WorldWideScience

Sample records for abundant molecular ions

  1. Improved abundance sensitivity of molecular ions in positive-ion APCI MS analysis of petroleum in toluene.

    Science.gov (United States)

    Kim, Young Hwan; Kim, Sunghwan

    2010-03-01

    Positive-ion atmospheric pressure chemical ionization (APCI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analyses of petroleum sample were performed with higher sensitivity by switching the solvent composition from toluene and methanol or acetonitrile to a one-component system consisting only of toluene. In solvent blends, molecular ions were more abundant than were protonated ions with increasing percentages of toluene. In 100% toluene, the double-bond equivalence (DBE) distributions of molecular ions obtained by APCI MS for each compound class were very similar to those obtained in dopant assisted atmospheric pressure photo ionization (APPI) MS analyses. Therefore, it was concluded that charge-transfer reaction, which is important in toluene-doped APPI processes, also plays a major role in positive-ion APCI. In the DBE distributions of S(1), S(2), and SO heteroatom classes, a larger enhancement in the relative abundance of molecular ions at fairly specific DBE values was observed as the solvent was progressively switched to toluene. This enhanced abundance of molecular ions was likely dependent on molecular structure. Copyright 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  2. Molecular ions in comet tails

    International Nuclear Information System (INIS)

    Wyckoff, S.; Wehinger, P.A.

    1976-01-01

    Band intensities of the molecular ions CH + , CO + , N 2 + , and H 2 O + have been determined on an absolute scale from tail spectra of comet Kohoutek (1973f) and comet Bradfield (1974b). Photoionization and photodissociation rates have been computed for CH, CO, and N 2 . Also emission rate excitation g-factors for (1) photoionization plus excitation and (2) resonance fluorescence have been computed for the observed ions. It is shown that resonance fluorescence is the dominant excitation mechanism for observed comet tail ions at rapprox. =1 AU. Band system luminosities and molecular ion abundances within a projected nuclear distance rho 4 km have been determined for CH + , CO + , N 2 + , and H 2 O + in comet Kohoutek, and for H 2 O + in comet Bradfield. Estimates are also given for column densities of all observed ions at rhoapprox. =10 4 km on the tailward side of the coma. The observed H 2 O + column densities were found to be roughly the same in comet Kohoutek and comet Bradfield et equal heliocentric distances, while CO + was found to be approximately 100 times more abundant than H 2 O + , N 2 + , and CH + at rhoapprox. =10 4 km in comet Kohoutek. Finally, the relative abundances of the observed ions and of the presumed parent neutral species are briefly discussed

  3. Molecular ion photofragment spectroscopy

    International Nuclear Information System (INIS)

    Bustamente, S.W.

    1983-11-01

    A new molecular ion photofragment spectrometer is described which features a supersonic molecular beam ion source and a radio frequency octapole ion trap interaction region. This unique combination allows several techniques to be applied to the problem of detecting a photon absorption event of a molecular ion. In particular, it may be possible to obtain low resolution survey spectra of exotic molecular ions by using a direct vibrational predissociation process, or by using other more indirect detection methods. The use of the spectrometer is demonstrated by measuring the lifetime of the O 2 + ( 4 π/sub u/) metastable state which is found to consist of two main components: the 4 π/sub 5/2/ and 4 π/sub -1/2/ spin components having a long lifetime (approx. 129 ms) and the 4 π/sub 3/2/ and 4 π/sub 1/2/ spin components having a short lifetime (approx. 6 ms)

  4. Cooling of molecular ion beams

    International Nuclear Information System (INIS)

    Wolf, A.; Krohn, S.; Kreckel, H.; Lammich, L.; Lange, M.; Strasser, D.; Grieser, M.; Schwalm, D.; Zajfman, D.

    2004-01-01

    An overview of the use of stored ion beams and phase space cooling (electron cooling) is given for the field of molecular physics. Emphasis is given to interactions between molecular ions and electrons studied in the electron cooler: dissociative recombination and, for internally excited molecular ions, electron-induced ro-vibrational cooling. Diagnostic methods for the transverse ion beam properties and for the internal excitation of the molecular ions are discussed, and results for phase space cooling and internal (vibrational) cooling are presented for hydrogen molecular ions

  5. Multifactorial Understanding of Ion Abundance in Tandem Mass Spectrometry Experiments.

    Science.gov (United States)

    Fazal, Zeeshan; Southey, Bruce R; Sweedler, Jonathan V; Rodriguez-Zas, Sandra L

    2013-01-29

    In a bottom-up shotgun approach, the proteins of a mixture are enzymatically digested, separated, and analyzed via tandem mass spectrometry. The mass spectra relating fragment ion intensities (abundance) to the mass-to-charge are used to deduce the amino acid sequence and identify the peptides and proteins. The variables that influence intensity were characterized using a multi-factorial mixed-effects model, a ten-fold cross-validation, and stepwise feature selection on 6,352,528 fragment ions from 61,543 peptide ions. Intensity was higher in fragment ions that did not have neutral mass loss relative to any mass loss or that had a +1 charge state. Peptide ions classified for proton mobility as non-mobile had lowest intensity of all mobility levels. Higher basic residue (arginine, lysine or histidine) counts in the peptide ion and low counts in the fragment ion were associated with lower fragment ion intensities. Higher counts of proline in peptide and fragment ions were associated with lower intensities. These results are consistent with the mobile proton theory. Opposite trends between peptide and fragment ion counts and intensity may be due to the different impact of factor under consideration at different stages of the MS/MS experiment or to the different distribution of observations across peptide and fragment ion levels. Presence of basic residues at all three positions next to the fragmentation site was associated with lower fragment ion intensity. The presence of proline proximal to the fragmentation site enhanced fragmentation and had the opposite trend when located distant from the site. A positive association between fragment ion intensity and presence of sulfur residues (cysteine and methionine) on the vicinity of the fragmentation site was identified. These results highlight the multi-factorial nature of fragment ion intensity and could improve the algorithms for peptide identification and the simulation in tandem mass spectrometry experiments.

  6. Laser-cooled atomic ions as probes of molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Kenneth R.; Viteri, C. Ricardo; Clark, Craig R.; Goeders, James E.; Khanyile, Ncamiso B.; Vittorini, Grahame D. [Schools of Chemistry and Biochemistry, Computational Science and Engineering and Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2015-01-22

    Trapped laser-cooled atomic ions are a new tool for understanding cold molecular ions. The atomic ions not only sympathetically cool the molecular ions to millikelvin temperatures, but the bright atomic ion fluorescence can also serve as a detector of both molecular reactions and molecular spectra. We are working towards the detection of single molecular ion spectra by sympathetic heating spectroscopy. Sympathetic heating spectroscopy uses the coupled motion of two trapped ions to measure the spectra of one ion by observing changes in the fluorescence of the other ion. Sympathetic heating spectroscopy is a generalization of quantum logic spectroscopy, but does not require ions in the motional ground state or coherent control of the ion internal states. We have recently demonstrated this technique using two isotopes of Ca{sup +} [Phys. Rev. A, 81, 043428 (2010)]. Limits of the method and potential applications for molecular spectroscopy are discussed.

  7. Seasonal abundance and molecular identification of West Nile virus ...

    African Journals Online (AJOL)

    Seasonal abundance and molecular identification of West Nile virus vectors, Culex pipens and Culex ... Background: West Nile virus (WNV) infection, is an arbovirus infection with high morbidity and mortality, the vector respon- sible for both human ... Major diseases transmitted are known as Arboviral dis- eases because ...

  8. Electron impact study of molecular ions of some benzyl derivatives

    International Nuclear Information System (INIS)

    Selim, E.T.; Rabia, M.A.; Fahmy, M.A.

    1992-01-01

    The ionization energies at threshold and values of higher energy levels for the molecular ions of benzyl alcohol, benzyl amine and benzyl cyanide are reported using electron impact technique. The first ionization energy values are found to be 8.26 eV (benzyl alcohol), 8.49 eV(benzyl amine)and 9.32 eV (benzyl cyanide). Some of the reported higher energy levels for the molecular ions are tentatively explained. The differences in the relative abundances for the main fragment ions are discussed and attributed to the effect of the different substituents - OH, -NH2 and -CN groups

  9. Effect of Ambipolar Diffusion on Ion Abundances in Contracting Protostellar Cores

    Science.gov (United States)

    Ciolek, Glenn E.; Mouschovias, Telemachos Ch.

    1998-09-01

    Numerical simulations and analytical solutions have established that ambipolar diffusion can reduce the dust-to-gas ratio in magnetically and thermally supercritical cores during the epoch of core formation. We study the effect that this has on the ion chemistry in contracting protostellar cores and present a simplified analytical method that allows one to calculate the ion power-law exponent k (≡d ln ni/d ln nn, where ni and nn are the ion and neutral densities, respectively) as a function of core density. We find that, as in earlier numerical simulations, no single value of k can adequately describe the ion abundance for nn 1/2 during the core formation epoch (densities principle, to determine whether ambipolar diffusion is responsible for core formation in interstellar molecular clouds. For densities >>105 cm-3, k is generally <<1/2.

  10. Laser induced fluorescence of trapped molecular ions

    International Nuclear Information System (INIS)

    Grieman, F.J.

    1979-10-01

    An experimental apparatus for obtaining the optical spectra of molecular ions is described. The experimental technique includes the use of three dimensional ion trapping, laser induced fluorescence, and gated photon counting methods. The ions, which are produced by electron impact, are confined in a radio-frequency quadrupole ion trap of cylindrical design. Because the quadrupole ion trap allows mass selection of the molecular ion desired for study, the analysis of the spectra obtained is greatly simplified. The ion trap also confines the ions to a region easily probed by a laser beam. 18 references

  11. Laser induced fluorescence of trapped molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Grieman, F.J.

    1979-10-01

    An experimental apparatus for obtaining the optical spectra of molecular ions is described. The experimental technique includes the use of three dimensional ion trapping, laser induced fluorescence, and gated photon counting methods. The ions, which are produced by electron impact, are confined in a radio-frequency quadrupole ion trap of cylindrical design. Because the quadrupole ion trap allows mass selection of the molecular ion desired for study, the analysis of the spectra obtained is greatly simplified. The ion trap also confines the ions to a region easily probed by a laser beam. 18 references.

  12. GASEOUS CO ABUNDANCE-AN EVOLUTIONARY TRACER FOR MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Liu Tie; Wu Yuefang; Zhang Huawei, E-mail: liutiepku@gmail.com, E-mail: ywu@pku.edu.cn [Department of Astronomy, Peking University, Beijing 100871 (China)

    2013-09-20

    Planck cold clumps are among the most promising objects to investigate the initial conditions of the evolution of molecular clouds. In this work, by combing the dust emission data from the survey of the Planck satellite with the molecular data of {sup 12}CO/{sup 13}CO/C{sup 18}O (1-0) lines from observations with the Purple Mountain Observatory 13.7 m telescope, we investigate the CO abundance, CO depletion, and CO-to-H{sub 2} conversion factor of 674 clumps in the early cold cores sample. The median and mean values of the CO abundance are 0.89 Multiplication-Sign 10{sup -4} and 1.28 Multiplication-Sign 10{sup -4}, respectively. The mean and median of CO depletion factor are 1.7 and 0.9, respectively. The median value of X{sub CO-to-H{sub 2}} for the whole sample is 2.8 Multiplication-Sign 10{sup 20} cm{sup -2} K{sup -1} km{sup -1} s. The CO abundance, CO depletion factor, and CO-to-H{sub 2} conversion factor are strongly (anti-)correlated to other physical parameters (e.g., dust temperature, dust emissivity spectral index, column density, volume density, and luminosity-to-mass ratio). To conclude, the gaseous CO abundance can be used as an evolutionary tracer for molecular clouds.

  13. Electron-impact excitation of molecular ions

    International Nuclear Information System (INIS)

    Neufeld, D.A.; Dalgarno, A.

    1989-01-01

    A simple expression is derived that relates the rate coefficient for dipole-allowed electron-impact excitation of a molecular ion in the Coulomb-Born approximation to the Einstein A coefficient for the corresponding radiative decay. Results are given for several molecular ions of astrophysical interest. A general analytic expression is obtained for the equilibrium rotational level populations in the ground vibrational state of any molecular ion excited by collisions with electrons. The expression depends only upon the electron temperature, the electron density, and the rotational constant of the molecular ion. A similar expression is obtained for neutral polar molecules

  14. Recharging of a screened ion on the molecular ion

    International Nuclear Information System (INIS)

    Karbovanets, M.I.; Lazur, V.Yu.; Yudin, G.L.; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Obninsk. Fiziko-Ehnergeticheskij Inst.)

    1987-01-01

    Charge exchange of a screened ion on a molecular ion is studied in the Oppenheimer-Brinkman-Cramers approximation. To calculate ion exchange probabilities and cross sections summed over the final degenerated electron states method of Green functions analogous to that applied earlier in the direct Coulomb excitation theory and atomic ionization is developed

  15. HERSCHEL OBSERVATIONS REVEAL ANOMALOUS MOLECULAR ABUNDANCES TOWARD THE GALACTIC CENTER

    Energy Technology Data Exchange (ETDEWEB)

    Sonnentrucker, P. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Neufeld, D. A.; Indriolo, N. [Physics and Astronomy Department, Johns Hopkins University, Baltimore, MD 21218 (United States); Gerin, M.; De Luca, M. [LERMA-LRA, UMR 8112 du CNRS, Observatoire de Paris, Ecole Normale Superieure, UPMC and UCP, 24 rue Lhomond, F-75231, Paris Cedex 05 (France); Lis, D. C. [Astronomy Department, California Institute of Technology, Pasadena, CA 91125 (United States); Goicoechea, J. R., E-mail: sonnentr@stsci.edu [Centro de Astrobiologia, CSIC/INTA, E-28850, Madrid (Spain)

    2013-01-20

    We report the Herschel detections of hydrogen fluoride (HF) and para-water (p-H{sub 2}O) in gas intercepting the sight lines to two well-studied molecular clouds in the vicinity of the Sgr A complex: G-0.02-0.07 (the {sup +}50 km s{sup -1} cloud{sup )} and G-0.13-0.08 (the {sup +}20 km s{sup -1} cloud{sup )}. Toward both sight lines, HF and water absorption components are detected over a wide range of velocities covering {approx}250 km s{sup -1}. For all velocity components with V{sub LSR} > -85 km s{sup -1}, we find that the HF and water abundances are consistent with those measured toward other sight lines probing the Galactic disk gas. The velocity components with V{sub LSR} {<=} -85 km s{sup -1}, which are known to trace gas residing within {approx}200 pc of the Galactic center, however, exhibit water vapor abundances with respect to HF at least a factor three higher than those found in the Galactic disk gas. Comparison with CH data indicates that our observations are consistent with a picture where HF and a fraction of the H{sub 2}O absorption arise in diffuse molecular clouds showing Galactic disk-like abundances while the bulk of the water absorption arises in warmer (T {>=} 400 K) diffuse molecular gas for V{sub LSR} {<=} -85 km s{sup -1}. This diffuse Interstellar Medium (ISM) phase has also been recently revealed through observations of CO, HF, H{sup +}{sub 3}, and H{sub 3}O{sup +} absorption toward other sight lines probing the Galactic center inner region.

  16. Molecular ions, Rydberg spectroscopy and dynamics

    International Nuclear Information System (INIS)

    Jungen, Ch.

    2015-01-01

    Ion spectroscopy, Rydberg spectroscopy and molecular dynamics are closely related subjects. Multichannel quantum defect theory is a theoretical approach which draws on this close relationship and thereby becomes a powerful tool for the study of systems consisting of a positively charged molecular ion core interacting with an electron which may be loosely bound or freely scattering

  17. Molecular ions, Rydberg spectroscopy and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jungen, Ch. [Laboratoire Aimé Cotton, Université de Paris-Sud, 91405 Orsay (France)

    2015-01-22

    Ion spectroscopy, Rydberg spectroscopy and molecular dynamics are closely related subjects. Multichannel quantum defect theory is a theoretical approach which draws on this close relationship and thereby becomes a powerful tool for the study of systems consisting of a positively charged molecular ion core interacting with an electron which may be loosely bound or freely scattering.

  18. Molecular Abundances in the Disk of AN Active Galactic Nucleus

    Science.gov (United States)

    Harada, N.; Thompson, T. A.; Herbst, E.

    2011-06-01

    There are galactic nuclei that emit high luminosities L˜1044-46 erg S-1 including luminosity produced by X-rays from high mass accretion onto the central black holes. These nuclei are called active galactic nuclei (AGNs), and they are accompanied by molecular disks. Observations show high abundances of CN and HCN in the disks; the molecules are proposed to be probes of X-ray dominated regions (XDRs) created by the X-rays from AGNs. We have constructed a spatially-dependent chemical-abundance model of the molecular disk in NGC 1068, a typical AGN-dominated galaxy. Recently, new observations of CN and HCN have been made at much higher spatial resolution, and there are also detections of polyatomic molecules such as HC3N, c-C3H2, and C2H. We discuss how these observations and our simulations can help us to better understand the physical conditions, the disk structure, and conditions for star formation within molecular disks, which are still uncertain. We also include a comparison with other types of galaxies such as (ultra-) luminous infrared galaxies. Usero et al.Astronomy and Astrophysics. 419 (897), 2004. Initial results were presented at the International Symposium on Molecular Spectroscopy 2010, RF05 Garcia-Burillo et al. Astronomy and Astrophysics. 519 (2), 2010. Garcia-Burillo et al. Journal of Physics Conference Series, 131 (12031), 2008. Costagliola et al. ArXiv e-print arXiv:1101.2122, 2011. Nakajima et al. Astrophysical Journal Letters 728 (L38), 2008.

  19. Ion Mobility Mass Spectrometry Direct Isotope Abundance Analysis

    International Nuclear Information System (INIS)

    Manard, Manuel J.; Weeks, Stephan; Kyle, Kevin

    2010-01-01

    The nuclear forensics community is currently engaged in the analysis of illicit nuclear or radioactive material for the purposes of non-proliferations and attribution. One technique commonly employed for gathering nuclear forensics information is isotope analysis. At present, the state-of-the-art methodology for obtaining isotopic distributions is thermal ionization mass spectrometry (TIMS). Although TIMS is highly accurate at determining isotope distributions, the technique requires an elementally pure sample to perform the measurement. The required radiochemical separations give rise to sample preparation times that can be in excess of one to two weeks. Clearly, the nuclear forensics community is in need of instrumentation and methods that can expedite their decision making process in the event of a radiological release or nuclear detonation. Accordingly, we are developing instrumentation that couples a high resolution IM drift cell to the front end of a MS. The IM cell provides a means of separating ions based upon their collision cross-section and mass-to-charge ratio (m/z). Two analytes with the same m/z, but with different collision cross-sections (shapes) would exit the cell at different times, essentially enabling the cell to function in a similar manner to a gas chromatography (GC) column. Thus, molecular and atomic isobaric interferences can be effectively removed from the ion beam. The mobility selected chemical species could then be introduced to a MS for high-resolution mass analysis to generate isotopic distributions of the target analytes. The outcome would be an IM/MS system capable of accurately measuring isotopic distributions while concurrently eliminating isobaric interferences and laboratory radiochemical sample preparation. The overall objective of this project is developing instrumentation and methods to produce near real-time isotope distributions with a modular mass spectrometric system that performs the required gas-phase chemistry and

  20. Physics with fast molecular-ion beams

    International Nuclear Information System (INIS)

    Kanter, E.P.

    1980-01-01

    Fast (MeV) molecular-ion beams provide a unique source of energetic projectile nuclei which are correlated in space and time. The recognition of this property has prompted several recent investigations of various aspects of the interactions of these ions with matter. High-resolution measurements on the fragments resulting from these interactions have already yielded a wealth of new information on such diverse topics as plasma oscillations in solids and stereochemical structures of molecular ions as well as a variety of atomic collision phenomena. The general features of several such experiments will be discussed and recent results will be presented

  1. Channeling of molecular ions with relativistic energy

    International Nuclear Information System (INIS)

    Azuma, Toshiyuki; Muranaka, Tomoko; Kondo, Chikara; Hatakeyama, Atsushi; Komaki, Kenichiro; Yamazaki, Yasunori; Takabayashi, Yuichi; Murakami, Takeshi; Takada, Eiichi

    2003-01-01

    When energetic ions are injected into a single crystal parallel to a crystal axis or plane, they proceed in an open space guided by the crystal potential without colliding with atoms in the atomic plane or string, which is called channeling. We aimed to study dynamics of molecular ions, H 2 + , of 160 MeV/u and their fragment ions, H + ions in a Si crystal under the channeling condition. The molecular ions, H 2 + , are soon ionized, i.e. electron-stripped in the crystal, and a pair of bare nuclei, H + ions, travels in the crystal potential with mutual Coulomb repulsion. We developed a 2D position sensitive detector for the angular-distribution measurement of the H + ions transmitted through the crystal, and observed the detailed angular distribution. In addition we measured the case of H + on incidence for comparison. As a result, the channeled component and non-channeling were clearly separated. The incident angular divergence is critical to discuss the effect of Coulomb explosion of molecular H 2 + ions. (author)

  2. Dissociative recombination of small molecular ions

    International Nuclear Information System (INIS)

    Mul, P.M.

    1981-01-01

    In this thesis an analysis is given of merged electron-ion beam experiment and work on dissociative recombination of molecular ions and electrons is described. Chapter II covers a brief introduction of the theory of dissociative recombination. In chapter III, a description is given of the merged electron-ion beam experiment and a method is described which allows the determination of the mean angle between the electron and ion trajectories in a merged electron-ion beam experiment. In chapter IV a paper on the three dominant atmospheric diatomic ions NO + , O 2 + and N 2 + is presented and in chapter V the dissociative recombination for N 2 H + and N 2 D + is discussed. In chapter VI two papers on the polyatomic ions of the carbon-containing molecular ions are presented, and in chapter VII a letter with some results of the work presented in more detail in the chapters IV, V and VI is presented. The magnitude and the energy dependence of the cross-section measured by the merged beam technique and by other techniques is compared and discussed. (Auth.)

  3. Mean excitation energies for molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Phillip W.K.; Sauer, Stephan P.A. [Department of Chemistry, University of Copenhagen, Copenhagen (Denmark); Oddershede, Jens [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States); Sabin, John R., E-mail: sabin@qtp.ufl.edu [Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense (Denmark); Quantum Theory Project, Departments of Physics and Chemistry, University of Florida, Gainesville, FL (United States)

    2017-03-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state contributing to the mean excitation energy.

  4. Dissociative recombination of molecular ions H2+

    International Nuclear Information System (INIS)

    Abarenov, A.V.; Marchenko, V.S.

    1989-01-01

    The total cross sections of dissociation and dissociative recombination of slow electrons and molecular ions H 2 + have been calculated in terms of the quasiclassical and dipole approximations. In the calculations allowance was made for the quantum nature of vibrational motion of heavy particles and presence of autoionization of divergence states of the H 2 (Σ u , nl) molecules. It is shown that the H 2 + ion dissociation cross sections are dominant in increase of the electron energy in the ε >or approx. 2-3 eV region for H 2 + (v) ion distribution over the vibrational levels characteristic for the beam experiments. 15 refs.; 5 figs

  5. Molecular Ions in Ion Upflows and their Effects on Hot Atomic Oxygen Production

    Science.gov (United States)

    Foss, V.; Yau, A. W.; Shizgal, B.

    2017-12-01

    We present new direct ion composition observations of molecular ions in auroral ion upflows from the CASSIOPE Enhanced Polar Outflow Probe (e-POP). These observed molecular ions are N2+, NO+, and possibly O2+, and are found to occur at all e-POP altitudes starting at about 400 km, during auroral substorms and the different phases of magnetic storms, sometimes with upflow velocities exceeding a few hundred meters per second and abundances of 5-10%. The dissociative recombination of both O2+ and NO+ was previously proposed as an important source of hot oxygen atoms in the topside thermosphere [Hickey et al., 1995]. We investigate the possible effect of the observed molecular ions on the production of hot oxygen atoms in the storm and substorm-time auroral thermosphere. We present numerical solutions of the Boltzmann equation for the steady-state oxygen energy distribution function, taking into account both the production of the hot atoms and their subsequent collisional relaxation. Our result suggests the formation of a hot oxygen population with a characteristic temperature on the order of 0.3 eV and constituting 1-5% of the oxygen density near the exobase. We discuss the implication of this result in the context of magnetosphere-ionosphere-thermosphere coupling.

  6. Mean excitation energies for molecular ions

    DEFF Research Database (Denmark)

    Jensen, Phillip W.K.; Sauer, Stephan P.A.; Oddershede, Jens

    2017-01-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase...

  7. Collisions of antiprotons with hydrogen molecular ions

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Saenz, Alejandro

    2009-01-01

    Time-dependent close-coupling calculations of the ionization and excitation cross section for antiproton collisions with molecular hydrogen ions are performed in an impact energy range from 0.5 keV to 10 MeV. The Born-Oppenheimer and Franck-Condon approximations as well as the impact parameter...

  8. Understanding Molecular Ion-Neutral Atom Collisions for the Production of Ultracold Molecular Ions

    Science.gov (United States)

    2016-06-06

    2012): 0. doi: 10.1103/PhysRevLett.109.223002 Kuang Chen, Scott T. Sullivan, Wade G. Rellergert, Eric R. Hudson. Measurement of the Coulomb Logarithm...or fellowships for further studies in science, mathematics, engineering or technology fields: Student Metrics This section only applies to graduating...clouds of Ba+ ions and Ca atoms. Due to the strong Coulomb interaction, the Ba+ ions quickly cool the molecular ion translation motion, while the

  9. Ion channels: molecular targets of neuroactive insecticides.

    Science.gov (United States)

    Raymond-Delpech, Valérie; Matsuda, Kazuhiko; Sattelle, Benedict M; Rauh, James J; Sattelle, David B

    2005-11-01

    Many of the insecticides in current use act on molecular targets in the insect nervous system. Recently, our understanding of these targets has improved as a result of the complete sequencing of an insect genome, i.e., Drosophila melanogaster. Here we examine the recent work, drawing on genetics, genomics and physiology, which has provided evidence that specific receptors and ion channels are targeted by distinct chemical classes of insect control agents. The examples discussed include, sodium channels (pyrethroids, p,p'-dichlorodiphenyl-trichloroethane (DDT), dihydropyrazoles and oxadiazines); nicotinic acetylcholine receptors (cartap, spinosad, imidacloprid and related nitromethylenes/nitroguanidines); gamma-aminobutyric acid (GABA) receptors (cyclodienes, gamma-BHC and fipronil) and L-glutamate receptors (avermectins). Finally, we have examined the molecular basis of resistance to these molecules, which in some cases involves mutations in the molecular target, and we also consider the future impact of molecular genetic technologies in our understanding of the actions of neuroactive insecticides.

  10. High energy radiation fluences in the ISS-USLab: Ion discrimination and particle abundances

    International Nuclear Information System (INIS)

    Zaconte, Veronica; Casolino, Marco; Di Fino, Luca; La Tessa, Chiara; Larosa, Marianna; Narici, Livio; Picozza, Piergiorgio

    2010-01-01

    The ALTEA (Anomalous Long Term Effects on Astronauts) detector was used to characterize the radiation environment inside the USLab of the International Space Station (ISS), where it measured the abundances of ions from Be to Fe. We compare the ALTEA results with Alteino results obtained in the PIRS module of the Russian segment of the ISS, and normalize to the high energy Si abundances given by Simpson. These are the first particle spectral measurements, which include ions up to Fe, performed in the USLab. The small differences observed between those made inside the USLab and the Simpson abundances can be attributed to the transport through the spacecraft hull. However, the low abundance of Fe cannot be attributed to only this process.

  11. SEASONAL ABUNDANCE OF ORGANIC MOLECULAR MARKERS IN URBAN PARTICULATE MATTER FROM PHILADELPHIA, PA

    Science.gov (United States)

    Organic molecular markers were measured in airborne particulate matter (PM10) from the City of Philadelphia North Broad Street air quality monitoring site to identify the seasonal abundances of key tracer compounds together with their dominant sources. Daily PM10...

  12. Modeling ion sensing in molecular electronics

    International Nuclear Information System (INIS)

    Chen, Caroline J.; Smeu, Manuel; Ratner, Mark A.

    2014-01-01

    We examine the ability of molecules to sense ions by measuring the change in molecular conductance in the presence of such charged species. The detection of protons (H + ), alkali metal cations (M + ), calcium ions (Ca 2+ ), and hydronium ions (H 3 O + ) is considered. Density functional theory (DFT) is used within the Keldysh non-equilibrium Green's function framework (NEGF) to model electron transport properties of quinolinedithiol (QDT, C 9 H 7 NS 2 ), bridging Al electrodes. The geometry of the transport region is relaxed with DFT. The transport properties of the device are modeled with NEGF-DFT to determine if this device can distinguish among the M + + QDT species containing monovalent cations, where M + = H + , Li + , Na + , or K + . Because of the asymmetry of QDT in between the two electrodes, both positive and negative biases are considered. The electron transmission function and conductance properties are simulated for electrode biases in the range from −0.5 V to 0.5 V at increments of 0.1 V. Scattering state analysis is used to determine the molecular orbitals that are the main contributors to the peaks in the transmission function near the Fermi level of the electrodes, and current-voltage relationships are obtained. The results show that QDT can be used as a proton detector by measuring transport through it and can conceivably act as a pH sensor in solutions. In addition, QDT may be able to distinguish among different monovalent species. This work suggests an approach to design modern molecular electronic conductance sensors with high sensitivity and specificity using well-established quantum chemistry

  13. Trapped ion simulation of molecular spectrum

    Science.gov (United States)

    Shen, Yangchao; Lu, Yao; Zhang, Kuan; Zhang, Shuaining; Huh, Joonsuk; Kim, Kihwan

    2016-05-01

    Boson sampling had been suggested as a classically intractable and quantum mechanically manageable problem via computational complexity theory arguments. Recently, Huh and co-workers proposed theoretically a modified version of boson sampling, which is designed to simulate a molecular problem, as a practical application. Here, we report the experimental implementation of the theoretical proposal with a trapped ion system. As a first demonstration, we perform the quantum simulation of molecular vibronic profile of SO2, which incorporates squeezing, rotation and coherent displacements operations, and the collective projection measurement on phonon modes. This work was supported by the National Basic Research Program of China 11CBA00300, 2011CBA00301, National Natural Science Foundation of China 11374178, 11574002. Basic Science Research Program of Korea NRF-2015R1A6A3A04059773.

  14. Understanding Molecular-Ion Neutral Atom Collisions for the Production of Ultracold Molecular Ions

    Science.gov (United States)

    2014-02-03

    SECURITY CLASSIFICATION OF: This project was superseded and replaced by another ARO-funded project of the same name, which is still continuing. The goal...cooled atoms," IOTA -COST Workshop on molecular ions, Arosa, Switzerland. 5. E.R. Hudson, "Sympathetic cooling of molecules with laser cooled

  15. Formation and fragmentation of quadruply charged molecular ions by intense femtosecond laser pulses.

    Science.gov (United States)

    Yatsuhashi, Tomoyuki; Nakashima, Nobuaki

    2010-07-22

    We investigated the formation and fragmentation of multiply charged molecular ions of several aromatic molecules by intense nonresonant femtosecond laser pulses of 1.4 mum with a 130 fs pulse duration (up to 2 x 10(14) W cm(-2)). Quadruply charged states were produced for 2,3-benzofluorene and triphenylene molecular ion in large abundance, whereas naphthalene and 1,1'-binaphthyl resulted only in up to triply charged molecular ions. The laser wavelength was nonresonant with regard to the electronic transitions of the neutral molecules, and the degree of fragmentation was strongly correlated with the absorption of the singly charged cation radical. Little fragmentation was observed for naphthalene (off-resonant with cation), whereas heavy fragmentation was observed in the case of 1,1'-binaphthyl (resonant with cation). The degree of H(2) (2H) and 2H(2) (4H) elimination from molecular ions increased as the charge states increased in all the molecules examined. A striking difference was found between triply and quadruply charged 2,3-benzofluorene: significant suppression of molecular ions with loss of odd number of hydrogen was observed in the quadruply charged ions. The Coulomb explosion of protons in the quadruply charged state and succeeding fragmentation resulted in the formation of triply charged molecular ions with an odd number of hydrogens. The hydrogen elimination mechanism in the highly charged state is discussed.

  16. Laser induced fluorescence of trapped molecular ions

    International Nuclear Information System (INIS)

    Winn, J.S.

    1980-10-01

    Laser induced fluoresence (LIF) spectra (laser excitation spectra) are conceptually among the most simple spectra to obtain. One need only confine a gaseous sample in a suitable container, direct a laser along one axis of the container, and monitor the sample's fluorescence at a right angle to the laser beam. As the laser wavelength is changed, the changes in fluorescence intensity map the absorption spectrum of the sample. (More precisely, only absorption to states which have a significant radiative decay component are monitored.) For ion spectroscopy, one could benefit in many ways by such an experiment. Most optical ion spectra have been observed by emission techniques, and, aside from the problems of spectral analysis, discharge emission methods often produce the spectra of many species, some of which may be unknown or uncertain. Implicit in the description of LIF given above is certainty as to the chemical identity of the carrier of the spectrum. This article describes a method by which the simplifying aspects of LIF can be extended to molecular ions

  17. Discovery of energetic molecular ions (NO+ and O2+) in the storm time ring current

    International Nuclear Information System (INIS)

    Klecker, B.; Moebius, E.; Hovestadt, D.; Scholer, M.; Gloeckler, G.; Ipavich, F.M.

    1986-01-01

    A few hours after the onset of a large geomagnetic storm on September 4, 1984, energetic molecular ions in the mass range 28--32, predminantly NO + and O 2 + , have been discovered in the outer ring current at L--7. The data have been obtained with the time-of-flight spectrometer SULEICA on the AMPTE/IRM spacecraft. We find at 160 keV/e a mean abundance ratio of the molecular ions relative to O + ions of 0.031 +- 0.004. During quiet times no molecular ions are observed, the 1 sigma upper limit of the ratio derived by averaging over several quiet periods is 0.003. The observations demonstrate the injection of ionospheric plasma into the storm time ring current and the subsequent acceleration to energies of several hundred keV on a time scale of a few hours after the onset of the magnetic storm

  18. Microwave quantum logic spectroscopy and control of molecular ions

    DEFF Research Database (Denmark)

    Shi, M.; F. Herskind, P.; Drewsen, M.

    2013-01-01

    the rotational state of a molecular ion and the electronic state of an atomic ion. In this setting, the atomic ion is used for read-out of the molecular ion state, in a manner analogous to quantum logic spectroscopy based on Raman transitions. In addition to high-precision spectroscopy, this setting allows...... for rotational ground state cooling, and can be considered as a candidate for the quantum information processing with polar molecular ions. All elements of our proposal can be realized with currently available technology....

  19. The Effect of an Inert Solid Reservoir on Molecular Abundances in Dense Interstellar Clouds

    Directory of Open Access Journals (Sweden)

    Kalvāns Juris

    2012-12-01

    Full Text Available The question, what is the role of freeze-out of chemical species in determining the molecular abundances in the interstellar gas is a matter of debate. We investigate a theoretical case of a dense interstellar molecular cloud core by time-dependent modeling of chemical kinetics, where grain surface reactions deliberately are not included. That means, the gas-phase and solid-phase abundances are influenced only by gas reactions, accretion on grains and desorption. We compare the results to a reference model where no accretion occurs, and only gas-phase reactions are included. We can trace that the purely physical processes of molecule accretion and desorption have major chemical consequences on the gas-phase chemistry. The main effect of introduction of the gas-grain interaction is long-term molecule abundance changes that come nowhere near an equilibrium during the typical lifetime of a prestellar core.

  20. The abundance and emission of H2O and O-2 in clumpy molecular clouds

    NARCIS (Netherlands)

    Spaans, M; van Dishoeck, EF

    2001-01-01

    Recent observations with the Submillimeter Wave Astronomy Satellite (SWAS) indicate abundances of gaseous H2O and O-2 in dense molecular clouds that are significantly lower than those found in standard homogeneous chemistry models. We present here results for the thermal and chemical balance of

  1. Amorphous molecular junctions produced by ion irradiation on carbon nanotubes

    International Nuclear Information System (INIS)

    Wang Zhenxia; Yu Liping; Zhang Wei; Ding Yinfeng; Li Yulan; Han Jiaguang; Zhu Zhiyuan; Xu Hongjie; He Guowei; Chen Yi; Hu Gang

    2004-01-01

    Experiments and molecular dynamics have demonstrated that electron irradiation could create molecular junctions between crossed single-wall carbon nanotubes. Recently molecular dynamics computation predicted that ion irradiation could also join single-walled carbon nanotubes. Employing carbon ion irradiation on multi-walled carbon nanotubes, we find that these nanotubes evolve into amorphous carbon nanowires, more importantly, during the process of which various molecular junctions of amorphous nanowires are formed by welding from crossed carbon nanotubes. It demonstrates that ion-beam irradiation could be an effective way not only for the welding of nanotubes but also for the formation of nanowire junctions

  2. Presolar SiC Abundances in Primitive Meteorites by NanoSIMS Raster Ion Imaging of Insoluble Organic Matter

    Science.gov (United States)

    Davidson, J.; Busemann, H.; Alexander, C. M. O'd.; Nittler, L. R.; Schrader, D. L.; Orthous-Daunay, F. R.; Quirico, E.; Franchi, I. A.; Grady, M. M.

    2009-03-01

    We present results obtained with NanoSIMS raster ion imaging to determine the abundance of presolar SiC in the insoluble organic matter (IOM) extracted from a number of different classes of chondrites (both carbonaceous and ordinary).

  3. Molecular and negative ion production by a standard electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Racz, R. [Institute of Nuclear Research (ATOMKI), Bem ter 18/c, H-4026 Debrecen (Hungary); University of Debrecen, Egyetem ter 1, H-4010 Debrecen (Hungary); Biri, S.; Juhasz, Z.; Sulik, B. [Institute of Nuclear Research (ATOMKI), Bem ter 18/c, H-4026 Debrecen (Hungary); Palinkas, J. [University of Debrecen, Egyetem ter 1, H-4010 Debrecen (Hungary)

    2012-02-15

    Molecular and negative ion beams, usually produced in special ion sources, play an increasingly important role in fundamental and applied atomic physics. The ATOMKI-ECRIS is a standard ECR ion source, designed to provide highly charged ion (HCI) plasmas and beams. In the present work, H{sup -}, O{sup -}, OH{sup -}, O{sub 2}{sup -}, C{sup -}, C{sub 60}{sup -} negative ions and H{sub 2}{sup +}, H{sub 3}{sup +}, OH{sup +}, H{sub 2}O{sup +}, H{sub 3}O{sup +}, O{sub 2}{sup +} positive molecular ions were generated in this HCI-ECRIS. Without any major modification in the source and without any commonly applied tricks (such as usage of cesium or magnetic filter), negative ion beams of several {mu}A and positive molecular ion beams in the mA range were successfully obtained.

  4. Molecular Abundances in the Circumstellar Envelope of Oxygen-Rich Supergiant VY Canis Majoris

    Science.gov (United States)

    Edwards, Jessica L.; Ziurys, Lucy

    2014-06-01

    A complete set of molecular abundances have been established for the Oxygen-rich circumstellar envelope (CSE) surrounding the supergiant star VY Canis Majoris (VY CMa). These data were obtained from The Arizona Radio Observatory (ARO) 1-mm spectral line survey of this object using the ARO Sub-millimeter Telescope (SMT), as well as complimentary transitions taken with the ARO 12-meter. The non-LTE radiative transfer code ESCAPADE has been used to obtain the molecular abundances and distributions in VY CMa, including modeling of the various asymmetric outflow geometries in this source. For example, SO and SO2 were determined to arise from five distinct outflows, four of which are asymmetric with respect to the central star. Abundances of these two sulfur-bearing molecules range from 3 x 10-8 - 2.5 x 10-7 for the various outflows. Similar results will be presented for molecules like CS, SiS, HCN, and SiO, as well as more exotic species like NS, PO, AlO, and AlOH. The molecular abundances between the various outflows will be compared and implications for supergiant chemistry will be discussed.

  5. Adiabatic Cooling for Rovibrational Spectroscopy of Molecular Ions

    DEFF Research Database (Denmark)

    Fisher, Karin

    2017-01-01

    The field of cold molecular ions is a fast growing one, with applications in high resolution spectroscopy and metrology, the search for time variations of fundamental constants, cold chemistry and collisions, and quantum information processing, to name a few. The study of single molecular ions...... is attractive as it enables one to push the limits of spectroscopic accuracy. Non-destructive spectroscopic detection of molecular ions can be achieved by co-trapping with an easier to detect atomic ion. The ion chain has coupled motion, and transitions which change both the internal and motional states...... to the measured heating rates, almost perfectly fitting existing heating rate theory. Further, the same model successfully predicted the heating rates of the in-phase mode of a two-ion crystal, indicating that we can use it to predict the heating rates in experiments on molecule-atom chains. Adiabatic cooling...

  6. Production and sympathetic cooling of complex molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chaobo

    2008-06-24

    This thesis reports on experimental and theoretical studies of the sympathetic cooling of complex molecular ions demonstrating that this general method for cooling atomic and molecular ions is reliable and efficient. For this purpose, complex molecular ions and barium ions have been confined simultaneously in a linear Paul trap. The complex molecular ions are generated in an electrospray ionization system and transferred to the trap via a 2 m long octopole ion guide. These molecular ions are pre-cooled by room temperature helium buffer gas so that they can be captured by the trap. The atomic barium ions are loaded from a barium evaporator oven and are laser-cooled by a 493 nm cooling laser and a 650 nm repumping laser. Due to the mutual Coulomb interaction among these charged particles, the kinetic energy of the complex molecular ions can be reduced significantly. In our experiments we have demonstrated the sympathetic cooling of various molecules (CO{sub 2}, Alexa Fluor 350, glycyrrhetinic acid, cytochrome c) covering a wide mass range from a few tens to 13000 amu. In every case the molecular ions could be cooled down to millikelvin temperatures. Photo-chemical reactions of the {sup 138}Ba{sup +} ions in the ({sup 2}P{sub 1/2}) excited state with gases such as O{sub 2}, CO{sub 2}, or N{sub 2}O, could be observed. If the initial {sup 138}Ba{sup +} ion ensemble is cold, the produced {sup 138}BaO{sup +} ions are cold as well, with a similar temperature as the laser-cooled barium ions (a few tens of millikelvin). The back-reaction of {sup 138}BaO{sup +} ions with neutral CO to {sup 138}Ba{sup +} is possible and was observed in our experiments as well. A powerful molecular dynamics (MD) simulation program has been developed. With this program dynamic properties of ion ensembles, such as sympathetic interactions or heating effects, have been investigated and experimental results have been analyzed to obtain, for example, ion numbers and temperatures. Additionally, the

  7. Production and sympathetic cooling of complex molecular ions

    International Nuclear Information System (INIS)

    Zhang, Chaobo

    2008-01-01

    This thesis reports on experimental and theoretical studies of the sympathetic cooling of complex molecular ions demonstrating that this general method for cooling atomic and molecular ions is reliable and efficient. For this purpose, complex molecular ions and barium ions have been confined simultaneously in a linear Paul trap. The complex molecular ions are generated in an electrospray ionization system and transferred to the trap via a 2 m long octopole ion guide. These molecular ions are pre-cooled by room temperature helium buffer gas so that they can be captured by the trap. The atomic barium ions are loaded from a barium evaporator oven and are laser-cooled by a 493 nm cooling laser and a 650 nm repumping laser. Due to the mutual Coulomb interaction among these charged particles, the kinetic energy of the complex molecular ions can be reduced significantly. In our experiments we have demonstrated the sympathetic cooling of various molecules (CO 2 , Alexa Fluor 350, glycyrrhetinic acid, cytochrome c) covering a wide mass range from a few tens to 13000 amu. In every case the molecular ions could be cooled down to millikelvin temperatures. Photo-chemical reactions of the 138 Ba + ions in the ( 2 P 1/2 ) excited state with gases such as O 2 , CO 2 , or N 2 O, could be observed. If the initial 138 Ba + ion ensemble is cold, the produced 138 BaO + ions are cold as well, with a similar temperature as the laser-cooled barium ions (a few tens of millikelvin). The back-reaction of 138 BaO + ions with neutral CO to 138 Ba + is possible and was observed in our experiments as well. A powerful molecular dynamics (MD) simulation program has been developed. With this program dynamic properties of ion ensembles, such as sympathetic interactions or heating effects, have been investigated and experimental results have been analyzed to obtain, for example, ion numbers and temperatures. Additionally, the feasibility of nondestructive spectroscopy via an optical dipole excitation

  8. An ion cooling and state characterization apparatus for studies of molecular ion dissociative interactions

    International Nuclear Information System (INIS)

    Deng, Shihu; Vane, C R; Bannister, M E; Havener, C C; Meyer, F W; Krause, H F; Hettich, R L; Goeringer, D E; Van Berkel, G J

    2009-01-01

    An experimental capability is being developed at the Oak Ridge National Laboratory Multi-Charged Ion Research Facility (ORNL MIRF) to enable stored cooling and state characterization of molecular ions of essentially any mass. Ions selected from a variety of available sources are injected from the side into a 1.5 meter long electrostatic mirror trap, where excited internal states are cooled by radiative cooling. An electron beam target located near the middle of the ion-trap region, coupled with neutral fragment imaging detector systems at each end of the trap, permits state-specific studies of electron-molecular ion dissociation.

  9. Determining the stereochemical structures of molecular ions by ''Coulomb-explosion'' techniques with fast (MeV) molecular ion beams

    International Nuclear Information System (INIS)

    Gemmell, D.S.

    1980-01-01

    Recent studies on the dissociation of fast (MeV) molecular ion beams in thin foils suggest a novel alternative approach to the determination of molecular ion structures. In this article we review some recent high-resolution studies on the interactions of fast molecular ion beams with solid and gaseous targets and indicate how such studies may be applied to the problem of determining molecular ion structures. The main features of the Coulomb explosion of fast-moving molecular ion projectiles and the manner in which Coulomb-explosion techniques may be applied to the problem (difficult to attack by more conventional means) of determining the stereochemical structures of molecular ions has been described in this paper. Examples have been given of early experiments designed to elicit structure information. The techniques are still in their infancy, and it is to be expected that as both the technology and the analysis are refined, the method will make valuable contributions to the determination of molecular ion structures

  10. Desorption of Cs+ ions with fast incident atomic and molecular ions

    International Nuclear Information System (INIS)

    Salehpour, M.; Hunt, J.E.; Tou, L.C.; Hedin, A.; Sundqvist, B.

    1988-01-01

    Preliminary results on desorption yield measurements of secondary Cs + ions, desorbed as a result of the impact of C + , O + , CO + , O 2 + , CO 2 + and C 4 H 9 + incident ions, in the energy range of 950 keV--3.5 MeV are presented. Molecular beams are found to give high yields of secondary Cs + as a result of impact of O 2 + compared to O + incident ions, indicate no ''collective'' molecular effects. 23 refs., 1 fig

  11. Molecular ions in the laboratory and in space

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, Michael C. [Atomic and Molecular Physics Division, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, 02138 (United States)

    2015-01-22

    Molecular ions play a central role in the gas-phase chemistry of the interstellar medium; they also provide information on the physical conditions in astronomical sources (e.g., fractional ionization), and in some cases can be used to infer the abundance of nonpolar molecules such as N{sub 2} and CO{sub 2} which can not be observed in the radio band. During the past four years, the rotational spectra of six carbon-chain anions (C{sub 2}H{sup −}, C{sub 4}H{sup −}, C{sub 6}H{sup −}, C{sub 8}H{sup −}, CN{sup −}, C{sub 3}N{sup −}), NCO{sup −} and seven protonated species (HSCO{sup +}, HSCS{sup +}, cis- and trans-HOSO{sup +}, H{sub 2}NCO{sup +}, HNCOH{sup +}, and HNNO{sup +}) have been detected in our laboratory. On the basis of dedicated astronomical searches, all of the carbon-chain anions except C{sub 2}H{sup −} have now been identified in space. In addition to highlighting recent work on carbon-chain anions and protonated HSO{sub 2}{sup +}, efforts to better understand the distribution of anions in space using C{sub 6}H{sup −} as a tracer for negative charge are described.

  12. Metal ion sequestration: An exciting dimension for molecularly ...

    African Journals Online (AJOL)

    The use of a tight binding macrocyclic ligand to complex a metal ion so that this serves as receptee on the Molecularly Imprinted Polymer (MIP) receptor as described here affords a sequestration route for a targeted metal ion, with potential for environmental remediation and restoration applications. Ethylene glycol ...

  13. Molecular dynamics simulations of ion range profiles for heavy ions in light targets

    Energy Technology Data Exchange (ETDEWEB)

    Lan, C. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); State Key Laboratory of Nuclear Physics and Technology, Peking University, 100871 (China); Xue, J.M. [State Key Laboratory of Nuclear Physics and Technology, Peking University, 100871 (China); Zhang, Y., E-mail: Zhangy1@ornl.gov [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Morris, J.R. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zhu, Z. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Gao, Y.; Wang, Y.G.; Yan, S. [State Key Laboratory of Nuclear Physics and Technology, Peking University, 100871 (China); Weber, W.J. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2012-09-01

    The determination of stopping powers for slow heavy ions in targets containing light elements is important to accurately describe ion-solid interactions, evaluate ion irradiation effects and predict ion ranges for device fabrication and nuclear applications. Recently, discrepancies of up to 40% between the experimental results and SRIM (Stopping and Range of Ions in Matter) predictions of ion ranges for heavy ions with medium and low energies (<{approx}25 keV/nucleon) in light elemental targets have been reported. The longer experimental ion ranges indicate that the stopping powers used in the SRIM code are overestimated. Here, a molecular dynamics simulation scheme is developed to calculate the ion ranges of heavy ions in light elemental targets. Electronic stopping powers generated from both a reciprocity approach and the SRIM code are used to investigate the influence of electronic stopping on ion range profiles. The ion range profiles for Au and Pb ions in SiC and Er ions in Si, with energies between 20 and 5250 keV, are simulated. The simulation results show that the depth profiles of implanted ions are deeper and in better agreement with the experiments when using the electronic stopping power values derived from the reciprocity approach. These results indicate that the origin of the discrepancy in ion ranges between experimental results and SRIM predictions in the low energy region may be an overestimation of the electronic stopping powers used in SRIM.

  14. Electron and molecular ion collisions relevant to divertor plasma

    International Nuclear Information System (INIS)

    Takagi, H.

    2005-01-01

    We introduce the concept of the multi-channel quantum defect theory (MQDT) and show the outline of the MQDT newly extended to include the dissociative states. We investigate some molecular processes relevant to the divertor plasma by using the MQDT: the dissociative recombination, dissociative excitation, and rotation-vibrational transition in the hydrogen molecular ion and electron collisions. (author)

  15. Atomic and molecular physics with ion storage rings

    International Nuclear Information System (INIS)

    Larsson, M.

    1995-01-01

    Advances in ion-source, accelerator and beam-cooling technology have made it possible to produce high-quality beams of atomic ions in arbitrary charged states as well as molecular and cluster ions are internally cold. Ion beams of low emittance and narrow momentum spread are obtained in a new generation of ion storage-cooler rings dedicated to atomic and molecular physics. The long storage times (∼ 5 s ≤ τ ≤ days) allow the study of very slow processes occurring in charged (positive and negative) atoms, molecules and clusters. Interactions of ions with electrons and/or photons can be studied by merging the stored ion beam with electron and laser beams. The physics of storage rings spans particles having a charge-to-mass ratio ranging from 60 + and C 70 + ) to 0.4 - 1.0 (H + , D + , He 2+ , ..., U 92+ ) and collision processes ranging from <1 meV to ∼ 70 GeV. It incorporates, in addition to atomic and molecular physics, tests of fundamental physics theories and atomic physics bordering on nuclear and chemical physics. This exciting development concerning ion storage rings has taken place within the last five to six years. (author)

  16. Graph Theory and Ion and Molecular Aggregation in Aqueous Solutions

    Science.gov (United States)

    Choi, Jun-Ho; Lee, Hochan; Choi, Hyung Ran; Cho, Minhaeng

    2018-04-01

    In molecular and cellular biology, dissolved ions and molecules have decisive effects on chemical and biological reactions, conformational stabilities, and functions of small to large biomolecules. Despite major efforts, the current state of understanding of the effects of specific ions, osmolytes, and bioprotecting sugars on the structure and dynamics of water H-bonding networks and proteins is not yet satisfactory. Recently, to gain deeper insight into this subject, we studied various aggregation processes of ions and molecules in high-concentration salt, osmolyte, and sugar solutions with time-resolved vibrational spectroscopy and molecular dynamics simulation methods. It turns out that ions (or solute molecules) have a strong propensity to self-assemble into large and polydisperse aggregates that affect both local and long-range water H-bonding structures. In particular, we have shown that graph-theoretical approaches can be used to elucidate morphological characteristics of large aggregates in various aqueous salt, osmolyte, and sugar solutions. When ion and molecular aggregates in such aqueous solutions are treated as graphs, a variety of graph-theoretical properties, such as graph spectrum, degree distribution, clustering coefficient, minimum path length, and graph entropy, can be directly calculated by considering an ensemble of configurations taken from molecular dynamics trajectories. Here we show percolating behavior exhibited by ion and molecular aggregates upon increase in solute concentration in high solute concentrations and discuss compelling evidence of the isomorphic relation between percolation transitions of ion and molecular aggregates and water H-bonding networks. We anticipate that the combination of graph theory and molecular dynamics simulation methods will be of exceptional use in achieving a deeper understanding of the fundamental physical chemistry of dissolution and in describing the interplay between the self-aggregation of solute

  17. Graph Theory and Ion and Molecular Aggregation in Aqueous Solutions.

    Science.gov (United States)

    Choi, Jun-Ho; Lee, Hochan; Choi, Hyung Ran; Cho, Minhaeng

    2018-04-20

    In molecular and cellular biology, dissolved ions and molecules have decisive effects on chemical and biological reactions, conformational stabilities, and functions of small to large biomolecules. Despite major efforts, the current state of understanding of the effects of specific ions, osmolytes, and bioprotecting sugars on the structure and dynamics of water H-bonding networks and proteins is not yet satisfactory. Recently, to gain deeper insight into this subject, we studied various aggregation processes of ions and molecules in high-concentration salt, osmolyte, and sugar solutions with time-resolved vibrational spectroscopy and molecular dynamics simulation methods. It turns out that ions (or solute molecules) have a strong propensity to self-assemble into large and polydisperse aggregates that affect both local and long-range water H-bonding structures. In particular, we have shown that graph-theoretical approaches can be used to elucidate morphological characteristics of large aggregates in various aqueous salt, osmolyte, and sugar solutions. When ion and molecular aggregates in such aqueous solutions are treated as graphs, a variety of graph-theoretical properties, such as graph spectrum, degree distribution, clustering coefficient, minimum path length, and graph entropy, can be directly calculated by considering an ensemble of configurations taken from molecular dynamics trajectories. Here we show percolating behavior exhibited by ion and molecular aggregates upon increase in solute concentration in high solute concentrations and discuss compelling evidence of the isomorphic relation between percolation transitions of ion and molecular aggregates and water H-bonding networks. We anticipate that the combination of graph theory and molecular dynamics simulation methods will be of exceptional use in achieving a deeper understanding of the fundamental physical chemistry of dissolution and in describing the interplay between the self-aggregation of solute

  18. Probing Molecular Ions With Laser-Cooled Atomic Ions

    Science.gov (United States)

    2017-10-11

    1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302. Respondents should be aware that notwithstanding any other provision of law , no...multiphoton dissociation spectroscopy of CaH+ in a Coulomb crystal, and quantum logic spectroscopy of CaH+. The first two goals have been completed and the...dissociation technique benefits from larger ion number in a three- dimensional Coulomb crystal. We used this technique to measure the for the first time

  19. Comparison of single-ion molecular dynamics in common solvents

    Science.gov (United States)

    Muralidharan, A.; Pratt, L. R.; Chaudhari, M. I.; Rempe, S. B.

    2018-06-01

    Laying a basis for molecularly specific theory for the mobilities of ions in solutions of practical interest, we report a broad survey of velocity autocorrelation functions (VACFs) of Li+ and PF6- ions in water, ethylene carbonate, propylene carbonate, and acetonitrile solutions. We extract the memory function, γ(t), which characterizes the random forces governing the mobilities of ions. We provide comparisons controlling for the effects of electrolyte concentration and ion-pairing, van der Waals attractive interactions, and solvent molecular characteristics. For the heavier ion (PF6-), velocity relaxations are all similar: negative tail relaxations for the VACF and a clear second relaxation for γ (t ), observed previously also for other molecular ions and with n-pentanol as the solvent. For the light Li+ ion, short time-scale oscillatory behavior masks simple, longer time-scale relaxation of γ (t ). But the corresponding analysis of the solventberg Li+(H2O)4 does conform to the standard picture set by all the PF6- results.

  20. Molecular ion acceleration using tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Yuichi; Mizuhashi, Kiyoshi; Tajima, Satoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1996-12-01

    In TIARA compound beam radiation system, cluster beams have been produced using 3 MV tandem accelerator (9SDH-2) to supply them to various radiation on injection experiments. Till now, productions of C{sub 2-8}, Si{sub 2-4} and O{sub 2} and their accelerations up to 6 MeV have been succeeded. This study aimed at production and acceleration of B{sub 2-4} and LiF. Anion clusters were produced using the conventional ion source of cesium sputter type. The proportions of atoms, molecules and clusters elicited from the ion source were varied depending on the material`s properties and the operating conditions of ion source such as sample temperature, sputter voltage and the shape of sample. The anion clusters were accelerated toward the high voltage terminal in the center of tandem accelerator, leading to cations through losing their electrons by the collision to N{sub 2} gas in a charge conversion cell at the terminal. Positively charged cluster ions could be obtained by modulating the pressure of N{sub 2} gas. Thus, B{sub 2} (64 nA), B{sub 3} (4.4 nA) and B{sub 4} (2.7 nA) have been produced and their maximum survival probabilities were higher than those of carbon or silicon clusters. In addition, the relationship between beam current and gas pressure was investigated for Bn (n = 2-4) and LiF. (M.N.)

  1. Periodic orbits of the hydrogen molecular ion and their quantization

    International Nuclear Information System (INIS)

    Duan, Y.; Yuan, J.; Bao, C.

    1995-01-01

    In a classical study of the hydrogen molecular ion beyond the Born-Oppenheimer approximation (BOA), we have found that segments of trajectories resemble that of the Born-Oppenheimer approximation periodic orbits. The importance of this fact to the classical understanding of chemical bonding leads us to a systematic study of the periodic orbits of the planar hydrogen molecular ion within the BOA. Besides introducing a classification scheme for periodic orbits, we discuss the convergence properties of families of periodic orbits and their bifurcation patterns according to their types. Semiclassical calculations of the density of states based on these periodic orbits yield results in agreement with the exact quantum eigenvalues of the hydrogen molecular ion system

  2. Deposition of molecular probes in heavy ion tracks

    CERN Document Server

    Esser, M

    1999-01-01

    By using polarized fluorescence techniques the physical properties of heavy ion tracks such as the dielectric number, molecular alignment and track radius can be traced by molecular fluorescence probes. Foils of poly(ethylene terephthalate) (PET) were used as a matrix for the ion tracks wherein fluorescence probes such as aminostyryl-derivatives can be incorporated using a suitable solvent, e.g. N,N'-dimethylformamide (DMF) as transport medium. The high sensitivity of fluorescence methods allowed the comparison of the probe properties in ion tracks with the virgin material. From the fluorescence Stokes shift the dielectric constants could be calculated, describing the dielectric surroundings of the molecular probes. The lower dielectric constant in the tracks gives clear evidence that there is no higher accommodation of the highly polar solvent DMF in the tracks compared with the virgin material. Otherwise the dielectric constant in the tracks should be higher than in the virgin material. The orientation of t...

  3. Use of molecular ion beams from a tandem accelerator

    International Nuclear Information System (INIS)

    Faibis, A.; Goldring, G.; Hass, M.; Kaim, R.; Plesser, I.; Vager, Z.

    1981-01-01

    A large variety of positive molecular ion beams can be produced by gaseous charge exchange in the terminal of a tandem accelerator. After acceleration the molecules are usually dissociated by passage through a thin foil. Measurements of the break-up products provide a way to study both the structure of incident ions and the effects of electronic potentials on the internuclear interaction inside the foil. Beam intensities of a few picoamperes are quite adequate for these measurements, and the relatively high energy obtained by use of a tandem accelerator has the advantage of minimizing multiple scattering effects in the foil. The main difficulty in using the molecular beams lies in the large magnetic rigidity of singly-charged heavy molecular ions

  4. Chemical effects induced by ion implantation in molecular solids

    International Nuclear Information System (INIS)

    Foti, G.; Calcagno, L.; Puglisi, O.

    1983-01-01

    Ion implantation in molecular solids as ice, frozen noble gases, benzene and polymers produces a large amount of new molecules compared to the starting materials. Mass and energy analysis of ejected molecules together with the erosion yield, are discussed for several ion-target combinations at low temperature. The observed phenomena are analyzed in terms of deposited ennergy in electronic and nuclear collisions, for incoming beams, as helium or argon, in the range 10-2000 keV. (orig.)

  5. Infrared spectra of small molecular ions trapped in solid neon

    Energy Technology Data Exchange (ETDEWEB)

    Jacox, Marilyn E. [Optical Technology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

    2015-01-22

    The infrared spectrum of a molecular ion provides a unique signature for that species, gives information on its structure, and is amenable to remote sensing. It also serves as a comparison standard for refining ab initio calculations. Experiments in this laboratory trap molecular ions in dilute solid solution in neon at 4.2 K in sufficient concentration for observation of their infrared spectra between 450 and 4000 cm{sup !1}. Discharge-excited neon atoms produce cations by photoionization and/or Penning ionization of the parent molecule. The resulting electrons are captured by other molecules, yielding anions which provide for overall charge neutrality of the deposit. Recent observations of ions produced from C{sub 2}H{sub 4} and BF{sub 3} will be discussed. Because of their relatively large possibility of having low-lying excited electronic states, small, symmetric molecular cations are especially vulnerable to breakdown of the Born-Oppenheimer approximation. Some phenomena which can result from this breakdown will be discussed. Ion-molecule reaction rates are sufficiently high that in some systems absorptions of dimer cations and anions are also observed. When H{sub 2} is introduced into the system, the initially-formed ion may react with it. Among the species resulting from such ion-molecule reactions that have recently been studied are O{sub 4}{sup +}, NH{sub 4}{sup +}, HOCO{sup +}, and HCO{sub 2}{sup !}.

  6. Atomic Oxygen Abundance in Molecular Clouds: Absorption Toward Sagittarius B2

    Science.gov (United States)

    Lis, D. C.; Keene, Jocelyn; Phillips, T. G.; Schilke, P.; Werner, M. W.; Zmuidzinas, J.

    2001-01-01

    We have obtained high-resolution (approximately 35 km/s) spectra toward the molecular cloud Sgr B2 at 63 micrometers, the wavelength of the ground-state fine-structure line of atomic oxygen (O(I)), using the ISO-LWS instrument. Four separate velocity components are seen in the deconvolved spectrum, in absorption against the dust continuum emission of Sgr B2. Three of these components, corresponding to foreground clouds, are used to study the O(I) content of the cool molecular gas along the line of sight. In principle, the atomic oxygen that produces a particular velocity component could exist in any, or all, of three physically distinct regions: inside a dense molecular cloud, in the UV illuminated surface layer (PDR) of a cloud, and in an atomic (H(I)) gas halo. For each of the three foreground clouds, we estimate, and subtract from the observed O(I) column density, the oxygen content of the H(I) halo gas, by scaling from a published high-resolution 21 cm spectrum. We find that the remaining O(I) column density is correlated with the observed (13)CO column density. From the slope of this correlation, an average [O(I)]/[(13)CO] ratio of 270 +/- 120 (3-sigma) is derived, which corresponds to [O(I)]/[(13)CO] = 9 for a CO to (13)CO abundance ratio of 30. Assuming a (13)CO abundance of 1x10(exp -6) with respect to H nuclei, we derive an atomic oxygen abundance of 2.7x10(exp -4) in the dense gas phase, corresponding to a 15% oxygen depletion compared to the diffuse ISM in our Galactic neighborhood. The presence of multiple, spectrally resolved velocity components in the Sgr B2 absorption spectrum allows, for the first time, a direct determination of the PDR contribution to the O(I) column density. The PDR regions should contain O(I) but not (13)CO, and would thus be expected to produce an offset in the O(I)-(13)CO correlation. Our data do not show such an offset, suggesting that within our beam O(I) is spatially coexistent with the molecular gas, as traced by (13)CO

  7. Rotational Laser Cooling of Vibrationally and Translationally Cold Molecular Ions

    DEFF Research Database (Denmark)

    Drewsen, Michael

    2011-01-01

    an excellent alternative to atomic qubits in the realization of a practical ion trap based quantum computer due to favourable internal state decoherence rates. In chemistry, state prepared molecular targets are an ideal starting point for uni-molecular reactions, including coherent control...... of photofragmentation through the application of various laser sources [5,6]. In cold bi-molecular reactions, where the effect of even tiny potential barriers becomes significant, experiments with state prepared molecules can yield important information on the details of the potential curves of the molecular complexes...... by sympathetic cooling with Doppler laser cooled Mg+ ions. Giving the time for the molecules to equilibrate internally to the room temperature blackbody radiation, the vibrational degree of freedom will freeze out, leaving only the rotational degree of freedom to be cooled. We report here on the implementation...

  8. The rotational temperature of polar molecular ions in Coulomb crystals

    International Nuclear Information System (INIS)

    Bertelsen, Anders; Joergensen, Solvejg; Drewsen, Michael

    2006-01-01

    With MgH + ions as a test case, we investigate to what extent the rotational motion of smaller polar molecular ions sympathetically cooled into Coulomb crystals in linear Paul traps couples to the translational motions of the ion ensemble. By comparing the results obtained from rotational resonance-enhanced multiphoton photo-dissociation experiments with data from theoretical simulations, we conclude that the effective rotational temperature exceeds the translational temperature (<100 mK) by more than two orders of magnitude, indicating a very weak coupling. (letter to the editor)

  9. Inelastic surface collisions and the desorption of massive molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Macfarlane, R D [Texas A and M Univ., College Station (USA). Dept. of Chemistry

    1983-01-01

    The interaction of high energy ions in the region of electronic stopping (1 MeV u/sup -1/) stimulates the desorption of massive molecular ions of biomolecules such as insulin. The experimental details of the measurements are given with some examples of application for analytical mass spectrometry. Studies on the role of the incident ion (accelerator beam experiments) are reviewed as well as the contribution of the matrix to the desorption-ionization process. How the electronic relaxation process couples to desorption-ionization is a central question in understanding the overall mechanism of the process.

  10. Energetic atomic and molecular ions of ionospheric origin observed in distant magnetotail flow-reversal events

    Science.gov (United States)

    Christon, S. P.; Gloeckler, G.; Williams, D. J.; Mukai, T.; Mcentire, R. W.; Jacquey, C.; Angelopoulos, V.; Lui, A. T. Y.; Kokubun, S.; Fairfield, D. H.

    1994-01-01

    Energetic atomic (O(+1) and N(+1)) and molecular (O2(+1), NO(+1), and N2(+1)) ions of ionospheric origin were observed in Earth's magnetotail at X approximately -146 R(sub E) during two plasma sheet sunward/tailward flow-reversal events measured by instruments on the GEOTAIL spacecraft. These events were associated with concurrent ground-measured geomagnetic disturbance intensification at auroral-and mid-latitudes (Kp = 7(-)). Energetic ions in the sunward-component and tailward flows were from both the solar wind and ionosphere. Plasma and energetic ions participated in the flows. During tailward flow, ionospheric origin ion abundance ratios at approximately 200-900 km/s in the rest frame were N(+1)/O(+1) = approximately 25-30% and ((O2(+1), NO(+1), and N2(+1))/O(+1) = approximately 1-2%. We argue that tailward flow most likely initiated approximately 80-100 R(sub E) tailward of Earth and molecular ions were in the plasma sheet prior to geomagnetic intensification onset.

  11. Molecular beam studies of ion-molecule reactions

    International Nuclear Information System (INIS)

    Gentry, W.R.

    1978-01-01

    A review is presented in which an attempt is made to highlight some of the areas in which molecular beam techniques contribute to the understanding of ion--molecule reaction dynamics. Included are reactant kinetic energy range and resolution, internal state selection and analysis, and new chemical systems and phenomena. 35 references

  12. Hydrogen molecular ions for improved determination of fundamental constants

    NARCIS (Netherlands)

    Karr, J.-P.; Hilico, L.; Koelemeij, J.C.J.; Korobov, V.I.

    2016-01-01

    The possible use of high-resolution rovibrational spectroscopy of the hydrogen molecular ions H-2(+) and HD+ for an independent determination of several fundamental constants is analyzed. While these molecules had been proposed for the metrology of nuclear-to-electron mass ratios, we show that they

  13. Molecular Mechanisms of Ion-Specific Effects on Proteins

    Czech Academy of Sciences Publication Activity Database

    Rembert, K. B.; Paterová, Jana; Heyda, Jan; Hilty, Ch.; Jungwirth, Pavel; Cremer, P. S.

    2012-01-01

    Roč. 134, č. 24 (2012), s. 10039-10046 ISSN 0002-7863 R&D Projects: GA ČR GA203/08/0114 Institutional research plan: CEZ:AV0Z40550506 Keywords : ions * proteins * molecular dynamics * NMR Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 10.677, year: 2012

  14. Sorption of Molecular Oxygen by Metal-Ion Exchanger Nanocomposites

    Science.gov (United States)

    Krysanov, V. A.; Plotnikova, N. V.; Kravchenko, T. A.

    2018-03-01

    Kinetic features are studied of the chemisorption and reduction of molecular oxygen from water by metal-ion exchanger nanocomposites that differ in the nature of the dispersed metal and state of oxidation. In the Pd equilibrium sorption coefficient for oxygen dissolved in water ranges from 20 to 50, depending on the nature and oxidation state of the metal component.

