen to water generating an electric current. A novel type of sediment microbial fuel cell (SMFC) harvest energy from photosynthetically derived compounds released through the roots. Nothing is known about anode microbial communities of this type of microbial fuel cell. This work consists of three parts. The first part focuses on the study of bacterial and archaeal community compositions on anodes of SMFCs fueled by rice root exudates. By using terminal restriction fragment length polymorphism (T-RFLP), a profiling technique, and cloning / sequencing of 16S rRNA, we determined that the support type used for the plant (vermiculite, potting soil or rice field soil) is an important factor determining the composition of the microbial community. Finally, by comparing microbial communities of current producing anodes and non-current producing controls we determined that Desulfobulbus- and Geobacter-related populations were probably most important for current production in potting soil and rice field soil SMFCs, respectively. However, {delta}-proteobacterial Anaeromyxobacter spp., unclassified {delta}-proteobacteria and Anaerolineae were also part of the anode biofilm in rice field soil SMFCs and these populations might also play a role in current production. Moreover, distinct clusters of Geobacter and Anaeromyxobacter populations were stimulated by rice root exudates. Regarding Archaea, uncultured Euryarchaea were abundant on anodes of potting soil SMFCs indicating a potential role in current production. In both, rice field soil and potting soil SMFCs, a decrease of Methanosaeta, an acetotrophic methanogen, was detected on current producing anodes. In the second part we focused

  2. Impact of protists on a hydrocarbon-degrading bacterial community from deep-sea Gulf of Mexico sediments: A microcosm study

    Science.gov (United States)

    Beaudoin, David J.; Carmichael, Catherine A.; Nelson, Robert K.; Reddy, Christopher M.; Teske, Andreas P.; Edgcomb, Virginia P.

    2016-07-01

    In spite of significant advancements towards understanding the dynamics of petroleum hydrocarbon degrading microbial consortia, the impacts (direct or indirect via grazing activities) of bacterivorous protists remain largely unknown. Microcosm experiments were used to examine whether protistan grazing affects the petroleum hydrocarbon degradation capacity of a deep-sea sediment microbial community from an active Gulf of Mexico cold seep. Differences in n-alkane content between native sediment microcosms and those treated with inhibitors of eukaryotes were assessed by comprehensive two-dimensional gas chromatography following 30-90 day incubations and analysis of shifts in microbial community composition using small subunit ribosomal RNA gene clone libraries. More biodegradation was observed in microcosms supplemented with eukaryotic inhibitors. SSU rRNA gene clone libraries from oil-amended treatments revealed an increase in the number of proteobacterial clones (particularly γ-proteobacteria) after spiking sediments with diesel oil. Bacterial community composition shifted, and degradation rates increased, in treatments where protists were inhibited, suggesting protists affect the hydrocarbon degrading capacity of microbial communities in sediments collected at this Gulf of Mexico site.

  3. Phenotypic Microdiversity and Phylogenetic Signal Analysis of Traits Related to Social Interaction in Bacillus spp. from Sediment Communities.

    Science.gov (United States)

    Rodríguez-Torres, María Dolores; Islas-Robles, África; Gómez-Lunar, Zulema; Delaye, Luis; Hernández-González, Ismael; Souza, Valeria; Travisano, Michael; Olmedo-Álvarez, Gabriela

    2017-01-01

    Understanding the relationship between phylogeny and predicted traits is important to uncover the dimension of the predictive power of a microbial composition approach. Numerous works have addressed the taxonomic composition of bacteria in communities, but little is known about trait heterogeneity in closely related bacteria that co-occur in communities. We evaluated a sample of 467 isolates from the Churince water system of the Cuatro Cienegas Basin (CCB), enriched for Bacillus spp. The 16S rRNA gene revealed a random distribution of taxonomic groups within this genus among 11 sampling sites. A subsample of 141 Bacillus spp. isolates from sediment, with seven well-represented species was chosen to evaluate the heterogeneity and the phylogenetic signal of phenotypic traits that are known to diverge within small clades, such as substrate utilization, and traits that are conserved deep in the lineage, such as prototrophy, swarming and biofilm formation. We were especially interested in evaluating social traits, such as swarming and biofilm formation, for which cooperation is needed to accomplish a multicellular behavior and for which there is little information from natural communities. The phylogenetic distribution of traits, evaluated by the Purvis and Fritz's D statistics approached a Brownian model of evolution. Analysis of the phylogenetic relatedness of the clusters of members sharing the trait using consenTRAIT algorithm, revealed more clustering and deeper phylogenetic signal for prototrophy, biofilm and swimming compared to the data obtained for substrate utilization. The explanation to the observed Brownian evolution of social traits could be either loss due to complete dispensability or to compensated trait loss due to the availability of public goods. Since many of the evaluated traits can be considered to be collective action traits, such as swarming, motility and biofilm formation, the observed microdiversity within taxonomic groups might be explained

  4. Submarine landslides in Arctic sedimentation: Canada Basin

    Science.gov (United States)

    Mosher, David C.; Shimeld, John; Hutchinson, Deborah R.; Lebedova-Ivanova, N; Chapman, C.

    2016-01-01

    Canada Basin of the Arctic Ocean is the least studied ocean basin in the World. Marine seismic field programs were conducted over the past 6 years using Canadian and American icebreakers. These expeditions acquired more than 14,000 line-km of multibeam bathymetric and multi-channel seismic reflection data over abyssal plain, continental rise and slope regions of Canada Basin; areas where little or no seismic reflection data existed previously. Canada Basin is a turbidite-filled basin with flat-lying reflections correlateable over 100s of km. For the upper half of the sedimentary succession, evidence of sedimentary processes other than turbidity current deposition is rare. The Canadian Archipelago and Beaufort Sea margins host stacked mass transport deposits from which many of these turbidites appear to derive. The stratigraphic succession of the MacKenzie River fan is dominated by mass transport deposits; one such complex is in excess of 132,000 km2 in area and underlies much of the southern abyssal plain. The modern seafloor is also scarred with escarpments and mass failure deposits; evidence that submarine landsliding is an ongoing process. In its latest phase of development, Canada Basin is geomorphologically confined with stable oceanographic structure, resulting in restricted depositional/reworking processes. The sedimentary record, therefore, underscores the significance of mass-transport processes in providing sediments to oceanic abyssal plains as few other basins are able to do.

  5. Sulphur-oxidising and Sulphate-reducing Communities in Brazilian Mangrove Sediments

    NARCIS (Netherlands)

    Varon-Lopez, Maryeimy; Dias, A.C.F; Fasanella, C.C.; Durrer, A.; Melo, I.S.; Kuramae, E.E.; Andreote, F.D.

    2014-01-01

    Mangrove soils are anaerobic environments rich in sulphate and organic matter. Although the sulphur cycle is one of the major actors in this ecosystem, little is known regarding the sulphur bacteria communities in mangrove soils. We investigated the abundance, composition and diversity of

  6. Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill

    DEFF Research Database (Denmark)

    Mason, Olivia U.; Scott, Nicole M.; Gonzalez, Antonio

    2014-01-01

    The Deepwater Horizon (DWH) oil spill in the spring of 2010 resulted in an input of similar to 4.1 million barrels of oil to the Gulf of Mexico; >22% of this oil is unaccounted for, with unknown environmental consequences. Here we investigated the impact of oil deposition on microbial communities...

  7. Respons of archaeal communities in beach sediments to spilled oil and bioremediation.

    NARCIS (Netherlands)

    Roling, W.F.M.; Couo de Brito, I.R.; Swannell, R.P.J.; Head, I.M.

    2004-01-01

    While the contribution of Bacteria to bioremediation of oil-contaminated shorelines is well established, the response of Archaea to spilled oil and bioremediation treatments is unknown. The relationship between archaeal community structure and oil spill bioremediation was examined in laboratory

  8. New insights into the abyssal sponge fauna of the Kurile-Kamchatka plain and Trench region (Northwest Pacific)

    Science.gov (United States)

    Downey, Rachel V.; Janussen, Dorte

    2015-01-01

    The under-explored abyssal depths of the Kurile-Kamchatka region have been re-examined during the KuramBio (Kurile-Kamchatka Biodiversity Study) expedition. Combining new KuramBio data with previous expedition data in this region has enhanced our understanding abyssal sponge fauna, in particular, the patchiness, rarity, and exceptional richness of the Cladorhizidae family. In total, 14 sponge species, from 7 genera, in 5 families, within two classes (Demospongiae and Hexactinellida) were collected. Of the 14 species, 29% (4 spp.) have been found previously in this region, 36% (5 spp.) were new to the regional abyssal fauna, and 21% (3 spp.) were new to science. The number of abyssal species in this region has now been increased by 26% (8 spp.) and genera by nearly 15% (2 genera). Rarity is a prominent feature of this abyssal fauna, with more than half of species only found at one station, and 83% (19 spp.) of species found previously in this region were not re-found during KuramBio. Cladorhizid sponges dominate demosponge species and genera richness in the abyssal Kurile-Kamchatka region; accounting for 87% (20 spp.) of all demosponge species, and accounting for over 60% (5 genera) of all demosponge genera. Sponge richness in this region is potentially aided by the productivity of the ocean waters, the geological age of the Pacific Ocean, low population densities, and the varied topographic features (ridges, trenches, and seamounts) found in this region. Unusually, the dominance of demosponges in the Kurile-Kamchatka sponge faunal composition is not replicated in other well-sampled abyssal regions, which tend to be richer in deep-sea hexactinellid fauna. Broad depth, latitudinal and longitudinal ranges in Kurile-Kamchatka abyssal fauna are a key characteristic of this faunal assemblage. Strong abyssal faunal connectivity is found between the Kurile-Kamchatka region and North Pacific abyssal fauna, with weaker faunal connections found with the adjacent semi

  9. Microbial Reduction of Fe(III) and SO42- and Associated Microbial Communities in the Alluvial Aquifer Groundwater and Sediments.

    Science.gov (United States)

    Lee, Ji-Hoon; Lee, Bong-Joo

    2017-11-25

    Agricultural demands continuously increased use of groundwater, causing drawdown of water table and need of artificial recharge using adjacent stream waters. River water intrusion into groundwater can alter the geochemical and microbiological characteristics in the aquifer and subsurface. In an effort to investigate the subsurface biogeochemical activities before operation of artificial recharge at the test site, established at the bank of Nakdong River, Changwon, South Korea, organic carbon transported from river water to groundwater was mimicked and the effect on the indigenous microbial communities was investigated with the microcosm incubations of the groundwater and subsurface sediments. Laboratory incubations indicated microbial reduction of Fe(III) and sulfate. Next-generation Illumina MiSeq sequences of V4 region of 16S rRNA gene provided that the shifts of microbial taxa to Fe(III)-reducing and/or sulfate-reducing microorganisms such as Geobacter, Albidiferax, Desulfocapsa, Desulfuromonas, and Desulfovibrio were in good correlation with the sequential flourishment of microbial reduction of Fe(III) and sulfate as the incubations progressed. This suggests the potential role of dissolved organic carbons migrated with the river water into groundwater in the managed aquifer recharge system on the indigenous microbial community composition and following alterations of subsurface biogeochemistry and microbial metabolic activities.

  10. Use of LH-PCR as a DNA fingerprint technique to trace sediment-associated microbial communities from various land uses

    Science.gov (United States)

    Joe-Strack, J. A.; Petticrew, E. L.

    2012-04-01

    The search for new techniques to effectively and efficiently trace sediment from its source along catchment pathways continues, with a range of new methods being developed and tested annually. A relatively recent approach marries genetic techniques to sediment analysis in order to characterize and differentiate the bacterial populations associated with soil and/or sediment originating from specific locations. Here we present the preliminary results of DNA fingerprint profiles of soil and sediment-associated bacterial communities in and around two different industrial land uses in the central interior of British Columbia, a feedlot and a copper/gold mining site. We assessed the naturally varying 16S rDNA gene using amplicon length heterogeneity-polymerase chain reaction (LH-PCR). Statistical differences between bacterial community profiles were investigated using a suite of methods of which non-metric multidimensional scaling (NMS) and indicator species analysis (ISA) were the most useful. Stronger statistical results were observed for the feedlot data set with spatial differences observed from the source location and within the adjacent creek. Results from the mine site were more difficult to assess although responses were detected in downstream waterways. While bacterial DNA fingerprinting of soil and sediment appears to be a promising tracing technique issues of scale and transferability may limit its use. Lessons learned from this preliminary study will be presented.

  11. Impaired Short-Term Functioning of a Benthic Community from a Deep Norwegian Fjord Following Deposition of Mine Tailings and Sediments

    Directory of Open Access Journals (Sweden)

    Lisa Mevenkamp

    2017-05-01

    Full Text Available The extraction of minerals from land-based mines necessitates the disposal of large amounts of mine tailings. Dumping and storage of tailings into the marine environment, such as fjords, is currently being performed without knowing the potential ecological consequences. This study investigated the effect of short-term exposure to different deposition depths of inert iron ore tailings (0.1, 0.5, and 3 cm and dead subsurface sediment (0.5 and 3 cm on a deep water (200 m fjord benthic assemblage in a microcosm experiment. Biotic and abiotic variables were measured to determine structural and functional changes of the benthic community following an 11 and 16 day exposure with tailings and dead sediment, respectively. Structural changes of macrofauna, meiofauna, and bacteria were measured in terms of biomass, density, community composition and mortality while measures of oxygen penetration depth, sediment community oxygen consumption and 13C-uptake and processing by biota revealed changes in the functioning of the system. Burial with mine tailings and natural sediments modified the structure and functioning of the benthic community albeit in a different way. Mine tailings deposition of 0.1 cm and more resulted in a reduced capacity of the benthic community to remineralize fresh 13C-labeled algal material, as evidenced by the reduced sediment community oxygen consumption and uptake rates in all biological compartments. At 3 cm of tailings deposition, it was evident that nematode mortality was higher inside the tailings layer, likely caused by reduced food availability. In contrast, dead sediment addition led to an increase in oxygen consumption and bacterial carbon uptake comparable to control conditions, thereby leaving deeper sediment layers anoxic and in turn causing nematode mortality at 3 cm deposition. This study clearly shows that even small levels (0.1 cm of instantaneous burial by mine tailings may significantly reduce benthic ecosystem

  12. Phylogenetic & Physiological Profiling of Microbial Communities of Contaminated Soils/Sediments: Identifying Microbial consortia...

    Energy Technology Data Exchange (ETDEWEB)

    Terence L. Marsh

    2004-05-26

    The goals of this study were: (1) survey the microbial community in soil samples from a site contaminated with heavy metals using new rapid molecular techniques that are culture-independent; (2) identify phylogenetic signatures of microbial populations that correlate with metal ion contamination; and (3) cultivate these diagnostic strains using traditional as well as novel cultivation techniques in order to identify organisms that may be of value in site evaluation/management or bioremediation.

  13. Structural stability, microbial biomass and community composition of sediments affected by the hydric dynamics of an urban stormwater infiltration basin. Dynamics of physical and microbial characteristics of stormwater sediment.

    Science.gov (United States)

    Badin, Anne Laure; Monier, Armelle; Volatier, Laurence; Geremia, Roberto A; Delolme, Cécile; Bedell, Jean-Philippe

    2011-05-01

    The sedimentary layer deposited at the surface of stormwater infiltration basins is highly organic and multicontaminated. It undergoes considerable moisture content fluctuations due to the drying and inundation cycles (called hydric dynamics) of these basins. Little is known about the microflora of the sediments and its dynamics; hence, the purpose of this study is to describe the physicochemical and biological characteristics of the sediments at different hydric statuses of the infiltration basin. Sediments were sampled at five time points following rain events and dry periods. They were characterized by physical (aggregation), chemical (nutrients and heavy metals), and biological (total, bacterial and fungal biomasses, and genotypic fingerprints of total bacterial and fungal communities) parameters. Data were processed using statistical analyses which indicated that heavy metal (1,841 μg/g dry weight (DW)) and organic matter (11%) remained stable through time. By contrast, aggregation, nutrient content (NH₄⁺, 53-717 μg/g DW), pH (6.9-7.4), and biological parameters were shown to vary with sediment water content and sediment biomass, and were higher consecutive to stormwater flows into the basin (up to 7 mg C/g DW) than during dry periods (0.6 mg C/g DW). Coinertia analysis revealed that the structure of the bacterial communities is driven by the hydric dynamics of the infiltration basin, although no such trend was found for fungal communities. Hydric dynamics more than rain events appear to be more relevant for explaining variations of aggregation, microbial biomass, and shift in the microbial community composition. We concluded that the hydric dynamics of stormwater infiltration basins greatly affects the structural stability of the sedimentary layer, the biomass of the microbial community living in it and its dynamics. The decrease in aggregation consecutive to rewetting probably enhances access to organic matter (OM), explaining the consecutive release

  14. A High-Level Fungal Diversity in the Intertidal Sediment of Chinese Seas Presents the Spatial Variation of Community Composition.

    Science.gov (United States)

    Li, Wei; Wang, Mengmeng; Bian, Xiaomeng; Guo, Jiajia; Cai, Lei

    2016-01-01

    The intertidal region is one of the most dynamic environments in the biosphere, which potentially supports vast biodiversity. Fungi have been found to play important roles in marine ecosystems, e.g., as parasites or symbionts of plants and animals, and as decomposers of organic materials. The fungal diversity in intertidal region, however, remains poorly understood. In this study, sediment samples from various intertidal habitats of Chinese seas were collected and investigated for determination of fungal community and spatial distribution. Through ribosomal RNA internal transcribed spacer-2 (ITS2) metabarcoding, a high-level fungal diversity was revealed, as represented by 6,013 OTUs that spanned six phyla, 23 classes, 84 orders and 526 genera. The presence of typical decomposers (e.g., Corollospora in Ascomycota and Lepiota in Basidiomycota) and pathogens (e.g., Olpidium in Chytriomycota, Actinomucor in Zygomycota and unidentified Rozellomycota spp.), and even mycorrhizal fungi (e.g., Glomus in Glomeromycota) indicated a complicated origin of intertidal fungi. Interestingly, a small proportion of sequences were classified to obligate marine fungi (e.g., Corollospora, Lignincola, Remispora, Sigmoidea ). Our data also showed that the East China Sea significantly differed from other regions in terms of species richness and community composition, indicating a profound effect of the huge discharge of the Yangtze River. No significant difference in fungal communities was detected, however, among habitat types (i.e., aquaculture, dock, plant, river mouth and tourism). These observations raise further questions on adaptation of these members to environments and the ecological functions they probably perform.

  15. Does deep ocean mixing drive upwelling or downwelling of abyssal waters?

    Science.gov (United States)

    Ferrari, R. M.; McDougall, T. J.; Mashayek, A.; Nikurashin, M.; Campin, J. M.

    2016-02-01

    It is generally understood that small-scale mixing, such as is caused by breaking internal waves, drives upwelling of the densest ocean waters that sink to the ocean bottom at high latitudes. However the observational evidence that the turbulent fluxes generated by small-scale mixing in the stratified ocean interior are more vigorous close to the ocean bottom than above implies that small-scale mixing converts light waters into denser ones, thus driving a net sinking of abyssal water. Using a combination of numerical models and observations, it will be shown that abyssal waters return to the surface along weakly stratified boundary layers, where the small-scale mixing of density decays to zero. The net ocean meridional overturning circulation is thus the small residual of a large sinking of waters, driven by small-scale mixing in the stratified interior, and a comparably large upwelling, driven by the reduced small-scale mixing along the ocean boundaries.

  16. Marine Microbial Gene Abundance and Community Composition in Response to Ocean Acidification and Elevated Temperature in Two Contrasting Coastal Marine Sediments

    Directory of Open Access Journals (Sweden)

    Ashleigh R. Currie

    2017-08-01

    Full Text Available Marine ecosystems are exposed to a range of human-induced climate stressors, in particular changing carbonate chemistry and elevated sea surface temperatures as a consequence of climate change. More research effort is needed to reduce uncertainties about the effects of global-scale warming and acidification for benthic microbial communities, which drive sedimentary biogeochemical cycles. In this research, mesocosm experiments were set up using muddy and sandy coastal sediments to investigate the independent and interactive effects of elevated carbon dioxide concentrations (750 ppm CO2 and elevated temperature (ambient +4°C on the abundance of taxonomic and functional microbial genes. Specific quantitative PCR primers were used to target archaeal, bacterial, and cyanobacterial/chloroplast 16S rRNA in both sediment types. Nitrogen cycling genes archaeal and bacterial ammonia monooxygenase (amoA and bacterial nitrite reductase (nirS were specifically targeted to identify changes in microbial gene abundance and potential impacts on nitrogen cycling. In muddy sediment, microbial gene abundance, including amoA and nirS genes, increased under elevated temperature and reduced under elevated CO2 after 28 days, accompanied by shifts in community composition. In contrast, the combined stressor treatment showed a non-additive effect with lower microbial gene abundance throughout the experiment. The response of microbial communities in the sandy sediment was less pronounced, with the most noticeable response seen in the archaeal gene abundances in response to environmental stressors over time. 16S rRNA genes (amoA and nirS were lower in abundance in the combined stressor treatments in sandy sediments. Our results indicated that marine benthic microorganisms, especially in muddy sediments, are susceptible to changes in ocean carbonate chemistry and seawater temperature, which ultimately may have an impact upon key benthic biogeochemical cycles.

  17. Bacterial community composition in different sediments from the Eastern Mediterranean Sea: a comparison of four 16S ribosomal DNA clone libraries.

    Science.gov (United States)

    Polymenakou, Paraskevi N; Bertilsson, Stefan; Tselepides, Anastasios; Stephanou, Euripides G

    2005-10-01

    The regional variability of sediment bacterial community composition and diversity was studied by comparative analysis of four large 16S ribosomal DNA (rDNA) clone libraries from sediments in different regions of the Eastern Mediterranean Sea (Thermaikos Gulf, Cretan Sea, and South lonian Sea). Amplified rDNA restriction analysis of 664 clones from the libraries indicate that the rDNA richness and evenness was high: for example, a near-1:1 relationship among screened clones and number of unique restriction patterns when up to 190 clones were screened for each library. Phylogenetic analysis of 207 bacterial 16S rDNA sequences from the sediment libraries demonstrated that Gamma-, Delta-, and Alphaproteobacteria, Holophaga/Acidobacteria, Planctomycetales, Actinobacteria, Bacteroidetes, and Verrucomicrobia were represented in all four libraries. A few clones also grouped with the Betaproteobacteria, Nitrospirae, Spirochaetales, Chlamydiae, Firmicutes, and candidate division OPl 1. The abundance of sequences affiliated with Gammaproteobacteria was higher in libraries from shallow sediments in the Thermaikos Gulf (30 m) and the Cretan Sea (100 m) compared to the deeper South Ionian station (2790 m). Most sequences in the four sediment libraries clustered with uncultured 16S rDNA phylotypes from marine habitats, and many of the closest matches were clones from hydrocarbon seeps, benzene-mineralizing consortia, sulfate reducers, sulk oxidizers, and ammonia oxidizers. LIBSHUFF statistics of 16S rDNA gene sequences from the four libraries revealed major differences, indicating either a very high richness in the sediment bacterial communities or considerable variability in bacterial community composition among regions, or both.

  18. Deciphering Equatorial Pacific Deep Sea Sediment Transport Regimes by Core-Log-Seismic Integration

    Science.gov (United States)

    Ortiz, E.; Tominaga, M.; Marcantonio, F.