  15. Rotational laser cooling of vibrationally and translationally cold molecular ions

    DEFF Research Database (Denmark)

    Staanum, Peter; Højbjerre, Klaus; Skyt, Peter Sandegaard

    2010-01-01

    Stationary molecules in well-defined internal states are of broad interest for physics and chemistry. In physics, this includes metrology 1, 2, 3 , quantum computing 4, 5 and many-body quantum mechanics 6, 7 , whereas in chemistry, state-prepared molecular targets are of interest for uni......-molecular reactions with coherent light fields 8, 9 , for quantum-state-selected bi-molecular reactions 10, 11, 12 and for astrochemistry 12 . Here, we demonstrate rotational ground-state cooling of vibrationally and translationally cold MgH+ ions, using a laser-cooling scheme based on excitation of a single...

  16. Electronic structure of molecular Rydberg states of some small molecules and molecular ion

    International Nuclear Information System (INIS)

    Sun Biao; Li Jiaming

    1993-01-01

    Based on an independent-particle-approximation (i.e. the multiple scattering self-consistent-field theory), the electronic structures of Rydberg states of the small diatomic molecules H 2 , He 2 and the He 2 + molecular ion were studied. The principal quantum number of the first state of the Rydberg series is determined from a convention of the limit of the molecular electronic configuration. The dynamics of the excited molecules and molecular ion has been elucidated. The theoretical results are in fair agreement with the existing experimental measurements, thus they can serve as a reliable basis for future refined treatment such as the configuration interaction calculation

  17. Rotational Laser Cooling of Vibrationally and Translationally Cold Molecular Ions

    DEFF Research Database (Denmark)

    Drewsen, Michael

    2011-01-01

    [7,8,9]. Furthermore, in order to learn more about the chemistry in interstellar clouds, astrochemists can benefit greatly from direct measurements on cold reactions in laboratories [9]. Working with MgH+ molecular ions in a linear Paul trap, we routinely cool their translational degree of freedom...... by sympathetic cooling with Doppler laser cooled Mg+ ions. Giving the time for the molecules to equilibrate internally to the room temperature blackbody radiation, the vibrational degree of freedom will freeze out, leaving only the rotational degree of freedom to be cooled. We report here on the implementation...... results imply that, through this technique, cold molecular-ion experiments can now be carried out at cryogenic temperatures in room-temperature set-ups. References [1] Koelemeij, J. C. J., Roth, B., Wicht, A., Ernsting, I. and Schiller, S., Phys. Rev. Lett. 98, 173002 (2007). [2] Hudson, J. J., Sauer, B...

  18. Dietary flavonoid fisetin increases abundance of high-molecular-mass hyaluronan conferring resistance to prostate oncogenesis.

    Science.gov (United States)

    Lall, Rahul K; Syed, Deeba N; Khan, Mohammad Imran; Adhami, Vaqar M; Gong, Yuansheng; Lucey, John A; Mukhtar, Hasan

    2016-09-01

    We and others have shown previously that fisetin, a plant flavonoid, has therapeutic potential against many cancer types. Here, we examined the probable mechanism of its action in prostate cancer (PCa) using a global metabolomics approach. HPLC-ESI-MS analysis of tumor xenografts from fisetin-treated animals identified several metabolic targets with hyaluronan (HA) as the most affected. Efficacy of fisetin on HA was then evaluated in vitro and also in vivo in the transgenic TRAMP mouse model of PCa. Size exclusion chromatography-multiangle laser light scattering (SEC-MALS) was performed to analyze the molar mass (Mw) distribution of HA. Fisetin treatment downregulated intracellular and secreted HA levels both in vitro and in vivo Fisetin inhibited HA synthesis and degradation enzymes, which led to cessation of HA synthesis and also repressed the degradation of the available high-molecular-mass (HMM)-HA. SEC-MALS analysis of intact HA fragment size revealed that cells and animals have more abundance of HMM-HA and less of low-molecular-mass (LMM)-HA upon fisetin treatment. Elevated HA levels have been shown to be associated with disease progression in certain cancer types. Biological responses triggered by HA mainly depend on the HA polymer length where HMM-HA represses mitogenic signaling and has anti-inflammatory properties whereas LMM-HA promotes proliferation and inflammation. Similarly, Mw analysis of secreted HA fragment size revealed less HMM-HA is secreted that allowed more HMM-HA to be retained within the cells and tissues. Our findings establish that fisetin is an effective, non-toxic, potent HA synthesis inhibitor, which increases abundance of antiangiogenic HMM-HA and could be used for the management of PCa. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Resonant Ion Pair Formation in Electron Collisions with Ground State Molecular Ions

    International Nuclear Information System (INIS)

    Zong, W.; Dunn, G.H.; Djuric, N.; Greene, C.H.; Neau, A.; Zong, W.; Larsson, M.; Al-Khalili, A.; Neau, A.; Derkatch, A.M.; Vikor, L.; Shi, W.; Rosen, S.; Le Padellec, A.; Danared, H.; Ugglas, M. af

    1999-01-01

    Resonant ion pair formation from collisions of electrons with ground state diatomic molecular ions has been observed and absolute cross sections measured. The cross section for HD + is characterized by an abrupt threshold at 1.9thinspthinspeV and 14 resolved peaks in the range of energies 0≤E≤14 eV . The dominant mechanism responsible for the structures appears to be resonant capture and stabilization, modified by two-channel quantum interference. Data on HF + show structure correlated with photoionization of HF and with dissociative recombination of electrons with this ion. copyright 1999 The American Physical Society

  20. The molecular dynamics simulation of ion-induced ripple growth

    International Nuclear Information System (INIS)

    Suele, P.; Heinig, K.-H.

    2009-01-01

    The wavelength-dependence of ion-sputtering induced growth of repetitive nanostructures, such as ripples has been studied by molecular dynamics (MD) simulations in Si. The early stage of the ion erosion driven development of ripples has been simulated on prepatterned Si stripes with a wavy surface. The time evolution of the height function and amplitude of the sinusoidal surface profile has been followed by simulated ion-sputtering. According to Bradley-Harper (BH) theory, we expect correlation between the wavelength of ripples and the stability of them. However, we find that in the small ripple wavelength (λ) regime BH theory fails to reproduce the results obtained by molecular dynamics. We find that at short wavelengths (λ 35 nm is stabilized in accordance with the available experimental results. According to the simulations, few hundreds of ion impacts in λ long and few nanometers wide Si ripples are sufficient for reaching saturation in surface growth for for λ>35 nm ripples. In another words, ripples in the long wavelength limit seems to be stable against ion-sputtering. A qualitative comparison of our simulation results with recent experimental data on nanopatterning under irradiation is attempted.

  1. Micro structure processing on plastics by accelerated hydrogen molecular ions

    Science.gov (United States)

    Hayashi, H.; Hayakawa, S.; Nishikawa, H.

    2017-08-01

    A proton has 1836 times the mass of an electron and is the lightest nucleus to be used for accelerator in material modification. We can setup accelerator with the lowest acceleration voltage. It is preferable characteristics of Proton Beam Writer (PBW) for industrial applications. On the contrary ;proton; has the lowest charge among all nuclei and the potential impact to material is lowest. The object of this research is to improve productivity of the PBW for industry application focusing on hydrogen molecular ions. These ions are generated in the same ion source by ionizing hydrogen molecule. There is no specific ion source requested and it is suitable for industrial use. We demonstrated three dimensional (3D) multilevel micro structures on polyester base FPC (Flexible Printed Circuits) using proton, H2+ and H3+. The reactivity of hydrogen molecular ions is much higher than that of proton and coincident with the level of expectation. We can apply this result to make micro devices of 3D multilevel structures on FPC.

  2. Dissociative recombination of the CH+ molecular ion at low energy

    Science.gov (United States)

    Chakrabarti, K.; Mezei, J. Zs; Motapon, O.; Faure, A.; Dulieu, O.; Hassouni, K.; Schneider, I. F.

    2018-05-01

    The reactive collision of the CH+ molecular ion with an electron is studied in the framework of the multichannel quantum defect theory, taking into account the contribution of the core-excited Rydberg states. In addition to the X 1Σ+ ground state of the ion, we also consider the contribution to the dynamics of the a 3Π and A 1Π excited states of CH+. Our results—in the case of the dissociative recombination in good agreement with the storage ring measurements—rely on decisive improvements—complete account of the ionisation channels and accurate evaluation of the reaction matrix—of a previously used model.

  3. The transmission of fast molecular ions through thin foils

    International Nuclear Information System (INIS)

    Pietsch, W.J.; Gemmell, D.S.; Cooney, P.J.; Kanter, E.P.; Kurath, D.; Ratkowski, A.J.; Vager, Z.; Zabransky, B.J.

    1980-01-01

    We present new results on the transmission of fast molecular ions through thin foils and propose a mechanism for the transmission process. The main feature of the postulated mechanism is that a finite fraction of the incident molecular beam does not undergo a strong Coulomb explosion while traversing the foil. Because the emerging fragments are at large internuclear separations, there is an enhanced probability for the formation of bound, long-range, excited electronic states following electron capture at the rear surface of the target. (orig.)

  4. Transmission of fast molecular ions through thin foils

    International Nuclear Information System (INIS)

    Pietsch, W.J.; Gemmell, D.S.; Cooney, P.J.; Kanter, E.P.; Kurath, D.; Ratkowski, A.J.; Vager, Z.; Zabransky, B.J.

    1979-01-01

    New results on the transmission of fast molecular ions through thin foils are presented and a mechanism for the transmission process is proposed. The main feature of the postulated mechanism is that a finite fraction of the incident molecular beam does not undergo a strong Coulomb explosion while traversing the foil. Because the emerging fragments are at large internuclear separations, there is an enhanced probability for the formation of bound, long-range, excited electronic states following electron capture at the rear surface of the target

  5. Measuring molecular abundances in comet C/2014 Q2 (Lovejoy) using the APEX telescope

    Science.gov (United States)

    de Val-Borro, M.; Milam, S. N.; Cordiner, M. A.; Charnley, S. B.; Coulson, I. M.; Remijan, A. J.; Villanueva, G. L.

    2018-02-01

    Comet composition provides critical information on the chemical and physical processes that took place during the formation of the Solar system. We report here on millimetre spectroscopic observations of the long-period bright comet C/2014 Q2 (Lovejoy) using the Atacama Pathfinder Experiment (APEX) band 1 receiver between 2015 January UT 16.948 and 18.120, when the comet was at heliocentric distance of 1.30 au and geocentric distance of 0.53 au. Bright comets allow for sensitive observations of gaseous volatiles that sublimate in their coma. These observations allowed us to detect HCN, CH3OH (multiple transitions), H2CO and CO, and to measure precise molecular production rates. Additionally, sensitive upper limits were derived on the complex molecules acetaldehyde (CH3CHO) and formamide (NH2CHO) based on the average of the strongest lines in the targeted spectral range to improve the signal-to-noise ratio. Gas production rates are derived using a non-LTE molecular excitation calculation involving collisions with H2O and radiative pumping that becomes important in the outer coma due to solar radiation. We find a depletion of CO in C/2014 Q2 (Lovejoy) with a production rate relative to water of 2.0 per cent, and relatively low abundances of Q(HCN)/Q(H2O), 0.1 per cent, and Q(H2CO)/Q(H2O), 0.2 per cent. In contrast, the CH3OH relative abundance Q(CH3OH)/Q(H2O), 2.2 per cent, is close to the mean value observed in other comets. The measured production rates are consistent with values derived for this object from other facilities at similar wavelengths taking into account the difference in the fields of view. Based on the observed mixing ratios of organic molecules in four bright comets including C/2014 Q2, we find some support for atom addition reactions on cold dust being the origin of some of the molecules.

  6. Electron collisions and internal excitation in stored molecular ion beams

    International Nuclear Information System (INIS)

    Buhr, H.

    2006-01-01

    In storage ring experiments the role, which the initial internal excitation of a molecular ion can play in electron collisions, and the effect of these collisions on the internal excitation are investigated. Dissociative recombination (DR) and inelastic and super-elastic collisions are studied in the system of He + 2 . The DR rate coefficient at low energies depends strongly on the initial vibrational excitation in this system. Therefore changes in the DR rate coefficient are a very sensitive probe for changes in the vibrational excitation in He + 2 , which is used to investigate the effects of collisions with electrons and residual gas species. The low-energy DR of HD + is rich with resonances from the indirect DR process, when certain initial rotational levels in the molecular ion are coupled to levels in neutral Rydberg states lying below the ion state. Using new procedures for high-resolution electron-ion collision spectroscopy developed here, these resonances in the DR cross section can be measured with high energy sensitivity. This allows a detailed comparison with results of a MQDT calculation in an effort to assign some or all of the resonances to certain intermediate Rydberg levels. (orig.)

  7. Electron collisions and internal excitation in stored molecular ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Buhr, H.

    2006-07-26

    In storage ring experiments the role, which the initial internal excitation of a molecular ion can play in electron collisions, and the effect of these collisions on the internal excitation are investigated. Dissociative recombination (DR) and inelastic and super-elastic collisions are studied in the system of He{sup +}{sub 2}. The DR rate coefficient at low energies depends strongly on the initial vibrational excitation in this system. Therefore changes in the DR rate coefficient are a very sensitive probe for changes in the vibrational excitation in He{sup +}{sub 2}, which is used to investigate the effects of collisions with electrons and residual gas species. The low-energy DR of HD{sup +} is rich with resonances from the indirect DR process, when certain initial rotational levels in the molecular ion are coupled to levels in neutral Rydberg states lying below the ion state. Using new procedures for high-resolution electron-ion collision spectroscopy developed here, these resonances in the DR cross section can be measured with high energy sensitivity. This allows a detailed comparison with results of a MQDT calculation in an effort to assign some or all of the resonances to certain intermediate Rydberg levels. (orig.)

  8. A controllable molecular sieve for Na+ and K+ ions.

    Science.gov (United States)

    Gong, Xiaojing; Li, Jichen; Xu, Ke; Wang, Jianfeng; Yang, Hui

    2010-02-17

    The selective rate of specific ion transport across nanoporous material is critical to biological and nanofluidic systems. Molecular sieves for ions can be achieved by steric and electrical effects. However, the radii of Na(+) and K(+) are quite similar; they both carry a positive charge, making them difficult to separate. Biological ionic channels contain precisely arranged arrays of amino acids that can efficiently recognize and guide the passage of K(+) or Na(+) across the cell membrane. However, the design of inorganic channels with novel recognition mechanisms that control the ionic selectivity remains a challenge. We present here a design for a controllable ion-selective nanopore (molecular sieve) based on a single-walled carbon nanotube with specially arranged carbonyl oxygen atoms modified inside the nanopore, which was inspired by the structure of potassium channels in membrane spanning proteins (e.g., KcsA). Our molecular dynamics simulations show that the remarkable selectivity is attributed to the hydration structure of Na(+) or K(+) confined in the nanochannels, which can be precisely tuned by different patterns of the carbonyl oxygen atoms. The results also suggest that a confined environment plays a dominant role in the selectivity process. These studies provide a better understanding of the mechanism of ionic selectivity in the KcsA channel and possible technical applications in nanotechnology and biotechnology, including serving as a laboratory-in-nanotube for special chemical interactions and as a high-efficiency nanodevice for purification or desalination of sea and brackish water.

  9. Static secondary ion mass spectrometry for organic and inorganic molecular analysis in solids

    International Nuclear Information System (INIS)

    Ham, Rita van; Vaeck, Luc van; Adriaens, Annemie; Adams, Freddy

    2003-01-01

    The use of mass spectra in secondary ion mass spectrometry (S-SIMS) to characterise the molecular composition of inorganic and organic analytes at the surface of solid samples is investigated. Methodological aspects such as mass resolution, mass accuracy, precision and accuracy of isotope abundance measurements, influence of electron flooding and sample morphology are addressed to assess the possibilities and limitations that the methodology can offer to support the structural assignment of the detected ions. The in-sample and between-sample reproducibility of relative peak intensities under optimised conditions is within 10%, but experimental conditions and local hydration, oxidation or contamination can drastically affect the mass spectra. As a result, the use of fingerprinting for identification becomes compromised. Therefore, the preferred way of interpretation becomes the deductive structural approach, based on the use of the empirical desorption-ionisation model. This approach is shown to allow the molecular composition of inorganic and organic components at the surface of solids to be characterised. Examples of inorganic speciation and identification of organic additives with unknown composition in inorganic salt mixtures are given. The methodology is discussed in terms of foreseen developments with respect to the use of polyatomic primary ions

  10. Quantum logic for the control and manipulation of molecular ions using a frequency comb

    International Nuclear Information System (INIS)

    Ding, S; Matsukevich, D N

    2012-01-01

    We propose a scheme for the preparation, manipulation and detection of quantum states of single molecular ions. In this scheme, molecular and atomic ions are confined in radio-frequency Paul trap and share common modes of motion. A frequency comb laser field is used to drive stimulated Raman transitions that couple internal states of the molecular ion with the motion of ions. State transfer from the molecular ion to the atomic ion via the common mode of motion results in efficient state detection for the molecule. The coupling of molecular states to the motion and the subsequent sideband cooling of the ions provide a way to prepare the molecular ion in a well-defined state. (paper)

  11. Geometric and electronic structures of molecular ions from high energy collisions

    International Nuclear Information System (INIS)

    Groeneveld, K.O.

    1983-01-01

    This chapter examines the characteristics of heavy ion collision and of beam foil spectroscopy. It discusses the kinematic consequences of the high energies and presents results from ''Coulomb explosion'' and structure determination of molecular ions. It demonstrates that studies of molecular ions with accelerators can provide electronic and geometric structure information of molecules or molecular ions and points out that the understanding of the microscopic processes at such high energies is incomplete and needs further experimental and theoretical efforts

  12. Ionic fragmentation channels in electron collisions of small molecular ions

    International Nuclear Information System (INIS)

    Hoffmann, Jens

    2009-01-01

    Dissociative Recombination (DR) is one of the most important loss processes of molecular ions in the interstellar medium (IM). Ion storage rings allow to investigate these processes under realistic conditions. At the Heidelberg test storage ring TSR a new detector system was installed within the present work in order to study the DR sub-process of ion pair formation (IPF). The new detector expands the existing electron target setup by the possibility to measure strongly deflected negative ionic fragments. At the TSR such measurements can be performed with a uniquely high energy resolution by independently merging two electron beams with the ion beam. In this work IPF of HD + , H 3 + and HF + has been studied. In the case of HD + the result of the high resolution experiment shows quantum interferences. Analysis of the quantum oscillations leads to a new understanding of the reaction dynamics. For H 3 + it was for the first time possible to distinguish different IPF channels and to detect quantum interferences in the data. Finally the IPF of HF + was investigated in an energy range, where in previous experiments no conclusive results could be obtained. (orig.)

  13. A new vibrational level of the H2+ molecular ion

    International Nuclear Information System (INIS)

    Carbonell, J.; Lazauskas, R.; Delande, D.; Hilico, L.; Kilic, S.; Hilico, L.; Kilic, S.

    2003-01-01

    A new vibrational level of the molecular ion H 2 + with binding energy of 1.09 x 10 -9 a.u. ∼ 30 neV below the first dissociation limit is predicted, using highly accurate numerical non-relativistic quantum calculations, which go beyond the Born-Oppenheimer approximation. It is the first-excited vibrational level v=1 of the 2pσ u electronic state, antisymmetric with respect to the exchange of the two protons, with orbital angular momentum L=0. It manifests itself as a huge p - H scattering length of a = 750 ± 5 Bohr radii. (authors)

  14. On the production of positive molecular ions in cometary comas

    International Nuclear Information System (INIS)

    Tarafdar, S.P.; Wickramasinghe, N.C.

    1977-01-01

    Positively charged molecular ions, such as H 2 O + , which have been observed in cometary comas, may be efficiently produced by the evaporation of positively charged clathrate grains of radii in the range approximately 10 -6 -10 -3 cm. Such grains may be expelled from nuclei of comets, along with gaseous molecules. Grain charging occurs via interaction with solar ultraviolet photons and/or solar wind protons. Observational data on the total quantities as well as the distributions of H 2 O and H 2 O + in cometary comas are shown to be in accord with detailed model calculations. (Auth.)

  15. He2+ molecular ion and the He- atomic ion in strong magnetic fields

    Science.gov (United States)

    Vieyra, J. C. Lopez; Turbiner, A. V.

    2017-08-01

    We study the question of existence, i.e., stability with respect to dissociation of the spin-quartet permutation- and reflection-symmetric 4(-3) +g (Sz=-3 /2 ,M =-3 ) state of the (α α e e e ) Coulomb system: the He2 + molecular ion, placed in a magnetic field 0 ≤B ≤10 000 a.u. We assume that the α particles are infinitely massive (Born-Oppenheimer approximation of zero order) and adopt the parallel configuration, when the molecular axis and the magnetic field direction coincide, as the optimal configuration. The study of the stability is performed variationally with a physically adequate trial function. To achieve this goal, we explore several helium-containing compounds in strong magnetic fields, in particular; we study the spin-quartet ground state of the He- ion and the ground (spin-triplet) state of the helium atom, both for a magnetic field in 100 ≤B ≤10 000 a.u. The main result is that the He2 + molecular ion in the state 4(-3) +g is stable towards all possible decay modes for magnetic fields B ≳120 a .u . and with the magnetic field increase the ion becomes more tightly bound and compact with a cigar-type form of electronic cloud. At B =1000 a .u . , the dissociation energy of He2 + into He-+α is ˜702 eV and the dissociation energy for the decay channel to He +α +e is ˜729 eV , and both energies are in the energy window for one of the observed absorption features of the isolated neutron star 1E1207.4-5209.

  16. Photodissociation spectroscopy of the dysprosium monochloride molecular ion

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, Alexander, E-mail: alexander.dunning@gmail.com; Schowalter, Steven J.; Puri, Prateek; Hudson, Eric R. [Department of Physics and Astronomy, University of California, Los Angeles, California 90095 (United States); Petrov, Alexander; Kotochigova, Svetlana [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States)

    2015-09-28

    We have performed a combined experimental and theoretical study of the photodissociation cross section of the molecular ion DyCl{sup +}. The photodissociation cross section for the photon energy range 35 500 cm{sup −1} to 47 500 cm{sup −1} is measured using an integrated ion trap and time-of-flight mass spectrometer; we observe a broad, asymmetric profile that is peaked near 43 000 cm{sup −1}. The theoretical cross section is determined from electronic potentials and transition dipole moments calculated using the relativistic configuration-interaction valence-bond and coupled-cluster methods. The electronic structure of DyCl{sup +} is extremely complex due to the presence of multiple open electronic shells, including the 4f{sup 10} configuration. The molecule has nine attractive potentials with ionically bonded electrons and 99 repulsive potentials dissociating to a ground state Dy{sup +} ion and Cl atom. We explain the lack of symmetry in the cross section as due to multiple contributions from one-electron-dominated transitions between the vibrational ground state and several resolved repulsive excited states.

  17. Functional Annotation of Ion Channel Structures by Molecular Simulation.

    Science.gov (United States)

    Trick, Jemma L; Chelvaniththilan, Sivapalan; Klesse, Gianni; Aryal, Prafulla; Wallace, E Jayne; Tucker, Stephen J; Sansom, Mark S P

    2016-12-06

    Ion channels play key roles in cell membranes, and recent advances are yielding an increasing number of structures. However, their functional relevance is often unclear and better tools are required for their functional annotation. In sub-nanometer pores such as ion channels, hydrophobic gating has been shown to promote dewetting to produce a functionally closed (i.e., non-conductive) state. Using the serotonin receptor (5-HT 3 R) structure as an example, we demonstrate the use of molecular dynamics to aid the functional annotation of channel structures via simulation of the behavior of water within the pore. Three increasingly complex simulation analyses are described: water equilibrium densities; single-ion free-energy profiles; and computational electrophysiology. All three approaches correctly predict the 5-HT 3 R crystal structure to represent a functionally closed (i.e., non-conductive) state. We also illustrate the application of water equilibrium density simulations to annotate different conformational states of a glycine receptor. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Origin of CH+ in diffuse molecular clouds. Warm H2 and ion-neutral drift

    Science.gov (United States)

    Valdivia, Valeska; Godard, Benjamin; Hennebelle, Patrick; Gerin, Maryvonne; Lesaffre, Pierre; Le Bourlot, Jacques

    2017-04-01

    Context. Molecular clouds are known to be magnetised and to display a turbulent and complex structure where warm and cold phases are interwoven. The turbulent motions within molecular clouds transport molecules, and the presence of magnetic fields induces a relative velocity between neutrals and ions known as the ion-neutral drift (vd). These effects all together can influence the chemical evolution of the clouds. Aims: This paper assesses the roles of two physical phenomena which have previously been invoked to boost the production of CH+ under realistic physical conditions: the presence of warm H2 and the increased formation rate due to the ion-neutral drift. Methods: We performed ideal magnetohydrodynamical (MHD) simulations that include the heating and cooling of the multiphase interstellar medium (ISM), and where we treat dynamically the formation of the H2 molecule. In a post-processing step we compute the abundances of species at chemical equilibrium using a solver that we developed. The solver uses the physical conditions of the gas as input parameters, and can also prescribe the H2 fraction if needed. We validate our approach by showing that the H2 molecule generally has a much longer chemical evolution timescale compared to the other species. Results: We show that CH+ is efficiently formed at the edge of clumps, in regions where the H2 fraction is low (0.3-30%) but nevertheless higher than its equilibrium value, and where the gas temperature is high (≳ 300 K). We show that warm and out of equilibrium H2 increases the integrated column densities of CH+ by one order of magnitude up to values still 3-10 times lower than those observed in the diffuse ISM. We balance the Lorentz force with the ion-neutral drag to estimate the ion-drift velocities from our ideal MHD simulations. We find that the ion-neutral drift velocity distribution peaks around 0.04 km s-1, and that high drift velocities are too rare to have a significant statistical impact on the

  19. Ion-molecular equilibria and activity determination in the RbF-ZrF4 system

    International Nuclear Information System (INIS)

    Skokan, E.V.; Nikitin, M.I.; Sorokin, I.D.; Korenev, Yu.M.; Sidorov, L.N.

    1983-01-01

    Activity of zirconium tetrofluoride in 100-33.3 mol % ZrF 4 concentration range was determined during isothermal evaporation of samples of different initial composition of RbF-ZrF 4 system, using ion-molecular equilibrium method. It became possible, using the exchange ion-molecular reactions to determine ZrF 4 activity approximately 10 -10 in the region of state diagram of RbF-ZrF 4 system, adjoining to rubidium fluoride. The comparative analysis of results, obtained by the methods of isothermal evaporation, ion-molecular equilibria is given; the advantages and restrictions of ion-molecular equilibrium method are presented

  20. Stellar Abundances and Molecular Hydrogen in High-Redshift Galaxies: The Far-Ultraviolet View

    Science.gov (United States)

    Keel, William C.

    2006-06-01

    FUSE spectra of star-forming regions in nearby galaxies are compared to composite spectra of Lyman break galaxies (LBGs), binned by strength of Lyα emission and by mid-UV luminosity. Several far-UV spectral features, including lines dominated by stellar wind and by photospheric components, are very sensitive to stellar abundances. Their measurement in LBGs is compromised by the strong interstellar absorption features, allowing in some cases only upper limits to be determined. The derived C and N abundances in the LBGs are no higher than half solar (scaled to oxygen abundance for comparison with emission-line analyses), independent of the strength of Lyα emission. P V absorption indicates abundances as low as 0.1 solar, with an upper limit near 0.4 solar in the reddest and weakest emission galaxies. Unresolved interstellar absorption components would further lower the derived abundances. Trends of line strength and derived abundances are stronger with mid-UV luminosity than with Lyα strength. H2 absorption in the Lyman and Werner bands is very weak in the LBGs. Template H2 absorption spectra convolved to the appropriate resolution show that strict upper limits N(H2)values appropriate for the stronger emission composites and for mixes of H2 level populations like those on Milky Way sight lines. Since the UV-bright regions are likely to be widespread in these galaxies, these results rule out massive diffuse reservoirs of primordial H2 and suggest that the dust-to-gas ratio is already fairly large at z~3. Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer (FUSE). FUSE is operated for NASA by The Johns Hopkins University under NASA contract NAS5-32985.

  1. Photoelectron spectroscopy via electronic spectroscopy of molecular ions

    International Nuclear Information System (INIS)

    Khan, Z.H.

    1990-01-01

    In this work, a new aspect of the correlation between optical and photoelectron spectra is discussed on the basis of which the first ionization potentials of condensed-ring aromatics can be estimated from certain features in the electronic spectra of their positive ions. Furthermore, it is noticed that the first IP's are very sensitive to molecular size as the latter's inclusion in the regression formulas improves the results considerably. Once the first ionization potential for a molecule is determined, its higher IP's may be computed if the lower-energy electronic bands for its cation are known. This procedure is especially useful for such systems whose uv photoelectron spectra are unknown. (author). 11 refs, 10 figs, 1 tab

  2. New solar carbon abundance based on non-LTE CN molecular spectra

    International Nuclear Information System (INIS)

    Mount, G.H.; Linsky, J.L.

    1975-01-01

    A detailed non-LTE analysis of solar CN spectra strongly suggests a revised carbon abundance for the Sun. A value of log A/subc/=8.35plus-or-minus0.15 which is significantly lower than the presently accepted value of log A/subc/=8.55 is suggested. This revision may have important consequences in astrophysics

  3. On the abundance and general nature of the liquid-liquid phase transition in molecular systems

    International Nuclear Information System (INIS)

    Kurita, Rei; Tanaka, Hajime

    2005-01-01

    Even a single-component liquid may have more than two kinds of isotropic liquid states. The transition between these different states is called a liquid-liquid transition (LLT). An LLT has been considered to be a rather rare phenomenon, in particular for molecular liquids. Very recently, however, we found an LLT in triphenyl phosphite, which may be the first experimental observation of an LLT for molecular liquids. Here we report convincing evidence of the second example of LLT for another molecular liquid, n-butanol. Despite large differences in the chemical structure and the molecular shape between triphenyl phosphite and n-butanol, the basic features of the transformation kinetics are strikingly similar. This suggests that an LLT may not be a rare phenomenon restricted to specific liquids, but may exist in various molecular liquids, which have a tendency to form long-lived locally favoured structures due to anisotropic interactions (e.g., hydrogen bonding). (letter to the editor)

  4. Fragmentation of molecular ions in slow electron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Novotny, Steffen

    2008-06-25

    The fragmentation of positively charged hydrogen molecular ions by the capture of slow electrons, the so called dissociative recombination (DR), has been investigated in storage ring experiments at the TSR, Heidelberg, where an unique twin-electron-beam arrangement was combined with high resolution fragment imaging detection. Provided with well directed cold electrons the fragmentation kinematics were measured down to meV collision energies where pronounced rovibrational Feshbach resonances appear in the DR cross section. For thermally excited HD{sup +} the fragmentation angle and the kinetic energy release were studied at variable precisely controlled electron collision energies on a dense energy grid from 10 to 80 meV. The anisotropy described for the first time by Legendre polynomials higher 2{sup nd} order and the extracted rotational state contributions were found to vary on a likewise narrow energy scale as the rotationally averaged DR rate coefficient. Ro-vibrationally resolved DR experiments were performed on H{sub 2}{sup +} produced in distinct internal excitations by a novel ion source. Both the low-energy DR rate as well as the fragmentation dynamics at selected resonances were measured individually in the lowest two vibrational and first three excited rotational states. State-specific DR rates and angular dependences are reported. (orig.)

  5. Fragmentation of molecular ions in slow electron collisions

    International Nuclear Information System (INIS)

    Novotny, Steffen

    2008-01-01

    The fragmentation of positively charged hydrogen molecular ions by the capture of slow electrons, the so called dissociative recombination (DR), has been investigated in storage ring experiments at the TSR, Heidelberg, where an unique twin-electron-beam arrangement was combined with high resolution fragment imaging detection. Provided with well directed cold electrons the fragmentation kinematics were measured down to meV collision energies where pronounced rovibrational Feshbach resonances appear in the DR cross section. For thermally excited HD + the fragmentation angle and the kinetic energy release were studied at variable precisely controlled electron collision energies on a dense energy grid from 10 to 80 meV. The anisotropy described for the first time by Legendre polynomials higher 2 nd order and the extracted rotational state contributions were found to vary on a likewise narrow energy scale as the rotationally averaged DR rate coefficient. Ro-vibrationally resolved DR experiments were performed on H 2 + produced in distinct internal excitations by a novel ion source. Both the low-energy DR rate as well as the fragmentation dynamics at selected resonances were measured individually in the lowest two vibrational and first three excited rotational states. State-specific DR rates and angular dependences are reported. (orig.)

  6. Ultraviolet Survey of CO and H2 in Diffuse Molecular Clouds: The Reflection of Two Photochemistry Regimes in Abundance Relationships

    Science.gov (United States)

    Sheffer, Y.; Rogers, M.; Federman, S. R.; Abel, N. P.; Gredel, R.; Lambert, D. L.; Shaw, G.

    2008-11-01

    We carried out a comprehensive far-UV survey of 12CO and H2 column densities along diffuse molecular Galactic sight lines. This sample includes new measurements of CO from HST spectra along 62 sight lines and new measurements of H2 from FUSE data along 58 sight lines. In addition, high-resolution optical data were obtained at the McDonald and European Southern Observatories, yielding new abundances for CH, CH+, and CN along 42 sight lines to aid in interpreting the CO results. These new sight lines were selected according to detectable amounts of CO in their spectra and provide information on both lower density (production route for CO in higher density gas. Similar logarithmic plots among all five diatomic molecules reveal additional examples of dual slopes in the cases of CO versus CH (break at log N = 14.1, 13.0), CH+ versus H2 (13.1, 20.3), and CH+ versus CO (13.2, 14.1). We employ both analytical and numerical chemical schemes in order to derive details of the molecular environments. In the denser gas, where C2 and CN molecules also reside, reactions involving C+ and OH are the dominant factor leading to CO formation via equilibrium chemistry. In the low-density gas, where equilibrium chemistry studies have failed to reproduce the abundance of CH+, our numerical analysis shows that nonequilibrium chemistry must be employed for correctly predicting the abundances of both CH+ and CO.

  7. Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures

    CERN Document Server

    Kürten, Andreas; Almeida, Joao; Kupiainen-Määttä, Oona; Dunne, Eimear M.; Duplissy, Jonathan; Williamson, Christina; Barmet, Peter; Breitenlechner, Martin; Dommen, Josef; Donahue, Neil M.; Flagan, Richard C.; Franchin, Alessandro; Gordon, Hamish; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Ickes, Luisa; Jokinen, Tuija; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Onnela, Antti; Ortega, Ismael K.; Petäjä, Tuukka; Praplan, Arnaud P.; Riccobono, Francesco; Rissanen, Matti P.; Rondo, Linda; Schnitzhofer, Ralf; Schobesberger, Siegfried; Smith, James N.; Steiner, Gerhard; Stozhkov, Yuri; Tomé, António; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Wagner, Paul E.; Wimmer, Daniela; Ye, Penglin; Baltensperger, Urs; Carslaw, Ken; Kulmala, Markku; Curtius, Joachim

    2016-01-01

    Binary nucleation of sulfuric acid and water as well as ternary nucleation involving ammonia arethought to be the dominant processes responsible for new particle formation (NPF) in the cold temperaturesof the middle and upper troposphere. Ions are also thought to be important for particle nucleation inthese regions. However, global models presently lack experimentally measured NPF rates under controlledlaboratory conditions and so at present must rely on theoretical or empirical parameterizations. Here withdata obtained in the European Organization for Nuclear Research CLOUD (Cosmics Leaving OUtdoor Droplets)chamber, we present the first experimental survey of NPF rates spanning free tropospheric conditions. Theconditions during nucleation cover a temperature range from 208 to 298 K, sulfuric acid concentrationsbet ween 5 × 105and 1 × 109cm3, and ammonia mixing ratios from zero added ammonia, i.e., nominally purebinary, to a maximum of ~1400 parts per trillion by volume (pptv). We performed nucleation s...

  8. EVOLUTION OF THE RELATIONSHIPS BETWEEN HELIUM ABUNDANCE, MINOR ION CHARGE STATE, AND SOLAR WIND SPEED OVER THE SOLAR CYCLE

    International Nuclear Information System (INIS)

    Kasper, J. C.; Stevens, M. L.; Korreck, K. E.; Maruca, B. A.; Kiefer, K. K.; Schwadron, N. A.; Lepri, S. T.

    2012-01-01

    The changing relationships between solar wind speed, helium abundance, and minor ion charge state are examined over solar cycle 23. Observations of the abundance of helium relative to hydrogen (A He ≡ 100 × n He /n H ) by the Wind spacecraft are used to examine the dependence of A He on solar wind speed and solar activity between 1994 and 2010. This work updates an earlier study of A He from 1994 to 2004 to include the recent extreme solar minimum and broadly confirms our previous result that A He in slow wind is strongly correlated with sunspot number, reaching its lowest values in each solar minima. During the last minimum, as sunspot numbers reached their lowest levels in recent history, A He continued to decrease, falling to half the levels observed in slow wind during the previous minimum and, for the first time observed, decreasing even in the fastest solar wind. We have also extended our previous analysis by adding measurements of the mean carbon and oxygen charge states observed with the Advanced Composition Explorer spacecraft since 1998. We find that as solar activity decreased, the mean charge states of oxygen and carbon for solar wind of a given speed also fell, implying that the wind was formed in cooler regions in the corona during the recent solar minimum. The physical processes in the coronal responsible for establishing the mean charge state and speed of the solar wind have evolved with solar activity and time.

  9. Estimating animal abundance in ground beef batches assayed with molecular markers.

    Directory of Open Access Journals (Sweden)

    Xin-Sheng Hu

    Full Text Available Estimating animal abundance in industrial scale batches of ground meat is important for mapping meat products through the manufacturing process and for effectively tracing the finished product during a food safety recall. The processing of ground beef involves a potentially large number of animals from diverse sources in a single product batch, which produces a high heterogeneity in capture probability. In order to estimate animal abundance through DNA profiling of ground beef constituents, two parameter-based statistical models were developed for incidence data. Simulations were applied to evaluate the maximum likelihood estimate (MLE of a joint likelihood function from multiple surveys, showing superiority in the presence of high capture heterogeneity with small sample sizes, or comparable estimation in the presence of low capture heterogeneity with a large sample size when compared to other existing models. Our model employs the full information on the pattern of the capture-recapture frequencies from multiple samples. We applied the proposed models to estimate animal abundance in six manufacturing beef batches, genotyped using 30 single nucleotide polymorphism (SNP markers, from a large scale beef grinding facility. Results show that between 411∼1367 animals were present in six manufacturing beef batches. These estimates are informative as a reference for improving recall processes and tracing finished meat products back to source.

  10. Profiling of the Molecular Weight and Structural Isomer Abundance of Macroalgae-Derived Phlorotannins

    Directory of Open Access Journals (Sweden)

    Natalie Heffernan

    2015-01-01

    Full Text Available Phlorotannins are a group of complex polymers of phloroglucinol (1,3,5-trihydroxybenzene unique to macroalgae. These phenolic compounds are integral structural components of the cell wall in brown algae, but also play many secondary ecological roles such as protection from UV radiation and defense against grazing. This study employed Ultra Performance Liquid Chromatography (UPLC with tandem mass spectrometry to investigate isomeric complexity and observed differences in phlorotannins derived from macroalgae harvested off the Irish coast (Fucus serratus, Fucus vesiculosus, Himanthalia elongata and Cystoseira nodicaulis. Antioxidant activity and total phenolic content assays were used as an index for producing phlorotannin fractions, enriched using molecular weight cut-off dialysis with subsequent flash chromatography to profile phlorotannin isomers in these macroalgae. These fractions were profiled using UPLC-MS with multiple reaction monitoring (MRM and the level of isomerization for specific molecular weight phlorotannins between 3 and 16 monomers were determined. The majority of the low molecular weight (LMW phlorotannins were found to have a molecular weight range equivalent to 4–12 monomers of phloroglucinol. The level of isomerization within the individual macroalgal species differed, resulting in substantially different numbers of phlorotannin isomers for particular molecular weights. F. vesiculosus had the highest number of isomers of 61 at one specific molecular mass, corresponding to 12 phloroglucinol units (PGUs. These results highlight the complex nature of these extracts and emphasize the challenges involved in structural elucidation of these compounds.

  11. Molecular abundances and C/O ratios in chemically evolving planet-forming disk midplanes

    Science.gov (United States)

    Eistrup, Christian; Walsh, Catherine; van Dishoeck, Ewine F.

    2018-05-01

    Context. Exoplanet atmospheres are thought be built up from accretion of gas as well as pebbles and planetesimals in the midplanes of planet-forming disks. The chemical composition of this material is usually assumed to be unchanged during the disk lifetime. However, chemistry can alter the relative abundances of molecules in this planet-building material. Aims: We aim to assess the impact of disk chemistry during the era of planet formation. This is done by investigating the chemical changes to volatile gases and ices in a protoplanetary disk midplane out to 30 AU for up to 7 Myr, considering a variety of different conditions, including a physical midplane structure that is evolving in time, and also considering two disks with different masses. Methods: An extensive kinetic chemistry gas-grain reaction network was utilised to evolve the abundances of chemical species over time. Two disk midplane ionisation levels (low and high) were explored, as well as two different makeups of the initial abundances ("inheritance" or "reset"). Results: Given a high level of ionisation, chemical evolution in protoplanetary disk midplanes becomes significant after a few times 105 yr, and is still ongoing by 7 Myr between the H2O and the O2 icelines. Inside the H2O iceline, and in the outer, colder regions of the disk midplane outside the O2 iceline, the relative abundances of the species reach (close to) steady state by 7 Myr. Importantly, the changes in the abundances of the major elemental carbon and oxygen-bearing molecules imply that the traditional "stepfunction" for the C/O ratios in gas and ice in the disk midplane (as defined by sharp changes at icelines of H2O, CO2 and CO) evolves over time, and cannot be assumed fixed, with the C/O ratio in the gas even becoming smaller than the C/O ratio in the ice. In addition, at lower temperatures (C/O ratios of exoplanets to where and how the atmospheres have formed in a disk midplane, chemical evolution needs to be considered and

  12. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging

    NARCIS (Netherlands)

    Meng, C.; Janssen, M.H.M.

    2015-01-01

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the

  13. Molecular effects in ion-electron emission from clean metal surfaces

    International Nuclear Information System (INIS)

    Baragiola, R.A.; Alonso, E.V.; Auciello, O.; Ferron, J.; Lantschner, G.; Oliva Florio, A.

    1978-01-01

    The authors have measured electron emission yields from clean Al, Cu and Ag under 2-50 keV H + , D + , H 2 + impact. It is found that molecular ion yields are lower than twice the yield of atomic ions. No isotope effects are observed for equal-velocity ions. (Auth.)

  14. Model of the dissociative recombination of molecular ions based on the statistical 'phase-space theory'

    International Nuclear Information System (INIS)

    Foltin, M.; Lukac, P.; Morva, I.; Foltin, V.

    2004-01-01

    In the paper the statistical 'phase-space theory' extended for chemical reactions and for dissociative recombination of polyatomic ions is applied to the indirect and direct dissociative recombination of diatomic ions with electrons. Numerical calculations are made for molecular neon ion. The good agreement is obtained with experimental results (Authors)

  15. Guiding of slow neon and molecular hydrogen ions through nanocapillaries in PET

    International Nuclear Information System (INIS)

    Stolterfoht, N.; Hellhammer, R.; Sobocinski, P.; Pesic, Z.D.; Bundesmann, J.; Sulik, B.; Shah, M.B.; Dunn, K.; Pedregosa, J.; McCullough, R.W.

    2005-01-01

    The transmission profiles of atomic 3keV Ne 7+ ions and molecular 1keV H 2 + and H 3 + ions passing through nanocapillaries were studied. Capillaries with a diameter of 100nm and a length of 10μm in insulating PET polymers were used. The high aspect ratio of 100 is achieved by the method of etching ion tracks produced by high-energy xenon impact. The angular distributions of the transmitted projectiles show that the majority of ions are transported in their initial charge state along the capillary axis even when the capillaries are tilted with respect to the incident beam direction. This result indicates ion-guiding, which is produced by charge-up effects influencing the ion trajectories in a self-supporting manner. The guiding effects are found to be different for highly charged neon and singly charged molecular hydrogen. Negligible fragmentation of the molecular ions was observed

  16. Dissociation of the Phenylarsane Molecular Ion: A Theoretical Study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Young; Choe, Joong Chul [Dongguk University, Seoul (Korea, Republic of)

    2010-09-15

    The potential energy surfaces (PESs) for the primary and secondary dissociations of the phenylarsane molecular ion (1a) were determined from the quantum chemical calculations using the G3(MP2)//B3LYP method. Several pathways for the loss of H· were determined and occurred though rearrangements as well as through direct bond cleavages. The kinetic analysis based on the PES for the primary dissociation showed that the loss of H{sub 2} was more favored than the loss of H·, but the H· loss competed with the H{sub 2} loss at high energies. The bicyclic isomer, 7-arsa-norcaradiene radical cation, was formed through the 1,2 shift of an α-H of 1a and played an important role as an intermediate for the further rearrangements in the loss of H· and the losses of As· and AsH. The reaction pathways for the formation of the major products in the secondary dissociations of [M-H]{sup +} and [M-H{sub 2}]{sup +·} were examined. The theoretical prediction explained the previous experimental results for the dissociation at high energies but not the dissociation at low energies.

  17. COSMOLOGICAL CONCORDANCE OR CHEMICAL COINCIDENCE? DEUTERATED MOLECULAR HYDROGEN ABUNDANCES AT HIGH REDSHIFT

    International Nuclear Information System (INIS)

    Tumlinson, J.; Malec, A. L.; Murphy, M. T.; Carswell, R. F.; Jorgenson, R. A.; Buning, R.; Ubachs, W.; Milutinovic, N.; Ellison, S. L.; Prochaska, J. X.; Wolfe, A. M.

    2010-01-01

    We report two detections of deuterated molecular hydrogen (HD) in QSO absorption-line systems at z>2. Toward J2123-0500, we find N(HD) =13.84 ± 0.2 for a sub-Damped Lyman Alpha system (DLA) with metallicity ≅0.5Z sun and N(H 2 ) = 17.64 ± 0.15 at z = 2.0594. Toward FJ0812+32, we find N(HD) =15.38 ± 0.3 for a solar-metallicity DLA with N(H 2 ) = 19.88 ± 0.2 at z = 2.6265. These systems have ratios of HD to H 2 above that observed in dense clouds within the Milky Way disk and apparently consistent with a simple conversion from the cosmological ratio of D/H. These ratios are not readily explained by any available model of HD chemistry, and there are no obvious trends with metallicity or molecular content. Taken together, these two systems and the two published z>2 HD-bearing DLAs indicate that HD is either less effectively dissociated or more efficiently produced in high-redshift interstellar gas, even at low molecular fraction and/or solar metallicity. It is puzzling that such diverse systems should show such consistent HD/H 2 ratios. Without clear knowledge of all the aspects of HD chemistry that may help determine the ratio HD/H 2 , we conclude that these systems are potentially more revealing of gas chemistry than of D/H itself and that it is premature to use such systems to constrain D/H at high redshift.

  18. Recent work with fast molecular-ion beams at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Cooney, P.J.; Gemmell, D.S.; Groeneveld, K.O.; Kanter, E.P.; Pietsch, W.J.; Vager, Z.; Zabransky, B.J.

    1979-01-01

    Research in these areas during 1979 is summarized: (a) studies of molecular-ion dissociation in gaseous targets, (b) developing an understanding of the origins of central peaks and of the two phenomena of the transmission of fast molecular ions through thin foil targets and of the production of neutral fragments from collision-induced dissociation of fast molecular projectiles, (c) studies exploring the extent to which high-resolution measurements on dissociation fragments can be used to determine the stereochemical structures of the molecular ions in the incident beam, (d) extensive modifications to the beam-line and apparatus at the 4-MV Dynamitron so as to permit a wide variety of coincidence measurements on fragments from collision-induced molecular-ion dissociation

  19. Study of the interaction of potassium ion channel protein with micelle by molecular dynamics simulation

    Science.gov (United States)

    Shantappa, Anil; Talukdar, Keka

    2018-04-01

    Ion channels are proteins forming pore inside the body of all living organisms. This potassium ion channel known as KcsA channel and it is found in the each cell and nervous system. Flow of various ions is regulated by the function of the ion channels. The nerve ion channel protein with protein data bank entry 1BL8, which is basically an ion channel protein in Streptomyces Lividans and which is taken up to form micelle-protein system and the system is analyzed by using molecular dynamics simulation. Firstly, ion channel pore is engineered by CHARMM potential and then Micelle-protein system is subjected to molecular dynamics simulation. For some specific micelle concentration, the protein unfolding is observed.

  20. Collision induced fragmentation of fast molecular ions in solids and gases

    International Nuclear Information System (INIS)

    Gemmell, D.S.

    1979-01-01

    A brief review is given of recent high resolution measurements on fragments arising from the collision-induced dissociation of fast (MeV) molecular ions. For solid targets, strong wake effects are observed. For gaseous targets, excited electronic states of the projectile ions play an important role. Measurements of this type provide useful information on the charge states of fast ions traversing matter. The experimental techniques show promise as a unique method for determining the geometrical structures of the molecular-ion projectiles. 41 references

  1. Electron-vibrational transitions under molecular ions collisions with slow electrons

    International Nuclear Information System (INIS)

    Andreev, E.A.

    1993-01-01

    A concept of a multichannel quantum defect is considered and basic theoretic ratios of inelastic collisional processes with the participation of molecular positive ions and slow electrons playing an important role both in atmospheric and laboratory plasma, are presented. The problem of scattering channel number limitation with the provision of S-matrix unique character is considered. Different models of electron rotation-vibrational connection under collision of two-atom molecular ions with slow electrons are analysed. Taking N 2 + as an example, a high efficiency of transitions between different electron states of a molecular ion is shown. 73 refs., 9 figs., 1 tab

  2. Low pressure gas detectors for molecular-ion break up studies

    International Nuclear Information System (INIS)

    Breskin, A.; Chechik, R.; Zwang, N.

    1981-01-01

    Two detector systems for Molecular ions like OH + and CH 2 + and like H 2 + and H 3 + were developed and are described. The first detector is installed in a magnetic spectrometer. Both systems are made of various types of gas detectors operating at low pressures. In the study of the Coulomb explosion of molecular ions like OH + , CH 2 + or H 3 + these detectors provide the position and time coordinates of all the fragments of the molecular ion, in coincidence, in order to determine their energy and angular distribution. In the case of molecules containing atoms other than hydrogen, information on the electronic charge state is obtained. (H.K.)

  3. Millimeter observations of CS, HCO{sup +}, and CO toward five planetary nebulae: following molecular abundances with nebular age

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, J. L.; Ziurys, L. M. [Department of Chemistry, The University of Arizona, P.O. Box 210041, Tucson, AZ 85721 (United States); Cox, E. G., E-mail: lziurys@email.arizona.edu [Department of Astronomy and Steward Observatory, Arizona Radio Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2014-08-20

    Millimeter and sub-millimeter observations of CO, CS, and HCO{sup +} have been conducted toward five planetary nebulae (PNe: K4-47, NGC 6537 (Red Spider), M2-48, NGC 6720 (Ring), and NGC 6853 (Dumbbell)), spanning an age range of 900-10,000 yr, using the Sub-Millimeter Telescope and the 12 m antenna of the Arizona Radio Observatory. The J = 5 → 4, J = 3 → 2, and J = 2 → 1 transitions of CS at 245, 147, and 98 GHz, as well as the J = 3 → 2 and J = 1 → 0 lines of HCO{sup +} at 268 and 89 GHz, were detected toward each source. At least three rotational transitions of CO have also been observed, including the J = 6 → 5 and J = 4 → 3 lines at 691 and 461 GHz. CS had not been definitively identified previously in PNe, and new detections of HCO{sup +} were made in four of the five nebulae. From a radiative transfer analysis of the CO and CS data, kinetic temperatures of T {sub K} ∼ 10-80 K and gas densities of n(H{sub 2}) ∼ 0.1-1 × 10{sup 6} cm{sup –3} were determined for the molecular material in these sources. Column densities for CO, CS, and HCO{sup +} were N {sub tot} ∼ 0.2-5 × 10{sup 16} cm{sup –2}, N {sub tot} ∼ 0.4-9 × 10{sup 12} cm{sup –2}, and N {sub tot} ∼ 0.3-5 × 10{sup 12} cm{sup –2}, respectively, with fractional abundances, relative to H{sub 2}, of f ∼ 0.4-2 × 10{sup –4}, f ∼ 1-4 × 10{sup –8}, and f ∼ 1 × 10{sup –8}, with the exception of M2-48, which had f(HCO{sup +}) ∼ 10{sup –7}. Overall, the molecular abundances do not significantly vary over a duration of 10,000 yr, in contrast to predictions of chemical models. The abundances reflect the remnant asymptotic giant branch shell material, coupled with photochemistry in the early PN phase. These observations also suggest that PNe eject substantial amounts of molecular material into the diffuse interstellar medium.

  4. Non-destructive state detection for quantum logic spectroscopy of molecular ions.

    Science.gov (United States)

    Wolf, Fabian; Wan, Yong; Heip, Jan C; Gebert, Florian; Shi, Chunyan; Schmidt, Piet O

    2016-02-25

    Precision laser spectroscopy of cold and trapped molecular ions is a powerful tool in fundamental physics--used, for example, in determining fundamental constants, testing for their possible variation in the laboratory, and searching for a possible electric dipole moment of the electron. However, the absence of cycling transitions in molecules poses a challenge for direct laser cooling of the ions, and for controlling and detecting their quantum states. Previously used state-detection techniques based on photodissociation or chemical reactions are destructive and therefore inefficient, restricting the achievable resolution in laser spectroscopy. Here, we experimentally demonstrate non-destructive detection of the quantum state of a single trapped molecular ion through its strong Coulomb coupling to a well controlled, co-trapped atomic ion. An algorithm based on a state-dependent optical dipole force changes the internal state of the atom according to the internal state of the molecule. We show that individual quantum states in the molecular ion can be distinguished by the strength of their coupling to the optical dipole force. We also observe quantum jumps (induced by black-body radiation) between rotational states of a single molecular ion. Using the detuning dependence of the state-detection signal, we implement a variant of quantum logic spectroscopy of a molecular resonance. Our state-detection technique is relevant to a wide range of molecular ions, and could be applied to state-controlled quantum chemistry and to spectroscopic investigations of molecules that serve as probes for interstellar clouds.

  5. Preparation and coherent manipulation of pure quantum states of a single molecular ion

    Science.gov (United States)

    Chou, Chin-Wen; Kurz, Christoph; Hume, David B.; Plessow, Philipp N.; Leibrandt, David R.; Leibfried, Dietrich

    2017-05-01

    Laser cooling and trapping of atoms and atomic ions has led to advances including the observation of exotic phases of matter, the development of precision sensors and state-of-the-art atomic clocks. The same level of control in molecules could also lead to important developments such as controlled chemical reactions and sensitive probes of fundamental theories, but the vibrational and rotational degrees of freedom in molecules pose a challenge for controlling their quantum mechanical states. Here we use quantum-logic spectroscopy, which maps quantum information between two ion species, to prepare and non-destructively detect quantum mechanical states in molecular ions. We develop a general technique for optical pumping and preparation of the molecule into a pure initial state. This enables us to observe high-resolution spectra in a single ion (CaH+) and coherent phenomena such as Rabi flopping and Ramsey fringes. The protocol requires a single, far-off-resonant laser that is not specific to the molecule, so many other molecular ions, including polyatomic species, could be treated using the same methods in the same apparatus by changing the molecular source. Combined with the long interrogation times afforded by ion traps, a broad range of molecular ions could be studied with unprecedented control and precision. Our technique thus represents a critical step towards applications such as precision molecular spectroscopy, stringent tests of fundamental physics, quantum computing and precision control of molecular dynamics.

  6. IBiSA_Tools: A Computational Toolkit for Ion-Binding State Analysis in Molecular Dynamics Trajectories of Ion Channels.

    Directory of Open Access Journals (Sweden)

    Kota Kasahara

    Full Text Available Ion conduction mechanisms of ion channels are a long-standing conundrum. Although the molecular dynamics (MD method has been extensively used to simulate ion conduction dynamics at the atomic level, analysis and interpretation of MD results are not straightforward due to complexity of the dynamics. In our previous reports, we proposed an analytical method called ion-binding state analysis to scrutinize and summarize ion conduction mechanisms by taking advantage of a variety of analytical protocols, e.g., the complex network analysis, sequence alignment, and hierarchical clustering. This approach effectively revealed the ion conduction mechanisms and their dependence on the conditions, i.e., ion concentration and membrane voltage. Here, we present an easy-to-use computational toolkit for ion-binding state analysis, called IBiSA_tools. This toolkit consists of a C++ program and a series of Python and R scripts. From the trajectory file of MD simulations and a structure file, users can generate several images and statistics of ion conduction processes. A complex network named ion-binding state graph is generated in a standard graph format (graph modeling language; GML, which can be visualized by standard network analyzers such as Cytoscape. As a tutorial, a trajectory of a 50 ns MD simulation of the Kv1.2 channel is also distributed with the toolkit. Users can trace the entire process of ion-binding state analysis step by step. The novel method for analysis of ion conduction mechanisms of ion channels can be easily used by means of IBiSA_tools. This software is distributed under an open source license at the following URL: http://www.ritsumei.ac.jp/~ktkshr/ibisa_tools/.

  7. Ion-molecular reactions initiated by β-decay of tritium in tritiated compounds

    International Nuclear Information System (INIS)

    Akulov, G.P.

    1976-01-01

    Ion-molecular reactions initiated by β-decay of tritium and tritiated hydrocarbons have been systematized. The review describes the theoretical and experimental foundation of the radiochemical method of this important type of chemical interactions investigation. The reactions of the molecular ions of HeT + with methane, ethane, propane, butane and also with cycloalkanes from C 3 to C 6 are discussed. The reactions under consideration have been united into two groups: reactions involving HeT + ions and those involving carbonic ions. From the experimental results available, the conclusions have been drawn about the reactivity of these intermediate formations, about the mechanism of their interaction with organic substances, and also about the perspectives of using the radiochemical method in studies of ion-molecular reactions. The experimental results published before May 1974 are examined. The bibliography includes 162 references

  8. Molecular-beam epitaxial growth and ion-beam analysis systems for functional materials research

    International Nuclear Information System (INIS)

    Takeshita, H.; Aoki, Y.; Yamamoto, S.; Naramoto, H.

    1992-01-01

    Experimental systems for molecular beam epitaxial growth and ion beam analysis have been designed and constructed for the research of inorganic functional materials such as thin films and superlattices. (author)

  9. Molecular dynamics studies of the ion beam induced crystallization in silicon

    International Nuclear Information System (INIS)

    Marques, L.A.; Caturla, M.J.; Huang, H.

    1995-01-01

    We have studied the ion bombardment induced amorphous-to-crystal transition in silicon using molecular dynamics techniques. The growth of small crystal seeds embedded in the amorphous phase has been monitored for several temperatures in order to get information on the effect of the thermal temperature increase introduced by the incoming ion. The role of ion-induced defects on the growth has been also studied

  10. Unexpected mobility of OH+ and OD+ molecular ions in cooled helium gas

    International Nuclear Information System (INIS)

    Isawa, R; Yamazoe, J; Tanuma, H; Ohtsuki, K

    2012-01-01

    Mobilities of OH + and OD + ions in cooled helium gas have been measured at gas temperature of 4.3 K. Measured mobilities of both ions as a function of an effective temperature T eff show a minimum around 80 K, and they are approaching to the polarization limits at very low T eff . These findings will be related to the extremely strong anisotropy of the interaction potential between the molecular ion and helium atom.

  11. Intrinsic bacterial biodegradation of petroleum contamination demonstrated in situ using natural abundance, molecular-level 14C analysis

    International Nuclear Information System (INIS)

    Slater, G.F.; Nelson, R.K.; Kile, B.M.; Reddy, C.M.

    2006-01-01

    Natural abundance, molecular-level C 14 analysis was combined with comprehensive gas chromatography (GC x GC) to investigate, in situ, the role of intrinsic biodegradation in the loss of petroleum hydrocarbons from the rocky, inter-tidal zone impacted by the Bouchard 120 oil spill. GC x GC analysis indicated accelerated losses of n-alkane components of the residual petroleum hydrocarbons between day 40 and day 50 after the spill. 14 C analysis of bacterial phospholipid fatty acids (PLFA) from the impacted zone on day 44 showed that the polyunsaturated fatty acids attributed to the photoautotrophic component of the microbial community had the same ( 14 C as the local dissolved inorganic carbon (DIG), indicating that this DIG was their carbon source. In contrast there was significant (C depletion in the saturated and mono-unsaturated PLFA indicating incorporation of petroleum carbon. This correlation between the observed accelerated n-alkane losses and microbial incorporation of (C-depleted carbon directly demonstrated, in situ, that intrinsic biodegradation was affecting the petroleum. Since the majority of organic contaminants originate from petroleum feed-stocks, in situ molecular-level 14 C analysis of microbial PLFA can provide insights into the occurrence and pathways of biodegradation of a wide range of organic contaminants. (Author)

  12. Collision-Induced Dissociation of Deprotonated Peptides. Relative Abundance of Side-Chain Neutral Losses, Residue-Specific Product Ions, and Comparison with Protonated Peptides.

    Science.gov (United States)

    Liang, Yuxue; Neta, Pedatsur; Yang, Xiaoyu; Stein, Stephen E

    2018-03-01

    High-accuracy MS/MS spectra of deprotonated ions of 390 dipeptides and 137 peptides with three to six residues are studied. Many amino acid residues undergo neutral losses from their side chains. The most abundant is the loss of acetaldehyde from threonine. The abundance of losses from the side chains of other amino acids is estimated relative to that of threonine. While some amino acids lose the whole side chain, others lose only part of it, and some exhibit two or more different losses. Side-chain neutral losses are less abundant in the spectra of protonated peptides, being significant mainly for methionine and arginine. In addition to the neutral losses, many amino acid residues in deprotonated peptides produce specific negative ions after peptide bond cleavage. An expanded list of fragment ions from protonated peptides is also presented and compared with those of deprotonated peptides. Fragment ions are mostly different for these two cases. These lists of fragments are used to annotate peptide mass spectral libraries and to aid in the confirmation of specific amino acids in peptides. Graphical Abstract ᅟ.

  13. Thorium molecular negative ion production in a cesium sputter source at BARC-TIFR pelletron accelerator ion source test set up

    International Nuclear Information System (INIS)

    Gupta, A.K.; Mehrotra, N.; Kale, R.M.; Alamelu, D.; Aggarwal, S.K.

    2005-01-01

    Ion source test set up at Pelletron Accelerator facility has been utilized extensively for the production and characterization of negative ions, with particular emphasis being place at the species of experimental users interest. The attention have been focussed towards the formation of rare earth negative ions, due to their importance in the ongoing accelerator mass spectroscopy program and isotopic abundance measurements using secondary negative ion mass spectrometry

  14. Tuning Li2MO3 phase abundance and suppressing migration of transition metal ions to improve the overall performance of Li- and Mn-rich layered oxide cathode

    Science.gov (United States)

    Zhang, Shiming; Tang, Tian; Ma, Zhihua; Gu, Haitao; Du, Wubing; Gao, Mingxia; Liu, Yongfeng; Jian, Dechao; Pan, Hongge

    2018-03-01

    The poor cycling stability of Li- and Mn-rich layered oxide cathodes used in lithium-ion batteries (LIBs) has severely limited their practical application. Unfortunately, current strategies to improve their lifecycle sacrifice initial capacity. In this paper, we firstly report the synergistic improvement of the electrochemical performance of a Li1.2Ni0.13Co0.13Mn0.54O2 (LNCMO) cathode material, including gains for capacity, cycling stability, and rate capability, by the partial substitution of Li+ ions by Mg2+ ions. Electrochemical performance is evaluated by a galvanostatic charge and discharge test and electrochemical impedance spectroscopy (EIS). Structure and morphology are characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Compared with the substitution of transition metal (TM) ions with Mg2+ ions reported previously, the substitution of Li+ ions by Mg2+ ions not only drastically ameliorates the capacity retention and rate performance challenges of LNCMO cathodes but also markedly suppresses their voltage fading, due to the inhibition of the migration of TM ions during cycling, while also increasing the capacity of the cathode due to an increased abundance of the Li2MO3 phase.

  15. Ion beam effects in organic molecular solids and polymers

    International Nuclear Information System (INIS)

    Venkatesan, T.; Calcagno, L.; Elman, B.S.; Foti, G.

    1987-01-01

    In general ion implantation leads to irreversible changes in organic films and hence it is important to understand the damage mechanisms in these solids. Most of the technology based on irradiation effects in organics must somehow make use of the fact that the chemistry of the organic films is easily changed. This chapter is organized to explore the various ion induced chemical changes in the organic films followed by a description of the optical and electrical property changes produced in the films due to the ion irradiation

  16. Recent advances in biological effect and molecular mechanism of arabidopsis thaliana irradiated by ion beams

    International Nuclear Information System (INIS)

    Wu Dali; Hou Suiwen; Li Wenjian

    2008-01-01

    Newly research progresses were summarized in effect of ion beams on seed surface, biological effect, growth, development, gravitropism and so on. Furthermore, mutation molecular mechanism of Arabidopsis thaliana was discussed, for example, alteration of DNA bases, DNA damage, chromosomal recombination, characteristics of mutant transmissibility, etc. Meanwhile, the achievements of transfer- ring extraneous gene to Arabidopsis thaliana by ion beams were reviewed in the paper. At last, the future prospective are also discussed here in mutation molecular mechanism and the potential application of biological effect of heavy ion beams. (authors)

  17. Calixarenes: Versatile molecules as molecular sensors for ion ...

    Indian Academy of Sciences (India)

    Analytical Science Division, Central Salt and Marine Chemicals Research Institute. (constituents of CSIR, New ... tant transition metal ion such as Cu2+ and toxic anion like F. − ...... cil of Scientific and Industrial Research (CSIR), New. Delhi for ...

  18. On the theory of a dissociative recombination of electrons and molecular ions

    International Nuclear Information System (INIS)

    Golubkov, G.V.; Drygin, S.V.; Ivanov, G.K.

    1995-01-01

    The present paper deals with a detailed description of molecular recombination of the electron and two-atom molecular ion, as well as with consideration of the this complex quantum-mechanical process. It is shown that this relationship results in a displacement of vibrational resonance levels and deformation of line contour

  19. The mobilies of chiral molecular cluster ions in He gas

    International Nuclear Information System (INIS)

    Saito, Kazuyuki; Matoba, Shiro; Koizumi, Tetsuo; Kojima, Takao M; Tanuma, Hajime; Shiromaru, Haruo

    2012-01-01

    We measured the mobilities of Li + -(2-butanol) and Li + -(limonene) ions in He gas at room temperature using a drift tube mass spectrometer. The zero field mobilities of Li + -(2-Butanol) and Li + -(Limonene) were much lower than the polarization limit, indicating that the geometric collision cross-sections between the cluster ions and He atom were larger than the cross-sections predicted by the presence of a polarization force alone.

  20. Novel algorithm for simultaneous component detection and pseudo-molecular ion characterization in liquid chromatography–mass spectrometry

    International Nuclear Information System (INIS)

    Zhang, Yufeng; Wang, Xiaoan; Wo, Siukwan; Ho, Hingman; Han, Quanbin; Fan, Xiaohui; Zuo, Zhong

    2015-01-01

    Highlights: • Novel stepwise component detection algorithm (SCDA) for LC–MS datasets. • New isotopic distribution and adduct-ion models for mass spectra. • Automatic component classification based on adduct-ion and isotopic distributions. - Abstract: Resolving components and determining their pseudo-molecular ions (PMIs) are crucial steps in identifying complex herbal mixtures by liquid chromatography–mass spectrometry. To tackle such labor-intensive steps, we present here a novel algorithm for simultaneous detection of components and their PMIs. Our method consists of three steps: (1) obtaining a simplified dataset containing only mono-isotopic masses by removal of background noise and isotopic cluster ions based on the isotopic distribution model derived from all the reported natural compounds in dictionary of natural products; (2) stepwise resolving and removing all features of the highest abundant component from current simplified dataset and calculating PMI of each component according to an adduct-ion model, in which all non-fragment ions in a mass spectrum are considered as PMI plus one or several neutral species; (3) visual classification of detected components by principal component analysis (PCA) to exclude possible non-natural compounds (such as pharmaceutical excipients). This algorithm has been successfully applied to a standard mixture and three herbal extract/preparations. It indicated that our algorithm could detect components’ features as a whole and report their PMI with an accuracy of more than 98%. Furthermore, components originated from excipients/contaminants could be easily separated from those natural components in the bi-plots of PCA

  1. Novel algorithm for simultaneous component detection and pseudo-molecular ion characterization in liquid chromatography–mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yufeng; Wang, Xiaoan; Wo, Siukwan [School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China); Ho, Hingman; Han, Quanbin [School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong (China); Fan, Xiaohui [College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 (China); Zuo, Zhong, E-mail: joanzuo@cuhk.edu.hk [School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China)

    2015-01-01

    Highlights: • Novel stepwise component detection algorithm (SCDA) for LC–MS datasets. • New isotopic distribution and adduct-ion models for mass spectra. • Automatic component classification based on adduct-ion and isotopic distributions. - Abstract: Resolving components and determining their pseudo-molecular ions (PMIs) are crucial steps in identifying complex herbal mixtures by liquid chromatography–mass spectrometry. To tackle such labor-intensive steps, we present here a novel algorithm for simultaneous detection of components and their PMIs. Our method consists of three steps: (1) obtaining a simplified dataset containing only mono-isotopic masses by removal of background noise and isotopic cluster ions based on the isotopic distribution model derived from all the reported natural compounds in dictionary of natural products; (2) stepwise resolving and removing all features of the highest abundant component from current simplified dataset and calculating PMI of each component according to an adduct-ion model, in which all non-fragment ions in a mass spectrum are considered as PMI plus one or several neutral species; (3) visual classification of detected components by principal component analysis (PCA) to exclude possible non-natural compounds (such as pharmaceutical excipients). This algorithm has been successfully applied to a standard mixture and three herbal extract/preparations. It indicated that our algorithm could detect components’ features as a whole and report their PMI with an accuracy of more than 98%. Furthermore, components originated from excipients/contaminants could be easily separated from those natural components in the bi-plots of PCA.

  2. Ion-beam-induced aggregation in polystyrene: The influence of the molecular parameters

    International Nuclear Information System (INIS)

    Puglisi, O.; Licciardello, A.; Calcagno, L.; Foti, G.

    1988-01-01

    The formation of an insoluble gel under ion-beam bombardment is governed by ion-beam parameters and target parameters. Here reported is a study of the influence of the target molecular parameters on the sol--gel transition of ion-bombarded polystyrene with particular emphasis for the number-average molecular weight M-bar/sub n/. It is shown that the main parameter is the number of macromolcules of the film so that by adopting a ''corrected'' fluence F/n (ions per macromolecule), the different curves of the various polymers collapse in only one universal curve. The importance of the ''corrected'' fluence is shown also at molecular level and the MWD of the various polymers is similar at equal F/n values. An experimental model is outlined which explains the sol--gel transition on the basis of transition from an isolated-track regime to an overlap regime where the formation of insoluble giant macromolecules occurs

  3. Physics with colder molecular ions: The Heidelberg Cryogenic Storage Ring CSR

    International Nuclear Information System (INIS)

    Zajfman, D; Wolf, A; Schwalm, D; Orlov, D A; Grieser, M; Hahn, R von; Welsch, C P; Lopez-Urrutia, J R Crespo; Schroeter, C D; Urbain, X; Ullrich, J

    2005-01-01

    A novel cryogenic electrostatic storage ring is planned to be built at the Max-Planck Institute for Nuclear Physics in Heidelberg. The machine is expected to operate at low temperatures (∼2K) and to store beams with kinetic energies between 20 to 300 keV. An electron target based on cooled photocathode technology will serve as a major tool for the study of reactions between molecular ions and electrons. Moreover, atomic beams can be merged and crossed with the stored ion beams allowing for atom molecular-ion collision studies at very low up to high relative energies. The proposed experimental program, centered around the physics of cold molecular ions, is shortly outlined

  4. Thermal characterization of Ag and Ag + N ion implanted ultra-high molecular weight polyethylene (UHMWPE)

    Science.gov (United States)

    Sokullu Urkac, E.; Oztarhan, A.; Tihminlioglu, F.; Kaya, N.; Ila, D.; Muntele, C.; Budak, S.; Oks, E.; Nikolaev, A.; Ezdesir, A.; Tek, Z.

    2007-08-01

    Most of total hip joints are composed of ultra-high molecular weight polyethylene (UHMWPE). However, as ultra-high molecular weight polyethylene is too stable in a body, wear debris may accumulate and cause biological response such as bone absorption and loosening of prosthesis. In this study, ultra-high molecular weight polyethylene samples were Ag and Ag + N hybrid ion implanted by using MEVVA ion implantation technique to improve its surface properties. Samples were implanted with a fluence of 1017 ion/cm2 and extraction voltage of 30 kV. Implanted and unimplanted samples were investigated by thermo-gravimetry analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), optical microscopy (OM) and contact Angle measurement. Thermal characterization results showed that the ion bombardment induced an increase in the % crystallinity, onset and termination degradation temperatures of UHMWPE.

  5. Thermal characterization of Ag and Ag + N ion implanted ultra-high molecular weight polyethylene (UHMWPE)

    Energy Technology Data Exchange (ETDEWEB)

    Sokullu Urkac, E. [Department of Materials Science, Izmir High Technology Institute, Gulbahcekoyu Urla, Izmir (Turkey)]. E-mail: emelsu@gmail.com; Oztarhan, A. [Bioengineering Department, Ege University, Bornova, Izmir 35100 (Turkey); Tihminlioglu, F. [Department of Chemical Engineering, Izmir High Technology Institute, Gulbahcekoyu Urla, Izmir (Turkey); Kaya, N. [Bioengineering Department, Ege University, Bornova, Izmir 35100 (Turkey); Ila, D. [Center for Irradiation of Materials, Alabama A and M University, Normal AL 35762 (United States); Muntele, C. [Center for Irradiation of Materials, Alabama A and M University, Normal AL 35762 (United States); Budak, S. [Center for Irradiation of Materials, Alabama A and M University, Normal AL 35762 (United States); Oks, E. [H C Electronics Institute, Tomsk (Russian Federation); Nikolaev, A. [H C Electronics Institute, Tomsk (Russian Federation); Ezdesir, A. [R and D Department, PETKIM Holding A.S., Aliaga, Izmir 35801 (Turkey); Tek, Z. [Department of Physics, Celal Bayar University, Manisa (Turkey)

    2007-08-15

    Most of total hip joints are composed of ultra-high molecular weight polyethylene (UHMWPE ). However, as ultra-high molecular weight polyethylene is too stable in a body, wear debris may accumulate and cause biological response such as bone absorption and loosening of prosthesis. In this study, ultra-high molecular weight polyethylene samples were Ag and Ag + N hybrid ion implanted by using MEVVA ion implantation technique to improve its surface properties. Samples were implanted with a fluence of 10{sup 17} ion/cm{sup 2} and extraction voltage of 30 kV. Implanted and unimplanted samples were investigated by thermo-gravimetry analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), optical microscopy (OM) and contact Angle measurement. Thermal characterization results showed that the ion bombardment induced an increase in the % crystallinity, onset and termination degradation temperatures of UHMWPE.

  6. Irradiation of tungsten with metallic diatomic molecular ions: atomic-resolution observations of depleted zones

    International Nuclear Information System (INIS)

    Pramanik, D.; Seidman, D.N.

    1982-08-01

    Direct evidence, on an atomic scale, is presented for the enhancement of damage production per projectile ion in diatomic metallic molecular ion (dimer) irradiations of tungsten as compared to monatomic metallic ion (monomer) irradiations. Irradiations were performed in situ at less than or equal to 10 K, in a field-ion microscope, employing 20 keV Ag + or W + monomer ions and the results are compared with 40 keV W 2 + or Ag 2 + dimer ion bombardments; the average energy per ion was 20 keV. First, in the near-surface region the depleted zones produced by the W 2 + dimer ions give rise to void-like contrast effects. The W + monomer ions do not produce this void-like damage. The existence of voids was explained employing a nucleation and diffusion-limited growth model which suggests that the growth can occur on a time scale -9 s, if the effective diffusivity of an atom in the fully-developed collision cascade is > 3 x 10 -4 cm 2 s -1 . Second, by counting the number of vacancies in individual depleted zones, produced by the different ions, it was demonstrated that the number of vacancies produced per incoming ion of the dimer is 1.55 times greater than the number of vacancies produced per monomer ion

  7. Molecular microenvironments: Solvent interactions with nucleic acid bases and ions

    Science.gov (United States)

    Macelroy, R. D.; Pohorille, A.

    1986-01-01

    The possibility of reconstructing plausible sequences of events in prebiotic molecular evolution is limited by the lack of fossil remains. However, with hindsight, one goal of molecular evolution was obvious: the development of molecular systems that became constituents of living systems. By understanding the interactions among molecules that are likely to have been present in the prebiotic environment, and that could have served as components in protobiotic molecular systems, plausible evolutionary sequences can be suggested. When stable aggregations of molecules form, a net decrease in free energy is observed in the system. Such changes occur when solvent molecules interact among themselves, as well as when they interact with organic species. A significant decrease in free energy, in systems of solvent and organic molecules, is due to entropy changes in the solvent. Entropy-driven interactioins played a major role in the organization of prebiotic systems, and understanding the energetics of them is essential to understanding molecular evolution.

  8. Molecular analysis of carbon ion-induced mutations in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Shikazono, Naoya; Tanaka, Atsushi; Watanabe, Hiroshi; Tano, Shigemitsu; Yokota, Yukihiko

    1998-01-01

    In order to elucidate the characteristics of the mutations induced by ion particles at the molecular level in plants, mutated loci in carbon ion-induced mutants of Arabidopsis were investigated by PCR and Southern blot analyses. In the present study, two lines of gl1 mutant and two lines of tt4 mutant were isolated after carbon ion-irradiation. Out of four mutants, one had a deletion, other two contained rearrangements, and one had a point-like mutation. From the present result, it was suggested that ion particles induced different kinds of alterations of the DNA and therefore they could produce various types of mutant alleles in plants. (author)

  9. Solvation of ions in the gas-phase: a molecular dynamics simulation

    Science.gov (United States)

    Cabarcos, Orlando M.; Lisy, James M.

    1996-07-01

    Molecular dynamics simulations have been performed on the collision between a cesium ion and a cluster of twenty methanol molecules. This process, generating a solvated ion, was studied over a range (1 to 25 eV) of eight collision energies. Preliminary analysis of this gas phase solvation has included the distribution of final ion cluster sizes, fragmentation patterns, solvation timescales and energetics. Two distinct patterns have emerged: a ballistic penetration of the neutral cluster at the higher collision energies and an evaporative evolution of the cluster ion at lower collision energies.

  10. Determination of molecular-ion structures through the use of accelerated beams

    International Nuclear Information System (INIS)

    Gemmell, D.S.

    1987-01-01

    In this talk we report on recent research on molecular-ion structures using fast molecular-ion beams provided by Argonne's 5-MV Dynamitron accelerator. The method has become known as the ''Coulomb-explosion'' technique. When molecular-ion projectiles travelling at velocities of a few percent of the velocity of light strike a foil, the electrons that bind the molecular projectiles are almost always totally stripped off within the first few Angstroms of penetration into the solid target. This leaves a cluster of bare (or nearly bare) nuclei which separate rapidly as a result of their mutual Coulomb repulsion. This violent dissociation process in which the initial electrostatic potential energy is converted into kinetic energy of relative motion in the center-of-mass, has been termed a ''Coulomb explosion.'' 4 refs., 2 figs

  11. Experimental investigation of the formation of negative hydrogen ions in collisions between positive ions and atomic or molecular targets

    International Nuclear Information System (INIS)

    Lattouf, Elie

    2013-01-01

    The formation of the negative hydrogen ion (H - ) in collisions between a positive ion and a neutral atomic or molecular target is studied experimentally at impact energies of a few keV. The doubly-differential cross sections for H - formation are measured as a function of the kinetic energy and emission angle for the collision systems OH + + Ar and O + + H 2 O at 412 eV/a.m.u. These H - ions can be emitted at high energies (keV) in hard quasi-elastic two-body collisions involving a large momentum transfer to the H center. However, H - anions are preferentially emitted at low energy (eV) due to soft many-body (≥ 2) collisions resulting in a low momentum transfer. The formation of H - ions by electron capture follows excitation or ionization of the molecule. The molecular fragmentation dynamics is modeled to simulate the emission of H - ions. The overall good agreement between the simulation and the experiment leads to the understanding of most of the experimental observations. (author) [fr

  12. Voltage-Sensitive Ion Channels Biophysics of Molecular Excitability

    CERN Document Server

    Leuchtag, H. Richard

    2008-01-01

    Voltage-sensitive ion channels are macromolecules embedded in the membranes of nerve and muscle fibers of animals. Because of their physiological functions, biochemical structures and electrical switching properties, they are at an intersection of biology, chemistry and physics. Despite decades of intensive research under the traditional approach of gated structural pores, the relation between the structure of these molecules and their function remains enigmatic. This book critically examines physically oriented approaches not covered in other ion-channel books. It looks at optical and thermal as well as electrical data, and at studies in the frequency domain as well as in the time domain. Rather than presenting the reader with only an option of mechanistic models at an inappropriate pseudo-macroscopic scale, it emphasizes concepts established in organic chemistry and condensed state physics. The book’s approach to the understanding of these unique structures breaks with the unproven view of ion channels as...

  13. Integration of molecular biology tools for identifying promoters and genes abundantly expressed in flowers of Oncidium Gower Ramsey

    Directory of Open Access Journals (Sweden)

    Tung Shu-Yun

    2011-04-01

    Full Text Available Abstract Background Orchids comprise one of the largest families of flowering plants and generate commercially important flowers. However, model plants, such as Arabidopsis thaliana do not contain all plant genes, and agronomic and horticulturally important genera and species must be individually studied. Results Several molecular biology tools were used to isolate flower-specific gene promoters from Oncidium 'Gower Ramsey' (Onc. GR. A cDNA library of reproductive tissues was used to construct a microarray in order to compare gene expression in flowers and leaves. Five genes were highly expressed in flower tissues, and the subcellular locations of the corresponding proteins were identified using lip transient transformation with fluorescent protein-fusion constructs. BAC clones of the 5 genes, together with 7 previously published flower- and reproductive growth-specific genes in Onc. GR, were identified for cloning of their promoter regions. Interestingly, 3 of the 5 novel flower-abundant genes were putative trypsin inhibitor (TI genes (OnTI1, OnTI2 and OnTI3, which were tandemly duplicated in the same BAC clone. Their promoters were identified using transient GUS reporter gene transformation and stable A. thaliana transformation analyses. Conclusions By combining cDNA microarray, BAC library, and bombardment assay techniques, we successfully identified flower-directed orchid genes and promoters.

  14. Recording of heavy ion tracks in silicates. Application to the determination of the abundance of ultra-heavy elements in old solar cosmic radiation

    International Nuclear Information System (INIS)

    Duraud, J.-P.

    1978-12-01

    The aim of this thesis is to determine the abundance A(Z) and energy spectrum of the elements of atomic number Z present in cosmic radiation, by means of fossil traces recorded in moon and meteorite minerals. The difficulties due amongst other things to natural annealing are examined in detail in part one, of this paper, the outcome being a thorough study of the processes responsible for the formation, chemical attack and annealing of heavy ion tracks. Part two describes an original approach used here and consisting of a combined analysis as a function of annealing for a given track, of the microscopic structure of the latent track and its attack rate. Part three uses the new rules established beforehand to propose a new method of studying the UH ion (Z>30) to VH ion (20 [fr

  15. Investigation of the silicon ion density during molecular beam epitaxy growth

    Science.gov (United States)

    Eifler, G.; Kasper, E.; Ashurov, Kh.; Morozov, S.

    2002-05-01

    Ions impinging on a surface during molecular beam epitaxy influence the growth and the properties of the growing layer, for example, suppression of dopant segregation and the generation of crystal defects. The silicon electron gun in the molecular beam epitaxy (MBE) equipment is used as a source for silicon ions. To use the effect of ion bombardment the mechanism of generation and distribution of ions was investigated. A monitoring system was developed and attached at the substrate position in the MBE growth chamber to measure the ion and electron densities towards the substrate. A negative voltage was applied to the substrate to modify the ion energy and density. Furthermore the current caused by charge carriers impinging on the substrate was measured and compared with the results of the monitoring system. The electron and ion densities were measured by varying the emission current of the e-gun achieving silicon growth rates between 0.07 and 0.45 nm/s and by changing the voltage applied to the substrate between 0 to -1000 V. The dependencies of ion and electron densities were shown and discussed within the framework of a simple model. The charged carrier densities measured with the monitoring system enable to separate the ion part of the substrate current and show its correlation to the generation rate. Comparing the ion density on the whole substrate and in the center gives a hint to the ion beam focusing effect. The maximum ion and electron current densities obtained were 0.40 and 0.61 μA/cm2, respectively.

  16. Physics with fast molecular-ion beams. Proceedings of workshop held at Argonne National Laboratory, August 20-21, 1979

    International Nuclear Information System (INIS)

    Gemmell, D.S.

    1979-01-01

    The Workshop on Physics with Fast Molecular-Ion Beams was held in the Physics Division, Argonne National Laboratory on August 20 and 21, 1979. The meeting brought together representatives from several groups studying the interactions of fast (MeV) molecular-ion beams with matter. By keeping the Workshop program sharply focussed on current work related to the interactions of fast molecular ions, it was made possible for the participants to engage in vigorous and detailed discussions concerning such specialized topics as molecular-ion dissociation and transmission, wake effects, ionic charge states, cluster stopping powers, beam-foil spectroscopy, electron-emissions studies with molecular-ion beams, and molecular-ion structure determinations

  17. Exploring Ion-Ion Interactions in Aqueous Solutions by a Combination of Molecular Dynamics and Neutron Scattering

    Czech Academy of Sciences Publication Activity Database

    Kohagen, Miriam; Pluhařová, E.; Mason, Philip E.; Jungwirth, Pavel

    2015-01-01

    Roč. 6, č. 9 (2015), s. 1563-1567 ISSN 1948-7185 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : ion pairing * molecular dynamics * neutron scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 8.539, year: 2015 http://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.5b00060

  18. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Congsen [LaserLaB Amsterdam, VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Department of Physics, National University of Defense Technology, Changsha 410073 (China); Janssen, Maurice H. M. [LaserLaB Amsterdam, VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

    2015-02-15

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the density profile of the molecular beam, and the measured absolute density is compared with theoretical calculations of the centre line beam density. Subsequently, we discuss reasons accounting for the differences between measurements and calculations and propose that strong skimmer interference is the most probable cause for the differences. Furthermore, we report on experiments measuring the centre line density of seeded supersonic beams. The femtosecond ion images show that seeding the heavy Xe atom at low relative seed fractions (1%-10%) in a light carrier gas like Ne results in strong relative enhancements of up to two orders of magnitude.

  19. Synthetic Ion Channels and DNA Logic Gates as Components of Molecular Robots.

    Science.gov (United States)

    Kawano, Ryuji

    2018-02-19

    A molecular robot is a next-generation biochemical machine that imitates the actions of microorganisms. It is made of biomaterials such as DNA, proteins, and lipids. Three prerequisites have been proposed for the construction of such a robot: sensors, intelligence, and actuators. This Minireview focuses on recent research on synthetic ion channels and DNA computing technologies, which are viewed as potential candidate components of molecular robots. Synthetic ion channels, which are embedded in artificial cell membranes (lipid bilayers), sense ambient ions or chemicals and import them. These artificial sensors are useful components for molecular robots with bodies consisting of a lipid bilayer because they enable the interface between the inside and outside of the molecular robot to function as gates. After the signal molecules arrive inside the molecular robot, they can operate DNA logic gates, which perform computations. These functions will be integrated into the intelligence and sensor sections of molecular robots. Soon, these molecular machines will be able to be assembled to operate as a mass microrobot and play an active role in environmental monitoring and in vivo diagnosis or therapy. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning

    DEFF Research Database (Denmark)

    Ejsing, Christer S.; Duchoslav, Eva; Sampaio, Julio

    2006-01-01

    We report a method for the identification and quantification of glycerophospholipid molecular species that is based on the simultaneous automated acquisition and processing of 41 precursor ion spectra, specific for acyl anions of common fatty acids moieties and several lipid class-specific fragment...... of glycerophospholipids. The automated analysis of total lipid extracts was powered by a robotic nanoflow ion source and produced currently the most detailed description of the glycerophospholipidome....

  1. Molecular depth profiling of trehalose using a C{sub 60} cluster ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Wucher, Andreas [Department of Physics, University of Duisburg-Essen, D-47048 Duisburg (Germany)], E-mail: andreas.wucher@uni-due.de; Cheng Juan; Winograd, Nicholas [Department of Chemistry, Pennsylvania State University, University Park, PA 16802 (United States)

    2008-12-15

    Molecular depth profiling of organic overlayers was performed using a mass selected fullerene ion beam in conjunction with time-of-flight (TOF-SIMS) mass spectrometry. The characteristics of depth profiles acquired on a 300-nm trehalose film on Si were studied as a function of the impact kinetic energy and charge state of the C{sub 60} projectile ions. We find that the achieved depth resolution depends only weakly upon energy.

  2. Review of stopping power and Coulomb explosion for molecular ion in plasmas

    Directory of Open Access Journals (Sweden)

    Guiqiu Wang

    2018-03-01

    Full Text Available We summarize our theoretical studies for stopping power of energetic heavy ion, diatomic molecular ions and small clusters penetrating through plasmas. As a relevant research field for the heavy ion inertial confinement fusion (HICF, we lay the emphasis on the dynamic polarization and correlation effects of the constituent ion within the molecular ion and cluster for stopping power in order to disclose the role of the vicinage effect on the Coulomb explosion and energy deposition of molecules and clusters in plasma. On the other hand, as a promising scheme for ICF, both a strong laser field and an intense ion beam are used to irradiate a plasma target. So the influence of a strong laser field on stopping power is significant. We discussed a large range of laser and plasma parameters on the coulomb explosion and stopping power for correlated-ion cluster and C60 cluster. Furthermore, in order to indicate the effects of different cluster types and sizes on the stopping power, a comparison is made for hydrogen and carbon clusters. In addition, the deflection of molecular axis for diatomic molecules during the Coulomb explosion is also given for the cases both in the presence of a laser field and laser free. Finally, a future experimental scheme is put forward to measure molecular ion stopping power in plasmas in Xi'an Jiaotong University of China. Keywords: Molecules, Stopping power, Coulomb explosion, Vicinage effect, Laser, PACS Codes: 34.50.Bw, 52.40.Mj, 61.85.+p, 34.50.Dy

  3. Solvent Composition-Dependent Signal-Reduction of Molecular Ions Generated from Aromatic Compounds in (+) Atmospheric Pressure Photo Ionization Mass Spectrometry.

    Science.gov (United States)

    Lee, Seulgidaun; Ahmed, Arif; Kim, Sunghwan

    2018-03-30

    The ionization process is essential for successful mass spectrometry (MS) analysis because of its influence on selectivity and sensitivity. In particular, certain solvents reduce the ionization of the analyte, thereby reducing the overall sensitivity in APPI. Since the sensitivity varies greatly depending on the solvents, a fundamental understanding of the mechanism is required. Standard solutions were analyzed by (+) Atmospheric pressure photo ionization (APPI) QExactive ion trap mass spectrometer (Thermo Scientific). Each solution was infused directly to the APPI source at a flow rate 100 μl/min and the APPI source temperature was 300 °C. Other operating mass spectrometric parameters were maintained under the same conditions. Quantum mechanical calculations were carried out using the Gaussian 09 suite program. Density functional theory was used to calculate the reaction enthalpies (∆H) of reaction between toluene and other solvents. The experimental and theoretical results showed good agreement. The abundances of analyte ions were well correlated with the calculated ∆H values. Therefore, the results strongly support the suggested signal reduction mechanism. In addition, linear correlations between the abundance of toluene and analyte molecular ions were observed, which also supports the suggested mechanism. A solvent composition-dependent signal reduction mechanism was suggested and evaluated for the (+) atmospheric pressure photo ionization (APPI) mass spectrometry analysis of poly-aromatic hydrocarbons (PAHs) generating mainly molecular ions. Overall, the evidence provided in this work suggests that reactions between solvent cluster(s) and toluene molecular ions are responsible for the observed signal reductions. This article is protected by copyright. All rights reserved.

  4. Improving the Molecular Ion Signal Intensity for In Situ Liquid SIMS Analysis.

    Science.gov (United States)

    Zhou, Yufan; Yao, Juan; Ding, Yuanzhao; Yu, Jiachao; Hua, Xin; Evans, James E; Yu, Xiaofei; Lao, David B; Heldebrant, David J; Nune, Satish K; Cao, Bin; Bowden, Mark E; Yu, Xiao-Ying; Wang, Xue-Lin; Zhu, Zihua

    2016-12-01

    In situ liquid secondary ion mass spectrometry (SIMS) enabled by system for analysis at the liquid vacuum interface (SALVI) has proven to be a promising new tool to provide molecular information at solid-liquid and liquid-vacuum interfaces. However, the initial data showed that useful signals in positive ion spectra are too weak to be meaningful in most cases. In addition, it is difficult to obtain strong negative molecular ion signals when m/z>200. These two drawbacks have been the biggest obstacle towards practical use of this new analytical approach. In this study, we report that strong and reliable positive and negative molecular signals are achievable after optimizing the SIMS experimental conditions. Four model systems, including a 1,8-diazabicycloundec-7-ene (DBU)-base switchable ionic liquid, a live Shewanella oneidensis biofilm, a hydrated mammalian epithelia cell, and an electrolyte popularly used in Li ion batteries were studied. A signal enhancement of about two orders of magnitude was obtained in comparison with non-optimized conditions. Therefore, molecular ion signal intensity has become very acceptable for use of in situ liquid SIMS to study solid-liquid and liquid-vacuum interfaces. Graphical Abstract ᅟ.

  5. Molecular dynamics simulations to examine structure, energetics, and evaporation/condensation dynamics in small charged clusters of water or methanol containing a single monatomic ion.

    Science.gov (United States)

    Daub, Christopher D; Cann, Natalie M

    2012-11-01

    We study small clusters of water or methanol containing a single Ca(2+), Na(+), or Cl(-) ion with classical molecular dynamics simulations, using models that incorporate polarizability via the Drude oscillator framework. Evaporation and condensation of solvent from these clusters is examined in two systems, (1) for isolated clusters initially prepared at different temperatures and (2) those with a surrounding inert (Ar) gas of varying temperature. We examine these clusters over a range of sizes, from almost bare ions up to 40 solvent molecules. We report data on the evaporation and condensation of solvent from the clusters and argue that the observed temperature dependence of evaporation in the smallest clusters demonstrates that the presence of heated gas alone cannot, in most cases, solely account for bare ion production in electrospray ionization (ESI), neglecting the key contribution of the electric field. We also present our findings on the structure and energetics of the clusters as a function of size. Our data agree well with the abundant literature on hydrated ion clusters and offer some novel insight into the structure of methanol and ion clusters, especially those with a Cl(-) anion, where we observe the presence of chain-like structures of methanol molecules. Finally, we provide some data on the reparameterizations necessary to simulate ions in methanol using the separately developed Drude oscillator models for methanol and for ions in water.

  6. Molecular Dynamics Simulations of Collisional Cooling and Ordering of Multiply Charged Ions in a Penning Trap

    International Nuclear Information System (INIS)

    Holder, J.P.; Church, D.A.; Gruber, L.; DeWitt, H.E.; Beck, B.R.; Schneider, D.

    2000-01-01

    Molecular dynamics simulations are used to help design new experiments by modeling the cooling of small numbers of trapped multiply charged ions by Coulomb interactions with laser-cooled Be + ions. A Verlet algorithm is used to integrate the equations of motion of two species of point ions interacting in an ideal Penning trap. We use a time step short enough to follow the cyclotron motion of the ions. Axial and radial temperatures for each species are saved periodically. Direct heating and cooling of each species in the simulation can be performed by periodically rescaling velocities. Of interest are Fe 11+ due to a EUV-optical double resonance for imaging and manipulating the ions, and Ca 14+ since a ground state fine structure transition has a convenient wavelength in the tunable laser range

  7. Properties of the Excited States of Molecular Ions.

    Science.gov (United States)

    1981-04-13

    FIg. 1). techniques have beest applied to the study of quartet states of Oi. The four potential curves most relevant Guyon et al., using a synchrotron...8217 a’ a a C ’U ~ ~ ~ ~ ~ ~ ~ 2 2,~ C a ’I C~- C ’ 𔃺 𔃺 𔃺 ’ ’ C- ~ C-E-38- ’- u A() A09a 265 SRI INTERNATIONAL 14FNLO PARK CA MOLECULAR PHYSICS LAB F

  8. Investigation of the silicon ion density during molecular beam epitaxy growth

    CERN Document Server

    Eifler, G; Ashurov, K; Morozov, S

    2002-01-01

    Ions impinging on a surface during molecular beam epitaxy influence the growth and the properties of the growing layer, for example, suppression of dopant segregation and the generation of crystal defects. The silicon electron gun in the molecular beam epitaxy (MBE) equipment is used as a source for silicon ions. To use the effect of ion bombardment the mechanism of generation and distribution of ions was investigated. A monitoring system was developed and attached at the substrate position in the MBE growth chamber to measure the ion and electron densities towards the substrate. A negative voltage was applied to the substrate to modify the ion energy and density. Furthermore the current caused by charge carriers impinging on the substrate was measured and compared with the results of the monitoring system. The electron and ion densities were measured by varying the emission current of the e-gun achieving silicon growth rates between 0.07 and 0.45 nm/s and by changing the voltage applied to the substrate betw...

  9. Trapped ultracold molecular ions: candidates for an optical molecular clock for a fundamental physics mission in space

    Science.gov (United States)

    Roth, B.; Koelemeij, J.; Daerr, H.; Ernsting, I.; Jorgensen, S.; Okhapkin, M.; Wicht, A.; Nevsky, A.; Schiller, S.

    2017-11-01

    Narrow ro-vibrational transitions in ultracold molecules are excellent candidates for frequency references in the near-IR to visible spectral domain and interesting systems for fundamental tests of physics, in particular for a satellite test of the gravitational redshift of clocks. We have performed laser spectroscopy of several ro-vibrational overtone transitions υ = 0 → υ = 4 in HD+ ions at around 1.4 μm. 1+1 REMPD was used as a detection method, followed by measurement of the number of remaining molecules. The molecular ions were stored in a linear radiofrequency trap and cooled to millikelvin temperatures, by sympathetic cooling using laser-cooled Be+ ions simultaneously stored in the same trap.

  10. reSpect: Software for Identification of High and Low Abundance Ion Species in Chimeric Tandem Mass Spectra

    Science.gov (United States)

    Shteynberg, David; Mendoza, Luis; Hoopmann, Michael R.; Sun, Zhi; Schmidt, Frank; Deutsch, Eric W.; Moritz, Robert L.

    2015-11-01

    Most shotgun proteomics data analysis workflows are based on the assumption that each fragment ion spectrum is explained by a single species of peptide ion isolated by the mass spectrometer; however, in reality mass spectrometers often isolate more than one peptide ion within the window of isolation that contribute to additional peptide fragment peaks in many spectra. We present a new tool called reSpect, implemented in the Trans-Proteomic Pipeline (TPP), which enables an iterative workflow whereby fragment ion peaks explained by a peptide ion identified in one round of sequence searching or spectral library search are attenuated based on the confidence of the identification, and then the altered spectrum is subjected to further rounds of searching. The reSpect tool is not implemented as a search engine, but rather as a post-search engine processing step where only fragment ion intensities are altered. This enables the application of any search engine combination in the iterations that follow. Thus, reSpect is compatible with all other protein sequence database search engines as well as peptide spectral library search engines that are supported by the TPP. We show that while some datasets are highly amenable to chimeric spectrum identification and lead to additional peptide identification boosts of over 30% with as many as four different peptide ions identified per spectrum, datasets with narrow precursor ion selection only benefit from such processing at the level of a few percent. We demonstrate a technique that facilitates the determination of the degree to which a dataset would benefit from chimeric spectrum analysis. The reSpect tool is free and open source, provided within the TPP and available at the TPP website.

  11. reSpect: software for identification of high and low abundance ion species in chimeric tandem mass spectra.

    Science.gov (United States)

    Shteynberg, David; Mendoza, Luis; Hoopmann, Michael R; Sun, Zhi; Schmidt, Frank; Deutsch, Eric W; Moritz, Robert L

    2015-11-01

    Most shotgun proteomics data analysis workflows are based on the assumption that each fragment ion spectrum is explained by a single species of peptide ion isolated by the mass spectrometer; however, in reality mass spectrometers often isolate more than one peptide ion within the window of isolation that contribute to additional peptide fragment peaks in many spectra. We present a new tool called reSpect, implemented in the Trans-Proteomic Pipeline (TPP), which enables an iterative workflow whereby fragment ion peaks explained by a peptide ion identified in one round of sequence searching or spectral library search are attenuated based on the confidence of the identification, and then the altered spectrum is subjected to further rounds of searching. The reSpect tool is not implemented as a search engine, but rather as a post-search engine processing step where only fragment ion intensities are altered. This enables the application of any search engine combination in the iterations that follow. Thus, reSpect is compatible with all other protein sequence database search engines as well as peptide spectral library search engines that are supported by the TPP. We show that while some datasets are highly amenable to chimeric spectrum identification and lead to additional peptide identification boosts of over 30% with as many as four different peptide ions identified per spectrum, datasets with narrow precursor ion selection only benefit from such processing at the level of a few percent. We demonstrate a technique that facilitates the determination of the degree to which a dataset would benefit from chimeric spectrum analysis. The reSpect tool is free and open source, provided within the TPP and available at the TPP website. Graphical Abstract ᅟ.

  12. Theoretical study of the electronic structure of different states of the KRb+ molecular ion

    International Nuclear Information System (INIS)

    Korek, M.; Younis, G.

    2000-01-01

    Full text.The molecular activities in ultra-cold alkali atom trapping stimulate theoretical developments to compute relevant adiabatic potential curves, especially in the framework of the pseudopotential methods. For these methods the molecular ion KRb+ is treated as system with one active electron moving in a field of two ionic cores, where core valence electron interactions are presented by an effective potential. Potential energies have been calculated over a wide range of internuclear distance (5.0-60a o ) for the lowest states of symmetry 2 Σ, 2 Π, 2 Δ and Ω for the molecular ion KRb+. To avoid an over estimation of the dissociation energy the perturbative treatment is replaced by an l-dependent core-polarization potential of the Foucrault et al. For the one valence electron of the two considered atoms, we recalculated the polarization potential cut-off parameters r k l , and r R b l by taking l=0,1,2 and r i 2 =r i 3 . Molecular orbital for the molecular ion KRb+ were derived from Self Consistent Field calculations (SCF), and full valence Configuration Interaction (IC) calculations were performed. Extensive tables of energy values versus internuclear distance are displayed and molecular spectroscopic constants have been derived, for the first time, for the bound states with regular shape

  13. Collisions of alkali negative ions with atomic and molecular targets

    International Nuclear Information System (INIS)

    Champion, R.; Scott, D.; Hug, M.S.; Doverspike, L.

    1986-01-01

    Ion-beam measurements are presented for the total cross section σ/sub e/(E) for electron detachment of Na - , K - . and Cs - in low-energy (E/sub lab/ - projectile is previously unreported and extends our recent study of Na - and K - . The motivation for this work is due in part to the observation that these alkali-metal anions (denoted M - ) are similar to H - in that they have two s-electrons outside a closed shell. In particular, it is of interest to determine whether the energy dependence of σ/sub e/(E) for M - is similar to that observed for H - . 21 refs., 5 figs

  14. Getting the ion-protein interactions right in molecular dynamics simulations

    Czech Academy of Sciences Publication Activity Database

    Duboué-Dijon, Elise; Mason, Philip E.; Jungwirth, Pavel

    2017-01-01

    Roč. 46, Suppl 1 (2017), S66 ISSN 0175-7571. [IUPAB congress /19./ and EBSA congress /11./. 16.07.2017-20.07.2017, Edinburgh] Institutional support: RVO:61388963 Keywords : ion-protein interaction * molecular dynamics simulations * neutron scattering * insulin Subject RIV: BO - Biophysics

  15. External-field shifts in precision spectroscopy of hydrogen molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Bakalov, Dimitar, E-mail: dbakalov@inrne.bas.bg [INRNE, Bulgarian Academy of Sciences (Bulgaria); Korobov, Vladimir [Joint Institute for Nuclear Research (Russian Federation); Schiller, Stephan [Heinrich-Heine-Universitat Dusseldorf, Institut fur Experimentalphysik (Germany)

    2015-08-15

    The Effective Hamiltonian of the hydrogen molecular ions is a convenient tool for the evaluation of the shift of the energy levels of the ro-vibrational states and the frequencies of the transitions between them, due to external electric and magnetic fields. Using the Effective Hamiltonian, composite frequencies of suppressed susceptibility to external fields are constructed.

  16. Ejection dynamics of hydrogen molecular ions from methanol in intense laser fields

    International Nuclear Information System (INIS)

    Okino, T; Furukawa, Y; Liu, P; Ichikawa, T; Itakura, R; Hoshina, K; Yamanouchi, K; Nakano, H

    2006-01-01

    The ejection of hydrogen molecular ions from two-body Coulomb explosion processes of methanol (CH 3 OH, CD 3 OH and CH 3 OD) in an intense laser field (800 nm, 60 fs, 0.2 PW cm -2 ) is investigated by a coincidence momentum imaging method. From the coincidence momentum maps, the ejection processes of hydrogen molecular ions, CH 3 OH 2+ → H m + + CH (3-m) OH + (m = 2, 3), CD 3 OH 2+ → D m + + CH (3-m) OH + (m = 2, 3) and CH 3 OD 2+ → H m + + CH (3-m) OD + (m = 2, 3), are identified. Based on the results obtained with isotopically substituted methanol, the isotope effect on the ejection process of hydrogen molecular ions is discussed. Furthermore, the ejection of H/D exchanged hydrogen molecular ions (HD + , HD 2 + and H 2 D + ) is identified, and the timescales for the H/D exchanging processes are estimated from the extent of anisotropy in the ejection directions

  17. Reduction of the Glauber amplitude for electron impact rotational excitation of quadrupolar molecular ions

    International Nuclear Information System (INIS)

    Mathur, K.C.; Gupta, G.P.; Pundir, R.S.

    1981-06-01

    A reduction of the Glauber amplitude for the rotational excitation of pure quadrupolar molecular ions by electron impact is presented in a form suitable for numerical evaluation. The differential cross-section is expressed in terms of one dimensional integrals over impact parameter. (author)

  18. Molecular growth in clusters of polycyclic aromatic hydrocarbons induced by collisions with ions

    International Nuclear Information System (INIS)

    Delaunay, Rudy

    2016-01-01

    This thesis concerns the experimental study of the interaction between low energy ions (keV range) and neutral isolated molecules or clusters of polycyclic aromatic hydrocarbons (PAH) in the gas phase. The use of ionising radiations on these complex molecular systems of astrophysical interest allowed to highlight processes of statistical fragmentation, corresponding to the redistribution of the energy through the degrees of freedom of the target, and non-statistical fragmentation, linked to binary collisions of the ions on the nuclei of the target. A mechanism of intermolecular growth in clusters of PAH is observed. It is associated to the ultrafast (≤ ps) formation of fragments inside the clusters following binary collisions. The presence of a molecular environment around the fragments formed during the interaction may initiate a process of reactivity between the fragments and the molecules of the clusters. More precisely, the study focusses on the importance of the electronic stopping power SE and the nuclear stopping power SN of the projectile ion. It shows that the molecular growth is enhanced when SN is higher than SE. This can be explained by the fact that the deposit of energy is mainly due to the interaction with the nuclei of the target. The process of growth has been observed for all the molecules of PAH studied during this thesis and also for nitrogenated analogues of the molecule of anthracene. This demonstrates that molecular growth may be efficiently induced by collisions of low energy ions with clusters of PAH. (author) [fr

  19. Ab initio molecular dynamics approach to a quantitative description of ion pairing in water

    Czech Academy of Sciences Publication Activity Database

    Pluhařová, Eva; Maršálek, Ondřej; Schmidt, B.; Jungwirth, Pavel

    2013-01-01

    Roč. 4, č. 23 (2013), s. 4177-4181 ISSN 1948-7185 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : ion pairing * charge transfer * water * ab initio molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.687, year: 2013

  20. The structure of quasi-molecular KX-ray spectra from heavy ion collisions

    International Nuclear Information System (INIS)

    Kaun, K.-N.; Frank, W.; Manfrass, P.

    1976-01-01

    In the experiments with Ge, Nb, Kr and La ions continuum X-ray spectra having a two-component structure have been observed. Both components atr interpreted as quasi-molecular X-radiation caused by transitions to the 2psigma and 1ssigma states in the quasimolecule

  1. Precision spectroscopy of molecular hydrogen ions : Towards frequency metrology of particle masses

    NARCIS (Netherlands)

    Roth, B.; Koelemeij, J.; Schiller, S.; Hilico, L.; Karr, Jean Philippe; Korobov, V.I.; Bakalov, D.

    2008-01-01

    We describe the current status of high-precision ab initio calculations of the spectra of molecular hydrogen ions (H2+ and HD+) and of two experiments for vibrational spectroscopy. The perspectives for a comparison between theory and experiment at a level of 1 part in 109 are considered.

  2. Molecular dynamics and brownian dynamics investigation of ion permeation and anesthetic halothane effects on a proton-gated ion channel.

    Science.gov (United States)

    Cheng, Mary Hongying; Coalson, Rob D; Tang, Pei

    2010-11-24

    Bacterial Gloeobacter violaceus pentameric ligand-gated ion channel (GLIC) is activated to cation permeation upon lowering the solution pH. Its function can be modulated by anesthetic halothane. In the present work, we integrate molecular dynamics (MD) and Brownian dynamics (BD) simulations to elucidate the ion conduction, charge selectivity, and halothane modulation mechanisms in GLIC, based on recently resolved X-ray crystal structures of the open-channel GLIC. MD calculations of the potential of mean force (PMF) for a Na(+) revealed two energy barriers in the extracellular domain (R109 and K38) and at the hydrophobic gate of transmembrane domain (I233), respectively. An energy well for Na(+) was near the intracellular entrance: the depth of this energy well was modulated strongly by the protonation state of E222. The energy barrier for Cl(-) was found to be 3-4 times higher than that for Na(+). Ion permeation characteristics were determined through BD simulations using a hybrid MD/continuum electrostatics approach to evaluate the energy profiles governing the ion movement. The resultant channel conductance and a near-zero permeability ratio (P(Cl)/P(Na)) were comparable to experimental data. On the basis of these calculations, we suggest that a ring of five E222 residues may act as an electrostatic gate. In addition, the hydrophobic gate region may play a role in charge selectivity due to a higher dehydration energy barrier for Cl(-) ions. The effect of halothane on the Na(+) PMF was also evaluated. Halothane was found to perturb salt bridges in GLIC that may be crucial for channel gating and open-channel stability, but had no significant impact on the single ion PMF profiles.

  3. Development of PNTDs synthesized from monomers with different molecular length and analysis of molecular damages by heavy ion

    International Nuclear Information System (INIS)

    Kawashima, Hajime; Kodaira, Satoshi; Ihara, Daisuke; Yasuda, Nakahiro; Kusumoto, Tamon; Mori, Yutaka; Yamauchi, Tomoya; Kobayashi, Keiichi; Benton, Eric

    2017-01-01

    Our interests for years lay to investigate the reason why CR-39 polymer has such high sensitivity as plastic nuclear track detector (PNTD) on chemical structural aspects. We developed three PNTDs from three diacrylate compounds as monomers bearing different molecular length as well as different numbers of internal ether bonds. The polymer products obtained were colorless and transparent with 3-D molecular structures as CR-39 and different lattice structures each other. Our purpose of the current study was to investigate structural damages caused in newly prepared PNTDs and CR-39 by irradiation of Nitrogen ion (6 MeV/n, fluence of 5 x 10 11 cm -2 ). The structural damage by irradiation was analyzed by the magnitude of the relative absorbance of specific functional groups such as ester, C=O, ether and C-H bonds by means of FT-IR (ATR) method. The correlation between the relative absorbance and the molecular length of the monomers were discussed. (author)

  4. Simulation of the molecular recombination yield for swift H2+ ions through thin carbon foils

    International Nuclear Information System (INIS)

    Garcia-Molina, Rafael; Barriga-Carrasco, Manuel D.

    2003-01-01

    We have calculated the recombination yield for swift H 2 + molecular ions at the exit of thin amorphous carbon foils, as a function of the dwell time and incident energy. Our results are based on a detailed simulation of the motion through the target of the H 2 + molecular ion (before dissociation takes place) and its constituent fragments (after dissociation), including the following effects: Coulomb repulsion, nuclear scattering, electron capture and loss, as well as self-retarding and wake forces, which provide the relative distance and velocity of the dissociated fragments at the foil exit. The recombination of an H 2 + ion at the exit of the foil depends on the interproton separation and internal energy of the dissociated fragments, and on their probability to capture an electron. Comparison of our results with the available experimental data shows a good agreement

  5. Molecular desorption of stainless steel vacuum chambers irradiated with 42 MeV/u lead ions

    CERN Document Server

    Mahner, E; Laurent, Jean Michel; Madsen, N

    2003-01-01

    In preparation for the heavy ion program of the Large Hadron Collider at CERN, accumulation and cooling tests with lead ion beams have been performed in the Low Energy Antiproton Ring. These tests have revealed that due to the unexpected large outgassing of the vacuum system, the dynamic pressure of the ring could not be maintained low enough to reach the required beam intensities. To determine the actions necessary to lower the dynamic pressure rise, an experimental program has been initiated for measuring the molecular desorption yields of stainless steel vacuum chambers by the impact of 4.2 MeV/u lead ions with the charge states +27 and +53. The test chambers were exposed either at grazing or at perpendicular incidence. Different surface treatments (glow discharges, nonevaporable getter coating) are reported in terms of the molecular desorption yields for H/sub 2 /, CH/sub 4/, CO, Ar, and CO/sub 2/. (16 refs).

  6. Next Generation Molecular Histology Using Highly Multiplexed Ion Beam Imaging (MIBI) of Breast Cancer Tissue Specimens for Enhanced Clinical Guidance

    Science.gov (United States)

    2016-07-01

    AWARD NUMBER: W81XWH- 14-1-0192 TITLE: Next-Generation Molecular Histology Using Highly Multiplexed Ion Beam Imaging (MIBI) of Breast Cancer...DATES COVERED 4. TITLE AND SUBTITLE Next-Generation Molecular Histology Using Highly Multiplexed Ion Beam Imaging (MIBI) of Breast Cancer Tissue

  7. Ion Flux Measurements in Electron Beam Produced Plasmas in Atomic and Molecular Gases

    Science.gov (United States)

    Walton, S. G.; Leonhardt, D.; Blackwell, D. D.; Murphy, D. P.; Fernsler, R. F.; Meger, R. A.

    2001-10-01

    In this presentation, mass- and time-resolved measurements of ion fluxes sampled from pulsed, electron beam-generated plasmas will be discussed. Previous works have shown that energetic electron beams are efficient at producing high-density plasmas (10^10-10^12 cm-3) with low electron temperatures (Te < 1.0 eV) over the volume of the beam. Outside the beam, the plasma density and electron temperature vary due, in part, to ion-neutral and electron-ion interactions. In molecular gases, electron-ion recombination plays a significant role while in atomic gases, ion-neutral interactions are important. These interactions also determine the temporal variations in the electron temperature and plasma density when the electron beam is pulsed. Temporally resolved ion flux and energy distributions at a grounded electrode surface located adjacent to pulsed plasmas in pure Ar, N_2, O_2, and their mixtures are discussed. Measurements are presented as a function of operating pressure, mixture ratio, and electron beam-electrode separation. The differences in the results for atomic and molecular gases will also be discussed and related to their respective gas-phase kinetics.

  8. Mesoporous titanium phosphate molecular sieves with ion-exchange capacity.

    Science.gov (United States)

    Bhaumik, A; Inagaki, S

    2001-01-31

    Novel open framework molecular sieves, titanium(IV) phosphates named, i.e., TCM-7 and -8 (Toyota Composite Materials, numbers 7 and 8), with new mesoporous cationic framework topologies obtained by using both cationic and anionic surfactants are reported. The (31)P MAS NMR, UV-visible absorption, and XANES data suggest the tetrahedral state of P and Ti, and stabilization of the tetrahedral state of Ti in TCM-7/8 is due to the incorporation of phosphorus (at Ti/P = 1:1) vis-à-vis the most stable octahedral state of Ti in the pure mesoporous TiO(2). Mesoporous TCM-7 and -8 show anion exchange capacity due to the framework phosphonium cation and cation exchange capacity due to defective P-OH groups. The high catalytic activity in the liquid-phase partial oxidation of cyclohexene with a dilute H(2)O(2) oxidant supports the tetrahedral coordination of Ti in these materials.

  9. Molecular projectile effects for kinetic electron emission from carbon- and metal-surfaces bombarded by slow hydrogen ions

    Science.gov (United States)

    Cernusca, S.; Winter, HP.; Aumayr, F.; Díez Muiño, R.; Juaristi, J. I.

    2003-04-01

    Total yields for kinetic electron emission (KE) have been determined for impact of hydrogen monomer-, dimer- and trimer-ions (impact energy armour in magnetic fusion devices. The data are compared with KE yields for impact of same projectile ions on atomically clean highly oriented pyrolytic graphite and polycrystalline gold. We discuss KE yields for the different targets if bombarded by equally fast molecular and atomic ions in view to "projectile molecular effects" (different yields per proton for equally fast atomic and molecular ions), which are expected from calculated electronic projectile energy losses in these target materials.

  10. Secondary electron emission from Au by medium energy atomic and molecular ions

    CERN Document Server

    Itoh, A; Obata, F; Hamamoto, Y; Yogo, A

    2002-01-01

    Number distributions of secondary electrons emitted from a Au metal surface have been measured for atomic and molecular ions of H sup + , He sup + , C sup + , N sup + , O sup + , H sup + sub 2 , H sup + sub 3 , HeH sup + , CO sup + and O sup + sub 2 in the energy range 0.3-2.0 MeV. The emission statistics obtained are described fairly well by a Polya function. The Polya parameter b, determining the distribution shape, is found to decrease monotonously with increasing emission yield gamma, revealing a surprising relationship of b gamma approx 1 over the different projectile species and impact energies. This finding supports certainly the electron cascading model. Also we find a strong negative molecular effect for heavier molecular ions, showing a significant reduction of gamma compared to the estimated values using constituent atomic projectile data.

  11. Mobility and molecular ions of dimethyl methyl phosphonate, methyl salicylate and acetone

    Science.gov (United States)

    Nowak, D. M.

    1983-06-01

    The mobilities of positive and negative reactant ions are reported for (H2O)nH(+); (H2O)2O2 and (H2O)2CO3(-) ion clusters. The formation of positive DMMP monomer and dimer is reported, and equilbria molecular reactions are reported. Acetone is reported as forming a dimer at 81 ppb with a reduced mobility (K sub o) of 1.82, Methyl salicylate is shown to form a protonated and hydrated positive monomer. Mixtures of DMMP and methyl salicylate with acetone showed a substantial change in DMMP ion clustering and little or no change in the methyl salicylate mobility spectra. Negative ions were not observed for DMMP, methyl salicylate, acetone and the mixtures under the conditions reported.

  12. Observation of visible emission from the molecular helium ion in the afterglow of a dense helium Z-pinch plasma

    International Nuclear Information System (INIS)

    Tucker, J.E.; Brake, M.L.; Gilgenbach, R.M.

    1986-01-01

    The authors present the results of axial and radial time resolved visible emission spectroscopy from the afterglow of a dense helium Z-pinch. These results show that the visible emissions in the pinch afterglow are dominated by line emissions from molecular helium and He II. Axial spectroscopy measurements show the occurrence of several absorption bands which cannot be identified as molecular or atomic helium nor impurities from the discharge chamber materials. The authors believe that these absorption bands are attributable to the molecular helium ion which is present in the discharge. The molecular ion has been observed by others in low pressure and temperature helium discharges directly by means of mass spectrometry and indirectly by the presence of helium atoms in the 2/sup 3/S state, (the He 2/sup 3/S state is believed to result from molecular helium ion recombination). However, the molecular helium ion has not previously been observed spectroscopically

  13. Identification and analysis of low molecular weight dissolved organic carbon in subglacial basal ice ecosystems by ion chromatography

    Science.gov (United States)

    Lawson, E. C.; Wadham, J. L.; Lis, G. P.; Tranter, M.; Pickard, A. E.; Stibal, M.; Dewsbury, P.; Fitzsimons, S.

    2015-08-01

    Glacial runoff is an important source of dissolved organic carbon (DOC) for downstream heterotrophic activity, despite the low overall DOC concentrations. This is because of the abundance of bioavailable, low molecular weight (LMW) DOC species. However, the provenance and character of LMW-DOC is not fully understood. We investigated the abundance and composition of DOC in subglacial environments via a molecular level DOC analysis of basal ice, which forms by water/sediment freeze-on to the glacier sole. Spectrofluorometry and a novel ion chromatographic method, which has been little utilised in glacial science for LMW-DOC determinations, were employed to identify and quantify the major LMW fractions (free amino acids, carbohydrates and carboxylic acids) in basal ice from four glaciers, each with a different basal debris type. Basal ice from Joyce Glacier (Antarctica) was unique in that 98 % of the LMW-DOC was derived from the extremely diverse FAA pool, comprising 14 FAAs. LMW-DOC concentrations in basal ice were dependent on the bioavailability of the overridden organic carbon (OC), which in turn, was influenced by the type of overridden material. Mean LMW-DOC concentrations in basal ice from Russell Glacier (Greenland), Finsterwalderbreen (Svalbard) and Engabreen (Norway) were low (0-417 nM C), attributed to the relatively refractory nature of the OC in the overridden paleosols and bedrock. In contrast, mean LMW-DOC concentrations were an order of magnitude higher (4430 nM C) in basal ice from Joyce Glacier, a reflection of the high bioavailability of the overridden lacustrine material (>17 % of the sediment OC comprised extractable carbohydrates, a proxy for bioavailable OC). We find that the overridden material may act as a direct (via abiotic leaching) and indirect (via microbial cycling) source of DOC to the subglacial environment and provides a range of LMW-DOC compounds that may stimulate microbial activity in wet sediments in current subglacial

  14. The molecular mechanism of multi-ion conduction in K{sup +} channels

    Energy Technology Data Exchange (ETDEWEB)

    Gwan, J.F.

    2007-01-19

    Steered molecular dynamics (SMD) simulation method is applied to a fully solvated membrane-channel model for studying the ion permeation process in potassium channels. The channel model is based on the crystallographic structure of a prokaryotic K{sup +} channel- the KcsA channel, which is a representative of most known eukaryotic K{sup +} channels. It has long been proposed that the ion transportation in a conventional K{sup +}-channel follows a multi-ion fashion: permeating ions line in a queue in the channel pore and move in a single file through the channel. The conventional view of multi-ion transportation is that the electrostatic repulsion between ions helps to overcome the attraction between ions and the channel pore. In this study, we proposed two SMD simulation schemes, referred to 'the single-ion SMD' simulations and 'the multi-ion SMD' simulations. Concerted movements of a K-W-K sequence in the selectivity filter were observed in the single-ion SMD simulations. The analysis of the concerted movement reveals the molecular mechanism of the multi-ion transportation. It shows that, rather than the long range electrostatic interaction, the short range polar interaction is a more dominant factor in the multi-ion transportation. The polar groups which play a role in the concerted transportation are the water molecules and the backbone carbonyl groups of the selectivity filter. The polar interaction is sensitive to the relative orientation of the polar groups. By changing the orientation of a polar group, the interaction may switch from attractive to repulsive or vice versa. By this means, the energy barrier between binding sites in the selectivity filter can be switched on and off, and therefore the K{sup +} may be able to move to the neighboring binding site without an external driving force. The concerted transportation in the selectivity filter requires a delicate cooperation between K{sup +}, waters, and the backbone carbonyl groups. To

  15. Molecular carbon nitride ion beams for enhanced corrosion resistance of stainless steel

    Science.gov (United States)

    Markwitz, A.; Kennedy, J.

    2017-10-01

    A novel approach is presented for molecular carbon nitride beams to coat stainless surfaces steel using conventional safe feeder gases and electrically conductive sputter targets for surface engineering with ion implantation technology. GNS Science's Penning type ion sources take advantage of the breaking up of ion species in the plasma to assemble novel combinations of ion species. To test this phenomenon for carbon nitride, mixtures of gases and sputter targets were used to probe for CN+ ions for simultaneous implantation into stainless steel. Results from mass analysed ion beams show that CN+ and a variety of other ion species such as CNH+ can be produced successfully. Preliminary measurements show that the corrosion resistance of stainless steel surfaces increased sharply when implanting CN+ at 30 keV compared to reference samples, which is interesting from an application point of view in which improved corrosion resistance, surface engineering and short processing time of stainless steel is required. The results are also interesting for novel research in carbon-based mesoporous materials for energy storage applications and as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost.

  16. Atomistic simulation of damage production by atomic and molecular ion irradiation in GaN

    International Nuclear Information System (INIS)

    Ullah, M. W.; Kuronen, A.; Nordlund, K.; Djurabekova, F.; Karaseov, P. A.; Titov, A. I.

    2012-01-01

    We have studied defect production during single atomic and molecular ion irradiation having an energy of 50 eV/amu in GaN by molecular dynamics simulations. Enhanced defect recombination is found in GaN, in accordance with experimental data. Instantaneous damage shows non-linearity with different molecular projectile and increasing molecular mass. Number of instantaneous defects produced by the PF 4 molecule close to target surface is four times higher than that for PF 2 molecule and three times higher than that calculated as a sum of the damage produced by one P and four F ion irradiation (P+4×F). We explain this non-linearity by energy spike due to molecular effects. On the contrary, final damage created by PF 4 and PF 2 shows a linear pattern when the sample cools down. Total numbers of defects produced by Ag and PF 4 having similar atomic masses are comparable. However, defect-depth distributions produced by these species are quite different, also indicating molecular effect.

  17. Development of a Submillimeter Multipass Spectrometer for the Study of Molecular Ions

    Science.gov (United States)

    Carroll, A.; Rocher, B.; Laas, J. C.; Deprince, B. A.; Hays, B.; Weaver, S. L. Widicus; Lang, S.

    2012-06-01

    We have developed a multipass spectrometer for the submillimeter spectral region that is being used to study molecular ions through gas phase spectroscopy. The optical configuration is based on the design of Perry and coworkers that was implemented in the optical regime. To our knowledge, this is the first implementation of this optical configuration at long wavelengths. The setup involves two nearly concentric spherical mirrors that focus the multiple beam passes into a small area, or ``waist'', in the middle of the sample chamber. A supersonic molecular beam is coupled to the setup so that the molecular beam crosses the optical path at the waist. Initial studies have focused on neutral test molecules to probe the physical properties of the molecular beam under various arrangements of the molecular source relative to the optical path. Current studies focus on coupling a plasma discharge source to the setup to enable the study of molecular ions. Here we present the design of this instrument, compare the spectrometer capabilities to a traditional single pass spectrometer, and discuss the results of initial spectroscopic studies.

  18. Biomimetic supercontainers for size-selective electrochemical sensing of molecular ions

    Science.gov (United States)

    Netzer, Nathan L.; Must, Indrek; Qiao, Yupu; Zhang, Shi-Li; Wang, Zhenqiang; Zhang, Zhen

    2017-04-01

    New ionophores are essential for advancing the art of selective ion sensing. Metal-organic supercontainers (MOSCs), a new family of biomimetic coordination capsules designed using sulfonylcalix[4]arenes as container precursors, are known for their tunable molecular recognition capabilities towards an array of guests. Herein, we demonstrate the use of MOSCs as a new class of size-selective ionophores dedicated to electrochemical sensing of molecular ions. Specifically, a MOSC molecule with its cavities matching the size of methylene blue (MB+), a versatile organic molecule used for bio-recognition, was incorporated into a polymeric mixed-matrix membrane and used as an ion-selective electrode. This MOSC-incorporated electrode showed a near-Nernstian potentiometric response to MB+ in the nano- to micro-molar range. The exceptional size-selectivity was also evident through contrast studies. To demonstrate the practical utility of our approach, a simulated wastewater experiment was conducted using water from the Fyris River (Sweden). It not only showed a near-Nernstian response to MB+ but also revealed a possible method for potentiometric titration of the redox indicator. Our study thus represents a new paradigm for the rational design of ionophores that can rapidly and precisely monitor molecular ions relevant to environmental, biomedical, and other related areas.

  19. An algorithm to correct saturated mass spectrometry ion abundances for enhanced quantitation and mass accuracy in omic studies

    Energy Technology Data Exchange (ETDEWEB)

    Bilbao, Aivett; Gibbons, Bryson C.; Slysz, Gordon W.; Crowell, Kevin L.; Monroe, Matthew E.; Ibrahim, Yehia M.; Smith, Richard D.; Payne, Samuel H.; Baker, Erin S.

    2018-04-01

    The mass accuracy and peak intensity of ions detected by mass spectrometry (MS) measurements are essential to facilitate compound identification and quantitation. However, high concentration species can easily cause problems if their ion intensities reach beyond the limits of the detection system, leading to distorted and non-ideal detector response (e.g. saturation), and largely precluding the calculation of accurate m/z and intensity values. Here we present an open source computational method to correct peaks above a defined intensity (saturated) threshold determined by the MS instrumentation such as the analog-to-digital converters or time-to-digital converters used in conjunction with time-of-flight MS. In this method, the isotopic envelope for each observed ion above the saturation threshold is compared to its expected theoretical isotopic distribution. The most intense isotopic peak for which saturation does not occur is then utilized to re-calculate the precursor m/z and correct the intensity, resulting in both higher mass accuracy and greater dynamic range. The benefits of this approach were evaluated with proteomic and lipidomic datasets of varying complexities. After correcting the high concentration species, reduced mass errors and enhanced dynamic range were observed for both simple and complex omic samples. Specifically, the mass error dropped by more than 50% in most cases with highly saturated species and dynamic range increased by 1-2 orders of magnitude for peptides in a blood serum sample.

  20. Dansyl-naphthalimide dyads as molecular probes: effect of spacer group on metal ion binding properties.

    Science.gov (United States)

    Shankar, Balaraman H; Ramaiah, Danaboyina

    2011-11-17

    Interaction of a few dansyl-naphthalimide conjugates 1a-e linked through polymethylene spacer groups with various metal ions was investigated through absorption, fluorescence, NMR, isothermal calorimetric (ITC), and laser flash photolysis techniques. The characteristic feature of these dyads is that they exhibit competing singlet-singlet energy transfer (SSET) and photoinduced electron transfer (PET) processes, both of which decrease with the increase in spacer length. Depending on the spacer group, these dyads interact selectively with divalent Cu(2+) and Zn(2+) ions, as compared to other mono- and divalent metal ions. Jobs plot analysis showed that these dyads form 2:3 complexes with Cu(2+) ions, while 1:1 complexes were observed with Zn(2+) ions. The association constants for the Zn(2+) and Cu(2+) complexes were determined and are found to be in the order 10(3)-10(5) M(-1). Irrespective of the length of the spacer group, these dyads interestingly act as fluorescence ratiometric molecular probes for Cu(2+) ions by altering the emission intensity of both dansyl and naphthalimide chromophores. In contrast, only the fluorescence intensity of the naphthalimide chromophore of the lower homologues (n = 1-3) was altered by Zn(2+) ions. (1)H NMR and ITC measurements confirmed the involvement of both sulfonamide and dimethylamine groups in the complexation with Cu(2+) ions, while only the latter group was involved with Zn(2+) ions. Laser excitation of the dyads 1a-e showed formation of a transient absorption which can be attributed to the radical cation of the naphthalimide chromophore, whereas only the triplet excited state of the dyads 1a-e was observed in the presence of Cu(2+) ions. Uniquely, the complexation of 1a-e with Cu(2+) ions affects both PET and SSET processes, while only the PET process was partially inhibited by Zn(2+) ions in the lower homologues (n = 1-3) and the higher homologues exhibited negligible changes in their emission properties. Our results

  1. Gas-phase ion-molecular reactions of free ethylsilylic ions with ethylene

    International Nuclear Information System (INIS)

    Shchukin, E.V.; Kochina, T.A.; Sinotova, E.N.; Ignat'ev, I.S.

    2001-01-01

    Interaction of ethylsilylic ions, resulting from β-decay of tritium compounds, with ethylene in gaseous phase was studied by radiochemical method. The interaction occurs via formation of excited adduct C 4 H 11 Si + , its structure presenting a complex of ethylsilylic cation and ethylene. In the course of the complex lifetime isotopic exchange between the cation tritium atoms and proton of ethylene takes place along with isomerization of ethylsilylic cation into dimethylsilylic one. Decomposition of the complex gives rise largely to labeled ethylene formation [ru

  2. Acceleration of cluster and molecular ions by TIARA 3 MV tandem accelerator

    CERN Document Server

    Saitoh, Y; Tajima, S

    2000-01-01

    We succeeded in accelerating molecular and cluster ions (B sub 2 sub - sub 4 , C sub 2 sub - sub 1 sub 0 , O sub 2 , Al sub 2 sub - sub 4 , Si sub 2 sub - sub 4 , Cu sub 2 sub - sub 3 , Au sub 2 sub - sub 3 , LiF, and AlO) to MeV energies with high-intensity beam currents by means of a 3 MV tandem accelerator in the TIARA facility. These cluster ions were generated by a cesium sputter-type negative ion source. We tested three types of carbon sputter cathodes in which graphite powder was compressed with different pressures. The pressure difference affected the generating ratio of clusters generated to single atom ions extracted from the source and it appeared that the high-density cathode was suitable. We also investigated the optimum gas pressure for charge exchange in the tandem high-voltage terminal. Clusters of larger size tend to require lower pressure than do smaller ones. In addition, we were able to obtain doubly charged AlO molecular ions. (authors)

  3. Coulomb-explosion technique for determining geometrical structures of molecular ions

    International Nuclear Information System (INIS)

    Gemmell, D.S.

    1981-01-01

    Traditional experimental techniques (e.g. studies on photon absorption or emission) for determining the sterochemical structures of neutral molecules are extremeley difficult to apply to molecular ions because of problems in obtaining a sufficient spatial density of the ions to be studied. Recent high-resolution measurements on the energy and angle distributions of the fragments produced when fast (MeV) molecular-ion beams from an electrostatic accelerator dissociate (Coulomb explode) in thin foils and in gases, offer promising possibilities for deducing the sterochemical structures of the molecular ions constituting the incident beams. Bond lengths have been determined in this way for several diatomic projectiles (H 2+ , HeH + , CH + , NH + , OH + , N 2+ , O 2+ , etc.) with an accuracy of approx. 0.01 A. H 3+ has been demonstrated (for the first time) to be equilateral triangular and the interproton distance measured. Measurements on single fragments from CO 2+ , N 2 O + , C 3 H 3+ , and CH/sub n/ + have revealed the gross structures of the projectiles. An apparatus has recently been constructed at Argonne to permit precise measurements on fragments in coincidence. The apparatus has been tested on a known structure (OH 2+ ). The O-H bond length was found to be 1.0 +- 0.04 A and the H-O-H bond angle was measured as 110 --- 2 0 . These values are in excellent agreement with those found in optical experiments (0.999 A and 110.5 0 ). This Coulomb explosion technique can be expected to be refined in accuracy and to be extended to a wide range of molecular ions whose structures are inaccessible by other means

  4. A molecular-gap device for specific determination of mercury ions

    Science.gov (United States)

    Guo, Zheng; Liu, Zhong-Gang; Yao, Xian-Zhi; Zhang, Kai-Sheng; Chen, Xing; Liu, Jin-Huai; Huang, Xing-Jiu

    2013-11-01

    Specific determination/monitoring of trace mercury ions (Hg2+) in environmental water is of significant importance for drinking safety. Complementarily to conventional inductively coupled plasma mass spectrometry and atomic emission/absorption spectroscopy, several methods, i.e., electrochemical, fluorescent, colorimetric, and surface enhanced Raman scattering approaches, have been developed recently. Despite great success, many inevitably encounter the interferences from other metal ions besides the complicated procedures and sophisticated equipments. Here we present a molecular-gap device for specific determination of trace Hg2+ in both standardized solutions and environmental samples based on conductivity-modulated glutathione dimer. Through a self-assembling technique, a thin film of glutathione monolayer capped Au nanoparticles is introduced into 2.5 μm-gap-electrodes, forming numerous double molecular layer gaps. Notably, the fabricated molecular-gap device shows a specific response toward Hg2+ with a low detection limit actually measured down to 1 nM. Theoretical calculations demonstrate that the specific sensing mechanism greatly depends on the electron transport ability of glutathione dimer bridged by heavy metal ions, which is determined by its frontier molecular orbital, not the binding energy.

  5. Molecular structure studies by 3D imaging of fast ion beams

    International Nuclear Information System (INIS)

    Kanter, E.P.; Vager, Z.; Both, G.; Cooney, P.J.; Faibis, A.; Koenig, W.; Zabransky, B.J.; Zajfman, D.

    1986-01-01

    The use of the Coulomb-explosion technique combined with a radically new multi-particle detector, extremely thin film targets, and low-excitation ion source has enabled, for the first time, direct measurements of the complete stereochemistry of complex polyatomic molecular ions. We outline the methods used and present results for protonated acetylene (C 2 H 3 + ) and the methane cation (CH 4 + ) as examples. We demonstrate the techniques by which these methods can be generalized to determine directly vibrational motions in polyatomic molecules. 24 refs., 4 figs

  6. Molecular spectroscopy by stepwise two-photon ion-pair production at 71 nm

    International Nuclear Information System (INIS)

    Kung, A.H.; Page, R.H.; Larkin, R.J.; Shen, Y.R.; Lee, Y.T.

    1985-06-01

    The Rydberg states of H 2 have been a continuing subject of intensive study by various research groups. However, understanding of the high lying electronic states of this molecule has been inhibited by the lack of spectroscopic data in the region 2 in a molecular beam using the two lowest excited states of H 2 as the intermediate level. This excitation, coupled with the detection of background-free H - ions has enabled us to uncover, for the first time, spectroscopic features that are difficult to observe in positive ion detection. These features have been successfully assigned to new Rydberg series converging to the high vibrations of the H 2 + ground electronic state

  7. Molecular dispersion energy parameters for alkali and halide ions in aqueous solution

    International Nuclear Information System (INIS)

    Reiser, S.; Deublein, S.; Hasse, H.; Vrabec, J.

    2014-01-01

    Thermodynamic properties of aqueous solutions containing alkali and halide ions are determined by molecular simulation. The following ions are studied: Li + , Na + , K + , Rb + , Cs + , F − , Cl − , Br − , and I − . The employed ion force fields consist of one Lennard-Jones (LJ) site and one concentric point charge with a magnitude of ±1 e. The SPC/E model is used for water. The LJ size parameter of the ion models is taken from Deublein et al. [J. Chem. Phys. 136, 084501 (2012)], while the LJ energy parameter is determined in the present study based on experimental self-diffusion coefficient data of the alkali cations and the halide anions in aqueous solutions as well as the position of the first maximum of the radial distribution function of water around the ions. On the basis of these force field parameters, the electric conductivity, the hydration dynamics of water molecules around the ions, and the enthalpy of hydration is predicted. Considering a wide range of salinity, this study is conducted at temperatures of 293.15 and 298.15 K and a pressure of 1 bar

  8. Ejection of solvated ions from electrosprayed methanol/water nanodroplets studied by molecular dynamics simulations.

    Science.gov (United States)

    Ahadi, Elias; Konermann, Lars

    2011-06-22

    The ejection of solvated small ions from nanometer-sized droplets plays a central role during electrospray ionization (ESI). Molecular dynamics (MD) simulations can provide insights into the nanodroplet behavior. Earlier MD studies have largely focused on aqueous systems, whereas most practical ESI applications involve the use of organic cosolvents. We conduct simulations on mixed water/methanol droplets that carry excess NH(4)(+) ions. Methanol is found to compromise the H-bonding network, resulting in greatly increased rates of ion ejection and solvent evaporation. Considerable differences in the water and methanol escape rates cause time-dependent changes in droplet composition. Segregation occurs at low methanol concentration, such that layered droplets with a methanol-enriched periphery are formed. This phenomenon will enhance the partitioning of analyte molecules, with possible implications for their ESI efficiencies. Solvated ions are ejected from the tip of surface protrusions. Solvent bridging prior to ion secession is more extensive for methanol/water droplets than for purely aqueous systems. The ejection of solvated NH(4)(+) is visualized as diffusion-mediated escape from a metastable basin. The process involves thermally activated crossing of a ~30 kJ mol(-1) free energy barrier, in close agreement with the predictions of the classical ion evaporation model.