    2017-12-01

    Investigating deep-sea sediment transportation and deposition regimes is a key to accurately understand implications from geological information recorded by pelagic sediments, e.g. climate signals. However, except for physical oceanographic particle trap experiments, geochemical analyses of in situsediments, and theoretical modeling of the relation between the bottom currents and sediment particle flux, it has remained a challenging task to document the movement of deep sea sediments, that takes place over time. We utilized high-resolution, multichannel reflection seismic data from the eastern equatorial Pacific region with drilling and logging results from two Integrated Ocean Drilling Program (IODP) sites, the Pacific Equatorial Age Transect (PEAT) 7 (Site U1337) and 8 (Site U1338), to characterize sediment transportation regimes on 18-24 Ma oceanic crust. Site U1337, constructed by a series of distinct abyssal hills and abyssal basins; Site U1338, located 570 km SE from Site U1337 site and constructed by a series of ridges, seamounts, and abyssal hills. These sites are of particular interest due to their proximity to the equatorial productivity zone, areas with high sedimentation rates and preservation of carbonate-bearing sediment that provide invaluable insights on equatorial Pacific ecosystems and carbon cycle. We integrate downhole geophysical logging data as well as geochemistry and physical properties measurements on recovered cores from IODP Sites U1337 and U1338 to comprehensively examine the mobility of deep-sea sediments and sediment diagenesis over times in a quasi-3D manner. We also examine 1100 km of high resolution underway seismic surveys from site survey lines in between PEAT 7 and 8 in order to investigate changes in sediment transportation between both sites. Integrating detailed seismic interpretations, high resolution core data, and 230Th flux measurements we aim to create a detailed chronological sedimentation and sediment diagenesis history

  19. Bacterial community shift in the coastal Gulf of Mexico salt-marsh sediment microcosm in vitro following exposure to the Mississippi Canyon Block 252 oil (MC252)

    KAUST Repository

    Koo, Hyunmin; Mojib, Nazia; Huang, Jonathan P.; Donahoe, Rona J.; Bej, Asim K.

    2014-01-01

    In this study, we examined the responses by the indigenous bacterial communities in salt-marsh sediment microcosms in vitro following treatment with Mississippi Canyon Block 252 oil (MC252). Microcosms were constructed of sediment and seawater collected from Bayou La Batre located in coastal Alabama on the Gulf of Mexico. We used an amplicon pyrosequencing approach on microcosm sediment metagenome targeting the V3–V5 region of the 16S rRNA gene. Overall, we identified a shift in the bacterial community in three distinct groups. The first group was the early responders (orders Pseudomonadales and Oceanospirillales within class Gammaproteobacteria), which increased their relative abundance within 2 weeks and were maintained 3 weeks after oil treatment. The second group was identified as early, but transient responders (order Rhodobacterales within class Alphaproteobacteria; class Epsilonproteobacteria), which increased their population by 2 weeks, but returned to the basal level 3 weeks after oil treatment. The third group was the late responders (order Clostridiales within phylum Firmicutes; order Methylococcales within class Gammaproteobacteria; and phylum Tenericutes), which only increased 3 weeks after oil treatment. Furthermore, we identified oil-sensitive bacterial taxa (order Chromatiales within class Gammaproteobacteria; order Syntrophobacterales within class Deltaproteobacteria), which decreased in their population after 2 weeks of oil treatment. Detection of alkane (alkB), catechol (C2,3DO) and biphenyl (bph) biodegradation genes by PCR, particularly in oil-treated sediment metacommunity DNA, delineates proliferation of the hydrocarbon degrading bacterial community. Overall, the indigenous bacterial communities in our salt-marsh sediment in vitro microcosm study responded rapidly and shifted towards members of the taxonomic groups that are capable of surviving in an MC252 oil-contaminated environment.

  20. Bacterial community shift in the coastal Gulf of Mexico salt-marsh sediment microcosm in vitro following exposure to the Mississippi Canyon Block 252 oil (MC252)

    KAUST Repository

    Koo, Hyunmin

    2014-07-10

    In this study, we examined the responses by the indigenous bacterial communities in salt-marsh sediment microcosms in vitro following treatment with Mississippi Canyon Block 252 oil (MC252). Microcosms were constructed of sediment and seawater collected from Bayou La Batre located in coastal Alabama on the Gulf of Mexico. We used an amplicon pyrosequencing approach on microcosm sediment metagenome targeting the V3–V5 region of the 16S rRNA gene. Overall, we identified a shift in the bacterial community in three distinct groups. The first group was the early responders (orders Pseudomonadales and Oceanospirillales within class Gammaproteobacteria), which increased their relative abundance within 2 weeks and were maintained 3 weeks after oil treatment. The second group was identified as early, but transient responders (order Rhodobacterales within class Alphaproteobacteria; class Epsilonproteobacteria), which increased their population by 2 weeks, but returned to the basal level 3 weeks after oil treatment. The third group was the late responders (order Clostridiales within phylum Firmicutes; order Methylococcales within class Gammaproteobacteria; and phylum Tenericutes), which only increased 3 weeks after oil treatment. Furthermore, we identified oil-sensitive bacterial taxa (order Chromatiales within class Gammaproteobacteria; order Syntrophobacterales within class Deltaproteobacteria), which decreased in their population after 2 weeks of oil treatment. Detection of alkane (alkB), catechol (C2,3DO) and biphenyl (bph) biodegradation genes by PCR, particularly in oil-treated sediment metacommunity DNA, delineates proliferation of the hydrocarbon degrading bacterial community. Overall, the indigenous bacterial communities in our salt-marsh sediment in vitro microcosm study responded rapidly and shifted towards members of the taxonomic groups that are capable of surviving in an MC252 oil-contaminated environment.

  1. Long-term change in the megabenthos of the Porcupine Abyssal Plain (NE Atlantic)

    Science.gov (United States)

    Billett, D. S. M.; Bett, B. J.; Rice, A. L.; Thurston, M. H.; Galéron, J.; Sibuet, M.; Wolff, G. A.

    A radical change in the abundance of invertebrate megafauna on the Porcupine Abyssal Plain is reported over a period of 10 years (1989-1999). Actiniarians, annelids, pycnogonids, tunicates, ophiuroids and holothurians increased significantly in abundance. However, there was no significant change in wet weight biomass. Two holothurian species, Amperima rosea and Ellipinion molle, increased in abundance by more than two orders of magnitude. Samples from the Porcupine Abyssal Plain over a longer period (1977-1999) show that prior to 1996 these holothurian species were always a minor component of the megafauna. From 1996 to 1999 A. rosea was abundant over a wide area of the Porcupine Abyssal Plain indicating that the phenomenon was not a localised event. Several dominant holothurian species show a distinct trend in decreasing body size over the study period. The changes in megafauna abundance may be related to environmental forcing (food supply) rather than to localised stochastic population variations. Inter-annual variability and long-term trends in organic matter supply to the seabed may be responsible for the observed changes in abundance, species dominance and size distributions.

  2. Biogeochemical and microbial variation across 5500 km of Antarctic surface sediment implicates organic matter as a driver of benthic community structure

    Directory of Open Access Journals (Sweden)

    Deric R Learman

    2016-03-01

    Full Text Available Western Antarctica, one of the fastest warming locations on Earth, is a unique environment that is underexplored with regards to biodiversity. Although pelagic microbial communities in the Southern Ocean and coastal Antarctic waters have been well studied, there are fewer investigations of benthic communities and most have a focused geographic range. We sampled surface sediment from 24 sites across a 5,500 km region of Western Antarctica (covering the Ross Sea to the Weddell Sea to examine relationships between microbial communities and sediment geochemistry. Sequencing of the 16S and 18S rRNA genes showed microbial communities in sediments from the Antarctic Peninsula (AP and Western Antarctica (WA, including the Ross, Amundsen, and Bellingshausen Seas, could be distinguished by correlations with organic matter concentrations and stable isotope fractionation (total organic carbon; TOC, nitrogen, and δ13C. Overall, samples from the AP were higher in nutrient content (TOC, nitrogen, and NH4+ and communities in these samples had higher relative abundances of operational taxonomic units (OTUs classified as the diatom, Chaetoceros, a marine cercozoan and four OTUs classified as Cytophaga or Flavobacteria. As these OTUs were strongly correlated with TOC, the data suggests the diatoms could be a source of organic matter and the Bacteroidetes and cercozoan are grazers that consume the organic matter. Additionally, samples from WA have lower nutrients and were dominated by Thaumarchaeota, which could be related to their known ability to thrive as lithotrophs. This study documents the largest analysis of benthic microbial communities to date in the Southern Ocean, representing almost half the continental shoreline of Antarctica, and documents trophic interactions and coupling of pelagic and benthic communities. Our results indicate potential modifications in carbon sequestration processes related to change in community composition, identifying a

  3. Can neap-spring tidal cycles modulate biogeochemical fluxes in the abyssal near-seafloor water column?

    Science.gov (United States)

    Turnewitsch, Robert; Dale, Andrew; Lahajnar, Niko; Lampitt, Richard S.; Sakamoto, Kei

    2017-05-01

    Before particulate matter that settles as 'primary flux' from the interior ocean is deposited into deep-sea sediments it has to traverse the benthic boundary layer (BBL) that is likely to cover almost all parts of the seafloor in the deep seas. Fluid dynamics in the BBL differ vastly from fluid dynamics in the overlying water column and, consequently, have the potential to lead to quantitative and compositional changes between primary and depositional fluxes. Despite this potential and the likely global relevance very little is known about mechanistic and quantitative aspects of the controlling processes. Here, results are presented for a sediment-trap time-series study that was conducted on the Porcupine Abyssal Plain in the abyssal Northeast Atlantic, with traps deployed at 2, 40 and 569 m above bottom (mab). The two bottommost traps were situated within the BBL-affected part of the water column. The time series captured 3 neap and 4 spring tides and the arrival of fresh settling material originating from a surface-ocean bloom. In the trap-collected material, total particulate matter (TPM), particulate inorganic carbon (PIC), biogenic silica (BSi), particulate organic carbon (POC), particulate nitrogen (PN), total hydrolysable amino acids (AA), hexosamines (HA) and lithogenic material (LM) were determined. The biogeochemical results are presented within the context of time series of measured currents (at 15 mab) and turbidity (at 1 mab). The main outcome is evidence for an effect of neap/spring tidal oscillations on particulate-matter dynamics in BBL-affected waters in the deep sea. Based on the frequency-decomposed current measurements and numerical modelling of BBL fluid dynamics, it is concluded that the neap/spring tidal oscillations of particulate-matter dynamics are less likely due to temporally varying total free-stream current speeds and more likely due to temporally and vertically varying turbulence intensities that result from the temporally varying

  4. Vadose zone microbial community structure and activity in metal/radionuclide contaminated sediments. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Balkwill, David L.

    2002-08-17

    This final technical report describes the research carried out during the final two months of the no-cost extension ending 11/14/01. The primary goals of the project were (1) to determine the potential for transformation of Cr(VI) (oxidized, mobile) to Cr(III) (reduced, immobile) under unsaturated conditions as a function of different levels and combinations of (a) chromium, (b) nitrate (co-disposed with Cr), and (c) molasses (inexpensive bioremediation substrate), and (2) to determine population structure and activity in experimental treatments by characterization of the microbial community by signature biomarker analysis and by RT-PCR and terminal restriction fragment length polymorphism (T-RFLP) and 16S ribosomal RNA genes. It was determined early in the one-year no-cost extension period that the T-RFLP approach was problematic in regard to providing information on the identities of microorganisms in the samples examined. As a result, it could not provide the detailed information on microbial community structure that was needed to assess the effects of treatments with chromium, nitrate, and/or molasses. Therefore, we decided to obtain the desired information by amplifying (using TR-PCR, with the same primers used for T-RFLP) and cloning 16S rRNA gene sequences from the same RNA extracts that were used for T-RFLP analysis. We also decided to use a restriction enzyme digest procedure (fingerprinting procedure) to place the clones into types. The primary focus of the research carried out during this report period was twofold: (a) to complete the sequencing of the clones, and (b) to analyze the clone sequences phylogenetically in order to determine the relatedness of the bacteria detected in the samples to each other and to previously described genera and species.

  5. The impact of temperature change on the activity and community composition of sulfate-reducing bacteria in arctic versus temperate marine sediments

    DEFF Research Database (Denmark)

    Robador, Alberto; Brüchert, Volker; Jørgensen, Bo Barker

    2009-01-01

    Arctic regions may be particularly sensitive to climate warming and, consequently, rates of carbon mineralization in warming marine sediment may also be affected. Using long-term (24 months) incubation experiments at 0°C, 10°C and 20°C, the temperature response of metabolic activity and community...... composition of sulfate-reducing bacteria were studied in the permanently cold sediment of north-western Svalbard (Arctic Ocean) and compared with a temperate habitat with seasonally varying temperature (German Bight, North Sea). Short-term 35S-sulfate tracer incubations in a temperature-gradient block...... (between -3.5°C and +40°C) were used to assess variations in sulfate reduction rates during the course of the experiment. Warming of arctic sediment resulted in a gradual increase of the temperature optima (Topt) for sulfate reduction suggesting a positive selection of psychrotolerant/mesophilic sulfate...

  6. Fine-scale community structure analysis of ANME in Nyegga sediments with high and low methane flux

    Directory of Open Access Journals (Sweden)

    Irene eRoalkvam

    2012-06-01

    Full Text Available To obtain knowledge on how regional variations in methane seepage rates influence the stratification, abundance and diversity of anaerobic methanotrophs (ANME we analyzed the vertical microbial stratification in a gravity core from a methane micro-seeping area at Nyegga by using 454-pyrosequencing of 16S rRNA gene tagged amplicons and quantitative PCR. The results were compared with previously obtained data from the more active G11 pockmark, characterized by higher methane flux. A downcore stratification and high relative abundance of ANME was observed in both cores, with transition from an ANME-2a/b dominated community in low-sulfide and low-methane horizons to ANME-1 dominance in horizons near the sulfate methane transition zone (SMTZ. The stratification was over a wider spatial region and at greater depth in the core with lower methane flux, and the total 16S rRNA copy numbers were two orders of magnitude lower than in the sediments at G11 pockmark. A fine-scale view into the ANME communities at each location was achieved through OTU clustering of ANME-affiliated sequences. The majority of ANME-1 sequences from both sampling sites clustered within one OTU, while ANME-2a/b sequences were represented in unique OTUs. We suggest that free living ANME-1 is the most abundant taxon in Nyegga cold seeps, and also the main consumer of methane. The specific ANME-2a/b ecotypes could reflect adaptations to the geochemical composition at each location, with different affinities to methane. Given that the ANME-2a/b population could be sustained in less active seepage areas, this subgroup could be potential seed populations in newly developed methane-enriched environments.

  7. Enriching distinctive microbial communities from marine sediments via an electrochemical-sulfide-oxidizing process on carbon electrodes

    Directory of Open Access Journals (Sweden)

    Shiue-Lin eLi

    2015-02-01

    Full Text Available Sulfide is a common product of marine anaerobic respiration, and a potent reactant biologically and geochemically. Here we demonstrate the impact on microbial communities with the removal of sulfide via electrochemical methods. The use of differential pulse voltammetry revealed that the oxidation of soluble sulfide was seen at + mV (vs. SHE at all pH ranges tested (from pH = 4 to 8, while non-ionized sulfide, which dominated at pH = 4 was poorly oxidized via this process. Two mixed cultures (CAT and LA were enriched from two different marine sediments (from Catalina Island, CAT; from the Port of Los Angeles, LA in serum bottles using a seawater medium supplemented with lactate, sulfate, and yeast extract, to obtain abundant biomass. Both CAT and LA cultures were inoculated in electrochemical cells (using yeast-extract-free seawater medium as an electrolyte equipped with carbon-felt electrodes. In both cases, when potentials of +630 or 130 mV (vs. SHE were applied, currents were consistently higher at +630 then at 0 mV, indicating more sulfide being oxidized at the higher potential. In addition, higher organic-acid and sulfate conversion rates were found at +630 mV with CAT, while no significant differences were found with LA at different potentials. The results of microbial-community analyses revealed a decrease in diversity for both CAT and LA after electrochemical incubation. In addition, some bacteria (e.g., Clostridium and Arcobacter not well known to be capable of extracellular electron transfer, were found to be dominant in the electrochemical cells. Thus, even though the different mixed cultures have different tolerances for sulfide, electrochemical-sulfide removal can lead to major population changes.

  8. Ocean floor sediment as a repository barrier: comparative diffusion data for selected radionuclides in sediments from the Atlantic and Pacific Oceans

    International Nuclear Information System (INIS)

    Schreiner, F.; Sabau, C.; Friedman, A.; Fried, S.

    1986-01-01

    Effective diffusion coefficients for selected radionuclides have been measured in ocean floor sediments to provide data for the assessment of barrier effectiveness in subseabed repositories for nuclear waste. The sediments tested include illite-rich and smectite-rich red clays from the mid plate gyre region of the Pacific Ocean, reducing sediment from the continental shelf of the northwest coast of North America, and Atlantic Ocean sediments from the Southern Nares Abyssal Plain and the Great Meteor East region. Results show extremely small effective diffusion coefficients with values less than 10 -14 m 2 s -1 for plutonium, americium, curium, thorium, and tin. Radionuclides with high diffusion coefficients of approximately 10 -10 m 2 s - include the anionic species pertechnetate, TcO 4 - , iodide, I - , and selenite, SO 3 -2 . Uranyl(VI) and neptunyl(V) ions, which are stable in solution, have diffusion coefficients around 10 -12 m 2 s -1 . The diffusion behavior of most radionuclides is similar in the oxygenated Pacific sediments and in the anoxic sediments from the Atlantic. An exception is neptunium, which is immobilized by Great Meteor East sediment, but has high mobility in Southern Nares Abyssal Plain sediment. Under stagnant conditions a 30 m thick sediment layer forms an effective geologic barrier isolating radionuclides in a subseabed repository from the biosphere

  9. Ocean floor sediment as a repository barrier: comparative diffusion data for selected radionuclides in sediments from the Atlantic and Pacific Oceans

    Energy Technology Data Exchange (ETDEWEB)

    Schreiner, F.; Sabau, C.; Friedman, A.; Fried, S.

    1985-01-01

    Effective diffusion coefficients for selected radionuclides have been measured in ocean floor sediments to provide data for the assessment of barrier effectiveness in subseabed repositories for nuclear waste. The sediments tested include illite-rich and smectite-rich red clays from the mid-plate gyre region of the Pacific Ocean, reducing sediment from the continental shelf of the northwest coast of North America, and Atlantic Ocean sediments from the Southern Nares Abyssal Plain and the Great Meteor East region. Results show extremely small effective diffusion coefficients with values less than 10/sup -14/ m/sup 2/s/sup -1/ for plutonium, americium, curium, thorium, and tin. Radionuclides with high diffusion coefficients of approximately 10/sup -10/ m/sup 2/s/sup -1/ include the anionic species pertechnetate, TcO/sub 4//sup -/, iodide, I/sup -/, and selenite, SeO/sub 3//sup -2/. Uranyl(VI) and neptunyl(V) ions, which are stable in solution, have diffusion coefficients around 10/sup -12/ m/sup 2/s/sup -1/. The diffusion behavior of most radionuclides is similar in the oxygenated Pacific sediments and in the anoxic sediments from the Atlantic. An exception is neptunium, which is immobilized by Great Meteor East sediment, but has high mobility in Southern Nares Abyssal Plain sediment. Under stagnant conditions a 30 m thick sediment layer forms an effective geologic barrier isolating radionuclides in a subseabed repository from the biosphere. 13 refs., 5 figs., 1 tab.

  10. Ocean floor sediment as a repository barrier: comparative diffusion data for selected radionuclides in sediments from the Atlantic and Pacific Oceans

    International Nuclear Information System (INIS)

    Schreiner, F.; Sabau, C.; Friedman, A.; Fried, S.

    1985-01-01

    Effective diffusion coefficients for selected radionuclides have been measured in ocean floor sediments to provide data for the assessment of barrier effectiveness in subseabed repositories for nuclear waste. The sediments tested include illite-rich and smectite-rich red clays from the mid-plate gyre region of the Pacific Ocean, reducing sediment from the continental shelf of the northwest coast of North America, and Atlantic Ocean sediments from the Southern Nares Abyssal Plain and the Great Meteor East region. Results show extremely small effective diffusion coefficients with values less than 10 -14 m 2 s -1 for plutonium, americium, curium, thorium, and tin. Radionuclides with high diffusion coefficients of approximately 10 -10 m 2 s -1 include the anionic species pertechnetate, TcO 4 - , iodide, I - , and selenite, SeO 3 -2 . Uranyl(VI) and neptunyl(V) ions, which are stable in solution, have diffusion coefficients around 10 -12 m 2 s -1 . The diffusion behavior of most radionuclides is similar in the oxygenated Pacific sediments and in the anoxic sediments from the Atlantic. An exception is neptunium, which is immobilized by Great Meteor East sediment, but has high mobility in Southern Nares Abyssal Plain sediment. Under stagnant conditions a 30 m thick sediment layer forms an effective geologic barrier isolating radionuclides in a subseabed repository from the biosphere. 13 refs., 5 figs., 1 tab

  11. A survey of microbial community diversity in marine sediments impacted by petroleum hydrocarbons from the Gulf of Mexico and Atlantic shorelines, Texas to Florida

    Science.gov (United States)

    Lisle, John T.; Stellick, Sarah H.

    2011-01-01

    Microbial community genomic DNA was extracted from sediment samples collected along the Gulf of Mexico and Atlantic coasts from Texas to Florida. Sample sites were identified as being ecologically sensitive and (or) as having high potential of being impacted by Macondo-1 (M-1) well oil from the Deepwater Horizon blowout. The diversity within the microbial communities associated with the collected sediments provides a baseline dataset to which microbial community-diversity data from impacted sites could be compared. To determine the microbial community diversity in the samples, genetic fingerprints were generated and compared. Specific sequences within the community genomic DNA were first amplified using the polymerase chain reaction (PCR) with a primer set that provides possible resolution to the species level. A second nested PCR was performed on the primary PCR products using a primer set on which a GC-clamp was attached to one of the primers. The nested PCR products were separated using denaturing-gradient gel electrophoresis (DGGE) that resolves the nested PCR products based on sequence dissimilarities (or similarities), forming a genomic fingerprint of the microbial diversity within the respective samples. Samples with similar fingerprints were grouped and compared to oil-fingerprint data from the same sites (Rosenbauer and others, 2011). The microbial community fingerprints were generally grouped into sites that had been shown to contain background concentrations of non-Deepwater Horizon oil. However, these groupings also included sites where no oil signature was detected. This report represents some of the first information on naturally occurring microbial communities in sediment from shorelines along the Gulf of Mexico and Atlantic coasts from Texas to Florida.

  12. LC/IRMS analysis: A powerful technique to trace carbon flow in microphytobenthic communities in intertidal sediments

    Science.gov (United States)

    Moerdijk-Poortvliet, Tanja C. W.; Stal, Lucas J.; Boschker, Henricus T. S.

    2014-09-01

    Microphytobenthic communities are important for primary production in intertidal marine sediments. Extracellular polymeric substances (EPS), comprising polysaccharides and proteins, play a key role in the structure and functioning of microphytobenthic biofilms and allow interactions between the benthic microalgae and the associated heterotrophic bacteria. The use of stable isotopes has provided major insights into the functioning of these microbial ecosystems. Until recently, gas chromatography-isotope ratio mass spectrometry (GC/IRMS) was the principal method for compound specific stable isotope analysis in these studies. Liquid chromatography linked to IRMS (LC/IRMS) is a more recently developed technique that broadens the range of compounds that can be targeted, in particular enabling the analysis of 13C in non-volatile, aqueous soluble organic compounds, such as carbohydrates and amino acids. In this paper we present an overview of the possibilities and limitations of the LC/IRMS technique to study metabolic processes in microphytobenthic biofilms consisting of mainly diatoms. With a preliminary in-situ labeling experiment, we show that the biosynthesis of carbohydrates and amino acids in EPS and total carbohydrate and amino acid pools can be determined by LC/IRMS. Water extractable EPS were composed predominantly of carbohydrates, whereas amino acids played a minor role, both in terms of content and production. By using LC/IRMS, we will be able to quantify the biosynthesis of metabolites and, hence, to unravel in detail the metabolic pathways of the transfer of carbon from the diatoms via EPS to the bacteria.