  9. Electron loss from multiply protonated lysozyme ions in high energy collisions with molecular oxygen

    DEFF Research Database (Denmark)

    Hvelplund, P; Nielsen, SB; Sørensen, M

    2001-01-01

    We report on the electron loss from multiply protonated lysozyme ions Lys-Hn(n)+ (n = 7 - 17) and the concomitant formation of Lys-Hn(n+1)+. in high-energy collisions with molecular oxygen (laboratory kinetic energy = 50 x n keV). The cross section for electron loss increases with the charge state...... of the precursor from n = 7 to n = 11 and then remains constant when n increases further. The absolute size of the cross section ranges from 100 to 200 A2. The electron loss is modeled as an electron transfer process between lysozyme cations and molecular oxygen....

  10. Spectrofluorometric and Molecular Modeling Studies on Binding of Nitrite Ion with Bovine Hemoglobin: Effect of Nitrite Ion on Amino Acid Residues

    Science.gov (United States)

    Madrakian, T.; Bagheri, H.; Afkhami, A.

    2015-05-01

    The interaction between nitrite ion and bovine hemoglobin was investigated by a spectrofluorometric technique. The experimental results indicated that the interaction causes a static quenching of the fluorescence of bovine hemoglobin, that the binding reaction is spontaneous, and that H-bonding interactions play a major role in binding of this ion to bovine hemoglobin. The formation constant for this interaction was calculated. Based on Förster's theory of nonradiative energy transfer, the binding distance between this ion and bovine hemoglobin was determined. Furthermore, the interaction of nitrite ion with tyrosine and tryptophan was investigated with synchronous fluorescence. There was no significant shift of the maximum emission wavelength with interactions of the mentioned ion with bovine hemoglobin, which implies that interaction of nitrite ion with bovine hemoglobin does not affect the microenvironment around the tryptophan and tyrosine residues. Furthermore, the effect of nitrite ion on amino acid residues of bovine hemoglobin was studied by a molecular docking technique.

  11. The exotic molecular ion H43+ in a strong magnetic field

    International Nuclear Information System (INIS)

    Olivares P, H.

    2006-01-01

    Using the variational method, a detailed study of the lowest m = 0, -1 electronic states of the exotic molecular ion H3+ 4 in a strong magnetic field, in the linear symmetric configuration parallel to the direction of the magnetic field is carried out. A extended study of the 1σg ground state (J.C. Lopez and A.Turbiner, Phys. Rev A 62, 022510, 2000) was performed obtaining that the potential energy curve displays a sufficiently deep minimum for finite internuclear distances, indicating the possible existence of the molecular ion H 4 3+ , for magnetic fields of strength B > ∼ 3 x 10 13 G. It is demonstrated that the excited state 1π u , can exist for a magnetic field B = 4.414 x 10 13 G corresponding to the limit of applicability of the non-relativistic theory. (Author)

  12. Calculated Cross Sections for the Electron Impact Ionization of Molecular Ions

    Science.gov (United States)

    Deutsch, H.; Becker, K.; Defrance, P.; Onthong, U.; Parajuli, R.; Probst, M.; Matt-Leubner, S.; Maerk, T.

    2002-10-01

    We report the results of the application of the semi- classical Deutsch-Märk (DM) formalism to the calculation of the absolute electron-impact ionization cross section of the molecular ions H2+, N2+, O2+, CD+, CO+, CO2+, H3O+, and CH4+ for which experimental data have been reported . Where available, we also compare our calculated cross sections with calculated cross sections using the BEB method of Kim and co-workers. The level of agreement between the experimentally determined and calculated cross section is satisfactory in some cases. In all cases, the calculated cross sections exceed the measured cross sections which is not surprising in view of the experimental complications in measuring ionization cross sections of molecular ions due to the presence of competing channels such as ionization dissociative ionization, and dissociative excitation. Work supported in part by FWF, OEAW, and NASA.

  13. Three-stage classical molecular dynamics model for simulation of heavy-ion fusion

    Directory of Open Access Journals (Sweden)

    Godre Subodh S.

    2015-01-01

    Full Text Available A three-stage Classical Molecular Dynamics (3S-CMD approach for heavy-ion fusion is developed. In this approach the Classical Rigid-Body Dynamics simulation for heavy-ion collision involving light deformed nucleus is initiated on their Rutherford trajectories at very large initial separation. Collision simulation is then followed by relaxation of the rigid-body constrains for one or both the colliding nuclei at distances close to the barrier when the trajectories of all the nucleons are obtained in a Classical Molecular Dynamics approach. This 3S-CMD approach explicitly takes into account not only the long range Coulomb reorientation of the deformed collision partner but also the internal vibrational excitations of one or both the nuclei at distances close to the barrier. The results of the dynamical simulation for 24Mg+208Pb collision show significant modification of the fusion barrier and calculated fusion cross sections due to internal excitations.

  14. Spatial and energy distributions of the fragments resulting from the dissociation of swift molecular ions in solids

    International Nuclear Information System (INIS)

    Heredia-Avalos, Santiago; Garcia-Molina, Rafael; Abril, Isabel

    2002-01-01

    We have simulated the spatial evolution and energy loss of the fragments that result when swift molecular ions dissociate inside solid targets. In our calculations we have considered that these fragments undergo the following interactions: Coulomb repulsion (among like charged particles), stopping and wake forces (due to electronic excitations induced in the target), and nuclear scattering (with the target nuclei). We study the case of silicon targets irradiated with boron molecular or atomic ions; our results show that the main differences in the energy and spatial distributions of molecular fragments or atomic ions appear at shallow regions, and these tend to disappear at deeper depths

  15. Calcium ions in aqueous solutions: Accurate force field description aided by ab initio molecular dynamics and neutron scattering

    Science.gov (United States)

    Martinek, Tomas; Duboué-Dijon, Elise; Timr, Štěpán; Mason, Philip E.; Baxová, Katarina; Fischer, Henry E.; Schmidt, Burkhard; Pluhařová, Eva; Jungwirth, Pavel

    2018-06-01

    We present a combination of force field and ab initio molecular dynamics simulations together with neutron scattering experiments with isotopic substitution that aim at characterizing ion hydration and pairing in aqueous calcium chloride and formate/acetate solutions. Benchmarking against neutron scattering data on concentrated solutions together with ion pairing free energy profiles from ab initio molecular dynamics allows us to develop an accurate calcium force field which accounts in a mean-field way for electronic polarization effects via charge rescaling. This refined calcium parameterization is directly usable for standard molecular dynamics simulations of processes involving this key biological signaling ion.

  16. Detailed calculation of low-energy positron scattering by the hydrogen molecular ion

    International Nuclear Information System (INIS)

    Armour, E.A.G.; Carr, J.M.; Franklin, C.P.

    1996-01-01

    Detailed calculations are made using the Kohn method of positron scattering by the hydrogen molecular ion below the positronium formation threshold at 9.45 eV. Phase shifts from the two-centre Coulomb value are obtained for the lowest partial wave of Σ g + symmetry using a very flexible trial function containing a large number of short-range correlation functions. The convergence of the results with respect to both the linear and non-linear parameters is explored. (author)

  17. Hydrogen atom and the H+2 and HeH++ molecular ions inside prolate spheroidal boxes

    International Nuclear Information System (INIS)

    Ley-Koo, E.; Cruz, S.A.

    1981-01-01

    We formulate the exact solution of the Schroedinger equation for systems of one electron in the Coulomb field of one or two fixed nuclei at the foci inside prolate spheroidal boxes. Numerical results are obtained for the energy eigenvalues and eigenfunctions of the lowest states of the hydrogen atom and the H + 2 and HeH ++ molecular ions for boxes of different sizes and eccentricities. We also evaluate the hyperfine splitting of atomic hydrogen and of H + 2

  18. A new state of the H sub 2 sup + molecular ion

    CERN Document Server

    Carbonell, J; Hilico, L; Kilic, S; Lazauskas, R

    2002-01-01

    A new state of the H sub 2 sup + molecular ion with binding energy of 1.09 x 10 sup - sup 9 a.u. below the first dissociation limit is predicted, using highly accurate numerical nonrelativistic quantum calculations. It is the first L=0 excited state, antisymmetric with respect to the exchange of the two protons. It manifests itself as a huge p-H scattering length of a = 750 +-5 Bohr radii.

  19. A computer program for external modes in complex ionic crystals (the rigid molecular-ion model)

    International Nuclear Information System (INIS)

    Chaplot, S.L.

    1978-01-01

    A computer program DISPR has been developed to calculate the external mode phonon dispersion relation in the harmonic approximation for complex ionic crystals using the rigid molecular ion model. A description of the program, the flow diagram and the required input information are given. A sample calculation for α-KNO 3 is presented. The program can handle any type of crystal lattice with any number of atoms and molecules per unit cell with suitable changes in dimension statements. (M.G.B.)

  20. Substitutional HCN- molecular ions in KCN crystal: a paramagnetic probe in a ferroelastic material

    International Nuclear Information System (INIS)

    Weid, J.P. von der; Carmo, L.C.S. do; Ribeiro, S.C.

    1978-01-01

    The HCN - molecular ion was produced in single crystals of KCN: 10 -2 OH - irradiated by UV light at 77 K. The spin Hamiltonian parameters were measured at 60 K and the temperature dependence of the spectrum was investigated between 60 K and 170 K. This temperature dependence is explained by the rapid motion of the molecule with the increasing temperature and the elastic interaction of the molecule with the surrounding ions. Using the similarity between the paramagnetic HCN - molecule and the CN - ions of the host lattice a qualitative picture of the local phenomena occuring in the ferroelastic phase of KCN could be made and the energy of the elastic interaction between CN - was estimated of the order of 7 meV [pt

  1. Simultaneous ion and neutral evaporation in aqueous nanodrops: experiment, theory, and molecular dynamics simulations.

    Science.gov (United States)

    Higashi, Hidenori; Tokumi, Takuya; Hogan, Christopher J; Suda, Hiroshi; Seto, Takafumi; Otani, Yoshio

    2015-06-28

    We use a combination of tandem ion mobility spectrometry (IMS-IMS, with differential mobility analyzers), molecular dynamics (MD) simulations, and analytical models to examine both neutral solvent (H2O) and ion (solvated Na(+)) evaporation from aqueous sodium chloride nanodrops. For experiments, nanodrops were produced via electrospray ionization (ESI) of an aqueous sodium chloride solution. Two nanodrops were examined in MD simulations: a 2500 water molecule nanodrop with 68 Na(+) and 60 Cl(-) ions (an initial net charge of z = +8), and (2) a 1000 water molecule nanodrop with 65 Na(+) and 60 Cl(-) ions (an initial net charge of z = +5). Specifically, we used MD simulations to examine the validity of a model for the neutral evaporation rate incorporating both the Kelvin (surface curvature) and Thomson (electrostatic) influences, while both MD simulations and experimental measurements were compared to predictions of the ion evaporation rate equation of Labowsky et al. [Anal. Chim. Acta, 2000, 406, 105-118]. Within a single fit parameter, we find excellent agreement between simulated and modeled neutral evaporation rates for nanodrops with solute volume fractions below 0.30. Similarly, MD simulation inferred ion evaporation rates are in excellent agreement with predictions based on the Labowsky et al. equation. Measurements of the sizes and charge states of ESI generated NaCl clusters suggest that the charge states of these clusters are governed by ion evaporation, however, ion evaporation appears to have occurred with lower activation energies in experiments than was anticipated based on analytical calculations as well as MD simulations. Several possible reasons for this discrepancy are discussed.

  2. Molecular Dynamics Simulation of the Antiamoebin Ion Channel: Linking Structure and Conductance

    Science.gov (United States)

    Wilson, Michael A.; Wei, Chenyu; Bjelkmar, Paer; Wallace, B. A.; Pohorille, Andrew

    2011-01-01

    Molecular dynamics simulations were carried out in order to ascertain which of the potential multimeric forms of the transmembrane peptaibol channel, antiamoebin, is consistant with its measured conductance. Estimates of the conductance obtained through counting ions that cross the channel and by solving the Nernst-Planck equation yield consistent results, indicating that the motion of ions inside the channel can be satisfactorily described as diffusive.The calculated conductance of octameric channels is markedly higher than the conductance measured in single channel recordings, whereas the tetramer appears to be non-conducting. The conductance of the hexamer was estimated to be 115+/-34 pS and 74+/-20 pS, at 150 mV and 75 mV, respectively, in satisfactory agreement with the value of 90 pS measured at 75 mV. On this basis we propose that the antiamoebin channel consists of six monomers. Its pore is large enough to accommodate K(+) and Cl(-) with their first solvation shells intact. The free energy barrier encountered by K(+) is only 2.2 kcal/mol whereas Cl(-) encounters a substantially higher barrier of nearly 5 kcal/mol. This difference makes the channel selective for cations. Ion crossing events are shown to be uncorrelated and follow Poisson statistics. keywords: ion channels, peptaibols, channel conductance, molecular dynamics

  3. Multiparticle 3D imaging technique to study the structure of molecular ions

    International Nuclear Information System (INIS)

    Koenig, W.; Faibis, A.; Kanter, E.P.; Vager, Z.; Zabransky, B.J.

    1984-01-01

    When energetic molecular ions (E/sub ion/ = 0.1 to 0.5 MeV/amu) pass through thin solid targets a Coulomb explosion ensues due to the rapid (approx. 10 -17 s) stripping of the valence electrons. This process has been successfully used to derive stereochemical information on diatomic and on selected triatomic ions. In order to investigate more complex molecular ions as well as to obtain more accurate and detailed structure information, a large area, multiparticle, position- and time-sensitive detector has been developed to detect all atomic fragments in coincidence. The requirement of multiparticle detection independent of the relative particle positions leads to a rather complex data-readout and -reduction system containing approx. 650 analog-to-digital conversions per event. The system relies heavily on techniques developed for high energy physics experiments during recent years. The single event resolution of the apparatus with respect to bond-lengths and -angles has been studied by Monte Carlo simulations and is typically a few percent

  4. Nonlinear effects in defect production by atomic and molecular ion implantation

    International Nuclear Information System (INIS)

    David, C.; Dholakia, Manan; Chandra, Sharat; Nair, K. G. M.; Panigrahi, B. K.; Amirthapandian, S.; Amarendra, G.; Varghese Anto, C.; Santhana Raman, P.; Kennedy, John

    2015-01-01

    This report deals with studies concerning vacancy related defects created in silicon due to implantation of 200 keV per atom aluminium and its molecular ions up to a plurality of 4. The depth profiles of vacancy defects in samples in their as implanted condition are carried out by Doppler broadening spectroscopy using low energy positron beams. In contrast to studies in the literature reporting a progressive increase in damage with plurality, implantation of aluminium atomic and molecular ions up to Al 3 , resulted in production of similar concentration of vacancy defects. However, a drastic increase in vacancy defects is observed due to Al 4 implantation. The observed behavioural trend with respect to plurality has even translated to the number of vacancies locked in vacancy clusters, as determined through gold labelling experiments. The impact of aluminium atomic and molecular ions simulated using MD showed a monotonic increase in production of vacancy defects for cluster sizes up to 4. The trend in damage production with plurality has been explained on the basis of a defect evolution scheme in which for medium defect concentrations, there is a saturation of the as-implanted damage and an increase for higher defect concentrations

  5. Using an electrostatic accelerator to determine the stereochemical structures of molecular ions

    International Nuclear Information System (INIS)

    Gemmell, D.S.

    1980-01-01

    Recent high-resolution measurements on the energy and angle distributions of the fragments produced when fast (MeV) molecular-ion beams from an electrostatic accelerator dissociate (Coulomb explode) in thin foils and in gases, offer promising possibilities for deducing the stereochemical structures of the molecular ions constituting the incident beams. Bond lengths have been determined in this way for several diatomic projectiles (H 2 + , HeH + , CH + , NH + , OH + , N 2 + , O 2 + , etc.) with an accuracy of approx. 0.01 A. H 3 + has been demonstrated (for the first time) to be equilateral triangular and the interproton distance measured. Measurements on single fragments from CO 2 + , N 2 O + , C 3 H 3 + , and CH/sub n/ + have revealed the gross structures of the projectiles. An apparatus has recently been constructed at Argonne to permit precise measurements on fragments in coincidence. The apparatus has been tested on a known structure (OH 2 + ). The O-H bond length was found to be 1.0 +- 0.04 A and the H-O-H bond angle was measured as 110 +- 2 0 . These values are in excellent agreement with those found in optical experiments (0.999 A and 110.5 0 ). This Coulomb explosion technique can be expected to be refined in accuracy and to be extended to a wide range of molecular ions whose structures are inaccessible by other means

  6. Molecular models of alginic acid: Interactions with calcium ions and calcite surfaces

    Science.gov (United States)

    Perry, Thomas D.; Cygan, Randall T.; Mitchell, Ralph

    2006-07-01

    Cation binding by polysaccharides is observed in many environments and is important for predictive environmental modeling, and numerous industrial and food technology applications. The complexities of these cation-organic interactions are well suited for predictive molecular modeling and the analysis of conformation and configuration of polysaccharides and their influence on cation binding. In this study, alginic acid was chosen as a model polymer system and representative disaccharide and polysaccharide subunits were developed. Molecular dynamics simulation of the torsion angles of the ether linkage between various monomeric subunits identified local and global energy minima for selected disaccharides. The simulations indicate stable disaccharide configurations and a common global energy minimum for all disaccharide models at Φ = 274 ± 7°, Ψ = 227 ± 5°, where Φ and Ψ are the torsion angles about the ether linkage. The ability of disaccharide subunits to bind calcium ions and to associate with the (101¯4) surface of calcite was also investigated. Molecular models of disaccharide interactions with calcite provide binding energy differences for conformations that are related to the proximity and residence densities of the electron-donating moieties with calcium ions on the calcite surface, which are controlled, in part, by the torsion of the ether linkage between monosaccharide units. Dynamically optimized configurations for polymer alginate models with calcium ions were also derived.

  7. Ion-Exchange Sample Displacement Chromatography as a Method for Fast and Simple Isolation of Low- and High-Abundance Proteins from Complex Biological Mixtures

    Directory of Open Access Journals (Sweden)

    Martina Srajer Gajdosik

    2014-01-01

    Full Text Available Sample displacement chromatography (SDC in reversed phase and ion-exchange modes was introduced at the end of 1980s. This chromatographic method was first used for preparative purification of synthetic peptides, and subsequently adapted for protein fractionation, mainly in anion-exchange mode. In the past few years, SDC has been successfully used for enrichment of low- and medium-abundance proteins from complex biological fluids on both monolithic and bulk chromatographic supports. If aqueous mobile phase is used with the application of mild chromatographic conditions, isolated proteins are not denatured and can also keep their biological activity. In this paper, the use of SDC in anion-exchange mode on a high-capacity chromatographic resin for separation of proteins from complex biological mixtures such as human plasma is demonstrated. By use of three and more columns coupled in series during sample application, and subsequent parallel elution of detached columns, additional separation of bound proteins was achieved. Highly enriched human serum albumin fraction and a number of physiologically active medium- and low-abundance proteins could be fractionated and detected by electrospray ionization tandem mass spectrometry (ESI-MS/MS and matrix assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF-MS. The use of the aforementioned columns that can be sanitized with 1 M sodium hydroxide for further application of SDC in biotechnology and food technology was discussed.

  8. Ion-microprobe measurements of Mg, Ca, Ti and Fe isotopic ratios and trace element abundance in hibonite-bearing inclusions in primitive meteorites

    International Nuclear Information System (INIS)

    Fahey, A.J.

    1988-01-01

    This thesis reports the isotopic abundances of Mg, Ca, and Ti and rare earth element (REE) abundances in 19 hibonite-bearing inclusions from primative meteorites. The isotopic ratios of Fe were measured in one of the samples, Lance HH-1. These measurements were made by means of secondary ion mass spectrometry (CAMECA IMS-3f). The novel hardware and software developments that made this work possible are described in detail. The samples were studied in thin section in order to investigate the relationship between the inclusions and their mineralogical environments. Inclusions from a number of different meteorites, specifically, Mighei, Murray, Murchison, Lance, Efremovka, Vigarano, Qingzhen, Dhajala, and Semarkona, were studied. The isotopes of Ca and Ti show large and correlated abundance anomalies in their most neutron-rich isotopes, 48 Ca and 50 Ti. The largest anomalies among the samples studied here are in the Murray inclusion MY-F6, with a 4.6% deficit in 48 Ca and a 5.2% deficit in 50 Ti, and Lance HH-1, with 3.3% and 6.0% deficits in 48 Ca and 50 Ti respectively. Correlated excesses of 48 Ca and 50 Ti, up to 2.4% and 1.4% respectively, are found in some other samples studied here. The fact that there is a correlation of isotopic anomalies in two different elements is clear evidence for a nucleosynthetic origin of these effects. Various possibilities for the origin of these isotopic anomalies are discussed and it is shown that a Cosmic Chemical Memory-like model of the incomplete mixing of dust grains from one or several supernovae is sufficient to explain the data. Magnesium isotopes show excesses of 26 Mg, attributable to the in-situ decay of 26 Al, in 7 of these inclusions

  9. A molecular line survey toward the nearby galaxies NGC 1068, NGC 253, and IC 342 at 3 mm with the Nobeyama 45 m radio telescope: Impact of an AGN on 1 kpc scale molecular abundances

    Science.gov (United States)

    Nakajima, Taku; Takano, Shuro; Kohno, Kotaro; Harada, Nanase; Herbst, Eric

    2018-01-01

    It is important to investigate the relationships between the power sources and the chemical compositions of galaxies in order to understand the scenario of galaxy evolution. We carried out an unbiased molecular line survey towards active galactic nucleus (AGN) host galaxy NGC1068, and prototypical starburst galaxies, NGC 253 and IC 342, with the Nobeyama 45 m telescope in the 3 mm band. The advantage of this line survey is that the obtained spectra have the highest angular resolution ever obtained with single-dish telescopes. In particular, the beam size of this telescope is ˜15″-19″, which is able to separate spatially the nuclear molecular emission from that of the starburst ring (d ˜ 30″) in NGC 1068. We successfully detected approximately 23 molecular species in each galaxy, and calculated rotation temperatures and column densities. We estimate the molecular fractional abundances with respect to 13CO and CS molecules and compare them among three galaxies in order to investigate the chemical signatures of an AGN environment. As a result, we found clear trends in the abundances of molecules surrounding the AGN on a 1-kpc scale. HCN, H13CN, CN, 13CN, and HC3N are more abundant, and CH3CCH is deficient in NGC 1068 compared with the starburst galaxies. High abundances of HCN, H13CN, and HC3N suggest that the circumnuclear disk in NGC 1068 is in a high-temperature environment. The reason for the non-detection of CH3CCH is likely to be dissociation by high-energy radiation or less sublimation of a precursor of CH3CCH from grains.

  10. Simulation of the energy spectra of original versus recombined H2+ molecular ions transmitted through thin foils

    International Nuclear Information System (INIS)

    Barriga-Carrasco, Manuel D.; Garcia-Molina, Rafael

    2004-01-01

    This work presents the results of computer simulations for the energy spectra of original versus recombined H 2 + molecular ions transmitted through thin amorphous carbon foils, for a broad range of incident energies. A detailed description of the projectile motion through the target has been done, including nuclear scattering and Coulomb repulsion as well as electronic self-retarding and wake forces; the two latter are calculated in the dielectric formalism framework. Differences in the energy spectra of recombined and original transmitted H 2 + molecular ions clearly appear in the simulations, in agreement with the available experimental data. Our simulation code also differentiates the contributions due to original and to recombined H 2 + molecular ions when the energy spectra contain both contributions, a feature that could be used for experimental purposes in estimating the ratio between the number of original and recombined H 2 + molecular ions transmitted through thin foils

  11. Helium abundance and speed difference between helium ions and protons in the solar wind from coronal holes, active regions, and quiet Sun

    Science.gov (United States)

    Fu, Hui; Madjarska, M. S.; Li, Bo; Xia, LiDong; Huang, ZhengHua

    2018-05-01

    Two main models have been developed to explain the mechanisms of release, heating and acceleration of the nascent solar wind, the wave-turbulence-driven (WTD) models and reconnection-loop-opening (RLO) models, in which the plasma release processes are fundamentally different. Given that the statistical observational properties of helium ions produced in magnetically diverse solar regions could provide valuable information for the solar wind modelling, we examine the statistical properties of the helium abundance (AHe) and the speed difference between helium ions and protons (vαp) for coronal holes (CHs), active regions (ARs) and the quiet Sun (QS). We find bimodal distributions in the space of AHeand vαp/vA(where vA is the local Alfvén speed) for the solar wind as a whole. The CH wind measurements are concentrated at higher AHeand vαp/vAvalues with a smaller AHedistribution range, while the AR and QS wind is associated with lower AHeand vαp/vA, and a larger AHedistribution range. The magnetic diversity of the source regions and the physical processes related to it are possibly responsible for the different properties of AHeand vαp/vA. The statistical results suggest that the two solar wind generation mechanisms, WTD and RLO, work in parallel in all solar wind source regions. In CH regions WTD plays a major role, whereas the RLO mechanism is more important in AR and QS.

  12. Measuring NH3 and other molecular abundance profiles from 5 microns ground-based spectroscopy in support of JUNO investigations

    Science.gov (United States)

    Blain, Doriann; Fouchet, Thierry; Greathouse, Thomas K.; Bézard, Bruno; Encrenaz, Therese; Lacy, John H.; Drossart, Pierre

    2017-10-01

    We report on results of an observational campaign to support the Juno mission. At the beginning of 2016, using TEXES (Texas Echelon cross-dispersed Echelle Spectrograph), mounted on the NASA Infrared Telescope Facility (IRTF), we obtained data cubes of Jupiter in the 1930--1943 cm-1 and 2135--2153 cm-1 spectral ranges (around 5 μm), which probe the atmosphere in the 1--4 bar region, with a spectral resolution of ≈0.3 cm-1 (R≈7000) and an angular resolution of ≈1.5''.This dataset is analyzed by a code that combines a line-by-line radiative transfer model with a non-linear optimal estimation inversion method. The inversion retrieves the abundance profiles of NH3 and PH3, which are the main conbtributors at these wavelengths, as well as the cloud transmittance. This retrieval is performed over more than one thousand pixels of our data cubes, producing effective maps of the disk, where all the major belts are visible (NEB, SEB, NTB, STB, NNTB and SSTB).We will present notably our retrieved NH3 abundance maps which can be compared with the unexpected latitudinal distribution observed by Juno's MWR (Bolton et al., 2017 and Li et al. 2017), as well as our other species retrieved abundance maps and discuss on their significance for the understanding of Jupiter's atmospheric dynamics.References:Bolton, S., et al. (2017), Jupiter’s interior and deep atmosphere: The first close polar pass with the Juno spacecraft, Science, doi:10.1126/science.aal2108, in press.Li, C., A. P. Ingersoll, S. Ewald, F. Oyafuso, and M. Janssen (2017), Jupiter’s global ammonia distribution from inversion of Juno Microwave Radiometer observations, Geophys. Res. Lett., doi:10.1002/2017GL073159, in press.

  13. Molecular Ultrasound Imaging of Early Vascular Response in Prostate Tumors Irradiated with Carbon Ions

    Directory of Open Access Journals (Sweden)

    Moritz Palmowski

    2009-09-01

    Full Text Available Individualized treatments with combination of radiotherapy and targeted drugs require knowledge about the behavior of molecular targets after irradiation. Angiogenic marker expression has been studied after conventional radiotherapy, but little is known about marker response to charged particles. For the very first time, we used molecular ultrasound imaging to intraindividually track changes in angiogenic marker expression after carbon ion irradiation in experimental tumors. Expression of intercellular adhesion molecule-1 (ICAM-1 and of αvβ3-integrin in subcutaneous AT-1 prostate cancers in rats treated with carbon ions (16 Gy was studied using molecular ultrasound and immunohistochemistry. For this purpose, cyanoacrylate microbubbles were synthesized and linked to specific ligands. The accumulation of targeted microbubbles in tumors was quantified before and 36 hours after irradiation. In addition, tumor vascularization was analyzed using volumetric Doppler ultrasound. In tumors, the accumulation of targeted microbubbles was significantly higher than in nonspecific ones and could be inhibited competitively. Before irradiation, no difference in binding of αvβ3-integrin-specific or ICAM-1-specific microbubbles was observed in treated and untreated animals. After irradiation, however, treated animals showed a significantly higher binding of αvβ3-integrin-specific microbubbles and an enhanced binding of ICAM-1-specific microbubbles than untreated controls. In both groups, a decrease in vascularization occurred during tumor growth, but no significant difference was observed between irradiated and nonirradiated tumors. In conclusion, carbon ion irradiation upregulates ICAM-1 and αvβ3-integrin expression in tumor neovasculature. Molecular ultrasound can indicate the regulation of these markers and thus may help to identify the optimal drugs and time points in individualized therapy regimens.

  14. Molecular size-dependent abundance and composition of dissolved organic matter in river, lake and sea waters.

    Science.gov (United States)

    Xu, Huacheng; Guo, Laodong

    2017-06-15

    Dissolved organic matter (DOM) is ubiquitous in natural waters. The ecological role and environmental fate of DOM are highly related to the chemical composition and size distribution. To evaluate size-dependent DOM quantity and quality, water samples were collected from river, lake, and coastal marine environments and size fractionated through a series of micro- and ultra-filtrations with different membranes having different pore-sizes/cutoffs, including 0.7, 0.4, and 0.2 μm and 100, 10, 3, and 1 kDa. Abundance of dissolved organic carbon, total carbohydrates, chromophoric and fluorescent components in the filtrates decreased consistently with decreasing filter/membrane cutoffs, but with a rapid decline when the filter cutoff reached 3 kDa, showing an evident size-dependent DOM abundance and composition. About 70% of carbohydrates and 90% of humic- and protein-like components were measured in the definition of DOM and its size continuum in quantity and quality in aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Design of a reflex time-of-flight mass spectrometer for the study of the desorption of molecular ions

    International Nuclear Information System (INIS)

    Riggi, F.

    1991-01-01

    A reflex time-of-flight mass spectrometer for the study of the desorption and dissociation of molecular ions has been designed. A general overview of the instrument is reported, together with the different experimental aspects of the technique. These include mechanical and vacuum solutions, secondary ion optics in the electrostatic mirror, electronics, data acquisition and analysis

  16. THE ABUNDANCE OF MOLECULAR HYDROGEN AND ITS CORRELATION WITH MIDPLANE PRESSURE IN GALAXIES: NON-EQUILIBRIUM, TURBULENT, CHEMICAL MODELS

    International Nuclear Information System (INIS)

    Mac Low, Mordecai-Mark; Glover, Simon C. O.

    2012-01-01

    Observations of spiral galaxies show a strong linear correlation between the ratio of molecular to atomic hydrogen surface density R mol and midplane pressure. To explain this, we simulate three-dimensional, magnetized turbulence, including simplified treatments of non-equilibrium chemistry and the propagation of dissociating radiation, to follow the formation of H 2 from cold atomic gas. The formation timescale for H 2 is sufficiently long that equilibrium is not reached within the 20-30 Myr lifetimes of molecular clouds. The equilibrium balance between radiative dissociation and H 2 formation on dust grains fails to predict the time-dependent molecular fractions we find. A simple, time-dependent model of H 2 formation can reproduce the gross behavior, although turbulent density perturbations increase molecular fractions by a factor of few above it. In contradiction to equilibrium models, radiative dissociation of molecules plays little role in our model for diffuse radiation fields with strengths less than 10 times that of the solar neighborhood, because of the effective self-shielding of H 2 . The observed correlation of R mol with pressure corresponds to a correlation with local gas density if the effective temperature in the cold neutral medium of galactic disks is roughly constant. We indeed find such a correlation of R mol with density. If we examine the value of R mol in our local models after a free-fall time at their average density, as expected for models of molecular cloud formation by large-scale gravitational instability, our models reproduce the observed correlation over more than an order-of-magnitude range in density.

  17. The Abundance of Molecular Hydrogen and Its Correlation with Midplane Pressure in Galaxies: Non-equilibrium, Turbulent, Chemical Models

    Science.gov (United States)

    Mac Low, Mordecai-Mark; Glover, Simon C. O.

    2012-02-01

    Observations of spiral galaxies show a strong linear correlation between the ratio of molecular to atomic hydrogen surface density R mol and midplane pressure. To explain this, we simulate three-dimensional, magnetized turbulence, including simplified treatments of non-equilibrium chemistry and the propagation of dissociating radiation, to follow the formation of H2 from cold atomic gas. The formation timescale for H2 is sufficiently long that equilibrium is not reached within the 20-30 Myr lifetimes of molecular clouds. The equilibrium balance between radiative dissociation and H2 formation on dust grains fails to predict the time-dependent molecular fractions we find. A simple, time-dependent model of H2 formation can reproduce the gross behavior, although turbulent density perturbations increase molecular fractions by a factor of few above it. In contradiction to equilibrium models, radiative dissociation of molecules plays little role in our model for diffuse radiation fields with strengths less than 10 times that of the solar neighborhood, because of the effective self-shielding of H2. The observed correlation of R mol with pressure corresponds to a correlation with local gas density if the effective temperature in the cold neutral medium of galactic disks is roughly constant. We indeed find such a correlation of R mol with density. If we examine the value of R mol in our local models after a free-fall time at their average density, as expected for models of molecular cloud formation by large-scale gravitational instability, our models reproduce the observed correlation over more than an order-of-magnitude range in density.

  18. Scattering of atomic and molecular ions from single crystal surfaces of Cu, Ag and Fe

    International Nuclear Information System (INIS)

    Zoest, J.M. van.

    1986-01-01

    This thesis deals with analysis of crystal surfaces of Cu, Ag and Fe with Low Energy Ion scattering Spectroscopy (LEIS). Different atomic and molecular ions with fixed energies below 7 keV are scattered by a metal single crystal (with adsorbates). The energy and direction of the scattered particles are analysed for different selected charge states. In that way information can be obtained concerning the composition and atomic and electronic structure of the single crystal surface. Energy spectra contain information on the composition of the surface, while structural atomic information is obtained by direction measurements (photograms). In Ch.1 a description is given of the experimental equipment, in Ch.2 a characterization of the LEIS method. Ch.3 deals with the neutralization of keV-ions in surface scattering. Two different ways of data interpretation are presented. First a model is treated in which the observed directional dependence of neutralization action of the first atom layer of the surface is presented by a laterally varying thickness of the neutralizing layer. Secondly it is shown that the data can be reproduced by a more realistic, physical model based on atomic transition matrix elements. In Ch.4 the low energy hydrogen scattering is described. The study of the dissociation of H 2 + at an Ag surface r0230ted in a model based on electronic dissociation, initialized by electron capture into a repulsive (molecular) state. In Ch.5 finally the method is applied to the investigation of the surface structure of oxidized Fe. (Auth.)

  19. Generation of Raman lasers from nitrogen molecular ions driven by ultraintense laser fields

    Science.gov (United States)

    Yao, Jinping; Chu, Wei; Liu, Zhaoxiang; Xu, Bo; Chen, Jinming; Cheng, Ya

    2018-03-01

    Atmospheric lasing has aroused much interest in the past few years. The ‘air–laser’ opens promising potential for remote chemical sensing of trace gases with high sensitivity and specificity. At present, several approaches have been successfully implemented for generating highly coherent laser beams in atmospheric condition, including both amplified-spontaneous emission, and narrow-bandwidth stimulated emission in the forward direction in the presence of self-generated or externally injected seed pulses. Here, we report on generation of multiple-wavelength Raman lasers from nitrogen molecular ions ({{{N}}}2+), driven by intense mid-infrared laser fields. Intuitively, the approach appears problematic for the small nonlinear susceptibility of {{{N}}}2+ ions, whereas the efficiency of Raman laser can be significantly promoted in near-resonant condition. More surprisingly, a Raman laser consisting of a supercontinuum spanning from ∼310 to ∼392 nm has been observed resulting from a series near-resonant nonlinear processes including four-wave mixing, stimulated Raman scattering and cross phase modulation. To date, extreme nonlinear optics in molecular ions remains largely unexplored, which provides an alternative means for air–laser-based remote sensing applications.

  20. Predissociation of high-lying Rydberg states of molecular iodine via ion-pair states

    Energy Technology Data Exchange (ETDEWEB)

    Bogomolov, Alexandr S. [Institute of Chemical Kinetics and Combustion, Institutskaya Str. 3, Novosibirsk 630090 (Russian Federation); Grüner, Barbara; Mudrich, Marcel [Physikalisches Institut, Universität Freiburg, D-79104 Freiburg (Germany); Kochubei, Sergei A. [Institute of Semiconductor Physics, ac. Lavrent' yev ave., 13, Novosibirsk 630090 (Russian Federation); Baklanov, Alexey V. [Institute of Chemical Kinetics and Combustion, Institutskaya Str. 3, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090 (Russian Federation)

    2014-03-28

    Velocity map imaging of the photofragments arising from two-photon photoexcitation of molecular iodine in the energy range 73 500–74 500 cm{sup −1} covering the bands of high-lying gerade Rydberg states [{sup 2}Π{sub 1/2}]{sub c}6d;0{sub g}{sup +} and [{sup 2}Π{sub 1/2}]{sub c}6d;2{sub g} has been applied. The ion signal was dominated by the atomic fragment ion I{sup +}. Up to 5 dissociation channels yielding I{sup +} ions with different kinetic energies were observed when the I{sub 2} molecule was excited within discrete peaks of Rydberg states and their satellites in this region. One of these channels gives rise to images of I{sup +} and I{sup −} ions with equal kinetic energy indicating predissociation of I{sub 2} via ion-pair states. The contribution of this channel was up to about 50% of the total I{sup +} signal. The four other channels correspond to predissociation via lower lying Rydberg states giving rise to excited iodine atoms providing I{sup +} ions by subsequent one-photon ionization by the same laser pulse. The ratio of these channels varied from peak to peak in the spectrum but their total ionic signal was always much higher than the signal of (2 + 1) resonance enhanced multi-photon ionization of I{sub 2}, which was previously considered to be the origin of ionic signal in this spectral range. The first-tier E0{sub g}{sup +} and D{sup ′}2{sub g} ion-pair states are concluded to be responsible for predissociation of Rydberg states [{sup 2}Π{sub 1/2}]{sub c}6d;0{sub g}{sup +} and [{sup 2}Π{sub 1/2}]{sub c}6d;2{sub g}, respectively. Further predissociation of these ion-pair states via lower lying Rydberg states gives rise to excited I(5s{sup 2}5p{sup 4}6s{sup 1}) atoms responsible for major part of ion signal. The isotropic angular distribution of the photofragment recoil directions observed for all channels indicates that the studied Rydberg states are long-lived compared with the rotational period of the I{sub 2} molecule.

  1. Quantum optical emulation of molecular vibronic spectroscopy using a trapped-ion device.

    Science.gov (United States)

    Shen, Yangchao; Lu, Yao; Zhang, Kuan; Zhang, Junhua; Zhang, Shuaining; Huh, Joonsuk; Kim, Kihwan

    2018-01-28

    Molecules are one of the most demanding quantum systems to be simulated by quantum computers due to their complexity and the emergent role of quantum nature. The recent theoretical proposal of Huh et al. (Nature Photon., 9, 615 (2015)) showed that a multi-photon network with a Gaussian input state can simulate a molecular spectroscopic process. Here, we present the first quantum device that generates a molecular spectroscopic signal with the phonons in a trapped ion system, using SO 2 as an example. In order to perform reliable Gaussian sampling, we develop the essential experimental technology with phonons, which includes the phase-coherent manipulation of displacement, squeezing, and rotation operations with multiple modes in a single realization. The required quantum optical operations are implemented through Raman laser beams. The molecular spectroscopic signal is reconstructed from the collective projection measurements for the two-phonon-mode. Our experimental demonstration will pave the way to large-scale molecular quantum simulations, which are classically intractable, but would be easily verifiable by real molecular spectroscopy.

  2. Disintegration of Ar2+ molecular ions under collisions with electrons in a plasma

    International Nuclear Information System (INIS)

    Ivanov, V.A.

    1992-01-01

    A spectroscopic experiment is carried out for investigation of disintegration of Ar 2 + ions by plasma electrons. For the first time in the wide electron temperature range from the room one up to T e ∼ 2 eV is measured the process rate constant. At temperatures lower 0.4 eV the obtained values agree well with published data on the value and temperature dependence of the coefficient of dissociative recombination of Ar 2 + with electrons. When temperature increasing in the range of T e =0.5-2 eV is found substantial rise of the rate of molecular ions disintegration, conditioned by starting dissociation mechanism under collicions with plasma electrons

  3. Nano-memory-element applications of carbon nanocapsule encapsulating potassium ions: molecular dynamics study

    International Nuclear Information System (INIS)

    Kang, Jeong Won; Hwang, Ho Jung

    2004-01-01

    We investigated the internal dynamics of ionic fluidic shuttle memory elements consisting of potassium ions encapsulated in C 640 nanocapsules. The systems proposed were the encapsulated-ion shuttle memory devices such as (13 K + ) at C 640 , (3 K + -C 60 -2 K + ) at C 640 and (5 K + -C 60 ) at C 640 . The energetics and the operating responses of ionic fluidic shuttle memory devices, such as transitions between the two states of the C 640 capsule, were examined by using classical molecular dynamics simulations of the shuttle media in the C 640 capsule under external force fields. The operating force fields for stable operations of the shuttle memory device were investigated.

  4. Studying fundamental physics using quantum enabled technologies with trapped molecular ions

    Science.gov (United States)

    Segal, D. M.; Lorent, V.; Dubessy, R.; Darquié, B.

    2018-03-01

    The text below was written during two visits that Daniel Segal made at Université Paris 13. Danny stayed at Laboratoire de Physique des Lasers the summers of 2008 and 2009 to participate in the exploration of a novel lead in the field of ultra-high resolution spectroscopy. Our idea was to probe trapped molecular ions using Quantum Logic Spectroscopy (QLS) in order to advance our understanding of a variety of fundamental processes in nature. At that time, QLS, a ground-breaking spectroscopic technique, had only been demonstrated with atomic ions. Our ultimate goals were new approaches to the observation of parity violation in chiral molecules and tests of time variations of the fundamental constants. This text is the original research proposal written eight years ago. We have added a series of notes to revisit it in the light of what has been since realized in the field.

  5. Interaction of the model alkyltrimethylammonium ions with alkali halide salts: an explicit water molecular dynamics study

    Directory of Open Access Journals (Sweden)

    M. Druchok

    2013-01-01

    Full Text Available We present an explicit water molecular dynamics simulation of dilute solutions of model alkyltrimethylammonium surfactant ions (number of methylene groups in the tail is 3, 5, 8, 10, and 12 in mixture with NaF, NaCl, NaBr, and NaI salts, respectively. The SPC/E model is used to describe water molecules. Results of the simulation at 298 K are presented in form of the radial distribution functions between nitrogen and carbon atoms of CH2 groups on the alkyltrimethylammonium ion, and the counterion species in the solution. The running coordination numbers between carbon atoms of surfactants and counterions are also calculated. We show that I- counterion exhibits the highest, and F- the lowest affinity to "bind" to the model surfactants. The results are discussed in view of the available experimental and simulation data for this and similar solutions.

  6. The rotation of NO3− as a probe of molecular ion - water interactions

    Directory of Open Access Journals (Sweden)

    Ogden T.

    2013-03-01

    Full Text Available The hydration dynamics of aqueous nitrate, NO3−(aq, is studied by 2D-IR spectroscopy, UV-IR- and UV-UV transient absorption spectroscopy. The experimental results are compared to Car-Parinello molecular dynamics (MD simulations. The 2D-IR measurements and MD simulations of the non-degenerate asymmetric stretch vibrations of nitrate reveal an intermodal energy exchange occurring on a 0.2 ps time scale related to hydrogen bond fluctuations. The transient absorption measurements find that the nitrate ions rotate in 2 ps. The MD simulations indicate that the ion rotation is associated with the formation of new hydrogen bonds. The 2 ps rotation time thus indicates that the hydration shell of aqueous nitrate is rather labile.

  7. Monte Carlo simulations of silicon sputtering by argon ions and an approach for comparison with molecular dynamic results

    Energy Technology Data Exchange (ETDEWEB)

    Feder, Rene; Frost, Frank; Mayr, Stefan G.; Neumann, Horst; Bundesmann, Carsten [Leibniz-Institut fuer Oberflaechenmodifizierung e.V., Leipzig (Germany)

    2012-07-01

    Ion beam sputter processes deliver some intrinsic features influencing the growing film properties. Utilisation of these features needs to know how primary ion properties and geometrical process conditions influence the energy and spatial distribution of the sputtered and scattered particles. Beside complex experiments simulations are helpful to explain the correlation between primary parameters and thin film properties. The paper presents first results of two simulation codes with completely different approaches: Monte Carlo (MC) calculations with help of the well known TRIM.SP code and Molecular Dynamics calculations with an in-house developed code. First results of both simulation principles are compared for Argon ion bombardment on a Silicon target. Furthermore, a special experimental setup is outlined for validation of modelling. The setup allows the variation of ion beam parameters (ion species, ion energy, ion incidence angle on the target) and the measurement of the properties of sputtered and scattered particles.

  8. Diffusion of inorganic ion aqueous solution into hydrophilic polymer fiber and molecular orientation

    International Nuclear Information System (INIS)

    Kawaguchi, Akio

    2001-01-01

    The adsorption process of iodine to nylon 6 (polyamide-6), as well as deiodination process, has been an issue of controversy in the past half century from the view points related to the conversion of hydrogen bonding (α phase vs. γ phase). In the researches since late '80s, it has been revealed that the adsorption or inclusion of iodine to polyamides causes formations of various kind of structures to be called complexes whether they are crystalline or amorphous, and the formation of complex is reflected on the physical properties (especially on adsorption and ion mobility). Among them, it has been reported about both the doubly-oriented samples and the non-oriented samples that the ion diffusion causes molecular chain orientation during the complex formation. In the present experiment the change of molecular orientation in the early stage of the complex formation is studied by the time-resolved measurement with synchrotron radiation facility at SPring-8. Through-view and edge-view diffraction patterns of doubly oriented nylon 6 and non-oriented one were measured at 0.1 nm wavelength introducing I2-KI aqueous solution. It is observed that the formation of complex (i.e. diffusion of polyiodine) is attained in about 0.3 to 0.4 sec. even in non-oriented sample. From the analysis of the diffraction behavior, it is summarized that the inclusion of iodine into the crystalline phase of nylon 6 is possible from either sides of the molecular directions, namely normal diffusion and parallel diffusion. It is concluded that the diffusion and adsorption of inorganic ions including polyiodine to polyamide causes not only the formation of complexes in the crystalline phase but also give motive force to change structure in the surrounding non-crystalline region. (S. Funahashi)

  9. Molecular mechanisms of aluminium ions neurotoxicity in brain cells of fish from various pelagic areas

    Directory of Open Access Journals (Sweden)

    E. V. Sukharenko

    2017-07-01

    Full Text Available Neurotoxic effects of aluminum chloride in higher than usual environment concentration (10 mg/L were studied in brains of fishes from various pelagic areas, especially in sunfish (Lepomis macrochirus Rafinesque, 1819, roach (Rutilus rutilus Linnaeus, 1758, crucian carp (Carasius carasius Linnaeus, 1758, goby (Neogobius fluviatilis Pallas, 1811. The intensity of oxidative stress and the content of both cytoskeleton protein GFAP and cytosol Ca-binding protein S100β were determined. The differences in oxidative stress data were observed in the liver and brain of fish during 45 days of treatment with aluminum chloride. The data indicated that in the modeling of aluminum intoxication in mature adult fishes the level of oxidative stress was noticeably higher in the brain than in the liver. This index was lower by1.5–2.0 times on average in the liver cells than in the brain. The obtained data evidently demonstrate high sensitivity to aluminum ions in neural tissue cells of fish from various pelagic areas. Chronic intoxication with aluminum ions induced intense astrogliosis in the fish brain. Astrogliosis was determined as result of overexpression of both cytoskeleton and cytosole markers of astrocytes – GFAP and protein S100β (on 75–112% and 67–105% accordingly. Moreover, it was shown that the neurotixic effect of aluminum ions is closely related to metabolism of astroglial intermediate filaments. The results of western blotting showed a considerable increase in the content of the lysis protein products of GFAP with a range of molecular weight from 40–49 kDa. A similar metabolic disturbance was determined for the upregulation protein S100β expression and particularly in the increase in the content of polypeptide fragments of this protein with molecular weight 24–37 kDa. Thus, the obtained results allow one to presume that aluminum ions activate in the fish brain intracellular proteases which have a capacity to destroy the proteins of

  10. Molecular projectile effects for kinetic electron emission from carbon- and metal-surfaces bombarded by slow hydrogen ions

    International Nuclear Information System (INIS)

    Cernusca, S.; Winter, H.P.; Aumayr, F.; Diez Muino, R.; Juaristi, J.I.

    2003-01-01

    Total yields for kinetic electron emission (KE) have been determined for impact of hydrogen monomer-, dimer- and trimer-ions (impact energy <10 keV) on atomically clean surfaces of carbon-fiber inforced graphite used as first-wall armour in magnetic fusion devices. The data are compared with KE yields for impact of same projectile ions on atomically clean highly oriented pyrolytic graphite and polycrystalline gold. We discuss KE yields for the different targets if bombarded by equally fast molecular and atomic ions in view to 'projectile molecular effects' (different yields per proton for equally fast atomic and molecular ions), which are expected from calculated electronic projectile energy losses in these target materials

  11. Molecular projectile effects for kinetic electron emission from carbon- and metal-surfaces bombarded by slow hydrogen ions

    CERN Document Server

    Cernusca, S; Aumayr, F; Diez-Muino, R; Juaristi, J I

    2003-01-01

    Total yields for kinetic electron emission (KE) have been determined for impact of hydrogen monomer-, dimer- and trimer-ions (impact energy <10 keV) on atomically clean surfaces of carbon-fiber inforced graphite used as first-wall armour in magnetic fusion devices. The data are compared with KE yields for impact of same projectile ions on atomically clean highly oriented pyrolytic graphite and polycrystalline gold. We discuss KE yields for the different targets if bombarded by equally fast molecular and atomic ions in view to 'projectile molecular effects' (different yields per proton for equally fast atomic and molecular ions), which are expected from calculated electronic projectile energy losses in these target materials.

  12. A theoretical approach to sputtering due to molecular ion bombardment, 1

    International Nuclear Information System (INIS)

    Karashima, Shosuke; Ootoshi, Tsukuru; Kamiyama, Masahide; Kim, Pil-Hyon; Namba, Susumu.

    1981-01-01

    A shock wave model is proposed to explain theoretically the non-linear effects in sputtering phenomena by molecular ion bombardments. In this theory the sputtering processes are separated into two parts; one is due to linear effects and another is due to non-linear effects. The treatment of the linear parts is based on the statistical model by Schwarz and Helms concerning a broad range of atomic collision cascades. The non-linear parts are treated by the model of shock wave due to overlapping cascades, and useful equations to calculate the sputtering yields and the dynamical quantities in the system are derived. (author)

  13. New approach for the electronic energies of the hydrogen molecular ion

    International Nuclear Information System (INIS)

    Scott, Tony C.; Aubert-Frecon, Monique; Grotendorst, Johannes

    2006-01-01

    Herein, we present analytical solutions for the electronic energy eigenvalues of the hydrogen molecular ion H 2 + , namely the one-electron two-fixed-center problem. These are given for the homonuclear case for the countable infinity of discrete states when the magnetic quantum number m is zero, i.e., for 2 Σ + states. In this case, these solutions are the roots of a set of two coupled three-term recurrence relations. The eigensolutions are obtained from an application of experimental mathematics using Computer Algebra as its principal tool and are vindicated by numerical and algebraic demonstrations. Finally, the mathematical nature of the eigenenergies is identified

  14. Electron, ion and atomic beams interaction with solid high-molecular dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Milyavskij, V V; Skvortsov, V A [Russian Academy of Sciences, Moscow (Russian Federation). High Energy Density Research Center

    1997-12-31

    A mathematical model was constructed and numerical investigation performed of the interaction between intense electron, ion and atomic beams and solid high-molecular dielectrics under various boundary conditions. The model is based on equations of the mechanics of continuum, electrodynamics and kinetics, describing the accumulation and relaxation of space charge and shock-wave processes, as well as the evolution of electric field in the sample. A semi-empirical procedure is proposed for the calculation of energy deposition by electron beam in a target in the presence of a non-uniform electric field. (author). 4 figs., 2 refs.

  15. A new crossed molecular beam apparatus using time-sliced ion velocity imaging technique

    International Nuclear Information System (INIS)

    Wu Guorong; Zhang Weiqing; Pan Huilin; Shuai Quan; Jiang Bo; Dai Dongxu; Yang Xueming

    2008-01-01

    A new crossed molecular beam apparatus has been constructed for investigating polyatomic chemical reactions using the time-sliced ion velocity map imaging technique. A unique design is adopted for one of the two beam sources and allows us to set up the molecular beam source either horizontally or vertically. This can be conveniently used to produce versatile atomic or radical beams from photodissociation and as well as electric discharge. Intensive H-atom beam source with high speed ratio was produced by photodissociation of the HI molecule and was reacted with the CD 4 molecule. Vibrational-state resolved HD product distribution was measured by detecting the CD 3 product. Preliminary results were also reported on the F+SiH 4 reaction using the discharged F atom beam. These results demonstrate that this new instrument is a powerful tool for investigating chemical dynamics of polyatomic reactions.

  16. Molecular desorption of stainless steel vacuum chambers irradiated with 4.2  MeV/u lead ions

    Directory of Open Access Journals (Sweden)

    E. Mahner

    2003-01-01

    Full Text Available In preparation for the heavy ion program of the Large Hadron Collider at CERN, accumulation and cooling tests with lead ion beams have been performed in the Low Energy Antiproton Ring. These tests have revealed that due to the unexpected large outgassing of the vacuum system, the dynamic pressure of the ring could not be maintained low enough to reach the required beam intensities. To determine the actions necessary to lower the dynamic pressure rise, an experimental program has been initiated for measuring the molecular desorption yields of stainless steel vacuum chambers by the impact of 4.2  MeV/u lead ions with the charge states +27 and +53. The test chambers were exposed either at grazing or at perpendicular incidence. Different surface treatments (glow discharges, nonevaporable getter coating are reported in terms of the molecular desorption yields for H_{2}, CH_{4}, CO, Ar, and CO_{2}. Unexpected large values of molecular yields per incident ion up to 2×10^{4} molecules/ion have been observed. The reduction of the ion-induced desorption yield due to continuous bombardment with lead ions (beam cleaning has been investigated for five different stainless steel vacuum chambers. The implications of these results for the vacuum system of the future Low Energy Ion Ring and possible remedies to reduce the vacuum degradation are discussed.

  17. Rosetta/Alice Measurements of Atomic and Molecular Abundances in the Coma of 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Vervack, R. J., Jr.; Weaver, H. A., Jr.; Knight, M. M.; Feldman, P.; Stern, A.; Parker, J. W.; Feaga, L. M.; Steffl, A.; Bertaux, J. L.; A'Hearn, M. F.; Keeney, B. A.

    2017-12-01

    During the Rosetta orbital phase from August 2014 through September 2016, the Alice far-ultraviolet (FUV) imaging spectrograph routinely monitored the FUV emission from the coma of 67P/Churyumov-Gerasimenko (67P). These data, spanning 700-2050 Å, provide both spatial and temporal information on the evolution of the coma composition throughout the encounter. Emissions from hydrogen (Lyman beta at 1025 Å), oxygen (1304 Å triplet, 1356 Å), sulfur (1429 Å and 1479 Å multiplets, 1814 Å triplet), and carbon (1561 Å, 1657 Å) were regularly observed, as well as emission from the CO Fourth Positive and Cameron bands. We present a preliminary analysis of these emissions with a focus on the abundances in the coma and a mapping of the temporal and spatial variations. Both short-term (days) and long-term (months) variations will be discussed in the context of rotational and seasonal timeframes. We also present ratios among various species with the goal of identifying the dominant processes at work in the coma as a function of time. Rosetta is an ESA mission with contributions from its member states and NASA. The Alice team acknowledges continuing support from NASA's Jet Propulsion Laboratory through contract 1336850 to the Southwest Research Institute. RJV's work was supported by a subcontract from Southwest Research Institute to the Johns Hopkins University Applied Physics Laboratory.

  18. Influence of galactic arm scale dynamics on the molecular composition of the cold and dense ISM. I. Observed abundance gradients in dense clouds

    Science.gov (United States)

    Ruaud, M.; Wakelam, V.; Gratier, P.; Bonnell, I. A.

    2018-04-01

    Aim. We study the effect of large scale dynamics on the molecular composition of the dense interstellar medium during the transition between diffuse to dense clouds. Methods: We followed the formation of dense clouds (on sub-parsec scales) through the dynamics of the interstellar medium at galactic scales. We used results from smoothed particle hydrodynamics (SPH) simulations from which we extracted physical parameters that are used as inputs for our full gas-grain chemical model. In these simulations, the evolution of the interstellar matter is followed for 50 Myr. The warm low-density interstellar medium gas flows into spiral arms where orbit crowding produces the shock formation of dense clouds, which are held together temporarily by the external pressure. Results: We show that depending on the physical history of each SPH particle, the molecular composition of the modeled dense clouds presents a high dispersion in the computed abundances even if the local physical properties are similar. We find that carbon chains are the most affected species and show that these differences are directly connected to differences in (1) the electronic fraction, (2) the C/O ratio, and (3) the local physical conditions. We argue that differences in the dynamical evolution of the gas that formed dense clouds could account for the molecular diversity observed between and within these clouds. Conclusions: This study shows the importance of past physical conditions in establishing the chemical composition of the dense medium.

  19. Coupled electron-ion Monte Carlo simulation of hydrogen molecular crystals

    Science.gov (United States)

    Rillo, Giovanni; Morales, Miguel A.; Ceperley, David M.; Pierleoni, Carlo

    2018-03-01

    We performed simulations for solid molecular hydrogen at high pressures (250 GPa ≤ P ≤ 500 GPa) along two isotherms at T = 200 K (phase III) and at T = 414 K (phase IV). At T = 200 K, we considered likely candidates for phase III, the C2c and Cmca12 structures, while at T = 414 K in phase IV, we studied the Pc48 structure. We employed both Coupled Electron-Ion Monte Carlo (CEIMC) and Path Integral Molecular Dynamics (PIMD). The latter is based on Density Functional Theory (DFT) with the van der Waals approximation (vdW-DF). The comparison between the two methods allows us to address the question of the accuracy of the exchange-correlation approximation of DFT for thermal and quantum protons without recurring to perturbation theories. In general, we find that atomic and molecular fluctuations in PIMD are larger than in CEIMC which suggests that the potential energy surface from vdW-DF is less structured than the one from quantum Monte Carlo. We find qualitatively different behaviors for systems prepared in the C2c structure for increasing pressure. Within PIMD, the C2c structure is dynamically partially stable for P ≤ 250 GPa only: it retains the symmetry of the molecular centers but not the molecular orientation; at intermediate pressures, it develops layered structures like Pbcn or Ibam and transforms to the metallic Cmca-4 structure at P ≥ 450 GPa. Instead, within CEIMC, the C2c structure is found to be dynamically stable at least up to 450 GPa; at increasing pressure, the molecular bond length increases and the nuclear correlation decreases. For the other two structures, the two methods are in qualitative agreement although quantitative differences remain. We discuss various structural properties and the electrical conductivity. We find that these structures become conducting around 350 GPa but the metallic Drude-like behavior is reached only at around 500 GPa, consistent with recent experimental claims.

  20. Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch

    Science.gov (United States)

    Poole, Kate; Herget, Regina; Lapatsina, Liudmila; Ngo, Ha-Duong; Lewin, Gary R.

    2014-01-01

    In sensory neurons, mechanotransduction is sensitive, fast and requires mechanosensitive ion channels. Here we develop a new method to directly monitor mechanotransduction at defined regions of the cell-substrate interface. We show that molecular-scale (~13 nm) displacements are sufficient to gate mechanosensitive currents in mouse touch receptors. Using neurons from knockout mice, we show that displacement thresholds increase by one order of magnitude in the absence of stomatin-like protein 3 (STOML3). Piezo1 is the founding member of a class of mammalian stretch-activated ion channels, and we show that STOML3, but not other stomatin-domain proteins, brings the activation threshold for Piezo1 and Piezo2 currents down to ~10 nm. Structure–function experiments localize the Piezo modulatory activity of STOML3 to the stomatin domain, and higher-order scaffolds are a prerequisite for function. STOML3 is the first potent modulator of Piezo channels that tunes the sensitivity of mechanically gated channels to detect molecular-scale stimuli relevant for fine touch. PMID:24662763

  1. Characterization of low molecular weight dissolved natural organic matter along the treatment trait of a waterworks using Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Zhang, Haifeng; Zhang, Yahe; Shi, Quan; Ren, Shuoyi; Yu, Jianwei; Ji, Feng; Luo, Wenbin; Yang, Min

    2012-10-15

    Dissolved natural organic matter (DOM), particularly the low molecular weight DOM, can affect the performance of water treatment processes and serve as a main precursor of disinfection by-products (DBPs) during chlorination. In this study, electrospray ionization coupled to Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) was used to characterize the low molecular weight DOM along the treatment trait of a conventional drinking water treatment plant. The ESI FT-ICR MS data showed that various C, H, O-only class species were the major components in the source water. According to the van Krevelen diagram analysis, lignin- and tannin-like compounds were the most abundant components. Within an isobaric group, the DOM molecules with a high degree of oxidation (high O/C value) were preferentially removed during coagulation, while those with low degree of oxidation were found to be more reactive toward chlorine. In addition, 357 one-chlorine containing products and 199 two-chlorine containing products formed during chlorination were detected in the chlorination effluent sample at a high confidence level. The chlorinated products can be arranged into series, suggesting that they were originated from C, H, O-only precursor compounds, which were in series related by the replacement of CH(4) against oxygen. For the first time, this study explored the behavior of low molecular weight DOM along a drinking water treatment trait on the molecular level, and revealed the presence of abundant unknown chlorinated products, which are probably rich in carboxylic and phenolic groups, in drinking water. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Reactivities of some thiol collectors and their interactions with Ag (+1) ion by molecular modeling

    International Nuclear Information System (INIS)

    Yekeler, Hulya; Yekeler, Meftuni

    2004-01-01

    The most commonly used collectors for sulfide minerals in the mining industry are the thiol collectors for the recovery of these minerals from their associated gangues by froth flotation. For this reason, a great deal of attention has been paid to understand the attachment mechanism of thiol collectors to metal sulfide surfaces. The density functional theory (DFT) calculations at the B3LYP/3-21G* and B3LYP/6-31++G** levels were employed to propose the flotation responses of these thiol collectors, namely, diethyl dithiocarbamate, ethyl dithiocarbamate, ethyl dithiocarbonate, ethyl trithiocarbonate and ethyl dithiophosphate ions, and to study the interaction energies of these collectors with Ag (+1) ion in connection to acanthite (Ag 2 S) mineral. The calculated interaction energies, ΔE, were interpreted in terms of the highest occupied molecular orbital (HOMO) energies of the isolated collector ions. The results show that the HOMOs are strongly localized to the sulfur atoms and the HOMO energies can be used as a reactivity descriptor for the flotation ability of the thiol collectors. Using the HOMO and ΔE energies, the reactivity order of the collectors is found to be (C 2 H 5 ) 2 NCS 2 - > C 2 H 5 NHCS 2 - > C 2 H 5 OCS 2 - > C 2 H 5 SCS 2 - > (C 2 H 5 O)(OH)PS 2 - . The theoretically obtained results are in good agreement with the experimental data reported

  3. Molecular dynamics simulations of the role of electronic losses in damage creation of ion irradiated Tungsten

    International Nuclear Information System (INIS)

    Maya, P.N.; Deshpande, S.P

    2014-01-01

    Damage creation due to the irradiation of 14 MeV fusion neutrons and the subsequent mechanical failure and alteration of the fuel retention properties of tungsten plasma-facing materials is one of the major concerns of the fusion reactors. In addition to nuclear reactions and the subsequent transmutations, the energetic neutron impars its kinetic energy either partly or completely to a lattice tungsten atom thereby creating a primary knock-on atom (PKA) which, is considered as the onset of damage creation in the lattice. The PKA continues to undergo collisions with the lattice atoms which eventually leads to a collision cascade. In order to understand the collision process, one often simulates such systems using surrogate ions, such as energetic W ions itself, in particle accelerators and due to the experimental constraints (such as the stability of the beam) one often has to opt for high energetic ion beams (∼ 30 MeV) which surpasses the PKA energies created by neutron (∼100s of KeV) in W. Hence it is important to distinguish how the very high energetic tungsten atoms interact with the lattice atoms in comparison with the low energy PKA created by the neutron. One of the key difference is that at higher energies the electronic losses become important which decides the collision dynamics. In this presentation the effect of electronic losses in the damage creation using molecular dynamics simulations have been discussed

  4. Role of ion-pair states in the predissociation dynamics of Rydberg states of molecular iodine.

    Science.gov (United States)

    von Vangerow, J; Bogomolov, A S; Dozmorov, N V; Schomas, D; Stienkemeier, F; Baklanov, A V; Mudrich, M

    2016-07-28

    Using femtosecond pump-probe ion imaging spectroscopy, we establish the key role of I(+) + I(-) ion-pair (IP) states in the predissociation dynamics of molecular iodine I2 excited to Rydberg states. Two-photon excitation of Rydberg states lying above the lowest IP state dissociation threshold (1st tier) is found to be followed by direct parallel transitions into IP states of the 1st tier asymptotically correlating to a pair of I ions in their lowest states I(+)((3)P2) + I(-)((1)S0), of the 2nd tier correlating to I(+)((3)P0) + I(-)((1)S0), and of the 3rd tier correlating to I(+)((1)D2) + I(-)((1)S0). Predissociation via the 1st tier proceeds presumably with a delay of 1.6-1.7 ps which is close to the vibrational period in the 3rd tier state (3rd tier-mediated process). The 2nd tier IP state is concluded to be the main precursor for predissociation via lower lying Rydberg states proceeding with a characteristic time of 7-8 ps and giving rise to Rydberg atoms I(5s(2)5p(4)6s(1)). The channel generating I((2)P3/2) + I((2)P1/2) atoms with total kinetic energy corresponding to one-photon excitation is found to proceed via a pump - dump mechanism with dramatic change of angular anisotropy of this channel as compared with earlier nanosecond experiments.

  5. Angiotensin-I converting enzyme (ACE): structure, biological roles, and molecular basis for chloride ion dependence.

    Science.gov (United States)

    Masuyer, Geoffrey; Yates, Christopher J; Sturrock, Edward D; Acharya, K Ravi

    2014-10-01

    Somatic angiotensin-I converting enzyme (sACE) has an essential role in the regulation of blood pressure and electrolyte fluid homeostasis. It is a zinc protease that cleaves angiotensin-I (AngI), bradykinin, and a broad range of other signalling peptides. The enzyme activity is provided by two homologous domains (N- and C-), which display clear differences in substrate specificities and chloride activation. The presence of chloride ions in sACE and its unusual role in activity was identified early on in the characterisation of the enzyme. The molecular mechanisms of chloride activation have been investigated thoroughly through mutagenesis studies and shown to be substrate-dependent. Recent results from X-ray crystallography structural analysis have provided the basis for the intricate interactions between ACE, its substrate and chloride ions. Here we describe the role of chloride ions in human ACE and its physiological consequences. Insights into the chloride activation of the N- and C-domains could impact the design of improved domain-specific ACE inhibitors.

  6. Molecular dynamic simulation of interaction of low-energy Ar and Xe ions with copper clusters at graphite surface

    International Nuclear Information System (INIS)

    Kornich, G.V.; Lozovskaya, L.I.; Betts, G.; Zaporozhchenko, V.I.; Faupel, F.

    2005-01-01

    One conducted molecular and dynamic simulation of sputtering of isolated clusters consisting of 13, 27 and 195 Cu atoms from the (0001) graphite surface by 200 eV energy Ar and Xe ions. It is shown that the factors of reflection of Ar and Xe ions from copper clusters differ from one another insignificantly, though the energy of the reflected Xe ions is essentially lower than that of Ar ions. The values of the factor of cluster sputtering by Xe ions are higher in contrast to sputtering by Ar ions. One identified two mechanisms of cluster sputtering resulting in the maximum of sputtering intensity at the polar angles near the normal one, and in periodicity of maximums within the azimuth distributions of sputtering intensity with 60 deg period [ru

  7. Anomalies in the equilibrium and nonequilibrium properties of correlated ions in complex molecular environments

    Science.gov (United States)

    Mahakrishnan, Sathiya; Chakraborty, Subrata; Vijay, Amrendra

    2017-11-01

    Emergent statistical attributes, and therefore the equations of state, of an assembly of interacting charge carriers embedded within a complex molecular environment frequently exhibit a variety of anomalies, particularly in the high-density (equivalently, the concentration) regime, which are not well understood, because they do not fall under the low-concentration phenomenologies of Debye-Hückel-Onsager and Poisson-Nernst-Planck, including their variants. To go beyond, we here use physical concepts and mathematical tools from quantum scattering theory, transport theory with the Stosszahlansatz of Boltzmann, and classical electrodynamics (Lorentz gauge) and obtain analytical expressions both for the average and the frequency-wave vector-dependent longitudinal and transverse current densities, diffusion coefficient, and the charge density, and therefore the analytical expressions for (a) the chemical potential, activity coefficient, and the equivalent conductivity for strong electrolytes and (b) the current-voltage characteristics for ion-transport processes in complex molecular environments. Using a method analogous to the notion of Debye length and thence the electrical double layer, we here identify a pair of characteristic length scales (longitudinal and the transverse), which, being wave vector and frequency dependent, manifestly exhibit nontrivial fluctuations in space-time. As a unifying theme, we advance a quantity (inverse length dimension), gscat(a ), which embodies all dynamical interactions, through various quantum scattering lengths, relevant to molecular species a, and the analytical behavior which helps us to rationalize the properties of strong electrolytes, including anomalies, in all concentration regimes. As an example, the behavior of gscat(a ) in the high-concentration regime explains the anomalous increase of the Debye length with concentration, as seen in a recent experiment on electrolyte solutions. We also put forth an extension of the

  8. Molecular dynamics simulation study of the "stay or leave" problem for two magnesium ions in gene transcription.

    Science.gov (United States)

    Wu, Shaogui

    2017-06-01

    Two magnesium ions play important roles in nucleotide addition cycle (NAC) of gene transcription. However, at the end of each NAC, why does one ion stay in the active site while the other ion leaves with product pyrophosphate (PP i )? This problem still remains obscure. In this work, we studied the problem using all-atom molecular dynamics simulation combined with steered molecular dynamics and umbrella sampling simulation methods. Our simulations reveal that although both ions are located in the active site after chemistry, their detailed positions are not symmetrical, leading to their different forces from surrounding groups. One ion makes weaker contacts with PP i than the whole protein. Hence, PP i release is less likely to take it away. The other one forms tighter contacts with PP i relative to the protein. The formed (Mg 2+ -PP i ) 2- complex is found to break the contacts with surrounding protein residues one by one so as to dissociate from the active site. This effectively avoids the coexistence of two ions in the active site after PP i release and guarantees a reasonable Mg 2+ ion number in the active site for the next NAC. The observations from this work can provide valuable information for comprehensively understanding the molecular mechanism of transcription. Proteins 2017; 85:1002-1007. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Iron oxide nanoparticle-micelles (ION-micelles for sensitive (molecular magnetic particle imaging and magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Lucas W E Starmans

    Full Text Available BACKGROUND: Iron oxide nanoparticles (IONs are a promising nanoplatform for contrast-enhanced MRI. Recently, magnetic particle imaging (MPI was introduced as a new imaging modality, which is able to directly visualize magnetic particles and could serve as a more sensitive and quantitative alternative to MRI. However, MPI requires magnetic particles with specific magnetic properties for optimal use. Current commercially available iron oxide formulations perform suboptimal in MPI, which is triggering research into optimized synthesis strategies. Most synthesis procedures aim at size control of iron oxide nanoparticles rather than control over the magnetic properties. In this study, we report on the synthesis, characterization and application of a novel ION platform for sensitive MPI and MRI. METHODS AND RESULTS: IONs were synthesized using a thermal-decomposition method and subsequently phase-transferred by encapsulation into lipidic micelles (ION-Micelles. Next, the material and magnetic properties of the ION-Micelles were analyzed. Most notably, vibrating sample magnetometry measurements showed that the effective magnetic core size of the IONs is 16 nm. In addition, magnetic particle spectrometry (MPS measurements were performed. MPS is essentially zero-dimensional MPI and therefore allows to probe the potential of iron oxide formulations for MPI. ION-Micelles induced up to 200 times higher signal in MPS measurements than commercially available iron oxide formulations (Endorem, Resovist and Sinerem and thus likely allow for significantly more sensitive MPI. In addition, the potential of the ION-Micelle platform for molecular MPI and MRI was showcased by MPS and MRI measurements of fibrin-binding peptide functionalized ION-Micelles (FibPep-ION-Micelles bound to blood clots. CONCLUSIONS: The presented data underlines the potential of the ION-Micelle nanoplatform for sensitive (molecular MPI and warrants further investigation of the FibPep-ION

  10. Metal oxide nanosensors using polymeric membranes, enzymes and antibody receptors as ion and molecular recognition elements.

    Science.gov (United States)

    Willander, Magnus; Khun, Kimleang; Ibupoto, Zafar Hussain

    2014-05-16

    The concept of recognition and biofunctionality has attracted increasing interest in the fields of chemistry and material sciences. Advances in the field of nanotechnology for the synthesis of desired metal oxide nanostructures have provided a solid platform for the integration of nanoelectronic devices. These nanoelectronics-based devices have the ability to recognize molecular species of living organisms, and they have created the possibility for advanced chemical sensing functionalities with low limits of detection in the nanomolar range. In this review, various metal oxides, such as ZnO-, CuO-, and NiO-based nanosensors, are described using different methods (receptors) of functionalization for molecular and ion recognition. These functionalized metal oxide surfaces with a specific receptor involve either a complex formation between the receptor and the analyte or an electrostatic interaction during the chemical sensing of analytes. Metal oxide nanostructures are considered revolutionary nanomaterials that have a specific surface for the immobilization of biomolecules with much needed orientation, good conformation and enhanced biological activity which further improve the sensing properties of nanosensors. Metal oxide nanostructures are associated with certain unique optical, electrical and molecular characteristics in addition to unique functionalities and surface charge features which shows attractive platforms for interfacing biorecognition elements with effective transducing properties for signal amplification. There is a great opportunity in the near future for metal oxide nanostructure-based miniaturization and the development of engineering sensor devices.

  11. Metal Oxide Nanosensors Using Polymeric Membranes, Enzymes and Antibody Receptors as Ion and Molecular Recognition Elements

    Directory of Open Access Journals (Sweden)

    Magnus Willander

    2014-05-01

    Full Text Available The concept of recognition and biofunctionality has attracted increasing interest in the fields of chemistry and material sciences. Advances in the field of nanotechnology for the synthesis of desired metal oxide nanostructures have provided a solid platform for the integration of nanoelectronic devices. These nanoelectronics-based devices have the ability to recognize molecular species of living organisms, and they have created the possibility for advanced chemical sensing functionalities with low limits of detection in the nanomolar range. In this review, various metal oxides, such as ZnO-, CuO-, and NiO-based nanosensors, are described using different methods (receptors of functionalization for molecular and ion recognition. These functionalized metal oxide surfaces with a specific receptor involve either a complex formation between the receptor and the analyte or an electrostatic interaction during the chemical sensing of analytes. Metal oxide nanostructures are considered revolutionary nanomaterials that have a specific surface for the immobilization of biomolecules with much needed orientation, good conformation and enhanced biological activity which further improve the sensing properties of nanosensors. Metal oxide nanostructures are associated with certain unique optical, electrical and molecular characteristics in addition to unique functionalities and surface charge features which shows attractive platforms for interfacing biorecognition elements with effective transducing properties for signal amplification. There is a great opportunity in the near future for metal oxide nanostructure-based miniaturization and the development of engineering sensor devices.

  12. Photofragmentation spectroscopy of stored molecular ions at the dissociation limit; Photofragmentationsspektroskopie gespeicherter Molekuelionen an der Dissoziationsschwelle

    Energy Technology Data Exchange (ETDEWEB)

    Hechtfischer, U.

    2000-07-01

    Photofragmentation spectroscopy is a sensitive probe for nonadiabatic interactions in molecular dissociation, but for molecular ions detection and analysis of spectra are often hampered by the internal excitations of the ion beam. Therefore, near-threshold photofragmentation of CH{sup +} and OH{sup +} was studied in a heavy-ion storage ring where the ions rovibronically relax to room temperature within a few seconds. In the CH{sup +} spectrum, the Feshbach resonances between the fine-structure levels of the C{sup +} fragment were observed for the first time, the complex lineshapes indicating strong nonadiabatic couplings between the potentials. By a standard single-channel analysis, the spectrum was partially assigned and a more precise dissociation energy was deduced. The complete analysis was possible by multichannel close-coupling calculations only and yielded the vibrational defects of all coupled potentials. Furthermore, improved empirical potentials were constructed by an IPA approach, and conclusions on the reverse radiative association process in interstellar clouds were drawn. In OH{sup +}, numerous photofragmentation resonances were observed for both neutral and ionic oxygen fragments and assigned to the highest bound levels of the A{sup 3}II curve. In contrast to CH{sup +}, OH{sup +} hardly shows any multichannel behavior. (orig.) [German] Photofragmentationsspektroskopie ist eine empfindliche Sonde fuer nichtadiabatische Wechselwirkungen bei der Dissoziation von Molekuelen, aber bei Molekuelionen erschweren haeufig die internen Anregungen des Ionenstrahls Messung und Analyse der Spektren. Deshalb wurde hier die schwellennahe Photofragmentation von CH{sup +}- und OH{sup +}-Molekuelionen in einem Schwerionenspeicherring untersucht, wo die Ionen rovibronisch innerhalb von Sekunden Raumtemperatur annehmen. Im CH{sup +}-Spektrum wurden so erstmals die Feshbach-Resonanzen zwischen den Feinstrukturniveaus des C{sup +}-Fragments direkt beobachtet, deren

  13. Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain.

    Science.gov (United States)

    Sriram, M; Osipiuk, J; Freeman, B; Morimoto, R; Joachimiak, A

    1997-03-15

    The 70 kDa heat shock proteins (Hsp70) are a family of molecular chaperones, which promote protein folding and participate in many cellular functions. The Hsp70 chaperones are composed of two major domains. The N-terminal ATPase domain binds to and hydrolyzes ATP, whereas the C-terminal domain is required for polypeptide binding. Cooperation of both domains is needed for protein folding. The crystal structure of bovine Hsc70 ATPase domain (bATPase) has been determined and, more recently, the crystal structure of the peptide-binding domain of a related chaperone, DnaK, in complex with peptide substrate has been obtained. The molecular chaperone activity and conformational switch are functionally linked with ATP hydrolysis. A high-resolution structure of the ATPase domain is required to provide an understanding of the mechanism of ATP hydrolysis and how it affects communication between C- and N-terminal domains. The crystal structure of the human Hsp70 ATPase domain (hATPase) has been determined and refined at 1. 84 A, using synchrotron radiation at 120K. Two calcium sites were identified: the first calcium binds within the catalytic pocket, bridging ADP and inorganic phosphate, and the second calcium is tightly coordinated on the protein surface by Glu231, Asp232 and the carbonyl of His227. Overall, the structure of hATPase is similar to bATPase. Differences between them are found in the loops, the sites of amino acid substitution and the calcium-binding sites. Human Hsp70 chaperone is phosphorylated in vitro in the presence of divalent ions, calcium being the most effective. The structural similarity of hATPase and bATPase and the sequence similarity within the Hsp70 chaperone family suggest a universal mechanism of ATP hydrolysis among all Hsp70 molecular chaperones. Two calcium ions have been found in the hATPase structure. One corresponds to the magnesium site in bATPase and appears to be important for ATP hydrolysis and in vitro phosphorylation. Local changes

  14. Experimental Investigation of Impact-Induced Molecular Desorption by 4.2 MeV/u Pb ions

    CERN Document Server

    Chanel, M; Laurent, Jean Michel; Madsen, N; Mahner, E

    2001-01-01

    In preparation for the heavy ion program of the LHC, accumulation and cooling test with lead ion beams have been performed in the LEAR storage ring. These tests have revealed that due to the unexpected, large outgassing of the vacuum system, the dynamic pressure of the ring could not be maintained low enough to reach the required beam intensities. To determine the actions necessary to lower the dynamic pressure rise, an experimental program has been initiated for measuring the molecular desorption yields of stainless steel vacuum chambers by the impact of 4.2 MeV/u lead ions with the charge states +27 and +53. The test chambers were exposed either at grazing or at perpendicular incidence. Different surface treatments are reported in terms of the molecular desorption yields for H2, CH4, CO and CO2. Unpexpected large values of molecular yields per incident ion up to 2x104 molecules/ion have been observed. The implications of these results for the vacuum system of the future ion accumulator ring (LEIR) and possi...

  15. Tethering metal ions to photocatalyst particulate surfaces by bifunctional molecular linkers for efficient hydrogen evolution

    KAUST Repository

    Yu, Weili

    2014-08-19

    A simple and versatile method for the preparation of photocatalyst particulates modified with effective cocatalysts is presented; the method involves the sequential soaking of photocatalyst particulates in solutions containing bifunctional organic linkers and metal ions. The modification of the particulate surfaces is a universal and reproducible method because the molecular linkers utilize strong covalent bonds, which in turn result in modified monolayer with a small but controlled quantity of metals. The photocatalysis results indicated that the CdS with likely photochemically reduced Pd and Ni, which were initially immobilized via ethanedithiol (EDT) as a linker, were highly efficient for photocatalytic hydrogen evolution from Na2S-Na2SO3-containing aqueous solutions. The method developed in this study opens a new synthesis route for the preparation of effective photocatalysts with various combinations of bifunctional linkers, metals, and photocatalyst particulate materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Vibrationally-resolved Charge Transfer of O^3+ Ions with Molecular Hydrogen

    Science.gov (United States)

    Wang, J. G.; Stancil, P. C.; Turner, A. R.; Cooper, D. L.

    2003-05-01

    Charge transfer processes due to collisions of ground state O^3+ ions with H2 are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. Vibrationally-resolved cross sections for energies between 0.1 eV/u and 2 keV/u using the infinite order sudden approximation (IOSA), vibrational sudden approximation (VSA), and electronic approximation (EA), but including Frank-Condon factors (the centroid approximation) will be presented. Comparison with existing experimental data for total cross sections shows best agreement with IOSA and discrepancies for VSA and EA. Triplet-singlet cross section ratios obtained with IOSA are found generally to be in harmony with experiment. JGW and PCS acknowledge support from NASA grant 11453.

  17. Tethering metal ions to photocatalyst particulate surfaces by bifunctional molecular linkers for efficient hydrogen evolution

    KAUST Repository

    Yu, Weili; Isimjan, Tayirjan T.; Del Gobbo, Silvano; Anjum, Dalaver Hussain; Abdel-Azeim, Safwat; Cavallo, Luigi; Garcia Esparza, Angel T.; Domen, Kazunari; Xu, Wei; Takanabe, Kazuhiro

    2014-01-01

    A simple and versatile method for the preparation of photocatalyst particulates modified with effective cocatalysts is presented; the method involves the sequential soaking of photocatalyst particulates in solutions containing bifunctional organic linkers and metal ions. The modification of the particulate surfaces is a universal and reproducible method because the molecular linkers utilize strong covalent bonds, which in turn result in modified monolayer with a small but controlled quantity of metals. The photocatalysis results indicated that the CdS with likely photochemically reduced Pd and Ni, which were initially immobilized via ethanedithiol (EDT) as a linker, were highly efficient for photocatalytic hydrogen evolution from Na2S-Na2SO3-containing aqueous solutions. The method developed in this study opens a new synthesis route for the preparation of effective photocatalysts with various combinations of bifunctional linkers, metals, and photocatalyst particulate materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Investigation of the intermediate LK molecular orbital radiation in heavy ion-atom collisions

    International Nuclear Information System (INIS)

    Frank, W.; Kaun, K.-H.; Manfrass, P.

    1981-01-01

    The continuum consisting of an intensive low-energy and a high-energy components in heavy-ion atom collision systems with atomic numbers Z 1 , Z 2 > 28 is studied. The aim of the study is to prove that the C1 continuum cannot be caused by ridiative electron capture (REC) being molecular orbital (MO) radiation to the 2ptau level. It is shown that the comparison of the C1 yields obtained in Kr+Nb asymmetric collisions in gas and solid targets is associated with the formation of vacancies in the lower-Z collision partner and can be interpreted as quasimolecular radiation to the 2ptau orbital level. The strong suppression of the C2 component in the gas target experimets indicates that the MO radiation to the 1stau orbit is emitted preferentially in the two-collision process in symmetric and near-symmetric systems with Z 1 , Z 2 [ru

  19. Ion-induced molecular emission of polymers: analytical potentialities of FTIR and mass spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Picq, V.; Balanzat, E. E-mail: balanzat@ganil.fr

    1999-05-02

    The release of small gaseous molecules is a general phenomenon of irradiated polymers. Polyethylene (PE), polypropylene (PP) and polybutene (PB) were irradiated with ions of different electronic stopping power. We show that the gas emission can provide important information on the damage process if a reliable chemical identification of the molecules released and accurate yield values are obtained. The outgassing products were analysed by two techniques: (1) by a novel set-up using a Fourier Transform Infrared (FTIR) analysis of the gas mixture released from the polymer film and (2) by residual gas analysis (RGA) with a quadrupole mass spectrometer. Comparing the analytical potentialities of both methods we come to the conclusion that the FTIR method gives a more straightforward and accurate determination of the chemical nature and of the yield of most of the released molecules. However, RGA provides complementary information on the gas release kinetics and also on the release of heavy hydrocarbon molecules and symmetric molecules like molecular hydrogen.

  20. Simple molecular model for the binding of antibiotic molecules to bacterial ion channels

    Science.gov (United States)

    Mafé, Salvador; Ramírez, Patricio; Alcaraz, Antonio

    2003-10-01

    A molecular model aimed at explaining recent experimental data by Nestorovich et al. [Proc. Natl. Acad. Sci. USA 99, 9789 (2002)] on the interaction of ampicillin molecules with the constriction zone in a channel of the general bacterial porin, OmpF (outer membrane protein F), is presented. The model extends T. L. Hill's theory for intermolecular interactions in a pair of binding sites [J. Am. Chem. Soc. 78, 3330 (1956)] by incorporating two binding ions and two pairs of interacting sites. The results provide new physical insights on the role of the complementary pattern of the charge distributions in the ampicillin molecule and the narrowest part of the channel pore. Charge matching of interacting sites facilitates drug binding. The dependence of the number of ampicillin binding events per second with the solution pH and salt concentration is explained qualitatively using a reduced number of fundamental concepts.

  1. Ab initio study of isomerism in molecular ions Li2AB+ with 10 valence electrons

    International Nuclear Information System (INIS)

    Charkin, O.P.; Mak-Ki, M.L.; Shlojer, P.R.

    1997-01-01

    Ab initio calculations of surfaces of Li 2 AB + molecular ion potential energy with biatomic anions AB - with 10 valence electrons have been made in the framework of approximations MP2/6-31G 1 /HF/6-31G*+ZPE(HF/6-31G*) and MP4SDTQ/631G*//MP2/6-31G*+ZPE(MP2/6-31G*). Influence of electron correlation on the accuracy of calculations of their structural and vibrational characteristics is studied. The following most favourable structures have been found: linear for Li 2 BO + , Li 2 CN + , and bent one for Li 2 BS + , with cations coordinated at different anion atoms; onium one for AlOLi 2 + , AlSLi 2 + , SiNLi 2 + and SiPLi 2 + with both cations at electronegative atom of anion

  2. Molecular Dynamics Simulation of Damage to Coiled Carbon Nanotubes under C Ion Irradiation

    International Nuclear Information System (INIS)

    Zhou Bin; Zhang Wei; Gong Wen-Bin; Wang Song; Ren Cui-Lan; Wang Cheng-Bin; Zhu Zhi-Yuan; Huai Ping

    2013-01-01

    The stability of coiled carbon nanotubes under C ion irradiation is investigated by molecular dynamics simulations. The defect statistics shows that small curvature coiled carbon nanotubes have better radiation tolerance than normal straight carbon nanotubes. To understand the effect of the curvature on defect production, the threshold displacement energies for the upper and lower walls, as well as those for the side parts, are calculated. The results show that the lower wall has better radiation tolerance than the upper wall. For the upper wall, a small increase in the curvature of nanotube axis gives rise to an increase in the radiation tolerance and then a decrease with the curvature becomes larger. However, for the lower wall, as the curvature of the nanotube axis increases, the radiation tolerance increases as the bonds compressed slightly in our simulation

  3. Molecular pharmacology of cell receptors for cardiac glycosides, opiates, ACTH and ion channel modulators

    Energy Technology Data Exchange (ETDEWEB)

    Hnatowich, M R

    1986-01-01

    The influence of light and oxygen on molecular interactions between the artificial food dye, erythrosine (ERY), and (/sup 3/H)ouabain ((/sup 3/H)OUA) binding sites on (Na/sup +/ + K/sup +/)-ATPase in rat brain and guinea pig heart was investigated. Putative endogenous digitalis-like factors (DLF's) were studied in four in vitro assays for cardiac glycosides. (/sup 3/H)Etorphine binding was characterized in rat brain homogenates, depleted of opioids, from animals acutely and chronically treated with morphine and naloxone, and either unstressed or cold-restraint-stressed. Binding sites for the ion channel modulators (/sup 3/H)verapamil ((/sup 3/H)VER) and (/sup 3/H) phencyclidine ((/sup 3/H)PCP) were characterized in rat brain.

  4. Precision Measurement of the Electron's Electric Dipole Moment Using Trapped Molecular Ions

    Science.gov (United States)

    Cairncross, William B.; Gresh, Daniel N.; Grau, Matt; Cossel, Kevin C.; Roussy, Tanya S.; Ni, Yiqi; Zhou, Yan; Ye, Jun; Cornell, Eric A.

    2017-10-01

    We describe the first precision measurement of the electron's electric dipole moment (de) using trapped molecular ions, demonstrating the application of spin interrogation times over 700 ms to achieve high sensitivity and stringent rejection of systematic errors. Through electron spin resonance spectroscopy on 180Hf 19F+ in its metastable 3Δ1 electronic state, we obtain de=(0.9 ±7. 7stat±1. 7syst)×10-29 e cm , resulting in an upper bound of |de|<1.3 ×10-28 e cm (90% confidence). Our result provides independent confirmation of the current upper bound of |de|<9.4 ×10-29 e cm [J. Baron et al., New J. Phys. 19, 073029 (2017), 10.1088/1367-2630/aa708e], and offers the potential to improve on this limit in the near future.

  5. Explicit hydration of ammonium ion by correlated methods employing molecular tailoring approach

    Science.gov (United States)

    Singh, Gurmeet; Verma, Rahul; Wagle, Swapnil; Gadre, Shridhar R.

    2017-11-01

    Explicit hydration studies of ions require accurate estimation of interaction energies. This work explores the explicit hydration of the ammonium ion (NH4+) employing Møller-Plesset second order (MP2) perturbation theory, an accurate yet relatively less expensive correlated method. Several initial geometries of NH4+(H2O)n (n = 4 to 13) clusters are subjected to MP2 level geometry optimisation with correlation consistent aug-cc-pVDZ (aVDZ) basis set. For large clusters (viz. n > 8), molecular tailoring approach (MTA) is used for single point energy evaluation at MP2/aVTZ level for the estimation of MP2 level binding energies (BEs) at complete basis set (CBS) limit. The minimal nature of the clusters upto n ≤ 8 is confirmed by performing vibrational frequency calculations at MP2/aVDZ level of theory, whereas for larger clusters (9 ≤ n ≤ 13) such calculations are effected via grafted MTA (GMTA) method. The zero point energy (ZPE) corrections are done for all the isomers lying within 1 kcal/mol of the lowest energy one. The resulting frequencies in N-H region (2900-3500 cm-1) and in O-H stretching region (3300-3900 cm-1) are in found to be in excellent agreement with the available experimental findings for 4 ≤ n ≤ 13. Furthermore, GMTA is also applied for calculating the BEs of these clusters at coupled cluster singles and doubles with perturbative triples (CCSD(T)) level of theory with aVDZ basis set. This work thus represents an art of the possible on contemporary multi-core computers for studying explicit molecular hydration at correlated level theories.

  6. Hydration free energies of cyanide and hydroxide ions from molecular dynamics simulations with accurate force fields

    Science.gov (United States)

    Lee, M.W.; Meuwly, M.

    2013-01-01

    The evaluation of hydration free energies is a sensitive test to assess force fields used in atomistic simulations. We showed recently that the vibrational relaxation times, 1D- and 2D-infrared spectroscopies for CN(-) in water can be quantitatively described from molecular dynamics (MD) simulations with multipolar force fields and slightly enlarged van der Waals radii for the C- and N-atoms. To validate such an approach, the present work investigates the solvation free energy of cyanide in water using MD simulations with accurate multipolar electrostatics. It is found that larger van der Waals radii are indeed necessary to obtain results close to the experimental values when a multipolar force field is used. For CN(-), the van der Waals ranges refined in our previous work yield hydration free energy between -72.0 and -77.2 kcal mol(-1), which is in excellent agreement with the experimental data. In addition to the cyanide ion, we also study the hydroxide ion to show that the method used here is readily applicable to similar systems. Hydration free energies are found to sensitively depend on the intermolecular interactions, while bonded interactions are less important, as expected. We also investigate in the present work the possibility of applying the multipolar force field in scoring trajectories generated using computationally inexpensive methods, which should be useful in broader parametrization studies with reduced computational resources, as scoring is much faster than the generation of the trajectories.

  7. Reactivities of some thiol collectors and their interactions with Ag (+1) ion by molecular modeling

    Energy Technology Data Exchange (ETDEWEB)

    Yekeler, Hulya; Yekeler, Meftuni

    2004-09-15

    The most commonly used collectors for sulfide minerals in the mining industry are the thiol collectors for the recovery of these minerals from their associated gangues by froth flotation. For this reason, a great deal of attention has been paid to understand the attachment mechanism of thiol collectors to metal sulfide surfaces. The density functional theory (DFT) calculations at the B3LYP/3-21G* and B3LYP/6-31++G** levels were employed to propose the flotation responses of these thiol collectors, namely, diethyl dithiocarbamate, ethyl dithiocarbamate, ethyl dithiocarbonate, ethyl trithiocarbonate and ethyl dithiophosphate ions, and to study the interaction energies of these collectors with Ag (+1) ion in connection to acanthite (Ag{sub 2}S) mineral. The calculated interaction energies, {delta}E, were interpreted in terms of the highest occupied molecular orbital (HOMO) energies of the isolated collector ions. The results show that the HOMOs are strongly localized to the sulfur atoms and the HOMO energies can be used as a reactivity descriptor for the flotation ability of the thiol collectors. Using the HOMO and {delta}E energies, the reactivity order of the collectors is found to be (C{sub 2}H{sub 5}){sub 2}NCS{sub 2}{sup -} > C{sub 2}H{sub 5}NHCS{sub 2}{sup -} > C{sub 2}H{sub 5}OCS{sub 2}{sup -} > C{sub 2}H{sub 5}SCS{sub 2}{sup -} > (C{sub 2}H{sub 5}O)(OH)PS{sub 2}{sup -}. The theoretically obtained results are in good agreement with the experimental data reported.

  8. Molecular and microscopic analysis of the gut contents of abundant rove beetle species (Coleoptera, Staphylinidae in the boreal balsam fir forest of Quebec, Canada

    Directory of Open Access Journals (Sweden)

    Jan Klimaszewski

    2013-11-01

    Full Text Available Experimental research on beetle responses to removal of logging residues following clearcut harvesting in the boreal balsam fir forest of Quebec revealed several abundant rove beetle (Staphylinidae species potentially important for long-term monitoring. To understand the trophic affiliations of these species in forest ecosystems, it was necessary to analyze their gut contents. We used microscopic and molecular (DNA methods to identify the gut contents of the following rove beetles: Atheta capsularis Klimaszew­ski, Atheta klagesi Bernhauer, Oxypoda grandipennis (Casey, Bryophacis smetanai Campbell, Ischnosoma longicorne (Mäklin, Mycetoporus montanus Luze, Tachinus frigidus Erichson, Tachinus fumipennis (Say, Tachinus quebecensis Robert, and Pseudopsis subulata Herman. We found no apparent arthropod fragments within the guts; however, a number of fungi were identified by DNA sequences, including filamentous fungi and budding yeasts [Ascomycota: Candida derodonti Suh & Blackwell (accession number FJ623605, Candida mesenterica (Geiger Diddens & Lodder (accession number FM178362, Candida railenensis Ramirez and Gonzáles (accession number JX455763, Candida sophie-reginae Ramirez & González (accession number HQ652073, Candida sp. (accession number AY498864, Pichia delftensis Beech (accession number AY923246, Pichia membranifaciens Hansen (accession number JQ26345, Pichia misumaiensis Y. Sasaki and Tak. Yoshida ex Kurtzman 2000 (accession number U73581, Pichia sp. (accession number AM261630, Cladosporium sp. (accession number KF367501, Acremonium psammosporum W. Gams (accession number GU566287, Alternaria sp. (accession number GU584946, Aspergillus versicolor Bubak (accession number AJ937750, and Aspergillus amstelodami (L. Mangin Thom and Church (accession number HQ728257]. In addition, two species of bacteria [Bradyrhizobium japonicum (KirchnerJordan (accession number BA000040 and Serratia marcescens Bizio accession number CP003942] were found in

  9. Abundance of questing ticks and molecular evidence for pathogens in ticks in three parks of Emilia-Romagna region of Northern Italy

    Directory of Open Access Journals (Sweden)

    Sara Aureli

    2015-09-01

    Full Text Available Introduction and objective. Infectious and parasitic diseases transmitted by ticks, such as Lyme diseases, granulocytic anaplasmosis and piroplasmosis, have been frequently reported in Europe, with increasing attention to them as an emerging zoonotic problem. The presented study was performed to assess the distribution and the density of questing ticks in three regional parks of Emilia-Romagna region of Northern Italy, and to seek molecular evidence of potential human pathogens in tick populations. Materials and Methods. In the period April-October 2010, 8,139 questing ticks were collected: 6,734 larvae, 1,344 nymphs and only a few adults – 28 females and 33 males. The abundance of[i] Ixodes ricinus[/i] questing ticks was compared among different sampling sites and related to microclimate parameters. 1,544 out of 8,139 ticks were examined for the presence of pathogens: PCR was used to detect piroplasms DNA and Real time Taqman PCR for [i]Anaplasma phagocytophilum[/i] and [i]Borrelia burgdorferi[/i] s.l. Results. The predominant species was [i]I. ricinus[/i] (overall abundance 1,075.9/100 m[sup]2[/sup] ; more rarely, [i]Dermacentor marginatus[/i] (n = 37 – 0.45%, [i]Scaphixodes frontalis[/i] (n = 13 – 0.16%, [i]Hyalomma[/i] spp. (n = 6 – 0.07% and [i]Ixodes acuminatus[/i] (n = 3 – 0.04% were also found. 28 out of 324 (8.6% samples of ticks were PCR-positive for piroplasm DNA. 11 amplicons of 18S rRNA gene were identical to each other and had 100% identity with[i] Babesia[/i] EU1 ([i]Babesia venatorum[/i] using BLAST analysis. Real time Taqman PCR gave positive results for [i]A. phagocytophilum[/i] in 23 out of 292 samples (7.9%, and for [i]B. burgdorferi[/i] s.l. in 78 out of 292 samples (26.7%. [i]I. ricinu[/i]s was the only species found positive for pathogens by molecular analysis; 16 tick samples were co-infected with at least 2 pathogens. Discussion. The peak of nymph presence was in May, and the higher prevalence of pathogens

  10. Classical molecular dynamics simulation of weakly-bound projectile heavy-ion reactions

    Directory of Open Access Journals (Sweden)

    Morker Mitul R.

    2015-01-01

    Full Text Available A 3-body classical molecular dynamics approach for heavy-ion reactions involving weakly bound projectiles is developed. In this approach a weakly bound projectile is constructed as a two-body cluster of the constituent tightly bound nuclei in a configuration corresponding to the observed breakup energy. This 3-body system with their individual nucleon configuration in their ground state is dynamically evolved for given initial conditions using the three-stage classical molecular dynamics approach (3S-CMD. Various levels of rigidbody constraints on the projectile constituents and the target are considered at appropriate stages. This 3-dimensional approach explicitly takes into account not only the long range Coulomb reorientation of the deformed collision partner but internal excitations and breakup probabilities at distances close to the barrier also. Dynamical simulations of 6Li+209Bi show all the possible reaction mechanism like complete fusion, incomplete fusion, scattering and breakup scattering. Complete fusion cross sections of 6Li+209Bi and 7Li+209Bi reactions are calculated in this approach with systematic relaxations of the rigid-body constraints on one or more constituent nuclei.

  11. Potential curves and spectroscopic study of the electronic states of the molecular ion LiCs+

    International Nuclear Information System (INIS)

    Moughrabi, A.; Korek, M.; Allouche, A.R.

    2004-01-01

    Full text.Due to a very accurate high-resolution techniques and to the spectacular developments in ultracold alkali atom trapping developments which are at the root of photo association spectroscopy there has been a renewed interest on the spectroscopic study of alkali dimers. The existence of new experimental data on these species has stimulated theoretical approaches, necessary to provide predictions accurate enough to be useful for interpretation and evenly for guidance of experiments. With the aim of improving the accuracy of predictions we will perform a theoretical study of the electronic structure of the molecular ion LiCs + , using a method mainly in the way by which core-valence effects are taken into account. To investigate the electronic structure of LiCs + we will use the package CIPSI (Configuration Interaction by Perturbation of a multiconfiguration wave function Selected Interactively) of the Laboratoire de Physique Quantique (Toulouse, France). The atoms Li and Cs will be treated through non-empirical effective one electron core potentials of Durand and Barthelat type. Molecular orbitals for LiCs + will be derived from Self Consistent Field Calculations (SCF) and full valence Configuration Interaction (IC) calculations. A core-core interaction more elaborated than the usual approximation 1/R will be taken into account as the sum of an exponential repulsive term plus a long range dispersion term approximated by the well known London formula. Potential energy calculations will be performed for different molecular states, for numerous values of the inter-nuclear distance R in a wide range. Spectroscopic constants have been derived for the bound states with a regular shape A ro vibrational study have been performed for the ground states with a calculation of the rotational and centrifugal distortion constants. A calculation for the transition dipole moment and matrix elements have been done for the bound states

  12. Molecular desorption of stainless steel vacuum chambers irradiated with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Laurent, Jean Michel; Madsen, N

    2003-01-01

    In preparation for the heavy ion program of the Large Hadron Collider (LHC) at CERN, accumulation and cooling tests with lead ion beams have been performed in the Low Energy Antiproton Ring (LEAR). These tests have revealed that due to the unexpected large outgassing of the vacuum system, the dynamic pressure of the ring could not be maintained low enough to reach the required beam intensities. To determine the actions necessary to lower the dynamic pressure rise, an experimental program has been initiated for measuring the molecular desorption yields of stainless steel vacuum chambers by the impact of 4.2 MeV/u lead ions with the charge states +27 and +53. The test chambers were exposed either at grazing or at perpendicular incidence. Different surface treatments (glow-discharges, non-evaporable getter coating) are reported in terms of the molecular desorption yields for H2, CH4, CO, Ar and CO2. Unexpected large values of molecular yields per incident ion up to 2 104 molecules/ion have been observed. The red...

  13. Improvement in the assessment of direct and facilitated ion transfers by electrochemically induced redox transformations of common molecular probes

    DEFF Research Database (Denmark)

    Zhou, Min; Gan, Shiyu; Zhong, Lijie

    2012-01-01

    A new strategy based on a thick organic film modified electrode allowed us, for the first time, to explore the voltammetric processes for a series of hydrophilic ions by electrochemically induced redox transformations of common molecular probes. During the limited time available for voltammetry, ...

  14. Dependence of the Rate of LiF Ion-Pairing on the Description of Molecular Interaction

    Czech Academy of Sciences Publication Activity Database

    Pluhařová, Eva; Baer, M. D.; Schenter, G. K.; Jungwirth, Pavel; Mundy, C. J.

    2016-01-01

    Roč. 120, č. 8 (2016), s. 1749-1758 ISSN 1520-6106 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : molecular dynamics * ion pairing kinetics * lithium fluoride Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.177, year: 2016

  15. Evidence for radical anion formation during liquid secondary ion mass spectrometry analysis of oligonucleotides and synthetic oligomeric analogues: a deconvolution algorithm for molecular ion region clusters.

    Science.gov (United States)

    Laramée, J A; Arbogast, B; Deinzer, M L

    1989-10-01

    It is shown that one-electron reduction is a common process that occurs in negative ion liquid secondary ion mass spectrometry (LSIMS) of oligonucleotides and synthetic oligonucleosides and that this process is in competition with proton loss. Deconvolution of the molecular anion cluster reveals contributions from (M-2H).-, (M-H)-, M.-, and (M + H)-. A model based on these ionic species gives excellent agreement with the experimental data. A correlation between the concentration of species arising via one-electron reduction [M.- and (M + H)-] and the electron affinity of the matrix has been demonstrated. The relative intensity of M.- is mass-dependent; this is rationalized on the basis of base-stacking. Base sequence ion formation is theorized to arise from M.- radical anion among other possible pathways.

  16. Electron-capture cross sections for low-energy highly charged neon and argon ions from molecular and atomic hydrogen

    International Nuclear Information System (INIS)

    Can, C.; Gray, T.J.; Varghese, S.L.; Hall, J.M.; Tunnell, L.N.

    1985-01-01

    Electron-capture cross sections for low-velocity (10 6 --10 7 cm/s) highly charged Ne/sup q/+ (2< or =q< or =7) and Ar/sup q/+ (2< or =q< or =10)= projectiles incident on molecular- and atomic-hydrogen targets have been measured. A recoil-ion source that used the collisions of fast heavy ions (1 MeV/amu) with target gas atoms was utilized to produce slow highly charged ions. Atomic hydrogen was produced by dissociating hydrogen molecules in a high-temperature oven. Measurements and analysis of the data for molecular- and atomic-hydrogen targets are discussed in detail. The measured absolute cross sections are compared with published data and predictions of theoretical models

  17. Rotational spectrum of the molecular ion NH+ as a probe for α and me/mp variation

    International Nuclear Information System (INIS)

    Beloy, K.; Borschevsky, A.; Hauser, A. W.; Schwerdtfeger, P.; Kozlov, M. G.; Flambaum, V. V.

    2011-01-01

    We identify the molecular ion NH + as a potential candidate for probing variations in the fine-structure constant α and electron-to-proton mass ratio μ. NH + has an anomalously low-lying excited 4 Σ - state, being only a few hundred cm -1 above the ground 2 Π state. Being a light molecule, this proximity is such that rotational levels of the respective states are highly intermixed for low angular momenta. We find that several low-frequency transitions within the collective rotational spectrum experience enhanced sensitivity to α and μ variation. This is attributable to the close proximity of the 2 Π and 4 Σ - states, as well as the ensuing strong spin-orbit coupling between them. Suggestions that NH + may exist in interstellar space and recent predictions that trapped-ion precision spectroscopy will be adaptable to molecular ions make NH + a promising system for future astrophysical and laboratory studies of α and μ variation.

  18. Quantum molecular dynamics study on energy transfer to the secondary electron in surface collision process of an ion

    International Nuclear Information System (INIS)

    Shibahara, M; Satake, S; Taniguchi, J

    2008-01-01

    In the present study the quantum molecular dynamics method was applied to an energy transfer problem to an electron during ionic surface collision process in order to elucidate how energy of ionic collision transfers to the emitted electrons. Effects of various physical parameters, such as the collision velocity and interaction strength between the observed electron and the classical particles on the energy transfer to the electron were investigated by the quantum molecular dynamics method when the potassium ion was collided with the surface so as to elucidate the energy path to the electron and the predominant factor of energy transfer to the electron. Effects of potential energy between the ion and the electron and that between the surface molecule and the electron on the electronic energy transfer were shown in the present paper. The energy transfer to the observed secondary electron through the potential energy term between the ion and the electron was much dependent on the ion collision energy although the energy increase to the observed secondary electron was not monotonous through the potential energy between the ion and surface molecules with the change of the ion collision energy

  19. Different routes, same pathways: Molecular mechanisms under silver ion and nanoparticle exposures in the soil sentinel Eisenia fetida

    International Nuclear Information System (INIS)

    Novo, Marta; Lahive, Elma; Díez-Ortiz, María; Matzke, Marianne; Morgan, Andrew J.; Spurgeon, David J.; Svendsen, Claus; Kille, Peter

    2015-01-01

    Use of nanotechnology products is increasing; with silver (Ag) nanoparticles particularly widely used. A key uncertainty surrounding the risk assessment of AgNPs is whether their effects are driven through the same mechanism of action that underlies the toxic effects of Ag ions. We present the first full transcriptome study of the effects of Ag ions and NPs in an ecotoxicological model soil invertebrate, the earthworm Eisenia fetida. Gene expression analyses indicated similar mechanisms for both silver forms with toxicity being exerted through pathways related to ribosome function, sugar and protein metabolism, molecular stress, disruption of energy production and histones. The main difference seen between Ag ions and NPs was associated with potential toxicokinetic effects related to cellular internalisation and communication, with pathways related to endocytosis and cilia being significantly enriched. These results point to a common final toxicodynamic response, but initial internalisation driven by different exposure routes and toxicokinetic mechanisms. - Highlights: • Molecular effects underlying Ag ions and NPs exposure were studied in Eisenia fetida. • Full transcriptomic study of a genetically characterised lineage. • NPs and ions presented a similar toxicodynamic response. • Internalisation of the two Ag forms by different toxicokinetic mechanisms. - Transcriptomic analyses after exposure of earthworms to silver NPs or ions showed a final common toxicodynamic response, but internalisation by different toxicokinetic mechanisms

  20. Structural characterization of saturated branched chain fatty acid methyl esters by collisional dissociation of molecular ions generated by electron ionization.

    Science.gov (United States)

    Ran-Ressler, Rinat R; Lawrence, Peter; Brenna, J Thomas

    2012-01-01

    Saturated branched chain fatty acids (BCFA) are present as complex mixtures in numerous biological samples. The traditional method for structure elucidation, electron ionization (EI) mass spectrometry, sometimes does not unambiguously enable assignment of branching in isomeric BCFA. Zirrolli and Murphy (Zirrolli , J. A. , and R. A. Murphy. 1993. Low-energy tandem mass spectrometry of the molecular ion derived from fatty acid methyl esters: a novel method for analysis of branched-chain fatty acids. J. Am. Soc. Mass Spectrom. 4: 223-229.) showed that the molecular ions of four BCFA methyl ester (BCFAME) yield highly characteristic fragments upon collisional dissociation using a triple quadrupole instrument. Here, we confirm and extend these results by analysis using a tabletop 3-D ion trap for activated molecular ion EI-MS/MS to 30 BCFAME. iso-BCFAME produces a prominent ion (30-100% of base peak) for [M-43] (M-C₃H₇), corresponding to the terminal isopropyl moiety in the original iso-BCFAME. Anteiso-FAME yield prominent ions (20-100% of base peak) corresponding to losses on both side of the methyl branch, [M-29] and [M-57], and tend to produce more prominent m/z 115 peaks corresponding to a cyclization product around the ester. Dimethyl and tetramethyl FAME, with branches separated by at least one methylene group, yield fragment on both sides of the sites of methyl branches that are more than 6 C away from the carboxyl carbon. EI-MS/MS yields uniquely specific ions that enable highly confident structural identification and quantification of BCFAME.

  1. Atmospheric-pressure solution-cathode glow discharge: A versatile ion source for atomic and molecular mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Andrew J. [Department of Chemistry, Indiana University, Bloomington, IN, 47405 (United States); Williams, Kelsey L. [Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242 (United States); Hieftje, Gary M. [Department of Chemistry, Indiana University, Bloomington, IN, 47405 (United States); Shelley, Jacob T., E-mail: shellj@rpi.edu [Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242 (United States); Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180 (United States)

    2017-01-15

    An atmospheric-pressure solution-cathode glow discharge (SCGD) has been evaluated as an ion source for atomic, molecular, and ambient desorption/ionization mass spectrometry. The SCGD consists of a direct-current plasma, supported in the ambient air in the absence of gas flows, and sustained upon the surface of a flowing liquid cathode. Analytes introduced in the flowing liquid, as an ambient gas, or as a solid held near the plasma are vaporized and ionized by interactions within or near the discharge. Introduction of acidic solutions containing metal salts produced bare elemental ions as well as H{sub 2}O, OH{sup −} and NO{sub 3}{sup −} adducts. Detection limits for these elemental species ranged from 0.1 to 4 ppb, working curves spanned more than 4 orders of linear dynamic range, and precision varied between 5 and 16% relative standard deviation. Small organic molecules were also efficiently ionized from solution, and both the intact molecular ion and fragments were observed in the resulting SCGD mass spectra. Fragmentation of molecular species was found to be tunable; high discharge currents led to harder ionization, while low discharge currents produced stronger molecular-ion signals. Ambient gases and solids, desorbed by the plasma from a glass probe, were also readily ionized by the SCGD. Indeed, strong analyte signals were obtained from solid samples placed at least 2 cm from the plasma. These findings indicate that the SCGD might be useful also for ambient desorption/ionization mass spectrometry. Combined with earlier results that showed the SCGD is useful for ionization of labile biomolecules, the results here indicate that the SCGD is a highly versatile ion source capable of providing both elemental and molecular mass-spectral information. - Highlights: • Solution-cathode glow discharge used as an ionization source for mass spectrometry. • SCGD-MS can provide atomic as well as intact molecular mass spectra. • Atomic limits of detection range

  2. Parametrics for Molecular Deuterium Concentrations in the Source Region of the UW-IEC Device Using an Ion Acoustic Wave Diagnostic

    Science.gov (United States)

    Boris, D. R.; Emmert, G. A.

    2007-11-01

    The ion source region of the UW-Inertial Electrostatic Confinement device is comprised of a filament assisted DC discharge plasma that exists between the wall of the IEC vacuum chamber and the grounded spherical steel grid that makes up the anode of the IEC device. A 0-dimensional rate equation calculation of the molecular deuterium ion species concentration has been applied utilizing varying primary electron energy, and neutral gas pressure. By propagating ion acoustic waves in the source region of the IEC device the concentrations of molecular deuterium ion species have been determined for these varying plasma conditions, and high D3^+ concentrations have been verified. This was done by utilizing the multi-species ion acoustic wave dispersion relation, which relates the phase speed of the multi-species ion acoustic wave, vph, to the sum in quadrature of the concentration weighted ion acoustic sound speeds of the individual ion species.

  3. Charge transport and magnetoresistance of G4-DNA molecular device modulated by counter ions and dephasing effect

    International Nuclear Information System (INIS)

    Kang, Da-wei; Sun, Meng-le; Zuo, Zheng-wei; Wang, Hui-xian; Lv, Shi-jie; Li, Xin-zhong; Li, Li-ben

    2016-01-01

    The charge transport properties of the G4-DNA molecular device in the presence of counter ions and dephasing effect are investigated based on the Green function method and Landauer–Büttiker theory. The currents through the G4-DNA molecular device depend on the interference patterns at different coupling configurations. There is an effective electrostatic interaction between the counter ions and the G4-DNA molecule which introduces disorder into the on-site energies of G bases. The current through the device can be enhanced by the small disorder which avoids the strong interference of electrons at the same energy in some coupling configurations, however the diagonal disorder can suppress the overall current due to the Anderson localization of charge carriers when the disorder is large. In the presence of dephasing effect the current through the device at all coupling configurations can be enhanced as a result of the phase coherence losing of electron. As for the magnetic field response, the magnetoresistance of the device is always suppressed by the counter ions and dephasing effect. - Highlights: • The counter ions can some times enhance the current through G4-DNA molecule. • The dephasing effect can enhance the current of the device at all four coupling configurations. • The magnetoresistance is always suppressed by the counter ions and dephasing effect.

  4. An investigation on the mechanism of sublimed DHB matrix on molecular ion yields in SIMS imaging of brain tissue.

    Science.gov (United States)

    Dowlatshahi Pour, Masoumeh; Malmberg, Per; Ewing, Andrew

    2016-05-01

    We have characterized the use of sublimation to deposit matrix-assisted laser desorption/ionization (MALDI) matrices in secondary ion mass spectrometry (SIMS) analysis, i.e. matrix-enhanced SIMS (ME-SIMS), a common surface modification method to enhance sensitivity for larger molecules and to increase the production of intact molecular ions. We use sublimation to apply a thin layer of a conventional MALDI matrix, 2,5-dihydroxybenzoic acid (DHB), onto rat brain cerebellum tissue to show how this technique can be used to enhance molecular yields in SIMS while still retaining a lateral resolution around 2 μm and also to investigate the mechanism of this enhancement. The results here illustrate that cholesterol, which is a dominant lipid species in the brain, is decreased on the tissue surface after deposition of matrix, particularly in white matter. The decrease of cholesterol is followed by an increased ion yield of several other lipid species. Depth profiling of the sublimed rat brain reveals that the lipid species are de facto extracted by the DHB matrix and concentrated in the top most layers of the sublimed matrix. This extraction/concentration of lipids directly leads to an increase of higher mass lipid ion yield. It is also possible that the decrease of cholesterol decreases the potential suppression of ion yield caused by cholesterol migration to the tissue surface. This result provides us with significant insights into the possible mechanisms involved when using sublimation to deposit this matrix in ME-SIMS.

  5. In-situ Mass Spectrometric Determination of Molecular Structural Evolution at the Solid Electrolyte Interphase in Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zihua; Zhou, Yufan; Yan, Pengfei; Vemuri, Venkata Rama Ses; Xu, Wu; Zhao, Rui; Wang, Xuelin; Thevuthasan, Suntharampillai; Baer, Donald R.; Wang, Chong M.

    2015-08-19

    Dynamic molecular evolution at solid/liquid electrolyte interface is always a mystery for a rechargeable battery due to the challenge to directly probe/observe the solid/liquid interface under reaction conditions, which in essence appears to be similarly true for all the fields involving solid/liquid phases, such as electrocatalysis, electrodeposition, biofuel conversion, biofilm, and biomineralization, We use in-situ liquid secondary ion mass spectroscopy (SIMS) for the first time to directly observe the molecular structural evolution at the solid electrode/liquid electrolyte interface for a lithium (Li)-ion battery under dynamic operating conditions. We have discovered that the deposition of Li metal on copper electrode leads to the condensation of solvent molecules around the electrode. Chemically, this layer of solvent condensate tends to deplete the salt anion and with low concentration of Li+ ions, which essentially leads to the formation of a lean electrolyte layer adjacent to the electrode and therefore contributes to the overpotential of the cell. This unprecedented molecular level dynamic observation at the solid electrode/liquid electrolyte interface provides vital chemical information that is needed for designing of better battery chemistry for enhanced performance, and ultimately opens new avenues for using liquid SIMS to probe molecular evolution at solid/liquid interface in general.

  6. A four-component Dirac theory of ionization of a hydrogen molecular ion in a super-intense laser field

    International Nuclear Information System (INIS)

    Faisal, F H M

    2009-01-01

    In this communication, a four-component Dirac theory of ionization of a hydrogen molecular ion, H + 2 , in a super-intense laser field is presented. Analytic expressions for the spin-specific as well as the total ionization currents emitted from the ground state of the ion are derived. The results are given for arbitrary intensity, frequency, wavenumber and polarization of the field, and for the up or down spin of the bound and ionized states of the electron. They also apply for the case of inner-shell ionization of analogous heavier diatomic molecular ions. The presence of molecular two-slit interference effect, first found in the non-relativistic case, the spin-flip ionization current, and an asymmetry of the up- and down-spin currents similar to that predicted in the atomic case, is found to hold for the present relativistic molecular ionic case as well. The possibility of controlling the spin of the dominant ionization current in any direction by simply selecting the handedness of a circularly polarized incident laser field is pointed out. Finally, we note that the present results obtained within the strong field 'KFR' ansatz open up the way for an analogous fully relativistic four-component treatment for ionization of polyatomic molecules and clusters in super-intense laser fields. (fast track communication)

  7. Two-body molecular model for resonances in heavy ion reactions

    International Nuclear Information System (INIS)

    Abe, Y.

    1978-01-01

    It is necessary to develop qualitative arguments on resonance mechanisms, which will give an overview on occurrences of resonances in heavy ion reactions, and further to identify typical examples of nuclear molecules among existing experimental data. In section 2, qualitative arguments on resonance mechanisms are given by exemplifying the 12 C + 16 O system with the 3 - excitation of the 16 O nucleus. In section 3 a simple formulation in the coupled channel framework is given. Resonances in the 12 C - 16 O system, which has been observed well above the Coulomb barrier, are investigated in section 4. In section 5 an old, but not yet solved problem on resonances in the 12 C + 12 C system which have been observed at sub-Coulomb energies, is taken up along the nuclear molecular picture. Further discussions are given on a role of the 20 Ne-α channel along the present simple qualitative picture given in section 2, which can be extended to rearrangement channels. (Auth.)

  8. Collisional transfer of electrons to the continuum of atomic and molecular ions

    International Nuclear Information System (INIS)

    Gonzalez Lepera, C.E.

    1983-01-01

    The aim of this study was the systematic investigation of the differences that appear in the peaks of distribution of doubly differential (in angle an energy) 'convoy' electrons, when comparing spectra obtained by bombarding thin carbon foils with atomic (H + ) and molecular (H 2 + ) projectiles of equal velocity. The measurements show that the production yield of such electrons is inversely propotional to the ion dwell time in the solid. For long times, the yield ratio fluctuates around the unity value, and the amplitude of this dispersion decreases for longer times. A higher yield is measured for (H 2 + ), but only near the peak cusp. The double differential cross section (DDCS) for electron capture is calculated in second order Born approximation. A transition from a 1s state to the continuum of two correlated protons as a function of their internuclear distance R is considered. As R decreases from approx. 0.5 atomic units towards zero, the DDCS value increases from that corresponding to the atomic projectil (Z=1) limit to the united atom value (Z=2). It is found that, the higher the projectil velocity, the better is the DDCS value agreement with both limits. The equipment used by the author is described. (M.E.L.) [es

  9. Lithium ion conductivity of molecularly compatibilized chitosan-poly(aminopropyltriethoxysilane)-poly(ethylene oxide) nanocomposites

    International Nuclear Information System (INIS)

    Fuentes, S.; Retuert, P.J.; Gonzalez, G.

    2007-01-01

    Films of composites of chitosan/poly(aminopropyltriethoxysilane)/poly(ethylene oxide) (CHI/pAPS/PEO) containing a fixed amount of lithium salt are studied. The ternary composition diagram of the composites, reporting information on the mechanic stability, the transparence and the electrical conductivity of the films, shows there is a window in which the molecular compatibility of the components is optimal. In this window, defined by the components ratios CHI/PEO 3:2, pAPS/PEO 2:3 and CHI/PEO 1:2, there is a particular composition Li x (CHI) 1 (PEO) 2 (pAPS) 1.2 for which the conductivity reaches a value of 1.7 x 10 -5 S cm -1 at near room temperature. Considering the balance between the Lewis acid and basic sites available in the component and the observed stoichiometry limits of formed polymer complexes, the conductivity values of these products may be understood by the formation of a layered structure in which the lithium ions, stabilized by the donors, poly(ethylene oxide) and/or poly(aminopropyltriethoxysilane), are intercalated in a chitosan matrix

  10. The formation and reactivity of the μ+ molecular ion NeMu+

    International Nuclear Information System (INIS)

    Fleming, D.G.; Mikula, R.J.; Senba, M.; Garner, D.M.; Arseneau, D.J.

    1983-06-01

    Evidence for the formation and reactivity of the positive muon molecular ion NeMu + at room temperature in a low pressure Ne moderator to which trace amounts of Xe, CH 4 , NH 3 or He have been added, is reported. A two component relaxation of the diamagnetic muon spin rotation (μSR) signal is seen upon the addition of trace amounts of Xe to Ne; a fast relaxing component with bimolecular rate constant (3.6+-0.6) x 10 -10 cc atom -1 s -1 is thought to be due to thermal muonium formation in a charge exchange process while the other slow relaxing component is attributed to a muon transfer reaction, as in proton transfer studies. With CH 4 or NH 3 added to Ne there is, at most, only a very slow relaxation seen, even though thermal muonium formation is expected, in analogy with Xe. These latter results may be due to very fast, possibly tunneling-assisted, muon transfer reactions, the first time that such processes have been at all characterized

  11. Mapping of low molecular weight heparins using reversed phase ion pair liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Li, Daoyuan; Chi, Lequan; Jin, Lan; Xu, Xiaohui; Du, Xuzhao; Ji, Shengli; Chi, Lianli

    2014-01-01

    Low molecular weight heparins (LMWHs) are structurally complex, highly sulfated and negatively charged, linear carbohydrate polymers prepared by chemical or enzymatic depolymerization of heparin. They are widely used as anticoagulant drugs possessing better bioavailability, longer half-life, and lower side effects than heparin. Comprehensive structure characterization of LMWHs is important for drug quality assurance, generic drug application, and new drug research and development. However, fully characterization of all oligosaccharide chains in LMWHs is not feasible for current available analytical technologies due to their structure complexity and heterogeneity. Fingerprinting profiling is an efficient way for LMWHs' characterization and comparison. In this work, we present a simple, sensitive, and powerful analytical approach for structural characterization of LMWHs. Two different LMWHs, enoxaparin and nadroparin, were analyzed using reversed phase ion pair electrospray ionization mass spectrometry (RPIP-ESI-MS). More than 200 components were identified, including major structures, minor structures, and process related impurities. This approach is robust for high resolution and complementary fingerprinting analysis of LMWHs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. First simultaneous detection of terrestrial ionospheric molecular ions in the Earth's inner magnetosphere and at the Moon

    Science.gov (United States)

    Dandouras, I.; Poppe, A. R.; Fillingim, M. O.; Kistler, L. M.; Mouikis, C. G.; Rème, H.

    2017-09-01

    First coordinated observation of escaping heavy molecular ions in the Earth's inner magnetosphere and at the Moon. Quantifying the underlying escape mechanisms is important in order to understand the long-term (billion years scale) evolution of the atmospheric composition, and in particular the evolution of the N/O ratio, which is essential for habitability. Terrestrial heavy ions, transported to the Moon, suggest also that the Earth's atmosphere of billions of years ago may be preserved on the present-day lunar regolith.

  13. Atomic and molecular physics - Ions in solids - Laser systems. Courses, corrected exercises and problems Level M1/M2

    International Nuclear Information System (INIS)

    Cremer, Georgette-Laura; Moncorge, Richard; Chesnel, Jean-Yves; Adoui, Lamri; Lelievre, Gerard

    2010-01-01

    This document proposes the table of contents and a brief presentation of a course book for students in atomic and molecular physics. After some generalities on energy quantification and on photon momentum / Compton Effect, the different chapters address topics like hydrogen and helium atoms, alkalis, alkaline-earth, atoms with several valence electrons, the atom-radiation interaction, molecule and ion spectroscopy in solids, and the most significant laser systems using an active media based on atoms, ions or molecules in a diluted environment. Each chapter contains exercises and problems

  14. The exotic molecular ion H{sub 4}{sup 3+} in a strong magnetic field; El ion molecular exotico H{sub 4}{sup 3+} en un campo magnetico intenso

    Energy Technology Data Exchange (ETDEWEB)

    Olivares P, H. [ICN-UNAM, A.P. 70-543, 04510 Mexico D.F. (Mexico)]. e-mail: horop@nucleares.unam.mx

    2006-07-01

    Using the variational method, a detailed study of the lowest m = 0, -1 electronic states of the exotic molecular ion H3+{sub 4} in a strong magnetic field, in the linear symmetric configuration parallel to the direction of the magnetic field is carried out. A extended study of the 1{sigma}g ground state (J.C. Lopez and A.Turbiner, Phys. Rev A 62, 022510, 2000) was performed obtaining that the potential energy curve displays a sufficiently deep minimum for finite internuclear distances, indicating the possible existence of the molecular ion H{sub 4}{sup 3+}, for magnetic fields of strength B > {approx} 3 x 10{sup 13} G. It is demonstrated that the excited state 1{pi}{sub u}, can exist for a magnetic field B = 4.414 x 10{sup 13} G corresponding to the limit of applicability of the non-relativistic theory. (Author)

  15. Ion-beam doping of GaAs with low-energy (100 eV) C + using combined ion-beam and molecular-beam epitaxy

    Science.gov (United States)

    Iida, Tsutomu; Makita, Yunosuke; Kimura, Shinji; Winter, Stefan; Yamada, Akimasa; Fons, Paul; Uekusa, Shin-ichiro

    1995-01-01

    A combined ion-beam and molecular-beam-epitaxy (CIBMBE) system has been developed. This system consists of an ion implanter capable of producing ions in the energy range of 30 eV-30 keV and conventional solid-source MBE. As a successful application of CIBMBE, low-energy (100 eV) carbon ion (C+) irradiation during MBE growth of GaAs was carried out at substrate temperatures Tg between 500 and 590 °C. C+-doped layers were characterized by low-temperature (2 K) photoluminescence (PL), Raman scattering, and van der Pauw measurements. PL spectra of undoped GaAs grown by CIBMBE revealed that unintentional impurity incorporation into the epilayer is extremely small and precise doping effects are observable. CAs acceptor-related emissions such as ``g,'' [g-g], and [g-g]β are observed and their spectra are significantly changed with increasing C+ beam current density Ic. PL measurements showed that C atoms were efficiently incorporated during MBE growth by CIBMBE and were optically well activated as an acceptor in the as-grown condition even for Tg as low as 500 °C. Raman measurement showed negligible lattice damage of the epilayer bombarded with 100 eV C+ with no subsequent heat treatment. These results indicate that contamination- and damage-free impurity doping without postgrowth annealing can be achieved by the CIBMBE method.

  16. Ion-beam doping of GaAs with low-energy (100 eV) C(+) using combined ion-beam and molecular-beam epitaxy

    Science.gov (United States)

    Lida, Tsutomu; Makita, Yunosuke; Kimura, Shinji; Winter, Stefan; Yamada, Akimasa; Fons, Paul; Uekusa, Shin-Ichiro

    1995-01-01

    A combined ion-beam and molecular-beam-epitaxy (CIBMBE) system has been developed. This system consists of an ion implanter capable of producing ions in the energy range of 30 eV - 30 keV and conventional solid-source MBE. As a successful application of CIBMBE, low-energy (100 eV) carbon ion (C(+)) irradiation during MBE growth of GaAs was carried out at substrate temperatures T(sub g) between 500 and 590 C. C(+)-doped layers were characterized by low-temperature (2 K) photoluminescence (PL), Raman scattering, and van der Pauw measurements. PL spectra of undoped GaAs grown by CIBMBE revealed that unintentional impurity incorporation into the epilayer is extremely small and precise doping effects are observable. C(sub As) acceptor-related emissions such as 'g', (g-g), and (g-g)(sub beta) are observed and their spectra are significantly changed with increasing C(+) beam current density I(sub c). PL measurements showed that C atoms were efficiently incorporated during MBE growth by CIBMBE and were optically well activated as an acceptor in the as-grown condition even for T(sub g) as low as 500 C. Raman measurement showed negligible lattice damage of the epilayer bombarded with 100 eV C(+) with no subsequent heat treatment. These results indicate that contamination- and damage-free impurity doping without postgrowth annealing can be achieved by the CIBMBE method.

  17. Direct determination of recoil ion detection efficiency for coincidence time-of-flight studies of molecular fragmentation

    International Nuclear Information System (INIS)

    Ben-Itzhak, I.; Carnes, K.D.; Ginther, S.G.; Johnson, D.T.; Norris, P.J.; Weaver, O.L.

    1993-01-01

    Molecular fragmentation of diatomic and small polyatomic molecules caused by fast ion impact has been studied. The evaluation of the cross sections of the different fragmentation channels depends strongly on the recoil ion detection efficiency, ε r (single ions proportional to ε r , and ion pairs to ε 2 r , etc.). A method is suggested for the direct determination of this detection efficiency. This method is based on the fact that fast H + + CH 4 collisions produce C 2+ fragments only in coincidence with H + and H + 2 fragments, that is, there is a negligible number of C 2+ singles, if any. The measured yield of C 2+ singles is therefore due to events in which the H + m of the H + m + C 2+ ion pair was not detected and thus is proportional to 1 - ε r . Methane fragmentation caused by 1 MeV proton impact is used to evaluate directly the recoil ion detection efficiency and to demonstrate the method of deriving the cross sections of all breakup channels. (orig.)

  18. Dissociation and ionization of molecular ions by ultra-short intense laser pulses probed by coincidence 3D momentum imaging

    International Nuclear Information System (INIS)

    Ben-Itzhak, Itzik; Wang, Pengqian; Xia, Jiangfan; Max Sayler, A.; Smith, Mark A.; Maseberg, J.W.; Carnes, Kevin D.; Esry, Brett D.

    2005-01-01

    We have experimentally explored laser-induced dissociation and ionization of diatomic molecular ions using coincidence 3D momentum imaging. The vibrationally excited molecular ion beam (4-8 keV) is crossed by an ultrafast intense laser beam (28-200 fs, 10 13 -10 14 W/cm 2 ). The resulting fragments are recorded in coincidence by a time and position-sensitive detector. Complete angular distributions and kinetic energy release maps are reconstructed from the measured dissociation-momentum vectors. The angular distribution of the H + + H fragments was found to be strongly correlated to their kinetic energy release upon dissociation. Low KER was associated with very narrow angular distributions and high KER with distributions peaking away from the laser polarization. Ionization was found to be smaller than dissociation and increased with laser intensity. The H + + H + fragments have a very narrow angular distribution along the laser polarization

  19. Molecular model of a cell plasma membrane with an asymmetric multicomponent composition: Water permeation and ion effects

    Czech Academy of Sciences Publication Activity Database

    Vácha, Robert; Berkowitz, M. L.; Jungwirth, Pavel

    2009-01-01

    Roč. 96, č. 11 (2009), s. 4493-4501 ISSN 0006-3495 R&D Projects: GA ČR(CZ) GD203/05/H001; GA ČR GA203/08/0114 Grant - others:NSF(US) MCB-0615469 Institutional research plan: CEZ:AV0Z40550506 Keywords : membrane * ions * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.390, year: 2009

  20. Stripping of 1.04 MeV per nucleon krypton ions in high molecular weight vapours

    International Nuclear Information System (INIS)

    Eastham, D.A.; Joy, T.; Clark, R.B.; King, R.

    1976-01-01

    Equilibrium charge state distributions have been measured for 1.04 MeV per nucleon krypton ions in heavy vapours with molecular weights from 462 to 6500. Non-equilibrium data are presented for the heaviest vapour. A maximum increase of 0.8 in the mean charge is found relative to a conventional diatomic gas but the pressures required are two orders of magnitude less. (Auth.)

  1. Permeating disciplines: Overcoming barriers between molecular simulations and classical structure-function approaches in biological ion transport.

    Science.gov (United States)

    Howard, Rebecca J; Carnevale, Vincenzo; Delemotte, Lucie; Hellmich, Ute A; Rothberg, Brad S

    2018-04-01

    Ion translocation across biological barriers is a fundamental requirement for life. In many cases, controlling this process-for example with neuroactive drugs-demands an understanding of rapid and reversible structural changes in membrane-embedded proteins, including ion channels and transporters. Classical approaches to electrophysiology and structural biology have provided valuable insights into several such proteins over macroscopic, often discontinuous scales of space and time. Integrating these observations into meaningful mechanistic models now relies increasingly on computational methods, particularly molecular dynamics simulations, while surfacing important challenges in data management and conceptual alignment. Here, we seek to provide contemporary context, concrete examples, and a look to the future for bridging disciplinary gaps in biological ion transport. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Study on performance of composite polymer films doped with modified molecular sieve for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang Yuqing; Zhang Guodong; Du Tingdong; Zhang Lizao

    2010-01-01

    To improve the tensile strength and ionic conductivity of composite polymer films for lithium-ion batteries, molecular sieves of MCM-41 modified with sulfated zirconia (SO 4 2- /ZrO 2 , SZ), denoted as MCM-41/SZ, were doped into a poly(vinylidene fluoride) (PVdF) matrix to fabricate MCM-41/SZ composite polymer films, denoted as MCM-41/SZ films. Examination by transmission electron microscope (TEM) shows that modified molecular sieves have lower aggregation and a more porous structure. Tensile strength tests were carried out to investigate the mechanical performance of MCM-41/SZ films, and then the electrochemical performance of batteries with MCM-41/SZ films as separators was tested. The results show that the tensile strength (σ t ) of MCM-41/SZ film was up to 7.8 MPa; the ionic conductivity of MCM-41/SZ film was close to 10 -3 S cm -1 at room temperature; and the coulombic efficiency of the assembled lithium-ion battery was 92% at the first cycle and reached as high as 99.99% after the 20th cycle. Meanwhile, the charge-discharge voltage plateau of the lithium-ion battery presented a stable state. Therefore, MCM-41/SZ films are a good choice as separators for lithium-ion batteries due to their high tensile strength and ionic conductivity.

  3. The role of biomembrane lipids in the molecular mechanism of ion transport radiation damage

    International Nuclear Information System (INIS)

    Medvedev, B.I.; Evtodienko, Yu.V.; Yaguzhinsky, L.S.; Kuzin, A.M.

    1977-01-01

    Increase in the rate of ATP synthesis (I.4-I.6 times), Ca 2+ -capacity (I.4-I.8 times), membrane potential (by 20-50 mv) and decrease in K - -conductivity (2.5-3 times) in rat liver mitochondria was observed three hours after γ-irradiation at a dose of 1000r. The process of oxidative phosphorylation was normalized 24 hours later, whereas damages of Ca 2+ -accumulation and K + -conductivity remain. The molecular mechanism of reduction in K + -permeability of mitochondrial membranes has been studied. The endogenous regulators of ionic transport in the lipid phase of mitochondrial biomembranes were investigated before and after γ-irradiation. It was revealed that K + -conductivity of the artificial phospholipid membranes (APM) formed of the phospholipids from irradiated mitochondria was substantially lower than that in the control. Using thin-layer chromatography the minor phospholipid fraction which increases K + -conductivity of APM was isolated from the lipids of unirradiated mitochondria. In the lipid preparations of irradiated mitochondria the minor phospholipid fraction content is sharply lowered (or absent at all). Besides the content of lysoforms of phosphatidylcholine and phosphatidylethanolamine as well as that of fatty acids and cholesterol esters were reduced 24 hours after irradiation. Three compounds with different capability to increase the APM conductivity for monovalent ions were revealed in the composition of the minor fraction. One of these components was shown to be lysopolyglycerophosphatide (lysodiphosphatidylglycerol). The role of the enzyme systems involved in radiational changes of the membrane lipid components and the importance of these phenomena for cell radiosensitivity will be discussed

  4. Secondary electron emission of thin carbon foils under the impact of hydrogen atoms, ions and molecular ions, under energies within the MeV range

    International Nuclear Information System (INIS)

    Vidovic, Z.

    1997-06-01

    This work focuses on the study of the emission statistics of secondary electrons from thin carbon foils bombarded with H 0 , H 2 + and H 3 + projectiles in the 0.25-2.2 MeV energy range. The phenomenon of secondary electron emission from solids under the impact of swift ions is mainly due to inelastic interactions with target electrons. The phenomenological and theoretical descriptions, as well as a summary of the main theoretical models are the subject of the first chapter. The experimental set-up used to measure event by event the electron emission of the two faces of a thin carbon foil traversed by an energetic projectile is described in the chapter two. In this chapter are also presented the method and algorithms used to process experimental spectra in order to obtain the statistical distribution of the emitted electrons. Chapter three presents the measurements of secondary electron emission induced by H atoms passing through thin carbon foils. The secondary electron yields are studied in correlation with the emergent projectile charge state. We show the peculiar role of the projectile electron, whether it remains or not bound to the incident proton. The fourth chapter is dedicated to the secondary electron emission induced by H 2 + and H 3 + polyatomic ions. The results are interpreted in terms of collective effects in the interactions of these ions with solids. The role of the proximity of the protons, molecular ion fragments, upon the amplitude of these collective effects is evidenced from the study of the statistics of forward emission. These experiences allowed us to shed light on various aspects of atom and polyatomic ion inter-actions with solid surfaces. (author)

  5. Atomic and molecular processes with lithium in peripheral plasmas

    International Nuclear Information System (INIS)

    Murakami, I.; Kato, D.; Hirooka, Y.; Sawada, K.