  13. Effects of inorganic electron acceptors on methanogenesis and methanotrophy and on the community structure of bacteria and archaea in sediments of a boreal lake

    Science.gov (United States)

    Rissanen, Antti J.; Karvinen, Anu; Nykänen, Hannu; Peura, Sari; Tiirola, Marja; Mäki, Anita; Kankaala, Paula

    2016-04-01

    Lake sediments are globally significant sources of CH4 to the atmosphere, but the factors controlling the production and consumption of CH4 in these systems are understudied. Increasing availability of electron acceptors (EA) (other than CO2) in sediments can decrease or even suppress CH4 production by diverting the electron flow (from H2 and organic substances) from methanogenic to other anaerobic respiration pathways. However, whether these changes in microbial function extend down to changes in the structure of microbial communities is not known. Also anaerobic oxidation of methane (AOM) could be enhanced by increased availability of EAs (SO42-, NO3-, Fe3+ and Mn4+), but information on the role of this process in lake sediments is scarce. We studied the effects of inorganic EAs on the potential for CH4 production and consumption and on the structure of microbial communities in sediments of a boreal lake. Anoxic slurries of sediment samples collected from two depths (0 - 10 cm; 10 - 30 cm) of the profundal zone of a boreal, mesotrophic Lake Ätäskö, were amended with 1) CH4 or with CH4 and either 2) 10 mM Mn4+, 3) 10 mM Fe3+, 4) O2 or 5) CH2F2 (inhibitor of aerobic methane oxidation) and incubated at +10° C for up to 4 months. Furthermore, slurries from the 10 - 30 cm layer were amended with CH4 and either 6) 2 mM NO3- or 7) 2 mM SO42- and incubated at +4 ° C for up to 14 months. The processes were measured using 13C-labelling and by concentration measurements of CH4 and CO2. Effects of treatments 1-3 on microbial communities were also analysed by next-generation sequencing of 16S rRNA, as well as methyl coenzyme-M reductase gene amplicons and mRNA transcripts. CH4 production (max. 83 nmol gdw-1d-1) took place in the anaerobic treatments but was generally decreased by the addition of NO3-, SO42-, Fe3+ and Mn4+. Although the structure of sediment archaeal community was resistant to Fe3+/Mn4+ - additions, slight changes in the structure of bacterial community

  14. Microbial Communities in Contaminated Sediments, Associated with Bioremediation of Uranium to Submicromolar Levels▿

    Science.gov (United States)

    Cardenas, Erick; Wu, Wei-Min; Leigh, Mary Beth; Carley, Jack; Carroll, Sue; Gentry, Terry; Luo, Jian; Watson, David; Gu, Baohua; Ginder-Vogel, Matthew; Kitanidis, Peter K.; Jardine, Philip M.; Zhou, Jizhong; Criddle, Craig S.; Marsh, Terence L.; Tiedje, James M.

    2008-01-01

    Microbial enumeration, 16S rRNA gene clone libraries, and chemical analysis were used to evaluate the in situ biological reduction and immobilization of uranium(VI) in a long-term experiment (more than 2 years) conducted at a highly uranium-contaminated site (up to 60 mg/liter and 800 mg/kg solids) of the U.S. Department of Energy in Oak Ridge, TN. Bioreduction was achieved by conditioning groundwater above ground and then stimulating growth of denitrifying, Fe(III)-reducing, and sulfate-reducing bacteria in situ through weekly injection of ethanol into the subsurface. After nearly 2 years of intermittent injection of ethanol, aqueous U levels fell below the U.S. Environmental Protection Agency maximum contaminant level for drinking water and groundwater (reducers were detected, including Desulfovibrio, Geobacter, Anaeromyxobacter, Desulfosporosinus, and Acidovorax spp. The predominant sulfate-reducing bacterial species were Desulfovibrio spp., while the iron reducers were represented by Ferribacterium spp. and Geothrix spp. Diversity-based clustering revealed differences between treated and untreated zones and also within samples of the treated area. Spatial differences in community structure within the treatment zone were likely related to the hydraulic pathway and to electron donor metabolism during biostimulation. PMID:18456853

  15. An Integrated Assessment of Geochemical and Community Structure Determinants of Metal Reduction Rates in Subsurface Sediments

    International Nuclear Information System (INIS)

    Kostka, Joel E.

    2008-01-01

    This project represented a joint effort between Oak Ridge National Laboratory (ORNL), the University of Tennessee (UT), and Florida State University (FSU). ORNL served as the lead in-stitution with Dr. A.V. Palumbo responsible for project coordination, integration, and deliver-ables. In situ uranium bioremediation is focused on biostimulating indigenous microorganisms through a combination of pH neutralization and the addition of large amounts of electron donor. Successful biostimulation of U(VI) reduction has been demonstrated in the field and in the laboratory. However, little data is available on the dynamics of microbial populations capable of U(VI) reduction, and the differences in the microbial community dynamics between proposed electron donors have not been explored. In order to elucidate the potential mechanisms of U(VI) reduction for optimization of bioremediation strategies, structure-function relationships of microbial populations were investigated in microcosms of subsurface materials cocontaminated with radionuclides and nitrate from the Oak Ridge Field Research Center (ORFRC), Oak Ridge, Tennessee.

  16. Diversity of Microbial Communities and Quantitative Chemodiversity in Layers of Marine Sediment Cores from a Causeway (Kaichu-Doro in Okinawa Island, Japan

    Directory of Open Access Journals (Sweden)

    Taha Soliman

    2017-12-01

    Full Text Available Microbial community diversity and chemodiversity were investigated in marine sediments adjacent to the Okinawan “Kaichu-Doro” Causeway, which was constructed 46 years ago to connect a group of four islands (Henza-jima, Miyagi-jima, Ikei-jima, Hamahiga-jima to the Okinawan main island. This causeway was not built on pilings, but by land reclamation; hence, it now acts as a long, thin peninsula. The construction of this causeway was previously shown to have influenced the surrounding marine ecosystem, causing ecosystem fragmentation and loss of water circulation. In this study, we collected sediment cores (n = 10 from five paired sites in 1 m water depths. Each pair of sites consisted of one site each on the immediate north and south sides of the causeway. Originally the members of each pair were much closer to each other (<150 m than to other pairs, but now the members of each pair are isolated by the causeway. Each core was 60–80 cm long and was divided into 15-cm layers. We examined the vertical diversity of microbial communities and chemical compounds to determine the correlation between chemodiversity and microbial communities among marine sediment cores and layers. Principal coordinate analyses (PCoA of detected compounds and of bacterial and archaeal operational taxonomic units (OTUs revealed that the north and south sides of the causeway are relatively isolated, with each side having unique microbial OTUs. Additionally, some bacterial families (e.g., Acidaminobacteraceae, Rhizobiaceae, and Xanthomonadaceae were found only on the south side of Kaichu-Doro. Interestingly, we found that the relative abundance of OTUs for some microbial families increased from top to bottom, but this was reversed in some other families. We conclude that the causeway has altered microbial community composition and metabolite profiles in marine sediments.

  17. Diversity of Microbial Communities and Quantitative Chemodiversity in Layers of Marine Sediment Cores from a Causeway (Kaichu-Doro) in Okinawa Island, Japan.

    Science.gov (United States)

    Soliman, Taha; Reimer, James D; Yang, Sung-Yin; Villar-Briones, Alejandro; Roy, Michael C; Jenke-Kodama, Holger

    2017-01-01

    Microbial community diversity and chemodiversity were investigated in marine sediments adjacent to the Okinawan "Kaichu-Doro" Causeway, which was constructed 46 years ago to connect a group of four islands (Henza-jima, Miyagi-jima, Ikei-jima, Hamahiga-jima) to the Okinawan main island. This causeway was not built on pilings, but by land reclamation; hence, it now acts as a long, thin peninsula. The construction of this causeway was previously shown to have influenced the surrounding marine ecosystem, causing ecosystem fragmentation and loss of water circulation. In this study, we collected sediment cores ( n = 10) from five paired sites in 1 m water depths. Each pair of sites consisted of one site each on the immediate north and south sides of the causeway. Originally the members of each pair were much closer to each other (microbial communities and chemical compounds to determine the correlation between chemodiversity and microbial communities among marine sediment cores and layers. Principal coordinate analyses (PCoA) of detected compounds and of bacterial and archaeal operational taxonomic units (OTUs) revealed that the north and south sides of the causeway are relatively isolated, with each side having unique microbial OTUs. Additionally, some bacterial families (e.g., Acidaminobacteraceae, Rhizobiaceae, and Xanthomonadaceae) were found only on the south side of Kaichu-Doro. Interestingly, we found that the relative abundance of OTUs for some microbial families increased from top to bottom, but this was reversed in some other families. We conclude that the causeway has altered microbial community composition and metabolite profiles in marine sediments.

  18. Spatio-temporal changes in the distribution of phytopigments and phytoplanktonic groups at the Porcupine Abyssal Plain (PAP) site

    Science.gov (United States)

    Smythe-Wright, Denise; Boswell, Stephen; Kim, Young-Nam; Kemp, Alan

    2010-08-01

    We have made a comprehensive study of pigment distributions and microscopically determined phytoplankton abundances within the Porcupine Abyssal Plain (PAP) location in the North Atlantic to better understand phytoplankton variability, and make some suggestions regarding the composition of the material falling to the sea bed and its impacts on benthic organisms such as Amperima rosea. The area has been the focus of many studies of ocean fluxes and benthic communities over recent years, but little attention has been given to the spatio-temporal variability in the surface waters. Dawn casts over a 12-day period at the PAP mooring site (48.83°N 16.5°W) revealed the presence of only one species, the diatom Actinocyclus exiguus, at bloom concentrations for just 5 days. Smaller populations of other diatoms and the dinoflagellates Gymnodinium and Gyrodinium were also present at this time. Following this 5-day interval, a mixed population of small-sized dinoflagellates, prymnesiophytes, prasinophytes, chrysophytes and cyanobacteria occurred. It is clear from concomitant CTD/bottle surveys that rapid changes in phytoplankton community structure at a fixed time series position do not necessarily reflect a degradation or manifestation of one particular species but rather represent the movement of eddies and other water masses within very short timescales. These cause substantial variability in the species class and size fraction that may explain the variability in carbon export that has been seen at the PAP site. We also make some suggestions on the variable composition of the material falling to the seabed and its impact on benthic organisms such as Amperima rosea.

  19. Macrobenthic diversity and sediment-water exchanges of oxygen and ammonium: Example of two subtidal communities of the eastern English Channel

    Science.gov (United States)

    Tous Rius, Armonie; Denis, Lionel; Dauvin, Jean-Claude; Spilmont, Nicolas

    2018-06-01

    In organic-rich shallow habitats, benthic macrofauna is known to play a major role in the geochemical functioning of surficial sediments through its metabolism, as well as its bioirrigation and/or bioturbation activity. In this paper, the effects of benthic macrofauna on metabolic fluxes at the sediment-water interface were studied at four dates, from winter to late summer, on two major macrobenthic communities of the eastern English Channel (macrotidal system): the fine sand Abra alba community (2 stations) and the sandy gravel Ophiothrix fragilis community (1 station). Oxygen and ammonium fluxes showed temporal changes that could be attributed to the variation of sea water temperature. Once the effect of temperature removed (using Q10 = 2.5), the average fauna mediated fluxes (FFauna) represented respectively 77% and 76% of average total fluxes. Considering the whole dataset, species number and biomass showed a significant correlation with fauna mediated fluxes of O2 and NH4+, while the relationships with abundance were not significant. The species composition of the community might influence ecosystem functioning, but in the present study, functional groups have a very poor relationship with FFauna (O2) and FFauna (NH4+). Despite the presence of engineer species, establishing general and simple rules to link macrofaunal parameters to functional attributes remains very difficult, suggesting that communities rather followed the idiosyncrasy and rivet hypothesis.

  20. Sediment pollution and predation affect structure and production of benthic macroinvertebrate communities in the Rhine-Meuse delta, The Netherlands

    NARCIS (Netherlands)

    Lange, de H.J.; Jonge, de J.; Besten, den P.J.; Oosterbaan, J.; Peeters, E.T.H.M.

    2004-01-01

    Most floodplain sediments of the rivers Rhine and Meuse in The Netherlands are moderately polluted with trace metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and other chemicals. The effects of these sediment-bound contaminants on the productivity of benthic

  1. Occurrence of diarrhoeagenic Escherichia coli virulence genes in water and bed sediments of a river used by communities in Gauteng, South Africa.

    Science.gov (United States)

    Abia, Akebe Luther King; Ubomba-Jaswa, Eunice; Momba, Maggy Ndombo Benteke

    2016-08-01

    In most developing countries, especially in Southern Africa, little is known about the presence of diarrhoeagenic Escherichia coli (DEC) pathotypes in riverbed sediments. The present study sought to investigate the presence of DEC virulence genes in riverbed sediments of the Apies River, a river used by many communities in Gauteng, South Africa. Water and sediment samples were collected from the river between July and August 2013 (dry season) and also between January and February 2014 (wet season) following standard procedures. Isolation of E. coli was done using the Colilert®-18 Quanti-Tray® 2000 system. DNA was extracted from E. coli isolates using the InstaGene™ matrix from Bio-Rad and used as template DNA for real-time PCR. Water pH, temperature, dissolved oxygen, electrical conductivity and turbidity were measured in situ. Over 59 % of 180 samples analysed were positive for at least one of the seven DEC virulence genes investigated. The eaeA gene was the most isolated gene (29.44 %) while the ipaH gene the least isolated (8.33 %). The ipaH gene (p = 0.012) and the ST gene (stIa, p = 0.0001, and stIb, p = 0.019) were positively correlated with temperature. The detection of diarrhoeagenic E. coli virulence genes in the sediments of the Apies River shows that the sediments of this river might not only be a reservoir of faecal indicator bacteria like E. coli but also pathogenic strains of this bacterium. These organisms could represent a public health risk for poor communities relying on this water source for various purposes such as drinking and recreational use. There is therefore an urgent need to monitor these DEC pathotypes especially in areas without adequate water supplies.

  2. Early diagenesis in the Congo deep-sea fan sediments dominated by massive terrigenous deposits: Part I - Oxygen consumption and organic carbon mineralization using a micro-electrode approach

    Science.gov (United States)

    Pozzato, Lara; Cathalot, Cécile; Berrached, Chabha; Toussaint, Flora; Stetten, Elsa; Caprais, Jean-Claude; Pastor, Lucie; Olu, Karine; Rabouille, Christophe

    2017-08-01

    Organic matter (OM) transfer from the continent to the ocean occurs across margins which constitute a major area of OM recycling and burial. The lobe complex of the Congo deep-sea fan is connected to the river mouth by a canyon and alimented by recurrent turbidity currents, containing a large proportion of labile terrigenous OM and producing high sedimentation rates. These inputs support the development of ecosystems harboring rich assemblages of vesicomyid bivalves and bacterial mats, called Habitats. Here, we present O2 microprofiles and diffusive oxygen uptake rates (DOUs) obtained during the CONGOLOBE project at six sites of this active lobe complex by in situ and on-board methods based on micro-electrode profiling. The dataset is used to determine remineralization rates and study the biogeochemical dynamics of different ecosystems of the lobe area, in order to compare levee and background sediments to the Habitats developed on the flanks of the main turbiditic channel. Levee and background sediments are characterized by significantly higher DOUs than abyssal sediments at 5000 m meters depth (2-5 mmol O2 m-2 d-1versus 1.5-2.5 mmol O2 m-2 d-1) and the Habitats are hotspots of OM remineralization with DOU values ranging between 8 and 40 mmol O2 m-2 d-1. By comparing sites near the active channel to a site located 50 km away, we show that the lobe connection to the main turbiditic channel is vital to the dense benthic communities.

  3. Tipping into the abyss: with more than a virtual parachute?

    Directory of Open Access Journals (Sweden)

    Chris Tompsett

    2007-12-01

    Full Text Available Any application of information and communication technology in education (ICTE sits, at times uncomfortably, at the intersection of three key disciplines: technology, education and sociology (including reflexivity. To confuse matters, any specific study may need to take account of specific knowledge within subdisciplines, such as organisational management and technology transfer, and of knowledge within the domain of application (e.g. nursing, social work, fashion, etc.. Researchers must build a consistent model of knowledge that can integrate disparate methodologies, research goals and even conflicting interpretations of the same terminology. Without this, the ICTE research field will be dominated by what is simply novel, irrespective of the relevance of particular changes to educational practice. If existing models in this field are as limited as suggested by Moule, when should lecturers and teachers, with no motivation to use technology for its own sake and no additional financial support, review progress in this field for effective examples of innovative practice, let alone wide-scale change? On most of the criteria that could be introduced to compare two papers, the views of Moule and Salmon appear almost diametrically opposed and a detailed comparison would seem of limited value. Instead, this paper asks a more fundamental question: what could be the basis within this research community for establishing coherence within the field and ensuring that research can justify actual changes in educational practice?

  4. Abyssal fauna of the UK-1 polymetallic nodule exploration claim, Clarion-Clipperton Zone, central Pacific Ocean: Echinodermata.

    Science.gov (United States)

    Glover, Adrian G; Wiklund, Helena; Rabone, Muriel; Amon, Diva J; Smith, Craig R; O'Hara, Tim; Mah, Christopher L; Dahlgren, Thomas G

    2016-01-01

    We present data from a DNA taxonomy register of the abyssal benthic Echinodermata collected as part of the Abyssal Baseline (ABYSSLINE) environmental survey cruise 'AB01' to the UK Seabed Resources Ltd (UKSRL) polymetallic-nodule exploration claim 'UK-1' in the eastern Clarion-Clipperton Zone (CCZ), central Pacific Ocean abyssal plain. Morphological and genetic data are presented for 17 species (4 Asteroidea, 4 Crinoidea, 2 Holothuroidea and 7 Ophiuroidea) identified by a combination of morphological and genetic data. No taxa matched previously published genetic sequences, but 8 taxa could be assigned to previously-described species based on morphology, although here we have used a precautionary approach in taxon assignments to avoid over-estimating species ranges. The Clarion-Clipperton Zone is a region undergoing intense exploration for potential deep-sea mineral extraction. We present these data to facilitate future taxonomic and environmental impact study by making both data and voucher materials available through curated and accessible biological collections.

  5. Radium 228 as a tracer of basin wide processes in the Abyssal Ocean

    International Nuclear Information System (INIS)

    Sarmiento, J.L.; Rooth, C.G.H.; Broecker, W.S.

    1982-01-01

    A simple model of isopycnal mixing in a circular basin is developed in order to examine the utility of the 5.75-year half-life tracer radium 228 for studying basin wide processes in the deep ocean. The model shows that it is possible to resolve diffusivities of 7 cm 2 s - 1 in a basin of approx.3000-km diameter with profiles measured near the center and edge of the basin. A least squares fit of the model to four abyssal profiles measured during GEOSECS in the North American Basin gives an isopycnal diffusivity of 6 x 10 7 cm 2 s - 1

  6. An abyssal mobilome: viruses, plasmids and vesicles from deep-sea hydrothermal vents.

    Science.gov (United States)

    Lossouarn, Julien; Dupont, Samuel; Gorlas, Aurore; Mercier, Coraline; Bienvenu, Nadege; Marguet, Evelyne; Forterre, Patrick; Geslin, Claire

    2015-12-01

    Mobile genetic elements (MGEs) such as viruses, plasmids, vesicles, gene transfer agents (GTAs), transposons and transpovirions, which collectively represent the mobilome, interact with cellular organisms from all three domains of life, including those thriving in the most extreme environments. While efforts have been made to better understand deep-sea vent microbial ecology, our knowledge of the mobilome associated with prokaryotes inhabiting deep-sea hydrothermal vents remains limited. Here we focus on the abyssal mobilome by reviewing accumulating data on viruses, plasmids and vesicles associated with thermophilic and hyperthermophilic Bacteria and Archaea present in deep-sea hydrothermal vents. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  7. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth

    DEFF Research Database (Denmark)

    Glud, Ronnie N.; Wenzhoefer, Frank; Middelboe, Mathias

    2013-01-01

    Microbes control the decomposition of organic matter in marine sediments. Decomposition, in turn, contributes to oceanic nutrient regeneration and influences the preservation of organic carbon(1). Generally, rates of benthic decomposition decline with increasing water depth, although given the vast...... extent of the abyss, deep-sea sediments are quantitatively important for the global carbon cycle(2,3). However, the deepest regions of the ocean have remained virtually unexplored(4). Here, we present observations of microbial activity in sediments at Challenger Deep in the Mariana Trench in the central...

  8. Modified niche optima and breadths explain the historical contingency of bacterial community responses to eutrophication in coastal sediments

    KAUST Repository

    Fodelianakis, Stylianos; Moustakas, A.; Papageorgiou, N.; Manoli, O.; Tsikopoulou, I.; Michoud, Gregoire; Daffonchio, Daniele; Karakassis, I.; Ladoukakis, E. D.

    2016-01-01

    Previous studies have shown that the response of bacterial communities to disturbances depends on their environmental history. Historically fluctuating habitats host communities that respond better to disturbance than communities of historically

  9. Feasibility of high level radioactive waste disposal in deep sea sediments

    International Nuclear Information System (INIS)

    Buckley, D.E.

    1987-01-01

    For the past ten years, an international program has been conducted to investigate the concept feasibility for disposing of spent nuclear fuel waste in deep ocean sediments. These studies by the Seabed Working Group were coordinated by the Nuclear Energy Agency of the Organization for Economic Cooperation and Development. Penetrators have been considered as the primary method of waste emplacement. This required emphasis on studies of the nature of the plastic sediments which would form the primary barrier to the release of radionuclides into the biosphere. Site qualification guidelines, included criteria for tectonic and sedimentary stability over periods of at least 10 5 years. Using these guidelines two potential areas were identified: one in the Madeira Abyssal Plain; and one in the Southern Nares Abyssal Plain, both in the North Atlantic

  10. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria

    OpenAIRE

    Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

    2012-01-01

    Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the p...

  11. Metabolic rates are significantly lower in abyssal Holothuroidea than in shallow-water Holothuroidea

    Science.gov (United States)

    van Oevelen, Dick

    2018-01-01

    Recent analyses of metabolic rates in fishes, echinoderms, crustaceans and cephalopods have concluded that bathymetric declines in temperature- and mass-normalized metabolic rate do not result from resource-limitation (e.g. oxygen or food/chemical energy), decreasing temperature or increasing hydrostatic pressure. Instead, based on contrasting bathymetric patterns reported in the metabolic rates of visual and non-visual taxa, declining metabolic rate with depth is proposed to result from relaxation of selection for high locomotory capacity in visual predators as light diminishes. Here, we present metabolic rates of Holothuroidea, a non-visual benthic and benthopelagic echinoderm class, determined in situ at abyssal depths (greater than 4000 m depth). Mean temperature- and mass-normalized metabolic rate did not differ significantly between shallow-water (less than 200 m depth) and bathyal (200–4000 m depth) holothurians, but was significantly lower in abyssal (greater than 4000 m depth) holothurians than in shallow-water holothurians. These results support the dominance of the visual interactions hypothesis at bathyal depths, but indicate that ecological or evolutionary pressures other than biotic visual interactions contribute to bathymetric variation in holothurian metabolic rates. Multiple nonlinear regression assuming power or exponential models indicates that in situ hydrostatic pressure and/or food/chemical energy availability are responsible for variation in holothurian metabolic rates. Consequently, these results have implications for modelling deep-sea energetics and processes. PMID:29892403

  12. Moored current meter data from the Madeira Abyssal Plain (GME). 1. deployment (1984)

    International Nuclear Information System (INIS)

    Saunders, P.M.

    1986-01-01

    Near bottom current have been measured at three closely spaced sites in the N.E. Atlantic for 13 months. Locations were selected in the Great Meteor East study site area, near 31 0 30'N 25 0 W, one on the abyssal plain, one on top of a small abyssal hill about 400 m high and one on its flank just above the plain. Current meters were moored 10, 100, and 1000 m above the local bottom (5438 m, 5398 m and 4999 m) in January 1984 and recovered in February 1985. This report displays the characteristics of the currents in numerous tables and figures. In the mean they ar found to be very weak and though adjacent moorings are separated by only 12 km and 27 km the year-long current directions differ radically. Current variations are principally due to semi-diurnal tides, inertial oscillations and eddies the latter of which migrate over the moorings. The tidal energy meets expectations as does the eddy energy with magnitude 2-3 cm 2 s -2 . Horizontal (isopycnal) diffusivity is estimated as about 2x10 2 m 2 s -1 . Currents 10 m above the bottom exceed 10 cm/s least frequently on the plain and most frequently at the hill-foot. The influence of the hill is surprisingly large. At all three sites the strongest currents are found near the sea bed. Speeds also show a Weibull distribution and rough 50 year return currents are inferred. (author)

  13. Metagenomic analysis of the bacterial communities and their functional profiles in water and sediments of the Apies River, South Africa, as a function of land use.

    Science.gov (United States)

    Abia, Akebe Luther King; Alisoltani, Arghavan; Keshri, Jitendra; Ubomba-Jaswa, Eunice

    2018-03-01

    Water quality is an important public health issue given that the presence of pathogenic organisms in such waters can adversely affect human and animal health. Despite the numerous studies conducted to assess the quality of environmental waters in many countries, limited efforts have been put on investigating the microbial quality of the sediments in developing countries and how this relates to different land uses. The present study evaluated the bacterial diversity in water and sediments in a highly used South African river to find out how the different land uses influenced the bacterial diversity, and to verify the human diseases functional classes of the bacterial populations. Samples were collected on river stretches influenced by an informal, a peri-urban and a rural settlement. Genomic DNA was extracted from water and sediment samples and sequenced on an Illumina® MiSeq platform targeting the 16S rRNA gene variable region V3-V4 from the genomic DNA. Metagenomic data analysis revealed that there was a great diversity in the microbial populations associated with the different land uses, with the informal settlement having the most considerable influence on the bacterial diversity in the water and sediments of the Apies River. The Proteobacteria (69.8%), Cyanobacteria (4.3%), Bacteroidetes (2.7%), and Actinobacteria (2.7%) were the most abundant phyla; the Alphaproteobacteria, Betaproteobacteria and Anaerolineae were the most recorded classes. Also, the sediments had a greater diversity and abundance in bacterial population than the water column. The functional profiles of the bacterial populations revealed an association with many human diseases including cancer pathways. Further studies that would isolate these potentially pathogenic organisms in the aquatic environment are therefore needed as this would help in protecting the lives of communities using such rivers, especially against emerging bacterial pathogens. Copyright © 2017 Elsevier B.V. All rights

  14. Bacterial community composition and predicted functional ecology of sponges, sediment and seawater from the thousand islands reef complex, West Java, Indonesia.

    Science.gov (United States)

    de Voogd, Nicole J; Cleary, Daniel F R; Polónia, Ana R M; Gomes, Newton C M

    2015-04-01

    In the present study, we assessed the composition of Bacteria in four biotopes namely sediment, seawater and two sponge species (Stylissa massa and Xestospongia testudinaria) at four different reef sites in a coral reef ecosystem in West Java, Indonesia. In addition to this, we used a predictive metagenomic approach to estimate to what extent nitrogen metabolic pathways differed among bacterial communities from different biotopes. We observed marked differences in bacterial composition of the most abundant bacterial phyla, classes and orders among sponge species, water and sediment. Proteobacteria were by far the most abundant phylum in terms of both sequences and Operational Taxonomic Units (OTUs). Predicted counts for genes associated with the nitrogen metabolism suggested that several genes involved in the nitrogen cycle were enriched in sponge samples, including nosZ, nifD, nirK, norB and nrfA genes. Our data show that a combined barcoded pyrosequencing and predictive metagenomic approach can provide novel insights into the potential ecological functions of the microbial communities. Not only is this approach useful for our understanding of the vast microbial diversity found in sponges but also to understand the potential response of microbial communities to environmental change. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Drawdown flushing of a hydroelectric reservoir on the Rhône River: Impacts on the fish community and implications for the sediment management.

    Science.gov (United States)

    Grimardias, David; Guillard, Jean; Cattanéo, Franck

    2017-07-15

    Sediment flushings of hydropower reservoirs are commonly performed to maintain water resource uses and ecosystem services, but may have strong impacts on fish communities. Despite the worldwide scope of this issue, very few studies report quantitative in situ evaluations of these impacts. In June 2012, the drawdown flushing of the Verbois reservoir (Rhône River) was performed and subsequent impacts on the fish community were assessed, both inside the reservoir (fish densities by hydroacoustic surveys) and downstream (short-term movement and survival of radio tracked adult fish). Results showed that after the flushing fish acoustic density decreased by 57% in the reservoir, and no recolonization process was observed over the following 16 months. Downstream of the dam, the global apparent survival of fish to the flushing was estimated at 74%, but differed between species. The nine-year delay from the previous flushing and thus the amount of sediments to remove were too stressful for the low-resilience fish community of the Rhône River. Alternative flushing schedules are discussed to reduce these impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Three new species of deep-sea Gromia (Protista, Rhizaria) from the bathyal and abyssal Weddell Sea, Antarctica

    DEFF Research Database (Denmark)

    Rothe, Nina; Gooday, Andrew J.; Cedhagen, Tomas

    2009-01-01

    We describe three new species of the genus Gromia from bathyal and abyssal depths in the Weddell Sea. The new species are characterized by a combination of morphological and molecular criteria. All three species possess a distinct oral capsule and a layer of ‘honeycomb membranes’, which form the ...

  17. High activity and low temperature optima of extracellular enzymes in Arctic sediments: implications for carbon cycling by heterotrophic microbial communities

    DEFF Research Database (Denmark)

    Arnosti, C.; Jørgensen, BB

    2003-01-01

    The rate of the initial step in microbial remineralization of organic carbon, extracellular enzymatic hydrolysis, was investigated as a function of temperature in permanently cold sediments from 2 fjords on the west coast of Svalbard (Arctic Ocean). We used 4 structurally distinct polysaccharides...... hydrolysis in order to determine the relative temperature responses of the initial and terminal steps in microbial remineralization of carbon. The temperature optimum of sulfate reduction, 21degreesC, was considerably lower than previous reports of sulfate reduction in marine sediments, but is consistent...... with recent studies of psychrophilic sulfate reducers isolated from Svalbard sediments. A calculation of potential carbon flow into the microbial food chain demonstrated that the activity of just one type of polysaccharide-hydrolyzing enzyme could in theory supply 21 to 100% of the carbon consumed via sulfate...

  18. Implications of spinel compositions for the petrotectonic history of abyssal peridotite from Southwest Indian Ridge (SWIR)

    Science.gov (United States)

    Chen, T.; Jin, Z.; Wang, Y.; Tao, C.

    2012-12-01

    Abyssal peridotites generate at mid-ocean ridges. Lherzolite and harzburgite are the main rock types of peridotites in the uppermost mantle. The lherzolite subtype, less depleted and less common in ophiolites, characterizes mantle diapirs and slow-spreading ridges. Along the Earth's mid-ocean ridges, abyssal peridotites undergo hydration reactions to become serpentinite minerals, especially in slow to ultraslow spreading mid-ocean ridges. Spinel is common in small quantities in peridotites, and its compositions have often been used as petrogenetic indicators [1]. The Southwest Indian Ridge (SWIR) is one of the two ultraslow spreading ridges in the world. The studied serpentinized peridotite sample was collected by the 21st Voyage of the Chinese oceanic research ship Dayang Yihao (aka Ocean No. 1) from a hydrothermal field (63.5°E, 28.0°S, and 3660 m deep) in SWIR. The studied spinels in serpentinized lherzolite have four zones with different compositions: relic, unaltered core is magmatic Al-spinels; micro- to nano- sized ferrichromite zoned particles; narrow and discontinuous magnetite rim; and chlorite aureoles. The values Cr# of the primary Al-spinels indicate the range of melting for abyssal peridotites from SWIR extends from ~4% to ~7% [2]. The alteration rims of ferrichromite have a chemical composition characterized by Fe enrichment and Cr# increase indicating chromite altered under greenschist-amphibolite facies. Magnetites formed in syn- and post- serpentinization. Chlorite (clinochlore) formed at the boundary and crack of spinel indicating it had undergone with low-temperature MgO- and SiO2-rich hydrothermal fluids [3]. It suggests that serpentinized lherzolite from SWIR had undergone poly-stage hydration reactions with a wide range of temperature. Acknowledgments: EMPA experiment was carried out by Xihao Zhu and Shu Zheng in The Second Institute of Oceanography and China University of Geosciences, respectively. The work was supported by NSFC

  19. Life history of abyssal and hadal fishes from otolith growth zones and oxygen isotopic compositions

    Science.gov (United States)

    Gerringer, M. E.; Andrews, A. H.; Huss, G. R.; Nagashima, K.; Popp, B. N.; Linley, T. D.; Gallo, N. D.; Clark, M. R.; Jamieson, A. J.; Drazen, J. C.

    2018-02-01

    Hadal trenches are isolated habitats that cover the greatest ocean depths (6,500-11,000 m) and are believed to host high levels of endemism across multiple taxa. A group of apparent hadal endemics is within the snailfishes (Liparidae), found in at least five geographically separated trenches. Little is known about their biology, let alone the reasons for their success at hadal depths around the world. This study investigated the life history of hadal liparids using sagittal otoliths of two species from the Kermadec (Notoliparis kermadecensis) and Mariana (Pseudoliparis swirei) trenches in comparison to successful abyssal macrourids found at the abyssal-hadal transition zone. Otoliths for each species revealed alternating opaque and translucent growth zones that could be quantified in medial sections. Assuming these annuli represent annual growth, ages were estimated for the two hadal liparid species to be from five to 16 years old. These estimates were compared to the shallower-living snailfish Careproctus melanurus, which were older than described in previous studies, expanding the potential maximum age for the liparid family to near 25 years. Age estimates for abyssal macrourids ranged from eight to 29 years for Coryphaenoides armatus and six to 16 years for C. yaquinae. In addition, 18O/16O ratios (δ18O) were measured across the otolith using secondary ion mass spectrometry (SIMS) to investigate the thermal history of the three liparids, and two macrourids. Changes in δ18O values were observed across the otoliths of C. melanurus, C. armatus, and both hadal liparids, the latter of which may represent a change of >5 °C in habitat temperature through ontogeny. The results would indicate there is a pelagic larval stage for the hadal liparids that rises to a depth above 1000 m, followed by a return to the hadal environment as these liparids grow. This result was unexpected for the hadal liparids given their isolated environment and large eggs, and the biological

  20. Conversion of Corn Stover Hydrolysates to Acids: Comparison Between Clostridium carboxidivorans P7 and Microbial Communities Developed from Lake Sediment and an Anaerobic Digester

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaowen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tucker, Melvin P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Xia, Chunjie [Southern Illinois University; Kumar, Aditi [Carbondale Community High School; Liang, Yanna [Southern Illinois University

    2017-01-18

    Anaerobic fermentation is an environmentally sustainable technology for converting a variety of feedstocks to biofuels and bioproducts. Considering the complex nature of lignocellulosic hydrolysates, we aimed to investigate product formation from corn stover hydrolysates by using microbial communities under anaerobic conditions. A community developed from lake sediment was able to produce lactic acid from only glucose in the raw or overlimed hydrolysates. Another community from an anaerobic digester, however, was capable of using all hexose and pentose sugars in the raw and undetoxified hydrolysates and released lactic acid at 26.76 g/L. A pure acetogen, Clostridium carboxidivorans P7, was able to grow on the raw and overlimed hydrolysates, too. But the consumption of sugars was minimal and the total released acid concentrations were less than 2 g/L. Next generation sequencing of the enriched community derived from the anaerobic digester revealed the presence of Lactobacillus strains. The predominant species were Lactobacillus parafarraginis (72.6%) and L. buchneri (13.4%). Product titer from using this enriched community can be further enhanced by cultivating at fed-batch or continuous fermentation modes. Results from this study widened the door for producing valuable products from lignocellulosic feedstocks through using mixed cultures.

  1. The Importance of Fine-Scale Flow Processes and Food Availability in the Maintenance of Soft-Sediment Communities

    Science.gov (United States)

    1993-02-01

    the absence of the fauna, flora, and microbiota (Grant Lal. 1982). Furthermore, sediment "stability", in most cases, has not been defined using...attempting to do so, it may be more fruitful to develop new theories and models that embrace the gestalt of the sedimentary milieu. Returning to the

  2. Speculations about the upper Miocene change in abyssal Pacific dissolved bicarbonate delta13C

    International Nuclear Information System (INIS)

    Bender, M.L.; Keigwin, L.D. Jr

    1979-01-01

    New data from three Tasman Sea cores support Kleigwin's observation that the delta 13 C of Pacific benthic foraminifera (and by inference bottom-water TCO 2 ) decreased by 0.7 per thousand at about 6.5 Myr B.P. Simple box models are developed and used to test several hypotheses about the cause of the delta 13 C decrease. The authors favor the idea that the delta 13 C shift was due to a rapid change in TCO 2 cycling within the oceans (such as would result from either a decrease in upwelling rate, or an increase in the fraction of PO 4 3- reaching the deep oceans in particulate organic matter and a corresponding drop in the performed PO 4 3- concentration). The delta 13 C decrease across the shift might reflect either a global decrease in upwelling rate, or a different abyssal circulation pattern before the shift. (Auth.)

  3. Influence of internal tides on Antarctic Bottom Water propagation through abyssal channels

    Science.gov (United States)

    Morozov, Eugene

    2010-05-01

    Antarctic Bottom Water (AABW) propagates in the Atlantic Ocean from the Weddell Sea to the north through narrow passages in submarine ridges. Submarine ridges are regions of strong internal tide generation in the ocean that causes mixing and eventually AABW loses its distinguishing properties such as low temperature and salinity. The Vema Fracture Zone (11 N) and Romanche Fracture Zone (equator) in the Mid-Atlantic Ridge (MAR) are pathways for AABW to the Northeast Atlantic. The deep basin of the Northeast Atlantic (Canary Basin and Gambia Abyssal Plain) are filled with the bottom water propagating through the Vema FZ rather than through the equatorial fracture zones because strong internal tides and mixing over the slopes of the MAR near the equator cause warming of AABW and decrease of its density. Further propagation of AABW through the Kane Gap is low. Recent field measurements in the fracture zones confirm this concept based on modeling results. Results of recent cruises are presented.

  4. Assessing the impacts of bait collection on inter-tidal sediment and the associated macrofaunal and bird communities: The importance of appropriate spatial scales.

    Science.gov (United States)

    Watson, G J; Murray, J M; Schaefer, M; Bonner, A; Gillingham, M

    2017-09-01

    Bait collection is a multibillion dollar worldwide activity that is often managed ineffectively. For managers to understand the impacts on protected inter-tidal mudflats and waders at appropriate spatial scales macrofaunal surveys combined with video recordings of birds and bait collectors were undertaken at two UK sites. Dug sediment constituted approximately 8% of the surveyed area at both sites and is less muddy (lower organic content) than undug sediment. This may have significant implications for turbidity. Differences in the macrofaunal community between dug and undug areas if the same shore height is compared as well as changes in the dispersion of the community occurred at one site. Collection also induces a 'temporary loss of habitat' for some birds as bait collector numbers negatively correlate with wader and gull abundance. Bait collection changes the coherence and ecological structure of inter-tidal mudflats as well as directly affecting wading birds. However, as β diversity increased we suggest that management at appropriate hectare/site scales could maximise biodiversity/function whilst still supporting collection. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  5. Global Distribution of Net Electron Acceptance in Subseafloor Sediment

    Science.gov (United States)

    Fulfer, V. M.; Pockalny, R. A.; D'Hondt, S.

    2017-12-01

    We quantified the global distribution of net electron acceptance rates (e-/m2/year) in subseafloor sediment (>1.5 meters below seafloor [mbsf]) using (i) a modified version of the chemical-reaction-rate algorithm by Wang et al. (2008), (ii) physical properties and dissolved oxygen and sulfate data from interstitial waters of sediment cores collected by the Ocean Drilling Program, Integrated Ocean Drilling Program, International Ocean Discovery Program, and U.S. coring expeditions, and (iii) correlation of net electron acceptance rates to global oceanographic properties. Calculated net rates vary from 4.8 x 1019 e-/m2/year for slowly accumulating abyssal clay to 1.2 x 1023 e-/m2/year for regions of high sedimentation rate. Net electron acceptance rate correlates strongly with mean sedimentation rate. Where sedimentation rate is very low (e.g., 1 m/Myr), dissolved oxygen penetrates more than 70 mbsf and is the primary terminal electron acceptor. Where sedimentation rate is moderate (e.g., 3 to 60 m/Myr), dissolved sulfate penetrates as far as 700 mbsf and is the principal terminal electron acceptor. Where sedimentation rate is high (e.g., > 60 m/Myr), dissolved sulfate penetrates only meters, but is the principal terminal electron acceptor in subseafloor sediment to the depth of sulfate penetration. Because microbial metabolism continues at greater depths than the depth of sulfate penetration in fast-accumulating sediment, complete quantification of subseafloor metabolic rates will require consideration of other chemical species.

  6. Composition and variation of sediment bacterial and nirS-harboring bacterial communities at representative sites of the Bohai Gulf coastal zone, China.

    Science.gov (United States)

    Guan, Xiangyu; Zhu, Lingling; Li, Youxun; Xie, Yuxuan; Zhao, Mingzhang; Luo, Ximing

    2014-04-01

    With rapid urbanization, anthropogenic activities are increasingly influencing the natural environment of the Bohai Bay. In this study, the composition and variation of bacterial and nirS-harboring bacterial communities in the coastal zone sediments of the Bohai Gulf were analyzed using PCR-based clone libraries. A total of 95 genera were detected in the bacterial communities, with Proteobacteria (72.1 %), Acidobacteria (10.5 %), Firmicutes (1.7 %), Bacteroidetes (1.4 %), Chloroflexi (0.7 %) and Planctomycetes (0.7 %) being the dominated phyla. The NirS sequences were divided into nine Clusters (A-I). Canonical correlation analysis showed that the bacterial or denitrifying communities were correlated with different environmental factors, such as total organic carbon, total nitrogen, ammonium, sulfate, etc. Furthermore, bacterial communities' composition and diversity are influenced by oil exploration, sewage discharge and other anthropogenic activities in the coastal area of the Bohai Sea. Thus, this study provided useful information on further research on regional or global environmental control and restore.

  7. High activity and low temperature optima of extracellular enzymes in Arctic sediments: implications for carbon cycling by heterotrophic microbial communities

    DEFF Research Database (Denmark)

    Arnosti, C.; Jørgensen, BB

    2003-01-01

    (chondroitin sulfate, fucoidan, xylan and pullulan) to determine the temperature-activity responses of hydrolysis of a related class of compounds. All 4 enzyme activities showed similarly low temperature optima in the range of 15 to 18degreesC. These temperature optima are considerably lower than most previous......The rate of the initial step in microbial remineralization of organic carbon, extracellular enzymatic hydrolysis, was investigated as a function of temperature in permanently cold sediments from 2 fjords on the west coast of Svalbard (Arctic Ocean). We used 4 structurally distinct polysaccharides...... reports of temperature optima for enzyme activities in marine sediments. At 0degreesC, close to the in situ temperature, these enzyme activities achieved 13 to 38% of their rates at optimum temperatures. In one experiment, sulfate reduction rates were measured in parallel with extracellular enzymatic...

  8. DEBRIS FLOW DISASTER MITIGATION THROUGH COMMUNITY-BASED INTEGRATED SEDIMENT MANAGEMENT (BEST PRACTICE IN MT. MERAPI AREA, INDONESIA)

    OpenAIRE

    Otani, Kazuhiko; Suharyanto, Suharyanto

    2015-01-01

    Mt. Merapi is one of many active volcanoes in Indonesia which erupts frequently. The small eruption occurred nearly every year, whereas the big ones occurred at approximately once every five years. The eruption often produces impacts at both positive and negative view points, such as production of sediment as construction material and damage on infrastructures due to debris flow occurrences respectively. The eruption produces two types of disasters, i.e. primary disaster (such as ash fall, py...

  9. Lake depth rather than fish planktivory determines cladoceran community structure in Faroese lakes - evidence from contemporary data and sediments

    DEFF Research Database (Denmark)

    Amsinck, S.L.; Strzelczak, A.; Bjerring, R.

    2006-01-01

    development was inferred by cladoceran-based paleolimnological investigations of a 14C-dated sediment core covering the last ca 5700 years. 3. The 29 study lakes were overall shallow, small-sized, oligotrophic and dominated by brown trout (Salmo trutta). Cladoceran species richness was overall higher...... depth. A recent increase in inferred Zmax may, however, be an artefact induced by, for instance, eutrophication....

  10. Ship Sensor Observations for Estuary to the Abyss 2004: Exploring Along the Latitude 31-30 Transect - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly measurements made by selected ship sensors on the R/V Seward Johnson during the "Estuary to the Abyss 2004" expedition sponsored by the National Oceanic and...

  11. Early invasion population structure of quagga mussel and associated benthic invertebrate community composition on soft sediment in a large reservoir

    Science.gov (United States)

    Wittmann, Marion E.; Chandra, Sudeep; Caires, Andrea; Denton, Marianne; Rosen, Michael R.; Wong, Wai Hing; Teitjen, Todd; Turner, Kent; Roefer, Peggy; Holdren, G. Chris

    2010-01-01

    In 2007 an invasive dreissenid mussel species, Dreissena bugensis (quagga mussel), was discovered in Lake Mead reservoir (AZ–NV). Within 2 years, adult populations have spread throughout the lake and are not only colonizing hard substrates, but also establishing in soft sediments at depths ranging from 1 to >100 m. Dreissena bugensis size class and population density distribution differs between basins; cluster analysis revealed 5 adult cohorts within Boulder Basin and Overton Arm but low densities and low cohort survival in the Las Vegas Basin. Regression analysis suggests depth and temperature are not primary controllers of D. bugensis density in Lake Mead, indicating other factors such as sediment type, food availability or other resource competition may be important. Monthly veliger tows showed at least 2 major spawning events per year, with continuous presence of veligers in the water column. Adult mussels have been found in spawn or post-spawn condition in soft sediments in shallow to deep waters (>80 m) indicating the potential for reproduction at multiple depths. Comparisons to a 1986 benthic survey suggest there have been shifts in nondreissenid macroinvertebrate composition; however, it is unclear if this is due to D. bugensis presence. Current distribution of nondreissenid macroinvertebrates is heterogeneous in all 3 basins, and their biodiversity decreased when D. bugensis density was 2500/m2 or greater.

  12. International Network Performance and Security Testing Based on Distributed Abyss Storage Cluster and Draft of Data Lake Framework

    Directory of Open Access Journals (Sweden)

    ByungRae Cha

    2018-01-01

    Full Text Available The megatrends and Industry 4.0 in ICT (Information Communication & Technology are concentrated in IoT (Internet of Things, BigData, CPS (Cyber Physical System, and AI (Artificial Intelligence. These megatrends do not operate independently, and mass storage technology is essential as large computing technology is needed in the background to support them. In order to evaluate the performance of high-capacity storage based on open source Ceph, we carry out the network performance test of Abyss storage with domestic and overseas sites using KOREN (Korea Advanced Research Network. And storage media and network bonding are tested to evaluate the performance of the storage itself. Additionally, the security test is demonstrated by Cuckoo sandbox and Yara malware detection among Abyss storage cluster and oversea sites. Lastly, we have proposed the draft design of Data Lake framework in order to solve garbage dump problem.

  13. Fungal community analysis in the deep-sea sediments of the central Indian Basin by culture-independent approach

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, P.; Raghukumar, C.; Verma, P.; Shouche, Y.

    -Bio gene Soil DNA extraction kit (MP Biomedicals, Ohio, U.S.) according to the manufacturer’s instructions. DNA samples from the three stations were amplified using fungal-specific ITS1F/ITS4 [13], primer pair a, as well as universal ITS1/ITS4, primer...NTPs (0.2 mM each), primers (0.5 μM each), and 1 X PCR buffer (Roche, Switzerland.). Reaction mixture without template DNA was used as a negative control and sediments spiked with fungal DNA was used as a positive control. Amplified products were gel...

  14. From the epipelagic zone to the abyss: Trophic structure at two seamounts in the subtropical and tropical Eastern Atlantic - Part I zooplankton and micronekton

    Science.gov (United States)

    Denda, Anneke; Stefanowitsch, Benjamin; Christiansen, Bernd

    2017-12-01

    Specific mechanisms, driving trophic interactions within the pelagic community may be highly variable in different seamount systems. This study investigated the trophic structure of zooplankton and micronekton above and around Ampère and Senghor, two shallow seamounts in the subtropical and tropical Eastern Atlantic, and over the adjacent abyssal plains. For the identification of food sources and trophic positions stable isotope ratios (δ13C and δ15N) were used. δ13C ranged from -24.7‰ to -15.0‰ and δ15N covered a total range of 0.9-15.9‰. Based on epipelagic particulate organic matter, zooplankton and micronekton usually occupied the 1st-3rd trophic level, including herbivorous, omnivorous and carnivorous taxa. δ13C and δ15N values were generally lower in zooplankton and micronekton of the subtropical waters as compared to the tropical region, due to the differing nutrient availability and phytoplankton communities. Correlations between δ13C and δ15N values of particulate organic matter, zooplankton, micronekton and benthopelagic fishes suggest a linear food chain based on a single energy source from primary production for Ampère Seamount, but no evidence was found for an autochthonus seamount production as compared to the open ocean reference site. Between Senghor Seamount and the open ocean δ13C signatures indicate that hydrodynamic effects at seamounts may modify the energy supply at times, but evidence for a seamount effect on the trophic structure of the pelagic communities was weak, which supports the assumption that seamount communities rely to a large extent on advected food sources.