    2010-01-01

    Atomic and molecular processes for Li chemistry are examined for low temperature plasma such as peripheral plasmas in fusion research laboratory devices. Particle abundances of Li, Li ions, LiH and LiH ion are calculated by solving rate equations in which all reactions of the Li chemistry are considered for low temperature plasma.

  6. Molecular analyses reveal an abundant diversity of ticks and rickettsial agents associated with wild birds in two regions of primary Brazilian Atlantic Rainforest.

    Science.gov (United States)

    Luz, Hermes Ribeiro; Faccini, João Luiz Horacio; McIntosh, Douglas

    2017-06-01

    Brazilian wild birds are recognized as frequent and important hosts for immature stages of more than half of the 32 recognized species of Amblyomma ticks recorded in that country. Several species of Amblyomma harbor rickettsial agents, including members of the spotted fever group (SFG). Most studies on this topic relied primarily on morphological characterization and reported large portions of the collected ticks at the genus rather than species level. Clearly, this factor may have contributed to an underestimation of tick diversity and distribution and makes comparisons between studies difficult. The current investigation combined morphological and molecular analyses to assess the diversity of ticks and rickettsial agents associated with wild birds, captured in two regions of native Atlantic rainforest, in the state of Rio de Janeiro, Brazil. A total of 910 birds were captured, representing two orders, 34 families and 106 species, among which 93 specimens (10.2%), were parasitized by 138 immature ticks (60 larvae and 78 nymphs), representing 10 recognized species of the genus Amblyomma; together with two reasonably well classified haplotypes (Amblyomma sp. haplotype Nazaré and Amblyomma sp. strain USNTC 6792). Amplification by PCR and sequencing of rickettsial genes (htrA, gltA, ompA and ompB), demonstrated the presence of Rickettsia DNA in 48 (34%) of the ticks. Specifically, Rickettsia bellii was detected in a single larva and a single nymph of A. aureolatum; R. amblyomatis was found in 16 of 37 A. longirostre and was recorded for the first time in three nymphs of A. calcaratum; R. rhipicephali was detected in 9 (47%) of 19 Amblyomma sp. haplotype Nazaré ticks. The remaining ticks were infected with genetic variants of R. parkeri, namely strain ApPR in 12 A. parkeri and seven Amblyomma sp. haplotype Nazaré ticks, with the strain NOD found in two specimens of A. nodosum. Interestingly, a single larvae of A. ovale was shown to be infected with the emerging

  7. Use of proton-enhanced, natural abundance /sup 13/C NMR to study the molecular dynamics of model and biological membranes

    Energy Technology Data Exchange (ETDEWEB)

    Cornell, B A [Commonwealth Scientific and Industrial Research Organization, North Ryde (Australia). Div. of Food Research; Keniry, M [Sydney Univ. (Australia). Dept. of Physical Chemistry; Hiller, R G [Macquarie Univ., North Ryde (Australia). School of Biological Sciences; Smith, R [La Trobe Univ., Bundoora (Australia). Dept. of Biochemistry

    1980-06-16

    Proton-enhanced NMR of the natural abundance /sup 13/C nuclei is used to study the lipid mobility in dispersions containing cholesterol, the polypeptide gramicidin A, and in membrane proparations derived from spinach chloroplasts and bovine brain myelin.

  8. Molecular dynamics study of radiation damage and microstructure evolution of zigzag single-walled carbon nanotubes under carbon ion incidence

    Science.gov (United States)

    Li, Huan; Tang, Xiaobin; Chen, Feida; Huang, Hai; Liu, Jian; Chen, Da

    2016-07-01

    The radiation damage and microstructure evolution of different zigzag single-walled carbon nanotubes (SWCNTs) were investigated under incident carbon ion by molecular dynamics (MD) simulations. The radiation damage of SWCNTs under incident carbon ion with energy ranging from 25 eV to 1 keV at 300 K showed many differences at different incident sites, and the defect production increased to the maximum value with the increase in incident ion energy, and slightly decreased but stayed fairly stable within the majority of the energy range. The maximum damage of SWCNTs appeared when the incident ion energy reached 200 eV and the level of damage was directly proportional to incident ion fluence. The radiation damage was also studied at 100 K and 700 K and the defect production decreased distinctly with rising temperature because radiation-induced defects would anneal and recombine by saturating dangling bonds and reconstructing carbon network at the higher temperature. Furthermore, the stability of a large-diameter tube surpassed that of a thin one under the same radiation environments.

  9. Structure and dynamics of hydrated Fe(II) and Fe(III) ions. Quantum mechanical and molecular mechanical simulations

    International Nuclear Information System (INIS)

    Remsungnen, T.

    2002-11-01

    Classical molecular dynamics (MD) and combined em ab initio quantum mechanical/molecular mechanical molecular dynamics (QM/MM-MD) simulations have been performed to investigate structural, dynamical and energetical properties of Fe(II), and Fe(III) transition metal ions in aqueous solution. In the QM/MM-MD simulations the ion and its first hydration sphere were treated at the Hartree-Fock ab initio quantum mechanical level, while ab initio generated pair plus three-body potentials were employed for the remaining system. For the classical MD simulation the pair plus three-body potential were employed for all ion-water interactions. The coordination number of the first hydration shell is 100 % of 6 in both cases. The number of waters in the second hydration shell obtained from classical simulations are 13.4 and 15.1 for Fe(II) and Fe(III), respectively, while QM/MM-MD gives the values of 12.4 and 13.4 for Fe(II) and Fe(III). The energies of hydration obtained from MD and QM/MM-MD for Fe(II) are 520 and 500 kcal/mol, and for Fe(III) 1160 and 1100 kcal/mol respectively. The mean residence times of water in the second shell obtained from QM/MM-MD are 24 and 48 ps for Fe(II) and Fe(III), respectively. In contrast to the data obtained from classical MD simulation, the QM/MM-MD values are all in good agreement with the experimental data available. These investigations and results clearly indicate that many-body effects are essential for the proper description of all properties of the aqueous solution of both Fe(II) and Fe(III) ions. (author)

  10. Quantification of ion-induced molecular fragmentation of isolated 2-deoxy-D-ribose molecules

    NARCIS (Netherlands)

    Alvarado Chacon, F.; Bari, S.; Hoekstra, R.A.; Schlathölter, T.A.

    2006-01-01

    Recent experiments on low energy ion-induced damage to DNA building blocks indicate that ion induced DNA damage is dominated by deoxyribose disintegration (Phys. Rev. Lett., 2005, 95, 153201). We have studied interactions of keV H+ and Heq+ with isolated deoxyribose molecules by means of high

  11. Sputtering of silicon and glass substrates with polyatomic molecular ion beams generated from ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Mitsuaki, E-mail: m-takeuchi@kuee.kyoto-u.ac.jp; Hoshide, Yuki; Ryuto, Hiromichi; Takaoka, Gikan H. [Photonics and Electronics Science and Engineering Center, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2016-03-15

    The effect of irradiating 1-ethyl-3-methylimidazolium positive (EMIM{sup +}) or dicyanamide negative (DCA{sup –}) ion beams using an ionic liquid ion source was characterized concerning its sputtering properties for single crystalline Si(100) and nonalkaline borosilicate glass substrates. The irradiation of the DCA{sup –} ion beam onto the Si substrate at an acceleration voltage of 4 and 6 kV exhibited detectable sputtered depths greater than a couple of nanometers with an ion fluence of only 1 × 10{sup 15} ions/cm{sup 2}, while the EMIM{sup +} ion beam produced the same depths with an ion fluence 5 × 10{sup 15} ions/cm{sup 2}. The irradiation of a 4 kV DCA{sup –} ion beam at a fluence of 1 × 10{sup 16} ions/cm{sup 2} also yields large etching depths in Si substrates, corresponding to a sputtering yield of Si/DCA{sup – }= 10, and exhibits a smoothed surface roughness of 0.05 nm. The interaction between DCA{sup –} and Si likely causes a chemical reaction that relates to the high sputtering yield and forms an amorphous C-N capping layer that results in the smooth surface. Moreover, sputtering damage by the DCA{sup –} irradiation, which was estimated by Rutherford backscattering spectroscopy with the channeling technique, was minimal compared to Ar{sup +} irradiation at the same condition. In contrast, the glass substrates exhibited no apparent change in surface roughnesses when sputtered by the DCA{sup –} irradiation compared to the unirradiated glass substrates.

  12. Vicinage effects in energy loss and electron emission during grazing scattering of heavy molecular ions from a solid surface

    International Nuclear Information System (INIS)

    Song Yuanhong; Wang Younian; Miskovic, Z.L.

    2005-01-01

    Vicinage effects in the energy loss and the electron emission spectra are studied in the presence of Coulomb explosion of swift, heavy molecular ions, during their grazing scattering from a solid surface. The dynamic response of the surface is treated by means of the dielectric theory within the specular reflection model using the plasmon pole approximation for the bulk dielectric function, whereas the angle-resolved energy spectra of the electrons emitted from the surface are obtained on the basis of the first-order, time-dependent perturbation theory. The evolution of the charge states of the constituent ions in the molecule during scattering is described by a nonequilibrium extension of the Brandt-Kitagawa model. The molecule scattering trajectories and the corresponding Coulomb explosion dynamics are evaluated for the cases of the internuclear axis being either aligned in the beam direction or randomly oriented in the directions parallel to the surface. Our calculations show that the vicinage effect in the energy loss is generally weaker for heavy molecules than for light molecules. In addition, there is clear evidence of the negative vicinage effect in both the energy loss and the energy spectra of the emitted electrons for molecular ions at lower speeds and with the axis aligned in the direction of motion

  13. Pre-recombination quenching of the radiation induced fluorescence as the approach to study kinetics of ion-molecular reactions

    International Nuclear Information System (INIS)

    Borovkov, V.I.; Ivanishko, I.S.

    2011-01-01

    This study deals with the geminate ion recombination in the presence of bulk scavengers, that is the so-called scavenger problem, as well as with the effect of the scavenging reaction on the radiation-induced recombination fluorescence. have proposed a method to determine the rate constant of the bulk reaction between neutral scavengers and one of the geminate ions if the ion-molecular reaction prevented the formation of electronically excited states upon recombination involving a newly formed ion. If such pre-recombination quenching of the radiation-induced fluorescence took place, it manifested itself as a progressive decrease in the decay of the fluorescence intensity. The relative change in the fluorescence decay as caused by the scavengers was believed to be closely related to the kinetics of the scavenging reaction. The goal of the present study is to support this method, both computationally and experimentally because there are two factors, which cast doubt on the intuitively obvious approach to the scavenger problem: spatial correlations between the particles involved and the drift of the charged reagent in the electric field of its geminate partner. Computer simulation of geminate ions recombination with an explicit modeling of the motion trajectories of scavengers has been performed for media of low dielectric permittivity, i.e. for the maximal Coulomb interaction between the ions. The simulation has shown that upon continuous diffusion of the particles involved, the joint effect of the two above factors can be considered as insignificant with a high accuracy. Besides, it is concluded then that the method of pre-recombination quenching could be applied to study parallel and consecutive reactions where the yields of excited states in the reaction pathways are different with the use of very simple analytical relations of the formal chemical kinetics. The conclusion has been confirmed experimentally by the example of the reactions of electron transfer from

  14. Conformational changes and slow dynamics through microsecond polarized atomistic molecular simulation of an integral Kv1.2 ion channel

    DEFF Research Database (Denmark)

    Bjelkmar, Pär; Niemelä, Perttu S; Vattulainen, Ilpo

    2009-01-01

    transitions occur in membrane proteins-not to mention numerous applications in drug design. Here, we present a full 1 micros atomic-detail molecular dynamics simulation of an integral Kv1.2 ion channel, comprising 120,000 atoms. By applying 0.052 V/nm of hyperpolarization, we observe structural rearrangements......Structure and dynamics of voltage-gated ion channels, in particular the motion of the S4 helix, is a highly interesting and hotly debated topic in current membrane protein research. It has critical implications for insertion and stabilization of membrane proteins as well as for finding how...... and significant thinning of the membrane also observed in experiments, this provides additional support for the predictive power of microsecond-scale membrane protein simulations....

  15. Trypsin Binding with Copper Ions Scavenges Superoxide: Molecular Dynamics-Based Mechanism Investigation

    Directory of Open Access Journals (Sweden)

    Xin Li

    2018-01-01

    Full Text Available Trypsin is a serine protease, which has been proved to be a novel superoxide scavenger. The burst of superoxide induced by polychlorinated biphenyls can be impeded by trypsin in both wild type and sod knockout mutants of Escherichia coli. The experimental results demonstrated that the activities of superoxide scavenging of trypsin were significantly accelerated by Cu ions. Also, with the addition of Cu ions, a new β-sheet (β7 transited from a random coil in the Cu(II-trypsin (TP system, which was favorable for the formation of more contacts with other sheets of trypsin. Residue–residue network analysis and the porcupine plots proved that the Cu ion in trypsin strengthened some native interactions among residues, which ultimately resulted in much greater stability of the Cu(II-TP system. Moreover, compact and stable trypsin structures with Cu ions might be responsible for significantly provoking the activity of superoxide scavenging.

  16. Ion association in concentrated NaCl brines from ambient to supercritical conditions: results from classical molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    Collings Matthew D

    2002-11-01

    Full Text Available Highly concentrated NaCl brines are important geothermal fluids; chloride complexation of metals in such brines increases the solubility of minerals and plays a fundamental role in the genesis of hydrothermal ore deposits. There is experimental evidence that the molecular nature of the NaCl–water system changes over the pressure–temperature range of the Earth's crust. A transition of concentrated NaCl–H2O brines to a "hydrous molten salt" at high P and T has been argued to stabilize an aqueous fluid phase in the deep crust. In this work, we have done molecular dynamic simulations using classical potentials to determine the nature of concentrated (0.5–16 m NaCl–water mixtures under ambient (25°C, 1 bar, hydrothermal (325°C, 1 kbar and deep crustal (625°C, 15 kbar conditions. We used the well-established SPCE model for water together with the Smith and Dang Lennard-Jones potentials for the ions (J. Chem. Phys., 1994, 100, 3757. With increasing temperature at 1 kbar, the dielectric constant of water decreases to give extensive ion-association and the formation of polyatomic (NanClmn-m clusters in addition to simple NaCl ion pairs. Large polyatomic (NanClmn-m clusters resemble what would be expected in a hydrous NaCl melt in which water and NaCl were completely miscible. Although ion association decreases with pressure, temperatures of 625°C are not enough to overcome pressures of 15 kbar; consequently, there is still enhanced Na–Cl association in brines under deep crustal conditions.

  17. Interactions of fast molecular ions traversing thin foils. The contribution from field ionized Rydberg atoms in measurements on convoy electrons

    International Nuclear Information System (INIS)

    Gemmell, D.S.

    1983-01-01

    Experiments with fast (MeV) molecular-ion beams offer many attractive possibilities for studying atomic collisions in solids. Of particular value in such experiments is the possibility of determining the force fields (primarily in the induced electric field) that surround ionic fragments traversing a solid. One has the opportunity to evaluate these fields not just at the fragments themselves (as one would, for example, in stopping-power measurements with monatomic projectiles) but in the spatial regions extending out to several Angstroms from the fragment positions. In this paper we give a brief introduction to the subject and present some recent results

  18. Molecular treatment of the ion-pair formation reaction in H(1s) + H(1s) collisions

    Energy Technology Data Exchange (ETDEWEB)

    Borondo, F.; Martin, F.; Yaez, M.

    1987-01-01

    All the available theoretical calculations of the cross section for the ion-pair formation reaction H(1s)+H(1s)..-->..H/sup +/H/sup -/(1s/sup 2/) have been performed using methods that are only valid at high collision energies. They get good agreement with the experiments for impact energies greater than 25 keV, but fail completely at smaller energies. In this work we report the cross section for this reaction at impact energies less than 10 keV, calculated in the framework of the impact-parameter approximation and using the molecular method with a common translation factor.

  19. Three-dimensional ordering of cold ion beams in a storage ring: A molecular-dynamics simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Yuri, Yosuke, E-mail: yuri.yosuke@jaea.go.jp [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi Takasaki, Gunma 370-1292 Japan (Japan)

    2015-06-29

    Three-dimensional (3D) ordering of a charged-particle beams circulating in a storage ring is systematically studied with a molecular-dynamics simulation code. An ion beam can exhibit a 3D ordered configuration at ultralow temperature as a result of powerful 3D laser cooling. Various unique characteristics of the ordered beams, different from those of crystalline beams, are revealed in detail, such as the single-particle motion in the transverse and longitudinal directions, and the dependence of the tune depression and the Coulomb coupling constant on the operating points.

  20. Molecular treatment of the ion-pair formation reaction in H(1s) + H(1s) collisions

    International Nuclear Information System (INIS)

    Borondo, F.; Martin, F.; Yaez, M.

    1987-01-01

    All the available theoretical calculations of the cross section for the ion-pair formation reaction H(1s)+H(1s)→H + H - (1s 2 ) have been performed using methods that are only valid at high collision energies. They get good agreement with the experiments for impact energies greater than 25 keV, but fail completely at smaller energies. In this work we report the cross section for this reaction at impact energies less than 10 keV, calculated in the framework of the impact-parameter approximation and using the molecular method with a common translation factor

  1. Molecular nature of mutations induced by high-LET irradiation with argon and carbon ions in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Hirano, Tomonari; Kazama, Yusuke; Ohbu, Sumie; Shirakawa, Yuki; Liu Yang; Kambara, Tadashi; Fukunishi, Nobuhisa; Abe, Tomoko

    2012-01-01

    Linear energy transfer (LET) is an important parameter to be considered in heavy-ion mutagenesis. However, in plants, no quantitative data are available on the molecular nature of the mutations induced with high-LET radiation above 101–124 keV μm −1 . In this study, we irradiated dry seeds of Arabidopsis thaliana with Ar and C ions with an LET of 290 keV μm −1 . We analyzed the DNA alterations caused by the higher-LET radiation. Mutants were identified from the M 2 pools. In total, 14 and 13 mutated genes, including bin2, egy1, gl1, gl2, hy1, hy3–5, ttg1, and var2, were identified in the plants derived from Ar- and C-ions irradiation, respectively. In the mutants from both irradiations, deletion was the most frequent type of mutation; 13 of the 14 mutated genes from the Ar ion-irradiated plants and 11 of the 13 mutated genes from the C ion-irradiated plants harbored deletions. Analysis of junction regions generated by the 2 types of irradiation suggested that alternative non-homologous end-joining was the predominant pathway of repair of break points. Among the deletions, the proportion of large deletions (>100 bp) was about 54% for Ar-ion irradiation and about 64% for C-ion irradiation. Both current results and previously reported data revealed that the proportions of the large deletions induced by 290-keV μm −1 radiations were higher than those of the large deletions induced by lower-LET radiations (6% for 22.5–30.0 keV μm −1 and 27% for 101–124 keV μm −1 ). Therefore, the 290 keV μm −1 heavy-ion beams can effectively induce large deletions and will prove useful as novel mutagens for plant breeding and analysis of gene functions, particularly tandemly arrayed genes.

  2. Molecular nature of mutations induced by high-LET irradiation with argon and carbon ions in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Tomonari; Kazama, Yusuke [Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Innovation Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Ohbu, Sumie; Shirakawa, Yuki; Liu Yang; Kambara, Tadashi; Fukunishi, Nobuhisa [Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Abe, Tomoko, E-mail: tomoabe@riken.jp [Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Innovation Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2012-07-01

    Linear energy transfer (LET) is an important parameter to be considered in heavy-ion mutagenesis. However, in plants, no quantitative data are available on the molecular nature of the mutations induced with high-LET radiation above 101-124 keV {mu}m{sup -1}. In this study, we irradiated dry seeds of Arabidopsis thaliana with Ar and C ions with an LET of 290 keV {mu}m{sup -1}. We analyzed the DNA alterations caused by the higher-LET radiation. Mutants were identified from the M{sub 2} pools. In total, 14 and 13 mutated genes, including bin2, egy1, gl1, gl2, hy1, hy3-5, ttg1, and var2, were identified in the plants derived from Ar- and C-ions irradiation, respectively. In the mutants from both irradiations, deletion was the most frequent type of mutation; 13 of the 14 mutated genes from the Ar ion-irradiated plants and 11 of the 13 mutated genes from the C ion-irradiated plants harbored deletions. Analysis of junction regions generated by the 2 types of irradiation suggested that alternative non-homologous end-joining was the predominant pathway of repair of break points. Among the deletions, the proportion of large deletions (>100 bp) was about 54% for Ar-ion irradiation and about 64% for C-ion irradiation. Both current results and previously reported data revealed that the proportions of the large deletions induced by 290-keV {mu}m{sup -1} radiations were higher than those of the large deletions induced by lower-LET radiations (6% for 22.5-30.0 keV {mu}m{sup -1} and 27% for 101-124 keV {mu}m{sup -1}). Therefore, the 290 keV {mu}m{sup -1} heavy-ion beams can effectively induce large deletions and will prove useful as novel mutagens for plant breeding and analysis of gene functions, particularly tandemly arrayed genes.

  3. Evaluation of Data for Collisions of Electrons with Nitrogen Molecule and Nitrogen Molecular Ion. Summary Report of an IAEA Consultants Meeting

    International Nuclear Information System (INIS)

    Chung, Hyun-Kyung; Mason, Nigel J.

    2014-02-01

    A Consultants' Meeting (CM) on Evaluation of Data for Collisions of Electrons with Nitrogen Molecules and Nitrogen Molecular Ions was held at IAEA Headquarters in Vienna, Austria, from 5th to 6th December 2013. The meeting was organized in collaboration between the European eMOL project led by Prof N. J. Mason of the Open University, UK, and the Atomic and Molecular Data Unit of the IAEA. Seven experts from six countries participated in the meeting to evaluate currently available electron scattering data for nitrogen and nitrogen molecular ions and to develop general guidelines for data evaluation as a structured small group activity

  4. Intermediate L-K molecular orbital radiation from heavy ion collisions

    International Nuclear Information System (INIS)

    Heinig, K.H.; Jaeger, H.U.; Richter, H.; Woittennek, H.

    1975-09-01

    The structure of x-ray continua observed recently in violent collisions between intermediate mass atoms can be explained by a superposition of K molecular orbital (KMO) radiation and of an intermediate L-K molecular orbital (ILKMO) radiation of high intensity which is due to 2psigma vacancies. (author)

  5. Intermediate L-K molecular-orbital radiation from heavy ion collisions

    International Nuclear Information System (INIS)

    Heinig, K.H.; Jaeger, H.U.; Richter, H.; Woittennek, H.

    1976-01-01

    The structure of X-ray continua observed recently in violent collisions between mean-mass atoms can be explained by a superposition of K molecular orbital (KMO) radiation and an intermediate L-K molecular orbital (ILKMO) radiation of high intensity which is due to 2psigma vacancies. (Auth.)

  6. Rotational Coherence Encoded in an “Air-Laser” Spectrum of Nitrogen Molecular Ions in an Intense Laser Field

    Directory of Open Access Journals (Sweden)

    Haisu Zhang

    2013-10-01

    Full Text Available We investigate lasing action in aligned nitrogen molecular ions (N_{2}^{+} produced in an intense laser field. We find that, besides the population inversion between the B^{2}Σ_{u}^{+}-X^{2}Σ_{g}^{+} states, which is responsible for the observed simulated amplification of a seed pulse, a rotational wave packet in the ground vibrational state (v=0 of the excited electronic B^{2}Σ_{u}^{+} state has been created in N_{2}^{+}. The rotational coherence can faithfully encode its characteristics into the amplified seed pulses, enabling reconstruction of rotational wave packets of molecules in a single-shot detection manner from the frequency-resolved laser spectrum. Our results suggest that the air laser can potentially provide a promising tool for remote characterization of coherent molecular rotational wave packets.

  7. Physico-chemical characterization of polyethylene of ultra high molecular weight modified with gamma irradiation and heavy ions

    International Nuclear Information System (INIS)

    Lagarde, M; Del Grosso, M; Fasce, D; Dommarco, R; Laino, S; Fasce, L.A

    2012-01-01

    The ultra high molecular weight polyethylene (UHMWPE) is a biomaterial widely used in total joint replacement. In this work, the effect of two different irradiation techniques on UHMWPE is analyzed. One technique involves gamma irradiation (γ) followed by a thermal treatment, thus modifying the material bulk. The other implies swift heavy ion irradiation (SHI), which have an effect only on the near surface layers. The surface nanomechanical properties are evaluated from depth sensing indentation experiments, while changes in crystallinity and chemical structure are determined by DSC and Raman spectroscopy. The results show that even when both techniques are able to improve the UHMWPE wear behavior, the effect on other mechanical properties and molecular structure modification is different. The γ irradiated sample exhibits lower crystallinity, hardness and modulus than the pristine UHMWPE, while the SHI irradiated sample exhibits higher crystallinity and enhanced mechanical properties than the later

  8. Electron induced formation and stability of molecular and cluster ions in gas phase and superfluid helium nanodroplets

    International Nuclear Information System (INIS)

    Aleem, M. A.

    2010-01-01

    The present PhD thesis represents a broad range study of electron induced formation and stability of positive and negative ions in gas phase and superfluid helium nanodroplets. The molecules studied are of industrial, environmental, plasma and biological relevance. The knowledge obtained from the study provides new insight for the proper understanding and control on energetics and dynamics of the reactions involved in the formation and fragmentation processes of the studied molecules and clusters. The experiments are accomplished and investigated using mass spectrometric techniques for the formation of molecular and cluster ions using different mass spectrometers available in our laboratory. One part of the work is focused on electron-induced reactions of the molecules in gas phase. Especially focus is laid to electron attachment to the isomers of mononitrotolouene used as an additive to explosives. The fragile nature and high internal energy of these molecules has lead to extensive fragmentation following the ionisation process. Dissociative electron attachment to the three different isomers has shown different resonances and therefore this process can be utilized to explicitly distinguish these isomers. Anion efficiency curves of the isomers have been studied using effusive molecular beam source in combination with a hemispherical electron monochromator as well as a Nier-type ion source attached to a sector field mass spectrometer. The outcome of the experiment is a reliable and effective detection method highly desirable for environmental and security reasons. Secondly, dissociative electron ionization of acetylene and propene is studied and their data is directly related to the plasma modelling for plasma fusion and processing reactors. Temperature effects for dissociative electron attachment to halo-hydrocarbons are also measured using a trochoidal electron monochromator. The second part of the work is concerned with the investigation of electron

  9. Susceptible genes and molecular pathways related to heavy ion irradiation in oral squamous cell carcinoma cells

    International Nuclear Information System (INIS)

    Fushimi, Kazuaki; Uzawa, Katsuhiro; Ishigami, Takashi; Yamamoto, Nobuharu; Kawata, Tetsuya; Shibahara, Takahiko; Ito, Hisao; Mizoe, Jun-etsu; Tsujii, Hirohiko; Tanzawa, Hideki

    2008-01-01

    Background and purpose: Heavy ion beams are high linear energy transfer (LET) radiation characterized by a higher relative biologic effectiveness than low LET radiation. The aim of the current study was to determine the difference of gene expression between heavy ion beams and X-rays in oral squamous cell carcinoma (OSCC)-derived cells. Materials and methods: The OSCC cells were irradiated with accelerated carbon or neon ion irradiation or X-rays using three different doses. We sought to identify genes the expression of which is affected by carbon and neon ion irradiation using Affymetrix GeneChip analysis. The identified genes were analyzed using the Ingenuity Pathway Analysis Tool to investigate the functional network and gene ontology. Changes in mRNA expression in the genes were assessed by real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Results: The microarray analysis identified 84 genes that were modulated by carbon and neon ion irradiation at all doses in OSCC cells. Among the genes, three genes (TGFBR2, SMURF2, and BMP7) and two genes (CCND1 and E2F3), respectively, were found to be involved in the transforming growth factor β-signaling pathway and cell cycle:G1/S checkpoint regulation pathway. The qRT-PCR data from the five genes after heavy ion irradiation were consistent with the microarray data (P < 0.01). Conclusion: Our findings should serve as a basis for global characterization of radiation-regulated genes and pathways in heavy ion-irradiated OSCC

  10. Molecular dynamics study of homo-oligomeric ion channels: Structures of the surrounding lipids and dynamics of water movement

    Directory of Open Access Journals (Sweden)

    Thuy Hien Nguyen

    2018-03-01

    Full Text Available Molecular dynamics simulations were used to study the structural perturbations of lipids surrounding transmembrane ion channel forming helices/helical bundles and the movement of water within the pores of the ion-channels/bundles. Specifically, helical monomers to hexameric helical bundles embedded in palmitoyl-oleoyl-phosphatidyl-choline (POPC lipid bilayer were studied. Two amphipathic α-helices with the sequence Ac-(LSLLLSL3-NH2 (LS2, and Ac-(LSSLLSL3-NH2 (LS3, which are known to form ion channels, were used. To investigate the surrounding lipid environment, we examined the hydrophobic mismatch, acyl chain order parameter profiles, lipid head-to-tail vector projection on the membrane surface, and the lipid headgroup vector projection. We find that the lipid structure is perturbed within approximately two lipid solvation shells from the protein bundle for each system (~15.0 Å. Beyond two lipid “solvation” shells bulk lipid bilayer properties were observed in all systems. To understand water flow, we enumerated each time a water molecule enters or exited the channel, which allowed us to calculate the number of water crossing events and their rates, and the residence time of water in the channel. We correlate the rate of water crossing with the structural properties of these ion channels and find that the movements of water are predominantly governed by the packing and pore diameter, rather than the topology of each peptide or the pore (hydrophobic or hydrophilic. We show that the crossing events of water fit quantitatively to a stochastic process and that water molecules are traveling diffusively through the pores. These lipid and water findings can be used for understanding the environment within and around ion channels. Furthermore, these findings can benefit various research areas such as rational design of novel therapeutics, in which the drug interacts with membranes and transmembrane proteins to enhance the efficacy or reduce off

  11. The molecular mechanism of ion-dependent gating in secondary transporters.

    Directory of Open Access Journals (Sweden)

    Chunfeng Zhao

    2013-10-01

    Full Text Available LeuT-like fold Na-dependent secondary active transporters form a large family of integral membrane proteins that transport various substrates against their concentration gradient across lipid membranes, using the free energy stored in the downhill concentration gradient of sodium ions. These transporters play an active role in synaptic transmission, the delivery of key nutrients, and the maintenance of osmotic pressure inside the cell. It is generally believed that binding of an ion and/or a substrate drives the conformational dynamics of the transporter. However, the exact mechanism for converting ion binding into useful work has yet to be established. Using a multi-dimensional path sampling (string-method followed by all-atom free energy simulations, we established the principal thermodynamic and kinetic components governing the ion-dependent conformational dynamics of a LeuT-like fold transporter, the sodium/benzyl-hydantoin symporter Mhp1, for an entire conformational cycle. We found that inward-facing and outward-facing states of Mhp1 display nearly the same free energies with an ion absent from the Na2 site conserved across the LeuT-like fold transporters. The barrier separating an apo-state from inward-facing or outward-facing states of the transporter is very low, suggesting stochastic gating in the absence of ion/substrate bound. In contrast, the binding of a Na2 ion shifts the free energy stabilizing the outward-facing state and promoting substrate binding. Our results indicate that ion binding to the Na2 site may also play a key role in the intracellular thin gate dynamics modulation by altering its interactions with the transmembrane helix 5 (TM5. The Potential of Mean Force (PMF computations for a substrate entrance displays two energy minima that correspond to the locations of the main binding site S1 and proposed allosteric S2 binding site. However, it was found that substrate's binds to the site S1 ∼5 kcal/mol more favorable

  12. Removal of the metal ions from aqueous solutions by nanoscaled low molecular pectin isolated from seagrass Phyllospadix iwatensis

    International Nuclear Information System (INIS)

    Khozhaenko, Elena; Kovalev, Valeri; Podkorytova, Elena; Khotimchenko, Maksim

    2016-01-01

    Pectins from sea grasses are considered as promising substances with pronounced metal-binding activity. Due to the high molecular weight and heterogeneous structure, the use of pectins for removal of metal ions is difficult. Technology of directed pectin degradation was developed and homogenous degraded nanoscaled pectin polymers were synthesized. Experimental samples of degraded pectin isolated from Phyllospadix iwatensis were tested for their metal binding activity in comparison with native pectin from this seagrass and commercial citrus pectin. The metal uptake of all pectin compounds was highest within the pH range from 4.0 to 6.0. The Langmuir, Freundlich and BET sorption models were applied to describe the isotherms and constants. Results showed that depolymerized pectin exerts highest lead and cadmium binding activity with pronounced affinity. All pectin compounds were suggested to be favorable sorbents. Therefore, it can be concluded that degraded pectin is a prospective material for creation of metal-removing water treatment systems. - Highlights: • Low molecular nanoscaled pectin was obtained using original hydrolysis method • Metal binding activity of pectin compounds was studied in a batch sorption system • Pectins exert highest metal binding activity at pH 6.0 • Metal binding isotherms of all pectins are best described by the Langmuir equation • Low molecular pectin from seagrasses is more effective than high-molecular pectins

  13. Study of the interaction of multiply charged ions and complex systems of biological interest: effects of the molecular environment

    International Nuclear Information System (INIS)

    Capron, Michael

    2011-01-01

    This PhD thesis describes the experimental study of the interaction between slow multiply charged ions (tens of keV) and molecular systems of biological interest (amino acids and nucleobases). It is the aim to identify and to better understand the effect of a molecular environment on different collision induced phenomena. To do so, the time of flight spectra of cationic products emerging from collisions with isolated molecules as well as clusters are compared. It is shown that the molecular environment protects the molecule as it allows to distribute the transferred energies and charges over the whole system (global decrease of the fragmentation and quenching of some fragmentation channels). Furthermore, in the case of adenine clusters, the molecular environment weakens some intramolecular bonds. Moreover, products of chemical reactions are observed concerning proton transfer processes in hydrated cluster of adenine and the formation of peptides bonds between beta-alanine molecules in a cluster. The latter finding is studied as a function of the cluster size and type of the projectile. Some criteria for peptide bond formation, such as flexibility and geometry of the molecule, are investigated for different amino acids. (author)

  14. Removal of the metal ions from aqueous solutions by nanoscaled low molecular pectin isolated from seagrass Phyllospadix iwatensis

    Energy Technology Data Exchange (ETDEWEB)

    Khozhaenko, Elena [Far Eastern Federal University, School of Biomedicine, 8, Sukhanova str., Vladivostok 690091 (Russian Federation); A.V. Zhirmunsky Institute of Marine Biology Far Eastern Branch of Russian Academy of Sciences, 17, Palchevskgo str., Vladivostok 690059 (Russian Federation); Kovalev, Valeri; Podkorytova, Elena [A.V. Zhirmunsky Institute of Marine Biology Far Eastern Branch of Russian Academy of Sciences, 17, Palchevskgo str., Vladivostok 690059 (Russian Federation); Khotimchenko, Maksim, E-mail: maxkhot@yandex.ru [Far Eastern Federal University, School of Biomedicine, 8, Sukhanova str., Vladivostok 690091 (Russian Federation); A.V. Zhirmunsky Institute of Marine Biology Far Eastern Branch of Russian Academy of Sciences, 17, Palchevskgo str., Vladivostok 690059 (Russian Federation)

    2016-09-15

    Pectins from sea grasses are considered as promising substances with pronounced metal-binding activity. Due to the high molecular weight and heterogeneous structure, the use of pectins for removal of metal ions is difficult. Technology of directed pectin degradation was developed and homogenous degraded nanoscaled pectin polymers were synthesized. Experimental samples of degraded pectin isolated from Phyllospadix iwatensis were tested for their metal binding activity in comparison with native pectin from this seagrass and commercial citrus pectin. The metal uptake of all pectin compounds was highest within the pH range from 4.0 to 6.0. The Langmuir, Freundlich and BET sorption models were applied to describe the isotherms and constants. Results showed that depolymerized pectin exerts highest lead and cadmium binding activity with pronounced affinity. All pectin compounds were suggested to be favorable sorbents. Therefore, it can be concluded that degraded pectin is a prospective material for creation of metal-removing water treatment systems. - Highlights: • Low molecular nanoscaled pectin was obtained using original hydrolysis method • Metal binding activity of pectin compounds was studied in a batch sorption system • Pectins exert highest metal binding activity at pH 6.0 • Metal binding isotherms of all pectins are best described by the Langmuir equation • Low molecular pectin from seagrasses is more effective than high-molecular pectins.

  15. Molecular Mechanisms of Ultrafiltration Membrane Fouling in Polymer-Flooding Wastewater Treatment: Role of Ions in Polymeric Fouling.

    Science.gov (United States)

    Liu, Guicai; Yu, Shuili; Yang, Haijun; Hu, Jun; Zhang, Yi; He, Bo; Li, Lei; Liu, Zhiyuan

    2016-02-02

    Polymer (i.e., anionic polyacrylamide (APAM)) fouling of polyvinylidene fluoride (PVDF) ultrafiltration (UF) membranes and its relationships to intermolecular interactions were investigated using atomic force microscopy (AFM). Distinct relations were obtained between the AFM force spectroscopy measurements and calculated fouling resistance over the concentration polarization layer (CPL) and gel layer (GL). The measured maximum adhesion forces (Fad,max) were closely correlated with the CPL resistance (Rp), and the proposed molecular packing property (largely based on the shape of AFM force spectroscopy curve) of the APAM chains was related to the GL resistance (Rg). Calcium ions (Ca(2+)) and sodium ions (Na(+)) caused more severe fouling. In the presence of Ca(2+), the large Rp corresponded to high foulant-foulant Fad,max, resulting in high flux loss. In addition, the Rg with Ca(2+) was minor, but the flux recovery rate after chemical cleaning was the lowest, indicating that Ca(2+) created more challenges in GL cleaning. With Na(+), the fouling behavior was complicated and concentration-dependent. The GL structures with Na(+), which might correspond to the proposed molecular packing states among APAM chains, played essential roles in membrane fouling and GL cleaning.

  16. Sensitivity of ion-induced sputtering to the radial distribution of energy transfers: A molecular dynamics study

    International Nuclear Information System (INIS)

    Mookerjee, S.; Khan, S. A.; Roy, A.; Beuve, M.; Toulemonde, M.

    2008-01-01

    Using different models for the deposition of energy on the lattice and a classical molecular dynamics approach to the subsequent transport, we evaluate how the details of the energy deposition model influence sputtering yield from a Lennard-Jones target irradiated with a MeV/u ion beam. Two energy deposition models are considered: a uniform, instantaneous deposition into a cylinder of fixed radius around the projectile ion track, used in earlier molecular dynamics and fluid dynamics simulations of sputtering yields; and an energy deposition distributed in time and space based on the formalism developed in the thermal spike model. The dependence of the sputtering yield on the total energy deposited on the target atoms is very sensitive to the energy deposition model. To clarify the origin of this strong dependence, we explore the role of the radial expansion of the electronic system prior to the transfer of its energy to the lattice. The results imply that observables such as the sputtering yield may be used as signatures of the fast electron-lattice energy transfer in the electronic energy-loss regime, and indicate the need for more experimental and theoretical investigations of these processes

  17. Thermodynamics of Small Alkali Metal Halide Cluster Ions: Comparison of Classical Molecular Simulations with Experiment and Quantum Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Vlcek, Lukas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Uhlik, Filip [Charles Univ., Prague (Czech Republic); Moucka, Filip [Purkinje Univ. (Czech Republic); Nezbeda, Ivo [Purkinje Univ. (Czech Republic); Academy of Sciences of the Czech Republic (ASCR), Prague (Czech Republic); Chialvo, Ariel A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-16

    We evaluate the ability of selected classical molecular models to describe the thermodynamic and structural aspects of gas-phase hydration of alkali halide ions and the formation of small water clusters. To understand the effect of many-body interactions (polarization) and charge penetration effects on the accuracy of a force field, we perform Monte Carlo simulations with three rigid water models using different functional forms to account for these effects: (i) point charge non-polarizable SPC/E, (ii) Drude point charge polarizable SWM4- DP, and (iii) Drude Gaussian charge polarizable BK3. Model predictions are compared with experimental Gibbs free energies and enthalpies of ion hydration, and with microscopic structural properties obtained from quantum DFT calculations. We find that all three models provide comparable predictions for pure water clusters and cation hydration, but differ significantly in their description of anion hydration. None of the investigated classical force fields can consistently and quantitatively reproduce the experimental gas phase hydration thermodynamics. The outcome of this study highlights the relation between the functional form that describes the effective intermolecular interactions and the accuracy of the resulting ion hydration properties.

  18. Computational simulation of electron and ion beams interaction with solid high-molecular dielectrics and inorganic glasses

    International Nuclear Information System (INIS)

    Milyavskiy, V.V.

    1998-01-01

    Numerical investigation of interaction of electron beams (with the energy within the limits 100 keV--20 MeV) and ion beams (with the energy over the range 1 keV--50 MeV) with solid high-molecular dielectrics and inorganic glasses is performed. Note that the problem of interaction of electron beams with glass optical covers is especially interesting in connection with the problem of radiation protection of solar power elements on cosmic satellites and stations. For computational simulation of the above-mentioned processes a mathematical model was developed, describing the propagation of particle beams through the sample thickness, the accumulation and relaxation of volume charge and shock-wave processes, as well as the evolution of electric field in the sample. The calculation of energy deposition by electron beam in a target in the presence of nonuniform electric field was calculated with the assistance of the semiempirical procedure, formerly proposed by author of this work. Propagation of the low energy ions through the sample thickness was simulated using Pearson IV distribution. Damage distribution, ionization distribution and range distribution was taken into account. Propagation of high energy ions was calculated in the approximation of continuous deceleration. For description of hydrodynamic processes the system of equations of continuum mechanics in elastic-plastic approximation and the wide-range equation of state were used

  19. EPR and optical absorption studies of paramagnetic molecular ion (VO2+) in Lithium Sodium Acid Phthalate single crystal

    Science.gov (United States)

    Subbulakshmi, N.; Kumar, M. Saravana; Sheela, K. Juliet; Krishnan, S. Radha; Shanmugam, V. M.; Subramanian, P.

    2017-12-01

    Electron Paramagnetic Resonance (EPR) spectroscopic studies of VO2+ ions as paramagnetic impurity in Lithium Sodium Acid Phthalate (LiNaP) single crystal have been done at room temperature on X-Band microwave frequency. The lattice parameter values are obtained for the chosen system from Single crystal X-ray diffraction study. Among the number of hyperfine lines in the EPR spectra only two sets are reported from EPR data. The principal values of g and A tensors are evaluated for the two different VO2+ sites I and II. They possess the crystalline field around the VO2+ as orthorhombic. Site II VO2+ ion is identified as substitutional in place of Na1 location and the other site I is identified as interstitial location. For both sites in LiNaP, VO2+ are identified in octahedral coordination with tetragonal distortion as seen from the spin Hamiltonian parameter values. The ground state of vanadyl ion in the LiNaP single crystal is dxy. Using optical absorption data the octahedral and tetragonal parameters are calculated. By correlating EPR and optical data, the molecular orbital bonding parameters have been discussed for both sites.

  20. Cellular and molecular effects for mutation induction in normal human cells irradiated with accelerated neon ions

    International Nuclear Information System (INIS)

    Suzuki, Masao; Tsuruoka, Chizuru; Kanai, Tatsuaki; Kato, Takeshi; Yatagai, Fumio; Watanabe, Masami

    2006-01-01

    We investigated the linear energy transfer (LET) dependence of mutation induction on the hypoxanthine-guanine phosphoribosyl transferase (HPRT) locus in normal human fibroblast-like cells irradiated with accelerated neon-ion beams. The cells were irradiated with neon-ion beams at various LETs ranging from 63 to 335 keV/μm. Neon-ion beams were accelerated by the Riken Ring Cyclotron at the Institute of Physical and Chemical Research in Japan. Mutation induction at the HPRT locus was detected to measure 6-thioguanine-resistant clones. The mutation spectrum of the deletion pattern of exons of mutants was analyzed using the multiplex polymerase chain reaction (PCR). The dose-response curves increased steeply up to 0.5 Gy and leveled off or decreased between 0.5 and 1.0 Gy, compared to the response to 137 Cs γ-rays. The mutation frequency increased up to 105 keV/μm and then there was a downward trend with increasing LET values. The deletion pattern of exons was non-specific. About 75-100% of the mutants produced using LETs ranging from 63 to 335 keV/μm showed all or partial deletions of exons, while among γ-ray-induced mutants 30% showed no deletions, 30% partial deletions and 40% complete deletions. These results suggested that the dose-response curves of neon-ion-induced mutations were dependent upon LET values, but the deletion pattern of DNA was not

  1. Affine-response model of molecular solvation of ions: Accurate predictions of asymmetric charging free energies

    Czech Academy of Sciences Publication Activity Database

    Bardhan, J. P.; Jungwirth, Pavel; Makowski, L.

    Roč. 137, č. 12 ( 2012 ), 124101/1-124101/6 ISSN 0021-9606 R&D Projects: GA MŠk LH12001 Institutional research plan: CEZ:AV0Z40550506 Keywords : ion solvation * continuum models * linear response Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.164, year: 2012

  2. Ion Adsorption at the Rutile-Water Interface: Linking Molecular and Macroscopic Properties

    Czech Academy of Sciences Publication Activity Database

    Zhang, Z.; Fenter, P.; Cheng, L.; Sturchio, N. C.; Bedzyk, M. J.; Předota, Milan; Bandura, A.; Kubicki, J. D.; Lvov, S. N.; Cummings, P. T.; Chialvo, A. A.; Ridley, M. K.

    2004-01-01

    Roč. 20, č. 12 (2004), s. 4954-4969 ISSN 0743-7463 R&D Projects: GA ČR GP203/03/P083 Institutional research plan: CEZ:AV0Z4072921 Keywords : ion adsorption rutile Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.295, year: 2004

  3. uv laser induced molecular multiphoton ionization and fragmentation. [Intensity dependence, ion properties and yield

    Energy Technology Data Exchange (ETDEWEB)

    Rockwood, S; Reilly, J P; Hohla, K; Kompa, K L

    1979-02-01

    It has been demonstrated that the output from a discharge pumped KrF laser (249 nm) is capable of ionizing a variety of molecules. The nature and yield of ions generated in this process, which were identified by time-of-flight mass spectrometry, exhibit a striking intensity dependence. 12 references, 3 figures.

  4. Molecular Studies of Complex Soil Organic Matter Interactions with Metal Ions and Mineral Surfaces using Classical Molecular Dynamics and Quantum Chemistry Methods

    Science.gov (United States)

    Andersen, A.; Govind, N.; Laskin, A.

    2017-12-01

    Mineral surfaces have been implicated as potential protectors of soil organic matter (SOM) against decomposition and ultimate mineralization to small molecules which can provide nutrients for plants and soil microbes and can also contribute to the Earth's elemental cycles. SOM is a complex mixture of organic molecules of biological origin at varying degrees of decomposition and can, itself, self-assemble in such a way as to expose some biomolecule types to biotic and abiotic attack while protecting other biomolecule types. The organization of SOM and SOM with mineral surfaces and solvated metal ions is driven by an interplay of van der Waals and electrostatic interactions leading to partitioning of hydrophilic (e.g. sugars) and hydrophobic (e.g., lipids) SOM components that can be bridged with amphiphilic molecules (e.g., proteins). Classical molecular dynamics simulations can shed light on assemblies of organic molecules alone or complexation with mineral surfaces. The role of chemical reactions is also an important consideration in potential chemical changes of the organic species such as oxidation/reduction, degradation, chemisorption to mineral surfaces, and complexation with solvated metal ions to form organometallic systems. For the study of chemical reactivity, quantum chemistry methods can be employed and combined with structural insight provided by classical MD simulations. Moreover, quantum chemistry can also simulate spectroscopic signatures based on chemical structure and is a valuable tool in interpreting spectra from, notably, x-ray absorption spectroscopy (XAS). In this presentation, we will discuss our classical MD and quantum chemistry findings on a model SOM system interacting with mineral surfaces and solvated metal ions.

  5. Molecular basis of inhibition of acid sensing ion channel 1A by diminazene.

    Directory of Open Access Journals (Sweden)

    Aram J Krauson

    Full Text Available Acid-sensing ion channels (ASICs are trimeric proton-gated cation permeable ion channels expressed primarily in neurons. Here we employed site-directed mutagenesis and electrophysiology to investigate the mechanism of inhibition of ASIC1a by diminazene. This compound inhibits mouse ASIC1a with a half-maximal inhibitory concentration (IC50 of 2.4 μM. At first, we examined whether neutralizing mutations of Glu79 and Glu416 alter diminazene block. These residues form a hexagonal array in the lower palm domain that was previously shown to contribute to pore opening in response to extracellular acidification. Significantly, single Gln substitutions at positions 79 and 416 in ASIC1a reduced diminazene apparent affinity by 6-7 fold. This result suggests that diminazene inhibits ASIC1a in part by limiting conformational rearrangement in the lower palm domain. Because diminazene is charged at physiological pHs, we assessed whether it inhibits ASIC1a by blocking the ion channel pore. Consistent with the notion that diminazene binds to a site within the membrane electric field, diminazene block showed a strong dependence with the membrane potential. Moreover, a Gly to Ala mutation at position 438, in the ion conduction pathway of ASIC1a, increased diminazene IC50 by one order of magnitude and eliminated the voltage dependence of block. Taken together, our results indicate that the inhibition of ASIC1a by diminazene involves both allosteric modulation and blocking of ion flow through the conduction pathway. Our findings provide a foundation for the development of more selective and potent ASIC pore blockers.

  6. From molecular clusters to nanoparticles: second-generation ion-mediated nucleation model

    Directory of Open Access Journals (Sweden)

    F. Yu

    2006-01-01

    Full Text Available Ions, which are generated in the atmosphere by galactic cosmic rays and other ionization sources, may play an important role in the formation of atmospheric aerosols. In the paper, a new second-generation ion-mediated nucleation (IMN model is presented. The new model explicitly treats the evaporation of neutral and charged clusters and it describes the evolution of the size spectra and composition of both charged and neutral clusters/particles ranging from small clusters of few molecules to large particles of several micrometers in diameter. Schemes used to calculate the evaporation coefficients for small neutral and charged clusters are consistent with the experimental data within the uncertainty range. The present IMN model, which is size-, composition-, and type-resolved, is a powerful tool for investigating the dominant mechanisms and key parameters controlling the formation and subsequent growth of nanoparticles in the atmosphere. This model can be used to analyze simultaneous measurements of the ion-mobility spectra and particle size distributions, which became available only recently. General features of the spectra for ions smaller than the critical size, size-dependent fractions of charged nanoparticles, and asymmetrical charging of freshly nucleated particles predicted by the new IMN model are consistent with recent measurements. Results obtained using the second generation IMN model, in which the most recent thermodynamic data for neutral and charged H2SO4-H2O clusters were used, suggest that ion-mediated nucleation of H2SO4-H2O can lead to a significant production of new particles in the lower atmosphere (including the boundary layer under favorable conditions. It has been shown that freshly nucleated particles of few nanometers in size can grow by the condensation of low volatile organic compounds to the size of cloud condensation nuclei. In such cases, the chemical composition of nucleated particles larger than ~10 nm is dominated

  7. Molecular formulae of marine and terrigenous dissolved organic matter detected by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

    Science.gov (United States)

    Koch, Boris P.; Witt, Matthias; Engbrodt, Ralph; Dittmar, Thorsten; Kattner, Gerhard

    2005-07-01

    The chemical structure of refractory marine dissolved organic matter (DOM) is still largely unknown. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS) was used to resolve the complex mixtures of DOM and provide valuable information on elemental compositions on a molecular scale. We characterized and compared DOM from two sharply contrasting aquatic environments, algal-derived DOM from the Weddell Sea (Antarctica) and terrigenous DOM from pore water of a tropical mangrove area in northern Brazil. Several thousand molecular formulas in the mass range of 300-600 Da were identified and reproduced in element ratio plots. On the basis of molecular elemental composition and double-bond equivalents (DBE) we calculated an average composition for marine DOM. O/C ratios in the marine samples were lower (0.36 ± 0.01) than in the mangrove pore-water sample (0.42). A small proportion of chemical formulas with higher molecular mass in the marine samples were characterized by very low O/C and H/C ratios probably reflecting amphiphilic properties. The average number of unsaturations in the marine samples was surprisingly high (DBE = 9.9; mangrove pore water: DBE = 9.4) most likely due to a significant contribution of carbonyl carbon. There was no significant difference in elemental composition between surface and deep-water DOM in the Weddell Sea. Although there were some molecules with unique marine elemental composition, there was a conspicuous degree of similarity between the terrigenous and algal-derived end members. Approximately one third of the molecular formulas were present in all marine as well as in the mangrove samples. We infer that different forms of microbial degradation ultimately lead to similar structural features that are intrinsically refractory, independent of the source of the organic matter and the environmental conditions where degradation took place.

  8. Potentiometric studies on ternary complexes involving some divalent transition metal ions, gallic acid and biologically abundant aliphatic dicarboxylic acids in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Abdelatty Mohamed Radalla

    2015-06-01

    Full Text Available Formation of binary and ternary complexes of the divalent transition metal ions, Cu2+, Ni2+, Co2+ and Zn2+ with gallic acid and the biologically important aliphatic dicarboxylic acids (adipic, succinic, malic, malonic, maleic, tartaric and oxalic acids were investigated by means of the potentiometric technique at 25 °C and I = 0.10 mol dm−3 NaNO3. The acid-base properties of the ligands were investigated and discussed. The acidity constants of gallic acid and aliphatic dicarboxylic acids were determined and used for determining the stability constants of the binary and ternary complexes formed in the aqueous medium under the above experimental conditions. The formation of the different 1:1 and 1:2 binary complexes and 1:1:1 ternary complexes are inferred from the corresponding potentiometric pH-metric titration curves. The ternary complex formation was found to occur in a stepwise manner. The stability constants of these binary and ternary systems were calculated. The values of Δ log K, percentage of relative stabilization (%R.S. and log X were evaluated and discussed. The concentration distribution of the various complex species formed in solution was evaluated and discussed. The mode of chelation of ternary complexes formed was ascertained by conductivity measurements.

  9. Photoelectron and UV absorption spectroscopy for determination of electronic configurations of negative molecular ions: Chlorophenols

    International Nuclear Information System (INIS)

    Tseplin, E.E.; Tseplina, S.N.; Tuimedov, G.M.; Khvostenko, O.G.

    2009-01-01

    The photoelectron and UV absorption spectra of p-, m-, and o-chlorophenols in the gas phase have been obtained. On the basis of DFT B3LYP/6-311++G(d, p) calculations, the photoelectron bands have been assigned to occupied molecular orbitals. From the TDDFT B3LYP/6-311++G(d, p) calculation results, the UV absorption bands have been assigned to excited singlet states of the molecules under investigation. For each excited state a dominant transition was found. It has been shown that the energies of these singlet transitions correlate with the energy differences between the ground-state molecular orbitals participating in them. Using the UV spectra interpretation, the electronic states of molecular anions detected earlier for the same compounds by means of the resonant electron capture mass-spectrometry have been determined.

  10. Molecular resonances, fusion reactions and surface transparency of interaction between heavy ions

    International Nuclear Information System (INIS)

    Abe, Yasuhisa.

    1980-01-01

    A review of the Band Crossing Model is given, including recent results on the 16 O + 16 O system. Surface Transparency is discussed in the light of the recent development in our understanding of the fusion reaction mechanisms and by calculating the number of open channels available to direct reactions. The existence of the Molecular Resonance Region is suggested in several systems by the fact that Band Crossing Region overlaps with the Transparent Region. A systematic study predicts molecular resonances in the 14 C + 14 C and 12 C + 14 C systems as prominent as those observed in the 16 O + 16 O and 12 C + 16 O systems

  11. High-precision laser and rf spectroscopy of atomic, molecular, and slow ion beams

    International Nuclear Information System (INIS)

    Childs, W.J.; Steimle, T.C.; Sen, A.; Azuma, Y.

    1988-01-01

    We have obtained extensive new structural information on the light diatomic radical ScO since the last report in this series. The new studies complete our systematic investigation of the fine and hyperfine structure (hfs) of the group IIIa monoxides LaO, YO, and ScO. The studies of the molecular X 2 Σ + electronic ground state were carried out using the molecular-beam laser-rf double-resonance method, and the excited electronic state information was obtained by complementing this data with Doppler-free laser fluorescence studies

  12. Branchial osmoregulation in the euryhaline bull shark, Carcharhinus leucas: a molecular analysis of ion transporters.

    Science.gov (United States)

    Reilly, Beau D; Cramp, Rebecca L; Wilson, Jonathan M; Campbell, Hamish A; Franklin, Craig E

    2011-09-01

    Bull sharks, Carcharhinus leucas, are one of only a few species of elasmobranchs that live in both marine and freshwater environments. Osmoregulation in euryhaline elasmobranchs is achieved through the control and integration of various organs (kidney, rectal gland and liver) in response to changes in environmental salinity. However, little is known regarding the mechanisms of ion transport in the gills of euryhaline elasmobranchs and how they are affected by osmoregulatory challenges. This study was conducted to gain insight into the branchial ion and acid-base regulatory mechanisms of C. leucas by identifying putative ion transporters and determining whether their expression is influenced by environmental salinity. We hypothesised that expression levels of the Na(+)/K(+)-ATPase (NKA) pump, Na(+)/H(+) exchanger 3 (NHE3), vacuolar-type H(+)-ATPase (VHA) and anion exchanger pendrin (PDN) would be upregulated in freshwater (FW) C. leucas. Immunohistochemistry was used to localise all four ion transporters in gills of bull sharks captured in both FW and estuarine/seawater (EST/SW) environments. NHE3 immunoreactivity occurred in the apical region of cells with basolateral NKA expression whereas PDN was apically expressed in cells that also exhibited basolateral VHA immunoreactivity. In accordance with our hypotheses, quantitative real-time PCR showed that the mRNA expression of NHE3 and NKA was significantly upregulated in gills of FW-captured C. leucas relative to EST/SW-captured animals. These data suggest that NHE3 and NKA together may be important in mediating branchial Na(+) uptake in freshwater environments, whereas PDN and VHA might contribute to Cl(-)/HCO(3)(-) transport in marine and freshwater bull shark gills.

  13. An energy-filtering device coupled to a quadrupole mass spectrometer for soft-landing molecular ions on surfaces with controlled energy

    Energy Technology Data Exchange (ETDEWEB)

    Bodin, A.; Laloo, R.; Abeilhou, P.; Guiraud, L.; Gauthier, S.; Martrou, D. [Nanosciences Group, CEMES, CNRS UPR 8011 and University Toulouse III - Paul Sabatier, 29 rue Jeanne Marvig, BP94347, F-31055 Toulouse Cedex 4 (France)

    2013-09-15

    We have developed an energy-filtering device coupled to a quadrupole mass spectrometer to deposit ionized molecules on surfaces with controlled energy in ultra high vacuum environment. Extensive numerical simulations as well as direct measurements show that the ion beam flying out of a quadrupole exhibits a high-energy tail decreasing slowly up to several hundred eV. This energy distribution renders impossible any direct soft-landing deposition of molecular ions. To remove this high-energy tail by energy filtering, a 127° electrostatic sector and a specific triplet lenses were designed and added after the last quadrupole of a triple quadrupole mass spectrometer. The results obtained with this energy-filtering device show clearly the elimination of the high-energy tail. The ion beam that impinges on the sample surface satisfies now the soft-landing criterion for molecular ions, opening new research opportunities in the numerous scientific domains involving charges adsorbed on insulating surfaces.

  14. The observation of quasi-molecular ions from a tiger snake venom component (Msub(r) 13309) using 252Cf-plasma desorption mass spectrometry

    International Nuclear Information System (INIS)

    Kamensky, I.; Haakansson, P.; Kjellberg, J.; Sundqvist, B.; Fohlman, J.; Peterson, P.A.

    1983-01-01

    A method involving fast heavy-ion bombardment of a solid sample called 252 Cf-plasma desorption mass spectrometry has been used to study a non-enzymatic, non-toxic phospholipase homolog from Australian tiger snake (Notechis scutatus) venom. The protein consists of 119 amino acids in a single polypeptide chain cross-linked by 7 disulfide bridges. The isotopically averaged molecular mass as determined by protein sequence analysis is 13309 atomic mass units (amu). The mass distributions were studied by means of time-of-flight measurements. Quasi-molecular ions associated to the molecule and its dimer were observed. The mass of the quasi-molecular ion corresponding to the molecule was determined to be 13285 +- 25 amu. (Auth.)

  15. Impact of energetic cosmic-ray ions on astrophysical ice grains

    Energy Technology Data Exchange (ETDEWEB)

    Mainitz, Martin; Anders, Christian; Urbassek, Herbert M., E-mail: urbassek@rhrk.uni-kl.de

    2017-02-15

    Highlights: • We use the REAX potential to model dissociations and reactions. • An ice grain consisting of a mixture of small molecules is considered. • The passage of a cosmic-ray ion initiates an ion track. • The track induces a shock wave and disintegrates the grain. • Abundant fragments and reaction products are detected. - Abstract: Using molecular-dynamics simulation with REAX potentials, we study the consequences of cosmic-ray ion impact on ice grains. The grains are composed of a mixture of H{sub 2}O, CO{sub 2}, NH{sub 3}, and CH{sub 3}OH molecules. Due to the high energy deposition of the cosmic-ray ion, 5 keV/nm, a strong pressure wave runs through the grain, while the interior of the ion track gasifies. Abundant molecular dissociations occur; reactions of the fragments form a variety of novel molecular product species.

  16. Impact of energetic cosmic-ray ions on astrophysical ice grains

    International Nuclear Information System (INIS)

    Mainitz, Martin; Anders, Christian; Urbassek, Herbert M.

    2017-01-01

    Highlights: • We use the REAX potential to model dissociations and reactions. • An ice grain consisting of a mixture of small molecules is considered. • The passage of a cosmic-ray ion initiates an ion track. • The track induces a shock wave and disintegrates the grain. • Abundant fragments and reaction products are detected. - Abstract: Using molecular-dynamics simulation with REAX potentials, we study the consequences of cosmic-ray ion impact on ice grains. The grains are composed of a mixture of H_2O, CO_2, NH_3, and CH_3OH molecules. Due to the high energy deposition of the cosmic-ray ion, 5 keV/nm, a strong pressure wave runs through the grain, while the interior of the ion track gasifies. Abundant molecular dissociations occur; reactions of the fragments form a variety of novel molecular product species.

  17. A MOLECULAR DYNAMICS STUDY ON SLOW ION INTERACTIONS WITH THE POLYCYCLIC AROMATIC HYDROCARBON MOLECULE ANTHRACENE

    NARCIS (Netherlands)

    Postma, J.; Hoekstra, Ronnie; Tielens, A. G. G. M.; Schlathölter, Thomas

    2014-01-01

    Atomic collisions with polycyclic aromatic hydrocarbon (PAH) molecules are astrophysically particularly relevant for collision energies of less than 1 keV. In this regime, the interaction dynamics are dominated by elastic interactions. We have employed a molecular dynamics simulation based on

  18. Nanojets, Electrospray, and Ion Field Evaporation: Molecular Dynamics Simulations and Laboratory Experiments

    Science.gov (United States)

    2008-07-22

    Eft (d) (otherwise Coulomb fission occurs), and the solute residue diameter is less than the critical diameter at which E\\ = ER(</); i.e., in the...12 / tap " Figure 10. Atomic configurations taken from a molecular dynamics simulation of a 10 nm formamide droplet prior to and after the

  19. Nanojets, Electrospray, and Ion Field Evaporation: Molecular Dynamics Simulations and Laboratory Experiments

    National Research Council Canada - National Science Library

    Luedtke, W. D; Landman, Uzi; Chiu, Y. H; Levandier, D. J; Dressler, R. A; Sok, S; Gordon, M. S

    2008-01-01

    ... experiment and using molecular dynamics (MD) simulations. The electrospray source is operated in a Taylor cone-jet mode, with the nanojet that forms being characterized by high surface-normal electric field strengths in the vicinity of I V/nm...

  20. MOLECULAR PATHOPHYSIOLOGY AND PHARMACOLOGY OF THE VOLTAGE-SENSING DOMAIN OF NEURONAL ION CHANNELS

    Directory of Open Access Journals (Sweden)

    Francesco eMiceli

    2015-07-01

    Full Text Available Voltage-gated ion channels (VGIC are membrane proteins that switch from a closed to open state in response to changes in membrane potential, thus enabling ion fluxes across the cell membranes. The mechanism that regulate the structural rearrangements occurring in VGIC in response to changes in membrane potential still remains one of the most challenging topic of modern biophysics. Na+, Ca2+ and K+ voltage-gated channels are structurally formed by the assembly of four similar domains, each comprising six transmembrane segments. Each domain can be divided in two main regions: the Pore Module (PM and the Voltage-Sensing Module (VSM. The PM (helices S5 and S6 and intervening linker is responsible for gate opening and ion selectivity; by contrast, the VSM, comprising the first four transmembrane helices (S1-S4, undergoes the first conformational changes in response to membrane voltage. In particular, the S4 segment of each domain, which contains several positively charged residues interspersed with hydrophobic amino acids, is located within the membrane electric field and plays an essential role in voltage sensing. In neurons, specific gating properties of each channel subtype underlie a variety of biological events, ranging from the generation and propagation of electrical impulses, to the secretion of neurotransmitters, to the regulation of gene expression. Given the important functional role played by the VSM in neuronal VGICs, it is not surprising that various VSM mutations affecting the gating process of these channels are responsible for human diseases, and that compounds acting on the VSM have emerged as important investigational tools with great therapeutic potential. In the present review we will briefly describe the most recent discoveries concerning how the VSM exerts its function, how genetically inherited diseases caused by mutations occurring in the VSM affects gating in VGICs, and how several classes of drugs and toxins selectively

  1. Molecular pathophysiology and pharmacology of the voltage-sensing module of neuronal ion channels.

    Science.gov (United States)

    Miceli, Francesco; Soldovieri, Maria Virginia; Ambrosino, Paolo; De Maria, Michela; Manocchio, Laura; Medoro, Alessandro; Taglialatela, Maurizio

    2015-01-01

    Voltage-gated ion channels (VGICs) are membrane proteins that switch from a closed to open state in response to changes in membrane potential, thus enabling ion fluxes across the cell membranes. The mechanism that regulate the structural rearrangements occurring in VGICs in response to changes in membrane potential still remains one of the most challenging topic of modern biophysics. Na(+), Ca(2+) and K(+) voltage-gated channels are structurally formed by the assembly of four similar domains, each comprising six transmembrane segments. Each domain can be divided into two main regions: the Pore Module (PM) and the Voltage-Sensing Module (VSM). The PM (helices S5 and S6 and intervening linker) is responsible for gate opening and ion selectivity; by contrast, the VSM, comprising the first four transmembrane helices (S1-S4), undergoes the first conformational changes in response to membrane voltage variations. In particular, the S4 segment of each domain, which contains several positively charged residues interspersed with hydrophobic amino acids, is located within the membrane electric field and plays an essential role in voltage sensing. In neurons, specific gating properties of each channel subtype underlie a variety of biological events, ranging from the generation and propagation of electrical impulses, to the secretion of neurotransmitters and to the regulation of gene expression. Given the important functional role played by the VSM in neuronal VGICs, it is not surprising that various VSM mutations affecting the gating process of these channels are responsible for human diseases, and that compounds acting on the VSM have emerged as important investigational tools with great therapeutic potential. In the present review we will briefly describe the most recent discoveries concerning how the VSM exerts its function, how genetically inherited diseases caused by mutations occurring in the VSM affects gating in VGICs, and how several classes of drugs and toxins

  2. A molecular dynamics computer simulation of the time dependence of surface damage production in ion irradiated metal targets

    International Nuclear Information System (INIS)

    Webb, R.P.; Harrison, D.E.

    1984-01-01

    Molecular dynamics computer simulations have been used to study the development of ion-induced cascades in the surface region of an initially perfect single crystal metal target. A 16 mm movie has been produced to show the temporal progress of individual cascades. The cascades can then be seen to be formed from a few high energy primary knock-on initiated replacement collision sequences which overlap to form the more usual interpretation of a mature collision cascade. However, it is before the collision cascade has matured, and while the replacement sequences are spreading, that the majority of atoms (> 80%) are ejected. These qualitative observations are also upheld more quantatively in a global average, over many cascades, of the ejection time of each atom. This gives rise to the appearance of a statistical ejection front which propagates radially outwards, from the impact point on the crystal surface, with a well defined velocity. (author)

  3. Molecular dynamics with phase-shift-based electronic stopping for calibration of ion implantation profiles in crystalline silicon

    International Nuclear Information System (INIS)

    Chan, H.Y.; Nordlund, K.; Gossmann, H.-J.L.; Harris, M.; Montgomery, N.J.; Mulcahy, C.P.A.; Biswas, S.; Srinivasan, M.P.; Benistant, F.; Ng, C.M.; Chan, Lap

    2006-01-01

    Prediction of the final dopant positions after ion implantation has always been strongly influenced by the choice of stopping models. A molecular dynamics (MD) method is used in this work; the nuclear stopping is treated by accurate pair potentials calculated by density functional theory (DFT). The slowing down due to collisions with electrons will be described by both a non-local semi-empirical model and a local model based on Fermi level phase shift factors. Comparisons with experimental data using both models show that a local pair-specific electronic stopping model is essential in accurately predicting range profiles for any element even at low implant energies where nuclear effects are dominant

  4. Metastable Innershell Molecular State (MIMS II: K-shell X-ray satellites in heavy ion impact on solids

    Directory of Open Access Journals (Sweden)

    Young K. Bae

    2014-01-01

    Full Text Available Metastable Innershell Molecular State (MIMS, an innershell-bound ultra-high-energy molecule, was previously proposed to explain a ∼40% efficiency of soft-X-ray generation in ∼0.05 keV/amu nanoparticle impact on solids. Here, the MIMS model has been extended and applied to interpreting the experimental K-shell X-ray satellite spectra for more than 40 years in keV-MeV/amu heavy-ion impact on solids. The binding energies of the K-shell MIMS of elements from Al to Ti were determined to be 80–200 eV. The successful extension of the model to the K-shell MIMS confirms that all elements in the periodic table and their combinations are subjected to the MIMS formation.