  15. Deep nirS amplicon sequencing of San Francisco Bay sediments enables prediction of geography and environmental conditions from denitrifying community composition.

    Science.gov (United States)

    Lee, Jessica A; Francis, Christopher A

    2017-12-01

    Denitrification is a dominant nitrogen loss process in the sediments of San Francisco Bay. In this study, we sought to understand the ecology of denitrifying bacteria by using next-generation sequencing (NGS) to survey the diversity of a denitrification functional gene, nirS (encoding cytchrome-cd 1 nitrite reductase), along the salinity gradient of San Francisco Bay over the course of a year. We compared our dataset to a library of nirS sequences obtained previously from the same samples by standard PCR cloning and Sanger sequencing, and showed that both methods similarly demonstrated geography, salinity and, to a lesser extent, nitrogen, to be strong determinants of community composition. Furthermore, the depth afforded by NGS enabled novel techniques for measuring the association between environment and community composition. We used Random Forests modelling to demonstrate that the site and salinity of a sample could be predicted from its nirS sequences, and to identify indicator taxa associated with those environmental characteristics. This work contributes significantly to our understanding of the distribution and dynamics of denitrifying communities in San Francisco Bay, and provides valuable tools for the further study of this key N-cycling guild in all estuarine systems. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Abyssal fauna of the UK-1 polymetallic nodule exploration area, Clarion-Clipperton Zone, central Pacific Ocean: Cnidaria.

    Science.gov (United States)

    Dahlgren, Thomas G; Wiklund, Helena; Rabone, Muriel; Amon, Diva J; Ikebe, Chiho; Watling, Les; Smith, Craig R; Glover, Adrian G

    2016-01-01

    We present data from a DNA taxonomy register of the abyssal Cnidaria collected as part of the Abyssal Baseline (ABYSSLINE) environmental survey cruise 'AB01' to the UK Seabed Resources Ltd (UKSRL) polymetallic-nodule exploration area 'UK-1' in the eastern Clarion-Clipperton Zone (CCZ), central Pacific Ocean abyssal plain. This is the second paper in a series to provide regional taxonomic data for a region that is undergoing intense deep-sea mineral exploration for high-grade polymetallic nodules. Data were collected from the UK-1 exploration area following the methods described in Glover et al. (2015b). Morphological and genetic data are presented for 10 species and 18 records identified by a combination of morphological and genetic data, including molecular phylogenetic analyses. These included 2 primnoid octocorals, 2 isidid octocorals, 1 anemone, 4 hydroids (including 2 pelagic siphonophores accidentally caught) and a scyphozoan jellyfish (in the benthic stage of the life cycle). Two taxa matched previously published genetic sequences (pelagic siphonophores), two taxa matched published morphological descriptions (abyssal primnoids described from the same locality in 2015) and the remaining 6 taxa are potentially new species, for which we make the raw data, imagery and vouchers available for future taxonomic study. We have used a precautionary approach in taxon assignments to avoid over-estimating species ranges. The Clarion-Clipperton Zone is a region undergoing intense exploration for potential deep-sea mineral extraction. We present these data to facilitate future taxonomic and environmental impact study by making both data and voucher materials available through curated and accessible biological collections. For some of the specimens we also provide image data collected at the seabed by ROV, wich may facilitate more accurate taxon designation in coming ROV or AUV surveys.

  17. An End-to-End DNA Taxonomy Methodology for Benthic Biodiversity Survey in the Clarion-Clipperton Zone, Central Pacific Abyss

    Directory of Open Access Journals (Sweden)

    Adrian G. Glover

    2015-12-01

    Full Text Available Recent years have seen increased survey and sampling expeditions to the Clarion-Clipperton Zone (CCZ, central Pacific Ocean abyss, driven by commercial interests from contractors in the potential extraction of polymetallic nodules in the region. Part of the International Seabed Authority (ISA regulatory requirements are that these contractors undertake environmental research expeditions to their CCZ exploration claims following guidelines approved by the ISA Legal and Technical Commission (ISA, 2010. Section 9 (e of these guidelines instructs contractors to “…collect data on the sea floor communities specifically relating to megafauna, macrofauna, meiofauna, microfauna, nodule fauna and demersal scavengers”. There are a number of methodological challenges to this, including the water depth (4000–5000 m, extremely warm surface waters (~28 °C compared to bottom water (~1.5 °C and great distances to ports requiring a large and long seagoing expedition with only a limited number of scientists. Both scientists and regulators have recently realized that a major gap in our knowledge of the region is the fundamental taxonomy of the animals that live there; this is essential to inform our knowledge of the biogeography, natural history and ultimately our stewardship of the region. Recognising this, the ISA is currently sponsoring a series of taxonomic workshops on the CCZ fauna and to assist in this process we present here a series of methodological pipelines for DNA taxonomy (incorporating both molecular and morphological data of the macrofauna and megafauna from the CCZ benthic habitat in the recent ABYSSLINE cruise program to the UK-1 exploration claim. A major problem on recent CCZ cruises has been the collection of high-quality samples suitable for both morphology and DNA taxonomy, coupled with a workflow that ensures these data are made available. The DNA sequencing techniques themselves are relatively standard, once good samples have been

  18. Model behavior and sensitivity in an application of the cohesive bed component of the community sediment transport modeling system for the York River estuary, VA, USA

    Science.gov (United States)

    Fall, Kelsey A.; Harris, Courtney K.; Friedrichs, Carl T.; Rinehimer, J. Paul; Sherwood, Christopher R.

    2014-01-01

    The Community Sediment Transport Modeling System (CSTMS) cohesive bed sub-model that accounts for erosion, deposition, consolidation, and swelling was implemented in a three-dimensional domain to represent the York River estuary, Virginia. The objectives of this paper are to (1) describe the application of the three-dimensional hydrodynamic York Cohesive Bed Model, (2) compare calculations to observations, and (3) investigate sensitivities of the cohesive bed sub-model to user-defined parameters. Model results for summer 2007 showed good agreement with tidal-phase averaged estimates of sediment concentration, bed stress, and current velocity derived from Acoustic Doppler Velocimeter (ADV) field measurements. An important step in implementing the cohesive bed model was specification of both the initial and equilibrium critical shear stress profiles, in addition to choosing other parameters like the consolidation and swelling timescales. This model promises to be a useful tool for investigating the fundamental controls on bed erodibility and settling velocity in the York River, a classical muddy estuary, provided that appropriate data exists to inform the choice of model parameters.

  19. Investigating the effects of abyssal peridotite alteration on Si, Mg and Zn isotopes

    Science.gov (United States)

    Savage, P. S.; Wimpenny, J.; Harvey, J.; Yin, Q.; Moynier, F.

    2013-12-01

    Around 1/3 of Earth's divergent ridge system is now classified as "slow" spreading [1], exposing ultramafic rocks (abyssal peridotites) at the seafloor. Such material is often highly altered by serpentinisation and steatisation (talc formation). It is crucial to understand such processes in order to access the original composition of the mantle, and to quantify any impact on ocean composition. Here we examine the effect of both serpentinisation and steatisation on Si, Mg and Zn isotopes. Hydrothermal alteration and seafloor weathering are both sources of oceanic Si [2] and weathering of abyssal peridotites is a source of oceanic Mg [3]; hence isotopic fractionation as a result of seafloor alteration could affect oceanic Si and Mg isotope composition. Zinc isotopes can provide complimentary information; the magnitude and direction of fractionation is highly dependent on complexing ligand [4] and can provide compositional information on the fluids driving metasomatism. For this study, two cores from the well-characterised abyssal peridotites recovered on ODP Leg 209 were examined [5]. Hole 1274a peridotites exhibit variable serpentinisation at ~200°C, whereas samples from Hole 1268a have been comprehensively serpentinised and then subsequently steatised to talc facies at ~350°C, by a low Mg/Si, low pH fluid. The Si, Mg and Zn isotope compositions of 1274a samples are extremely homogeneous, identical to that of pristine mantle rocks (BSE) i.e., serpentinisation at this locality was predominantly isochemical [5]. In contrast, samples from 1268a show greater isotopic variability. In all samples, Mg is enriched in the heavier isotopes relative to BSE, consistent with formation of isotopically heavy secondary phases [6]. For Si, serpentinised samples are slightly enriched in the lighter isotopes compared to BSE, again consistent with the behaviour of Si during formation of secondary phases [7]. Within the steatised samples, some exhibit enrichments in the lighter Si

  20. Dynamics of Melting and Melt Migration as Inferred from Incompatible Trace Element Abundance in Abyssal Peridotites

    Science.gov (United States)

    Peng, Q.; Liang, Y.

    2008-12-01

    To better understand the melting processes beneath the mid-ocean ridge, we developed a simple model for trace element fractionation during concurrent melting and melt migration in an upwelling steady-state mantle column. Based on petrologic considerations, we divided the upwelling mantle into two regions: a double- lithology upper region where high permeability dunite channels are embedded in a lherzolite/harzburgite matrix, and a single-lithology lower region that consists of partially molten lherzolite. Melt generated in the single lithology region migrates upward through grain-scale diffuse porous flow, whereas melt in the lherzolite/harzburgite matrix in the double-lithology region is allowed to flow both vertically through the overlying matrix and horizontally into its neighboring dunite channels. There are three key dynamic parameters in our model: degree of melting experienced by the single lithology column (Fd), degree of melting experienced by the double lithology column (F), and a dimensionless melt suction rate (R) that measures the accumulated rate of melt extraction from the matrix to the channel relative to the accumulated rate of matrix melting. In terms of trace element fractionation, upwelling and melting in the single lithology column is equivalent to non-modal batch melting (R = 0), whereas melting and melt migration in the double lithology region is equivalent to a nonlinear combination of non-modal batch and fractional melting (0 abyssal peridotite, we showed, with the help of Monte Carlo simulations, that it is difficult to invert for all three dynamic parameters from a set of incompatible trace element data with confidence. However, given Fd, it is quite possible to constrain F and R from incompatible trace element abundances in residual peridotite. As an illustrative example, we used the simple melting model developed in this study and selected REE and Y abundance in diopside from abyssal peridotites to infer their melting and melt migration

  1. Indications of low macrobenthic activity in the deep sediments of the eastern Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Daniela Basso

    2004-12-01

    Full Text Available The fluxes and budget of organic matter from the oligotrophic surface waters of the eastern Mediterranean to the deep waters are poorly known, and little information is available on past and present macrobenthic activity on the sea floor. Evidence of macrobenthic activity can be direct, through recovery of living organisms or their autochthonous skeletal remains, or indirect, through bioturbation and trace fossils. The evidence of biological activity in deep eastern Mediterranean sediments has been evaluated and compared through 210Pb profiles from box-cores and study of dredge samples from sites on Medina Rise (1374 m water depth, the Messina Abyssal Plain (4135 m and several sites along the Mediterranean Ridge, SW and S of Crete (1783 to 3655 m. All these sites are remote from the continental shelves, so the biological benthic activity is expected to depend primarily on primary production from surface waters. The results show that present-day macrobenthos and trace fossils are generally scarce, especially at depths > 2500 m. This observation is supported by surface sediment 210Pb excess distributions that show a surface mixed layer (SML 2500 m. The historical layer of some box-cores and the Pleistocene hardgrounds collected in the Cleft area (Mediterranean Ridge do, however, record a macrobenthic activity that is apparently more intense than at present, which may be related to higher primary production of the Pleistocene glacial intervals. In contrast with most areas of the present-day deep eastern Mediterranean which depend on surface primary production based on photosynthesis, a relatively dense and diversified macrobenthic community based on chemosynthesis has been recognised at depths > 1100 m on the Napoli Dome mud volcano in the Olimpi area, and on the Kazan and other mud volcanoes in the Anaximander Mountains.

  2. Abyssal intimacies and temporalities of care: How (not) to care about deformed leaf bugs in the aftermath of Chernobyl.

    Science.gov (United States)

    Schrader, Astrid

    2015-10-01

    Prompted by a classroom discussion on knowledge politics in the aftermath of the Chernobyl disaster, this article offers a reading of Hugh Raffles' Insectopedia entry on Chernobyl. In that entry, Raffles describes how Swiss science-artist and environmental activist Cornelia Hesse-Honegger collects, studies, and paints morphologically deformed leaf bugs that she finds in the proximity of nuclear power plants. In exploring how to begin to care about beings, such as leaf bugs, this article proposes a notion of care that combines an intimate knowledge practice with an ethical relationship to more-than-human others. Jacques Derrida's notion of 'abyssal intimacy' is central to such a combination. Hesse-Honegger's research practices enact and her paintings depict an 'abyssal intimacy' that deconstructs the oppositions between concerns about human suffering and compassion for seemingly irrelevant insects and between knowledge politics and ethics. At the heart of such a careful knowledge production is a fundamental passivity, based on a shared vulnerability. An abyssal intimacy is not something we ought to recognize; rather, it issues from particular practices of care that do not identify their subjects of care in advance. Caring or becoming affected thus entails the dissociation of affection not only from the humanist subject, but also from movements in time: from direct helping action and from the assumption that advocacy necessarily means speaking for an other, usually assumed to be inferior.

  3. The changes in the composition of Cladocera community in bottom sediments of Lake Maloye Shibrozero (Zaonezhsky Peninsula) as a consequence of shifts of environmental and climatic conditions

    Science.gov (United States)

    Ibragimova, A. G.; Frolova, L. A.; Subetto, D. A.; Belkina, N. A.; Potakhin, M. S.

    2018-01-01

    The study aims to explore the evolution of lakes of the boreal zone during the late- and postglacial time on the south-eastern periphery of the Fennoscandian crystalline shield since the last deglaciation. In order to reconstruct the past for virgin territories of the Zaonezhsky Peninsula current investigation on bottom sediments of Lake Maloye Shibrozero was conducted. Analyzes were performed using the new paleoindicator - subfossil remains of Cladocera (Cladocera, Branchiopoda). The 28 samples of bottom sediments were analyzed. It has been determined that discovered Cladocera remains belong to representatives of 6 families and 38 taxa. Species inhabiting Palaearctic zone are predominant in lake deposits; most of the identified subfossil remains are related to the pelagic species inhabiting the open part of the lake. According to the Lubarsky scale the dominant of Cladocera community is Bosmina (Eubosmina) cf. longispina. Secondary taxa are Chydorus sphaericus, Bosmina coregoni, Alonella nana, Alona guadrangularis, A. affinis, Chydorus gibbus. At a depth of 650-653 cm, a partial replacement of Bosmina (Eubosmina) cf. longispina by Bosmina coregoni takes place with a simultaneous increase in the significance of Chydorus sphaericus, which is used to be an indicator of eutrophication and increasing trophic status of the reservoir. Changes in Cladocera community could be attributed to decreasing the level of periglacial lake, as a result of which the Lake Maloye Shibrozero became a small isolated lake with the trend to trophic status increasing. Cold-water species were replaced by thermophilic ones with a further return to a cold-water fauna. In the upper layers of the column an increase of the number of phytophilous species is noted.

  4. Reductions in fish-community contamination following lowhead dam removal linked more to shifts in food-web structure than sediment pollution.

    Science.gov (United States)

    Davis, Robert P; Sullivan, S Mažeika P; Stefanik, Kay C

    2017-12-01

    Recent increases in dam removals have prompted research on ecological and geomorphic river responses, yet contaminant dynamics following dam removals are poorly understood. We investigated changes in sediment concentrations and fish-community body burdens of mercury (Hg), selenium (Se), polychlorinated biphenyls (PCB), and chlorinated pesticides before and after two lowhead dam removals in the Scioto and Olentangy Rivers (Columbus, Ohio). These changes were then related to documented shifts in fish food-web structure. Seven study reaches were surveyed from 2011 to 2015, including controls, upstream and downstream of the previous dams, and upstream restored vs. unrestored. For most contaminants, fish-community body burdens declined following dam removal and converged across study reaches by the last year of the study in both rivers. Aldrin and dieldrin body burdens in the Olentangy River declined more rapidly in the upstream-restored vs. the upstream-unrestored reach, but were indistinguishable by year three post dam removal. No upstream-downstream differences were observed in body burdens in the Olentangy River, but aldrin and dieldrin body burdens were 138 and 148% higher, respectively, in downstream reaches than in upstream reaches of the Scioto River following dam removal. The strongest relationships between trophic position and body burdens were observed with PCBs and Se in the Scioto River, and with dieldrin in the Olentangy River. Food-chain length - a key measure of trophic structure - was only weakly related to aldrin body burdens, and unrelated to other contaminants. Overall, we demonstrate that lowhead dam removal may effectively reduce ecosystem contamination, largely via shifts in fish food-web dynamics versus sediment contaminant concentrations. This study presents some of the first findings documenting ecosystem contamination following dam removal and will be useful in informing future dam removals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A comparative study of microbial diversity and community structure in marine sediments using poly(A tailing and reverse transcription PCR

    Directory of Open Access Journals (Sweden)

    Tatsuhiko eHoshino

    2013-06-01

    Full Text Available To obtain a better understanding of metabolically active microbial communities, we tested a molecular ecological approach using poly(A tailing of environmental 16S rRNA, followed by full-length complementary DNA (cDNA synthesis and sequencing to eliminate potential biases caused by mismatching of PCR primer sequences. The RNA pool tested was extracted from marine sediments of the Yonaguni Knoll IV hydrothermal field in the southern Okinawa Trough. The sequences obtained using the ploy(A tailing method were compared statistically and phylogenetically with those obtained using conventional reverse transcription-polymerase chain reaction (RT-PCR with published domain-specific primers. Both methods indicated that Deltaproteobacteria are predominant in sediment (>85% of the total sequence read. The poly(A tailing method indicated that Desulfobacterales were the predominant deltaproteobacteria, while most of the sequences in libraries constructed using RT-PCR were derived from Desulfuromonadales. This discrepancy may have been due to low coverage of Desulfobacterales by the primers used. A comparison of library diversity indices indicated that the poly(A tailing method retrieves more phylogenetically diverse sequences from the environment. The four archaeal 16S rRNA sequences that were obtained using the poly(A tailing method formed deeply branching lineages that were related to Candidatus Parvarchaeum and the Ancient Archaeal Group. These results clearly demonstrate that poly(A tailing followed by cDNA sequencing is a powerful and less biased molecular ecological approach for the study of metabolically active microbial communities.

  6. Degradation of 1,1,2,2-tetrachloroethane and accumulation of vinyl chloride in wetland sediment microcosms and in situ porewater: biogeochemical controls and associations with microbial communities

    Science.gov (United States)

    Lorah, Michelle M.; Voytek, Mary A.

    2004-05-01

    The biodegradation pathways of 1,1,2,2-tetrachloroethane (TeCA) and 1,1,2-trichloroethane (112TCA) and the associated microbial communities in anaerobic wetland sediments were evaluated using concurrent geochemical and genetic analyses over time in laboratory microcosm experiments. Experimental results were compared to in situ porewater data in the wetland to better understand the factors controlling daughter product distributions in a chlorinated solvent plume discharging to a freshwater tidal wetland at Aberdeen Proving Ground, Maryland. Microcosms constructed with wetland sediment from two sites showed little difference in the initial degradation steps of TeCA, which included simultaneous hydrogenolysis to 112TCA and dichloroelimination to 1,2-dichloroethene (12DCE). The microcosms from the two sites showed a substantial difference, however, in the relative dominance of subsequent dichloroelimination of 112TCA. A greater dominance of 112TCA dichloroelimination in microcosms constructed with sediment that was initially iron-reducing and subsequently simultaneously iron-reducing and methanogenic caused approximately twice as much vinyl chloride (VC) production as microcosms constructed with sediment that was methanogenic only throughout the incubation. The microcosms with higher VC production also showed substantially more rapid VC degradation. Field measurements of redox-sensitive constituents, TeCA, and its anaerobic degradation products along flowpaths in the wetland porewater also showed greater production and degradation of VC with concurrent methanogenesis and iron reduction. Molecular fingerprinting indicated that bacterial species [represented by a peak at a fragment size of 198 base pairs (bp) by MnlI digest] are associated with VC production from 112TCA dichloroelimination, whereas methanogens (190 and 307 bp) from the Methanococcales or Methanobacteriales family are associated with VC production from 12DCE hydrogenolysis. Acetate-utilizing methanogens

  7. Keep your Sox on: Community genomics-directed isolation and microscopic characterization of the dominant subsurface sulfur-oxidizing bacterium in a sediment aquifer

    Science.gov (United States)

    Mullin, S. W.; Wrighton, K. C.; Luef, B.; Wilkins, M. J.; Handley, K. M.; Williams, K. H.; Banfield, J. F.

    2012-12-01

    Community genomics and proteomics (proteogenomics) can be used to predict the metabolic potential of complex microbial communities and provide insight into microbial activity and nutrient cycling in situ. Inferences regarding the physiology of specific organisms then can guide isolation efforts, which, if successful, can yield strains that can be metabolically and structurally characterized to further test metagenomic predictions. Here we used proteogenomic data from an acetate-stimulated, sulfidic sediment column deployed in a groundwater well in Rifle, CO to direct laboratory amendment experiments to isolate a bacterial strain potentially involved in sulfur oxidation for physiological and microscopic characterization (Handley et al, submitted 2012). Field strains of Sulfurovum (genome r9c2) were predicted to be capable of CO2 fixation via the reverse TCA cycle and sulfur oxidation (Sox and SQR) coupled to either nitrate reduction (Nap, Nir, Nos) in anaerobic environments or oxygen reduction in microaerobic (cbb3 and bd oxidases) environments; however, key genes for sulfur oxidation (soxXAB) were not identified. Sulfidic groundwater and sediment from the Rifle site were used to inoculate cultures that contained various sulfur species, with and without nitrate and oxygen. We isolated a bacterium, Sulfurovum sp. OBA, whose 16S rRNA gene shares 99.8 % identity to the gene of the dominant genomically characterized strain (genome r9c2) in the Rifle sediment column. The 16S rRNA gene of the isolate most closely matches (95 % sequence identity) the gene of Sulfurovum sp. NBC37-1, a genome-sequenced deep-sea sulfur oxidizer. Strain OBA grew via polysulfide, colloidal sulfur, and tetrathionate oxidation coupled to nitrate reduction under autotrophic and mixotrophic conditions. Strain OBA also grew heterotrophically, oxidizing glucose, fructose, mannose, and maltose with nitrate as an electron acceptor. Over the range of oxygen concentrations tested, strain OBA was not

  8. Cross-equatorial flow through an abyssal channel under the complete Coriolis force: Two-dimensional solutions

    Science.gov (United States)

    Stewart, A. L.; Dellar, P. J.

    The component of the Coriolis force due to the locally horizontal component of the Earth's rotation vector is commonly neglected, under the so-called traditional approximation. We investigate the role of this "non-traditional" component of the Coriolis force in cross-equatorial flow of abyssal ocean currents. We focus on the Antarctic Bottom Water (AABW), which crosses from the southern to the northern hemisphere through the Ceara abyssal plain in the western Atlantic ocean. The bathymetry in this region resembles a northwestward channel, connecting the Brazil Basin in the south to the Guyana Basin in the north. South of the equator, the AABW leans against the western continental rise, consistent with a northward flow in approximate geostrophic balance. The AABW then crosses to the other side of the abyssal channel as it crosses the equator, and flows into the northern hemisphere leaning towards the east against the Mid-Atlantic Ridge. The non-traditional component of the Coriolis force is strongest close to the equator. The traditional component vanishes at the equator, being proportional to the locally vertical component of the Earth's rotation vector. The weak stratification of the abyssal ocean, and subsequent small internal deformation radius, defines a relatively short characteristic horizontal lengthscale that tends to make non-traditional effects more prominent. Additionally, the steep gradients of the channel bathymetry induce large vertical velocities, which are linked to zonal accelerations by the non-traditional components of the Coriolis force. We therefore expect non-traditional effects to play a substantial role in cross-equatorial transport of the AABW. We present asymptotic steady solutions for non-traditional shallow water flow through an idealised abyssal channel, oriented at an oblique angle to the equator. The current enters from the south, leaning up against the western side of the channel in approximate geostrophic balance, and crosses the

  9. Chlor-alkali plant contamination of Aussa River sediments induced a large Hg-resistant bacterial community

    Science.gov (United States)

    Baldi, Franco; Marchetto, Davide; Gallo, Michele; Fani, Renato; Maida, Isabel; Covelli, Stefano; Fajon, Vesna; Zizek, Suzana; Hines, Mark; Horvat, Milena

    2012-11-01

    A closed chlor-alkali plant (CAP) discharged Hg for decades into the Aussa River, which flows into Marano Lagoon, resulting in the large-scale pollution of the lagoon. In order to get information on the role of bacteria as mercury detoxifying agents, analyses of anions in the superficial part (0-1 cm) of sediments were conducted at four stations in the Aussa River. In addition, measurements of biopolymeric carbon (BPC) as a sum of the carbon equivalent of proteins (PRT), lipids (LIP), and carbohydrates (CHO) were performed to correlate with bacterial biomass such as the number of aerobic heterotrophic cultivable bacteria and their percentage of Hg-resistant bacteria. All these parameters were used to assess the bioavailable Hg fraction in sediments and the potential detoxification activity of bacteria. In addition, fifteen isolates were characterized by a combination of molecular techniques, which permitted their assignment into six different genera. Four out of fifteen were Gram negative with two strains of Stenotrophomonas maltophilia, one Enterobacter sp., and one strain of Brevibacterium frigoritolerans. The remaining strains (11) were Gram positive belonging to the genera Bacillus and Staphylococcus. We found merA genes in only a few isolates. Mercury volatilization from added HgCl2 and the presence of plasmids with the merA gene were also used to confirm Hg reductase activity. We found the highest number of aerobic heterotrophic Hg-resistant bacteria (one order magnitude higher) and the highest number of Hg-resistant species (11 species out of 15) at the confluence of the River Aussa and Banduzzi's channel, which transport Hg from the CAP, suggesting that Hg is strongly detoxified [reduced to Hg(0)] at this location.

  10. Strong Flows of Bottom Water in Abyssal Channels of the Atlantic

    Science.gov (United States)

    Morozov, E. G.

    Analysis of bottom water transport through the abyssal channels of the Atlantic Ocean is presented. The study is based on recent observations in the Russian expeditions and historical data. A strong flow of Antarctic Bottom Water from the Argentine Basin to the Brazil Basin through the Vema Channel is observed on the basis of lowered profilers and anchored buoys with current meters. The further flow of bottom water in the Brazil Basin splits in the northern part of the basin. Part of the bottom water flows to the East Atlantic through the Romanche and Chain fracture zones. The other part follows the bottom topography and flows to the northwester into the North American Basin. Part of the northwesterly flow propagates through the Vema Fracture Zone into the Northeastern Atlantic. This flow generally fills the bottom layer in the Northeastern Atlantic basins. The flows of bottom waters through the Romanche and Chain fracture zones do not spread to the Northeast Atlantic due to strong mixing in the equatorial zone and enhanced transformation of bottom water properties.

  11. APPLICATION OF 3D COMPUTER-AIDED TOMOGRAPHY TO THE QUANTIFICATION OF MARINE SEDIMENT COMMUNITIES IN POLLUTION GRADIENTS

    Science.gov (United States)

    Computer-Aided Tomography (CT) has been demonstrated to be a cost efficient tool for the qualitative and quantitative study of estuarine benthic communities along pollution gradients.Now we have advanced this technology to successfully visualize and discriminate three dimen...

  12. Complex community of nitrite-dependent anaerobic methane oxidation bacteria in coastal sediments of the Mai Po wetland by PCR amplification of both 16S rRNA and pmoA genes.

    Science.gov (United States)

    Chen, Jing; Zhou, Zhichao; Gu, Ji-Dong

    2015-02-01

    In the present work, both 16S rRNA and pmoA gene-based PCR primers were employed successfully to study the diversity and distribution of n-damo bacteria in the surface and lower layer sediments at the coastal Mai Po wetland. The occurrence of n-damo bacteria in both the surface and subsurface sediments with high diversity was confirmed in this study. Unlike the two other known n-damo communities from coastal areas, the pmoA gene-amplified sequences in the present work clustered not only with some freshwater subclusters but also within three newly erected marine subclusters mostly, indicating the unique niche specificity of n-damo bacteria in this wetland. Results suggested vegetation affected the distribution and community structures of n-damo bacteria in the sediments and n-damo could coexist with sulfate-reducing methanotrophs in the coastal ecosystem. Community structures of the Mai Po n-damo bacteria based on 16S rRNA gene were different from those of either the freshwater or the marine. In contrast, structures of the Mai Po n-damo communities based on pmoA gene grouped with the marine ones and were clearly distinguished from the freshwater ones. The abundance of n-damo bacteria at this wetland was quantified using 16S rRNA gene PCR primers to be 2.65-6.71 × 10(5) copies/g dry sediment. Ammonium and nitrite strongly affected the community structures and distribution of n-damo bacteria in the coastal Mai Po wetland sediments.

  13. A single exposure of sediment sulphate-reducing bacteria to oxytetracycline concentrations relevant to aquaculture enduringly disturbed their activity, abundance and community structure.

    Science.gov (United States)

    Fernández, M L; Granados-Chinchilla, F; Rodríguez, C

    2015-08-01

    Although feed medicated with antibiotics is widely used in animal production to prevent and treat bacterial infections, the effect of these drugs on nontarget anaerobic bacteria is unknown. We aimed to clarify whether a single exposure of sulphate-reducing bacteria (SRB) from a tilapia pond to oxytetracycline (OTC) concentrations relevant to aquaculture impacts their function, abundance and community structure. To demonstrate changes in SO4(2-) content, SRB abundance, dsrB copy number and SRB diversity, sediment mesocosms were spiked with 5, 25, 50 and 75 mg OTC kg(-1) and examined for 30 days by means of ion chromatography, qPCR, cultivation and fluorescent in situ hybridization (FISH). On day 3, we measured higher SO4(2-) concentrations (ca. two-fold) and a reduction in dsrB copy numbers of approximately 50% in the treatments compared to the controls. After 30 days, a subtle yet measurable enrichment of bacteria from the order Desulfovibrionales occurred in mesocosms receiving ≥ 50 mg OTC kg(-1), notwithstanding that SRB counts decreased two orders of magnitude. OTC was dynamically and reversibly converted into 4-epioxytetracycline and other related compounds in a dose-dependent manner during the experiment. A single exposure to rather high OTC concentrations triggered functional and structural changes in a SRB community that manifested quickly and persisted for a month. This study improves our limited knowledge on the ecotoxicology of antibiotics in anaerobic environments. © 2015 The Society for Applied Microbiology.

  14. Enrichment using an up-flow column reactor and community structure of marine anammox bacteria from coastal sediment.

    Science.gov (United States)

    Kindaichi, Tomonori; Awata, Takanori; Suzuki, Yuji; Tanabe, Katsuichiro; Hatamoto, Masashi; Ozaki, Noriatsu; Ohashi, Akiyoshi

    2011-01-01

    We established an enrichment culture of marine anaerobic ammonium oxidation (anammox) bacteria using an up-flow column reactor fed with artificial sea water supplemented with nitrogen and minerals and inoculated with coastal surface sediment collected from Hiroshima Bay. After 2 months of reactor operation, simultaneous removal of NH(4)(+) and NO(2)(-) was observed, suggesting that an anammox reaction was proceeding. A total nitrogen removal rate of 2.17 g-N L(-1) day(-1) was attained on day 594 while the nitrogen loading rate was 3.33 g-N L(-1) day(-1). Phylogenetic analysis revealed that at least two dominant "Candidatus Scalindua" species were present in this reactor. Moreover, many uncultured bacteria and archaea, including candidate division or ammonia-oxidizing archaea, were present. Fluorescence in situ hybridization (FISH) revealed that anammox bacteria accounted for 85.5 ± 4.5% of the total bacteria at day 393. We also designed two oligonucleotide probes specific to each dominant "Candidatus Scalindua" species. A simultaneous FISH analysis using both probes showed that two different "Candidatus Scalindua" species were clearly recognizable and coexisted during reactor operation, although there was some variation in their abundance. The marine anammox bacteria enriched in this study have potential applications to the treatment of industrial wastewater containing high levels of ammonium and salt.

  15. Effect of different enrichment strategies on microbial community structure in petroleum-contaminated marine sediment in Dalian, China.

    Science.gov (United States)

    Chen, Chao; Liu, Qiu; Liu, Changjian; Yu, Jicheng

    2017-04-15

    An oil spill occurred at Xingang Port, Dalian, China in 2010. Four years after this spill, oil contamination was still detected in samples collected nearby. In this study, the strains that evolved in the sediment were screened by high-throughput sequencing technology. Most of these strains were genera reported to have functions associated with crude oil biodegradation. The diversities and numbers of microbes were monitored through enrichment culturing; the dominant strains propagated at first, but the enrichment could not be continued, which indicated that the prolonged culture was not effective in the enrichment of the micro-consortium. Oxygen was also observed to affect the propagation of the dominant microbes. The results showed the role of culture strategies and oxygen in the enrichment of the petroleum-degrading microbes. Therefore, dominant strains could be screened by optimizing both the enrichment time and oxygen concentration used for culturing to facilitate oil biodegradation in the marine ecosystem. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Assessment of the performance of SMFCs in the bioremediation of PAHs in contaminated marine sediments under different redox conditions and analysis of the associated microbial communities

    KAUST Repository

    Hamdan, Hamdan Z.

    2016-10-09

    The biodegradation of naphthalene, 2-methylnaphthalene and phenanthrene was evaluated in marine sediment microbial fuel cells (SMFCs) under different biodegradation conditions, including sulfate reduction as a major biodegradation pathway, employment of anode as terminal electron acceptor (TEA) under inhibited sulfate reducing bacteria activity, and combined sulfate and anode usage as electron acceptors. A significant removal of naphthalene and 2-methylnaphthalene was observed at early stages of incubation in all treatments and was attributed to their high volatility. In the case of phenanthrene, a significant removal (93.83 ± 1.68%) was measured in the closed circuit SMFCs with the anode acting as the main TEA and under combined anode and sulfate reduction conditions (88.51 ± 1.3%). A much lower removal (40.37 ± 3.24%) was achieved in the open circuit SMFCs operating with sulfate reduction as a major biodegradation pathway. Analysis of the anodic bacterial community using 16S rRNA gene pyrosequencing revealed the enrichment of genera with potential exoelectrogenic capability, namely Geoalkalibacter and Desulfuromonas, on the anode of the closed circuit SMFCs under inhibited SRB activity, while they were not detected on the anode of open circuit SMFCs. These results demonstrate the role of the anode in enhancing PAHs biodegradation in contaminated marine sediments and suggest a higher system efficiency in the absence of competition between microbial redox processes (under SRB inhibition), namely due to the anode enrichment with exoelectrogenic bacteria, which is a more energetically favorable mechanism for PAHs oxidation than sulfate.

  17. Characteristics of water, sediment, and benthic communities of the Wolf River, Menominee Indian Reservation, Wisconsin, water years 1986-98

    Science.gov (United States)

    Garn, Herbert S.; Scudder, Barbara C.; Richards, Kevin D.; Sullivan, Daniel J.

    2001-01-01

    Analyses and interpretation of water quality, sediment, and biological data from water years 1986 through 1998 indicated that land use and other human activities have had only minimal effects on water quality in the Wolf River upstream from and within the Menominee Indian Reservation in northeastern Wisconsin. Relatively high concentrations of calcium and magnesium (natural hardness), iron, manganese, and aluminum were measured in Wolf River water samples during water years 1986?98 from the three sampled sites and attributed to presence of highly mineralized geologic materials in the basin. Average calcium and magnesium concentrations varied from 22?26 milligrams per liter (mg/L) and 11?13 mg/L, respectively. Average iron concentrations ranged from 290?380 micrograms per liter (?g/L); average manganese concentrations ranged from 53?56 mg/L. Average aluminum concentrations ranged from 63?67 ?g/L. Mercury was present in water samples but concentrations were not at levels of concern. Levels of Kjeldahl nitrogen, ammonia, nitrite plus nitrate, total phosphorus, and orthophosphorus in water samples were often low or below detection limits (0.01? 0.10 mg/L). Trace amounts of atrazine (maximum concentration of 0.031 ?g/L), deethylatrazine (maximum 0.032 ?g/L), and alachlor (maximum of 0.002 ?g/L) were detected. Low concentrations of most trace elements were found in streambed sediment. Tissues of fish and aquatic invertebrates collected once each year from 1995 through 1998 at the Langlade and Keshena sites, near the northern and southern boundaries of the Reservation, respectively, were low in concentrations of most trace elements. Arsenic and silver in fish livers from both sites were less than or equal to 2 ?g/g arsenic and less than 1 ?g/g silver for dry weight analysis, and concentrations of antimony, beryllium, cadmium, cobalt, lead, nickel, and uranium were all below detection limits (less than 1 ?g/g dry weight). Concentrations of most other trace elements in fish

  18. Sources of organic matter and microbial community structure in the sediments of the Visakhapatnam Harbour, east coat of India

    Digital Repository Service at National Institute of Oceanography (India)

    Harji, R.R; Bhosle, N.B.; Garg, A.; Sawant, S.S.; Venkat, K.

    Trench at 11,000 m. Deep Sea Research Part I: Oceanographic Research Papers 47, 1173- 1182. Fang, J., Kato, C., Sato, T., Chan, O., McKay, D., 2004. Biosynthesis and dietary uptake of polyunsaturated fatty acids by peizophilic bacteria. Comparative... lipids and community structure in estuaries. Aquatic Microbial Ecology 42, 105-117. Hedges, J.I., Keil, R.G., 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine Chemistry 49, 81-115. Hedges, J.I., Keil, R...

  19. Predicting Sediment Thickness on Vanished Ocean Crust Since 200 Ma

    Science.gov (United States)

    Dutkiewicz, A.; Müller, R. D.; Wang, X.; O'Callaghan, S.; Cannon, J.; Wright, N. M.

    2017-12-01

    Tracing sedimentation through time on existing and vanished seafloor is imperative for constraining long-term eustasy and for calculating volumes of subducted deep-sea sediments that contribute to global geochemical cycles. We present regression algorithms that incorporate the age of the ocean crust and the mean distance to the nearest passive margin to predict sediment thicknesses and long-term decompacted sedimentation rates since 200 Ma. The mean sediment thickness decreases from ˜220 m at 200 Ma to a minimum of ˜140 m at 130 Ma, reflecting the replacement of old Panthalassic ocean floor with young sediment-poor mid-ocean ridges, followed by an increase to ˜365 m at present-day. This increase reflects the accumulation of sediments on ageing abyssal plains proximal to passive margins, coupled with a decrease in the mean distance of any parcel of ocean crust to the nearest passive margin by over 700 km, and a doubling of the total passive margin length at present-day. Mean long-term sedimentation rates increase from ˜0.5 cm/ky at 160 Ma to over 0.8 cm/ky today, caused by enhanced terrigenous sediment influx along lengthened passive margins, superimposed by the onset of ocean-wide carbonate sedimentation. Our predictive algorithms, coupled to a plate tectonic model, provide a framework for constraining the seafloor sediment-driven eustatic sea-level component, which has grown from ˜80 to 210 m since 120 Ma. This implies a long-term sea-level rise component of 130 m, partly counteracting the contemporaneous increase in ocean basin depth due to progressive crustal ageing.

  20. Mantle melting and melt refertilization beneath the Southwest Indian Ridge: Mineral composition of abyssal peridotites

    Science.gov (United States)

    Chen, Ling; Zhu, Jihao; Chu, Fengyou; Dong, Yan-hui; Liu, Jiqiang; Li, Zhenggang; Zhu, Zhimin; Tang, Limei

    2017-04-01

    As one of the slowest spreading ridges of the global ocean ridge system, the Southwest Indian Ridge (SWIR) is characterized by discontinued magmatism. The 53°E segment between the Gallieni fracture zone (FZ) (52°20'E) and the Gazelle FZ (53°30'E) is a typical amagmatic segment (crustal thickness 1cm) Opx, and Mg-rich mineral compositions akin to harzburgite xenoliths that sample old continental lithospheric mantle (Kelemen et al., 1998). Melt refertilization model shows that Group 2 peridotites were affected by an enriched low-degree partial melt from the garnet stability field. These results indicate that depleted mantle which experiences ancient melting event are more sensitive to melt refertilization, thus may reduce the melt flux, leading to extremely thin crust at 53°E segment. This research was granted by the National Basic Research Programme of China (973 programme) (grant No. 2013CB429705) and the Fundamental Research Funds of Second Institute of Oceanography, State Oceanic Administration (JG1603, SZ1507). References: Johnson K T M, Dick H J B, Shimizu N. Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites[J]. Journal of Geophysical Research, 1990, 95(B3):2661-2678. Kelemen P B, Hart S R, Bernstein S. Silica enrichment in the continental upper mantle via melt/rock reaction[J]. Earth & Planetary Science Letters, 1998, 164(1-2):387-406. Zhou H, Dick H J. Thin crust as evidence for depleted mantle supporting the Marion Rise.[J]. Nature, 2013, 494(7436):195-200.

  1. Community

    Science.gov (United States)

    stability Science & Innovation Collaboration Careers Community Environment Science & Innovation Recruitment Events Community Commitment Giving Campaigns, Drives Economic Development Employee Funded neighbor pledge: contribute to quality of life in Northern New Mexico through economic development

  2. Abyssal Solenogastres (Mollusca, Aplacophora from the Northwest Pacific: Scratching the Surface of Deep-Sea Diversity Using Integrative Taxonomy

    Directory of Open Access Journals (Sweden)

    Franziska S. Bergmeier

    2017-12-01

    Full Text Available Solenogastres (Aplacophora is a small clade of marine, shell-less worm-molluscs with close to 300 valid species. Their distribution ranges across all oceans, and whereas the vast majority of species has been collected and described from the continental shelf and slope, only few species are known from depths below 4,000 m. Following traditional taxonomy, identification of specimens to species level is complex and time-consuming and requires detailed investigations of morphology and anatomy—often resulting in the exclusion of the clade in biodiversity or biogeographic studies. During the KuramBio expedition (Kuril-Kamchatka Biodiversity Studies to the abyssal plain of the Northwest Pacific and the Kuril-Kamchatka Trench, 33 solenogaster specimens were sampled from 4,830 m to 5,397 m. Within this study we present an efficient workflow to address solenogaster diversity, even when confronted with a high degree of singletons and minute body sizes, hampering the use of single individuals for multiple morphological and molecular approaches. We combine analyses of external characters and scleritome with molecular barcoding based on a self-designed solenogaster specific set of mitochondrial primers. Overall we were able to delineate at least 19 solenogaster lineages and identify 15 species to family level and beyond. Based on our approach we identified three key lineages from the two regionally most species-rich families (Acanthomeniidae and Pruvotinidae for deeper taxonomic investigations and describe the novel abyssal species Amboherpia abyssokurilensis sp. nov. (Cavibelonia, Acanthomeniidae using microanatomical 3D-reconstructions. Our study more than doubles the previous records of solenogaster species from the Northwest Pacific and its marginal seas. Almost all lineages are reported for the first time from the region of the (Northwest Pacific, vastly expanding distribution ranges of the respective clades. Moreover it doubles the number of

  3. Great Meteor East (distal Madeira Abyssal Plain): geological studies of its suitability for disposal of heat-emitting radioactive wastes

    International Nuclear Information System (INIS)

    Searle, R.C.; Schultheiss, P.J.; Weaver, P.P.E.; Noel, M.; Kidd, R.B.; Jacobs, C.L.; Huggett, Q.J.

    1985-01-01

    This report summarises geological and geophysical studies carried out by the Institute of Oceanographic Sciences up to December 1983 in an area of the Madeira Abyssal Plain in order to assess its suitability for the disposal of heat-emitting radioactive waste. The results of work carried out in the same area by the Rijks Geologische Dienst of the Netherlands are also reviewed in the report. Other oceanographic studies in the area in the fields of geochemistry, biology and oceanography are briefly touched upon. (author)

  4. Community Structure of Denitrifiers, Bacteria, and Archaea along Redox Gradients in Pacific Northwest Marine Sediments by Terminal Restriction Fragment Length Polymorphism Analysis of Amplified Nitrite Reductase (nirS) and 16S rRNA Genes

    Science.gov (United States)

    Braker, Gesche; Ayala-del-Río, Héctor L.; Devol, Allan H.; Fesefeldt, Andreas; Tiedje, James M.

    2001-01-01

    Steep vertical gradients of oxidants (O2 and NO3−) in Puget Sound and Washington continental margin sediments indicate that aerobic respiration and denitrification occur within the top few millimeters to centimeters. To systematically explore the underlying communities of denitrifiers, Bacteria, and Archaea along redox gradients at distant geographic locations, nitrite reductase (nirS) genes and bacterial and archaeal 16S rRNA genes (rDNAs) were PCR amplified and analyzed by terminal restriction fragment length polymorphism (T-RFLP) analysis. The suitablility of T-RFLP analysis for investigating communities of nirS-containing denitrifiers was established by the correspondence of dominant terminal restriction fragments (T-RFs) of nirS to computer-simulated T-RFs of nirS clones. These clones belonged to clusters II, III, and IV from the same cores and were analyzed in a previous study (G. Braker, J. Zhou, L. Wu, A. H. Devol, and J. M. Tiedje, Appl. Environ. Microbiol. 66:2096–2104, 2000). T-RFLP analysis of nirS and bacterial rDNA revealed a high level of functional and phylogenetic diversity, whereas the level of diversity of Archaea was lower. A comparison of T-RFLPs based on the presence or absence of T-RFs and correspondence analysis based on the frequencies and heights of T-RFs allowed us to group sediment samples according to the sampling location and thus clearly distinguish Puget Sound and the Washington margin populations. However, changes in community structure within sediment core sections during the transition from aerobic to anaerobic conditions were minor. Thus, within the top layers of marine sediments, redox gradients seem to result from the differential metabolic activities of populations of similar communities, probably through mixing by marine invertebrates rather than from the development of distinct communities. PMID:11282647

  5. Disposal in sea-bed geological formations. Properties of ocean sediments in relation to the disposal of radioactive waste

    International Nuclear Information System (INIS)

    Schultheiss, P.J.; Thomson, J.

    1984-01-01

    Work on the permeability and consolidation characteristics of sediment cores from the north-east Atlantic has shown that each sediment type studied has a unique void ratio/permeability relationship and that the permeability decreases with effective stress more rapidly for fine than for coarser grained material. Significant over-consolidation is also present in Pacific red clays from the deep-sea drilling project. Their permeability is less for a given void ratio than that of their Atlantic counterparts. A theoretical analysis is given of the effects on permeability of deep open burrows revealed by improved core handling techniques. Mineralogy and sediment and water chemistry of six cores from the Nares Abyssal Plain have demonstrated the effects of lateral sediment redistribution and have shown only mildly reducing conditions. Pore water studies on a 4 m Kasten core from Great Meteor East show oxygen falling to zero within 30 cm of the sediment surface

  6. Enrichment of sulfate reducing anaerobic methane oxidizing community dominated by ANME-1 from Ginsburg Mud Volcano (Gulf of Cadiz) sediment in a biotrickling filter.