  5. Waterborne polyurethane single-ion electrolyte from aliphatic diisocyanate and various molecular length of polyethylene glycol

    Directory of Open Access Journals (Sweden)

    2007-03-01

    Full Text Available The waterborne polyurethane (WPU dispersions from the reaction of cycloaliphatic diisocyanates [4,4’-methylenebis(cyclohexyl isocyanate (H12MDI and isophorone diisocyanate (IPDI] and polyethylene glycol (PEG with various molecular lengths were synthesized using our modified acetone process. Differetial scanning calorimeter (DSC and Fourier transform infrared spectroscopy (FTIR were utilized to characterize WPU films for the behavior of their crystallinity and H-bonding of WPU films. The Tg value of WPU increases with increasing the molecular length of PEG, whereas the Tm of WPU decreases with increasing PEG length. Alternating current (AC impedance experiments were performed to determine the ionic conductivities of WPU films. The WPU gel electrolytes exhibits an ionic conductivity as high as ~ 10-5 S/cm at room temperature.

  6. Strategy to improve the quantitative LC-MS analysis of molecular ions resistant to gas-phase collision induced dissociation: application to disulfide-rich cyclic peptides.

    Science.gov (United States)

    Ciccimaro, Eugene; Ranasinghe, Asoka; D'Arienzo, Celia; Xu, Carrie; Onorato, Joelle; Drexler, Dieter M; Josephs, Jonathan L; Poss, Michael; Olah, Timothy

    2014-12-02

    Due to observed collision induced dissociation (CID) fragmentation inefficiency, developing sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) assays for CID resistant compounds is especially challenging. As an alternative to traditional LC-MS/MS, we present here a methodology that preserves the intact analyte ion for quantification by selectively filtering ions while reducing chemical noise. Utilizing a quadrupole-Orbitrap MS, the target ion is selectively isolated while interfering matrix components undergo MS/MS fragmentation by CID, allowing noise-free detection of the analyte's surviving molecular ion. In this manner, CID affords additional selectivity during high resolution accurate mass analysis by elimination of isobaric interferences, a fundamentally different concept than the traditional approach of monitoring a target analyte's unique fragment following CID. This survivor-selected ion monitoring (survivor-SIM) approach has allowed sensitive and specific detection of disulfide-rich cyclic peptides extracted from plasma.

  7. Hydration of the chloride ion in concentrated aqueous solutions using neutron scattering and molecular dynamics

    Czech Academy of Sciences Publication Activity Database

    Pluhařová, Eva; Fischer, H. E.; Mason, Philip E.; Jungwirth, Pavel

    2014-01-01

    Roč. 112, 9/10 (2014), s. 1230-1240 ISSN 0026-8976 R&D Projects: GA ČR GBP208/12/G016; GA MŠk LH12001 Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:61388963 Keywords : lithium * solution * molecular dynamics * chloride * neutron scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.720, year: 2014

  8. A versatile single molecular precursor for the synthesis of layered oxide cathode materials for Li-ion batteries.

    Science.gov (United States)

    Li, Maofan; Liu, Jiajie; Liu, Tongchao; Zhang, Mingjian; Pan, Feng

    2018-02-01

    A carbonyl-bridged single molecular precursor LiTM(acac) 3 [transition metal (TM) = cobalt/manganese/nickel (Co/Mn/Ni), acac = acetylacetone], featuring a one-dimensional chain structure, was designed and applied to achieve the layered oxide cathode materials: LiTMO 2 (TM = Ni/Mn/Co, NMC). As examples, layered oxides, primary LiCoO 2 , binary LiNi 0.8 Co 0.2 O 2 and ternary LiNi 0.5 Mn 0.3 Co 0.2 O 2 were successfully prepared to be used as cathode materials. When they are applied to lithium-ion batteries (LIBs), all exhibit good electrochemical performance because of their unique morphology and great uniformity of element distribution. This versatile precursor is predicted to accommodate many other metal cations, such as aluminum (Al 3+ ), iron (Fe 2+ ), and sodium (Na + ), because of the flexibility of organic ligand, which not only facilitates the doping-modification of the NMC system, but also enables synthesis of Na-ion layered oxides. This opens a new direction of research for the synthesis of high-performance layered oxide cathode materials for LIBs.

  9. Molecular dynamics simulations with electronic stopping can reproduce experimental sputtering yields of metals impacted by large cluster ions

    Science.gov (United States)

    Tian, Jiting; Zhou, Wei; Feng, Qijie; Zheng, Jian

    2018-03-01

    An unsolved problem in research of sputtering from metals induced by energetic large cluster ions is that molecular dynamics (MD) simulations often produce sputtering yields much higher than experimental results. Different from the previous simulations considering only elastic atomic interactions (nuclear stopping), here we incorporate inelastic electrons-atoms interactions (electronic stopping, ES) into MD simulations using a friction model. In this way we have simulated continuous 45° impacts of 10-20 keV C60 on a Ag(111) surface, and found that the calculated sputtering yields can be very close to the experimental results when the model parameter is appropriately assigned. Conversely, when we ignore the effect of ES, the yields are much higher, just like the previous studies. We further expand our research to the sputtering of Au induced by continuous keV C60 or Ar100 bombardments, and obtain quite similar results. Our study indicates that the gap between the experimental and the simulated sputtering yields is probably induced by the ignorance of ES in the simulations, and that a careful treatment of this issue is important for simulations of cluster-ion-induced sputtering, especially for those aiming to compare with experiments.

  10. Ab initio study of isomerism in molecular Li2AB+ ions with 12 and 14 valence electrons

    International Nuclear Information System (INIS)

    Charkin, O.P.; Klimenko, N.M.; Mak-Ki, M.L.; Shlojer, P.R.

    1997-01-01

    Ab initio calculations of potential energy surfaces (PES) of molecular ions Li 2 AB + with 12 and 14 valence electrons have been made in the framework of approximations MP2/6-31G*//HF/6-31G*+ZPE(HF/6-31G*) and MP4SDTQ/6-31*//MP2/6-31G*+ZPE(MP2/6-31G*). The following most favourable structures have been found: a double-terminal linear for LiNO + (a triplet); a plane bicyclic one for Li 2 OF + , Li 2 SCl + , Li 2 NO + (a singlet) and Li 2 PS + (a singlet), where both cations are coordinated to A-B bond; rectangular (T-shaped) for Li 2 OCl + and SFLi + , as well as for LiNS + and POLi 2 + ions in singlet and triplet states; in the form of a half-opened butterfly for Li 2 PS + (a triplet) and Li 2 SCl +

  11. MARVEL analysis of the rotational-vibrational states of the molecular ions H2D+ and D2H+.

    Science.gov (United States)

    Furtenbacher, Tibor; Szidarovszky, Tamás; Fábri, Csaba; Császár, Attila G

    2013-07-07

    Critically evaluated rotational-vibrational line positions and energy levels, with associated critically reviewed labels and uncertainties, are reported for two deuterated isotopologues of the H3(+) molecular ion: H2D(+) and D2H(+). The procedure MARVEL, standing for Measured Active Rotational-Vibrational Energy Levels, is used to determine the validated levels and lines and their self-consistent uncertainties based on the experimentally available information. The spectral ranges covered for the isotopologues H2D(+) and D2H(+) are 5.2-7105.5 and 23.0-6581.1 cm(-1), respectively. The MARVEL energy levels of the ortho and para forms of the ions are checked against ones determined from accurate variational nuclear motion computations employing the best available adiabatic ab initio potential energy surfaces of these isotopologues. The number of critically evaluated, validated and recommended experimental (levels, lines) are (109, 185) and (104, 136) for H2D(+) and D2H(+), respectively. The lists of assigned MARVEL lines and levels and variational levels obtained for H2D(+) and D2H(+) as part of this study are deposited in the ESI to this paper.

  12. Total inelastic cross sections for potassium ion--atom collisions: Oscillations in the velocity dependence and correlation with molecular structure

    International Nuclear Information System (INIS)

    Aquilanti, V.; Casavecchia, P.

    1976-01-01

    Electronic excitation leading to light emission in the wavelength range 350--800 nm has been studied by a crossed ion--atom beam technique for (K + , K) collisions, and the results are interpreted in terms of properties of the potential energy curves for the molecular ion K + 2 . The investigated velocity range is (1.3--12) x10 6 cm s -1 . The total cross section for the process K + (3p 6 1 S 0 ) +K(4s 2 S 1 / 2 ) →K + (3p 6 1 S 0 ) +K(4p 2 P 3 / 2 , 1 / 2 ) increases from threshold up to approx.10 -15 cm 2 at a velocity of approx.4.5x10 6 cm s -1 , and shows an oscillatory structure. The magnitude and over-all velocity dependence are attributed to a Σ--Pi curve crossing, and the oscillations to an interference effect, which is treated as an inelastic ''glory'' phenomenon. Cross sections for production of each of the fine structure components of K(4p), 2 P 3 / 2 , and 2 P 1 / 2 , have also been measured. Their ratio, which in the investigated velocity range is different from the statistical value, shows additional oscillations, which are discussed in terms of long range interference between alternate semiclassical paths

  13. Molecular Investigation of the Short-term Sequestration of Natural Abundance 13C -labelled Cow Dung in the Surface Horizons of a Temperate Grassland Soil

    Science.gov (United States)

    Dungait, J.; Bol, R.; Evershed, R. P.

    2004-12-01

    An adequate understanding of the carbon (C) sequestration potential of grasslands requires that the quantity and residence times of C inputs be measured. Herbivore dung is largely comprised of plant cell wall material, a significant source of stable C in intensively grazed temperate grassland ecosystems that contributes to the soil carbon budget. Our work uses compound-specific isotope analysis to identify the pattern of input of dung-derived compounds from natural abundance 13C/-labelled cow dung into the surface horizons of a temperate grassland soil over one year. C4 dung (δ 13C \\-12.6 ‰ ) from maize fed cows was applied to a temperate grassland surface (δ 13C \\-29.95 ‰ ) at IGER-North Wyke (Devon, UK), and dung remains and soil cores beneath the treatments collected at ŧ = 7, 14, 28, 56, 112, 224 and 372 days. Bulk dung carbon present in the 0\\-1 cm and 1\\-5 cm surface horizons of a grassland soil over one year was estimated using Δ 13C between C4 dung and C3 dung, after Bol {\\et al.} (2000). The major biochemical components of dung were quantified using proximate forage fibre analyses, after Goering and Van Soest (1970) and identified using `wet' chemical and GC-MS methods. Plant cell wall polysaccharides and lignin were found to account for up to 67 {%} of dung dry matter. Hydrolysed polysaccharides were prepared as alditol acetates for analyses (after Docherty {\\et al.}, 2001), and a novel application of an off-line pyrolysis method applied to measure lignin-derived phenolic compounds (after Poole & van Bergen, 2002). This paper focuses on major events in the incorporation of dung carbon, estimated using natural abundance 13C&-slash;labelling technique. This revealed a major bulk input of dung carbon after a period of significant rainfall with a consequent decline in bulk soil δ 13C values until the end of the experiment (Dungait {\\et al.}, submitted). Findings will be presented revealing contribution of plant cell wall polysaccharides and

  14. Solubility of Gliclazide and Ion-Molecular Interactions with Aminopropanol in Aqueous Solutions

    Science.gov (United States)

    Hamdan, Imad I.; El-Sabawi, Dina; Abu-Dahab, Rana

    2018-01-01

    A new salt of gliclazide (GZD) was prepared and was shown to have a significantly higher aqueous solubility at physiological pH together with superior dissolution profiles in comparison to GZD employing an organic amino-alcohol base. Characterization by NMR, IR, DSC, conductometry and HPLC techniques concluded that an ion pair salt is formed between acidic GZD and basic aminopropanol (AMP). In addition to the presence of about 5% tightly bound water, hydrogen bonds appeared to form extensively between GZD, AMP and water molecules. Unlike many of solubility enhancing approaches, the salt did not hamper the permeability of GZD as shown by transport through Caco-2 cells model. In vivo studies on rats confirmed that the blood glucose lowering effect of GZD-AMP was significantly higher and more rapid compared to parent GZD indicating an enhanced overall performance of the prepared salt.

  15. Molecular Spring Enabled High-Performance Anode for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Tianyue Zheng

    2017-11-01

    Full Text Available Flexible butyl interconnection segments are synthetically incorporated into an electronically conductive poly(pyrene methacrylate homopolymer and its copolymer. The insertion of butyl segment makes the pyrene polymer more flexible, and can better accommodate deformation. This new class of flexible and conductive polymers can be used as a polymer binder and adhesive to facilitate the electrochemical performance of a silicon/graphene composite anode material for lithium ion battery application. They act like a “spring” to maintain the electrode mechanical and electrical integrity. High mass loading and high areal capacity, which are critical design requirements of high energy batteries, have been achieved in the electrodes composed of the novel binders and silicon/graphene composite material. A remarkable area capacity of over 5 mAh/cm2 and volumetric capacity of over 1700 Ah/L have been reached at a high current rate of 333 mA/g.

  16. Weathering trend characterization of medium-molecular weight polycyclic aromatic disulfur heterocycles by Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Hegazi, Abdelrahman H; Fathalla, Eiman M; Andersson, Jan T

    2014-09-01

    Different weathering factors act to change petroleum composition once it is spilled into the environment. n-Alkanes, biomarkers, low-molecular weight polyaromatic hydrocarbons and sulfur heterocycles compositional changing in the environment have been extensively studied by different researchers and many parameters have been used for oil source identification and monitoring of weathering and biological degradation processes. In this work, we studied the fate of medium-molecular weight polycyclic aromatic disulfur heterocycles (PAS2Hs), up to ca. 900Da, of artificially weathered Flotta North Sea crude oil by ultra high-resolution Fourier transform ion cyclotron resonance mass spectrometry. It was found that PAS2Hs in studied crude oil having double bond equivalents (DBE) from 5 to 8 with a mass range from ca 316 to 582Da were less influenced even after six months artificial weathering experiment. However, compounds having DBEs 12, 11 and 10 were depleted after two, four and six months weathering, respectively. In addition, DBE 9 series was more susceptible to weathering than those of DBE 7 and 8. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Molecular Basis of Ion Channels and Receptors Involved in Nerve Excitation, Synaptic Transmission and Muscle Contraction

    Science.gov (United States)

    1993-12-20

    R\\I) (CHARLES A SANDE[RS. Past Chairman {I IElNE 1. KAPLAN . General ,unsel (c-\\ itimol RODNEY W NI(HOI.S. Chief Fiveut,,, Officer [k.x fliui...MUSCARINIC ACETYLCHOLINE RECEPTOR 221 𔃼 -7 acca cr Y. x a ý . a; > -, -~ 2x 1 Ft. 4• ,1; S4" វ - ɜ:4+ 222 ANNALS NEW YORK ACADEMY OF SCIENCES with other...Physiol. 263: C267-C286. 22. KAPLAN , J, H. 1993. Molecular biology of carrier proteins. Cell 72: 13-18. 23. SOEJIMA, M. & A. NOMA. 1984. Mode of

  18. Molecular basis for convergent evolution of glutamate recognition by pentameric ligand-gated ion channels

    DEFF Research Database (Denmark)

    Lynagh, Timothy; Beech, Robin N.; Lalande, Maryline J.

    2015-01-01

    that glutamate recognition requires an arginine residue in the base of the binding site, which originated at least three distinct times according to phylogenetic analysis. Most remarkably, the arginine emerged on the principal face of the binding site in the Lophotrochozoan lineage, but 65 amino acids upstream......Glutamate is an indispensable neurotransmitter, triggering postsynaptic signals upon recognition by postsynaptic receptors. We questioned the phylogenetic position and the molecular details of when and where glutamate recognition arose in the glutamate-gated chloride channels. Experiments revealed......, on the complementary face, in the Ecdysozoan lineage. This combined experimental and computational approach throws new light on the evolution of synaptic signalling....

  19. Molecular depth profiling of multi-layer systems with cluster ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Juan [Department of Chemistry, Penn State University, University Park, PA 16802 (United States); Winograd, Nicholas [Department of Chemistry, Penn State University, University Park, PA 16802 (United States)]. E-mail: nxw@psu.edu

    2006-07-30

    Cluster bombardment of molecular films has created new opportunities for SIMS research. To more quantitatively examine the interaction of cluster beams with organic materials, we have developed a reproducible platform consisting of a well-defined sugar film (trehalose) doped with peptides. Molecular depth profiles have been acquired with these systems using C{sub 60} {sup +} bombardment. In this study, we utilize this platform to determine the feasibility of examining buried interfaces for multi-layer systems. Using C{sub 60} {sup +} at 20 keV, several systems have been tested including Al/trehalose/Si, Al/trehalose/Al/Si, Ag/trehalose/Si and ice/trehalose/Si. The results show that there can be interactions between the layers during the bombardment process that prevent a simple interpretation of the depth profile. We find so far that the best results are obtained when the mass of the overlayer atoms is less than or nearly equal to the mass of the atoms in buried molecules. In general, these observations suggest that C{sub 60} {sup +} bombardment can be successfully applied to interface characterization of multi-layer systems if the systems are carefully chosen.

  20. High-order-harmonic generation from H2+ molecular ions near plasmon-enhanced laser fields

    Science.gov (United States)

    Yavuz, I.; Tikman, Y.; Altun, Z.

    2015-08-01

    Simulations of plasmon-enhanced high-order-harmonic generation are performed for a H2+ molecular cation near the metallic nanostructures. We employ the numerical solution of the time-dependent Schrödinger equation in reduced coordinates. We assume that the main axis of H2+ is aligned perfectly with the polarization direction of the plasmon-enhanced field. We perform systematic calculations on plasmon-enhanced harmonic generation based on an infinite-mass approximation, i.e., pausing nuclear vibrations. Our simulations show that molecular high-order-harmonic generation from plasmon-enhanced laser fields is possible. We observe the dispersion of a plateau of harmonics when the laser field is plasmon enhanced. We find that the maximum kinetic energy of the returning electron follows 4 Up . We also find that when nuclear vibrations are enabled, the efficiency of the harmonics is greatly enhanced relative to that of static nuclei. However, the maximum kinetic energy 4 Up is largely maintained.

  1. A High-Throughput Molecular Pipeline Reveals the Diversity in Prevalence and Abundance of Pratylenchus and Meloidogyne Species in Coffee Plantations.

    Science.gov (United States)

    Bell, Christopher A; Atkinson, Howard J; Andrade, Alan C; Nguyen, Hoa X; Swibawa, I Gede; Lilley, Catherine J; McCarthy, James; Urwin, P E

    2018-05-01

    Coffee yields are adversely affected by plant-parasitic nematodes and the pathogens are largely underreported because a simple and reliable identification method is not available. We describe a polymerase chain reaction-based approach to rapidly detect and quantify the major Pratylenchus and Meloidogyne nematode species that are capable of parasitizing coffee. The procedure was applied to soil samples obtained from a number of coffee farms in Brazil, Vietnam, and Indonesia to assess the prevalence of these species associated both with coffee (Coffea arabica and C. canephora) and its intercropped species Musa acuminata (banana) and Piper nigrum (black pepper). Pratylenchus coffeae and P. brachyurus were associated with coffee in all three countries but there were distinct profiles of Meloidogyne spp. Meloidogyne incognita, M. exigua, and M. paranaensis were identified in samples from Brazil and M. incognita and M. hapla were detected around the roots of coffee in Vietnam. No Meloidogyne spp. were detected in samples from Indonesia. There was a high abundance of Meloidogyne spp. in soil samples in which Pratylenchus spp. were low or not detected, suggesting that the success of one genus may deter another. Meloidogyne spp. in Vietnam and Pratylenchus spp. in Indonesia were more numerous around intercropped plants than in association with coffee. The data suggest a widespread but differential nematode problem associated with coffee production across the regions studied. The issue is compounded by the current choice of intercrops that support large nematode populations. Wider application of the approach would elucidate the true global scale of the nematode problem and the cost to coffee production. [Formula: see text] Copyright © 2018 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .

  2. Changes in Soil Organic Matter Abundance, Molecular Composition, and Diversity in an Arid Ecosystem in Response to Long-term Elevated CO2 Manipulation.

    Science.gov (United States)

    Hess, N. J.; Tfaily, M.; Evans, R. D.; Koyama, A.

    2017-12-01

    Little is known about how soils in arid ecosystems will respond to rising atmospheric CO2 concentration yet arid and semi-arid ecosystems cover more than 40% of Earth's land surface. Previous work in the Mojave Desert (Evans et al., 2014 Nature Climate Change) reported higher soil organic carbon (SOC) and total nitrogen (N) concentrations following 10 years exposure to elevated atmospheric CO2 at the Nevada Desert Free-Air-Carbon dioxide-Enrichment (FACE) Facility (NDFF). In this study, we investigated potential mechanisms that resulted in increased SOC and total N accumulation and stabilization using high resolution mass spectrometry at the NDFF site. Samples were collected from soil profiles to 1 m in depth with a 0.2 m a increment under the dominant evergreen shrub Larrea tridentata. The differences in the molecular composition and diversity of soil organic matter (SOM) were more evident in surface soils and declined with depth, and were consistent with higher SOC and total N concentrations under elevated than ambient CO2. Our molecular analysis also suggested increased root exudation and/or microbial necromass from stabilization of labile C and N contributed to SOM and N stocks. Increased microbial activity and metabolism under elevated CO2 compared to ambient plots suggested that elevated CO2 altered microbial carbon (C) use patterns, reflecting changes in the quality and quantity of SOC inputs. We found that plant-derived compounds were primary substrates for microbial activity under elevated CO2 and microbial products were the main constituents of stabilized SOM. Our results suggest that arid ecosystems are a potential large C sink under elevated CO2, give the extensive coverage of the land surface, and that labile compounds are transformed to stable SOM via microbial processes. Arid systems are limited by water, and thus may have a different C storage potential under changing climates than other ecosystems that are limited by nitrogen or phosphorus.

  3. Theoretical Investigation of the Effect of the Rare Gas Matrices on the Vibrational Spectra of Solvated Molecular Ions: Cu+CO

    Czech Academy of Sciences Publication Activity Database

    Bludský, Ota; Šilhan, Martin; Nachtigall, Petr

    2002-01-01

    Roč. 117, č. 20 (2002), s. 9298-9305 ISSN 0021-9606 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : vibrational spectra * solvated molecular ions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.998, year: 2002

  4. Sequence-dependent separation of trinucleotides by ion-interaction reversed-phase liquid chromatography A structure-retention study assisted by soft-modelling and molecular dynamics

    Czech Academy of Sciences Publication Activity Database

    Mikulášek, K.; Jaroň, Kamil S.; Kulhánek, P.; Bittová, M.; Havliš, J.

    2016-01-01

    Roč. 1469, October (2016), s. 88-95 ISSN 0021-9673 Institutional support: RVO:68081766 Keywords : Sequence-dependent separation * Ion-interaction reversed-phase liquid chromatography * Trinucleotides * Oligonucleotide sequence isomers * QSRR * Molecular dynamics Subject RIV: CE - Biochemistry Impact factor: 3.981, year: 2016

  5. Detection of a noble gas molecular ion, 36ArH+, in the Crab Nebula.

    Science.gov (United States)

    Barlow, M J; Swinyard, B M; Owen, P J; Cernicharo, J; Gomez, H L; Ivison, R J; Krause, O; Lim, T L; Matsuura, M; Miller, S; Olofsson, G; Polehampton, E T

    2013-12-13

    Noble gas molecules have not hitherto been detected in space. From spectra obtained with the Herschel Space Observatory, we report the detection of emission in the 617.5- and 1234.6-gigahertz J = 1-0 and 2-1 rotational lines of (36)ArH(+) at several positions in the Crab Nebula, a supernova remnant known to contain both molecular hydrogen and regions of enhanced ionized argon emission. Argon-36 is believed to have originated from explosive nucleosynthesis in massive stars during core-collapse supernova events. Its detection in the Crab Nebula, the product of such a supernova event, confirms this expectation. The likely excitation mechanism for the observed (36)ArH(+) emission lines is electron collisions in partially ionized regions with electron densities of a few hundred per centimeter cubed.

  6. Selective detection of heavy metal ions by calixarene-based fluorescent molecular sensors

    Science.gov (United States)

    Zhang, Haitao; Faye, Djibril; Zhang, Han; Lefevre, Jean-Pierre; Delaire, J. A.; Leray, Isabelle

    2012-06-01

    The synthesis, spectroscopic characterization and complexing properties of calixarene-based fluorescent sensors are reported. The calixarene bearing four dansyl fluorophores (Calix-DANS4) exhibits a very high affinity for the detection of lead. A fluorimetric micro-device based on the use of a Y-shape microchannel was developed and allows lead detection with a 5 ppb detection limit. For mercury detection, a fluorescent molecular sensor containing a calixarene anchored with four 8-quinolinoloxy groups (Calix-Q) has been synthesized. The absorption and fluorescence spectra of this sensor are sensitive to the presence of metal cations. An efficient fluorescence quenching is observed upon mercury complexation because of a photoinduced electron transfer from the fluorophore to the bound mercury. Calix-Q shows a high selectivity towards Hg2+ over interfering cations (Na+, K+, Ca2+, Cu2+, Zn2+, Cd2+ and Pb2+) and a 70 ppb sensitivity.

  7. The effect of interatomic potential in molecular dynamics simulation of low energy ion implantation

    International Nuclear Information System (INIS)

    Chan, H.Y.; Nordlund, K.; Peltola, J.; Gossmann, H.-J.L.; Ma, N.L.; Srinivasan, M.P.; Benistant, F.; Chan, Lap

    2005-01-01

    Being able to accurately predict dopant profiles at sub-keV implant energies is critical for the microelectronic industry. Molecular Dynamics (MD), with its capability to account for multiple interactions as energy lowers, is an increasingly popular simulation method. We report our work on sub-keV implantation using MD and investigate the effect of different interatomic potentials on the range profiles. As an approximation, only pair potentials are considered in this work. Density Functional Theory (DFT) is used to calculate the pair potentials for a wide range of dopants (B, C, N, F, Si, P, Ga, Ge, As, In and Sb) in single crystalline silicon. A commonly used repulsive potential is also included in the study. Importance of the repulsive and attractive regions of the potential has been investigated with different elements and we show that a potential depicting the right attractive forces is especially important for heavy elements at low energies

  8. Molecular and functional profiling of histamine receptor-mediated calcium ion signals in different cell lines.

    Science.gov (United States)

    Meisenberg, Annika; Kaschuba, Dagmar; Balfanz, Sabine; Jordan, Nadine; Baumann, Arnd

    2015-10-01

    Calcium ions (Ca(2+)) play a pivotal role in cellular physiology. Often Ca(2+)-dependent processes are studied in commonly available cell lines. To induce Ca(2+) signals on demand, cells may need to be equipped with additional proteins. A prominent group of membrane proteins evoking Ca(2+) signals are G-protein coupled receptors (GPCRs). These proteins register external signals such as photons, odorants, and neurotransmitters and convey ligand recognition into cellular responses, one of which is Ca(2+) signaling. To avoid receptor cross-talk or cross-activation with introduced proteins, the repertoire of cell-endogenous receptors must be known. Here we examined the presence of histamine receptors in six cell lines frequently used as hosts to study cellular signaling processes. In a concentration-dependent manner, histamine caused a rise in intracellular Ca(2+) in HeLa, HEK 293, and COS-1 cells. The concentration for half-maximal activation (EC50) was in the low micromolar range. In individual cells, transient Ca(2+) signals and Ca(2+) oscillations were uncovered. The results show that (i) HeLa, HEK 293, and COS-1 cells express sufficient amounts of endogenous receptors to study cellular Ca(2+) signaling processes directly and (ii) these cell lines are suitable for calibrating Ca(2+) biosensors in situ based on histamine receptor evoked responses. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Evolution of L -shell photoabsorption of the molecular-ion series Si Hn + (n =1 ,2 ,3 ): Experimental and theoretical studies

    Science.gov (United States)

    Kennedy, E. T.; Mosnier, J.-P.; van Kampen, P.; Bizau, J.-M.; Cubaynes, D.; Guilbaud, S.; Carniato, S.; Puglisi, A.; Sisourat, N.

    2018-04-01

    We report on complementary laboratory and theoretical investigations of the 2 p photoexcitation cross sections for the molecular-ion series Si Hn + (n =1 ,2 ,3 ) near the L -shell threshold. The experiments used an electron cyclotron resonance (ECR) plasma molecular-ion source coupled with monochromatized synchrotron radiation in a merged-beam configuration. For all three molecular ions, the S i2 + decay channel appeared dominant, suggesting similar electronic and nuclear relaxation patterns involving resonant Auger and dissociation processes, respectively. The total yields of the S i2 + products were recorded and put on absolute cross-section scales by comparison with the spectrum of the S i+ parent atomic ion. Interpretation of the experimental spectra ensued from a comparison with total photoabsorption cross-sectional profiles calculated using ab initio configuration interaction theoretical methods inclusive of vibrational dynamics and contributions from inner-shell excitations in both ground and valence-excited electronic states. The spectra, while broadly similar for all three molecular ions, moved towards lower energies as the number of screening hydrogen atoms increased from one to three. They featured a wide and shallow region below ˜107 eV due to 2 p →σ* transitions to dissociative states, and intense and broadened peaks in the ˜107 -113 -eV region merging into sharp Rydberg series due to 2 p →n δ ,n π transitions converging on the LII ,III limits above ˜113 eV . This overall spectral shape is broadly replicated by theory in each case, but the level of agreement does not extend to individual resonance structures. In addition to the fundamental interest, the work should also prove useful for the understanding and modeling of astronomical and laboratory plasma sources where silicon hydride molecular species play significant roles.

  10. Structural characterization of saturated branched chain fatty acid methyl esters by collisional dissociation of molecular ions generated by electron ionization[S

    Science.gov (United States)

    Ran-Ressler, Rinat R.; Lawrence, Peter; Brenna, J. Thomas

    2012-01-01

    Saturated branched chain fatty acids (BCFA) are present as complex mixtures in numerous biological samples. The traditional method for structure elucidation, electron ionization (EI) mass spectrometry, sometimes does not unambiguously enable assignment of branching in isomeric BCFA. Zirrolli and Murphy (Zirrolli , J. A. , and R. A. Murphy. 1993. Low-energy tandem mass spectrometry of the molecular ion derived from fatty acid methyl esters: a novel method for analysis of branched-chain fatty acids. J. Am. Soc. Mass Spectrom. 4: 223–229.) showed that the molecular ions of four BCFA methyl ester (BCFAME) yield highly characteristic fragments upon collisional dissociation using a triple quadrupole instrument. Here, we confirm and extend these results by analysis using a tabletop 3-D ion trap for activated molecular ion EI-MS/MS to 30 BCFAME. iso-BCFAME produces a prominent ion (30-100% of base peak) for [M-43] (M-C3H7), corresponding to the terminal isopropyl moiety in the original iso-BCFAME. Anteiso-FAME yield prominent ions (20-100% of base peak) corresponding to losses on both side of the methyl branch, [M-29] and [M-57], and tend to produce more prominent m/z 115 peaks corresponding to a cyclization product around the ester. Dimethyl and tetramethyl FAME, with branches separated by at least one methylene group, yield fragment on both sides of the sites of methyl branches that are more than 6 C away from the carboxyl carbon. EI-MS/MS yields uniquely specific ions that enable highly confident structural identification and quantification of BCFAME. PMID:22021637

  11. Abundance and diversity of n-alkane-degrading bacteria in a forest soil co-contaminated with hydrocarbons and metals: a molecular study on alkB homologous genes.

    Science.gov (United States)

    Pérez-de-Mora, Alfredo; Engel, Marion; Schloter, Michael

    2011-11-01

    Unraveling functional genes related to biodegradation of organic compounds has profoundly improved our understanding of biological remediation processes, yet the ecology of such genes is only poorly understood. We used a culture-independent approach to assess the abundance and diversity of bacteria catalyzing the degradation of n-alkanes with a chain length between C(5) and C(16) at a forest site co-contaminated with mineral oil hydrocarbons and metals for nearly 60 years. The alkB gene coding for a rubredoxin-dependent alkane monooxygenase enzyme involved in the initial activation step of aerobic aliphatic hydrocarbon metabolism was used as biomarker. Within the area of study, four different zones were evaluated: one highly contaminated, two intermediately contaminated, and a noncontaminated zone. Contaminant concentrations, hydrocarbon profiles, and soil microbial respiration and biomass were studied. Abundance of n-alkane-degrading bacteria was quantified via real-time PCR of alkB, whereas genetic diversity was examined using molecular fingerprints (T-RFLP) and clone libraries. Along the contamination plume, hydrocarbon profiles and increased respiration rates suggested on-going natural attenuation at the site. Gene copy numbers of alkB were similar in contaminated and control areas. However, T-RFLP-based fingerprints suggested lower diversity and evenness of the n-alkane-degrading bacterial community in the highly contaminated zone compared to the other areas; both diversity and evenness were negatively correlated with metal and hydrocarbon concentrations. Phylogenetic analysis of alkB denoted a shift of the hydrocarbon-degrading bacterial community from Gram-positive bacteria in the control zone (most similar to Mycobacterium and Nocardia types) to Gram-negative genotypes in the contaminated zones (Acinetobacter and alkB sequences with little similarity to those of known bacteria). Our results underscore a qualitative rather than a quantitative response of

  12. Towards Molecular Characterization of Mineral-Organic Matter Interface Using In Situ Liquid Secondary Ion Mass Spectrometry

    Science.gov (United States)

    Zhu, Z.; Yu, X. Y.

    2017-12-01

    Organo-Mineral-Microbe interactions in terrestrial ecosystems are of great interest. Quite a few models have been developed through extensive efforts in this field. However, predictions from current models are far from being accurate, and many debates still exist. One of the major reasons is that most experimental data generated from bulk analysis, and the information of molecular dynamics occurring at mineral-organic matter interface is rare. Such information has been difficult to obtain, due to lack of suitable in situ analysis tools. Recently, we have developed in situ liquid secondary ion mass spectrometry (SIMS) at Pacific Northwest National Laboratory1, and it has shown promise to provide both elemental and molecular information at vacuum-liquid and solid-liquid interfaces.2 In this presentation, we demonstrate that in situ liquid SIMS can provide critical molecular information at solid substrate-live biofilm interface.3 Shewanella oneidensis is used as a model micro-organism and silicon nitride as a model mineral surface. Of particular interest, biologically relevant water clusters have been first observed in the living biofilms. Characteristic fragments of biofilm matrix components such as proteins, polysaccharides, and lipids can be molecularly examined. Furthermore, characteristic fatty acids (e.g., palmitic acid), quinolone signal, and riboflavin fragments were found to respond after the biofilm is treated with Cr(VI), leading to biofilm dispersal. Significant changes in water clusters and quorum sensing signals indicative of intercellular communication in the aqueous environment were observed, suggesting that they might result in fatty acid synthesis and inhibition of riboflavin production. The Cr(VI) reduction seems to follow the Mtr pathway leading to Cr(III) formation. Our approach potentially opens a new avenue for in-situ understanding of mineral-organo or mineral-microbe interfaces using in situ liquid SIMS and super resolution fluorescence

  13. Molecular engineering of lanthanide ion chelating phospholipids generating assemblies with a switched magnetic susceptibility.

    Science.gov (United States)

    Isabettini, Stéphane; Massabni, Sarah; Hodzic, Arnel; Durovic, Dzana; Kohlbrecher, Joachim; Ishikawa, Takashi; Fischer, Peter; Windhab, Erich J; Walde, Peter; Kuster, Simon

    2017-08-09

    Lanthanide ion (Ln 3+ ) chelating amphiphiles are powerful molecules for tailoring the magnetic response of polymolecular assemblies. Mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylene triaminepentaacetate (DMPE-DTPA) complexed to Ln 3+ deliver highly magnetically responsive bicelles. Their magnetic properties are readily tuned by changing the bicellar size or the magnetic susceptibility Δχ of the bilayer lipids. The former technique is intrinsically bound to the region of the phase diagram guarantying the formation of bicelles. Methods aiming towards manipulating the Δχ of the bilayer are comparatively more robust, flexible and lacking. Herein, we synthesized a new Ln 3+ chelating phospholipid using glutamic acid as a backbone: DMPE-Glu-DTPA. The chelate polyhedron was specifically engineered to alter the Δχ, whilst remaining geometrically similar to DMPE-DTPA. Planar asymmetric assemblies hundreds of nanometers in size were achieved presenting unprecedented magnetic alignments. The DMPE-Glu-DTPA/Ln 3+ complex switched the Δχ, achieving perpendicular alignment of assemblies containing Dy 3+ and parallel alignment of those containing Tm 3+ . Moreover, samples with chelated Yb 3+ were more alignable than the Tm 3+ chelating counterparts. Such a possibility has never been demonstrated for planar Ln 3+ chelating polymolecular assemblies. The physico-chemical properties of these novel assemblies were further studied by monitoring the alignment behavior at different temperatures and by including 16 mol% of cholesterol (Chol-OH) in the phospholipid bilayer. The DMPE-Glu-DTPA/Ln 3+ complex and the resulting assemblies are promising candidates for applications in numerous fields including pharmaceutical technologies, structural characterization of membrane biomolecules by NMR spectroscopy, as contrasting agents for magnetic resonance imaging, and for the development of smart optical gels.

  14. Molecular dynamics and experimental studies on deposition mechanisms of ion beam sputtering

    International Nuclear Information System (INIS)

    Fang, T.-H.; Chang, W.-J.; Lin, C.-M.; Lien, W.-C.

    2008-01-01

    Molecular dynamics (MD) simulation and experimental methods are used to study the deposition mechanism of ionic beam sputtering (IBS), including the effects of incident energy, incident angle and deposition temperature on the growth process of nickel nanofilms. According to the simulation, the results showed that increasing the temperature of substrate decreases the surface roughness, average grain size and density. Increasing the incident angle increases the surface roughness and the average grain size of thin film, while decreasing its density. In addition, increasing the incident energy decreases the surface roughness and the average grain size of thin film, while increasing its density. For the cases of simulation, with the substrate temperature of 500 K, normal incident angle and 14.6 x 10 -17 J are appropriate, in order to obtain a smoother surface, a small grain size and a higher density of thin film. From the experimental results, the surface roughness of thin film deposited on the substrates of Si(1 0 0) and indium tin oxide (ITO) decreases with the increasing sputtering power, while the thickness of thin film shows an approximately linear increase with the increase of sputtering power

  15. Affine-response model of molecular solvation of ions: Accurate predictions of asymmetric charging free energies.

    Science.gov (United States)

    Bardhan, Jaydeep P; Jungwirth, Pavel; Makowski, Lee

    2012-09-28

    Two mechanisms have been proposed to drive asymmetric solvent response to a solute charge: a static potential contribution similar to the liquid-vapor potential, and a steric contribution associated with a water molecule's structure and charge distribution. In this work, we use free-energy perturbation molecular-dynamics calculations in explicit water to show that these mechanisms act in complementary regimes; the large static potential (∼44 kJ/mol/e) dominates asymmetric response for deeply buried charges, and the steric contribution dominates for charges near the solute-solvent interface. Therefore, both mechanisms must be included in order to fully account for asymmetric solvation in general. Our calculations suggest that the steric contribution leads to a remarkable deviation from the popular "linear response" model in which the reaction potential changes linearly as a function of charge. In fact, the potential varies in a piecewise-linear fashion, i.e., with different proportionality constants depending on the sign of the charge. This discrepancy is significant even when the charge is completely buried, and holds for solutes larger than single atoms. Together, these mechanisms suggest that implicit-solvent models can be improved using a combination of affine response (an offset due to the static potential) and piecewise-linear response (due to the steric contribution).

  16. Affine-response model of molecular solvation of ions: Accurate predictions of asymmetric charging free energies

    Science.gov (United States)

    Bardhan, Jaydeep P.; Jungwirth, Pavel; Makowski, Lee

    2012-01-01

    Two mechanisms have been proposed to drive asymmetric solvent response to a solute charge: a static potential contribution similar to the liquid-vapor potential, and a steric contribution associated with a water molecule's structure and charge distribution. In this work, we use free-energy perturbation molecular-dynamics calculations in explicit water to show that these mechanisms act in complementary regimes; the large static potential (∼44 kJ/mol/e) dominates asymmetric response for deeply buried charges, and the steric contribution dominates for charges near the solute-solvent interface. Therefore, both mechanisms must be included in order to fully account for asymmetric solvation in general. Our calculations suggest that the steric contribution leads to a remarkable deviation from the popular “linear response” model in which the reaction potential changes linearly as a function of charge. In fact, the potential varies in a piecewise-linear fashion, i.e., with different proportionality constants depending on the sign of the charge. This discrepancy is significant even when the charge is completely buried, and holds for solutes larger than single atoms. Together, these mechanisms suggest that implicit-solvent models can be improved using a combination of affine response (an offset due to the static potential) and piecewise-linear response (due to the steric contribution). PMID:23020318

  17. Octahedral magnesium manganese oxide molecular sieves as the cathode material of aqueous rechargeable magnesium-ion battery

    International Nuclear Information System (INIS)

    Zhang, Hongyu; Ye, Ke; Shao, Shuangxi; Wang, Xin; Cheng, Kui; Xiao, Xue; Wang, Guiling; Cao, Dianxue

    2017-01-01

    Highlights: • The mico-sheet Mg-OMS-1 is synthesized by a simple hydrothermal method. • The mechanism of Mg 2+ insertion/deinsertion from Mg-OMS-1 is explored. • The electrode exhibits a good electrochemical performance in MgCl 2 electrolyte. - Abstract: Aqueous magnesium-ion batteries have shown the desired properties of high safety characteristics, similar electrochemical properties to lithium and low cost for energy storage applications. The micro-sheet morphology of todorokite-type magnesium manganese oxide molecular sieve (Mg-OMS-1) material, which applies as a novel cathode material for magnesium-ion battery, is obtained by the simple hydrothermal method. The structure and morphology of the particles are confirmed by X-ray power diffraction, X-ray photoelectron spectroscopy, inductively coupled plasma, scanning and transmission electron microscopy. The electrochemical performance of Mg-OMS-1 is researched by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and constant current charge-discharge measurement. Mg-OMS-1 shows a good battery behavior for Mg 2+ insertion and deinsertion in the aqueous electrolyte. When discharging at 10 mA g −1 in 0.2 mol dm −3 MgCl 2 aqueous electrolyte, the initial discharge capacity reaches 300 mAh g −1 . The specific capacity retention rate is 83.7% after cycling 300 times at 100 mA g −1 in 0.5 mol dm −3 MgCl 2 electrolyte with a columbic efficiency of nearly 100%.

  18. Fragment profiling of low molecular weight heparins using reversed phase ion pair liquid chromatography-electrospray mass spectrometry.

    Science.gov (United States)

    Xu, Xiaohui; Li, Daoyuan; Chi, Lequan; Du, Xuzhao; Bai, Xue; Chi, Lianli

    2015-04-30

    Low molecular weight heparins (LMWHs) are linear and highly charged carbohydrate polymers prepared by chemical or enzymatic depolymerization of heparin. Compared to unfractionated heparin (UFH), LMWHs are prevalently used as clinical anticoagulant drugs due to their lower side effects and better bioavailability. The work presented herein provides a rapid and powerful fragment mapping method for structural characterization of LMWHs. The chain fragments of two types of LMWHs, enoxaparin and nadroparin, were generated by controlled enzymatic digestion with each of heparinase I (Hep I, Enzyme Commission (EC) # 4.2.2.7), heparinase II (Hep II, no EC # assigned) and heparinase III (Hep III, EC # 4.2.2.8). Reversed phase ion pair high performance liquid chromatography (RPIP-HPLC) coupled with electrospray ion trap time-of-flight mass spectrometry (ESI-IT-TOF-MS) was used to profile the oligosaccharide chains ranging from disaccharides to decasaccharides. A database containing all theoretical structural compositions was established to assist the mass spectra interpretation. The six digests derived by three enzymes from two types of LMWHs exhibited distinguishable fingerprinting patterns. And a total of 94 enoxaparin fragments and 109 nadroparin fragments were detected and identified. Besides the common LMWH oligosaccharides, many components containing characteristic LMWH structures such as saturated L-idopyranosuronic acid, 2,5-anhydro-D-mannitol, 1,6-anhydro-D-aminopyranose, as well as odd number oligosaccharides were also revealed. Quantitative comparison of major components derived from innovator and generic nadroparin products was presented. This approach to profile LMWHs' fragments offers a highly reproducible, high resolution and information-rich tool for evaluating the quality of this category of anticoagulant drugs or comparing structural similarities among samples from various sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Molecular dynamics study of the effect of substrate temperature and Ar ion assisted deposition on the deposition of amorphous TiO_2 films

    International Nuclear Information System (INIS)

    Chen, Xian; Zhang, Jing; Zhao, Yu-Qing

    2017-01-01

    Highlights: • The surface roughness of a-TiO_2 films is decreased with the increment of the Ar ion assisted energy. • The surface roughness of a-TiO_2 films is decreased with higher substrate temperature when the substrate has an island structure. • The assisted Ar ion has power of making a flat surface and increasing the local temperature. • The assisted Ar ion will influence the growth mode with the change of surface atom mobility. • The Volmer-Weber (island) growth mode is inhibited with a high assisted Ar ion energy. - Abstract: This paper has investigated the impact of the substrate temperature and Ar ion assisted deposition on the surface structure formation mechanism and the film properties during the amorphous TiO_2 thin film deposition process with the molecular dynamics simulation method. The results show that the reduction of the surface roughness happen when the energy of Ar ions assisted is increased or the substrate temperature rises, and also the film density on surface is changed with the increasing of Ar ions energy and substrate temperature. It is also found that the Volmer-Weber (island) growth mode of films is promoted by the lower Ar ion energy and higher substrate temperature when the substrate has an island structure. The assisted Ar ion has power of making a flat surface and increasing the local temperature. Besides, it will influence the growth mode with the change of surface atom mobility. With a high assisted Ar ion energy the Volmer-Weber (island) growth mode is inhibited, which will be conducive to the formation of more smooth film surface.

  20. Molecular dynamics study of the effect of substrate temperature and Ar ion assisted deposition on the deposition of amorphous TiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xian, E-mail: mus_c@qq.com [Science and Technology on Analog Integrated Circuit Laboratory, ChongQing, 401332 (China); Zhang, Jing [Science and Technology on Analog Integrated Circuit Laboratory, ChongQing, 401332 (China); Zhao, Yu-Qing [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’AN, 710049 (China)

    2017-05-15

    Highlights: • The surface roughness of a-TiO{sub 2} films is decreased with the increment of the Ar ion assisted energy. • The surface roughness of a-TiO{sub 2} films is decreased with higher substrate temperature when the substrate has an island structure. • The assisted Ar ion has power of making a flat surface and increasing the local temperature. • The assisted Ar ion will influence the growth mode with the change of surface atom mobility. • The Volmer-Weber (island) growth mode is inhibited with a high assisted Ar ion energy. - Abstract: This paper has investigated the impact of the substrate temperature and Ar ion assisted deposition on the surface structure formation mechanism and the film properties during the amorphous TiO{sub 2} thin film deposition process with the molecular dynamics simulation method. The results show that the reduction of the surface roughness happen when the energy of Ar ions assisted is increased or the substrate temperature rises, and also the film density on surface is changed with the increasing of Ar ions energy and substrate temperature. It is also found that the Volmer-Weber (island) growth mode of films is promoted by the lower Ar ion energy and higher substrate temperature when the substrate has an island structure. The assisted Ar ion has power of making a flat surface and increasing the local temperature. Besides, it will influence the growth mode with the change of surface atom mobility. With a high assisted Ar ion energy the Volmer-Weber (island) growth mode is inhibited, which will be conducive to the formation of more smooth film surface.

  1. Understanding Ion Binding Affinity and Selectivity in β-Parvalbumin Using Molecular Dynamics and Mean Spherical Approximation Theory.

    Science.gov (United States)

    Kucharski, Amir N; Scott, Caitlin E; Davis, Jonathan P; Kekenes-Huskey, Peter M

    2016-08-25

    Parvalbumin (PV) is a globular calcium (Ca(2+))-selective protein expressed in a variety of biological tissues. Our computational studies of the rat β-parvalbumin (β-PV) isoform seek to elucidate the molecular thermodynamics of Ca(2+) versus magnesium (Mg(2+)) binding at the protein's two EF-hand motifs. Specifically, we have utilized molecular dynamics (MD) simulations and a mean-field electrolyte model (mean spherical approximation (MSA) theory) to delineate how the EF-hand scaffold controls the "local" thermodynamics of Ca(2+) binding selectivity over Mg(2+). Our MD simulations provide the probability density of metal-chelating oxygens within the EF-hand scaffolds for both Ca(2+) and Mg(2+), as well the conformational strain induced by Mg(2+) relative to Ca(2+) binding. MSA theory utilizes the binding domain oxygen and charge distributions to predict the chemical potential of ion binding, as well as their corresponding concentrations within the binding domain. We find that the electrostatic and steric contributions toward ion binding were similar for Mg(2+) and Ca(2+), yet the latter was 5.5 kcal/mol lower in enthalpy when internal strain within the EF hand was considered. We therefore speculate that beyond differences in dehydration energies for the Ca(2+) versus Mg(2+), strain induced in the β-PV EF hand by cation binding significantly contributes to the nearly 10,000-fold difference in binding affinity reported in the literature. We further complemented our analyses of local factors governing cation binding selectivity with whole-protein (global) contributions, such as interhelical residue-residue contacts and solvent exposure of hydrophobic surface. These contributions were found to be comparable for both Ca(2+)- and Mg(2+)-bound β-PV, which may implicate local factors, EF-hand strain, and dehydration, in providing the primary means of selectivity. We anticipate these methods could be used to estimate metal binding thermodynamics across a broad range of

  2. Phycodnavirus potassium ion channel proteins question the virus molecular piracy hypothesis.

    Directory of Open Access Journals (Sweden)

    Kay Hamacher

    Full Text Available Phycodnaviruses are large dsDNA, algal-infecting viruses that encode many genes with homologs in prokaryotes and eukaryotes. Among the viral gene products are the smallest proteins known to form functional K(+ channels. To determine if these viral K(+ channels are the product of molecular piracy from their hosts, we compared the sequences of the K(+ channel pore modules from seven phycodnaviruses to the K(+ channels from Chlorella variabilis and Ectocarpus siliculosus, whose genomes have recently been sequenced. C. variabilis is the host for two of the viruses PBCV-1 and NY-2A and E. siliculosus is the host for the virus EsV-1. Systematic phylogenetic analyses consistently indicate that the viral K(+ channels are not related to any lineage of the host channel homologs and that they are more closely related to each other than to their host homologs. A consensus sequence of the viral channels resembles a protein of unknown function from a proteobacterium. However, the bacterial protein lacks the consensus motif of all K(+ channels and it does not form a functional channel in yeast, suggesting that the viral channels did not come from a proteobacterium. Collectively, our results indicate that the viruses did not acquire their K(+ channel-encoding genes from their current algal hosts by gene transfer; thus alternative explanations are required. One possibility is that the viral genes arose from ancient organisms, which served as their hosts before the viruses developed their current host specificity. Alternatively the viral proteins could be the origin of K(+ channels in algae and perhaps even all cellular organisms.

  3. Multiple marker abundance profiling

    DEFF Research Database (Denmark)

    Hooper, Cornelia M.; Stevens, Tim J.; Saukkonen, Anna

    2017-01-01

    proteins and the scoring accuracy of lower-abundance proteins in Arabidopsis. NPAS was combined with subcellular protein localization data, facilitating quantitative estimations of organelle abundance during routine experimental procedures. A suite of targeted proteomics markers for subcellular compartment...

  4. Energetics of the rearrangement of neutral and ionized perfluorocyclopropane to perfluoropropylene. Use of infrared multiphoton dissociation spectra to identify structural isomers of molecular ions

    International Nuclear Information System (INIS)

    Bomse, D.S.; Berman, D.W.; Beauchamp, J.L.

    1981-01-01

    Infrared photodissociation spectroscopy is used to compare the structure of gas-phase C 3 F 6 + ions obtained by electron-impact ionization of two isomeric precursors: perfluoropropylene and perfluorocyclopropane. Photodissociation spectra are obtained by observing the extent of multiphoton dissociation as the CO 2 laser is tuned across the 925 to 1080 cm -1 wavelength range. Ions are formed, stored, and detected with the use of techniques of ion cyclotron resonance spectroscopy. Infrared multiphoton excitation is effected by using low-power, continuous-wave laser radiation. The fingerprint spectrum of the molecular ion of perfluorocyclopropane is identical with that obtained from perfluoropropylene, indicating rearrangement of the former to the latter. Photodissociation kinetics indicate that the entire perfluorocyclopropane molecular ion population isomerizes to the more stable perfluoropropylene structure. Thermochemistry of C 3 F 6 and C 3 F 6 + isomers is discussed. Comparisons are made with the analogous C 3 H 6 system. Photoionization mass spectroscopy results yield ΔH/sub f/(c-C 3 F 6 ) = -233.8 kcal/mol. 4 figures

  5. Hydrocarbons and fuels analyses with the supersonic gas chromatography mass spectrometry--the novel concept of isomer abundance analysis.

    Science.gov (United States)

    Fialkov, Alexander B; Gordin, Alexander; Amirav, Aviv

    2008-06-27

    Hydrocarbon analysis with standard GC-MS is confronted by the limited range of volatile compounds amenable for analysis and by the similarity of electron ionization mass spectra for many compounds which show weak or no molecular ions for heavy hydrocarbons. The use of GC-MS with supersonic molecular beams (Supersonic GC-MS) significantly extends the range of heavy hydrocarbons that can be analyzed, and provides trustworthy enhanced molecular ion to all hydrocarbons. In addition, unique isomer mass spectral features are obtained in the ionization of vibrationally cold hydrocarbons. The availability of molecular ions for all hydrocarbons results in the ability to obtain unique chromatographic isomer distribution patterns that can serve as a new method for fuel characterization and identification. Examples of the applicability and use of this novel isomer abundance analysis (IAA) method to diesel fuel, kerosene and oil analyses are shown. It is suggested that in similarity to the "three ions method" for identification purposes, three isomer abundance patterns can serve for fuel characterization. The applications of the Supersonic GC-MS for engine motor oil analysis and transformer oil analysis are also demonstrated and discussed, including the capability to achieve fast 1-2s sampling without separation for oil and fuel fingerprinting. The relatively fast analysis of biodiesel is described, demonstrating the provision of molecular ions to heavy triglycerides. Isomer abundance analysis with the Supersonic GC-MS could find broad range of applications including petrochemicals and fuel analysis, arson analysis, environmental oil/fuel spill analysis, fuel adulteration analysis and motor oil analysis.

  6. Investigation of effective impact parameters in electron-ion temperature relaxation via Particle-Particle Coulombic molecular dynamics

    Science.gov (United States)

    Zhao, Yinjian

    2017-09-01

    Aiming at a high simulation accuracy, a Particle-Particle (PP) Coulombic molecular dynamics model is implemented to study the electron-ion temperature relaxation. In this model, the Coulomb's law is directly applied in a bounded system with two cutoffs at both short and long length scales. By increasing the range between the two cutoffs, it is found that the relaxation rate deviates from the BPS theory and approaches the LS theory and the GMS theory. Also, the effective minimum and maximum impact parameters (bmin* and bmax*) are obtained. For the simulated plasma condition, bmin* is about 6.352 times smaller than the Landau length (bC), and bmax* is about 2 times larger than the Debye length (λD), where bC and λD are used in the LS theory. Surprisingly, the effective relaxation time obtained from the PP model is very close to the LS theory and the GMS theory, even though the effective Coulomb logarithm is two times greater than the one used in the LS theory. Besides, this work shows that the PP model (commonly known as computationally expensive) is becoming practicable via GPU parallel computing techniques.

  7. Volumetric intensity dependence on the formation of molecular and atomic ions within a high intensity laser focus.

    Science.gov (United States)

    Robson, Lynne; Ledingham, Kenneth W D; McKenna, Paul; McCanny, Thomas; Shimizu, Seiji; Yang, Jiamin M; Wahlström, Claes-Göran; Lopez-Martens, Rodrigo; Varju, Katalin; Johnsson, Per; Mauritsson, Johan

    2005-01-01

    The mechanism of atomic and molecular ionization in intense, ultra-short laser fields is a subject which continues to receive considerable attention. An inherent difficulty with techniques involving the tight focus of a laser beam is the continuous distribution of intensities contained within the focus, which can vary over several orders of magnitude. The present study adopts time of flight mass spectrometry coupled with a high intensity (8 x 10(15) Wcm(-2)), ultra-short (20 fs) pulse laser in order to investigate the ionization and dissociation of the aromatic molecule benzene-d1 (C(6)H(5)D) as a function of intensity within a focused laser beam, by scanning the laser focus in the direction of propagation, while detecting ions produced only in a "thin" slice (400 and 800 microm) of the focus. The resultant TOF mass spectra varies significantly, highlighting the dependence on the range of specific intensities accessed and their volumetric weightings on the ionization/dissociation pathways accessed.

  8. Hydration structures of U(III) and U(IV) ions from ab initio molecular dynamics simulations

    International Nuclear Information System (INIS)

    Leung, Kevin; Nenoff, Tina M.

    2012-01-01

    We apply DFT+U-based ab initio molecular dynamics simulations to study the hydration structures of U(III) and U(IV) ions, pertinent to redox reactions associated with uranium salts in aqueous media. U(III) is predicted to be coordinated to 8 water molecules, while U(IV) has a hydration number between 7 and 8. At least one of the innershell water molecules of the hydrated U(IV) complex becomes spontaneously deprotonated. As a result, the U(IV)–O pair correlation function exhibits a satellite peak at 2.15 Å associated with the shorter U(IV)–(OH − ) bond. This feature is not accounted for in analysis of extended x-ray absorption fine structure and x-ray adsorption near edge structure measurements, which yield higher estimates of U(IV) hydration numbers. This suggests that it may be useful to include the effect of possible hydrolysis in future interpretation of experiments, especially when the experimental pH is close to the reported hydrolysis equilibrium constant value.

  9. Effects of incident energy and angle on carbon cluster ions implantation on silicon substrate: a molecular dynamics study

    Science.gov (United States)

    Wei, Ye; Sang, Shengbo; Zhou, Bing; Deng, Xiao; Chai, Jing; Ji, Jianlong; Ge, Yang; Huo, Yuanliang; Zhang, Wendong

    2017-09-01

    Carbon cluster ion implantation is an important technique in fabricating functional devices at micro/nanoscale. In this work, a numerical model is constructed for implantation and implemented with a cutting-edge molecular dynamics method. A series of simulations with varying incident energies and incident angles is performed for incidence on silicon substrate and correlated effects are compared in detail. Meanwhile, the behavior of the cluster during implantation is also examined under elevated temperatures. By mapping the nanoscopic morphology with variable parameters, numerical formalism is proposed to explain the different impacts on phrase transition and surface pattern formation. Particularly, implantation efficiency (IE) is computed and further used to evaluate the performance of the overall process. The calculated results could be properly adopted as the theoretical basis for designing nano-structures and adjusting devices’ properties. Project supported by the National Natural Science Foundation of China (Nos. 51622507, 61471255, 61474079, 61403273, 51502193, 51205273), the Natural Science Foundation of Shanxi (Nos. 201601D021057, 201603D421035), the Youth Foundation Project of Shanxi Province (Nos. 2015021097), the Doctoral Fund of MOE of China (No. 20131402110013), the National High Technology Research and Development Program of China (No. 2015AA042601), and the Specialized Project in Public Welfare from The Ministry of Water Resources of China (Nos. 1261530110110).

  10. The structure of molten CuCl: Reverse Monte Carlo modeling with high-energy X-ray diffraction data and molecular dynamics of a polarizable ion model

    International Nuclear Information System (INIS)

    Alcaraz, Olga; Trullàs, Joaquim; Tahara, Shuta; Kawakita, Yukinobu; Takeda, Shin’ichi

    2016-01-01

    The results of the structural properties of molten copper chloride are reported from high-energy X-ray diffraction measurements, reverse Monte Carlo modeling method, and molecular dynamics simulations using a polarizable ion model. The simulated X-ray structure factor reproduces all trends observed experimentally, in particular the shoulder at around 1 Å −1 related to intermediate range ordering, as well as the partial copper-copper correlations from the reverse Monte Carlo modeling, which cannot be reproduced by using a simple rigid ion model. It is shown that the shoulder comes from intermediate range copper-copper correlations caused by the polarized chlorides.

  11. The structure of molten CuCl: Reverse Monte Carlo modeling with high-energy X-ray diffraction data and molecular dynamics of a polarizable ion model

    Energy Technology Data Exchange (ETDEWEB)

    Alcaraz, Olga; Trullàs, Joaquim, E-mail: quim.trullas@upc.edu [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Campus Nord UPC B4-B5, 08034 Barcelona (Spain); Tahara, Shuta [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, Okinawa 903-0213 (Japan); Kawakita, Yukinobu [J-PARC Center, Japan Atomic Energy Agency (JAEA), Ibaraki 319-1195 (Japan); Takeda, Shin’ichi [Department of Physics, Faculty of Sciences, Kyushu University, Fukuoka 819-0395 (Japan)

    2016-09-07

    The results of the structural properties of molten copper chloride are reported from high-energy X-ray diffraction measurements, reverse Monte Carlo modeling method, and molecular dynamics simulations using a polarizable ion model. The simulated X-ray structure factor reproduces all trends observed experimentally, in particular the shoulder at around 1 Å{sup −1} related to intermediate range ordering, as well as the partial copper-copper correlations from the reverse Monte Carlo modeling, which cannot be reproduced by using a simple rigid ion model. It is shown that the shoulder comes from intermediate range copper-copper correlations caused by the polarized chlorides.

  12. Characteristics of transitory multi-charged molecular ions produced by an intense femtosecond laser impulse; Etats electroniques des ions moleculaires multicharges transitoires produits par une impulsion laser femtoseconde intense

    Energy Technology Data Exchange (ETDEWEB)

    Quaglia, L

    2001-12-01

    The study of the molecular multi-ionization is narrowly linked to the dynamics of excitation and fragmentation for which the experimental observables rest on the characteristics of the fragmentation products, these characteristics are: intern energy, kinetic energy and charge states. The first chapter sets the problem. The second chapter presents the experimental tools used and developed in this work, the technologies of the detection of ions or of fluorescence are also described. The chapter 3 gathers the theoretical aspects: quantum chemistry and CASSCF (complete active space self consistent field) methods have been used to compute the potential energy curves of multi-charged ions, the two-dimensional hydrodynamic model derived from the Thomas-Fermi model is introduced to tackle the molecular re-orientation. The chapter 4 presents the experimental study of highly excited states by using fluorescence detection methods. The chapter 5 is dedicated to the study of low excited states by measuring kinetic energy spectra and by comparison with potential energy curves of molecular multi-charged ions. The chapter 6 presents experiments with 2 impulses and the results given by the Thomas-Fermi model applied to the re-orientation of the N{sub 2}O molecule. (A.C.)

  13. Molecular characterization of three Rhesus glycoproteins from the gills of the African lungfish, Protopterus annectens, and effects of aestivation on their mRNA expression levels and protein abundance.

    Directory of Open Access Journals (Sweden)

    You R Chng

    Full Text Available African lungfishes are ammonotelic in water. They can aestivate for long periods on land during drought. During aestivation, the gills are covered with dried mucus and ammonia excretion ceases. In fishes, ammonia excretion through the gills involves Rhesus glycoproteins (RhGP/Rhgp. This study aimed to obtain the complete cDNA coding sequences of rhgp from the gills of Protopterus annectens, and to determine their branchial mRNA and protein expression levels during the induction, maintenance and arousal phases of aestivation. Three isoforms of rhgp (rhag, rhbg and rhcg were obtained in the gills of P. annectens. Their complete cDNA coding sequences ranged between 1311 and 1398 bp, coding for 436 to 465 amino acids with estimated molecular masses between 46.8 and 50.9 kDa. Dendrogramic analyses indicated that Rhag was grouped closer to fishes, while Rhbg and Rhcg were grouped closer to tetrapods. During the induction phase, the protein abundance of Rhag, but not its transcript level, was down-regulated in the gills, suggesting that there could be a decrease in the release of ammonia from the erythrocytes to the plasma. Furthermore, the branchial transcript levels of rhbg and rhcg decreased significantly, in preparation for the subsequent shutdown of gill functions. During the maintenance phase, the branchial expression levels of rhag/Rhag, rhbg/Rhbg and rhcg/Rhcg decreased significantly, indicating that their transcription and translation were down-regulated. This could be part of an overall mechanism to shut down branchial functions and save metabolic energy used for transcription and translation. It could also be regarded as an adaptive response to stop ammonia excretion. During the arousal phase, it is essential for the lungfish to regain the ability to excrete ammonia. Indeed, the protein abundance of Rhag, Rhbg and Rhcg recovered to the corresponding control levels after 1 day or 3 days of recovery from 6 months of aestivation.

  14. Detection of sputtered molecular doubly charged anions: a comparison of secondary-ion mass spectrometry (SIMS) and accelerator mass spectrometry (AMS)

    International Nuclear Information System (INIS)

    Gnaser, Hubert; Golser, Robin; Kutschera, Walter; Priller, Alfred; Steier, Peter; Vockenhuber, Christof

    2004-01-01

    The detection of small molecular dianions by secondary-ion mass spectrometry (SIMS) and by accelerator mass spectrometry (AMS) is compared. In SIMS, the existence of these dianions can be identified safely if the total mass number of the molecule is odd and the dianion is hence detected at a half-integral mass number. The occurrence of fragmentation processes which may interfere with this scheme, is illustrated by means of the energy spectra of singly and doubly charged negative cluster ions. As compared to SIMS, AMS can rely, in addition, on the break-up of molecular species in the stripping process: this allows to monitor the simultaneous arrival of several atomic constituents with a clear energetic pattern in coincidence at the detector. This feature is exemplified for the C 10 2- dianion

  15. Structural characterization of phospholipids by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Marto, J A; White, F M; Seldomridge, S; Marshall, A G

    1995-11-01

    Matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance mass spectrometry provides for structural analysis of the principal biological phospholipids: glycerophosphatidylcholine, -ethanolamine, -serine, and -inositol. Both positive and negative molecular or quasimolecular ions are generated in high abundance. Isolated molecular ions may be collisionally activated in the source side of a dual trap mass analyzer, yielding fragments serving to identify the polar head group (positive ion mode) and fatty acid side chains (negative ion mode). Azimuthal quadrupolar excitation following collisionally activated dissociation refocuses productions close to the solenoid axis; subsequent transfer of product ions to the analyzer ion trap allows for high-resolution mass analysis. Cyro-cooling of the sample probe with liquid nitrogen greatly reduces matrix adduction encountered in the negative ion mode.

  16. Chiral recognition of proteins having L-histidine residues on the surface with lanthanide ion complex incorporated-molecularly imprinted fluorescent nanoparticles

    International Nuclear Information System (INIS)

    Uzun, Lokman; Uzek, Recep; Şenel, Serap; Say, Ridvan; Denizli, Adil

    2013-01-01

    In this study, lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles were synthesized. A combination of three novel approaches was applied for the purpose. First, lanthanide ions [Terbium(III)] were complexed with N-methacryloyl-L-histidine (MAH), polymerizable derivative of L-histidine amino acid, in order to incorporate the complex directly into the polymeric backbone. At the second stage, L-histidine molecules imprinted nanoparticles were utilized instead of whole protein imprinting in order to avoid whole drawbacks such as fragility, complexity, denaturation tendency, and conformation dependency. At the third stage following the first two steps mentioned above, imprinted L-histidine was coordinated with cupric ions [Cu(II)] to conduct the study under mild conditions. Then, molecularly imprinted fluorescent nanoparticles synthesized were used for L-histidine adsorption from aqueous solution to optimize conditions for adsorption and fluorimetric detection. Finally, usability of nanoparticles was investigated for chiral biorecognition using stereoisomer, D-histidine, racemic mixture, D,L-histidine, proteins with surface L-histidine residue, lysozyme, cytochrome C, or without ribonuclease A. The results revealed that the proposed polymerization strategy could make significant contribution to the solution of chronic problems of fluorescent component introduction into polymers. Additionally, the fluorescent nanoparticles reported here could be used for selective separation and fluorescent monitoring purposes. Highlights: • Lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles • Direct incorporation of the fluorescent complex into polymeric backbone. • Imprinting by assistance of cupric ion coordination into nanoparticles • Evaluation of the chiral biorecognition ability of nanoparticles • Simultaneous selective separation and fluorescent monitoring

  17. Chiral recognition of proteins having L-histidine residues on the surface with lanthanide ion complex incorporated-molecularly imprinted fluorescent nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Uzun, Lokman, E-mail: lokman@hacettepe.edu.tr [Hacettepe University, Department of Chemistry, 06381, Ankara (Turkey); Uzek, Recep; Şenel, Serap [Hacettepe University, Department of Chemistry, 06381, Ankara (Turkey); Say, Ridvan [Anadolu University, Department of Chemistry, 26470, Eskisehir (Turkey); Denizli, Adil [Hacettepe University, Department of Chemistry, 06381, Ankara (Turkey)

    2013-08-01

    In this study, lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles were synthesized. A combination of three novel approaches was applied for the purpose. First, lanthanide ions [Terbium(III)] were complexed with N-methacryloyl-L-histidine (MAH), polymerizable derivative of L-histidine amino acid, in order to incorporate the complex directly into the polymeric backbone. At the second stage, L-histidine molecules imprinted nanoparticles were utilized instead of whole protein imprinting in order to avoid whole drawbacks such as fragility, complexity, denaturation tendency, and conformation dependency. At the third stage following the first two steps mentioned above, imprinted L-histidine was coordinated with cupric ions [Cu(II)] to conduct the study under mild conditions. Then, molecularly imprinted fluorescent nanoparticles synthesized were used for L-histidine adsorption from aqueous solution to optimize conditions for adsorption and fluorimetric detection. Finally, usability of nanoparticles was investigated for chiral biorecognition using stereoisomer, D-histidine, racemic mixture, D,L-histidine, proteins with surface L-histidine residue, lysozyme, cytochrome C, or without ribonuclease A. The results revealed that the proposed polymerization strategy could make significant contribution to the solution of chronic problems of fluorescent component introduction into polymers. Additionally, the fluorescent nanoparticles reported here could be used for selective separation and fluorescent monitoring purposes. Highlights: • Lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles • Direct incorporation of the fluorescent complex into polymeric backbone. • Imprinting by assistance of cupric ion coordination into nanoparticles • Evaluation of the chiral biorecognition ability of nanoparticles • Simultaneous selective separation and fluorescent monitoring.