    Science.gov (United States)

    Bhattarai, Susma; Cassarini, Chiara; Rene, Eldon R; Zhang, Yu; Esposito, Giovanni; Lens, Piet N L

    2018-07-01

    This study was performed to enrich anaerobic methane-oxidizing archaea (ANME) present in sediment from the Ginsburg Mud Volcano (Gulf of Cadiz) in a polyurethane foam packed biotrickling filter (BTF). The BTF was operated at 20 (±2) °C, ambient pressure with continuous supply of methane for 248 days. Sulfate reduction with simultaneous sulfide production (accumulating ∼7 mM) after 200 days of BTF operation evidenced anaerobic oxidation of methane (AOM) coupled to sulfate reduction. High-throughput sequence analysis of 16S rRNA genes showed that after 248 days of BTF operation, the ANME clades enriched to more than 50% of the archaeal sequences, including ANME-1b (40.3%) and ANME-2 (10.0%). Enrichment of the AOM community was beneficial to Desulfobacteraceae, which increased from 0.2% to 1.8%. Both the inoculum and the BTF enrichment contained large populations of anaerobic sulfur oxidizing bacteria, suggesting extensive sulfur cycling in the BTF. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Shift in the species composition of the diatom community in the eutrophic Mauritanian coastal upwelling: Results from a multi-year sediment trap experiment (2003-2010)

    Science.gov (United States)

    Romero, Oscar E.; Fischer, Gerhard

    2017-12-01

    A multiannual, continuous sediment trap experiment was conducted at the mooring site CBeu (Cape Blanc eutrophic, ca. 20 °N, ca. 18 °W; trap depth = 1256-1296 m) in the high-productive Mauritanian coastal upwelling. Here we present fluxes and the species-specific composition of the diatom assemblage, and fluxes of biogenic silica (BSi, opal) and total organic carbon (TOC) for the time interval June 2003-Feb 2010. Flux ranges of studied parameters are (i) total diatoms = 1.2 ∗ 108-4.7 ∗ 104 valves m-2 d-1 (average = 5.9 × 106 valves ± 1.4 × 107); (ii) BSi = 296-0.5 mg m-2 d-1 (average = 41.1 ± 53.5 mg m-2 d-1), and (iii) TOC = 97-1 mg m-2 d-1 (average = 20.5 ± 17.8 mg m-2 d-1). Throughout the experiment, the overall good match of total diatom, BSi and TOC fluxes is reasonably consistent and reflects well the temporal occurrence of the main Mauritanian upwelling season. Spring and summer are the most favorable seasons for diatom production and sedimentation: out of the recorded 14 diatom maxima of different magnitude, six occurred in spring and four in summer. The diverse diatom community at site CBeu is composed of four main assemblages: benthic, coastal upwelling, coastal planktonic and open-ocean diatoms, reflecting different productivity conditions and water masses. A striking feature of the temporal variability of the diatom populations is the persistent pattern of seasonal groups' contribution: benthic and coastal upwelling taxa dominated during the main upwelling season in spring, while open-ocean diatoms were more abundant in fall and winter, when the upper water column becomes stratified, upwelling relaxes and productivity decreases. The relative abundance of benthic diatoms strongly increased after 2006, yet their spring-summer contribution remained high until the end of the trap experiment. The occurrence of large populations of benthic diatoms at the hemipelagic CBeu site is interpreted to indicate transport from shallow waters via nepheloid

  8. Morphological and ontogenetic stratification of abyssal and hadal Eurythenes gryllus sensu lato (Amphipoda: Lysianassoidea) from the Peru-Chile Trench

    Science.gov (United States)

    Eustace, Ryan M.; Ritchie, Heather; Kilgallen, Niamh M.; Piertney, Stuart B.; Jamieson, Alan J.

    2016-03-01

    The globally ubiquitous lysianassoid amphipod, Eurythenes gryllus, has been shown to consist of multiple genetically distinct cryptic taxa, with depth considered a major driver of speciation and morphological divergence. Here we examine morphological variation of E. gryllus sensu lato through a continuous depth distribution that spans from abyssal (3000-6000 m) into hadal depths (>6000 m) in the Peru-Chile Trench (SE Pacific Ocean). Three distinct morphospecies were identified: one was confirmed as being E. magellanicus (4602-5329 m) based on DNA sequence and morphological similarity. The other two morphologically distinct species were named based upon depth of occurrence; Abyssal (4602-6173 m) and Hadal (6173-8074 m). The three Eurythenes morphospecies showed vertical ontogenetic stratification across their bathymetric range, where juveniles were found shallower in their depth range and mature females deeper. Potential ecological and evolutionary drivers that explain the observed patterns of intra and inter-specific structure, such as hydrostatic pressure and topographical isolation, are discussed.

  9. Oil spill effects on macrofaunal communities and bioturbation of pristine marine sediments (Caleta Valdés, Patagonia, Argentina): experimental evidence of low resistance capacities of benthic systems without history of pollution.

    Science.gov (United States)

    Ferrando, Agustina; Gonzalez, Emilia; Franco, Marcos; Commendatore, Marta; Nievas, Marina; Militon, Cécile; Stora, Georges; Gilbert, Franck; Esteves, José Luis; Cuny, Philippe

    2015-10-01

    The Patagonian coast is characterized by the existence of pristine ecosystems which may be particularly sensitive to oil contamination. In this study, a simulated oil spill at acute and chronic input levels was carried out to assess the effects of contamination on the macrobenthic community structure and the bioturbation activity of sediments sampled in Caleta Valdés creek. Superficial sediments were either noncontaminated or contaminated by Escalante crude oil and incubated in the laboratory for 30 days. Oil contamination induced adverse effects on macrobenthic community at both concentrations with, for the highest concentration, a marked decrease of approximately 40 and 55 % of density and specific richness, respectively. Besides the disappearance of sensitive species, some other species like Oligochaeta sp. 1, Paranebalia sp., and Ostracoda sp. 2 species have a higher resistance to oil contamination. Sediment reworking activity was also affected by oil addition. At the highest level of contamination, nearly no activity was observed due to the high mortality of macroorganisms. The results strongly suggest that an oil spill in this protected marine area with no previous history of contamination would have a deep impact on the non-adapted macrobenthic community.

  10. Community.

    Science.gov (United States)

    Grauer, Kit, Ed.

    1995-01-01

    Art in context of community is the theme of this newsletter. The theme is introduced in an editorial "Community-Enlarging the Definition" (Kit Grauer). Related articles include: (1) "The Children's Bridge is not Destroyed: Heart in the Middle of the World" (Emil Robert Tanay); (2) "Making Bridges: The Sock Doll…

  11. Effect of Lake Trophic Status and Rooted Macrophytes on Community Composition and Abundance of Ammonia-oxidizing Prokaryotes in Freshwater Sediments

    DEFF Research Database (Denmark)

    Herrmann, Martina; Saunders, Aaron Marc; Schramm, Andreas

    2009-01-01

    ) and slightly higher for AOA in unvegetated sediment and AOA in association with M. alterniflorum (0.01 to 2%), while AOA accounted for up to 5% in the rhizospheres of L. uniflora and J. bulbosus. These results indicate that (i) AOA are at least as numerous as AOB in freshwater sediments, (ii) aquatic...

  12. Feasibility of high level radioactive waste disposal in deep sea sediments

    International Nuclear Information System (INIS)

    Buckley, D.E.

    1987-01-01

    For the past ten years, an international program has been conducted to investigate the concept feasibility for disposing of spent nuclear fuel waste in deep ocean sediments. These studies by the Seabed Working Group were coordinated by the Nuclear Energy Agency of the Organization for Economic Cooperation and Development. Penetrators have been considered as the primary method of waste emplacement. This required emphasis on studies of the nature of the plastic sediments which would form the primary barrier to the release of radionuclides into the biosphere. Site qualification guidelines, included criteria for tectonic and sedimentary stability over periods of at least 10 5 years. Using these guidelines two potential areas were identified: one in the Madeira Abyssal Plain; and one in the Southern Nares Abyssal Plain, both in the North Atlantic. The sediment barrier properties are quite different in terms of dominant mineralogy (carbonates in MAP, and silicous clays in SNAP). The MAP is dominated by thick wide-spread turbidites, but SNAP is dominated by thin discontinuous turbidites

  13. Molluscs of an intertidal soft-sediment area in China: Does overfishing explain a high density but low diversity community that benefits staging shorebirds?

    Science.gov (United States)

    Yang, Hong-Yan; Chen, Bing; Piersma, Theunis; Zhang, Zhengwang; Ding, Changqing

    2016-03-01

    The Yellow Sea is a key staging ground for shorebirds that migrate from Australasia to the Arctic each spring. A lot of attention has been paid to the impact of habitat loss due to land reclamation on shorebird survival, but any effects of overfishing of coastal resources are unclear. In this study, the abundance of molluscs in the intertidal mudflats of northern Bohai Bay on the Chinese Yellow Sea was investigated in 2008-2014 from the perspective of their importance as food for northward migrating shorebirds, especially Red Knots Calidris canutus. Numerically contributing 96% to the numbers of 17 species found in spring 2008, the bivalve Potamocorbula laevis (the staple food of Red Knots and other shorebirds) dominated the intertidal mollusc community. In the spring of 2008-2014, the densities of P. laevis were surprisingly high, varying between 3900 and 41,000 individuals/m2 at distinctly small sizes (average shell lengths of 1.1 to 4.8 mm), and thus reaching some of the highest densities of marine bivalves recorded worldwide and providing good food for shorebirds. The distribution of P. laevis was associated with relatively soft sediments in close proximity to the recently built seawalls. A monthly sampling programme showed steep seasonal changes in abundance and size. P. laevis were nearly absent in winter, each year settling on the intertidal mudflats anew. Peak densities were reached in spring, when 0-age P. laevis were 1-3 mm long. The findings point to a highly unusual demographic structure of the species, suggesting that some interfering factors are at play. We hypothesise that the current dominance of young P. laevis in Bohai Bay reflects the combined pressures of a nearly complete active removal of adult populations from mid-summer to autumn for shrimp farming (this clearing of adults may offer space for recruitment during the next spring) and low numbers of epibenthic predators of bivalves, such as shrimps and crabs, due to persistent overfishing in

  14. Sediment Transport

    DEFF Research Database (Denmark)

    Liu, Zhou

    Flow and sediment transport are important in relation to several engineering topics, e.g. erosion around structures, backfilling of dredged channels and nearshore morphological change. The purpose of the present book is to describe both the basic hydrodynamics and the basic sediment transport...... mechanics. Chapter 1 deals with fundamentals in fluid mechanics with emphasis on bed shear stress by currents, while chapter 3 discusses wave boundary layer theory. They are both written with a view to sediment transport. Sediment transport in rivers, cross-shore and longshore are dealt with in chapters 2......, 4 and 5, respectively. It is not the intention of the book to give a broad review of the literature on this very wide topic. The book tries to pick up information which is of engineering importance. An obstacle to the study of sedimentation is the scale effect in model tests. Whenever small...

  15. Metabolic enzyme activities of abyssal and hadal fishes: pressure effects and a re-evaluation of depth-related changes

    Science.gov (United States)

    Gerringer, M. E.; Drazen, J. C.; Yancey, P. H.

    2017-07-01

    Metabolic enzyme activities of muscle tissue have been useful and widely-applied indicators of whole animal metabolic capacity, particularly in inaccessible systems such as the deep sea. Previous studies have been conducted at atmospheric pressure, regardless of organism habitat depth. However, maximum reaction rates of some of these enzymes are pressure dependent, complicating the use of metabolic enzyme activities as proxies of metabolic rates. Here, we show pressure-related rate changes in lactate and malate dehydrogenase (LDH, MDH) and pyruvate kinase (PK) in six fish species (2 hadal, 2 abyssal, 2 shallow). LDH maximal reaction rates decreased with pressure for the two shallow species, but, in contrast to previous findings, it increased for the four deep species, suggesting evolutionary changes in LDH reaction volumes. MDH maximal reaction rates increased with pressure in all species (up to 51±10% at 60 MPa), including the tide pool snailfish, Liparis florae (activity increase at 60 MPa 44±9%), suggesting an inherent negative volume change of the reaction. PK was inhibited by pressure in all species tested, including the hadal liparids (up to 34±3% at 60 MPa), suggesting a positive volume change during the reaction. The addition of 400 mM TMAO counteracted this inhibition at both 0.5 and 2.0 mM ADP concentrations for the hadal liparid, Notoliparis kermadecensis. We revisit depth-related trends in metabolic enzyme activities according to these pressure-related rate changes and new data from seven abyssal and hadal species from the Kermadec and Mariana trenches. Results show that, with abyssal and hadal species, pressure-related rate changes are another variable to be considered in the use of enzyme activities as proxies for metabolic rate, in addition to factors such as temperature and body mass. Intraspecific increases in tricarboxylic acid cycle enzymes with depth of capture, independent of body mass, in two hadal snailfishes suggest improved nutritional

  16. Rates of sediment reworking at the HEBBLE site based on measurements of Th-234, Cs-137 and Pb-210

    International Nuclear Information System (INIS)

    DeMaster, D.J.; McKee, B.A.; Nittrouer, C.A.; Brewster, D.C.; Biscaye, P.E.

    1985-01-01

    Th-234, Cs-137 and Pb-210 measurements have been made on ten cores from the HEBBLE site on the Nova Scotian continental rise. Th-234 mixing coefficients from HEBBLE sediments show substantial lateral variability with values ranging from 1 to 33 cm 2 yr -1 . These mixing coefficients are one to two orders of magnitude greater than values from typical continental-rise and abyssal sediments because of high densities of benthic macrofauna. Th-234 data from HEBBLE cores indicate that particles at the sediment-water interface are mixed to depths of 1-5 cm on a 100-day time scale. Cs-137 and Pb-210 data indicate that on time scales of 30-100 yrs surface sediments are reworked to depths ranging from 1 to 12 cm. Based on Th-234 profiles from two HEBBLE cores collected less than 200 m apart during consecutive years, no temporal variability in mixing rate could be resolved. (Auth.)

  17. Ecological policy, assessment and prediction of the fate of Chernobyl radionuclides in sediments of the Black Sea

    International Nuclear Information System (INIS)

    Kontar, A.E.

    2002-01-01

    The mathematical model has been designed to investigate the fate and distribution of the Chernobyl radionuclides in sediments of the Black Sea. One of the regions of intensive radioactive precipitation during the Chernobyl disaster was the nothwestern Black Sea region. There are some canyon systems in this region, where bottom sediments of the shelf zone are removed to the continental slope region and finally to the abyssal part of the sea. The lack of reliable information on the removal intensity of the shelf sediments, which contain different kinds of radioactive precipitation, does not allow changes in the radioactive situation to be predicted reliably enough in the given region. On the other hand, the surface sedimentary layers dated by characteristic Chernobyl precipitation made it possible to obtain information on sediment movement rates and directions, as well as other quantitative and qualitative parameters for the mechanisms of canyon processes. This region was selected for our study

  18. Late Cretaceous and Cenozoic seafloor and oceanic basement roughness: Spreading rate, crustal age and sediment thickness correlations

    Science.gov (United States)

    Bird, Robert T.; Pockalny, Robert A.

    1994-05-01

    Single-channel seismic data from the South Australian Basin and Argentine Basin, and bathymetry data from the flanks of the Mid-Atlantic Ridge, East Pacific Rise and Southwest Indian Ridge are analysed to determine the root-mean-square (RMS) roughness of the seafloor and oceanic basement created at seafloor spreading rates ranging from 3 to 80 km/Ma (half-rate). For these data, crustal ages range from near zero to 85 Ma and sediment thicknesses range from near zero to over 2 km. Our results are consistent with a negative correlation of basement roughness and spreading rate where roughness decreases dramatically through the slow-spreading regime (oceanic basement roughness and spreading rate appears to have existed since the late Cretaceous for slow and intermediate spreading rates, suggesting that the fundamental processes creating abyssal hill topography may have remained the same for this time period. Basement roughness does not appear to decrease (smooth) with increasing crustal age, and therefore off-ridge degradation of abyssal hill topography by mass wasting is not detected by our data. Seismic data reveal that sediment thickness increases with increasing crustal age in the South Australian Basin and Argentine Basin, but not monotonically and with significant regional variation. We show that minor accumulations of sediment can affect roughness significantly. Average sediment accumulations of less that 50 m (for our 100 km long sample seismic profiles and half-spreading rates ocean ridges.

  19. Sediment Buffering and Transport in the Holocene Indus River System

    Science.gov (United States)

    Clift, P. D.; Giosan, L.; Henstock, T.; Tabrez, A. R.; Vanlaningham, S.; Alizai, A. H.; Limmer, D. R.; Danish, M.

    2009-12-01

    Submarine fans are the largest sediment bodies on Earth and potentially hold records of erosion that could be used to assess the response of continents to changing climate in terms of both physical erosion and chemical weathering. However, buffering between the mountain sources and the abyssal plain may make detailed correlation of climate and erosion records difficult. We investigated the nature of sediment transport in the Indus drainage in SW Asia. Through trenching in the flood plain, drilling in the delta and new seismic and coring data from the shelf and canyon we can now constrain sediment transport from source to sink since the Last Glacial Maximum (LGM). The Indus was affected by intensification of the summer monsoon during the Early Holocene and subsequent weakening since ca. 8 ka. Sediment delivery to the delta was very rapid at 12-8 ka, but slowed along with the weakening monsoon. At the LGM erosion in the Karakoram dominated the supply of sandy material, while the proportion of Lesser Himalayan flux increased with strengthening summer rainfall after 12 ka. Total load also increased at that time. Since 5 ka incision of rivers into the upper parts of the flood plain has reworked Lower Holocene sediments, although the total flux slowed. Coring in the Indus canyon shows that sediment has not reached the lower canyon since ca. 7 ka, but that sedimentation has recently been very rapid in the head of the canyon. We conclude that variations in sealevel and terrestrial climate have introduced a lag of at least 7 k.y. into the deep sea fan record and that monsoon strength is a primary control on whether sediment is stored or released in the flood plain.

  20. Assessment of the performance of SMFCs in the bioremediation of PAHs in contaminated marine sediments under different redox conditions and analysis of the associated microbial communities

    KAUST Repository

    Hamdan, Hamdan Z.; Salam, Darine A.; Rao, Hari Ananda; Semerjian, Lucy; Saikaly, Pascal

    2016-01-01

    The biodegradation of naphthalene, 2-methylnaphthalene and phenanthrene was evaluated in marine sediment microbial fuel cells (SMFCs) under different biodegradation conditions, including sulfate reduction as a major biodegradation pathway

  1. Comparative analysis of bacterial community-metagenomics in coastal Gulf of Mexico sediment microcosms following exposure to Macondo oil (MC252)

    KAUST Repository

    Koo, Hyunmin; Mojib, Nazia; Thacker, Robert W.; Bej, Asim K.

    2014-01-01

    or the third most abundant taxa. Tenericutes, members of which are known for oil biodegradation, were detected shortly after treatment, and continued to increase in DI and PP sediments. Multivariate statistical analyses (ADONIS) revealed significant

  2. “One Should Have Two Homelands”: Discord and Hope in Soma Morgenstern’s Sparks in the Abyss

    Directory of Open Access Journals (Sweden)

    Kata Gellen

    2017-02-01

    Full Text Available Soma Morgenstern’s three-part novel Sparks in the Abyss, written between 1930 and 1943, exudes a spirit of serenity and optimism at the same time that its narrative is structured by repeated scenes of conflict and violence. This paper seeks to account for the place of discord in the trilogy. Morgenstern uses the interwar Galician homeland as a site to articulate the possibility of traditional Jewish life in modern Europe. By inhabiting two homes—East and West, Galicia and Vienna, secularism and piety—Jews will be able to negotiate the inevitable discord and occasional brutality that they face in the world. The lessons learned by a Western secular Jew in pluralist Galicia create hope for the negotiation of difference, if not for the complete overcoming of violence, on the eve of World War II.

  3. Petrological, magnetic and chemical properties of basalt dredged from an abyssal hill in the North-east pacific

    Science.gov (United States)

    Luyendyk, B.P.; Engel, C.G.

    1969-01-01

    OVER the years, samples of basalt from the oceanic crust have been taken mainly from seamounts, fracture zones and ridge and rise crests1-6, and rarely from the vast fields of abyssal hills which cover a large part of the deep-sea floor. The basalt sampled from the deeper regions of the oceanic crust (for example, on fault scarps) is a distinct variety of tholeiitic basalt, while alkali basalt is restricted to the volcanic edifices4. Oceanic tholeiitic basalt differs from alkali basalt and continental tholeiite chiefly in having a relatively low percentage of K2O (0.2 weight per cent)4. Some authors have speculated that this type of tholeiitic basalt is the major extrusion from the upper mantle and constitutes the predominant rock type in the upper oceanic crust. ?? 1969 Nature Publishing Group.

  4. Abyssal fauna of the UK-1 polymetallic nodule exploration area, Clarion-Clipperton Zone, central Pacific Ocean: Mollusca.

    Science.gov (United States)

    Wiklund, Helena; Taylor, John D; Dahlgren, Thomas G; Todt, Christiane; Ikebe, Chiho; Rabone, Muriel; Glover, Adrian G

    2017-01-01

    We present the first DNA taxonomy publication on abyssal Mollusca from the Clarion-Clipperton Zone (CCZ), central Pacific ocean, using material collected as part of the Abyssal Baseline (ABYSSLINE) environmental survey cruise 'AB01' to the UK Seabed Resources Ltd (UKSRL) polymetallic-nodule exploration area 'UK-1' in the eastern CCZ. This is the third paper in a series to provide regional taxonomic data for a region that is undergoing intense deep-sea mineral exploration for high-grade polymetallic nodules. Taxonomic data are presented for 21 species from 42 records identified by a combination of morphological and genetic data, including molecular phylogenetic analyses. These included 3 heterodont bivalves, 5 protobranch bivalves, 4 pteriomorph bivalves, 1 caudofoveate, 1 monoplacophoran, 1 polyplacophoran, 4 scaphopods and 2 solenogastres. Gastropoda were recovered but will be the subject of a future study. Seven taxa matched published morphological descriptions for species with deep Pacific type localities, and our sequences provide the first genetic data for these taxa. One taxon morphologically matched a known cosmopolitan species but with a type locality in a different ocean basin and was assigned the open nomenclature ' cf ' as a precautionary approach in taxon assignments to avoid over-estimating species ranges. One taxon is here described as a new species, Ledella knudseni sp. n. For the remaining 12 taxa, we have determined them to be potentially new species, for which we make the raw data, imagery and vouchers available for future taxonomic study. The Clarion-Clipperton Zone is a region undergoing intense exploration for potential deep-sea mineral extraction. We present these data to facilitate future taxonomic and environmental impact study by making both data and voucher materials available through curated and accessible biological collections.

  5. Abyssal fauna of the UK-1 polymetallic nodule exploration area, Clarion-Clipperton Zone, central Pacific Ocean: Mollusca

    Directory of Open Access Journals (Sweden)

    Helena Wiklund

    2017-10-01

    Full Text Available We present the first DNA taxonomy publication on abyssal Mollusca from the Clarion-Clipperton Zone (CCZ, central Pacific ocean, using material collected as part of the Abyssal Baseline (ABYSSLINE environmental survey cruise ‘AB01’ to the UK Seabed Resources Ltd (UKSRL polymetallic-nodule exploration area ‘UK-1’ in the eastern CCZ. This is the third paper in a series to provide regional taxonomic data for a region that is undergoing intense deep-sea mineral exploration for high-grade polymetallic nodules. Taxonomic data are presented for 21 species from 42 records identified by a combination of morphological and genetic data, including molecular phylogenetic analyses. These included 3 heterodont bivalves, 5 protobranch bivalves, 4 pteriomorph bivalves, 1 caudofoveate, 1 monoplacophoran, 1 polyplacophoran, 4 scaphopods and 2 solenogastres. Gastropoda were recovered but will be the subject of a future study. Seven taxa matched published morphological descriptions for species with deep Pacific type localities, and our sequences provide the first genetic data for these taxa. One taxon morphologically matched a known cosmopolitan species but with a type locality in a different ocean basin and was assigned the open nomenclature ‘cf’ as a precautionary approach in taxon assignments to avoid over-estimating species ranges. One taxon is here described as a new species, Ledella knudseni sp. n. For the remaining 12 taxa, we have determined them to be potentially new species, for which we make the raw data, imagery and vouchers available for future taxonomic study. The Clarion-Clipperton Zone is a region undergoing intense exploration for potential deep-sea mineral extraction. We present these data to facilitate future taxonomic and environmental impact study by making both data and voucher materials available through curated and accessible biological collections.

  6. The rôle of the complete Coriolis force in cross-equatorial flow of abyssal ocean currents

    Science.gov (United States)

    Stewart, A. L.; Dellar, P. J.

    Ocean currents flowing close to or across the equator are strongly constrained by the change in sign of f, the locally vertical component of the Earth's rotation vector, across the equator. We investigate these currents using a shallow water model that includes both the locally vertical and locally horizontal components of the Earth's rotation vector, thus accounting for the complete Coriolis force. We therefore avoid making the so-called "traditional approximation" that retains only the part of the Coriolis force associated with the locally vertical component of the rotation vector. Including the complete Coriolis force contributes an additional term to the fluid's potential vorticity, which may partially balance the change in sign of f as fluid crosses the equator over suitably shaped bathymetry. We focus on the Antarctic Bottom Water, which crosses the equator northwards in the western Atlantic ocean where the local bathymetry forms an almost-zonal channel. We show that this bathymetry facilitates the current's equatorial crossing via the action of the "non-traditional" component of the Coriolis force. We illustrate this process using both analytical and numerical solutions for flow of an abyssal current over idealised equatorial topography. We also consider the one-dimensional geostrophic adjustment of a body of fluid across the equator, and show that the "non-traditional" contribution to the fluid's angular momentum permits a larger cross-equatorial transport. These results underline the importance of including the complete Coriolis force in studies of the equatorial ocean, particularly in the weakly-stratified abyssal ocean where the non-traditional component is most pronounced.

  7. A new eyeless species of Neanthes (Annelida: Nereididae) associated with a whale-fall community from the deep Southwest Atlantic Ocean

    Science.gov (United States)

    Shimabukuro, Maurício; Santos, Cinthya S. G.; Alfaro-Lucas, Joan M.; Fujiwara, Yoshihiro; Sumida, Paulo Y. G.

    2017-12-01

    A new whale-fall community was discovered in the abyssal SW Atlantic Ocean (4204 m depth) during the Iatá-piúna expedition. Several specimens of a new nereidid were found living in sediments around and immediately below whalebones. This new species, Neanthes shinkai, is described here. The most interesting feature of the new species is the absence of eyes on the prostomium. Although three other deep-sea Neanthes species are also eyeless, the arrangement of paragnaths on the pharynx, the shape of parapodia and the type of neuropodial falcigers chaetae can distinguish N. shinkai n. sp. from these other species. In addition, interspecific comparisons using COI fragment shown a high genetic divergence (23.6-24.9% K2P) from other Neanthes species. Some nereidids have been already known to live in association with deep-sea organic falls and other reducing environments, however this is the first record and description of a Neanthes species in a deep-sea whale-fall community. Observed behavioral and carbon and nitrogen isotopes suggest that N. shinkai n. sp. is an omnivore relying mainly on whale carcass with slightly contribution of chemosynthetic bacterial mats, suggesting that it is an inhabitant of whale-falls from SW Atlantic.

  8. Long-term nutrient addition differentially alters community composition and diversity of genes that control nitrous oxide flux from salt marsh sediments

    Science.gov (United States)

    Kearns, Patrick J.; Angell, John H.; Feinman, Sarah G.; Bowen, Jennifer L.

    2015-03-01

    Enrichment of natural waters, soils, and sediments by inorganic nutrients, including nitrogen, is occurring at an increasing rate and has fundamentally altered global biogeochemical cycles. Salt marshes are critical for the removal of land-derived nitrogen before it enters coastal waters. This is accomplished via multiple microbially mediated pathways, including denitrification. Many of these pathways, however, are also a source of the greenhouse gas nitrous oxide (N2O). We used clone libraries and quantative PCR (qPCR) to examine the effect of fertilization on the diversity and abundance of two functional genes associated with denitrification and N2O production (norB and nosZ) in experimental plots at the Great Sippewissett Salt Marsh (Falmouth, MA, USA) that have been enriched with nutrients for over 40 years. Our data showed distinct nosZ and norB community structures at different nitrogen loads, especially at the highest level of fertilization. Furthermore, calculations of the Shannon Diversity Index and Chao1 Richness Estimator indicated that nosZ gene diversity and richness increased with increased nitrogen supply, however no such relationship existed with regard to richness and diversity of the norB gene. Results from qPCR demonstrated that nosZ gene abundance was an order of magnitude lower in the extra-highly fertilized plots compared to the other plots, but the abundance of norB was not affected by fertilization. The majority of sequences obtained from the marsh plots had no close cultured relatives and they were divergent from previously sequenced norB and nosZ fragments. Despite their divergence from any cultured representatives, most of the norB and nosZ sequences appeared to be from members of the Alpha- and Betaproteobacteria, suggesting that these classes are particularly important in salt marsh nitrogen cycling. Our results suggest that both norB and nosZ containing microbes are affected by fertilization and that the Great Sippewissett Marsh may

  9. Magnetic Hysteresis of Deep-Sea Sediments in Korea Deep Ocean Study(KODOS) Area, NE Pacific

    Science.gov (United States)

    Kim, K.; Park, C.; Yoo, C.

    2001-12-01

    The KODOS area within the Clarion-Clipperton fracture zone (C-C zone) is surrounded by the Hawaiian and Line Island Ridges to the west and the central American continent to the east. Topography of the seafloor consists of flat-topped abyssal hills and adjacent abyssal troughs, both of which run parallel in N-S direction. Sediments from the study area consist mainly of biogenic sediments. Latitudinal zonation of sedimentary facies was caused by the accumulation of biogenic materials associated with the equatorial current system and movement of the Pacific plate toward the north or northwest. The KODOS area belongs to the latitudinal transition zone having depositional characteristics between non-fossiliferous pelagic clay-dominated zone and calcareous sediment-dominated zone. The box core sediments of the KODOS area are analyzed in an attempt to obtain magnetic hysteresis information and to elucidate the relationship between hysteresis property and lithological facies. Variations in magnetic hysteresis parameters with unit layers reflect the magnetic grain-size and concentrations within the sediments. The ratios of remanant coercivity/coercive force (Hcr/Hc) and saturation remnance/saturation magnetization (Mrs/Ms) indicate that coarse magnetic grains are mainly distributed in dark brown sediments (lower part of the sediment core samples) reflecting high Hcr/Hc and low Mrs/Ms ratios. These results are mainly caused by dissolution differences with core depth. From the plotting of the ratios of hyteresis parameters, it is indicated that magnetic minerals in cubic samples are in pseudo-single domain (PSD) state.

  10. Chemical Characteristics of Seawater and Sediment in the Yap Trench

    Science.gov (United States)

    Ding, H.; Sun, C.; Yang, G.

    2017-12-01

    In June 2016, seawater samples at sediment-seawater interface and sediment samples were collected by the he Jiaolong, China's manned submersible, at four sampling sites located in the Yap Trench. Seawater samples from different depths of the trench were also collected by CTD. Chemical parameters, including pH, alkanility, concentrations of dissolved inorganic carbon, dissolved and total organic carbon, methane, dimethylsulfoniopropionate, nutrients, carbohydrates, and amino acids were analyzed in the seawater samples. Concentrations of total organic carbon, six constant elements and nine trace elements were determined in the sediment samples. All the vertical profiles of the chemical parameters in the seawater have unique characteristics. Our resluts also showed that the carbonate compensation depth (CCD) was between 4500 m and 5000 m in the trench. The hadal sediment at 6500 m depth under the CCD line was siliceous ooze favored for the burial of orgaic carbon, attributed to accumulation of surface sediment by gravity flow. The abyssal sediment at the 4500 m depth was calcareous ooze. Various microfossils, such as discoasters and diatoms, were identified in different sediment layers of the sediment samples.Based on the ratios of Fe/Al and Ti/Al, and the correlation between different elements, the sediment in the Yap Trench were derived from biogenic, terrestrial, volcanic and autogenic sources. The ratios of Ni/Co and V/Cr showed that the deposition environment of the trench should be oxidative, arributed to inflow of the Antractic bottom oxygen-rich seawater.The high concentraiont of Ca in the sediment from the station 371-Yap-S02 below 4 cm depth indicated that there was no large-scale volcanic eruption in the research area and the volcanic materials in the sediment might orginated from the Mariana Volcanic Arc, and the Carolyn Ridge has been slowly sinking on the east side of the trench due to plate subduction. This study is the first systematic study of

  11. Tectonic and Sedimentation Interactions in the East Caribbean Subduction Zone: AN Overview from the Orinoco Delta to the Barbados Accretionary Prism

    Science.gov (United States)

    Deville, E.

    2011-12-01

    Recent marine geophysical acquisitions and piston-coring allow to better understand the close interactions between the sand-rich Orinoco turbidite system and the compressional structures of the Barbados prism. Because of the morphologic and tectonic control in the east-Caribbean active margin, the Orinoco turbiditic pattern system does not exhibit a classic fan geometry. The sea-floor geometry between the slope of the front of the Barbados prism and the slope of the South-American margin induces the convergence of the turbidite channels toward the abyssal plain, at the front of the accretionary prism. Also, whereas in most passive margins the turbidite systems are organized upstream to downstream as canyon, then channel-levee, then lobes, here, due to the tectonic control, the sedimentary system is organized as channel-levee, then canyons, then channelized lobes. At the edge of the Orinoco platform, the system has multiple sources with several distributaries and downward the channel courses are complex with frequent convergences or divergences that are emphasized by the effects of the undulating seafloor tectonic morphologies associated with active thrust tectonics and mud volcanism. On top of the accretionary prism, turbidite sediments are filling transported piggy-back basins whose timing of sedimentation vs. deformation is complex. Erosion processes are almost absent on the highly subsiding Orinoco platform and in the upper part of the turbidite system. Erosion processes develop mostly between 2000 and 4000 m of water depth, above the compressional structures of the Barbados prism (canyons up to 3 km wide and 300 m deep). In the abyssal plain, turbiditic channels develop on very long distance (> 1000 km) joining the mid-Atlantic channel (sourced mostly by the Amazon), filling several elongated basins corresponding to transform faults (notably the Barracuda Basin), and finally sourcing the Puerto-Rico trench, the deepest morphologic depression of this region

  12. ANALISIS KUALITAS LINGKUNGAN PERAIRAN BERDASARKAN KOMUNITAS MEIOBENTOS DAN KUALITAS SEDIMEN DI PANTAI DAN AREA PERTAMBAKAN, PESISIR SRIWULAN KABUPATEN DEMAK (The Quality Analysis of Aquatic Environment based on Meiobentos Community and Sediment Quality

    Directory of Open Access Journals (Sweden)

    Muhandis Sidqi

    2015-01-01

    community, to find out the relation between sediment quality and Meiobentos, and to determine the productivity level of fish ponds villages which are based on their distance, pollution level and destruction. The parameters of water quality were analyzed with descriptive comparative method, while the parameters of sediment were analyzed with principal component analysis (PCA to find out its spatial distribution according at each monitoring station and the layer of sediment depth. Meiobentos community is to examined by factorial correspondence analysis (CA to  detect the level of its spatial distribution, which based on the monitoring station and the layer of sediment depth. Socio-economic parameters was collected by interviewing fish pond owners and tenant at the research area. It is analyzed with correlation regression to understand the influence of dependent parameter on independent parameter (the productivity of fish ponds. Then the nonparametric test statistic of Kruskall Wallis was used to differentiate the productivity at the three villages based on their distance from waste source and the destruction level of fish ponds. The research find out that water quality parameters (Muddy, TSS, NH3, NO2, beyond threshold level, negative redox potential (Eh sediment value/reduction zone, and IMLP value are moderate. This shows the waters condition at the research area is still not stable. The results also show the low value of diversity index, the dominance of particular meiobentos organisms, and the conformity between meiobentos community. The results of Krskall Wallis statistical test point out that there is a significant differences between fish ponds productivity with the distance factor and the level of destruction in the three villages research areas, i.e Bedono, Sriwulan, Purwosari consercutively with productivity value 0.65, 0.56, 0.41 ton/hectare/year.

  13. Microbial community in a sediment-hosted CO(2) lake of the southern Okinawa Trough hydrothermal system RID C-8303-2011

    DEFF Research Database (Denmark)

    Inagaki, Fumio; Kuypers, Marcel M. M.; Tsunogai, Urumu

    2006-01-01

    pavements above the CO(2) lake, decreasing to strikingly low cell numbers (107 CM-3) at the liquid CO(2)/CO(2)-hydrate interface. The key groups in these sediments were as follows: (i) the anaerobic methanotrophic archaea ANME-2c and the Eel-2 group of Deltaproteobacteria and (ii) sulfur...

  14. Lagrangian circulation of the North Atlantic Central Water over the abyssal plain and continental slopes of the Bay of Biscay: description of selected mesoscale features

    Directory of Open Access Journals (Sweden)

    Alain Serpette

    2006-06-01

    Full Text Available Between 1994 and 2001, several experiments (ARCANE, SEFOS, INTERAFOS were conducted to directly measure the general and mesoscale Lagrangian circulations over the Bay of Biscay abyssal plain and slopes. Two levels (~100 m and ~450 m were selected to cover the North Atlantic Central Water range. Two types of Lagrangian instruments, drogued surface drifters tracked by satellite (Surdrift and acoustically tracked subsurface floats (Rafos and Marvor, were used. Overall, more than 36 instrument-years were collected in the Bay of Biscay region (43-49°N, 01-12°W. The weak general circulation in the Bay of Biscay is seen to be highly influenced by the occurrence of several mesoscale coherent features, notably slope currents and eddies, and these affect the exchanges between the abyssal plain and the slopes. The objective of this paper is to depict some specific examples of the observed mesoscale field. Selected float trajectories are shown and used to discuss observations of slope currents and of both anticyclonic and cyclonic eddies. Slope currents exhibit alternation of poleward and equatorward directions, depending on both the period and the geographic area considered. Although the generation process of mesoscale eddies is difficult to observe unambiguously from Lagrangian instruments, eddies are nevertheless ubiquitous over the abyssal plain. Some characteristics of the observed cyclonic and anticyclonic eddies are presented. Smaller anticyclones, localised over the outer shelf and interpreted in terms of ajustment of slope water intrusions, are also depicted.

  15. Site-specific sediment clean-up objectives developed by the sediment quality triad

    International Nuclear Information System (INIS)

    Redman, S.; Janisch, T.

    1995-01-01

    Sediment chemistry, sediment toxicity, and benthic macroinvertebrate community data were collected and evaluated in concert (1) to characterize adverse effects of hydrocarbon and metal contaminants in the sediments of a small inlet of Superior Bay, Lake Superior and a tributary creek and (2) to derive numeric objectives for the clean up of this system. Sediments from reference locations and eight study sites were analyzed for a range of contaminants, including hydrocarbons (measured both as diesel range organics (DRO) and oil and grease), lead, chromium, and ammonia. A range of sediment toxicity was observed across the eight study sites using a variety of tests and endpoints: Hyalella azteca (10 day survival and growth), Chironomus tentans (10 day survival and growth), Ceriodaphnia dubia (48 hour survival), and Daphnia magna (48 hour survival and 10 day survival and reproduction). A range of alterations of the benthic macroinvertebrate community compared with communities from reference locations were observed. Benthic community alterations were summarized quantitatively by taxa richness and Shannon-Weiner mean diversity. Lowest effect levels determined through this study included 150 microg/g dry sediment for DRO (as measured in this study) and 40 microg/g dry sediment for lead. Effects thresholds determined through this study included 1,500 microg/g dry sediment for DRO and 90 microg/g dry sediment for lead. These levels and concentrations measured in relevant reference locations are being used to define objectives for sediment clean up in the inlet and creek

  16. Seafloor Age-Stacking Reveals No Evidence for Milankovitch Cycle Influence on Abyssal Hills at Intermediate, Fast and Super-Fast Spreading Rates

    Science.gov (United States)

    Goff, J.; Zahirovic, S.; Müller, D.

    2017-12-01

    Recently published spectral analyses of seafloor bathymetry concluded that abyssal hills, highly linear ridges that are formed along seafloor spreading centers, exhibit periodicities that correspond to Milankovitch cycles - variations in Earth's orbit that affect climate on periods of 23, 41 and 100 thousand years. These studies argue that this correspondence could be explained by modulation of volcanic output at the mid-ocean ridge due to lithostatic pressure variations associated with rising and falling sea level. If true, then the implications are substantial: mapping the topography of the seafloor with sonar could be used as a way to investigate past climate change. This "Milankovitch cycle" hypothesis predicts that the rise and fall of abyssal hills will be correlated to crustal age, which can be tested by stacking, or averaging, bathymetry as a function of age; stacking will enhance any age-dependent signal while suppressing random components, such as fault-generated topography. We apply age-stacking to data flanking the Southeast Indian Ridge ( 3.6 cm/yr half rate), northern East Pacific Rise ( 5.4 cm/yr half rate) and southern East Pacific Rise ( 7.8 cm/yr half rate), where multibeam bathymetric coverage is extensive on the ridge flanks. At the greatest precision possible given magnetic anomaly data coverage, we have revised digital crustal age models in these regions with updated axis and magnetic anomaly traces. We also utilize known 2nd-order spatial statistical properties of abyssal hills to predict the variability of the age-stack under the null hypothesis that abyssal hills are entirely random with respect to crustal age; the age-stacked profile is significantly different from zero only if it exceeds this expected variability by a large margin. Our results indicate, however, that the null hypothesis satisfactorily explains the age-stacking results in all three regions of study, thus providing no support for the Milankovitch cycle hypothesis. The

  17. The Light-Field of Microbenthic Communities - Radiance Distribution and Microscale Optics of Sandy Coastal Sediments Rid A-1977-2009

    DEFF Research Database (Denmark)

    KUHL, M.; JØRGENSEN, BB

    1994-01-01

    radiance distribution. Comparison of light fields in wet and dry quartz sand showed that the lower refractive index of air than of water caused a more forward-biased scattering in wet sand. Light penetration was therefore deeper and surface irradiance reflectance was lower in wet sand than in dry sand......The light field in coastal sediments was investigated at a spatial resolution of 0.2-0.5 mm by spectral measurements (450-850 nm) of field radiance and scalar irradiance using fiber-optic microprobes. Depth profiles of field radiance were measured with radiance microprobes at representative angles...... relative to vertically incident collimated light in rinsed quartz sand and in a coastal sandy sediment colonized by microalgae. Upwelling and downwelling components of irradiance and scalar irradiance were calculated from the radiance distributions. Calculated total scalar irradiance agreed well...

  18. Small fractures in deep sea sediments: indicators of pore fluid migration along compaction faults

    International Nuclear Information System (INIS)

    Buckley, D.E.

    1989-01-01

    A long piston core taken from the Southern Nares Abyssal Plain, intersected four fractures in plastic sediments between 17 and 25 m below the sea floor. Faults have been identified from seismic reflection surveys of sediments in this area. The sampled fractures all occurred in oxidized brown clays. Each fracture consisted of a simple plane having apparent dips ranging from 52-63 0 . One fracture had a well developed pale brown alteration halo extending out to 1.5 cm along this plane. Two fractures had no apparent alteration halo, but one fracture appeared to have fine-scale anastomosing features surrounding the main slip plane. Selective chemical tests for labile metal content in sediments surrounding the fractures revealed that about 70% of the reducible manganese, and 40% of the reducible iron had been leached from the sediments in the alteration halo surrounding the fracture plane. These results suggest that reducing pore fluids had migrated along the fracture plane to cause the observed effects. Implications of this study are that compaction faults may act as episodic conduits for vertical advection of pore water during dewatering of unconsolidated sediments. This may be a significant factor to be considered in assessing the effectiveness of deep sea sediment barriers for radioactive waste disposal. (author)

  19. Tectonic origin of serpentinites on Syros, Greece: Geochemical signatures of abyssal origin preserved in a HP/LT subduction complex

    Science.gov (United States)

    Cooperdock, Emily H. G.; Raia, Natalie H.; Barnes, Jaime D.; Stockli, Daniel F.; Schwarzenbach, Esther M.

    2018-01-01

    This study combines whole rock trace and major element geochemistry, and stable isotope (δD and δ18O) analyses with petrographic observations to deduce the origin and tectonic setting of serpentinization of ultramafic blocks from the exhumed HP/LT Aegean subduction complex on Syros, Greece. Samples are completely serpentinized and are characterized by mineral assemblages that consist of variable amounts of serpentine, talc, chlorite, and magnetite. δD and δ18O values of bulk rock serpentinite powders and chips (δD = - 64 to - 33‰ and δ18O = + 5.2 to + 9.0‰) reflect hydration by seawater at temperatures serpentinization by seawater, followed by secondary fluid-rock interactions with a sedimentary source pre- or syn-subduction. Whole rock major element, trace element, and REE analyses record limited melt extraction, exhibit flat REE patterns, and do not show pronounced Eu anomalies. The geochemical signatures preserved in these serpentinites argue against a mantle wedge source, as has been previously speculated for ultramafic rocks on Syros. Rather, the data are consistent with derivation from abyssal peridotites in a hyper-extended margin setting or mid-ocean ridge and fracture zone environment. In either case, the data suggest an extensional and/or oceanic origin associated with the Cretaceous opening of the Pindos Ocean and not a subduction-related derivation from the mantle wedge.

  20. Carbon isotopic changes in benthic foraminifera from the western South Atlantic: Reconstruction of glacial abyssal circulation patterns

    Science.gov (United States)

    Curry, W. B.; Lohmann, G. P.

    1982-09-01

    Oxygen- and carbon-isotopic analyses have been performed on the benthic foraminifer Planulina wuellerstorfi in seven Late Quaternary cores from the Vema Channel-Rio Grande Rise region. The cores are distributed over the water-depth interval of 2340 to 3939 m, which includes the present transition from North Atlantic Deep Water (NADW) to Antarctic Bottom Water (AABW). The carbon-isotopic records in the cores vary as a function of water depth. The shallowest and deepest cores show no significant glacial-interglacial difference in δ 13C. Four of the five cores presently located in the NADW have benthic foraminiferal δ 13C that is lower during glacial isotopic stages. Based on bathymetric gradients in δ 13C, we conclude that, like today, there were two water masses present in the Vema Channel during glacial intervals: a water mass enriched in 13C overlying another water mass depleted in 13C. The largest gradient of change of δ 13C with depth, however, occurred at 2.7 km, ˜ 1 km shallower than the present position of this gradient. On the basis of paleontologic and sedimentologic evidence, we consider it unlikely that the NADW:AABW transition shallowed to this level. Reduced carbon-isotopic gradients between the deep basins of the North Atlantic and Pacific Oceans during the last glaciation suggest that production of NADW was reduced. Lower production of NADW may have modified the local abyssal circulation pattern in the Vema Channel region.

  1. The Dragonian Subsurface Abyss and Submarine Force’s Ability to Counter the Rising Threat

    Science.gov (United States)

    2013-05-23

    Navy, see Gang Deng, Chinese Maritime Activities and Socioeconomic Development, C. 2100 B.C.-1900 A.D. (Westport, Conn.: Greenwood Press, 1997...incident involving a Chinese Song “ stalking ” the Kitty Hawk Strike Group as it conducted operations in international waters near Okinawa a couple of...show of force. Actual tracking and integration within the PLAN SSN community, however, requires an 76Bill Gertz, "China Sub Stalked U.S. Fleet," The

  2. Arsenic(V) reduction in relation to Iron(III) transformation and molecular characterization of the structural and functional microbial community in sediments of a basin-fill aquifer in Northern Utah.

    Science.gov (United States)

    Mirza, Babur S; Muruganandam, Subathra; Meng, Xianyu; Sorensen, Darwin L; Dupont, R Ryan; McLean, Joan E

    2014-05-01

    Basin-fill aquifers of the Southwestern United States are associated with elevated concentrations of arsenic (As) in groundwater. Many private domestic wells in the Cache Valley Basin, UT, have As concentrations in excess of the U.S. EPA drinking water limit. Thirteen sediment cores were collected from the center of the valley at the depth of the shallow groundwater and were sectioned into layers based on redoxmorphic features. Three of the layers, two from redox transition zones and one from a depletion zone, were used to establish microcosms. Microcosms were treated with groundwater (GW) or groundwater plus glucose (GW+G) to investigate the extent of As reduction in relation to iron (Fe) transformation and characterize the microbial community structure and function by sequencing 16S rRNA and arsenate dissimilatory reductase (arrA) genes. Under the carbon-limited conditions of the GW treatment, As reduction was independent of Fe reduction, despite the abundance of sequences related to Geobacter and Shewanella, genera that include a variety of dissimilatory iron-reducing bacteria. The addition of glucose, an electron donor and carbon source, caused substantial shifts toward domination of the bacterial community by Clostridium-related organisms, and As reduction was correlated with Fe reduction for the sediments from the redox transition zone. The arrA gene sequencing from microcosms at day 54 of incubation showed the presence of 14 unique phylotypes, none of which were related to any previously described arrA gene sequence, suggesting a unique community of dissimilatory arsenate-respiring bacteria in the Cache Valley Basin.