  18. Apparatus for extraction and separation of a preferentially photo-dissociated molecular isotope into positive and negative ions by means of an electric field

    International Nuclear Information System (INIS)

    Fletcher, J.C.

    1978-01-01

    Apparatus for the separation and extraction of molecular isotopes is claimed. Molecules of one and the same isotope are preferentially photo-dissociated by a laser and an ultraviolet source, or by multi-photon absorption of laser radiation. The resultant ions are confined with a magnetic field, moved in opposite directions by an electric field, extracted from the photo-dissociation region by means of screening and accelerating grids, and collected in ducts

  19. Solvation and Ion Pair Association in Aqueous Metal Sulfates: Interpretation of NDIS raw data by isobaric-isothermal molecular dynamics simulation

    International Nuclear Information System (INIS)

    Chialvo, Ariel A.; Simonson, J. Michael

    2010-01-01

    We analyzed the solvation behavior of aqueous lithium, nickel, and ytterbium sulfates at ambient conditions in terms of the relevant radial distributions functions and the corresponding first-order difference of the sulfur-site neutron weighted distribution functions generated by isothermal-isobaric molecular dynamics simulation. We determined of the partial contributions to the neutron weighted distribution functions, to identify the main peaks, and the effect of the contact ion-pair configuration on the resulting H-S coordination number. Finally, we assessed the extent of the ion-pair formation according to Poirier-DeLap formalism and highlighted the significant increase of the ion-pair association exhibited by these salts with cation charge.

  20. Collision cross section prediction of deprotonated phenolics in a travelling-wave ion mobility spectrometer using molecular descriptors and chemometrics

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, Gerard Bryan, E-mail: gerard.gonzales@ugent.be [Food Chemistry and Human Nutrition (NutriFOODChem), Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University (Belgium); Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University (Belgium); Department of Applied Biological Science, Faculty of Bioscience Engineering, Ghent University (Belgium); Smagghe, Guy [Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University (Belgium); Coelus, Sofie; Adriaenssens, Dieter [Food Chemistry and Human Nutrition (NutriFOODChem), Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University (Belgium); De Winter, Karel; Desmet, Tom [Center for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University (Belgium); Raes, Katleen [Department of Applied Biological Science, Faculty of Bioscience Engineering, Ghent University (Belgium); Van Camp, John, E-mail: john.vancamp@ugent.be [Food Chemistry and Human Nutrition (NutriFOODChem), Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University (Belgium)

    2016-06-14

    The combination of ion mobility and mass spectrometry (MS) affords significant improvements over conventional MS/MS, especially in the characterization of isomeric metabolites due to the differences in their collision cross sections (CCS). Experimentally obtained CCS values are typically matched with theoretical CCS values from Trajectory Method (TM) and/or Projection Approximation (PA) calculations. In this paper, predictive models for CCS of deprotonated phenolics were developed using molecular descriptors and chemometric tools, stepwise multiple linear regression (SMLR), principal components regression (PCR), and partial least squares regression (PLS). A total of 102 molecular descriptors were generated and reduced to 28 after employing a feature selection tool, composed of mass, topological descriptors, Jurs descriptors and shadow indices. Therefore, the generated models considered the effects of mass, 3D conformation and partial charge distribution on CCS, which are the main parameters for either TM or PA (only 3D conformation) calculations. All three techniques yielded highly predictive models for both the training (R{sup 2}{sub SMLR} = 0.9911; R{sup 2}{sub PCR} = 0.9917; R{sup 2}{sub PLS} = 0.9918) and validation datasets (R{sup 2}{sub SMLR} = 0.9489; R{sup 2}{sub PCR} = 0.9761; R{sup 2}{sub PLS} = 0.9760). Also, the high cross validated R{sup 2} values indicate that the generated models are robust and highly predictive (Q{sup 2}{sub SMLR} = 0.9859; Q{sup 2}{sub PCR} = 0.9748; Q{sup 2}{sub PLS} = 0.9760). The predictions were also very comparable to the results from TM calculations using modified mobcal (N2). Most importantly, this method offered a rapid (<10 min) alternative to TM calculations without compromising predictive ability. These methods could therefore be used in routine analysis and could be easily integrated to metabolite identification platforms. - Highlights: • CCS for deprotonated phenolics were measured using TWIMS.

  1. Collision cross section prediction of deprotonated phenolics in a travelling-wave ion mobility spectrometer using molecular descriptors and chemometrics

    International Nuclear Information System (INIS)

    Gonzales, Gerard Bryan; Smagghe, Guy; Coelus, Sofie; Adriaenssens, Dieter; De Winter, Karel; Desmet, Tom; Raes, Katleen; Van Camp, John

    2016-01-01

    The combination of ion mobility and mass spectrometry (MS) affords significant improvements over conventional MS/MS, especially in the characterization of isomeric metabolites due to the differences in their collision cross sections (CCS). Experimentally obtained CCS values are typically matched with theoretical CCS values from Trajectory Method (TM) and/or Projection Approximation (PA) calculations. In this paper, predictive models for CCS of deprotonated phenolics were developed using molecular descriptors and chemometric tools, stepwise multiple linear regression (SMLR), principal components regression (PCR), and partial least squares regression (PLS). A total of 102 molecular descriptors were generated and reduced to 28 after employing a feature selection tool, composed of mass, topological descriptors, Jurs descriptors and shadow indices. Therefore, the generated models considered the effects of mass, 3D conformation and partial charge distribution on CCS, which are the main parameters for either TM or PA (only 3D conformation) calculations. All three techniques yielded highly predictive models for both the training (R"2_S_M_L_R = 0.9911; R"2_P_C_R = 0.9917; R"2_P_L_S = 0.9918) and validation datasets (R"2_S_M_L_R = 0.9489; R"2_P_C_R = 0.9761; R"2_P_L_S = 0.9760). Also, the high cross validated R"2 values indicate that the generated models are robust and highly predictive (Q"2_S_M_L_R = 0.9859; Q"2_P_C_R = 0.9748; Q"2_P_L_S = 0.9760). The predictions were also very comparable to the results from TM calculations using modified mobcal (N2). Most importantly, this method offered a rapid (<10 min) alternative to TM calculations without compromising predictive ability. These methods could therefore be used in routine analysis and could be easily integrated to metabolite identification platforms. - Highlights: • CCS for deprotonated phenolics were measured using TWIMS. • Isomeric phenolics were separated in the IMS based on their CCS. • SMLR

  2. Microphase separation and the formation of ion conductivity channels in poly(ionic liquid)s: A coarse-grained molecular dynamics study

    Science.gov (United States)

    Weyman, Alexander; Bier, Markus; Holm, Christian; Smiatek, Jens

    2018-05-01

    We study generic properties of poly(ionic liquid)s (PILs) via coarse-grained molecular dynamics simulations in bulk solution and under confinement. The influence of different side chain lengths on the spatial properties of the PIL systems and on the ionic transport mechanism is investigated in detail. Our results reveal the formation of apolar and polar nanodomains with increasing side chain length in good agreement with previous results for molecular ionic liquids. The ion transport numbers are unaffected by the occurrence of these domains, and the corresponding values highlight the potential role of PILs as single-ion conductors in electrochemical devices. In contrast to bulk behavior, a pronounced formation of ion conductivity channels in confined systems is initiated in close vicinity to the boundaries. We observe higher ion conductivities in these channels for increasing PIL side chain lengths in comparison with bulk values and provide an explanation for this effect. The appearance of these domains points to an improved application of PILs in modern polymer electrolyte batteries.

  3. Combined quantum-mechanics/molecular-mechanics dynamics simulation of A-DNA double strands irradiated by ultra-low-energy carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Ngaojampa, C.; Nimmanpipug, P. [Computer Simulation and Modeling Laboratory (CSML), Department of Chemistry and Center for Innovation Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.t [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Anuntalabhochai, S. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Lee, V.S., E-mail: vannajan@gmail.co [Computer Simulation and Modeling Laboratory (CSML), Department of Chemistry and Center for Innovation Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2011-02-15

    In order to promote understanding of the fundamentals of ultra-low-energy ion interaction with DNA, molecular dynamics simulations using combined quantum-mechanics/molecular-mechanics of poly-AT and poly-GC A-DNA double strands irradiated by <200 eV carbon ions were performed to investigate the molecular implications of mutation bias. The simulations were focused on the responses of the DNA backbones and nitrogenous bases to irradiation. Analyses of the root mean square displacements of the backbones and non-hydrogen atoms of base rings of the simulated DNA structure after irradiation revealed a potential preference of DNA double strand separation, dependent on the irradiating energy. The results show that for the backbones, the large difference in the displacement between poly-GC and poly-AT in the initial time period could be the reason for the backbone breakage; for the nitrogenous base pairs, A-T is 30% more sensitive or vulnerable to ion irradiation than G-C, demonstrating a preferential, instead of random, effect of irradiation-induced mutation.

  4. Combined quantum-mechanics/molecular-mechanics dynamics simulation of A-DNA double strands irradiated by ultra-low-energy carbon ions

    International Nuclear Information System (INIS)

    Ngaojampa, C.; Nimmanpipug, P.; Yu, L.D.; Anuntalabhochai, S.; Lee, V.S.

    2011-01-01

    In order to promote understanding of the fundamentals of ultra-low-energy ion interaction with DNA, molecular dynamics simulations using combined quantum-mechanics/molecular-mechanics of poly-AT and poly-GC A-DNA double strands irradiated by <200 eV carbon ions were performed to investigate the molecular implications of mutation bias. The simulations were focused on the responses of the DNA backbones and nitrogenous bases to irradiation. Analyses of the root mean square displacements of the backbones and non-hydrogen atoms of base rings of the simulated DNA structure after irradiation revealed a potential preference of DNA double strand separation, dependent on the irradiating energy. The results show that for the backbones, the large difference in the displacement between poly-GC and poly-AT in the initial time period could be the reason for the backbone breakage; for the nitrogenous base pairs, A-T is 30% more sensitive or vulnerable to ion irradiation than G-C, demonstrating a preferential, instead of random, effect of irradiation-induced mutation.

  5. Recoil ions

    International Nuclear Information System (INIS)

    Cocke, C.L.; Olson, R.E.

    1991-01-01

    The collision of a fast moving heavy ion with a neutral atomic target can produce very highly charged but slowly moving target ions. This article reviews experimental and theoretical work on the production and use of recoil ions beyond the second ionization state by beams with specific energies above 0.5 MeV/amu. A brief historical survey is followed by a discussion of theoretical approaches to the problem of the removal of many electrons from a neutral target by a rapid, multiply charged projectile. A discussion of experimental techniques and results for total and differential cross sections for multiple ionization of atomic and molecular targets is given. Measurements of recoil energy are discussed. The uses of recoil ions for in situ spectroscopy of multiply charged ions, for external beams of slow, highly charged ions and in ion traps are reviewed. Some possible future opportunities are discussed. (orig.)

  6. Production techniques for rare earth and other heavy negative ions

    International Nuclear Information System (INIS)

    McK Hyder, H.R.; Ashenfelter, J.; McGrath, R.

    1998-01-01

    Current nuclear structure studies demand a wide range of heavy negative ion beams for tandem acceleration. Some of the wanted isotopes have low natural abundances and many have low or negative electron affinities. For these, gas injection or the use of hydrides, oxides, or fluorides is required to achieve usable intensities. The chemical properties of the target materials, and of the additive gases used to form molecular ions, often have detrimental effects on ion source performance and life. These effects include insulator breakdown, ionizer poisoning, and the erosion or deposition of material on critical electrodes. Methods of controlling sputter source conditions are being studied on the Wright Nuclear Structure Laboratory ion source test bench with the object of extending source life, increasing target efficiency, and achieving consistent negative ion outputs. Results are reported for several heavy ions including tellurium, neodymium, and ytterbium. copyright 1998 American Institute of Physics

  7. He{sup 3+}{sub 2} and HeH{sup 2+} molecular ions in a strong magnetic field: The Lagrange-mesh approach

    Energy Technology Data Exchange (ETDEWEB)

    Olivares Pilón, Horacio, E-mail: holivare@ulb.ac.be [Physique Quantique, CP 165/82, Université Libre de Bruxelles, B 1050 Brussels (Belgium)

    2012-04-09

    Accurate calculations for the ground state of the molecular ions He{sup 3+}{sub 2} and HeH{sup 2+} placed in a strong magnetic field B≳10{sup 2} a.u. (≈2.35×10{sup 11} G) using the Lagrange-mesh method are presented. The Born–Oppenheimer approximation of zero order (infinitely massive centers) and the parallel configuration (molecular axis parallel to the magnetic field) are considered. Total energies are found with 9–10 s.d. The obtained results show that the molecular ions He{sup 3+}{sub 2} and HeH{sup 2+} exist at B>100 a.u. and B>1000 a.u., respectively, as predicted in Turbiner and López Vieyra (2007) while a saddle point in the potential curve appears for the first time at B∼80 a.u. and B∼740 a.u., respectively. -- Highlights: ► Application of the Lagrange-mesh method to two exotic molecular systems. ► He{sup 3+}{sub 2} and HeH{sup 2+} exist at B>100 a.u. and B>1000 a.u., respectively. ► Accurate results for the total energy. ► A saddle point in the potential appears at B∼80 a.u. and B∼740 a.u., respectively.

  8. Abundances in planetary nebulae : Including ISO results

    NARCIS (Netherlands)

    Pottasch, [No Value; Beintema, DA; Sales, JB; Feibelman, WA; Kwok, S; Dopita, M; Sutherland, R

    2003-01-01

    The far infrared nebular spectrum provides a valuable complement to the observed lines in other spectral regions. There are several reasons for this, the most important being the large increase in the number of ions observed, and the fact that the abundances found from these lines are relatively

  9. Comparing Laser Desorption Ionization and Atmospheric Pressure Photoionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry To Characterize Shale Oils at the Molecular Level

    Science.gov (United States)

    Cho, Yunjo; Jin, Jang Mi; Witt, Matthias; Birdwell, Justin E.; Na, Jeong-Geol; Roh, Nam-Sun; Kim, Sunghwan

    2013-01-01

    Laser desorption ionization (LDI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to analyze shale oils. Previous work showed that LDI is a sensitive ionization technique for assessing aromatic nitrogen compounds, and oils generated from Green River Formation oil shales are well-documented as being rich in nitrogen. The data presented here demonstrate that LDI is effective in ionizing high-double-bond-equivalent (DBE) compounds and, therefore, is a suitable method for characterizing compounds with condensed structures. Additionally, LDI generates radical cations and protonated ions concurrently, the distribution of which depends upon the molecular structures and elemental compositions, and the basicity of compounds is closely related to the generation of protonated ions. This study demonstrates that LDI FT-ICR MS is an effective ionization technique for use in the study of shale oils at the molecular level. To the best of our knowledge, this is the first time that LDI FT-ICR MS has been applied to shale oils.

  10. Hydration and Ion Pairing in Aqueous Mg2+ and Zn2+ Solutions: Force-Field Description Aided by Neutron Scattering Experiments and Ab Initio Molecular Dynamics Simulations.

    Science.gov (United States)

    Duboué-Dijon, Elise; Mason, Philip E; Fischer, Henry E; Jungwirth, Pavel

    2018-04-05

    Magnesium and zinc dications possess the same charge and have an almost identical size, yet they behave very differently in aqueous solutions and play distinct biological roles. It is thus crucial to identify the origins of such different behaviors and to assess to what extent they can be captured by force-field molecular dynamics simulations. In this work, we combine neutron scattering experiments in a specific mixture of H 2 O and D 2 O (the so-called null water) with ab initio molecular dynamics simulations to probe the difference in the hydration structure and ion-pairing properties of chloride solutions of the two cations. The obtained data are used as a benchmark to develop a scaled-charge force field for Mg 2+ that includes electronic polarization in a mean field way. We show that using this electronic continuum correction we can describe aqueous magnesium chloride solutions well. However, in aqueous zinc chloride specific interaction terms between the ions need to be introduced to capture ion pairing quantitatively.

  11. Chiral recognition of proteins having L-histidine residues on the surface with lanthanide ion complex incorporated-molecularly imprinted fluorescent nanoparticles.

    Science.gov (United States)

    Uzun, Lokman; Uzek, Recep; Senel, Serap; Say, Ridvan; Denizli, Adil

    2013-08-01

    In this study, lanthanide ion complex incorporated molecularly imprinted fluorescent nanoparticles were synthesized. A combination of three novel approaches was applied for the purpose. First, lanthanide ions [Terbium(III)] were complexed with N-methacryloyl-L-histidine (MAH), polymerizable derivative of L-histidine amino acid, in order to incorporate the complex directly into the polymeric backbone. At the second stage, L-histidine molecules imprinted nanoparticles were utilized instead of whole protein imprinting in order to avoid whole drawbacks such as fragility, complexity, denaturation tendency, and conformation dependency. At the third stage following the first two steps mentioned above, imprinted L-histidine was coordinated with cupric ions [Cu(II)] to conduct the study under mild conditions. Then, molecularly imprinted fluorescent nanoparticles synthesized were used for L-histidine adsorption from aqueous solution to optimize conditions for adsorption and fluorimetric detection. Finally, usability of nanoparticles was investigated for chiral biorecognition using stereoisomer, D-histidine, racemic mixture, D,L-histidine, proteins with surface L-histidine residue, lysozyme, cytochrome C, or without ribonuclease A. The results revealed that the proposed polymerization strategy could make significant contribution to the solution of chronic problems of fluorescent component introduction into polymers. Additionally, the fluorescent nanoparticles reported here could be used for selective separation and fluorescent monitoring purposes. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors.

    Science.gov (United States)

    Karas, M; Glückmann, M; Schäfer, J

    2000-01-01

    A new model for the ionization processes in UV matrix-assisted laser desorption/ionization (MALDI) which accounts for the major phenomena observed is presented and discussed. The model retains elements of earlier approaches, such as photoionization and photochemical reactions, but it redefines these in the light of new working questions, most importantly why only singly charged ions are detected. Based on experimental evidence, the formation of singly and multiply charged clusters by a deficiency/excess of ions and also by photoionization and subsequent photochemical processes is pointed out to be the major ionization processes, which typically occur in parallel. The generation of electrons and their partial loss into the surrounding vacuum and solid, on the one hand, results in a positively charged ion-neutral plume facilitating a high overall ionization yield. On the other hand, these electrons, and also the large excess of protonated matrix ions in the negative ion mode, induce effective ion reneutralization in the plume. These neutralization processes are most effective for the highly charged cluster ions initially formed. Their fragmentation behaviour is evidenced in fast metastable fragmentation characteristics and agrees well with an electron capture dissociation mechanism and the enthalpy transfer upon neutralization forms the rationale for the prominent fragmentation and intense chemical noise accompanying successful MALDI. Within the course of the paper, cross-correlations with other desorption/ionization techniques and with earlier discussions on their mechanisms are drawn. Copyright 2000 John Wiley & Sons, Ltd.

  13. Abundance estimation and conservation biology

    Science.gov (United States)

    Nichols, J.D.; MacKenzie, D.I.

    2004-01-01

    inference that increased recruitment was largely responsible for the improvements in population status and growth. However, various data sources also indicated that this increase in recruitment was likely a result of increased immigration rather than improved reproduction on the area. This latter inference is important from a conservation perspective in indicating the importance of birds in other locations to growth and health of the study population. Lukacs and Burnham presented material to be published elsewhere that dealt with the use of genetic markers in capture–recapture studies. The data sources for such studies are samples of hair or feces, which are then analyzed using molecular genetic techniques in order to determine individual genotypes with respect to a usually small number of loci. Two types of classification error can arise in such analyses. First, if only a small number of loci is examined, then there may be nonnegligible probabilities that multiple individual animals will have the same genotypes. The second type of error arises during the polymerase chain reaction (PCR) process and can result from failure of alleles to amplify (allelic dropout) or from PCR inhibitors in hair and feces that produce the appearance of false alleles or misprinting (Creel et al., 2003). Lukacs and Burnham developed models that formally incorporate possible misclassification of samples resulting from these errors. These models permit estimation of parameters such as abundance and survival in a manner that properly incorporates this uncertainty of individual identity. We anticipate that noninvasive sampling based on molecular genetic analyses of hair or feces will become extremely important for some species, and that the models of Lukacs and Burnham will become very popular for such analyses. MacKenzie & Nichols (2004) discuss the use of occupancy (proportion of patches or habitat area that is occupied) as a surrogate for abundance. In cases of territorial species and where

  14. Abundance estimation and Conservation Biology

    Directory of Open Access Journals (Sweden)

    Nichols, J. D.

    2004-06-01

    led to the inference that increased recruitment was largely responsible for the improvements in population status and growth. However, various data sources also indicated that this increase in recruitment was likely a result of increased immigration rather than improved reproduction on the area. This latter inference is important from a conservation perspective in indicating the importance of birds in other locations to growth and health of the study population. Lukacs and Burnham presented material to be published elsewhere that dealt with the use of genetic markers in capture–recapture studies. The data sources for such studies are samples of hair or feces, which are then analyzed using molecular genetic techniques in order to determine individual genotypes with respect to a usually small number of loci. Two types of classification error can arise in such analyses. First, if only a small number of loci is examined, then there may be nonnegligible probabilities that multiple individual animals will have the same genotypes. The second type of error arises during the polymerase chain reaction (PCR process and can result from failure of alleles to amplify (allelic dropout or from PCR inhibitors in hair and feces that produce the appearance of false alleles or misprinting (Creel et al., 2003. Lukacs and Burnham developed models that formally incorporate possible misclassification of samples resulting from these errors. These models permit estimation of parameters such as abundance and survival in a manner that properly incorporates this uncertainty of individual identity. We anticipate that noninvasive sampling based on molecular genetic analyses of hair or feces will become extremely important for some species, and that the models of Lukacs and Burnham will become very popular for such analyses. MacKenzie & Nichols (2004 discuss the use of occupancy (proportion of patches or habitat area that is occupied as a surrogate for abundance. In cases of territorial species

  15. Identification of the chemical constituents of Chinese medicine Yi-Xin-Shu capsule by molecular feature orientated precursor ion selection and tandem mass spectrometry structure elucidation.

    Science.gov (United States)

    Wang, Hong-ping; Chen, Chang; Liu, Yan; Yang, Hong-Jun; Wu, Hong-Wei; Xiao, Hong-Bin

    2015-11-01

    The incomplete identification of the chemical components of traditional Chinese medicinal formula has been one of the bottlenecks in the modernization of traditional Chinese medicine. Tandem mass spectrometry has been widely used for the identification of chemical substances. Current automatic tandem mass spectrometry acquisition, where precursor ions were selected according to their signal intensity, encounters a drawback in chemical substances identification when samples contain many overlapping signals. Compounds in minor or trace amounts could not be identified because most tandem mass spectrometry information was lost. Herein, a molecular feature orientated precursor ion selection and tandem mass spectrometry structure elucidation method for complex Chinese medicine chemical constituent analysis was developed. The precursor ions were selected according to their two-dimensional characteristics of retention times and mass-to-charge ratio ranges from herbal compounds, so that all precursor ions from herbal compounds were included and more minor chemical constituents in Chinese medicine were identified. Compared to the conventional automatic tandem mass spectrometry setups, the approach is novel and can overcome the drawback for chemical substances identification. As an example, 276 compounds from the Chinese Medicine of Yi-Xin-Shu capsule were identified. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Felix Spectroscopy of Likely Astronomical Molecular Ions: HC_3O^+, C_2H_3CNH^+, and C_2H_5CNH^+

    Science.gov (United States)

    Thorwirth, Sven; Asvany, Oskar; Brünken, Sandra; Jusko, Pavol; Schlemmer, Stephan; Martin-Drumel, Marie-Aline; McCarthy, Michael C.

    2017-06-01

    Infrared signatures of three molecular ions of relevance to the interstellar medium and planetary atmospheres have been detected at the Free Electron Laser for Infrared eXperiments, FELIX, at Radboud University (Nijmegen, The Netherlands) in combination with the 4K FELion 22-pole ion trap facility. Mid-infrared vibrational modes of protonated tricarbon monoxide, HC_3O^+, protonated vinyl cyanide, C_2H_3CNH^+, and protonated ethyl cyanide, C_2H_5CNH^+, were detected using resonant photodissociation of the respective Ne-complexes by monitoring the depletion of their cluster mass signal as a function of wavenumber. The infrared fingerprints compare very favorably with results from high-level quantum-chemical calculations performed at the CCSD(T) level of theory.

  17. Sputtering of copper atoms by keV atomic and molecular ions A comparison of experiment with analytical and computer based models

    CERN Document Server

    Gillen, D R; Goelich,

    2002-01-01

    Non-resonant multiphoton ionisation combined with quadrupole and time-of-flight analysis has been used to measure energy distributions of sputtered copper atoms. The sputtering of a polycrystalline copper target by 3.6 keV Ar sup + , N sup + and CF sub 2 sup + and 1.8 keV N sup + and CF sub 2 sup + ion bombardment at 45 deg. has been investigated. The linear collision model in the isotropic limit fails to describe the high energy tail of the energy distributions. However the TRIM.SP computer simulation has been shown to provide a good description. The results indicate that an accurate description of sputtering by low energy, molecular ions requires the use of computer simulation rather than analytical approaches. This is particularly important when considering plasma-surface interactions in plasma etching and deposition systems.

  18. OXYGEN ABUNDANCES IN CEPHEIDS

    International Nuclear Information System (INIS)

    Luck, R. E.; Andrievsky, S. M.; Korotin, S. N.; Kovtyukh, V. V.

    2013-01-01

    Oxygen abundances in later-type stars, and intermediate-mass stars in particular, are usually determined from the [O I] line at 630.0 nm, and to a lesser extent, from the O I triplet at 615.7 nm. The near-IR triplets at 777.4 nm and 844.6 nm are strong in these stars and generally do not suffer from severe blending with other species. However, these latter two triplets suffer from strong non-local thermodynamic equilibrium (NLTE) effects and thus see limited use in abundance analyses. In this paper, we derive oxygen abundances in a large sample of Cepheids using the near-IR triplets from an NLTE analysis, and compare those abundances to values derived from a local thermodynamic equilibrium (LTE) analysis of the [O I] 630.0 nm line and the O I 615.7 nm triplet as well as LTE abundances for the 777.4 nm triplet. All of these lines suffer from line strength problems making them sensitive to either measurement complications (weak lines) or to line saturation difficulties (strong lines). Upon this realization, the LTE results for the [O I] lines and the O I 615.7 nm triplet are in adequate agreement with the abundance from the NLTE analysis of the near-IR triplets.

  19. Negative-ion states

    International Nuclear Information System (INIS)

    Compton, R.N.

    1982-01-01

    In this brief review, we discuss some of the properties of atomic and molecular negative ions and their excited states. Experiments involving photon reactions with negative ions and polar dissociation are summarized. 116 references, 14 figures

  20. TEA: A CODE CALCULATING THERMOCHEMICAL EQUILIBRIUM ABUNDANCES

    Energy Technology Data Exchange (ETDEWEB)

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver, E-mail: jasmina@physics.ucf.edu [Planetary Sciences Group, Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (United States)

    2016-07-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature–pressure pairs. We tested the code against the method of Burrows and Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows and Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.

  1. TEA: A CODE CALCULATING THERMOCHEMICAL EQUILIBRIUM ABUNDANCES

    International Nuclear Information System (INIS)

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver

    2016-01-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature–pressure pairs. We tested the code against the method of Burrows and Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows and Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.

  2. Effects of constituent ions of a phosphonium-based ionic liquid on molecular organization of H2O as probed by 1-propanol

    DEFF Research Database (Denmark)

    Morita, Takeshi; Miki, Kumiko; Ayako, Nitta

    2015-01-01

    on the basis of 1-propanol probing methodology devised by Koga et al. The resulting characterization of the hydrophobicity/hydrophilicity is displayed on a two-dimensional map together with previous results, for a total of four cations and nine anions of typical ionic liquid (IL) constituents. The results......Aqueous solutions of tetrabutylphosphonium trifluoroacetate, [P4444]CF3COO, exhibit a liquid-liquid phase transition with a lower critical solution temperature. Herein, we characterized the constituent ions, [P4444](+) and CF3COO(-), in terms of their effects on the molecular organization of H2O...

  3. High accuracy results for the energy levels of the molecular ions H+2, D+2 and HD+, up to J = 2

    International Nuclear Information System (INIS)

    Karr, J Ph; Hilico, L

    2006-01-01

    We present a nonrelativistic calculation of the rotation-vibration levels of the molecular ions H + 2 , D + 2 and HD + , relying on the diagonalization of the exact three-body Hamiltonian in a variational basis. The J = 2 levels are obtained with a very high accuracy of 10 -14 au (for most levels) representing an improvement by five orders of magnitude over previous calculations. The accuracy is also improved for the J = 1 levels of H + 2 and D + 2 with respect to earlier works. Moreover, we have computed the sensitivities of the energy levels with respect to the mass ratios, allowing these levels to be used for metrological purposes

  4. Static electric polarizabilities and first hyperpolarizabilities of molecular ions RgH + (Rg = He, Ne, Ar, Kr, Xe): ab initio study

    Science.gov (United States)

    Cukras, Janusz; Antušek, Andrej; Holka, Filip; Sadlej, Joanna

    2009-06-01

    Extensive ab initio calculations of static electric properties of molecular ions of general formula RgH + (Rg = He, Ne, Ar, Kr, Xe) involving the finite field method and coupled cluster CCSD(T) approach have been done. The relativistic effects were taken into account by Douglas-Kroll-Hess approximation. The numerical stability and reliability of calculated values have been tested using the systematic sequence of Dunning's cc-pVXZ-DK and ANO-RCC-VQZP basis sets. The influence of ZPE and pure vibrational contribution has been discussed. The component αzz has increasing trend in RgH + while the relativistic effect on αzz leads to a small increase of this molecular parameter.

  5. The spectral distribution of intermediate L-K molecular-orbital radiation in symmetric heavy-ion collisions

    International Nuclear Information System (INIS)

    Heinig, K.-H.; Jager, H.-U.; Richter, H.; Woittennek, H.; Frank, W.; Gippener, P.; Kaun, K.-H.; Manfrass, P.

    1977-01-01

    Two distinct x-ray continua C1 and C2 above the characteristic lines are observed in high-energy collisions between atoms with atomic numbers of 28 to 57. This structure is explained by a superposition of K molecular-orbital (KMO) radiation and of an intermediate L-K molecular-orbital (ILKMO) radiation of high intensity which is due to 2psigma vacancies. In the framework of the dynamical theory of intermediate molecular phenomena and using a scaling of the H 2 + correlation diagram with screened state-dependent charges good agreement between the shapes of the measured and calculated spectra is obtained. (author)

  6. The Effect of Crystal Packing and Re(IV) Ions on the Magnetisation Relaxation of [Mn6 ]-Based Molecular Magnets

    OpenAIRE

    Martínez-Lillo, José; Cano, Joan; Wernsdorfer, Wolfgang; Brechin, Euan K

    2015-01-01

    The energy barrier to magnetisation relaxation in single-molecule magnets (SMMs) proffers potential technological applications in high-density information storage and quantum computation. Leading candidates amongst complexes of 3d metals ions are the hexametallic family of complexes of formula [Mn6 O2 (R-sao)6 (X)2 (solvent)y ] (saoH2 =salicylaldoxime; X=mono-anion; y=4-6; R=H, Me, Et, and Ph). The recent synthesis of cationic [Mn6 ][ClO4 ]2 family members, in which the coordinating X ions we...

  7. Orion A helium abundance

    International Nuclear Information System (INIS)

    Tsivilev, A.P.; Ershov, A.A.; Smirnov, G.T.; Sorochenko, R.L.

    1986-01-01

    The 22.4-GHz (H,He)66-alpha and 36.5-GHz (H,He)56-alpha radio recombination lines have been observed at several Jaffe-Pankonin positions in the central part of the Orion A source. The measured relative abundance of ionized helium increases with distance, averaging 11.6 percent at peripheral points. The observed behavior is interpreted by a blister-type model nebula, which implies that Orion A has a true He abundance of 12 percent, is moving with a radial velocity of 5 km/sec, and is expanding. 18 references

  8. Extraction of inhibitor-free metagenomic DNA from polluted sediments, compatible with molecular diversity analysis using adsorption and ion-exchange treatments.

    Science.gov (United States)

    Desai, Chirayu; Madamwar, Datta

    2007-03-01

    PCR inhibitor-free metagenomic DNA of high quality and high yield was extracted from highly polluted sediments using a simple remediation strategy of adsorption and ion-exchange chromatography. Extraction procedure was optimized with series of steps, which involved gentle mechanical lysis, treatment with powdered activated charcoal (PAC) and ion-exchange chromatography with amberlite resin. Quality of the extracted DNA for molecular diversity analysis was tested by amplifying bacterial 16S rDNA (16S rRNA gene) with eubacterial specific universal primers (8f and 1492r), cloning of the amplified 16S rDNA and ARDRA (amplified rDNA restriction analysis) of the 16S rDNA clones. The presence of discrete differences in ARDRA banding profiles provided evidence for expediency of the DNA extraction protocol in molecular diversity studies. A comparison of the optimized protocol with commercial Ultraclean Soil DNA isolation kit suggested that method described in this report would be more efficient in removing metallic and organic inhibitors, from polluted sediment samples.

  9. Molecular enhancement of Balmer emissions following foil-induced dissociation of fast H2+ and H3+ ions

    International Nuclear Information System (INIS)

    Kobayashi, H.; Oda, N.

    1984-01-01

    Relative emission yields of Balmer lines as functions of the dwell time (t/sub D/ = 0.97--54.1 fs) in thin carbon foils (2--68 μg/cm 2 ) have been measured with (0.2--0.8)-MeV/amu H + , H 2 + , and H 3 + incident on thin carbon foils. Large molecular effects for emission yields of Balmer lines have been observed for H 2 + and H 3 + , where the molecular effect for H 3 + is larger than that for H 2 + . The molecular effects for H 2 + and H 3 + depend on the principal quantum number (n = 3--6), but this n dependence disappears at the largest t/sub D/ ( = 54.1 fs). The molecular effects rapidly decrease with increasing t/sub D/ in the small-t/sub D/ ( or approx. =2 fs) region. The magnitudes of the molecular effects at the largest t/sub D/ ( = 54.1 fs) are in good agreement with those by Andresen et al. [Phys. Scr. 19, 335 (1979)]. Relative populations of n-state hydrogens in the large-t/sub D/ (> or approx. =2 fs) region have been derived from the relative yields of Balmer lines as functions of n and t/sub D/. The molecular enhancement for relative populations of n-state hydrogens for H 2 + depends on n and t/sub D/, and decreases with increasing t/sub D/ and increases with increasing n

  10. Electric Double Layer at the Rutile (110) Surface. 2. Adsorption of Ions from Molecular Dynamics and X-ray Experiments

    Czech Academy of Sciences Publication Activity Database

    Předota, Milan; Zhang, Z.; Fenter, P.; Wesolowski, D.J.; Cummings, P.T.

    2004-01-01

    Roč. 108, č. 32 (2004), s. 12061-12072 ISSN 1520-6106 R&D Projects: GA ČR GP203/03/P083; GA ČR GA203/02/0805 Institutional research plan: CEZ:AV0Z4072921 Keywords : ion * adsorption * rutile Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.834, year: 2004

  11. Stellar Oxygen Abundances

    Science.gov (United States)

    King, Jeremy

    1994-04-01

    This dissertation addresses several issues concerning stellar oxygen abundances. The 7774 {\\AA} O I triplet equivalent widths of Abia & Rebolo [1989, AJ, 347, 186] for metal-poor dwarfs are found to be systematically too high. I also argue that current effective temperatures used in halo star abundance studies may be ~150 K too low. New color-Teff relations are derived for metal-poor stars. Using the revised Teff values and improved equivalent widths for the 7774A O I triplet, the mean [O/Fe] ratio for a handful of halo stars is found to be +0.52 with no dependence on Teff or [Fe/H]. Possible cosmological implications of the hotter Teff scale are discussed along with additional evidence supporting the need for a higher temperature scale for metal-poor stars. Our Teff scale leads to a Spite Li plateau value of N(Li)=2.28 +/- 0.09. A conservative minimal primordial value of N(Li)=2.35 is inferred. If errors in the observations and models are considered, consistency with standard models of Big Bang nucleosynthesis is still achieved with this larger Li abundance. The revised Teff scale raises the observed B/Be ratio of HD 140283 from 10 to 12, making its value more comfortably consistent with the production of the observed B and Be by ordinary spallation. Our Teff values are found to be in good agreement with values predicted from both the Victoria and Yale isochrone color-Teff relations. Thus, it appears likely that no changes in globular cluster ages would result. Next, we examine the location of the break in the [O/Fe] versus [Fe/H] plane in a quantitative fashion. Analysis of a relatively homogeneous data set does not favor any unique break point in the range -1.7 /= -3), in agreement with the new results for halo dwarfs. We find that the gap in the observed [O/H] distribution, noted by Wheeler et al. [1989, ARAA, 27, 279], persists despite the addition of more O data and may betray the occurrence of a hiatus in star formation between the end of halo formation and

  12. Technical Note: Molecular characterization of aerosol-derived water soluble organic carbon using ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

    Directory of Open Access Journals (Sweden)

    R. M. Dickhut

    2008-09-01

    Full Text Available Despite the acknowledged relevance of aerosol-derived water-soluble organic carbon (WSOC to climate and biogeochemical cycling, characterization of aerosol WSOC has been limited. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS was utilized in this study to provide detailed molecular level characterization of the high molecular weight (HMW; m/z>223 component of aerosol-derived WSOC collected from rural sites in Virginia and New York, USA. More than 3000 peaks were detected by ESI FT-ICR MS within a m/z range of 223–600 for each sample. Approximately 86% (Virginia and 78% (New York of these peaks were assigned molecular formulas using only carbon (C, hydrogen (H, oxygen (O, nitrogen (N, and sulfur (S as elemental constituents. H/C and O/C molar ratios were plotted on van Krevelen diagrams and indicated a strong contribution of lignin-like and lipid-like compounds to the aerosol-derived WSOC samples. Approximately 1–4% of the peaks in the aerosol-derived WSOC mass spectra were classified as black carbon (BC on the basis of double bond equivalents calculated from the assigned molecular formulas. In addition, several high-magnitude peaks in the mass spectra of samples from both sites corresponded to molecular formulas proposed in previous secondary organic aerosol (SOA laboratory investigations indicating that SOAs are important constituents of the WSOC. Overall, ESI FT-ICR MS provides a level of resolution adequate for detailed compositional and source information of the HMW constituents of aerosol-derived WSOC.

  13. Organic solvent and temperature-enhanced ion chromatography-high resolution mass spectrometry for the determination of low molecular weight organic and inorganic anions

    International Nuclear Information System (INIS)

    Gilchrist, Elizabeth S.; Nesterenko, Pavel N.; Smith, Norman W.; Barron, Leon P.

    2015-01-01

    Highlights: • IC selectivity at high contents of organic solvent in eluent and elevated temperature is studied. • Solvent-enhanced IC coupled to high resolution MS is beneficial for sensitive detection of ions. • The first application of IC-HRMS to the detection of low explosives in fingermarks is shown. - Abstract: There has recently been increased interest in coupling ion chromatography (IC) to high resolution mass spectrometry (HRMS) to enable highly sensitive and selective analysis. Herein, the first comprehensive study focusing on the direct coupling of suppressed IC to HRMS without the need for post-suppressor organic solvent modification is presented. Chromatographic selectivity and added HRMS sensitivity offered by organic solvent-modified IC eluents on a modern hyper-crosslinked polymeric anion-exchange resin (IonPac AS18) are shown using isocratic eluents containing 5–50 mM hydroxide with 0–80% methanol or acetonitrile for a range of low molecular weight anions (<165 Da). Comprehensive experiments on IC thermodynamics over a temperature range between 20–45 °C with the eluent containing up to 60% of acetonitrile or methanol revealed markedly different retention behaviour and selectivity for the selected analytes on the same polymer based ion-exchange resin. Optimised sensitivity with HRMS was achieved with as low as 30–40% organic eluent content. Analytical performance characteristics are presented and compared with other IC-MS based works. This study also presents the first application of IC-HRMS to forensic detection of trace low-order anionic explosive residues in latent human fingermarks

  14. Organic solvent and temperature-enhanced ion chromatography-high resolution mass spectrometry for the determination of low molecular weight organic and inorganic anions

    Energy Technology Data Exchange (ETDEWEB)

    Gilchrist, Elizabeth S. [Analytical & Environmental Science Division, Department of Forensic & Analytical Science, King’s College London, 150 Stamford Street, London, SE1 9NH (United Kingdom); Nesterenko, Pavel N. [Australian Centre for Research on Separation Science, School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart 7001 (Australia); Smith, Norman W. [Analytical & Environmental Science Division, Department of Forensic & Analytical Science, King’s College London, 150 Stamford Street, London, SE1 9NH (United Kingdom); Barron, Leon P., E-mail: leon.barron@kcl.ac.uk [Analytical & Environmental Science Division, Department of Forensic & Analytical Science, King’s College London, 150 Stamford Street, London, SE1 9NH (United Kingdom)

    2015-03-20

    Highlights: • IC selectivity at high contents of organic solvent in eluent and elevated temperature is studied. • Solvent-enhanced IC coupled to high resolution MS is beneficial for sensitive detection of ions. • The first application of IC-HRMS to the detection of low explosives in fingermarks is shown. - Abstract: There has recently been increased interest in coupling ion chromatography (IC) to high resolution mass spectrometry (HRMS) to enable highly sensitive and selective analysis. Herein, the first comprehensive study focusing on the direct coupling of suppressed IC to HRMS without the need for post-suppressor organic solvent modification is presented. Chromatographic selectivity and added HRMS sensitivity offered by organic solvent-modified IC eluents on a modern hyper-crosslinked polymeric anion-exchange resin (IonPac AS18) are shown using isocratic eluents containing 5–50 mM hydroxide with 0–80% methanol or acetonitrile for a range of low molecular weight anions (<165 Da). Comprehensive experiments on IC thermodynamics over a temperature range between 20–45 °C with the eluent containing up to 60% of acetonitrile or methanol revealed markedly different retention behaviour and selectivity for the selected analytes on the same polymer based ion-exchange resin. Optimised sensitivity with HRMS was achieved with as low as 30–40% organic eluent content. Analytical performance characteristics are presented and compared with other IC-MS based works. This study also presents the first application of IC-HRMS to forensic detection of trace low-order anionic explosive residues in latent human fingermarks.

  15. Probing the binding of Cu(2+) ions to a fragment of the Aβ(1-42) polypeptide using fluorescence spectroscopy, isothermal titration calorimetry and molecular dynamics simulations.

    Science.gov (United States)

    Makowska, Joanna; Żamojć, Krzysztof; Wyrzykowski, Dariusz; Żmudzińska, Wioletta; Uber, Dorota; Wierzbicka, Małgorzata; Wiczk, Wiesław; Chmurzyński, Lech

    2016-09-01

    Steady-state and time-resolved fluorescence quenching measurements supported by isothermal titration calorimetry (ITC) and molecular dynamics simulations (MD), with the NMR-derived restraints, were used to investigate the interactions of Cu(2+) ions with a fragment of the Aβ(1-42) polypeptide, Aβ(5-16) with the following sequence: Ac-Arg-His-Asp-Ser-Gly-Tyr-Glu-Val-His-His-Gln-Lys-NH2, denoted as HZ1. The studies presented in this paper, when compared with our previous results (Makowska et al., Spectrochim. Acta A 153: 451-456), show that the affinity of the peptide to metal ions is conformation-dependent. All the measurements were carried out in 20mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution, pH6.0. The Stern-Volmer equations, along with spectroscopic observations, were used to determine the quenching and binding parameters. The obtained results unequivocally suggest that Cu(2+) ions quench the fluorescence of HZ1 only through a static quenching mechanism, in contrast to the fragment from the N-terminal part of the FPB28 protein, with sequence Ac-Tyr-Lys-Thr-Ala-Asp-Gly-Lys-Thr-Tyr- NH2 (D9) and its derivative with a single point mutation: Ac-Tyr-Lys-Thr-Ala-Asn-Gly-Lys-Thr-Tyr- NH2 (D9_M), where dynamic quenching occurred. The thermodynamic parameters (ΔITCH, ΔITCS) for the interactions between Cu(2+) ions and the HZ1 peptide were determined from the calorimetric data. The conditional thermodynamic parameters suggest that, under the experimental conditions, the formation of the Cu(2+)-HZ1 complex is both an enthalpy and entropy driven process. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Molecular beam epitaxy of GaN(0001) utilizing NH3 and/or NH+x ions: Growth kinetics and defect structure

    International Nuclear Information System (INIS)

    Lee, N.; Powell, R.C.; Kim, Y.; Greene, J.E.

    1995-01-01

    Gas-source molecular beam epitaxy (GS-MBE), utilizing Ga and NH 3 , and reactive-ion MBE (RIMBE), incorporating both thermal NH 3 and low-energy NH + x ions, were used to grow single crystal GaN(0001) layers on Al 2 O 3 (0001) at temperatures T s between 700 and 850 degree C with deposition rates of 0.2--0.5 μm h -1 . The RIMBE experiments were carried out with incident NH + x /Ga flux ratios J NH + x /J Ga =1.9--3.2 and NH + x acceleration energies E NH + x =45--90 eV. Plan-view and cross-sectional transmission electron microscopy analyses showed that the primary defects in the GS-MBE films were threading dislocations having either pure edge or mixed edge/screw characteristics with Burgers vectors bar b=1/3 left-angle 2 bar 1 bar 10 right-angle, basal-plane stacking faults with displacement vectors bar R=1/6 left-angle 02 bar 23 right-angle, and prismatic stacking faults with bar R=1/2 left-angle bar 1101 right-angle. In the case of RIMBE films, no stacking faults or residual ion-induced defects were observed with E NH + x =45 eV and T s ≥800 degree C. However, increasing E NH + x to ≥60 eV at T s =800 degree C gave rise to the formation of residual ion-induced point-defect clusters observable by transmission electron microscopy (TEM). Increasing T s to 850 degree C with E NH + x ≥60 eV resulted in the ion-induced defects aggregating to form interstitial basal and prismatic dislocation loops, whose number densities depended upon the ion flux, with Burgers vectors 1/2 left-angle 0001 right-angle and 1/3 left-angle 2 bar 1 bar 10 right-angle, respectively. (Abstract Truncated)

  17. Evolution of heavy ions (He{sup 2+}, H{sup +}) radiolytic yield of molecular hydrogen vs. ''Track-Segment'' LET values

    Energy Technology Data Exchange (ETDEWEB)

    Crumiere, Francis; Vandenborre, Johan; Blain, Guillaume; Fattahi, Massoud [Nantes Univ., CNRS/IN2P3 (France). SUBATECH Unite Mixte de Recherche 6457; Haddad, Ferid [Nantes Univ., CNRS/IN2P3 (France). SUBATECH Unite Mixte de Recherche 6457; Cyclotron Arronax, Saint Herblain (France)

    2017-08-01

    Ionizing radiation's effects onto water molecules lead to the ionization and/or the excitation of them. Then, these phenomena are followed by the formation of radicals and molecular products. The linear energy transfer (LET), which defines the energy deposition density along the radiation length, is different according to the nature of ionizing particles. Thus, the values of radiolytic yields, defined as the number of radical and molecular products formed or consumed by unit of deposited energy, evolve according to this parameter. This work consists in following the evolution of radiolytic yield of molecular hydrogen and ferric ions according to the ''Track-Segment'' LET of ionizing particles (protons, helions). Concerning G(Fe{sup 3+}) values, it seems that the energy deposited into the Bragg peak does not play the main role for the Fe{sup 3+} radiolytic formation, whereas for the G(H{sub 2}) it is the case with a component around 40% of the Bragg peak in the dihydrogen production. Therefore, as main results of this work, for high energetic Helion and Proton beams, the G(Fe{sup 3+}) values, which can be used for further dosimetry studies for example during the α radiolysis experiments, and the primary g(H{sub 2}) values for the Track-Segment LET, which can be used to determine the dihydrogen production by α-emitters, are published.

  18. SFG analysis of the molecular structures at the surfaces and buried interfaces of PECVD ultralow-dielectric constant pSiCOH: Reactive ion etching and dielectric recovery

    Science.gov (United States)

    Myers, John N.; Zhang, Xiaoxian; Huang, Huai; Shobha, Hosadurga; Grill, Alfred; Chen, Zhan

    2017-05-01

    Molecular structures at the surface and buried interface of an amorphous ultralow-k pSiCOH dielectric film were quantitatively characterized before and after reactive ion etching (RIE) and subsequent dielectric repair using sum frequency generation (SFG) vibrational spectroscopy and Auger electron spectroscopy. SFG results indicated that RIE treatment of the pSiCOH film resulted in a depletion of ˜66% of the surface methyl groups and changed the orientation of surface methyl groups from ˜47° to ˜40°. After a dielectric recovery process that followed the RIE treatment, the surface molecular structure was dominated by methyl groups with an orientation of ˜55° and the methyl surface coverage at the repaired surface was 271% relative to the pristine surface. Auger depth profiling indicated that the RIE treatment altered the top ˜25 nm of the film and that the dielectric recovery treatment repaired the top ˜9 nm of the film. Both SFG and Auger profiling results indicated that the buried SiCNH/pSiCOH interface was not affected by the RIE or the dielectric recovery process. Beyond characterizing low-k materials, the developed methodology is general and can be used to distinguish and characterize different molecular structures and elemental compositions at the surface, in the bulk, and at the buried interface of many different polymer or organic thin films.

  19. Molecular energy dissipation in nanoscale networks of Dentin Matrix Protein 1 is strongly dependent on ion valence

    Science.gov (United States)

    Adams, J; Fantner, G E; Fisher, L W; Hansma, P K

    2008-01-01

    The fracture resistance of biomineralized tissues such as bone, dentin, and abalone is greatly enhanced through the nanoscale interactions of stiff inorganic mineral components with soft organic adhesive components. A proper understanding of the interactions that occur within the organic component, and between the organic and inorganic components, is therefore critical for a complete understanding of the mechanics of these tissues. In this paper, we use Atomic Force Microscope (AFM) force spectroscopy and dynamic force spectroscopy to explore the effect of ionic interactions within a nanoscale system consisting of networks of Dentin Matrix Protein 1 (DMP1) (a component of both bone and dentin organic matrix), a mica surface, and an AFM tip. We find that DMP1 is capable of dissipating large amounts of energy through an ion-mediated mechanism, and that the effectiveness increases with increasing ion valence. PMID:18843380

  20. Molecular energy dissipation in nanoscale networks of dentin matrix protein 1 is strongly dependent on ion valence

    International Nuclear Information System (INIS)

    Adams, J; Fantner, G E; Hansma, P K; Fisher, L W

    2008-01-01

    The fracture resistance of biomineralized tissues such as bone, dentin, and abalone is greatly enhanced through the nanoscale interactions of stiff inorganic mineral components with soft organic adhesive components. A proper understanding of the interactions that occur within the organic component, and between the organic and inorganic components, is therefore critical for a complete understanding of the mechanics of these tissues. In this paper, we use atomic force microscope (AFM) force spectroscopy and dynamic force spectroscopy to explore the effect of ionic interactions within a nanoscale system consisting of networks of dentin matrix protein 1 (DMP1) (a component of both bone and dentin organic matrix), a mica surface and an AFM tip. We find that DMP1 is capable of dissipating large amounts of energy through an ion-mediated mechanism, and that the effectiveness increases with increasing ion valence

  1. Molecular energy dissipation in nanoscale networks of dentin matrix protein 1 is strongly dependent on ion valence

    Energy Technology Data Exchange (ETDEWEB)

    Adams, J; Fantner, G E; Hansma, P K [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106 (United States); Fisher, L W [Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, DHHS, Bethesda, MD 20892 (United States)], E-mail: adams@physics.ucsb.edu, E-mail: fantner@physics.ucsb.edu, E-mail: lfisher@dir.nidcr.nih.gov, E-mail: prasant@physics.ucsb.edu

    2008-09-24

    The fracture resistance of biomineralized tissues such as bone, dentin, and abalone is greatly enhanced through the nanoscale interactions of stiff inorganic mineral components with soft organic adhesive components. A proper understanding of the interactions that occur within the organic component, and between the organic and inorganic components, is therefore critical for a complete understanding of the mechanics of these tissues. In this paper, we use atomic force microscope (AFM) force spectroscopy and dynamic force spectroscopy to explore the effect of ionic interactions within a nanoscale system consisting of networks of dentin matrix protein 1 (DMP1) (a component of both bone and dentin organic matrix), a mica surface and an AFM tip. We find that DMP1 is capable of dissipating large amounts of energy through an ion-mediated mechanism, and that the effectiveness increases with increasing ion valence.

  2. Tracking nuclear wave-packet dynamics in molecular oxygen ions with few-cycle infrared laser pulses

    International Nuclear Information System (INIS)

    De, S.; Bocharova, I. A.; Magrakvelidze, M.; Ray, D.; Cao, W.; Thumm, U.; Cocke, C. L.; Bergues, B.; Kling, M. F.; Litvinyuk, I. V.

    2010-01-01

    We have tracked nuclear wave-packet dynamics in doubly charged states of molecular oxygen using few-cycle infrared laser pulses. Bound and dissociating wave packets were launched and subsequently probed via a pair of 8-fs pulses of 790 nm radiation. Ionic fragments from the dissociating molecules were monitored by velocity-map imaging. Pronounced oscillations in the delay-dependent kinetic energy release spectra were observed. The occurrence of vibrational revivals permits us to identify the potential curves of the O 2 dication which are most relevant to the molecular dynamics. These studies show the accessibility to the dynamics of such higher-charged molecules.

  3. Peculiarities of using mixed deuterium and tritium ion beams of complicated atomic-molecular composition for fast neutron generation

    International Nuclear Information System (INIS)

    Kir'yanov, G.I.; Syromukov, S.V.

    1983-01-01

    The neutron yield is calculated depending on deuterium and tritium beam parameters as well as on the target parameters. Cases of target presaturation with hydrogen nuclides and of target stuffing with the ion beam in the process of the system functioning are discussed. It is shown that the neutron yield is approximately three times more in the case with a pure beam compared to the case with a niked beam

  4. Fragmentation of molecular ions in differential mobility spectrometry as a method for identification of chemical warfare agents.

    Science.gov (United States)

    Maziejuk, M; Puton, J; Szyposzyńska, M; Witkiewicz, Z

    2015-11-01

    The subject of the work is the use of differential mobility spectrometry (DMS) for the detection of chemical warfare agents (CWA). Studies were performed for mustard gas, i.e., bis(2-chloroethyl)sulfide (HD), sarin, i.e., O-isopropyl methylphosphonofluoridate (GB) and methyl salicylate (MS) used as test compounds. Measurements were conducted with two ceramic DMS analyzers of different constructions allowing the generation of an electric field with an intensity of more than 120 Td. Detector signals were measured for positive and negative modes of operation in a temperature range from 0 to 80 °C. Fragmentations of ions containing analyte molecules were observed for all tested compounds. The effective temperatures of fragmentation estimated on the basis of dispersion plots were equal from about 148 °C for GB to 178 °C for MS. It was found that values of separation voltage (SV) and compensation voltage (CV) at which the fragmentation of sample ions is observed may be the parameters improving the certainty of detection for different analytes. The DMS analyzers enabling the observation of ion fragmentation can be successfully used for effective CWA detection. Copyright © 2015. Published by Elsevier B.V.

  5. Ammonia abundances in comets

    Science.gov (United States)

    Wyckoff, S.; Tegler, S.; Engel, L.

    The emission band strengths of the NH2 bands of Comets Halley, Hartley-Good, Thiele, and Borrelly were measured to determine the NH2 column densities for the comets. Production rates obtained using the Haser and vectorial models are in agreement within the observational errors, suggesting that a simple two-step decay model may be used to approximate the NH2 distribution in a comet's coma. Ammonia-to-water abundance ratios from 0.01 to 0.4 percent were found for the four comets. The ratio in Comet Halley is found to be Q(NH3)/Q(H2O) = 0.002 + or - 0.001. No significant difference in the ammonia abundance was found before or after perihelion in Comet Halley.

  6. Aqueous Guanidinium-Carbonate Interactions by Molecular Dynamics and Neutron Scattering: Relevance to Ion-Protein Interactions

    Czech Academy of Sciences Publication Activity Database

    Vazdar, Mario; Jungwirth, Pavel; Mason, Philip E.

    2013-01-01

    Roč. 117, č. 6 (2013), s. 1844-1848 ISSN 1520-6106 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : guanidinium * neutron scattering * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.377, year: 2013

  7. Molecular Beam Epitaxy on Gas Cluster Ion Beam Prepared GaSb Substrates: Towards Improved Surfaces and Interfaces

    National Research Council Canada - National Science Library

    Krishnaswami, Kannan; Vangala, Shivashankar R; Dauplaise, Helen M; Allen, Lisa P; Dallas, Gordon; Bakken, Daniel; Bliss, David F; Goodhue, WIlliam D

    2007-01-01

    ... at temperatures ranging 530 degrees C to 560 degrees C. Cross-sectional transmission electron microscopy of molecular beam epitaxy grown GaSb/AlGaSb layers showed that the HBr-GCIB surface produced a smooth dislocation-free substrate-to-epi transition...

  8. Influence of Low Molecular Weight Organic Acids on Transport of Cadmium and Copper Ions across Model Phospholipid Membranes

    Czech Academy of Sciences Publication Activity Database

    Parisová, Martina; Navrátil, Tomáš; Šestáková, Ivana; Jaklová Dytrtová, Jana; Mareček, Vladimír

    2013-01-01

    Roč. 8, č. 1 (2013), s. 27-44 ISSN 1452-3981 R&D Projects: GA AV ČR IAA400400806 Institutional support: RVO:61388963 ; RVO:61388955 Keywords : cadmium * copper * low molecular weight organic acid Subject RIV: CG - Electrochemistry Impact factor: 1.956, year: 2013

  9. Thermodynamics of Small Alkali Metal Halide Cluster Ions: Comparison of Classical Molecular Simulations with Experiment and Quantum Chemistry

    Czech Academy of Sciences Publication Activity Database

    Vlček, L.; Uhlík, F.; Moučka, F.; Nezbeda, Ivo; Chialvo, L.

    2015-01-01

    Roč. 119, č. 3 (2015), s. 488-500 ISSN 1089-5639 Institutional support: RVO:67985858 Keywords : monte-carlo simulations * molecular-dynamic simulations * classical drude oscillators Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.883, year: 2015

  10. Compilation of solar abundance data

    International Nuclear Information System (INIS)

    Hauge, Oe.; Engvold, O.

    1977-01-01

    Interest in the previous compilations of solar abundance data by the same authors (ITA--31 and ITA--39) has led to this third, revised edition. Solar abundance data of 67 elements are tabulated and in addition upper limits for the abundances of 5 elements are listed. References are made to 167 papers. A recommended abundance value is given for each element. (JIW)

  11. Abundances in galaxies

    International Nuclear Information System (INIS)

    Pagel, B.E.J.

    1991-01-01

    Standard (or mildly inhomogeneous) Big Bang nucleosynthesis theory is well confirmed by abundance measurements of light elements up to 7 Li and the resulting upper limit to the number of neutrino families confirmed in accelerator experiments. Extreme inhomogeneous models with a closure density in form of baryons seem to be ruled out and there is no evidence for a cosmic 'floor' to 9 Be or heavier elements predicted in some versions of those models. Galaxies show a correlation between luminous mass and abundance of carbon and heavier elements, usually attributed to escape of hot gas from shallow potential wells. Uncertainties include the role of dark matter and biparametric behaviour of ellipticals. Spirals have radial gradients which may arise from a variety of causes. In our own Galaxy one can distinguish three stellar populations - disk, halo and bulge - characterised by differing metallicity distribution functions. Differential abundance effects are found among different elements in stars as a function of metallicity and presumably age, notably in the ratio of oxygen and α-particle elements to iron. These may eventually be exploitable to set a time scale for the formation of the halo, bulge and disk. (orig.)

  12. Symmetry adaptation and two-photon spectroscopy of ions in molecular or solid-state finite symmetry

    International Nuclear Information System (INIS)

    Kibler, M.; Daoud, M.

    1991-01-01

    Finite symmetry adaptation techniques are applied to the determination of the intensity strength of two-photon transitions for ions with one partly-filled shell nl in crystalline environments of symmetry G. The case of intra-configurational (nl N →nl N ) transitions as well as the case of inter-configurational (nl N →nl N-1 n'l' with (-) l+( l')=-1) transitions is treated. In both cases, the Wigner-Racah algebra of the chain O(3) contains G allows to extract the polarization dependence from the intensity. The reported results are valid for any strength of the crystalline field. (author) 19 refs

  13. Difference-frequency laser spectroscopy of molecular ions with a hollow-cathode cell: extended analysis of the ν1 band of H2D+

    International Nuclear Information System (INIS)

    Amano, T.

    1985-01-01

    A cooled hollow-cathode cell was used for observation of the infrared spectra of positive ions in the 3-μm region with a difference-frequency laser as a radiation source. About an order-of-magnitude enhancement of the signal intensity was attained, compared with the similar signals obtained with our previous glow-discharge cell. Ten more weaker lines of the ν 1 fundamental band of H 2 D + , which could not be observed in our previous experiment [J. Chem. Phys. 81, 2869 (1984)] were measured. Improved molecular constants were obtained from a least-squares fit including the infrared lines and the two millimeter-and submillimeter-wave lines in the ground state

  14. Multiple scattering of MeV ions: Comparison between the analytical theory and Monte-Carlo and molecular dynamics simulations

    International Nuclear Information System (INIS)

    Mayer, M.; Arstila, K.; Nordlund, K.; Edelmann, E.; Keinonen, J.

    2006-01-01

    Angular and energy distributions due to multiple small angle scattering were calculated with different models, namely from the analytical Szilagyi theory, the Monte-Carlo code MCERD in binary collision approximation and the molecular dynamics code MDRANGE, for 2 MeV 4 He in Au at backscattering geometry and for 20 MeV 127 I recoil analysis of carbon. The widths and detailed shapes of the distributions are compared, and reasons for deviations between the different models are discussed

  15. Ion sources for accelerators

    International Nuclear Information System (INIS)

    Alton, G.D.

    1974-01-01

    A limited review of low charge sate positive and negative ion sources suitable for accelerator use is given. A brief discussion is also given of the concepts underlying the formation and extraction of ion beams. Particular emphasis is placed on the technology of ion sources which use solid elemental or molecular compounds to produce vapor for the ionization process

  16. Muonic molecular ions p p μ and p d μ driven by superintense VUV laser pulses: Postexcitation muonic and nuclear oscillations and high-order harmonic generation

    Science.gov (United States)

    Paramonov, Guennaddi K.; Saalfrank, Peter

    2018-05-01

    The non-Born-Oppenheimer quantum dynamics of p p μ and p d μ molecular ions excited by ultrashort, superintense VUV laser pulses polarized along the molecular axis (z ) is studied by the numerical solution of the time-dependent Schrödinger equation within a three-dimensional (3D) model, including the internuclear distance R and muon coordinates z and ρ , a transversal degree of freedom. It is shown that in both p p μ and p d μ , muons approximately follow the applied laser field out of phase. After the end of the laser pulse, expectation values , , and demonstrate "post-laser-pulse" oscillations in both p p μ and p d μ . In the case of p d μ , the post-laser-pulse oscillations of and appear as shaped "echo pulses." Power spectra, which are related to high-order harmonic generation (HHG), generated due to muonic and nuclear motion are calculated in the acceleration form. For p d μ it is found that there exists a unique characteristic frequency ωoscp d μ representing both frequencies of post-laser-pulse muonic oscillations and the frequency of nuclear vibrations, which manifest themselves by very sharp maxima in the corresponding power spectra of p d μ . The homonuclear p p μ ion does not possess such a unique characteristic frequency. The "exact" dynamics and power, and HHG spectra of the 3D model are compared with a Born-Oppenheimer, fixed-nuclei model featuring interesting differences: postpulse oscillations are absent and HHG spectra are affected indirectly or directly by nuclear motion.

  17. Binary-encounter electron emission after fast heavy-ion impact on complex rare- and molecular-gas targets

    International Nuclear Information System (INIS)

    Bechthold, U.; Ullrich, J.; Ramm, U.; Kraft, G.; Hagmann, S.; Schultz, D.R.; Reinhold, C.O.; Schmidt-Boecking, H.

    1998-01-01

    Doubly differential cross sections (DDCSs) for electron emission have been measured for collisions of 3.6 MeV/u Ne 10+ , Xe 40+ and 5.9 MeV/u U 29+ on neon, xenon, water, ethanol, methanol, propanol, C 2 F 6 , SF 6 , and C 3 F 8 . Electrons ejected with emission angles between 0 degree and 180 degree with respect to the ion beam axis have been recorded simultaneously using a toroidal electron spectrometer. We analyze the singly differential cross section (SDCS) for binary encounter electron (BEe) production as a function of target electron number and laboratory emission angle. We find that there exists a linear scaling of the BEe SDCS with the number of electrons bound in the target with an energy lower than the reduced projectile energy. The enhancement of BEe production in the forward direction in collisions with partially stripped ions is studied for the different projectiles and targets and compared to theoretical calculations. copyright 1998 The American Physical Society

  18. Ion pump as molecular ratchet and effects of noise: electric activation of cation pumping by Na,K-ATPase

    Science.gov (United States)

    Tsong, T. Y.; Xie, T. D.

    2002-08-01

    Na,K-ATPase is a universal ion pump of the biological cell. Under physiological conditions, it uses the γ-phosphorus bond energy of ATP during hydrolysis to pump 2 K+ inward and 3 Na+ outward; both being uphill transports. The experiment presented here demonstrates that the protein transporter can also use electric energy to fuel its pump activity. A theory of electroconformational coupling (TEC) is described and an experiment performed to verify several predictions of the model. Analysis based on the TEC model suggests that Na,K-ATPase is a Brownian ratchet. The enzyme harvests energy from the applied field by means of the field-induced conformational oscillation or fluctuation. However, high efficiency of energy transduction can only be achieved with an electric field of certain intensities, frequencies and waveforms. This property of the enzyme allows us to define an electric signal and differentiate it from electric noise on the basis of the analysis by the TEC model. Data show that electric noise alone does not induce pump activity. However, an appropriate power level of noise imposed on a signal can enhance the pump efficiency. The effect of noise on the signal transduction of Na,K-ATPase is reminiscent of the stochastic resonance phenomenon reported in other biological systems [3, 35]. The TEC model embodies many common features of enzymes and biological motors. It is potentially energy-efficient, much more so than models based on the ion-rectification mechanism.

  19. Theoretical Studies of Electron Interaction with Molecular Ions and Mutual Neutralization - HeH and BeH

    International Nuclear Information System (INIS)

    Larson, Asa

    2012-01-01

    Reactions driven through electronic resonant states of HeH and BeH are discussed. These reactions are dissociative recombination (DR), resonant vibrational excitations (VE) and resonant dissociative excitations (DE). Another process is mutual neutralization (MN). HeH: The electronic resonant states of HeH are calculated using the full Configuration Interaction (CI) method with a large basis set. To obtain the autoionization widths electron scattering calculations are carried out using the Complex-Kohn variational method. The target ion is then described with a multi- reference CI wave function. Non-adiabatic couplings between the resonant states are computed using a method developed by V. Sidis. Cross sections for VE and DE of HeH in different vibrational states are computed by solving a driven Schroedinger equation and including autoionization using a local model. The non-adiabatic couplings between the resonant states are neglected. The cross sections become large when the energy is high enough to capture into the resonant states. The computed cross section for DE with the ion in the ground vibrational state is in very good agreement with measurement. The MN reaction, He + + H - →He*+ H, will be studied using strictly diabatic states. Autoionization will be included using the local model and the cross section will be computed by numerically solving a Matrix-Riccati equation for the radial wave function. BeH: We have previously studied DR of BeH + including the capture into electronic resonant states. Electronic couplings between the neutral states were included using a quasidiabatization procedure. Using the multi-channel quantum defect theory, the non-adiabatic couplings to the Rydberg states are now also incorporated. The indirect process results in sharp oscillations in the cross section and it influences the low temperature thermal rate coefficient for the reaction. Resonant VE and DE of BeH + in different vibrational states are investigated. The cross

  20. Molecular imaging of in vivo calcium ion expression in area postrema of total sleep deprived rats: Implications for cardiovascular regulation by TOF-SIMS analysis

    Science.gov (United States)

    Mai, Fu-Der; Chen, Li-You; Ling, Yong-Chien; Chen, Bo-Jung; Wu, Un-In; Chang, Hung-Ming

    2010-05-01

    Excessive calcium influx in chemosensitive neurons of area postrema (AP) is detrimental for sympathetic activation and participates in the disruption of cardiovascular activities. Since total sleep deprivation (TSD) is a stressful condition known to harm the cardiovascular function, the present study is aimed to determine whether the in vivo calcium expression in AP would significantly alter following TSD by the use of time-of-flight secondary ion mass spectrometry (TOF-SIMS) and calretinin (a specific calcium sensor protein in AP neurons) immunohistochemistry. The results indicated that in normal rats, the calcium intensity was estimated to be 0.5 × 10 5 at m/ z 40.08. However, following TSD, the intensity for calcium ions was greatly increased to 1.2 × 10 5. Molecular imaging revealed that after TSD, various strongly expressed calcium signals were distributed throughout AP with clear identified profiles instead of randomly scattered within this region in normal rats. Immunohistochemical staining corresponded well with ionic image in which a majority of calcium-enriched gathering co-localized with calretinin positive neurons. The functional significance of TSD-induced calcium augmentation was demonstrated by increased heart rate and mean arterial pressure, clinical markers for cardiovascular dysfunction. Considering AP-mediated sympathetic activation is important for cardiovascular regulation, exaggerated calcium influx in AP would render this neurocircuitry more vulnerable to over-excitation, which might serve as the underlying mechanism for the development of TSD-relevant cardiovascular deficiency.